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Katedra: Katedra numerické matematiky
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Introduction

This thesis aims to concern itself with the task of numerically computing the
polynomial greatest common divisor (GCD). At first glance, this does not seem
to be problematic, since for any input data, symbolical solution can be found with
the use of the well known Euclid’s algorithm. First trouble will start to appear as
soon as we enter the floating point environment, since even the slightest change
to the coefficients of the given polynomials can result in a dramatic change of
their GCD. We say that finding GCD is an ill-posed problem (i.e. arbitrarily
small perturbation of input can lead to a completely different answer).

Since this renders the original algorithm quite unstable, other ways of com-
pleting such a task are sought for. One of the approaches is to use structured
matrices instead of polynomials, providing a more robust platform to carry out
the computation. Of course, such matrices need to carry all the properties of
the polynomials and are often related to the algebraic notion of a polynomial
resultant. We speak of so-called resultant matrices.

In this text, firstly, we go over some necessary notions in Chapter 1, of course
including the definition of the Greatest common divisor. Another important
concept is that of numerical rank of a matrix. We also need a way of computing
it, hence we present an algorithm used for rank determination. Correctly, or
perhaps suitably, determining a rank of a given matrix is quite a difficult, but
essential task in the process of finding the GCD as becomes clear later.

In Chapter 2, we study the Sylvester matrices, the first of the two kinds
of resultant matrices we consider, and how they can be used for our goal. It is
presented how the rank of Sylvester matrix is connected to the degree of the GCD
of the corresponding polynomials. We then show how elimination can be used
as a direct analogy of the Euclid’s algorithm, but a more sophisticated algorithm
is considered as well. We also find out, that the problem of finding the GCD of
two polynomials can be quite naturally extended to include several of them, but
what is more important, this new approach is applicable to the original problem
for two polynomials as well. It turns out, that the notion of AGCD: approximate
greatest common divisor, is needed in addition to the GCD.

Next, in Chapter 3, to provide some sort of comparison, a different kind of
resultant matrix, the Bézout matrix, is considered. It gives us an example of
a different kind of resultant matrix and enables us to have some context for
the qualities of Sylvester resultants. We explore a great article [14] by V. Pták
concerning Bézout matrices and then follow up with results of [2] to present a
slight variation of their algorithm. As in the previous chapter, generalization for
more than two polynomials is explored here as well.

Finally, in Chapter 4, we implement algorithms presented in previous chapters,
compute GCD of some sample problems, and compare the presented methods and
approaches.
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1. Elementary Notions

We shall go through the notation used throughout this paper and define some
of the elementary notions, with which we will work. Afterwards we concern
ourself with a numerical rank of a matrix and a method of revealing it. A simple
algorithm for this purpose is also presented.

1.1 Notation and Definitions

Let us first go through basic notation used in this paper.

Notation Meaning
n, k, ai, σ, τ Scalars are denoted by lower case letters.

x0, g, φ Vectors are denoted by bold lower case letters. Unless
explicitly stated, we assume column vectors.

A, M, V, Σ Matrices are denoted by capital letters.
W , P Vector spaces are denoted by bold capital letters.

f(x), g(y), f, g Polynomials are denoted by lower case letters. Variable
can be omitted where it is unnecessary.

Ker(A) Kernel, or null space of a matrix,
i.e. Ker(A) = {x; Ax = 0}.

span{φ1, . . . ,φn} Linear span of vectors φ1, . . . ,φn,
i.e. span{φ1, . . . ,φn} =
= {x; ∃ a1, . . . an ∈ R : x = a1φ1 + · · ·+ anφn}.

rank(A) Column rank of a matrix A, i.e. number of its
linearly independent columns.

deg(f), deg(f(x)) The degree of the polynomial f (or f(x)), which is
its highest power with a non-zero coefficient.

‖·‖ = ‖·‖2 Euclidean norm of vector ‖x‖ = (
∑n

i=1 x
2
i )

1
2 for x = [x1, . . . , xn] ∈ Rn,

or spectral norm ‖A‖ = sup
‖x‖=1

‖Ax‖ for matrices A ∈ Rm×n.

ei, I The ith canonical basis vector and identity matrix.
For example, I = [e1, . . . , en] in Rn.

diag(α1, . . . , αn) An n× n diagonal matrix with entries α1, . . . , αn.

We will obviously talk about the notion of the greatest common divisor of two
polynomials.

Definition 1.1. Let us have two polynomials f(x) =
∑m

i=0 aix
m−i and g(x) =

∑n
i=0 bix

n−i of degrees m, n respectively, ai, bi ∈ R.
The polynomial g(x) divides f(x), if there exists a polynomial p(x), such that

f(x) = p(x)g(x). We denote this by g | f , or g ∤ f if no such p(x) exists.
Polynomials f(x) and g(x) have a common divisor if there exists such a poly-

nomial c(x), that c(x) | f(x) as well as c(x) | g(x).
Two polynomials are coprime or relatively prime if for all their common divi-

sors c(x) it holds, that deg(c(x)) = 0, i.e. it is a non-zero (real) constant.
Any polynomial h(x) satisfying f(x) = h(x)v(x), g(x) = h(x)w(x), with
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v(x), w(x) coprime is called the greatest common divisor of f(x) and g(x), de-
noted by h(x) = GCD(f(x), g(x)).

For computation and in algorithms, polynomials will be often represented as
vectors, so for polynomial f = f(x) =

∑m
i=0 aix

m−i we have a corresponding
vector f = [a0, a1, . . . , am]

T .
The best known way of finding the GCD of two polynomials is the Euclid’s

algorithm. We work with a sequence of polynomials f (i), i ∈ N ∪ {0}, denote
deg(f (i)) = ni ∈ N and their coefficients as

f (i)(x) = a
(i)
0 xni + a

(i)
1 xni−1 + · · ·+ a(i)ni

.

With this notation, the Euclid’s algorithm (see [20]) is as follows.

Algorithm 1.2. Let us have two polynomials f(x) and g(x) such that deg(f) ≥
deg(g). We aim to compute h(x) = GCD(f, g).

I. Set f (0) := f and f (1) := g.

II. For i = 0, 1, 2, . . . do following:

(i) If f (i+1) = 0, then continue with the step III.

(ii) Divide f (i) by f (i+1) so that f (i)(x) = q(x)f (i+1)(x) + r(x), for some
polynomials q and r, deg(r) < ni+1.

(iii) Set f (i+2)(x) := r(x).

(iv) Update i := i+ 1 and repeat from the step (i).

III. We set h(x) = f (i)(x)

End of algorithm.

As is presented later, degree of the GCD of two polynomials is tightly related
to a rank of a specific matrix. Since even a slight perturbation of a matrix entries
completely changes its mathematical rank, we must, in the context of numerical
mathematics, concern ourselves with replacing such a notion.

To illustrate, simply consider matrices

[
1 1
1 1

]

and

[
1 1 + ε

1 1

]

.

Rank of the first one is obviously 1, but for any arbitrarily small real ε > 0, is the rank of the
second one 2.

We find it beneficial to provide simple examples, illustrations and notes throughout this
paper with a goal of improving understanding and overall clarity. These remarks will be graph-
ically distinguished in this fashion, just as this one is, from the rest of the text.

Instead, we consider the distance of any given matrix A from the nearest
matrices of deficient rank. For a certain given tolerance θ we consider the lowest
rank of all the matrices that are sufficiently close to A to be its numerical rank.
Specifically, in [8] the following is found.
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Definition 1.3. Let us have anm×n real matrix A, m ≥ n, and θ ∈ R satisfying

k = inf{rank(B); B ∈ Rm×n, ‖A−B‖ ≤ θ}

Then k is the numerical rank of A with respect to θ and we write

rankθ(A) = k.

Note that if A has singular values satisfying

σ1 ≥ · · · ≥ σk > θ ≥ σk+1 · · · ≥ σn.

then rankθ A = k (see [8], Theorem 2.5.3 or [12]).
Let us now illustrate the whole situation on a simple example. Consider

a diagonal matrix A = diag(λ1, . . . , λn), where λ1 > . . . > λn > 0. Clearly,
rank(A) = rank0(A) = n. The nearest rank deficient (or in this case singular)
matrix with respect to the spectral norm is Z = diag(λ1, . . . , λn−1, 0) and its rank
is rank(Z) = n − 1. We see, that ‖A− Z‖ = λn. Keeping that in mind, if we
consider λn > θ > 0, then rankθ(A) = n, but for λn−1 > θ ≥ λn that changes to
rankθ(A) = n− 1 and A is rank deficient with respect to tolerance θ.

1.2 GCD and AGCD

In finite arithmetic, coefficients of given polynomials might not be known exactly
due to rounding errors. In this setting, trying to find such a GCD would be an
ill-posed problem, since even a miniscule perturbation of polynomial coefficients
can change the degree of GCD drastically.

This means we shall usually consider only an approximate greatest common
divisor – AGCD. With a set tolerance ε > 0 we allow our result to be the GCD of
some perturbed (within ε with respect to some norm) polynomials instead of the
original pair (see [17]). There are different definitions to be found in literature
(e.g. in [19], [5]), though the general idea is shared.

1.3 Determining the Rank of a Matrix

In this section, we will shortly outline a Gauss-Newton iteration used for mini-
mizing functionals and then present a theoretical background as well as algorithm
using it to determine the numerical rank of a matrix.

1.3.1 Gauss-Newton method

Let us have a vector function f : Rn → Rm, f = [f1, . . . , fm]
T and functional

F (x) = 1
2
fT (x) f (x) = 1

2
[f1, . . . , fm][f1, . . . , fm]

T . We shall consider ourselves
with the problem of minimizing F (if only locally). For x to be a point of local
extremum, it is necessary that g (x) = 0, where

g (x) =
[

∂F
∂x1

(x) , . . . , ∂F
∂xn

(x)
]T

.
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To construct an iterative method, let us have x(i) ∈ Rn. We denote G the Hessian
matrix of second partial derivatives of F and expand F about x(i)

F (x) = F
(
x(i)
)
+
(
x− x(i)

)T
g
(
x(i)
)
+ 1

2

(
x− x(i)

)T G
(
x(i)
) (

x− x(i)
)
+ . . .

and neglect all but the first three terms. We then have

g (x) = g
(
x(i)
)
+ G

(
x(i)
) (

x− x(i)
)
,

assuming G symmetric. Since g (x) = 0, we have

0 = g
(
x(i)
)
+ G

(
x(i)
) (

x− x(i)
)
.

We then set x(i+1) := x, specifically

x(i+1) = x(i) − G−1
(
x(i)
)
g
(
x(i)
)
.

Approximating G
(
x(i)
)
by JT

(
x(i)
)
J
(
x(i)
)
and replacing g

(
x(i)
)
by JT

(
x(i)
)
f
(
x(i)
)
,

where J is the Jacobian matrix of f , we finally get Gauss-Newton’s iteration

x(i+1) = x(i) −
(
JT
(
x(i)
)
J
(
x(i)
))−1

JT
(
x(i)
)

︸ ︷︷ ︸

J†

f
(
x(i)
)
, i ∈ N ∪ {0},

where J† is the Moore-Penrose pseudoinverse of J . This choice is a result of the
following theorem found in [3].

Theorem 1.4. Let us have F, f . Hessian matrix G (x) of the functional F (x)
can be written in the form

G (x) = JT (x) J (x) +
m∑

k=1

fk (x)Gk (x) ,

where fk (x) is the kth component of f (x) = [f1 (x) , . . . , fm (x)] and Gk (x) is its
Hessian matrix.

For more details see [13], [3].

1.3.2 Rank Revealing Algorithm

In this section, we aim to present an algorithm based on the Gauss-Newton
iteration, determining the numerical rank of a matrix. But first, the following
theorem shows how can be minimization of a functional used for that purpose.

Let A ∈ Rm×n, m ≥ n be a matrix with singular values

σ1 ≥ . . . ≥ σn

and corresponding right singular vectors v1, . . . , vn. There exists 1 ≤ k ≤ n, such
that σk+1 = σk+2 = . . . = σn. Let us define W := span{vk+1, . . . , vn}. The
following theorem found in [12] shows a relationship between finding the smallest
singular number σn of the matrix A and solving a certain least squares problem.
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Theorem 1.5. Let us have A with singular values σ1, . . . , σn as above, τ ∈ R,
such that τ > σ1 and u ∈ Rn satisfying

∥
∥
∥
∥

[
τuT

A

]

u−
[
τ
0

]∥
∥
∥
∥

2

= min
x∈Rn

∥
∥
∥
∥

[
τxT

A

]

x−
[
τ
0

]∥
∥
∥
∥

2

.

Then u ∈ W = span{vk+1, . . . , vn}.
Proof. Firstly, we have

∥
∥
∥
∥

[
τuT

A

]

u−
[
τ
0

]∥
∥
∥
∥

2

=

∥
∥
∥
∥

[
τuTu− τ

Au

]∥
∥
∥
∥

2

= τ 2(uTu− 1)2 + ‖Au‖2. (1.1)

Le us now have a singular value decomposition of A, so that A = UΣV T , and
set t := V Tu. Since V is an orthogonal matrix, we have V V T = I and we get
u = V t. Using this as a substitution in (1.1), we obtain

τ 2(uTu− 1)2 + ‖Au‖2 = τ 2(tTV TV t− 1)2 + ‖AV t‖2

= τ 2(tT t− 1)2 + ‖UΣt‖2

= τ 2(tT t− 1)2 + ‖Σt‖2.
Let now σ1, . . . , σn be singular values of A, meaning that Σ = diag(σ1, . . . , σn),
and let t = [t1, . . . , tn]

T . This gives us

τ 2(tT t− 1)2 + ‖Σt‖2 = τ 2

(
n∑

i=1

t2i − 1

)2

+
n∑

i=1

σ2
i t

2
i =: f(t).

Since we assumed that u minimizes the expression in (1.1), it follows from the

necessary condition for local minimum, that ∂f(x)
∂xk

(t) = 0 for all k ∈ {1, . . . , n}.
Hence,

0 =
∂f(x)

∂xk

(t) = 2τ 2

(
n∑

i=1

t2i − 1

)

(2tk) + 2tkσ
2
k.

Now, if it holds that tk 6= 0 for some k, we have

σ2
k = 2τ 2

(

1−
n∑

i=1

t2i

)

, (1.2)

which is expression for σk independent of k, meaning there is σ ∈ R, such that
σk = σ for any k ∈ {i; ti 6= 0} =: K. But now

f(t) = τ 2

(
n∑

i=1

t2i − 1

)2

+
∑

i∈K

σ2
i t

2
i

= τ 2

(
n∑

i=1

t2i − 1

)2

+
∑

i∈K

σ2t2i

= τ 2

(
n∑

i=1

t2i − 1

)2

+ σ2
∑

i∈K

t2i − σ2 + σ2

= τ 2

(
n∑

i=1

t2i − 1

)2

+ σ2

(
∑

i∈K

t2i − 1

)

+ σ2.

7



At this point, we can plug-in for

(

1−
n∑

i=1

t2i

)

from (1.2), and obtain

f(t) = τ 2
(

− σ2

2τ 2

)2

+ σ2

(

− σ2

2τ 2

)

+ σ2.

= σ2 − σ4

4τ 2
.

Therefore, if t is a point of local minimum, then either f(t) = σ2 − σ4

4τ2
, where

σ = σk for some k ∈ K, or K is an empty set, t = 0 and f(t) = τ 2. Which one of
these values is the smallest, i.e. the global minimum? Let us study the function
x2 − x4

4τ2
. We have

d

dx

(

x2 − x4

4τ 2

)

= x

(

2− x2

τ 2

)

≥ 0, 0 ≤ x ≤ τ
√
2,

meaning that the studied function is non-decreasing on [0, τ
√
2]. Thanks to the

assumption σ1 < τ , it is clear, that σi ∈ [0, τ
√
2] for i ∈ 1, . . . , n. And since

σn < τ , the minimal value of f(t) is σ2
n − σ4

n

4τ2
. This value can be achieved for

t = ek

√

1− σ2

k

2τ2
as can be readily checked, for any k ∈ K, since σk = σ = σn,

k ∈ K. We now recall, that u = V t and note, that ek = V Tvk, where vk is
the singular vector associated with σk, k ∈ K (or one of the singular vectors
associated with σ). Also, since ti = 0, i /∈ K, we have

u = V t =
n∑

i=1

tivi =
∑

k∈K

tkvk,

where all the vectors vk are (once again) the singular vectors associated with the
smallest singular value, namely σ. Hence, u ∈ W , which concludes the proof. �

To solve the presented least squares problem, the following Gauss-Newton
iteration can be used (see [12]):

xj+1 = xj −
[
2τxT

j

A

]† [
τxT

j xj − τ
Axj

]

, j ∈ N ∪ {0} (1.3)

where the symbol M † denotes the Moore-Penrose pseudoinverse of the matrix M .
Moreover let us set

ζj =
‖Axj‖2
‖xj‖2

.

Then the sequence {ζj, j = 1, 2, . . .} converges to the smallest singular number of
the matrix A, i.e. σn.

The following lemma from [12] presents an alternative form of the aforemen-
tioned iteration.

Lemma 1.6. Let A ∈ Rm×n be a matrix of a full column rank, τ ∈ R and let
{xj}j=0,1,... be a sequence generated by the iteration process (1.3). We set

cj :=
2τ 2(1 + xT

j xj)

1 + 4τ 2xT
j (A

TA)−1xj

.

Then
xj+1 = cj(A

TA)−1xj.
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Proof. Firstly,

[
2τxT

j

A

]† [
τxT

j xj − τ
Axj

]

=

(

[2τxj , A
T ]

[
2τxT

j

A

])−1

[2τxj , A
T ]

[
τxT

j xj − τ
Axj

]

=
(
4τ 2xjxj

T + ATA
)−1 (

(2τ 2xjxj
T + ATA)xj − 2τ 2xj

)
.

Next,

xj −
(
4τ 2xjxj

T + ATA
)−1 (

(2τ 2xjxj
T + ATA)xj − 2τ 2xj

)

= 2τ 2(1 + xj
Txj)

(
4τ 2xjxj

T + ATA
)−1

xj

and so

(
4τ 2xjxj

T + ATA
)
xj+1 = 2τ 2(1 + xj

Txj)xj

(ATA)xj+1 = 2τ 2(1 + xj
Txj − 2xj

Txj+1)xj

xj+1 = 2τ 2(1 + xj
Txj − 2xj

Txj+1) (A
TA)−1

xj

xj+1(1 + 4τ 2xj
T (ATA)−1xj) = 2τ 2(1 + xj

Txj) (A
TA)−1

xj

and the statement follows directly. �

This shows that the iterative process (1.3) is in fact an matrix power iteration
for the matrix (ATA)−1.

Definition 1.7. Let us have θ > 0 and a matrix A. Moreover, let rankθ(A) = k
and let {vi}ni=1 be its right singular vectors associated with its singular values
{σi}ni=1, σ1 ≥ · · · ≥ σn. Linear space W := span{vk+1, . . . , vn} is the approxi-
null space of A with respect to θ.

We would like to find all the smallest singular values of a given matrix. The
following two theorems (also found in [12]) gives us directions on how to achieve
that.

Theorem 1.8. Let A ∈ Rm×n, m ≥ n, be a matrix satisfying rankθ(A) = k for
some given θ > 0, let

σ1 ≥ · · · ≥ σk =: σ̂ > θ ≥ σ̌ := σk+1 ≥ . . . σn

and let W be its non-trivial approxi-null space. Then for any unit vector w ∈ W

and ̺ ≥ σ̂, the matrix

B =

[
̺wT

A

]

has singular values σ′
i satisfying

σ′
1 ≥ . . . ≥ σ′

k+1 ≥ σ̂ > θ ≥ σ̌ ≥ σ′
k+2 ≥ . . . ≥ σ′

n

and its approxi-null space W ′ is a subspace of W .

9



Proof. Since w ∈ W , we have w = ρk+1vk+1 + . . . + ρnvn,
n∑

i=k+1

ρ2i = 1. The

singular value decomposition A = UΣV T then gives us:

[
1

UT

]

BV =














0 · · · 0 ̺ρk+1 · · · ̺ρn
σ1

. . .

σk

σk+1

. . .

σn














.

Applying a certain permutation represented by a matrix P , we obtain

[
1

UT

]

BV = P








σ1

. . .

σk

D







,

where

D =








̺ρk+1 · · · ̺ρn
σk+1

. . .

σn







= Û








σ̂k+1

. . .

σ̂n







V̂ T ,

using the singular value decomposition of D to acquire the second equality. Fi-
nally, we have

B =

[
1

U

]

P

[
Ik×k

Û

]












σ1

. . .

σk

σ̂k+1

. . .

σ̂n












[
Ik×k

V̂ T

]

V T , (1.4)

which is a certain singular value decomposition of B, since permutation matrices
are, as well as the other relevant matrices, orthogonal; the symbol Ik×k denotes
an identity matrix of dimensions k × k

To have a better insight into how the singular values behave, let us present a very simple
example alongside this proof. We consider a diagonal 4× 4 matrix

A =







4
3

0.02
0.01






.

Its diagonal entries are also its singular values. We will use θ = 1 and therefore rankθ(A) = 2
and W = span{e3, e4}. Choosing e. g. w = e3+e4

√

2
and ̺ = 3 we construct the matrix B

as above and study its singular values, using numerical tools such as MATLAB’s svd(). The
values we obtain (after rounding) are

[4, 3.00004, 3, 0.01581]T

10



and we take note that the singular vakues above the threshold θ are unchanged. To investigate
how does the choice of ̺ affect the singular values, let us repeat this for selection of values ; we
get

[4.00003, 4, 3, 0.01581]T , for ̺ = 4,

[10.00001, 4, 3, 0.01581]T , for ̺ = 10 and

[100, 4, 3, 0.0158]T , for ̺ = 100.

In conclusion, it seems that role of ̺ is rather straightforward.

Returning to the proof, since σ̂k+1 is the greatest singular value of D, we have

σ̂k+1 = max
‖x‖2=1

‖Dx‖2,

and setting x = [ρk+1, . . . , ρn]
T we get

σ̂k+1 ≥

∥
∥
∥
∥
∥
∥
∥
∥
∥








̺
ρk+1σk+1

...
ρnσn








∥
∥
∥
∥
∥
∥
∥
∥
∥
2

≥ ̺ ≥ σ̂.

Similarly, since σ̂n is the smallest singular value of D, we have

σ̂n = min
‖y‖2=1

‖Dy‖2

and setting y = [0, . . . , 0, yn−1, yn]
T , where ‖y‖2 = 1 and yn−1ρn−1 + ynρn = 0,

we obtain
σ̂n ≤ ‖Dy‖2 =

√

(σn−1yn−1)2 + (σnyn)2 ≤ σn−1.

Let now j ∈ {k+1, . . . , n−2} be fixed. Let us denote the columns of the matrix V̂
by v̂k+1, . . . , v̂n. Let us then set z = [0, . . . , 0, zj, . . . , zn]

T , where zi, i = j, . . . , n
satisfies ‖z‖2 = 1,

∑n
i=j ρizi = 0 and v̂T

l z = 0, for all l = j + 2, . . . , n. Note that
we pose the same number of conditions as is the number of zi to be set. Then we
can write

σ̂j+1 = min
{
‖Dx‖2 : ‖x‖2 = 1,xT v̂l = 0, l = j + 2, . . . , n

}

and by plugging in x := z we see, that

σ̂j+1 ≤ ‖Dz‖2 =
√

(σjzj)2 + . . .+ (σnzn)2 ≤ σj .

If we now set
σ′
l := σ̂l, l = k + 2, . . . , n

and
{σ′

1, . . . , σ
′
k+1} := {σ1, . . . , σk, σ̂k+1}

in a certain order, we get σ′
i, i = 1, . . . , n, with the declared properties.

Lastly, for any given vector w′ ∈ W ′, ‖w′‖2 = 1 we have

(σ′
k+2)

2 ≥ ‖Bw′‖22 = ‖̺wTw′‖22 + ‖Aw′‖22.
And since σk+1 ≥ σ′

k+2, we obtain

‖Aw′‖22 ≤ σ2
k+1 − ‖̺wTw′‖22 ≤ σ2

k+1,

in other words w′ ∈ W , ∀w′ ∈ W ′ and thus W ′ ⊂ W .
�
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Some more information on how the singular values are altered by stacking a
vector on a matrix is provided by the following result.

Theorem 1.9. Let us have A ∈ Rm×n as before and let σ be one of the singular
values of A and let v be its associated right singular vector. Then for any ρ > 0
the matrix

Aρ :=

[
ρvT

A

]

has the same singular values as the matrix A, except σ is replaced by
√

ρ2 + σ2.

Proof. Using singular value decomposition A = UΣV T yields

[
1 0
0 U

]
















0 · · · 0 ρ 0 · · · 0
σ1 0

. . .
...
0
σ

. . .

σn
















V T = Aρ

Then by applying Givens rotation (represented by an orthogonal matrix) from
the left, we can substitute the column

[ρ, 0, . . . , 0, σ, 0, . . . , 0]T

of that matrix by the column vector

[
√

ρ2 + σ2, 0, . . . , 0]T ,

without altering the other columns or singular vectors. And so we have a decom-
position showing us the new singular values. �

Using these theorems, we can now formulate the following rank revealing
algorithm (adaptation of the one found in [12], also see [21]).

Algorithm 1.10. Let A ∈ Rm×n and let us have threshold θ > 0. We aim to
compute k := rankθ(A).

I. We compute matrices Q,R as a QR decomposition of A and set scaling
factor τ := ‖A‖∞.

II. For i = n, . . . , 1 we repeat the following.

(i) We choose a random unit vector x0.

(ii) Using Gauss-Newton iteration (1.3) with x0 as a starting vector we
approximate the singular vector wi of the matrix R as well as the
smallest singular number ζ with which it is associated. Number of
iterations sufficient for a dependable approximation of the singular pair
has to be chosen with respect to the particular problem being solved.
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(iii) If ζ > θ, we shall stop repeating the step II and set k := i; at this point,
the computation is finished, i.e. k is the approximate rank of A with
respect to θ. Otherwise, we update Q,R to be the QR decomposition
of the upper Hessenberg matrix

[
τwT

i

R

]

,

update i := i− 1 and proceed to another repetition of the step II.

III. In case that ζ ≤ θ during all the repetitions of the step II, we set k to be 0
(and end the computation).
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2. Sylvester Matrices

Now that we have all the basic tools we need, we shall introduce the Sylvester
matrix for two univariate polynomials and the notion of its subresultant. We
present some of its properties, most importantly the way its rank is connected to
the degree of the GCD.

In the end of this chapter, an algorithm showing a reasonably effective way of
obtaining the GCD using Sylvester subresultants.

2.1 Definition and Properties

First, let us recall the definition of Cauchy matrix.

Definition 2.1. Cauchy matrix of a polynomial f(x) =
m∑

i=0

aix
m−i of order k is

Ck(f) =















a0
a1 a0
... a1

. . .

am
...

. . . a0
am a1

. . .
...
am















︸ ︷︷ ︸

(k+1) columns

.

Such a matrix is used to carry out polynomial multiplication with vector

representation. To illustrate, let us consider polynomials f(x) =
m∑

i=0

aix
m−i

and g(x) =
n∑

i=0

bix
n−i, deg(f) = m, deg(g) = n. Then the vector repre-

senting the product of f(x)g(x) can be obtained as Cn(f)g or Cm(g)f , where
g = [b0, . . . , bn]

T ∈ Rn+1 and f = [a0, . . . , am]
T ∈ Rm+1.

Now that we have refreshed the basics, we can continue with the following
definition. It shows that the Sylvester matrix is just a suitable pair of Cauchy
matrices.

14



Definition 2.2. Sylvester matrix of polynomials f(x) =
m∑

i=0

aix
m−i and

g(x) =
n∑

i=0

bix
n−i, deg(f) = m ≥ n = deg(g) is ([1, 2, 5, 11])

S(f, g) =















a0
a1 a0
... a1

. . .

am
...

. . . a0
am a1

. . .
...
am

b0
b1 b0
... b1

. . .

bn
...

. . . b0
bn b1

. . .
...
bn















︸ ︷︷ ︸

n columns

︸ ︷︷ ︸

m columns

= [Cn−1(f), Cm−1(g)].

Moreover, for k = 1, . . . , n the kth Sylvester subresultant Sk(f, g) is formed
from S(f, g) by truncating the last k − 1 columns of the coefficients of f(x), the
last k − 1 columns of the coefficients of g(x) and the last k − 1 rows. In other
words

Sk(f, g) =















a0
a1 a0
... a1

. . .

am
...

. . . a0
am a1

. . .
...
am

b0
b1 b0
... b1

. . .

bn
...

. . . b0
bn b1

. . .
...
bn















︸ ︷︷ ︸

(n−k+1) columns

︸ ︷︷ ︸

(m−k+1) columns

.

Let us note, that S(f, g) = S1(f, g) is a square (m + n) × (m + n) matrix,
while Sk(f, g) is a (m + n − k + 1) × (m + n − 2k + 2) (generally rectangular)
matrix.

To show how the subresultants are constructed, let us have polynomials

f(x) = a0x
3 + a1x

2 + a2x+ a3

g(x) = b0x
2 + b1x

1 + b2.

Then we have

S(f, g) = S1(f, g) =

a0 b0
a1 a0 b1 b0
a2 a1 b2 b1 b0
a3 a2 b2 b1

a3 b2



















→ S2(f, g) =

a0 b0
a1 b1 b0
a2 b2 b1
a3 b2















The subresultant S3(f, g) is not defined and we can see that if we tried to construct
it, it would be lacking any coefficients of f(x).

The following theorem shows the connection between Sylvester subresultants
and polynomial GCD.
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Theorem 2.3. Let us have polynomials f(x), g(x), deg(f) = m ≥ n = deg(g).
Then for j ∈ {0, . . . , n}

deg(GCD(f, g)) = j ⇔ rank(S(f, g)) = m+ n− j

and similarly for k ∈ {1, . . . , n}

deg(GCD(f, g)) = k ⇔ rank(Sk(f, g)) = m+ n− 2k + 1.

This is also equivalent to Sk(f, g) being rank deficient by 1.

Proof. This result is presented in [17]; for a complete proof see [1] or [18]. It fol-
lows from transformations of the subresultant matrix similar to the ones described
in the next section. �

As an example, let us have polynomials

f(x) = (x− 1)2(x− 2)1 = x3 − 4x2 + 5x− 2,

g(x) = (x− 2)2 = x2 − 4x+ 4.

It is easy to determine that GCD(f, g) = x − 2 and therefore deg (GCD(f, g)) = 1. We form
the Sylvester matrix

S(f, g) = S1(f, g) =









1 1
−4 1 −4 1
5 −4 4 −4 1
2 5 4 −4

2 4









.

If we, for example, transform this matrix to its upper triangular form, we can see, that
rank(S(f, g)) = 4 = deg(f) + deg(g)− 1 and therefore, as was expected, deg (GCD(f, g)) = 1.

Returning to general theory, following the Theorem 2.3, we see that if k =
deg(GCD(f, g)), then dim(Ker(Sk(f, g))) = 1. The null space of Sk(f, g) is in
a close relation to the GCD, as is shown in the following lemma found in [19] and
also presented in [7].

Lemma 2.4. Let us have polynomials f(x), g(x) as above and moreover let k =
deg(GCD(f, g)). Set x to be a null vector of Sk(f, g), i.e. x ∈ R(m+n−2k+2). Then

x =

[
w

−v

]

,

where v ∈ Rm−k+1 andw ∈ Rn−k+1 are vectors containing coefficients of v(x), w(x):
f(x) = v(x)GCD(f, g), g(x) = w(x)GCD(f, g).

Proof. Let us have the vector x ∈ R(m+n−2k+2) in the above form. We note that
Sk(f, g) = [Cn−k(f), Cm−k(g)] and therefore Sk(f, g)x represents the polynomial
f(x)w(x) − g(x)v(x), where deg(v(x)) < deg(f(x)) and deg(w(x)) < deg(g(x)).
Recalling that x ∈ Ker(Sk(f, g)) we get

f(x)w(x)− g(x)v(x) = 0

and so f(x) = v(x)GCD(f, g), g(x) = w(x)GCD(f, g). Since dimension of the
kernel was just 1, any other vector would be a multiple of this particular x. �
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In the setting of the example above, let us form a vector

x = [1,−2
︸ ︷︷ ︸

w

,−1, 2,−1
︸ ︷︷ ︸

−v

]T

and we easily check that S1(f, g)x = 0.

2.2 Matrix version of Euclid’s Algorithm

The problem of finding the GCD of two polynomials can be mathematically solved
via the classical Euclid’s algorithm, which unfortunately can be unstable in the
floating point environment.

We will demonstrate that a certain column-wise elimination applied on the
Sylvester matrix is a direct analogy of the Euclid’s algorithm. To keep it simple,
we will only present it for a particular pair of polynomials, since the generalization
is rather straightforward.

Let us then have real polynomials

f1(x) =
4∑

i=0

a1ix
4−i, deg(f1) = 4,

f2(x) =

2∑

i=0

a2ix
2−i, deg(f2) = 2

and prepare the appropriate Sylvester matrix

S(f1, f2) =











a10 a20
a11 a10 a21 a20
a12 a11 a22 a21 a20
a13 a12 a22 a21 a20
a14 a13 a22 a21

a14 a22











In Euclid’s algorithm, we would now start to remove high power terms of f1 using
some multiples of f2. In our case, we carry out a close analogy of this. Using
column wise elimination, we will eliminate the coefficients a10, a

1
1, a

1
2 in the first

two columns just by subtracting suitable multiples of the columns 3, . . . , 6. This
way we obtain a new polynomial of a lesser degree – let us denote it f3 and its
coefficients by a3i :

S(f1, f2) →











0 a20
0 0 a21 a20
0 0 a22 a21 a20
a30 0 a22 a21 a20
a31 a30 a22 a21

a31 a22











.

Again, similarly to Euclid’s algorithm, we will now swap the roles of the two
polynomials, form S(f2, f3) and will eliminate terms of f2 using f3. This continues
until one of the polynomials is trivial.
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With the use of some permutation, we can carry out this whole process inside
the original Sylvester matrix S(f1, f2) in such a way that it is a transformation
to a lower triangular form. Specifically, if we transfer the first two columns to
the last two positions, we obtain











0 a20
0 0 a21 a20
0 0 a22 a21 a20
a30 0 a22 a21 a20
a31 a30 a22 a21

a31 a22











→

a20 0
a21 a20 0 0
a22 a21 a20 0 0

a22 a21 a20 a30 0
a22 a21 a31 a30

a22 a31





















and we see that the bottom right 3 × 3 submatrix is precisely S(f2, f3). As
mentioned above, we now eliminate high power terms of f2 using columns of f3
and get

a20 0
a21 a20 0 0
a22 a21 a20 0 0

a22 a21 a20 a30 0
a22 a21 a31 a30

a22 a31





















→

a20
a21 a20
a22 a21 a20

a22 a21 0 a30
a22 0 a31 a30

a40 a31





















.

This of course yields yet another new polynomial, f4(x) := a40. One last permu-
tation to transfer the forth column on the last position gives the desired lower
triangular matrix:

a20
a21 a20
a22 a21 a20

a22 a21 a30
a22 a31 a30

a31 a40





















.

This process ends when we obtain a zero polynomial and the GCD is then the
last non-zero polynomial in the sequence f1, f2, . . . formed during calculation. In
our case we implicitly assumed that the polynomials f1, . . . , f4 are not identically
zero, and therefore f4(x) := a40 would be the GCD. Of course, generally, it might
happen that f3 or f4 will turn out to be trivial. This process can be carried out
regardless, we just obtain some zero columns in the matrix. The last non-zero
column then contains the coefficients of the GCD, as illustrated for f4(x) = 0:

a20
a21 a20
a22 a21 a20

a22 a21 a30
a22 a31 a30

a31 0





















.

The reason why this works is simply because we use the same operations
to find the GCD as in the Euclid’s algorithm, only using different polynomial
representation.
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2.3 Algorithm based on Sylvester Subrezultants

Let us now formulate an algorithm for determining the GCD of two univariate
polynomials using Sylvester subresultant matrices in a more sophisticated way.

We will use the Theorem 2.3, specifically the fact that

deg(GCD(f, g)) = k ⇔ rank(Sk(f, g)) = m+ n− 2k + 1.

This enables us to construct a sequence of Sylvester subresultants

Sn(f, g), Sn−1(f, g), Sn−2(f, g) . . . ,

so the Sk(f, g) is the first rank deficient one. Once it is identified, we obtain the
degree of the GCD and continue to extract its coefficients according to Lemma
2.4. This algorithm is due to Li and Zeng (see [12]).

Algorithm 2.5. Let there be m,n ∈ N : m > n and f(x) =
∑m

i=0 aix
m−i,

g(x) =
∑n

i=0 bix
n−i two polynomials of degree m and n respectively. We aim to

compute the coefficients s0, . . . , sk of the polynomial s = GCD(f, g).

I. Firstly, matrices Q and R are computed as the QR decomposition of the
n-th Sylvester subresultant Sn(f, g) = QR. Note that this subresultant is a
(m+ 1)× (m− n+ 2) matrix consisting of one column with the coefficients
of f(x) and m− n + 1 columns with the coefficients of g(x).

II. For j = 1, . . . , n the following is repeated:

(i) Approximate rank of R is determined. This can be accomplished with
relative ease, since R is an upper triangular matrix. Gauss-Newton
iteration (1.3) as well as Algorithm 1.10 can be used for this purpose.

(ii) If R is rank-deficient, the right singular vector z associated to the
smallest singular value of R is computed. This can again be done
trough iteration 1.3. Coefficients of the polynomial w(x) are then ob-
tained from

z =

[
w

− v

]

,

where w ∈ Rj. Since f(x) = s(x) · w(x), s(x) is now obtained using
some form of polynomial division and this algorithm is finished.

(iii) Otherwise, if R is of full column rank, we update Q and R to be the QR
decomposition of Sn−j(f, g). But since Sn−j is created from Sn−j+1 by
a simple addition of one row and two columns, we can use the already
known decomposition of Sn−j+1.

Specifically, let us have a permutation P of the columns of Sn−j such
that the two new columns are the last two columns of PSn−j; schemat-
ically written:

f g

















P−→
f g

















.
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It now holds that

Q

1













T

︸ ︷︷ ︸

=:QT
1

PSn−j =

R

QT
1 f QT

1 g












.

To obtain an upper triangular matrix, it is now only needed to deal
with the bottom part of the last two columns of QT

1 PSn−j The QR
decomposition of this submatrix is computed and denoted by Q2, R2,
so that

1
. . .

1
QT

2














QT

1 PSn−j =

R

R2

















.

We repeat the step II with j := j + 1. In the case that j = n already,
the aforementioned update shall not be executed. Instead, we conclude,
that deg(GCD(f, g)) = 0 and s(x) = 1.

End of algorithm.

2.4 Multiple Polynomials

We are now able to compute the GCD of two polynomials. Naturally, we explore
possibilities of applications for our algorithms and find use for it in computation
of GCD of multiple polynomials.

In this section, a multi-polynomial GCD finding algorithm, taking advantage
of our previous procedures, is presented as a continuation of the two polynomial
theory.

Let us now have N ∈ N and N + 1 polynomials f0, f1 . . . , fN , such that
deg(f0) ≥ deg(fi), i ∈ 1, . . . , N . We can make the following simple observation.
If we construct a polynomial

h = GCD(fN ,GCD(fN−1,GCD(. . . ,GCD(f1, f0)) . . . )) , (2.1)

then it is surely the greatest common divisor of f0, f1, . . . , fN . Note that to
compute such a polynomial, we would not necessarily need any additional tools,
we can simply repeatedly use the algorithm for two polynomials as the construc-
tion of h suggests. But in the floating point environment, we never acquire a
precise answer. Bearing this in mind, one can see how this approach could lead
to big accumulated errors over the repeated computations. Hence, we will try to
improve this strategy.

Having used the Sylvester matrix for two polynomials, it is only natural
that we would try to use some analogous matrix for this problem. Recall, that
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S(f, g) = [Cn−1(f), Cm−1(g)], and let us have N + 1 polynomials f0, . . . , fN as
above. We consider the following system

F (x) = b, (2.2)

where

x =













h

w0

w1

·
·
·

wN













, b =













1
f0

f1

·
·
·

fN













, F (x) =













rTh

Cd(w0)h
Cd(w1)h

·
·
·

Cd(wN)h













.

Here, f i denotes the vector of coefficients of the polynomial fi, h is the vector
corresponding to the GCD, which we are trying to obtain and wi corresponds
to cofactors wi(x) so fi = wih, i = 0, . . . , N . The vector r is arbitrarily chosen
for scaling of h. If we wanted, for example, the computed GCD to be monic, we
would set r = e1 ∈ Rd, d = deg(h).

This approach has a major drawback in the fact that we need to know d =
deg(h) = deg(GCD(f0, . . . , fN)) before we even start. But we already have a way
of finding it. Let us remember, that we are trying to improve the accuracy of
(2.1). Therefore, we can carry out the computation of (2.1) and then use the
results as an input for solving (2.2). This also answers the question of how to get
any initial approximation of h and wi.

The system (2.2), is solved in the least squares sense as a problem of minimiz-
ing ‖F (x)− b‖. This is done via Gauss-Newton iteration. The following lemma
describes how the Jacobian of F (x) looks and some of its properties, that are
presented in [19].

Lemma 2.6. Let x, b and F (x) be defined as above, then the Jacobian J(x) of
F (x) is

J(x) =








rT

Cd(w0) Cdeg(w0)(h)
...

. . .

Cd(wN) Cdeg(wN )(h)







.

If ‖F (x)− b‖ has a local minimum at x, then J(x)T (F (x)− b) = 0. Moreover,
for any r, such that rTu 6= 0 holds:

w0, . . . , wN are all relatively coprime ⇒ J(x) has full rank.

Proof. The structure of J(x) can be obtained directly as a derivative of F (x).
Similarly, the second statement is a result of the necessary conditions for local
minimum, that is gradient of ‖F (x)− b‖, which is J(x)T (F (x)− b) = 0, has to
be 0. See [19], Lemma 1.

Finally, the proof of the last implication is found in [19], Proposition 1. �
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The following is presented in [19] and provides us with the fact that the
computation of AGCD is not an ill-posed problem.

Suppose that fj are perturbed into f̃j and the corresponding AGCD factors
are now h̃ and w̃j , with the assumption, that deg(h) =deg(h̃). Then

F (x̃)− F (x) = J(x)(x̃− x) +O(‖x̃− x‖)2.

If we omit the last term, we have

‖F (x̃)− F (x)‖ = ‖J(x)(x̃− x)‖ ≥ σmin‖x̃− x‖,

denoting the smallest singular number of J(x) by σmin. Let ‖F (x̃)− b̃‖ ≤ ε.
Because F (x) = b, we can write that ‖F (x)− b‖ ≤ ε too. Hence

‖x̃− x‖ ≤ 1

σmin
‖F (x̃)− F (x)‖ ,

≤ 1

σmin

( ∥
∥
∥F (x̃)− b̃

∥
∥
∥+

∥
∥
∥b̃− b

∥
∥
∥+ ‖b− F (x)‖

)

,

≤ 1

σmin

(

2ε+
∥
∥
∥b̃− b

∥
∥
∥

)

.

Therefore we have an asymptotic bound of error of x by the error of b. Now
we just recall, that x contains the coefficients of GCD and the corresponding
cofactors, i.e. the data to be computed, while b contains all the input data
(coefficients of the given polynomials). In conclusion, computing the GCD in
this sense is no longer an ill-posed problem.

Following is an algorithm based on this approach. It is a modification of one
shown in [19].

Algorithm 2.7. Let there be polynomials f0, . . . , fN of degrees n0, n1, . . . , nN

and given tolerance θ ∈ R. We seek the polynomial h =GCD(f0, f1, f2, . . . , fN).

I. We set h := f0 and then the following is repeated for i = 1, 2, . . . , N :

(i) We compute h(x) :=GCD(h, fi) via some two-polynomial GCD finder,
e.g. Algorithm 2.5.

(ii) Polynomial division is used to find the necessary cofactors wk :=
fk
h
, k =

0, . . . , i

(iii) We construct the vector of an initial approximation

xT :=
[
hT , wT

0 , . . . , w
T
i

]

and perform the Gauss-Newton iteration: repeat

x+ := x−








rT

Cd(w0) Cdeg(w0)(h)
...

. . .

Cd(wN) Cdeg(wN )(h)








†









rTh

Cd(w0)h− f0
Cd(w1)h− f1

...
Cd(wN)h− fN










,

x := x+,

until ‖F (x)− b‖ < θ.
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(iv) Once ‖F (x) − b‖ < θ, we extract coefficients of the polynomial h(x)
from the vector x.

II. We now have h(x) =GCD (f0, f1, f2, . . . , fN).

End of algorithm.
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3. Bézout Matrices

It is perhaps not surprising, that there are other types of matrices, that can be
used in a similar way to the Sylvester matrix. Since we need to have some context,
something to compare our results based on Sylvester subresultants against, we
devote this chapter to the Bézout matrices and presenting an algorithm based on
them.

After providing basic definition, we explore results of Pták (see [14]) based
on properties of commutators. This enables us to construct Bézout matrices in
a much simpler way than the definition. Properties of Bézout matrices are then
presented so that we can in the end come up with an algorithm based on the one
presented in [2].

The very last portion of this chapter summarizes some results about finding
GCD of several polynomials via Bézout matrices and also concludes with an algo-
rithm to serve as a parallel to the Sylvester based finder for several polynomials.

3.1 Definition and Properties

As before, the ith canonical basis vector of Rm is denoted by ei and defined as
the ith column of the m×m identity matrix I. Outer product matrices of these
vectors are Ei,j = eiej

T and Ei = eiei
T , for i, j = 1, . . . , m.

Forward shift matrix is the matrix S = [0, e1, . . . , em−1], similarly its trans-
pose ST = [e2, . . . , em, 0] is called the backward shift matrix. Flip matrix J is
defined as J = [em, . . . , e1] and clearly J2 = I and ST = JSJ .

The commutator of two m×m matrices A and B is [A,B] = AB − BA.
For a real polynomial f(x) = a0x

m + a1x
m−1 . . .+ am of degree m, we define

f ∗(x) := xmf( 1
x
) = amx

m + am−1x
m−1 . . .+ a0.

Let us have two real polynomials of degrees m,n: m ≥ n, namely

f(x) =
m∑

i=0

aix
m−i and g(x) =

n∑

i=0

bix
n−i.

Definition 3.1. The Bézout matrix of f and g is a matrix B = B(f, g) =
(mik)

m
i,k=1, where the entries mik are obtained from the relation

f(x)g(y)− f(y)g(x)

x− y
=

m−1∑

i,k=0

mikx
iyk = [1, x, . . . , xm−1]B[1, y, . . . , ym−1]T .

The polynomial f(x)g(y)−f(y)g(x)
x−y

itself is called the Bézoutian of f and g.

Let us now demonstrate this on an example.
Choosing

f(x) = a0x
2 + a1x+ a2 and g(y) = b0x

2 + b1x+ b2,
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so m = n = 2, the expression f(x)g(y)−f(y)g(x)
x−y

equals to

(x− y)(b2a1 − a2b1) + (x2 − y2)(b2a0 − a2b0) + xy(x− y)(b1a0 − a1b0)

x− y

so the matrix is then

B(f, g) = (mik)
m
i,k=1 =

[
a1b2 − a2b1, a0b2 − a2b0
a0b2 − a2b0, a0b1 − a1b0

]

.

Definition 3.2. Let us have anm×m matrixM = (mik)
m
i,k=1. Than the bivariate

polynomial
m∑

i,k=1

mikx
kyi = [1, y, . . . , ym−1]M [1, x, . . . , xm−1]T

is the generating function of M . Conversely, if there exist a matrix so that a given
bivariate polynomial is its generating function, we call it the generating matrix
of such polynomial.

Note that the Bézout matrix is the generating matrix of the Bézoutian of two
polynomials. It is by definition a transpose of the generating matrix of Bézoutian,
but since it is symmetric, both definitions merge in this case.

3.1.1 Commutators

This section explores the excellent article [14] by Vlastimil Pták. Naturally, all
of the results presented here are adapted from that text.

Lemma 3.3. Let r, s ∈ N ∪ {0} satisfy 0 ≤ r ≤ s < m. Then the following
equalities holds:

Sr(ST )s =
1

1
0

0















(1+s-r,1)

(m-r,m-s)

(m,m+r-s)

, (ST )sSr =
0

0
1

1















(1+s-r,1)

(1+s,1+r)

(m,m+r-s)

.

On the other hand, if s < r, then

Sr(ST )s =

1

1
0

0













(m-r+s,m)

(1,1+r-s)

(m-r,m-s)

, (ST )sSr =

0

0
1

1

















(1+s,1+r)

(m+s-r,m)

(1,1-s+r)

.

Proof. Firstly, let us recall that

Sr =

1

1

1













(1,1+r)

(k,k+r)

(m-r,m)
, k = 1, . . . , m− r, (3.1)

(ST )s =
1

1

1













(1+s,1)

(k+s,k)

(m,m-s)

, k = 1, . . . , m− s, (3.2)
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According to identities (3.1), (3.2) we see, that non-zero elements of the product
Sr(ST )s (equal to 1) are on the following positions.

On kth row of the matrix Sr is a unit term only at the (r + k)th position,
for k = 1, . . . , m− r. For a resulting term at position (k, j) of Sr(ST )s not to be
zero, s+ j = r + k must hold.

Assuming that s ≥ r, i.e. s− r ≥ 0, we have k = s− r + j and going trough
j = 1, . . . , m− s we get k = (s− r + 1), . . . , (s− r +m− s)

︸ ︷︷ ︸

(m−r)

respectively.

Conversely, assuming r > s, we have j = r − s + k, where r − s > 0 and
setting k = 1, . . . , m− r we in turn obtain j = (r − s+ 1), . . . , (m− s).

In conclusion, the only non-zero terms of Sr(ST )s are at positions

(s− r + j, j), j = 1, . . . , m− s for s ≥ r,

(k, r − s+ k), k = 1, . . . , m− r for s < r.

The calculation of (ST )sSr is done analogously. �

Theorem 3.4. Let us have two polynomials f , g of degrees m, n respectively,
m ≥ n. Then

[f(ST ), g∗(S)] = [g(ST ), f ∗(S)].

Proof. The operator [·, ·] is bilinear, so it is sufficient to only show that

[Sr, (ST )s] = [Sm−s, (ST )m−r],

where r,s ∈ N ∪ {0} and 0 ≤ r, s ≤ m.
According to the definition of commutator, it is

[Sr, (ST )s] = Sr(ST )s − (ST )sSr,

[Sm−s, (ST )m−r] = Sm−s(ST )m−r − (ST )m−rSm−s.

Let us assume s ≥ r. Using Lemma 3.3 we obtain either

[Sr, (ST )s] =
1

1
0

0−1 −1















(m,m+r-s)

(1+s-r,1)

(1+s,1+r)
(m-r,m-s)

for 1 + s < m− r, or

[Sr, (ST )s] =
1

1
0

0−1 −1















(1+s-r,1)

(m,m+r-s)

(m-r+1,m-s+1)
(s,r)

for 1 + s ≥ m− r.
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For the second part, we note that now m− s ≤ m− r and have either

[Sm−s, (ST )m−r] =
1

1
0

0−1 −1















(1+s-r,1)

(m,m+r-s)

(1+m-r,1+m-s)
(m-m+s,m-m+r)

for 1 + s ≥ m− r, or

[Sm−s, (ST )m−r] =
1

1
0

0−1 −1















(1+s-r,1)

(m,m+r-s)

(m-m+s+1,m-m+r+1)
(m-r,m-s)

for 1 + s < m− r.
The case of r < s can be treated in the same way. We then see that the

identity holds. �

Theorem 3.5. Let f , g be real polynomials, deg f = m, deg g ≤ m. Then the
generating matrix of the Bézoutian of f and g can be written in the following
form:

(

f(ST )g∗(S)− g(ST )f ∗(S)
)

J (3.3)

Proof. Since the mapping B(f, ·) is linear, it is sufficient to prove that

B(f, xk) =
(

f(ST )Sm−k − (ST )kf ∗(S)
)

J, k = 0, . . . , m.

We prove that the generating function of B(f, xk) is

f(x)yk − xkf(y)

x− y
=

f(x)− f(y)

x− y
yk − f(y)

yk − xk

x− y

= Π

(
f(x)− f(y)

x− y
yk
)

−Π

(

f(y)
yk − xk

x− y

)

,

where Π is the truncation operator discarding polynomial terms with powers of
y exceeding m− 1. This operator ensures that higher degree terms, which in the
end cancel out, do not appear and therefore the respective generating matrices
dimensions are kept at m×m.

For f(x) = a0x
m + a1x

m−1 . . .+ am, we compute

f(x)− f(y)

x− y
=

a0x
m + . . .+ am − a0y

m − . . .− am
x− y

=
a0(x

m − ym) + . . .+ (x− y)am−1 + 0

x− y
,

= a0
∑

i+j=m−1

xiyj + a1
∑

i+j=m−2

xiyj + . . .+ am−1
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and so the generating matrix H of f(x)−f(y)
x−y

is

H =






am−1 · · · a0
...

...
a0 · · · 0






=






am−1 0 · · ·
0 0
...

. . .




+






0 am−2 0

am−2 . .
. ...

0 · · · 0




+ . . .+






0 · · · a0
... . .

. ...
a0 · · · 0






=
(
am−1S

m−1 + am−2S
m−2 + . . .+ a0S

0
)
J = f ∗(S)J.

Generating matrix of Πf(x)−f(y)
x−y

yk is then (ST )kf ∗(S)J since the multiplication
by y shifts the generating matrix in the same way as the multiplication by ST .
Finally,

yk − xk

y − x
=

∑

i+j=k−1

xiyj

and so by substituting [0, . . . , 0, 1, 0, . . . , 0] for [a0, . . . , am−k, . . . , am−1] in the pre-
vious analysis, we see that its generating matrix can be written as Sm−kJ . Next,
since the mapping between a bivariate polynomial and its generating matrix
is bilinear, the multiplication by f(y) translates to multiplying the generating
matrix by f(ST ). Therefore we have the generating matrix of the polynomial

Π
(

f(y)y
k−xk

y−x

)

in the form f(ST )Sm−kJ , which concludes the proof. �

3.1.2 Properties of Bézout Matrices

To present an algorithm in the next section, we first study useful properties of
Bézout matrices. Most of them are based on relations between Bézout and other
matrices, like Hankel or Frobenius. In the end, it turns out, that Bézout and
Sylvester matrices are very similar in their relation to the GCD. All of the results
in this section are adapted from [2].

Theorem 3.5 allows for an alternative construction of B(f, g). Let us have
polynomials f(x) =

∑m
i=0 aix

m−i and g(x) =
∑n

i=0 bix
n−i of degrees m and n

respectively, m ≥ n as before. It follows from 3.3, that

B(f, g) =

=






am−1 · · · a0
... . .

.

a0 0




·






bn · · · bn−m+1

. . .
...

0 bn




−






bn−1 · · · bn−m
... . .

.

bn−m 0




·






am · · · a1
. . .

...
0 am




 .

(3.4)

Where we set bi = 0 whenever it is not a properly defined polynomial coefficient,
i.e. when i > n or i < 0.
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Using the same convention for ai as well, the relation









a0 0
a1 a0
a2 a1 a0
...

. . .
. . .

a2m−2 a2m−3 · · · a1 a0



















h0

h1

h2
...

h2m−2










=










bn−m+1

bn−m+2

bn−m+3
...

bn+m−1










defines entries hi of so called Hankel matrix H(f, g) = [hi,j]
m
i,j=1, where hi,j =

hi+j−2, i.e.

H(f, g) =








h0 h1 h2 · · ·
h1 h2

h2
. . .

... h2m−2







.

Equivalently, we can write









h0 0
h1 h0

h2 h1 h0
...

. . .
. . .

h2m−2 h2m−3 · · · h1 h0



















a0
a1
a2
...

a2m−2










=










bn−m+1

bn−m+2

bn−m+3
...

bn+m−1










, (3.5)

since that gives us the same system of equations, or we can (for f 6= 0) rewrite
in the form of a power series (setting hi = 0 where previously undefined)

g(x)

f(x)
=

+∞∑

i=0

hix
−(i+1). (3.6)

Theorem 3.6. Let m > n and f, g be coprime polynomials of degree m,n respec-
tively. Then the matrix H(f, g) is nonsingular.

Conversely, for any given nonsingular m × m Hankel matrix H, there exist
coprime polynomials f , g of degrees deg f = m > n = deg g, such that f is monic
and H = H(f, g).

Moreover, the following relations between f , g and H(f, g) hold:

H(f, g)






am
...
a1




 = −a0






hm
...

h2m−1




 , (3.7)






bn−m+1
...
bn




 =






h0 0
...

. . .

hm−1 · · · h0











a0
...

am−1




 . (3.8)

Proof. The system (3.8) is just the first m rows of (3.5). Using the next m rows
of that very system and remembering, that ai = 0, for i ≥ (m + 1) and bi = 0,
for i ≥ (n + 1), we have the subsystem






hm · · · h1 h0
...

. . .
...

...
h2m−1 · · · hm hm−1













a0
...

am−1

am







=






0
...
0




 ,
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which can be simply rearranged into (3.7).
Next, assuming H nonsingular means that the system (3.7) has a unique

solution [am, . . . , a1] corresponding to some polynomial f(x) and (3.8) then defines
coefficients of the polynomial g, so that H = H(f, g). If these f and g had a
common divisor, we could simplify left hand side of (3.6), yielding a different
solution of (3.7), contradicting non-singularity of H .

Finally, for the given polynomials f(x) and g(x), having H(f, g) = H singular
means there exists more than one solution of (3.7). Let p, q be such a solution,
where deg(f) ≥ deg(p) > deg(q). From (3.6) follows that

g

f
=

q

p

and therefore
f =

gp

q
.

Assuming p and q to be coprime, it is necessary for q to divide g and hence there
exists a polynomial r(x), deg(r) > 1 such that

g

q
= r, or g = qr.

We have
f =

gp

q
= pr

and r is a common divisor of f and g. Conversely, if p and q are not coprime,
there exist p̄, q̄ coprime, such that

g

f
=

q

p
=

q̄

p̄

and we continue as above. In conclusion, we have proven the first statement of
our theorem by contraposition. �

Let Ff be the Frobenius companion matrix of a polynomial f , specifically

Ff =








0 1 0 · · ·
...

. . .
. . .

0 · · · 0 1
−am −am−1 · · · −a1







.

The following identities can be found in [10]:

B(f, g) = B(f, 1)H(f, g)B(f, 1), (3.9)

B(f, g) = B(f, 1)g(Ff). (3.10)

From (3.4), we have

B(f, 1) =






am−1 · · · a0
... . .

.

a0 0




 .
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It is therefore regular and we can rewrite (3.10) as g(Ff) = B(f, 1)−1B(f, g) and
then, by plugging in from (3.9)

g(Ff) = B(f, 1)−1B(f, 1)H(f, g)B(f, 1)

and therefore

H(f, g) = g(Ff)B(f, 1)−1. (3.11)

Lemma 3.7. Having f(x), g(x) as above, with s(x) = GCD(f(x), g(x)), it holds
that

g(F T

f )z = 0 ⇔ g(x)z(x) = q(x)f(x),

where z = [zm−1, . . . , z0]
T , z(x) =

m−1∑

i=0

zix
m−1−i and q(x) is some polynomial.

Moreover the matrix g(F T

f ) being singular is equivalent to s(x) being a non-
constant polynomial. Finally, if f(x) = w(x)s(x), then

Ker
(
g(F T

f )
)
=

{

[zm−1, . . . , z0]
T : ∃ p(x),

m−1∑

i=0

zix
m−1−i = p(x)w(x)

}

and dim
(
Ker g(F T

f )
)
= deg(s(x)).

Proof. Firstly, it is verified by direct computation, that (F T

f )
ie1 = ei+1, for i =

0, . . . , (m− 1) and so z = z(F T

f )e1 and therefore

g(F T

f )z = g(F T

f )z(F
T

f )e1 = (gz)(F T

f )e1 = r(F T

f )e1,

where r(x) = g(x)z(x)− q(x)f(x) for any polynomial q(x), since f(F T

f ) = 0, and
deg(r(x)) < m. Otherwise, if deg(r(x)) ≥ m, we can divide it by f(x) and write
r(x) = h(x)f(x)+k(x), where deg(k(x)) < m, and since f(F T

f ) = 0 we would set
r(x) := k(x).

It follows, that g(F T

f ) is singular if and only if there exist a non-trivial z(x)
(or z) such that

0 = g(F T

f )z = r(F T

f )e1 ⇔ r(x) = 0 ⇔ 0 = g(x)z(x)− f(x)q(x).

Having now f(x) = w(x)s(x) and g(x) = v(x)s(x), v(x), w(x) co-prime, and
following the relation g(x)z(x) = f(x)q(x), we obtain v(x)z(x) = w(x)q(x). Now,
since v(x) ∤ w(x) we have z(x) = p(x)w(x) for some polynomial p(x), i.e.

z ∈ Ker
(
g(F T

f )
)
⇒ z(x) = p(x)w(x).

Finally, since deg(p) ≤ m− 1− deg(w) we see that dim
(
Ker

(
g(F T

f )
))

is

m− 1− deg(w) + 1 = deg(s).

�

Let (·)k denote the leading principal k × k submatrix, i.e. generally for A =
(aij)

m
i,j=1 we have Ak = (aij)

k
i,j=1.

31



Theorem 3.8. Let polynomials f, g be monic and have the greatest common
divisor s = GCD(f, g), deg(s) = m− k. Then:

(i) rank (H(f, g)) = k, det(Hk) 6= 0 but det(Hi) = 0 for i > k.

(ii) If Hk+1w = 0, where w = [wk, . . . , w0]
T , w0 = 1, then we have f = sw

where w(x) =
k∑

i=0

wix
k−i.

Proof. Let us assume f = sw, g = st, with t, w coprime polynomials. Following
(3.11), we see that H(f, g)z = 0 ⇔ g(F T

f )z = 0. Writing z = [zm, . . . , z1] and

using Lemma 3.7 we see that this is if and only if z(x) =
m∑

i=1

zix
m−i = p(x)w(x)

for some polynomial p(x). Note that dim{z : z = pw, deg p ≤ n−k−1} = n−k
and so rank g(F T

f ) = n− (n− k) = k. Setting now p(x) := 1 as a particular case,
i.e. z(x) = w(x), we are finished. �

We can now finally provide some basis for computation of GCD via Bézout ma-
trices. Returning back to (3.9), we have

JB(f, g)J = JB(f, 1)H(f, g)B(f, 1)J

and so
[
JB(f, g)Jy = 0, yk+1 = 1, yi = 0, i > k + 1

]
⇔
[
w = B(f, 1)Jy.

]

Similarly, det(JB(f, g)J)k 6= 0, while det(JB(f, g)J)i = 0, i > k, with w and
(·)i as above.

This allows us to compute polynomial GCD via the following algorithm.

3.2 Algorithm based on Bézout Matrices

Let us now formulate an algorithm for determining the GCD of two univariate
polynomials using Bézout matrices.

Algorithm 3.9. Let m > n be natural numbers and f(x) =
∑m

i=0 aix
m−i, g(x) =

∑n
i=0 bix

n−i two polynomials. We aim to compute the coefficients s0, . . . , sk of the
polynomial s = gcd(f, g).

I. We first form the matrix B := B(f, g) and compute k := rank(B). This can
be done by using Algorithm 1.10 or any other rank revealing algorithm.

II. We set J to be the m×m antidiagonal matrix

J :=






0 1

. .
.

1 0




 ,

m×m and k × k matrices C and Ck as

C := JBJ, Ck := (C)k

where (·)k denotes the leading principal k × k submatrix. We then solve the
system Cy = b for y = [y1, . . . , yk]

T with b = [−c1,k+1, . . . ,−ck,k+1]
T using

notation C = (ci,j)
m
i,j=1.
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III. We directly compute [wk, . . . , w0]
T = w = (B(f, 1)J)k+1 · [y1, . . . , yk, 1]T . As

a final step, we only need to find s(x) from the relation f = s · w, where
w(x) =

∑k
i=0wix

k−i. Again, this can be done in more than one way.

Example 3.10. Let us consider polynomials

f(x) = (x− 2)(x− 1)2(x+ 1) = x4 − 3x3 + x2 + 3x− 2 and

g(x) = (x− 2)2(x+ 2) = x3 − 2x2 − 4x+ 8.

Using the formula (3.4) we calculate

B = B(f, g) =







16 4 −22 8
4 −20 17 −4

−22 17 1 −2
8 −4 −2 1







Using Algorithm 1.10, we determine k = rank(B) = 3 and proceed to compute

C = JBJ and Ck =





1 −2 −4
−2 1 17
−4 17 −20





In the next step we set b = [−8, 22,−4]T , solve Cy = b and obtain y = [8, 4, 2]T .
Following the algorithm, we compute [w3, w2, w1, w0]

T = (B(f, 1))k+1 [8, 4, 2, 1]
T =

[1,−1,−1, 1]. We have w(x) = x3 − x2 − x+ 1 and all that is left is to compute

s(x) = gcd(f, g) = x− 2.

3.3 Multiple Polynomials

In this section, we present a algorithm for computing the GCD of several poly-
nomials based on results published in [4, 9].

Definition 3.11. Let us haveN+1 polynomials f0, f1, . . . ,fN satisfying deg(f0) =
m > deg(fi) for all i = 1, . . . , N . The multi-polynomial Bézout matrix is

Bf0(f1 . . . , fN) =








B(f0, f1)
B(f0, f2)

...
B(f0, fN)








The following two theorems are found and proven in [9] and show the needed
characterization of GCD.

Theorem 3.12. Let f0, f1, . . . , fN be polynomials, deg(f0) = m > deg(fi) =: ni

for all i ∈ {1, . . . , N}, and

f0(x) = a0x
m + a1x

m−1 + · · ·+ am.

Additionally, let

h(x) = h0x
d + h1x

d−1 + · · ·+ hd−1x+ hd
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be their greatest common divisor of degree d. The columns of the matrix

F =











an1

0 f1

(
1
a0
F T

f0

)

an2

0 f2

(
1
a0
F T

f0

)

...

anN

0 fN

(
1
a0
F T

f0

)











are denoted by φ1, . . . ,φm, so that F = [φ1, . . . ,φm]. If there are zi,j ∈ R, such
that

φm−d+i =

m−d∑

j=1

zi,jφj , ∀i ∈ {1, . . . , d}, (3.12)

then

a0








h0

h1
...
hd







= h0








a0
a1 a0
...

...
. . .

ad ad−1 · · · a0















1
z1,m−d

...
zd,m−d







.

Theorem 3.13. Let us have polynomials f0,. . . ,fN and matrix F = [φ1, . . . ,φm]
as in Theorem 3.12 and let

d = deg
(
GCD(f0, f1, . . . , fN)

)
.

Then the vectors {φ1, . . . ,φm−d} are linearly independent, while for i ∈ {m−d+
1, . . . , m}, the vectors φi can be expressed as a linear combination of vectors from
{φ1, . . . ,φm−d}.

And finally, the following theorem is an expansion of Theorem 3.4 in [4]

Theorem 3.14. Let f0, f1, . . . , fN be polynomials,

f0(x) = a0x
m + a1x

m−1 + . . .+ am,

f1(x) = b1,0x
n1 + b1,1x

n1−1 + . . .+ b1,n1
,

f2(x) = b2,0x
n2 + b2,1x

n2−1 + . . .+ b2,n1
,

...

fN (x) =bN,0x
nN + bN,1x

nN−1 + . . .+ bN,nN
,

with a0 6= 0, deg(f0) = m and nj = deg(fj) ≤ m− 1 for all j ∈ {1, 2, . . . , N}.
Then

d := deg(GCD(f0, f1, . . . , fN)) = m− rank(Bf0(f1, . . . , fN)).

If t1, t2, . . . , tm are the columns of Bf0(f1, . . . , fN) then the last m − d columns
td+1, td+2, . . . tm, are linearly independent. If we denote T1 = [td, td−1, . . . , t1]
and T2 = [tm, tm−1, . . . , td+1], then there exists a matrix W ∈ R(m−d)×d,

W =








wm
d wm

d−1 · · · wm
1

wm−1
d wm−1

d−1 · · · wm−1
1

...
...

...
wd+1

d wd+1
d−1 · · · wd+1

1







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such that
T2W = T1,

and if we put










h0

h1

h2
...
hd










= h0










1

w
(d+1)
d

w
(d+1)
d−1
...

w
(d+1)
1










, (3.13)

then
GCD(f0, f1, . . . , fN) = h0x

d + h1x
d−1 + · · ·+ hd−1x+ hd.

Proof. The Barnett factorization (see [4], Theorem 3.1.) gives

B(f0, fi) = fi(F
T
f0/a0

)B(f0, 1), i = 1, . . . , N,

and so





B(f0, f1)
...

B(f0, fN)




 =






f1(F
T
f0/a0

)
...

fN(F
T
f0/a0

)




B(f0, 1). (3.14)

Now, by applying Theorem 3.12 on the polynomials 1
a0
f0, f1, . . . , fN , we see that

the coefficients of the desired GCD are determined by







h0

h1
...
hd







=

h0

a0








a0
a1 a0
...

...
. . .

ad ad−1 · · · a0















1
z1,m−d

...
zd,m−d







. (3.15)

We can also rewrite (3.14), using F from Theorem 3.12, as

Bf0(f1, . . . , fN) = F · B(f0, 1).

and since

Bf0(f1, . . . , fN) = [t1, . . . , tm],

F = [φ1, . . . ,φm],

B(f0, 1) =






am−1 · · · a0
... . .

.

a0 0




 ,

we obtain:

t1 = φ1am−1 + · · ·+ φm−1a1 + φma0,

t2 = φ1am−2 + · · ·+ φm−1a0,

...

tm = φ1a0,
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or generally, for i = 1, . . . , m

ti =
m−i+1∑

k=1

φkam−i−k+1.

Considering Theorem 3.13 and the fact that

tm ∈ span{φ1},
tm−1 ∈ span{φ1, φ2},

...

t1 ∈ span{φ1, . . . ,φm}
Theorem 3.13

= span{φ1, . . . ,φm−d},

the vectors {td+1, . . . , tm} have to be linearly independent and all of the vectors
t1, . . . , td are linear combinations of the vectors from {td+1, . . . , tm}. Hence, there
exist numbers wj

i ∈ R, i = 1, . . . , d, j = d+ 1, . . . , m, such that

ti =
m∑

j=d+1

wj
i tj.

Plugging now in for ti gets us

m−i+1∑

k=1

φkam−i−k+1 =
m∑

j=d+1

wj
i tj

and the same for tj

m−i+1∑

k=1

φkam−i−k+1 =
m∑

j=d+1

wj
i

(
m−j+1
∑

k=1

φkam−j−k+1

)

,

m−d∑

k=1

φkam−i−k+1 +

m−i+1∑

k=m−d+1

φkam−i−k+1 =

m∑

j=d+1

wj
i

(
m−j+1
∑

k=1

φkam−j−k+1

)

.

From the relation (3.12), we have for any k ∈ {m− d+ 1, . . . , m}

φk =

m−d∑

j=1

zk+d−m,jφj

and using that, we obtain

m−d∑

k=1

φkam−i−k+1 +
m−i+1∑

k=m−d+1

am−i−k+1

(
m−d∑

j=1

zk+d−m,jφj

)

=
m∑

j=d+1

wj
i

(
m−j+1
∑

k=1

φkam−j−k+1

)

.

We shall now study the coefficients of φm−d. Let us start with the right hand
side of this identity. Since we are interested in φm−d, we have k = m− d, which
is only possible for j = d + 1. Therefore the coefficient is wd+1

i am−j−k+1 =
wd+1

i am−d−1−m+d+1 = wd+1
i a0.

Next, the left hand side. In the first sum, the situation is quite clear, we only
get ad−i+1. In the second (double) sum, the only terms interesting to us are the
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ones with j = m−d, while the outer summation remains unchanged. Altogether,
we have

ad−i+1 + ad−iz1,m−d + · · ·+ a0zd−i+1

as a coefficient on the left hand side. By comparing both sides of the identity, we
finally obtain

wd+1
i a0 = ad−i+1 + ad−iz1,m−d + · · ·+ a0zd−i+1,m−d,

wd+1
i =

1

a0
(ad−i+1 + ad−iz1,m−d + · · ·+ a0zd−i+1,m−d) .

This also means that wd+1
i , i ∈ {1, . . . , d} satisfy the following:

h0










1

w
(d+1)
d

w
(d+1)
d−1
...

w
(d+1)
1










=
h0

a0








a0
a1 a0
...

...
. . .

ad ad−1 · · · a0















1
z1,m−d

...
zd,m−d







.

By simply comparing this to (3.15), we see that (3.13) in fact describes the
coefficient of the GCD, which concludes the proof. �

We present an algorithm based on these results. Note, that we actually do not
need to fully solve the system T2W = T1 in order to obtain wd+1

i , i = 1, . . . , d.
Since it is just one row of W that we seek, only QR decomposition and one step
of backward substitution is required, as it is done in the following algorithm.

Algorithm 3.15. Let us have polynomials f0, f1,. . . , fN of degrees m, n1,. . . ,
nN respectively, with additional assumption m > max{n1, . . . , nN}. We are com-
puting the polynomial h = AGCD(f0, f1, . . . , fN).

I. Determine d = m− rank(Bf0(f1, . . . , fN)) using any kind of rank revealing
algorithm, e.g. Algorithm 1.10.

II. Let t1, . . . , tm be column vectors of Bf0(f1, . . . , fN) = [t1, . . . , tm].

III. Construct T2 = [tm, tm−1, . . . , td+1] and T1 = [td, td−1, . . . , t1].

IV. Calculate QR decomposition of T2, i.e. T2 = QR, where Q ∈ Rm×m is
orthogonal and R ∈ Rm×(m−d) is an upper triangular matrix.

V. We set r := (R)−1
m−d,m−d and compute wd+1

i = r
(
QTT1

)

m−d,i
, for i =

d, . . . , 1.

VI. Setting hi := wd+1
d−i+1, i = 1, . . . , d and h0 := 1, we finally have h(x) =

h0x
d + h1x

d−1 + . . .+ hd−1x+ hd = GCD(f0, f1, . . . , fN).

End of algorithm.
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4. Numerical Experiments

There are several algorithms presented in this thesis, although only Algorithms
2.5, 2.7, 3.9 and 3.15 are of any interest to us. In this chapter, these four algo-
rithms are tested on sample problems of varying size and difficulty.

Firstly, the practical aspects of the computation are shortly discussed. This
includes implementation as well as possible preprocessing.

Section considering finding the GCD of two polynomials follows. In that
section, all four of the algorithms can be compared, since the multiple polynomial
algorithms do not exactly reduce to their two polynomial counterparts.

The next section then naturally concerns itself with problems comprising sev-
eral polynomials, where only Algorithms 2.7 and 3.15 are applicable.

4.1 Computation

All the algorithms were implemented as functions in MATLAB. Attached to this
thesis is a CD containing all the code used.

In our sample problems we shall quite inaccurately use the term AGCD to
refer to whatever result is computed by any of the algorithm and the term GCD
as the precise greatest common divisor. The way the problems are set up, we
always know the GCD beforehand, so that we can later measure error in our
computation as

e = |AGCD −GCD|,
where the symbol | · | denotes a polynomial norm defined for a polynomial f(x) =
m∑

i=0

aix
m−i as

|f | =
√∑m

i=0 a
2
i

m
.

Since scaling of the input polynomials does not affect the resulting GCD,
all the polynomials can be normalized to prevent big differences in coefficient
values. In our case, we use geometric mean of coefficients, so the polynomial

f(x) =
m∑

i=0

aix
m−i would be rescaled as follows:

f(x) →
(

m∏

i=0

ai

) 1

m

f(x).

4.2 Two polynomials

Example 4.1. Let us consider the following polynomials:

f(x) = (x− 0.5)5(x+ 0.4)6(x− 2)8(x+ 2)3,

g(x) = (x− 0.5)3(x+ 0.4)3(x− 2)3(x+ 3)3,
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then clearly, GCD(f, g) = (x − 0.5)3(x + 0.4)3(x − 2)3. We employ all four of
the presented algorithms and compare errors in the results as shown in Table 4.1.
As expected, Algorithm 2.7 provides much more accurate result, than Algorithm
2.5, since it has an additional refining process. We also note that both of the
algorithms based on Bézout matrices performed with a rather poor accuracy by
comparison.

This may be caused by the fact, that Bézout matrices are defined using sub-
tractions. This can possibly lead to the effect of so called cancelation and overall
decrease in accuracy. The Sylvester matrices have a drawback in that they are
essentially twice as big, but that does not seem to matter, at least in this case.

Algorithm 2.5 Algorithm 3.9 Algorithm 2.7 Algorithm 3.15
e 3.0× 10−11 5.3× 10−5 1.3× 10−16 8.4× 10−8

Table 4.1: The error e of the AGCD computed by different algorithms in Example
4.1.

The theory showed, that determining the GCD is based on determining a nu-
merical rank of some specific matrix. Figure 4.1 illustrates this very well; singular
values of S(f, g) and B(f, g), which have significant role in our algorithms, are
plotted We see 9 singular values are under the set tolerance of 1× 10−10 in both
cases, corresponding to deg(GCD(f, g)) = 9.
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Figure 4.1: Singular values of B(f, g) as ◦ and S(f, g) as +. The horizontal line
specifies the set tolerance 1× 10−10.

Example 4.2. We shall now consider polynomials

f(x) = (x+ 2)4(x+ 1.5)3(x+ 1)3(x− 5)7,

g(x) = (x+ 3)3(x+ 1.5)4(x− 5)5.

Their GCD = (x + 1.5)3(x − 5)5 and their roots are slightly clustered, i.e. there
are two subsets of closer roots, although this effect is not really prominent here.
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Again, their GCD is computed by all four algorithms and errors are compared in
Table 4.2. The trends set in Example 4.1 seem to continue, only this time the

Algorithm 2.5 Algorithm 3.9 Algorithm 2.7 Algorithm 3.15
e 7.8× 10−4 1.9× 103 1.6× 10−7 7.2× 100

Table 4.2: The error e of the AGCD computed by different algorithms in Example
4.2.

Bézout based algorithms provide results so inaccurate, that they are practically
useless. Figure 4.2 again presents the singular values of S(f, g) and B(f, g).
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Figure 4.2: Singular values of B(f, g) as ◦ and S(f, g) as + in Example 4.2. The
horizontal line specifies the set tolerance 1× 10−10.

Example 4.3. Let us have m ∈ N even, so m = 2k for some k ∈ N. The following
polynomials with real coefficients but complex roots are presented in [19]. Set
αi = cos

(
πi
m

)
, βi = sin

(
πi
m

)
, for i = 1, . . . , m. Moreover, let r1 = 0.5 and r2 = 1.5

and define

f(x) =

k∏

i=1

(
(x− r1αi)

2 + r21β
2
i

)
m∏

i=k+1

(
(x− r2αi)

2 + r22β
2
i

)
,

g(x) =

m∏

i=1

(
(x− r1αi)

2 + r21β
2
i

)
.

The roots of these polynomials are distributed over two concentric circles in com-
plex plane. The values m = 12 and m = 16 are tested. Note that the more roots
(or higher degree) we have, the closer the roots are. As usual, all four algorithms
are used to compute the greatest common divisor for both m = 12 and m = 16.
The results are summarized in Table 4.3. While for m = 12, the problem does
not seem to cause any troubles, for m = 16 both Bézout based algorithms fail.
This is most likely caused by the closeness of the roots.
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Figure 4.3: Roots of the polynomial f(x) (left) and g(x) (right) from Example
4.3 for m = 12.

Algorithm 2.5 Algorithm 3.9 Algorithm 2.7 Algorithm 3.15
e for m = 12 1.7× 10−12 5.5× 10−13 9.7× 10−14 2.6× 10−12

e for m = 16 1.9× 10−10 ∗ 1.0× 10−8 ∗

Table 4.3: The error e of the AGCD computed by different algorithms in Example
4.3 for m = 12 and m = 16. The symbol ∗ signifies, that the degree of the GCD
was determined incorrectly and therefore the algorithm does not provide any
useful solution.

4.3 Multiple polynomials

Example 4.4. In the case of multiple polynomials, a new issue arises. In Algo-
rithm 2.7 , we can select the order in which the first phase processes the given
polynomials. This example is to demonstrate, that this affects the results greatly.
We consider these polynomials:

f0(x) = (x− 0.9)5(x− 0.8)5(x− 0.7)5(x+ 0.7)5(x+ 0.5)5(x− 10)5,

f1(x) = (x− 0.9)4(x− 0.8)4(x+ 0.5)4(x− 2)4(x− 6)4,

f2(x) = (x− 3)3(x− 0.8)3(x+ 0.5)3(x+ 2)3,

f3(x) = (x− 1)3(x− 0.8)3(x+ 0.5)3(x+ 2)3.

Since the ordering is not really possible in Algorithm 3.15, we shall only concern
ourselves with computation via Algorithm 2.7 . If we carry out the computation
in this default order f0, f1, f2, f3 the algorithm fails. But computing in the reverse
order, i.e. f3, f2, f1, f0, the calculation succeeds with an error of only 1.3× 10−16.
Figure 4.4 shows the singular values of matrices

S(f0, f1) . . .+,

S(AGCD(f0, f1), f2) . . .◦,
S(AGCD(AGCD(f0, f1), f2), f3) . . .▽,
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Figure 4.4: Singular values of Sylvester matrices appearing in the first phase of
Algorithm 2.7 ; in order +, ◦, ▽; polynomials ordered f0, f1, f2, f3 (left) and
f3, f2, f1, f0 (right).

on the left hand side and in reversed order, i.e.

S(f3, f2) . . .+,

S(AGCD(f3, f2), f1) . . .◦,
S(AGCD(AGCD(f3, f2), f1), f0) . . .▽,

on the right hand side. We can see how much more distinct the approxi-null
values are in the case of the reversed ordering. The main point is, that we start
working with the polynomials of the smaller degrees first. That way, the size of
our problem is have reduced and that makes for easier computation.

Example 4.5. To compare the two presented algorithms, let us now have the
following polynomials:

f0 = (x− 0.9)5(x− 0.8)5(x− 0.7)5(x+ 0.3)5(x+ 0.5)5(x+ 0.7)5,

f1 = (x− 2)5(x− 0.9)5(x− 0.8)5(x+ 0.5)5(x+ 2)5,

f2 = (x− 3)5(x− 0.8)5(x+ 0.5)5(x+ 2)5 and

f3 = (x− 0.8)4(x+ 0.5)4.

It is easily seen, that GCD(f0, . . . , f3) = f3.
Accuracy of these computations is shown in Table 4.4. The errors made in

determining the coefficients are about two orders of magnitude smaller in case of
Algorithm 2.7 than in the case of Algorithm 3.15, which continues the trend set
by the previous examples.

In conclusion, it seems, that the Sylvester matrix based algorithms provide
better accuracy.
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Coefficients Error in coefficients

GCD Algorithm 2.7 Algorithm 3.15
1.0000
-1.2000
-1.0600
1.3320
0.5361
-0.5328
-0.1696
0.0768
0.0256

0.0000e+00
-9.1038e-15
-6.8834e-15
2.6645e-15
1.2212e-15
-2.6645e-15
-2.0539e-15
-7.2164e-16
-3.8164e-16

0.0000e+00
1.8050e-12
-7.6916e-13
-2.6426e-12
3.3151e-13
1.3358e-12
1.1419e-13
-2.3732e-13
-5.7697e-14

Table 4.4: Comparison of computational error in AGCD coefficients produced by
Algorithm 2.7 and Algorithm 3.15.
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Conclusion

In this thesis, we have presented theoretic background as well as algorithms
needed to compute the greatest common divisor of two polynomials via trans-
formations of the Sylvester matrices. We have then gone further and studied a
generalization of such an approach for multiple polynomials. Moreover, we tried
to use this generalization in the original two polynomial problem and found, that
it yields rather accurate results.

To compare the accuracy of our Sylvester based algorithms, we concerned
ourselves with their Bézout based analogues. Indeed, it turned out, that the
Bézout matrices share some properties with the Sylvester ones. It also turned
out, that the Bézout matrices can be used to find the GCD of multiple polynomials
as well. Even though the accuracy or robustness of this approach does not seem
to be all that good, it fulfilled it’s role as a comparison and alternative resultant
matrix.
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