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Abstract

This paper studies the topological properties of the International Trade Net-

work (ITN) among world countries using a network analysis. We explore the

distributions of the most important network statistics measuring connectivity,

assortativity and clustering. We show that the topological properties of the

weighted representation of the ITN are very different from those obtained by a

binary network approach. In particular, we find that: (i) the majority of coun-

tries are characterized by weak trade relationships, (ii) well connected countries

tend to trade with poorly connected partners and (iii) countries holding more

intense trade relationships are more clustered. Finally, we display that all

structural properties of the ITN have remained remarkably stable over time.
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Abstrakt

Tato práce studuje topologické vlastnosti sítě mezinárodního obchodu (ITN)

mezi světovými zeměmi pomocí síťové analýzy. Zkoumáme rozdělení nejdů-

ležitějších síťových statistik, které měří propojenost, uspořádání a shluková-

ní. Ukazujeme, že topologické vlastnosti vážené reprezentace ITN jsou velmi

odlišné od těch, které signalizuje binární síťový přístup. Konkrétně znázorňu-

jeme, že: (i) většina zemí je charakterizována slabými obchodními vztahy, (ii)

dobře propojené země mají tendenci obchodovat se slabě propojenými partnery

a (iii) země držící intenzivnější obchodní vztahy jsou více shlukovány. Na závěr

demonstrujeme, že všechny strukturální vlastnosti ITN jsou velmi stabilní v

průběhu času.
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Topic Characteristics

The researchers have been recently contributing to the modeling of economic

and financial behavior by using tools and methods developed in statistical

physics. The interaction between economics and physics has given rise to the

field “econophysics”. This new interdisciplinary field might be very helpful in

modeling and analyzing various financial systems like trading, banking, stock

markets etc. Econophysics uses (1) non-linearity, (2) scaling laws, (3) statistical

mechanics and (4) the entire family of stable distributions to explain economic

and financial behavior more robustly than traditional economic and financial

tools. Most of the work is focused on understanding statistical features of finan-

cial data. It is possible that financial data viewed from a different perspective

might yield new results.

The object of this thesis is to analyze the structure, function and dynamics

of international trade. We will show that the international trade network (ITN)

can be looked upon as the weighted network obeying the scale invariance and

the universality. The standard (indeed the only) model used to examine the

international trade is the gravity model. The name comes from an analogy with

Newton’s law of gravitation, thus the model can be seen as the older example of

the interaction between economics and physics. The model acquired its great

popularity, because it reproduces well observed trade flows between countries.

On the other hand, the model has some serious and irreducible limitations

which emerged especially after the publication of several empirical analyses

showing the topology of the ITN. For that reason we will try to develop a new

dynamical model in the context of the “network” approach.
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Hypothesis

1. The ITN is the weighted network obeying the scale invariance and the

universality.

2. The gravity model fails to replicate the empirical features of the ITN.

3. The dynamical model based on the gravity law perfectly reproduces em-

pirical features of the ITN.

Methodology

At first, we will perform a detailed analysis of the real data of the ITN. We

will look at the evolution of nodes and links, degree distribution, distribution

of link weights and strength of nodes. Secondly, we will estimate the gravity

model and build predictions for the properties of the ITN. The traditional ap-

proach for estimating the gravity model includes a logarithmic transformation

of gravity equation, however some authors show that the log-linearized estima-

tion method can lead to a highly misleading result. The proper method is to

estimate the gravity model in its multiplicative form using a Poisson pseudo-

maximum likelihood (PPML) estimator. We will examine the international

trade for several last years, thus we will use various panel data models, i. e.

pooled ordinary least squares (OLS) model, fixed effects (FE) model and ran-

dom effects (RE) model. To find out the most appropriate model we will apply

some specification tests. The statistical features of the predicted ITN will be

then compared to those observed in the real ITN. Finally, we will develop a

dynamical model which will have the gravity law as a starting point. After its

estimation we will repeat the procedure of comparison between the reproduced

ITN and the real ITN.

Outline

1. Introduction

2. Statistical properties of the international trade network

3. Gravity model

4. Dynamical model based on the gravity law

5. Conclusion
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Chapter 1

Introduction

Two last decades have witnessed the emergence of a large body of papers uti-

lizing methods and tools from statistical physics to explain economic behavior.

Statistical physics describes the complex behavior observed in many physical

systems in terms of their simple basic constituents and simple interaction laws.

Complexity arises from the interaction and disorder and from the cooperation

and competition of basic units. Financial markets are certainly complex sys-

tems, which is judged both by their output and structure. A growing number

of physicists have therefore attempted to analyze and model financial markets

and more generally economic systems. The interest of physical community in

economic systems has given rise to the field of “econophysics”. This new inter-

disciplinary field generally uses non-linearity, scaling laws, statistical mechanics

and the entire family of stable distributions to explain economic behavior more

robustly than traditional economic tools. The econophysics has proved to be

especially fruitful in a research of the structure and function of complex eco-

nomic network systems like trading, banking, stock markets and so on.

Over the last two decades, there has been also an increasing interest in the

study of networks across many scientific disciplines. The study of networks

has primarily flourished thanks to contributions stemming from mathematics,

physics and computer science. With new powerful tools researchers have be-

gun to explore statistical properties of biological, information and technological

networks [1, 2, 3, 4]. These new methods have been naturally applied to social

and economic systems [5]. The added value of using the network approach to

economic problems is the possibility to investigate indirect effects arising as

the combination of many pairwise interactions between economic agents. The

idea that economic systems like trading, banking and stock markets might be
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considered as network structures have been increasingly accepted. However,

much earlier studies recognized that socio-economic systems can be described

as networks [6, 7]. In fact, psychologists and sociologists have employed so-

cial network analysis since the beginning of the 20th century to explore the

interactions established among people or groups [8].

The network approach has been recently used in empirical studies of inter-

national trade [9, 10, 11, 12, 13, 14, 15, 16, 17]. The idea is to describe trade

relations as a network, where countries play the role of nodes and the presence

of an export/import relation between any two countries is described by a link.

Such a network is called International Trade Network (ITN) or World Trade

Web (WTW). Understanding the topological properties of the ITN allows for

a better description of processes such as economic globalization and internal-

ization [18, 19]. The standard approach to the empirics of international trade

employs indicators, which characterize the profile of a country by referring only

to its direct bilateral-trade relationships (direct export/import relationships).

On the one hand, direct bilateral-trade linkages are known to be one of the most

important ways of interaction between world countries [20]. For example, they

can help to explain the extent to which economic policies affect foreign markets

[21]. Alternatively, they can explain how economic shocks to any single country

can be easily transmitted to countries that are relatively minor bilateral trading

partners. Furthermore, they can help to stress global interdependencies that

explain spreading of economic crises. On the other hand, direct bilateral-trade

linkages can explain only a part of the effect that an economic shock arising

in one country can have on another country that is not among its direct trade

partners [22, 23]. For that reason, a complex network analysis [1, 2, 3, 4] that

goes far beyond the standard indicators of international trade is required.

The earlier literature [9, 10, 11] exploring the topological properties of the

ITN has employed a binary network analysis, where a link between any two

countries is either present or not according to whether the trade flow that it

carries is larger then a given threshold. More recent contributions [12, 13, 14,

15, 16, 17] have adopted a weighted network analysis, where each link between

any two countries is weighted by some value of trade flow that it carries. The

reason is that the binary approach treats all relationships equally, which might

dramatically underestimate the role of heterogeneity in trade linkages. This

heterogeneity might be crucial to better understand the architecture of complex

networks, therefore the weighted analysis is better to grasp a more complete

and truthful picture of the ITN.
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In this thesis, we employ a network analysis to explore the topological prop-

erties of the ITN among large set of world countries over the period 1980-2000.

Although the ITN is an excellent example of the weighted network, we perform

both binary and weighted network analyses to get a more complete picture.

We use international trade data to build a network of links between pair of

countries in each year. This enables us to apply statistical network techniques

and characterize some robust stylized facts of international trade. The em-

pirical regularities revealed in the data allow us to understand the structure

and evolution of the ITN. In other words, empirical regularities can provide a

theoretical explanation of why the international trade is organized in this way.

The main contribution of this thesis in a comparison with other studies is a

thoroughness of the analysis. We provide a detailed theoretical background

to the analysis of networks. Furthermore, we review all existing literature re-

lated to the topic. Finally, we present a comprehensive empirical analysis of

the topological properties of the ITN, which includes several dimensions. First

we check the directionality of the ITN to justify a directed or an undirected

analysis. Second, we describe the distribution of the most important network

statistics measuring connectivity, assortativity and clustering. Third, we study

whether the empirical regularities of the ITN have been changing over time.

Fourth, we compare the weighted network results to those obtained by a binary

approach. Finally, we investigate the extent to which the topological properties

of the ITN relate to country specific characteristics (GDP per capita).

The study is organized as follows. In chapter 2, we present the main con-

cepts related to the analysis of networks. We specifically provide explanations

as well as more formal definitions of the network statistics for both binary and

weighted networks. Chapter 3 summarizes the relevant literature on the ITN.

Chapter 4 describes the origin of data and the selection of the sample. The

results are reported in Chapter 5. Finally, we conclude the thesis and discuss

the future work in chapter 6.

The computations are performed in Wolfram Mathematica. All figures and

tables provided in the study are also produced in this software. The document

with the script called Wolfram Mathematica notebook necessary for under-

standing of computational processes is available upon request.



Chapter 2

Statistical Analysis

We study the topological properties of the ITN among world countries using

a network analysis. This chapter provides the main concepts related to the

empirical analysis of networks. We start with an introduction of basic notions.

We continue with a description of the procedure to check whether a network

is directed or undirected. We expect that the ITN is sufficiently symmetric,

therefore we will be able to use tools for an undirected network analysis. The

tools are initially summarized for binary networks and consequently extended

to a weighted perspective. This statistical analysis is apart from other cited

works based on [13, 14, 15, 16, 17, 24, 25, 26].

2.1 Basic Notions

A network is a set of nodes {1, 2, . . . , N} connected through links1. The network

can be alternatively characterized by a N × N matrix M̃ = {m̃ij}, where the

out-of-diagonal element m̃ij is non-zero if and only if a link from a node i to

a node j is present. The diagonal elements m̃ii are either all different from

zero or all equal to zero. It depends whether self-loops2 are allowed or not.

Networks are divided into binary and weighted. In binary networks, any two

nodes are either connected by a link or not, i. e. m̃ij ∈ {0, 1}. The matrix M̃

is then called an adjacency matrix. In weighted networks, each link is weighted

by some proxy of the flow intensity that it carries. The non-zero element m̃ij

measures the weight of the link from node i to node j and the resulting matrix

M̃ is referred as a weight matrix.

1Standard terms of graph theory are a graph, vertices and edges, respectively.
2Self-loops are links, which connect a node to itself.
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Both binary and weighted networks can be directed or undirected. In di-

rected networks, all links are directed from one node to another. Directed net-

works are not symmetric meaning that there exists at least a pair of connected

nodes in which one directed link is not reciprocated, i. e. ∃(i, j), i 6= j : m̃ij > 0

and m̃ji = 0. Analysing the topological properties of directed networks might

be very complicated and convoluted, because one has to distinguish inward

and outward links in computing network statistics. In undirected networks, all

links are instead bilateral. All pairs of connected nodes mutually affect each

other, i. e. ∀(i, j), i 6= j : m̃ijm̃ji > 0. Disregarding a direction of links greatly

simplifies the analysis, since the tools are much more developed and understood

for undirected networks.

The main issue is to empirically distinguish directed and undirected net-

works. If the empirical analysis considers mutual economic and social relation-

ships (e. g. friendship, marriage, business partnership), the constructed matrix

M̃ is symmetric and tools for undirected network analysis can be used. How-

ever, the majority of interaction relationships are notionally non-mutual. The

constructed matrix M̃ (especially in a weighted case) is then hardly found to

be symmetric. Strictly speaking such networks should be treated as directed.

Since a directed network analysis is more difficult and convoluted, one should

check whether the “amount of directedness” of the observed matrix justifies

the use of a more complicated procedure.

A traditional way quantifying whether a network is sufficiently symmetric

to justify an undirected analysis is to measure its reciprocity as the fraction of

the number of reciprocated links L↔ to the total number of directed links LD

[6, 9, 27]:

r =
L↔

LD

. (2.1)

The reciprocity is zero for the fully-directed network, while it is one for the fully-

undirected one. The value of r generally represents the average probability that

a link is reciprocated. If this ratio is “reasonably” large, one can symmetrize the

network and employ the appropriate tools for an undirected network. However,

the above definition of the reciprocity poses various conceptual problems. First,

the value of r has to be compared to the value of rrand expected in a random

network with the same number of nodes and links. The reason is an assessment

whether mutual links occur more, less or just as often than expected by chance.

Second, the definition (2.1) is heavily dependent on the density of the network,

which is defined as the number of observed directed links LD to the number of
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possible directed links N(N − 1) [6, 27]:

ρ =
LD

N(N − 1)
. (2.2)

The value of rrand is naturally larger in a network with larger density, because

mutual links occur by chance more often in a network with more links. Finally,

even in two networks with the same density the definition (2.1) can lead to

inconsistent results if LD contains the number of self-loops. In order to avoid

aforementioned problems, Garlaschielli and Loffredo [24] propose a new defini-

tion of the reciprocity as the correlation coefficient between the entries of the

adjacency matrix of a directed network. Unfortunately, there is even one more

drawback. If a network is weighted, the reciprocity does not consider the effect

of link weights. A bilateral link exists between node i and node j if and only

if m̃ijm̃ji > 0. Of course, the sub-case where mij >> 0 and mji ≃ 0 is very

different from the sub-case where mji ≃ mji > 0. To overcome this problem

Fagiolo [25] develops a new index, which is introduced in the following section.

2.2 Checking for Symmetry

To ground a “directed vs undirected” decision, we have decided to employ an

index developed by Fagiolo [25]. The index has two main properties. First, it

can be applied with minor modifications to both binary and weighted networks.

Second, the standardized version of the index follows a standardized normal

distribution (over all possible adjacency/weight matrices).

Suppose a directed weighted network G̃ = (N, W̃ ), where N is the number

of nodes and W̃ = {w̃ij} is theN×N matrix of the link weights. Without loss of

generality, it can be assumed that w̃ij ∈ [0, 1] for all i 6= j and w̃ii = w̃ ∈ {0, 1}

for all i, where i, j = 1, . . . , N . A directed link from node i to node j exists if

and only if w̃ij > 0.

The index is based on a very simple idea. If the network G̃ is undirected

(symmetric), any norm of the suitably rescaled difference between W̃ and W̃ T

(the transpose of W̃ ) should converge to zero. Without loss of generality, one

can define:

Q = {qij} = W̃ + (1− w̃)IN , (2.3)

where IN is the N ×N identity matrix. The network G = (N,Q) can be then
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established. Notice that qij = w̃ij for all i 6= j and qii = 1 for all i3. As a next

step, consider the square of the Frobenius (or the Hilbert-Schmidt) form:

||Q||2F =
∑

i

∑

j

q2ij = N +
∑

i

∑

j 6=i

q2ij, (2.4)

where all sums (also in what follows) span from 1 to N . The index used to

check for the symmetry takes the following form:

S̃(Q) =
||Q−QT ||2F

||Q||2F + ||QT ||2F
=

||Q−QT ||2F
2||Q||2F

=
1

2

( ||Q−QT ||F
||Q||F

)2

. (2.5)

By using the symmetry (qij − qji)
2, one can easily get:

S̃(Q) = 1−

∑

i

∑

j(gij − gji)
2

2
∑

i

∑

j q
2
ij

. (2.6)

By expanding the squared term at the numerator, we obtain:

S̃(Q) = 1−

∑

i

∑

j qijqji
∑

i

∑

j q
2
ij

=

∑

i

∑

j 6=i q
2
ij − 2

∑

i

∑

j>i qijqji

N +
∑

i

∑

j 6=i q
2
ij

. (2.7)

Since S̃(Q) ∈ [0, N−1
N+1

], its scaled version:

S(Q) =
N + 1

N − 1
S̃(Q) (2.8)

ranges in [0, 1] and therefore has a more straightforward interpretation. The

index is zero if the observed matrix is fully-symmetric, whereas it is one if the

observed matrix is fully-asymmetric.

The further step includes a standardization of the index S in order to sta-

tistically check for the symmetry of empirically-observed matrix W̃ . The dis-

tribution of the index S depends on (i) the size of the matrix N and (ii)

the underlying nature of the network (binary/weighted). Fagiolo [25] for each

N ∈ {5, 10, 50, 100, 200, 500, 700, 1000} generates 100,000 random matrices Q

obeying the restriction that qii = 1 for all i. In the binary case, the elements qij
are supposed to be independently and identical distributed (i.i.d.) Bernoulli

random variables with probability p(qij = 0) = p(qij = 1) = 0.5. In the

weighted case, the elements qij are instead supposed to be i.i.d. uniform ran-

3The inclusion of self-loops is only required to have an index, which is strictly increasing
in the degree of asymmetry of the underlying network.
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dom variables over [0, 1]. The results of simulations are summarized in the

following points:

mB(N) ≃ 0.50 + exp (−1.786369− 1.680938 lnN), (2.9)

mW (N) ≃ 0.25− exp (−1.767551− 0.937586 lnN), (2.10)

sB(N) ≃ exp (−0.135458− 1.001695 lnN), (2.11)

sW (N) ≃ exp (−0.913297− 0.982570 lnN), (2.12)

where mB(N) (respectively mW (N)) is the sample mean of the index S for the

binary (respectively weighted) network and sB(N) (respectively sW (N)) is the

sample standard deviation of the index S for the binary (respectively weighted)

network. Given the approximate relations in equations 2.9-2.12, the index S is

standardized as follows:

SB(Q) =
S(Q)−mB(N)

sB(N)
, (2.13)

SW (Q) =
S(Q)−mW (N)

sW (N)
. (2.14)

The standardized versions of the index S are well approximated by a N(0, 1).

Positive (respectively negative) values of the standardized index suggest that

the network is directed (respectively undirected).

If the notionally-directed network turns out to be sufficiently undirected

(symmetric), the typical procedure is to symmetrize the originally-observed

matrix. For binary networks the symmetric matrix is defined as:

A = {aij} = max{ãij, ãji}, (2.15)

whereas for weighted networks it takes the form:

W = {wij} =
1

2
(w̃ij + w̃ji). (2.16)

2.3 Binary Network

The simplest type of networks is binary and undirected. This means that any

two nodes are either connected by a link or not and the directions of links do

not count. Such a type of networks can be characterized by a symmetric N×N

adjacency matrix A = {aij}, where aij = aji = 1 for all i 6= j if and only if a
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link between nodes i and j is present and zero otherwise4. The most important

binary statistics are summarized below.

2.3.1 Node Degree

The most common statistics is the node degree (ND), which is simply the total

number of connections that a node i holds:

di =
∑

j

aij = A(i)1, (2.17)

where A(i) is the i-th row of A and 1 is the N vector of ones. The shape of

the ND distribution can provide a lot of information about the structure of a

network. For instance, random networks have an unimodal ND distribution

meaning that node degrees are distributed around the mean. On the contrary,

real networks often indicate a right-skewed ND distributions with a majority of

nodes holding few links and a minority of nodes (known as hubs) holding many

links. Some networks are found to have the ND distribution, which approxi-

mately follows a power law. These networks known as scale-free networks have

recently attracted a lot of attention for their structural and dynamical prop-

erties. Perfect examples are the world wide web (WWW), biological networks

or social networks [1, 2, 3, 4]. The ND statistics is the first-order indicator,

because it takes into account nodes lying one step away from the one under

analysis.

2.3.2 Average Nearest-Neighbor Degree

The ND only considers nodes that are directly connected to the analysed one,

however the importance of a node in the network is also determined by connec-

tions of its partners. The average nearest-neighbor degree (ANND) therefore

measures how much the partners of a node are themselves connected in the

network. The ANND is basically the average of ND of i’s partners:

anndi = d−1
i

∑

j

aijdj = d−1
i

∑

j

∑

h

aijajh =
A(i)A1

A(i)1
. (2.18)

Nodes with the largest ND and ANND usually hold the most intense interaction

relationships in the network. The correlation between the ANND and ND is a

4Self-loops are not considered, i. e. aii = 0 for all i.
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measure of the network assortativity. If the correlation is positive (respectively

negative), the network is called assortative (respectively disassortative). The

ANND statistics is the second-order indicator, because it looks at nodes lying

two step away from the analysed one.

2.3.3 Binary Clustering Coefficient

The third important characteristics determining the structure of the network

is clustering5. The binary clustering coefficient (BCC) measures how much

the partners of a node are themselves partners. The node i’s BCC is formally

defined as the ratio between the number of triangles with i as one node and

the maximum number of triangles that a node i could have formed given its

degree:

bcci =
1
2

∑

j 6=i

∑

h 6=(i,j) aijaihajh
1
2
di(di − 1)

=
(A3)ii

di(di − 1)
, (2.19)

where (A3)ii is the i-th element of the main diagonal of A3 = A · A · A. Each

product aijaihajh is intended to count whether a triangle is present around i

or not. The order of subscripts is very important, because all entries in A are

symmetric. In a random graph, where links are in place independently of each

other with a probability p ∈ (0, 1), the expected value of the BCC is equal to p.

Node clustering is very important, because geographically structured networks

are usually highly-clustered with more short-distance links. The BCC is also

the second-order indicator, as it takes into account nodes lying two step away

from the analysed one.

2.4 Weighted Network

A binary approach treats all links present in the network as completely homo-

geneous, however many researchers have recently argued that real networks ex-

hibit a relevant heterogeneity in the capacity and intensity of their connections

[28, 29]. This heterogeneity might be crucial to better understand the archi-

tecture of complex networks. Each link ij present in the weighted network (i.e.

aij = 1) is assigned a value wij > 0 proportional to the flow intensity carried

by that link. For example, weights can represent the amount of trade volumes

5Clustering is a well known concept in sociology, where terms such as “cliques” and “tran-
sitive triads” have been widely used [6, 7]. For example, friendship networks are typically
highly clustered, as any two friends of a person are very probable to be friends.
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exchanged between countries (as a fraction of their gross domestic product),

the number of passengers traveling between airports, the traffic between two

Internet nodes, the number of e-mails exchanged between pairs of individuals

and so on. For that reason, we need to move from a binary perspective to a

weighted network approach.

Suppose that the underlying network is now weighted and undirected. The

network is characterized by a symmetric N × N weight matrix W = {wij},

where wij = wji > 0 for all i 6= j if and only if nodes i and j are connected by

a link and zero otherwise6. The three statistics above (ND, ANND, and BCC)

can be easily extended to a weighted perspective.

2.4.1 Node Strength

Whereas the ND counts how many connections a node holds, the node strength

(NS) measures a weighted connectivity. The NS is defined as the sum of weights

associated to the links, which a node i holds:

si =
∑

j

wij = W(i)1, (2.20)

where W(i) is the i-th row of W . Nodes with the larger NS are distinguished by

a higher intensity of interaction relationships. It is also evident that any two

nodes with the same ND can end with very different levels of the NS. Similarly

as the ND, the NS is the first-order indicator.

The NS statistics is only an aggregate measure of the intensity of trade

relationships mediated by a node, however particular weights associated with

the links of a node might vary a lot. A simple way to measure a dispersion

(or concentration) of weights is derived from the Herfindahl-Hirschman Index

(HHI) [30, 31]. After a slight adjustment, one can define the node disparity

among i’s weights as follows:

h̃i =
∑

j

(wij

si

)2

=
1

s2i

∑

j

w2
ij =

W 2
(i)1

(W(i)1)2
. (2.21)

As h̃i ∈ [ 1
N−1

, 1], it is reasonable to define its rescaled version:

hi =
(N − 1)h̃i − 1

N − 2
, (2.22)

6Self-loops are not considered, i. e. wii = 0 for all i.
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which ranges in [0, 1]. The disparity is one if a node concentrates all its rela-

tionships on one partner, whereas it converges to zero if the relationships are

more differentiated. Moreover, the disparity should equal to the inverse of the

ND if the weights associated with the links of a node are of the same order.

2.4.2 Weighted Average Nearest-Neighbor Degree and Av-

erage Nearest-Neighbor Strength

The intensity of trade relationships maintained by the partners of a given

node is measured by either the weighted average nearest-neighbor node de-

gree (WANND) or the average nearest-neighbor node strength (ANNS). The

WANND is computed as the weighted average of ND of i’ partners:

wanndi = s−1
i

∑

j

wijdj = s−1
i

∑

j

∑

h

wijajh =
W(i)A1

W(i)1
. (2.23)

The formula implies that wannd > annd if the links with the larger weights

are pointing out to the neighbors with larger degree and wannd < annd in

the opposite case. The WANND is therefore a measure of the effective affinity

to connect with high- or low-degree neighbors according to the significance of

actual interactions. The correlation between the WANND and ND measures

the network assortativity (if positive) or disassortativity (if negative). The

ANNS is instead defined as the average of NS of i’s partners:

annsi = d−1
i

∑

j

aijsj = d−1
i

∑

j

∑

h

aijwjh =
A(i)W1

A(i)1
. (2.24)

Analogically to the previous case, the correlation between the ANNS and NS

measures the network assortativity (if positive) or disassortativity (if nega-

tive). Once again, any two nodes with the same ANND can be associated to

very different levels of the WANND or ANNS. Both statistics are second-order

indicators.

2.4.3 Weighted Clustering Coefficient

An extension of the BCC to a weighted perspective is not straightforward,

because one has to take into account the weights associated to the links in

the neighborhood of a given node. A motivation and comparison of selected

features for different weighted clustering coefficients (WCC) are provided by
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Saramäki et al. [32]. For example, suppose that a triangle ihj is in place. One

might consider only the weights of the links ih and ij [28]. Alternatively, one

might employ the weights of all the links. The total contribution of a triangle

can be then defined as the geometric mean of its weights [29] or simply as the

product among them [33, 34]. We focus on the extension of the BCC to a

weighted perspective originally presented by Onnela et al. [29]:

wcci =
1
2

∑

j 6=i

∑

h 6=(i,j) w
1

3

ijw
1

3

ihw
1

3

jh

1
2
di(di − 1)

=
(W [ 1

3
])3ii

di(di − 1)
, (2.25)

where W [ 1
k
] = {w

1

k

ij}, i. e. the matrix obtained from W by taking the k-th

root of each entry. The index wcci ranges in [0,1] an reduces to bcci, when

weights become binary. Moreover, it considers the weights of all the links in

a triangle and is invariant to the weight permutation for one triangle. In a

random graph, where links are in place independently of each other with a

probability p ∈ (0, 1), the expected value of the WCC is equal to (3
4
)3p. The

WCC is also the second-order indicator.



Chapter 3

Literature Review

We have already stated that a lot of effort has been devoted to analysing the

international trade from a network perspective in the last two decades. The

goal of this chapter is to examine and summarize all relevant literature. We

start with the first contributions that recognized that international trade can

be described as a network, however they did not employ the statistical anal-

ysis discussed in the previous chapter. Furthermore, we move to the network

approach, which has been flourished thanks to the significant contributions

stemming from mathematics, physics and computer science. Finally, we review

other contributions relating a network analysis.

3.1 First Contributions

The first contributions describing the international trade flows as a network

have been originally presented in sociology and political science. The re-

searchers have gradually showed that relational characteristics are more rel-

evant than (or at least as relevant as) individual country characteristics in ex-

plaining the macroeconomic dynamics resulting from export and import. Early

studies have been greatly influenced by “dependency” and “world-system” the-

ories, which attempt to explain unequal economic relations between poor and

wealthy countries. These theories are based on an international division of la-

bor, which divide the world into three major categories: core, semiperiphery

and periphery. In their extreme forms, they state that poor and undeveloped

countries are exploited by wealthy ones through world economic system1.

1We recognize that the dependency and world-system theories are not necessarily identi-
cal, however their distinction is not important for our purposes.



3. Literature Review 15

The initial paper by Snyder and Kick [35] addresses dependency and world-

system theories of differential economic growth among countries. They present

a block-model for four types of binary undirected networks (trade flows, mili-

tary interventions, diplomatic relations and conjoint treaty membership) among

118 countries circa 1965. The results provide a strong support for a core-

semiperiphery-periphery structure in the world system. They further perform

a regression analysis of the effects of structural positions on a nations’ economic

growth (change in GNP per capita) from 1955 to 1970. The estimation shows

that the location of a country in the structure can explain an economic growth,

which is consistent with dependency and world-system arguments.

Nemeth and Smith [36] also use a network analysis of international inter-

actions in an attempt to derive the structure of the world economy. They

specially sort countries into structural positions in the world system according

to their patterns of commodity trade. A block-model is based on five types of

binary directed networks (heavy/high-technology manufactures, intermediate

manufactures, raw materials, light manufactures and food products) among 86

non-centrally planned countries in 1970. The results again indicate a strong

core-semiperiphery-periphery structure in the world system. In particular, the

authors refer to four distinct structural positions in the world economy. These

findings are confirmed by the regression analysis of the effects of structural

positions on a nations’ economic growth and strength, income inequality and

level of social welfare.

A similar approach is followed by Breiger [37], however he expands the

research upon a weighted analysis. A standard block-model procedure is per-

formed on a four types of undirected networks (raw materials, energy resources,

manufactured goods and agriculture products) among 24 highly industrialized

countries in 1972. The results suggest the existence of a smaller and more pre-

dominant core in the world system than has been recognized by other studies.

If one takes into account the weighted approach, a considerably more differenti-

ated structure is shown to underlie the original findings. A main characteristic

of this underlying structure is the presence of multiple competing cores.

More recent paper is provided by Smith and White [38], who improve on

previous network studies of the world economy in two ways. First, they ap-

ply a more general approach for measuring positional proximity in a network.

Second, they add a dynamic aspect into the analysis by comparing interna-

tional trade flows in three different years (1965, 1970 and 1980). A block-

model process includes an investigation of five types of binary directed net-
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works (heavy/high technology manufactures, sophisticated extractives, simple

extractives, low wage/light manufactures and food products) among 63 coun-

tries. The results support dependency and world-system formulations about

the asymmetrical flows of raw materials versus processed goods. Furthermore,

recent declines in core position’s share of low wage/light manufactures and sim-

ple extractives are in full accordance with the “new international division of

labor” argument2.

Kim and Shin [40] employ a social network analysis to examine effects of

globalization and regionalization, which are defined as specific types of linkages

between countries. The analysis includes a binary directed approach for large

set of commodities among 105 countries in three different snapshots (1959, 1975

and 1996). They find that the world became increasingly globalized between

1959 and 1996. Countries had significantly more trading partners in 1996 than

in 1959 and the ITN became more denser. The main source of this process

was a development of countries in the middle strata. They also show that the

the ITN became decentralized during this period, which provides a stronger

support for neoclassical theory rather than for dependency and world-system

theories. They finally argue that intraregional density is higher than interre-

gional density and intraregional ties are stronger than interregional ties across

years indicating that the ITN became regionalized. These findings demonstrate

that globalization and regionalization are not contradictory processes.

Kastelle et al. [41] propose a new way for measuring globalization, which

is based on a complex network analysis. They study the evolution of the topo-

logical properties of the ITN using a binary directed analysis with longitudinal

trade data between 1938 and 2003. The paper shows that several network char-

acteristics have changed significantly over examined 65 years, however the basic

structure of the ITN has been remarkably stable over the period. The authors

proclaim that there is some globalization, but the perception that international

trade is integrated into one huge market is inaccurate.

3.2 Network Approach

The study of the ITN has been recently influenced by contributions stemming

from mathematics, physics and computer science. The researchers have started

2The term new international division of labor is associated with a structural change that
forces companies to reorganize their production on a global scale. The most common pattern
is a shift of manufacturing industries from advanced countries to developing ones [39].
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to explore the statistical properties of the ITN with new and more powerful

statistical tools. The idea is that the international trade might be viewed as

a complex network. The main purpose of the revived approach is to analyse

the mechanics and topological properties of the ITN by abstracting from any

economic and social effects.

3.2.1 Binary Network

The initial works employed a binary network analysis, where a link is either

present or not according to whether the trade flow that it carries is larger than

a given lower threshold3.

Serrano and Boguna [9] construct a binary undirected network of trade rela-

tionships among 179 countries in 2000. The network displays the typical prop-

erties of complex networks, i. e. scale-free degree distribution, “small-world”

property, degree correlation between different countries and high clustering co-

efficient. Specifically, the degree distribution approximately follows a power

law, which implies that the ITN is a scale-free network. Furthermore, the ITN

appears to be a disassortative network, where highly connected countries tend

to connect with poorly connected countries. Finally, the ITN is characterized

by a hierarchical structure, which means that the partners of highly connected

countries are less interconnected than partners of poorly connected ones. The

highly connected countries form large degree centers (hubs) in the network.

The authors argue that these results refer to a high similarity between the ITN

and the Internet.

Garlaschelli and Loffredo [10] provide an empirical test whether the “hid-

den variable” model reproduces all the relevant topological properties of the

ITN. According to this model the topological properties of the ITN can be well

explained by a single country characteristic. The undirected analysis is based

on a very detailed dataset of 191 countries in 1995. First, they explore the

topological properties of the ITN. They find that power-law region is only a

small part of the whole degree distribution, therefore they conclude that the

ITN is not a scale-free network. This finding is in contrast with the previous

work [9]. Second, they find that all studied properties (degree distribution, de-

gree correlation and clustering) are in excellent agreement with the predictions

3There is no agreement on how much this threshold should be. Kim and Shin [40] set
thresholds of USD 1 million and 10 million. Kastelle et al. [41] use a threshold in a way to
have a connected network in each year. On the contrary, other researchers [9, 10, 11] define
a link whenever non-zero trade flow occurs.
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of the hidden-variable model. The single country characteristic called hidden

variable (fitness) is the GDP.

While previous two contributions focused on undirected version of a single

snapshot of the ITN, Garlaschelli and Loffredo [11] study the properties of the

ITN as a directed and evolving network. The analysis is based on a compre-

hensive dataset, which reports the trade activity for all world countries over

the period 1950 and 1996. They find that degree distribution does not follow

a power law. Furthermore, the results confirm that the topology of the ITN

shows a peculiar dependence on the gross domestic product, which is in full ac-

cordance with the hidden-variable model. Moreover, the network variables are

quite stable over time, which might cast some doubts on a process of economic

integration (globalization) in the second half of 20th century.

3.2.2 Weighted Network

A binary analysis only counts the mere presence or absence of an interaction

between any two nodes, however the majority of economic and social relation-

ships also involve an assessment of the intensity of the interaction between any

two nodes. If one uses a binary network analysis, a lot of information might be

disregarded and a role of heterogeneity in trade linkages might be significantly

underestimated. Many researchers have therefore adopted a weighted network

approach to the study of the ITN.

Li et al. [12] attempt to investigate the effect of dynamics on the ITN. First,

they present the scale-free features of the degree distribution and link weight

distribution for a weighted directed network among 188 countries in 2000. The

United States (US) appears to be the biggest node in the weighted degree sense.

Second, they study a synchronization of economy cycles due to its scale-free

features. The real GDP data for 21 developed countries between 1975 and

2000 are analysed in terms of their correlations with the United States. The

results show that 18 developed countries are significantly synchronized with

the United States.

Bhattacharya et al. [13] study in detail the variations of different network

quantities over the period 1948 and 2000 by using a weighted undirected ap-

proach. They demonstrate that the deviation in the size of the giant component

of the ITN from the fully connected graph declines exponentially. They also

show that the distribution of link weights is better approximated by the log-

normal distribution. Furthermore, the size of a few rich countries that trade
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among themselves one half of the total world trade decreases over time. Finally,

the three disparity measures using link weights as the total trade, export and

import increase in similar manner.

The following paper by Bhattacharya et al. [14] is very similar to the

previous one. The authors analyse international trade data over the same

period and confirm the properties of the ITN. In addition, they show that

many of these features are reproduced by a non-conservative dynamical model

based on the gravity model of social and economic sciences.

Fagiolo et al. [15] show that the topological properties of the ITN viewed as

a weighted network are significantly different from those obtained by a binary

network approach. For instance, the most countries are characterized by weak

trade relationships (the weighted representation of the ITN leads to a weakly

connected graph). Additionally, the weighted ITN is only weakly disassortative.

Finally, highly connected countries are more likely to trade with partners, which

are strongly connected among themselves. The research is based on a weighted

undirected network among 159 countries between 1981 and 2000.

Fagiolo et al. [16] investigate how the most important network statistics

(connectivity, assortativity, clustering and centrality) have evolved over time.

They construct a weighted undirected network among 159 over the period 1981

and 2000. The results show that node statistic distributions and their corre-

lation structure have remained highly stable over time. In the contrast, the

distribution of link weights is slightly changing from a log-normal distribution

to a power law. They also describe the autoregressive properties of network-

statistics dynamics. They find that network-statistics growth rates are well

described by fat-tailed distributions (the Laplace or the asymmetric exponen-

tial power).

A more thorough analysis of the statistical properties of the ITN is pre-

sented by Fagiolo et al. [17], who expand the preceding contributions along

four dimensions. First, they present a more complete description of statistical

properties of the ITN by discussing several measures (indicators). Second, they

explore how these properties correlate with node characteristics. Third, they

study the extent to which statistical features are robust to different ways of

weighting links. Finally, they evaluate whether the observed ITN is sufficiently

undirected to justify a weighted undirected approach instead of weighted di-

rected one. The results of the work are also based on the empirical analysis of

international trade data among 159 countries between 1981 and 2000.
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3.3 Additional Contributions

We finally review the papers whose goal is not primarily to show the topology

of the ITN. They have instead focused on specific features of the structure and

evolution of the ITN, on the determinants of the topological properties of the

ITN, on replicating of the structure of the ITN and so on.

Garlaschelli et al. [42] report a range of empirical results and theoretical

arguments showing the interplay between the dynamics of the GDP values

and the evolution of the ITN. A weighted directed analysis includes increasing

number of countries during the period 1950 and 2000. The authors find that

the topological properties of the ITN are determined by the GDP of all world

countries, which supports the presence of the hidden variable (fitness). On the

other hand, they show that the topology of the ITN determines the GDP values

due to the exchange between countries. These results lead to a new framework,

where the hidden variable (fitness) is a dynamical variable determining and

simultaneously depending on the network topology.

Kali and Reyes [43] combine international trade data with network methods

to explore global trading system as an interdependent complex network. The

data includes exports and imports of all commodities between 182 countries for

the years 1992 and 1998. The authors outline the topology of the ITN and sug-

gest new network based measures of international economic integration. These

measures embody the structure and function of the network and might provide

a more reasonable approach to globalization than current measures based on

trade volumes. They find that in terms of participation in the network the

global trade is hierarchical with core-periphery structure, although the inte-

gration of smaller countries into the network increased greatly over the 1990s.

They further show that a country’s position in the network can have significant

impacts for economic growth. They finally suggest that a network approach

to international economic integration has a potential for useful applications in

international finance and development.

Serrano et al. [44] instead study the world network of merchandise trade

imbalances and describe its overall flux organization. They develop a general

procedure, which is able to filter out in a consistent and quantitative way the

dominant trade channels. They build a weighted directed network of trade

imbalances between independent countries in the world during the period 1948

and 2000. The obtained networks are characterized by a high density of connec-

tions and heterogeneity of the particular fluxes among countries. The analysis
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exhibits the presence of high-flux backbones, which are sparse subnetworks of

connected trade fluxes carrying the most of the total flux in the ITN.

The evolution of trade “islands” in the ITN in which countries are linked

with directed links carrying a total trade flow larger then some given thresholds

is examined by Tzekina et al [45]. The term islands is used as a means to

identify communities and hubs. The dataset contains bilateral merchandise

trade data for 186 countries during the years 1948 and 2005. The results show

that the evidence for or against globalization is mixed. On the one hand, many

more countries trade significantly in 2005 than in 1950, which implies that the

international trade was more spread out in 1950 than in 2005. On the other

hand, many more islands (trade centers) have evolved over time. This mixed

evidence for the globalization supports the previous work [41].

Fagiolo [46] explores the determinants of the statistical properties of the

ITN. He employs international trade data among 159 countries between 1981

and 2000 to build an undirected weighted network. He subsequently estimates

a standard gravity model to build a residual ITN. The bilateral trade flows are

regressed on the country GDP, geographical distance between countries, border

effects, trade agreements etc. The statistical properties of the residual ITN are

then compared to those of the observed ITN. The results indicate that the

residual ITN has a very different topological structure. It is characterized by

power-law shaped distributions of node statistics (e. g. strength, clustering and

random-walk betweenness centrality) and link weights. Whereas the observed

ITN indicates a structure with a few large-sized hubs and a relatively strong

connectivity among close countries, the residual ITN is organized around many

small-sized but trade-oriented countries that play the role of local hubs or

attract large and rich countries in complex trade-interaction patterns.

Kali and Reyes [47] provide a similar paper to their previous one [43]. They

combine international trade data with network approach to map global trading

system as an interdependent complex network. The sample is this time slightly

longer, i.e. 182 countries for the period 1992 and 2000. Their network based

measures of connectedness allow to explain stock market returns during recent

financial crises. They show that a crisis is stronger if the epicenter country is

better integrated into the ITN. On the other hand, target countries affected by

a crisis are more able to dissipate the impact if they are well integrated into the

network. Finally, they show that a network approach including the cascading

and diffusion of interdependent ripples when a shock hits a specific part of the

ITN provides the explanation of financial contagion.
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Squartini et al [48] point out that it is still unclear whether the network

approach conveys additional information in a comparison with traditional eco-

nomic approaches that characterize the international trade only in terms lo-

cal (first-order) properties. They employ a recently proposed randomization

method to evaluate in detail the role, which local properties have in forming

higher-order patterns of the ITN. They use yearly bilateral data on exports

and imports from 1992 to 2000 to explore all possible representation of the

ITN (binary/weighted, directed/undirected, aggregated/disaggregated). The

results show that the properties of all binary projections of the ITN can be

completely explained by the degree sequence. In other words, the degrees of

world countries are maximally informative about the ITN as a whole. The im-

plication of this contribution is that explaining the observed degree sequence

of the ITN should become one of the main focuses of models of trade. Fur-

thermore, Squartini et al [49] stress that current economic models of the ITN

generally aim at explaining local weighted properties, not local binary ones.

They analyse the binary projections of the ITN by considering its weighted

representations. The results show that all possible weighted representations

of the ITN (directed/undirected, aggregated/disaggregated) cannot be traced

back to local country-specific characteristics. These two papers suggest that

the traditional macroeconomic approaches fail to capture the main properties

of the ITN. In the binary case, they do not take an interest in the degree se-

quence and therefore cannot characterize or reproduce higher-order properties.

In the weighted case, they in generally focus on the strength sequence, however

it is not enough in order to understand or replicate indirect effects.

Another paper also examines whether a particular model can explain the

statistical properties of the ITN. Duenas and Fagiolo [50] specially inspect

the relation between the topology of the ITN and the gravity model of trade.

The authors employ the international trade data for all available countries

between 1970 and 2000. They predict international trade flows using alternative

estimation methods and build the predictions for the topological properties of

the ITN. The properties of the predicted ITN are then compared to those

observed in the original ITN. The first finding is that the gravity model is

able to partially replicate the weighted network structure only if the binary

architecture is fixed to the observed one. Second, the gravity model fails to

explain higher-order statistics, which require the knowledge of triadic link-

weight topological patterns even if the binary structure perfectly replicates the

observed one. Finally, the gravity model works very badly in predicting the
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presence of a link or the level of trade flow it carries whenever the binary

structure has to be simultaneously estimated.

The last reviewed paper is proposed by Mastrandrea et al. [51], who stress

that the strength (total value of relationships) of a given node has always an

important economic meaning. Null models of networks capturing the observed

strengths of all nodes are crucial in order to either detect interesting deviations

of an empirical network from economically meaningful indicators or reconstruct

the most probable structure of an economic network. However, several works

have showed that real economic networks are topologically very different from

configurations implied only from node strengths. The authors compare the ITN

to an enhanced model, which they propose in order to simultaneously replicate

the degree and strength of each node. Their comprehensive panel includes

162 countries between the years 1992 and 2002. Moreover, the study employs

several different layers (commodity classes). They suggest that the observed

properties of the ITN are well reproduced by their model. This allows them

to introduce the concept of extensive and intensive bias, which is defined as a

measurable tendency of the network to prefer either the formation of new links

or the reinforcement of existing ones.
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Data

We use international trade data provided by Gleditsch [52] to build a sequence

of binary and weighted directed networks. The original dataset includes GDP

per capita and population of independent states (1950-2000) and trade flows

between independent states (1948-2000). The GDP per capita and population

come from the Penn World Tables (PWT) produced by the Center for Interna-

tional Comparisons at the University of Pennsylvania. To address the case of

countries not included, two additional sets of estimates have been generated.

First, a set of GDP per capita and population estimates is based on the figures

from World Factbook reported by Central Intelligence Agency (CIA). Second,

missing lead or tail parts of series have been filled in by estimates based on

the first/last nonmissing observations. These estimates suppose that the real

GDP per capita remains the same for the lead/tail parts. The values have been

deflated to current prices using a US GDP deflator. The origin of the GDP per

capita and population observations is shown in table 4.1.

Trade data are based on the Direction of Trade Statistics (DOTS) produced

by the International Monetary Fund (IMF), however this database contains

only about 40% of all export and import figures between 1948 and 1996. The

coverage is particularly poor for developing and socialist countries. Missing

data are replaced with additional estimates through several different proce-

dures. First, the World Export Data (WED) database has been used to com-

pile data to fill in some of the gaps for export figures. Second, missing data

have been substituted with the reserve flows whenever available. Third, in the

absence of other information i’ exports to j is probably a reasonable estimate

for i’ imports from j and vice versa. Fourth, missing data within time series

have been estimated by a linear interpolation. Finally, many time series have
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Table 4.1: GDP and population data categories

Data origin Share
Observed data from PWT 76.16
Estimate based on figures from the World Factbook 12.70
Lags and leads based on first nonmissing observations 11.14

Source: PWT [53], World Factbook [54]

spells of missing data at the beginning or end. These data have been filled

in by estimates based on the first/last nonmissing observation deflated to cur-

rent international prices. The origin of the export and import observations is

presented in table 4.2 and 4.3.

The original dataset includes 196 countries for which trade data are available

from 1948 to 2000. The sample used in this study has been chosen according

to following considerations. First, the sample size must be as large as possible

to achieve statistical significance. Second, trade data contain many missing

figures for small countries before 1970. The data availability basically causes an

increasing number of countries over the years. More specifically, the number of

nodes has increased from 82 in 1948 to 190 in 2000 (figure 4.1, left). This might

be a problem if we want to study the dynamics of the topological properties of

the ITN. For that reason we need to fix the number of countries in the sample

period. Finally, our analysis requires to synchronize trade data with real GDP.

The reason is that we want to correlate network statistics with country-specific

variables (GDP per capita). In summary, the choice of countries has been

driven by following conditions: (1) the country sample size and time horizon as

large as possible and (2) no missing values in trade data and GDP. By applying

these two conditions we get 83 countries for the period 1950-2000, 112 countries

for the period 1960-2000, 138 countries for the period 1970-2000, 161 countries

for the period 1980-2000 and 168 countries for the period 1990-2000. We have

decided to choose a sample of 161 countries for the period 1980-2000. Several

authors [16, 17] remove countries that have total exports equal to zero in some

years, however we keep them in the sample. Our balanced panel finally refers

to 161 countries (table A.1) and 21 years (1980-2000).

Trade data are expressed in current US dollars, while GDP data are pro-

vided in current US dollars as well as in 1996 US dollars. The application of

a standard reference money unit cancels out the effects of inflation and allows

for meaningful across-years comparisons. We therefore deflate trade data using
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Table 4.2: Export from country i to country j data categories

Data origin Share
Observed data from DOTS 40.13
Observed data from WED 11.08
Estimate based on imports of j from i (from DOTS) 9.29
Estimate based on imports of i from j 6.35
Interpolated estimate 5.19
Lags and leads based on first nonmissing observations 2.85
Pairs of countries with no observed data assumed to be 0 25.11

Source: DOTS [55], WED [56]

Table 4.3: Import of country i from country j data categories

Data origin Share
Observed data from DOTS 43.90
Estimate based on exports from j to i (from DOTS or WED) 17.60
Estimate based on exports from i to j 6.35
Interpolated estimate 5.19
Lags and leads based on first nonmissing observations 2.85
Pairs of countries with no observed data assumed to be 0 25.11

Source: DOTS [55], WED [56]

the ratio of the value of current US dollars to the value of 1996 US dollars.

The ratio is specifically defined as the US GDP deflator, i.e. the current US

GDP to the 1996 US GDP:

f t =
USDt

USD1996
=

GDP t
USA

GDP 1996
USA

(4.1)

Figure 4.1 (right) shows the evolution of the US GDP deflator over time. In

what follows, both GDP and trade data will be expressed in millions of 1996

US dollars.

Annual trade between two countries i and j is described by four different

measures x̃t
ij, x̃

t
ji, m̃

t
ij and m̃

t
ji. The figures x̃

t
ij and m̃

t
ji should be generally the

same, however they have been quoted differently, because exports from country

i to country j and imports of country j from country i are reported as different

flows in the DOTS data. The magnitudes of these measures are approximately

the same, but they vary in many instances due to different reporting procedures

followed and different rates of duties applied in different countries. We denote
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Figure 4.1: Selection of the sample: (Left) number of countries and (Right) US
GDP deflator
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the amount of exports from country i to country j by xt
ij and the amount of

imports of country i from country j by mt
ij. They are subsequently defined as:

xt
ij =

1

2
(x̃t

ij + m̃t
ji) (4.2)

mt
ij =

1

2
(x̃t

ji + m̃t
ij). (4.3)

In order to build adjacency and weight matrices, we follow the flow of goods.

This means that rows stand for exporting countries, while columns represent

importing countries.

We define a “trade relationship” by setting the generic entry of the adja-

cency matrix atij = 1 if and only if exports from country i to country j (labeled

by xt
ij) are strictly positive in year t. Following papers [12, 13, 14, 16, 17], the

weight of a link from country i to country j in year t is defined as:

w̃t
ij = xt

ij, (4.4)

where xt
ij are the deflated exports from country i to country j in year t. There-

fore, we get a sequence of N ×N adjacency and weight matrices (Ãt, W̃ t) with

t = 1, . . . , N , which fully describe the dynamics of the ITN from a binary and

weighted directed perspective.



Chapter 5

Results

We study the topological properties of the ITN among 161 countries over the

period 1980-2000 using a network analysis. We begin with a quick overview of

the main global properties of the ITN. This overview especially checks whether

the symmetry of the ITN is so strong to justify an undirected analysis. The

main part of the analysis presents network statistics, which allow us to address

the study of node characteristics in terms of three dimensions: connectivity (ND

and NS), assortativity (ANND and WANND/ANNS) and clustering (BCC and

WCC). We further explore in more detail the stability of the distributions of the

network statistics. The weighted network results are then compared to those

obtained by a binary network approach. We finally focus on the correlation of

the network indicators and country-specific characteristics (GDP per capita).

5.1 Global Properties

The ITN is in general a directed network with two opposite flows along a link,

however we have observed that few links have only one flow. The number

of directed links has increased almost systematically over the years. More

specifically, the number of links has increased from 12,513 in 1980 to 15,603 in

2000 (figure 5.1, left).

The number of links that are actually in place determines the density of the

network. Since we have fixed the number of countries, the maximum number of

possible links is always the same, i.e. N(N −1). This implies that the graph of

density is equivalent to the graph of the number of links. The average density

of the ITN over the years is 0.52. A relatively high value indicates that the

ITN is a highly connected network. Moreover, a slightly increasing trend of
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Figure 5.1: Directed links: (Left) number of directed links and (Right) density
of the network
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Note: (Left) the scale set to possible numbers of directed links (from 0 to
N(N − 1)) and (Right) the scale set to possible values of the network density
(from 0 to 1)

Figure 5.2: Volume of world trade: (Left) total volume of world trade and
(Right) average total trade per link
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the density witnesses for the increasing participation of countries in the world

trade over the last 20 years of the 20th century (figure 5.1, right).

We observe two quantities illustrating the volume of international trade over

the sample period. They have also grown almost systematically over the years.

The total volume of world trade has increased from 3.3 × 106 USD million in

1980 to 5.7×106 USD million in 2000 (figure 5.2, left). Accordingly, the average

total trade per link has increased from 276 USD million in 1980 to 366 USD

million in 2000 (figure 5.2, right).

If the observed network is sufficiently symmetric, we can ignore the direction

of links and define an undirected link between an arbitrary pair of nodes. The

first measurement checking the symmetry of network is the reciprocity. On
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Figure 5.3: Symmetry of the network: (Top-left) reciprocity of the network,
(Top-right) symmetry index for the binary network, (Bottom-left) symmetry
index for the weighted network and (Bottom-right) number of undirected links
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Note: (Top-left) the scale set to possible values of the network reciprocity (from
0 to 1), (Top-right) the scale set to possible values of the binary symmetry index
(from 0 to 1), (Bottom-left) the scale set to possible values of the weighted
symmetry index (from 0 to 1) and (Bottom-right) the scale set to possible
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average about 90% of links are reciprocated in each given year (figure 5.3,

top-left). This means that if country i exports to country j, then country j

almost always exports to country i. We can also see one of the drawbacks of

the reciprocity discussed in section 2.1. The reciprocity is heavily dependent

on the density of the network. The mutual links simply occur more often with

the increasing density (number of links).

The symmetric pattern of the ITN is also confirmed by the symmetry index

S for both adjacency and weight matrices (Ãt, W̃ t). In the binary case, the

index ranges in the sample period between 0.02 and 0.14 (figure 5.3, top-right).

In the weighted case, the index ranges in the sample period between 0.06 and

0.18 (figure 5.3, bottom-left). The corresponding standardized versions of the
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index are equal to values at least 20 standard deviations below zero. These

results signalize a strong and stable symmetry of both adjacency and weight

matrices, therefore we will explore the statistical properties of the symmetrized

version of the ITN. We define the entry atij of the new adjacency matrix A
t as:

atij = max{ãtij, ã
t
ji}. (5.1)

Accordingly, the entry wt
ij of the new adjacency matrix W

t is defined as:

wt
ij =

1

2
(w̃t

ij + w̃t
ji). (5.2)

In order to have well behaved weights, we finally divide all entries in W t by

their maximum value:

wt
∗ = max{wt

ij}. (5.3)

This does not cause any bias in our analysis and ensures that wt
ij ∈ [0, 1] for

all (i, j) and t [29].

Since an undirected analysis is justified, we finally take a look at undirected

links. The number of undirected links is approximately half the number of

directed links. More specifically, the number of undirected links has increased

from 6,086 in 1980 to 7,955 in 2000 (figure 5.3, bottom right).

5.2 Connectivity

We start by studying the behavior of the node degree (ND) and node strength

(NS) distributions. First, we explore how the shape of the ND and NS distribu-

tions look like. More specifically, we investigate the extent to which countries

are more or less connected in both terms of number of partners (ND) and in-

teraction intensity (NS). Second, we inspect how the shape of the ND and NS

distributions have changed over time.

The ND distribution P (d) is one of the most important topological proper-

ties of a network. This quantity measures the probability of a randomly chosen

node to have d connections to other nodes. Real networks often indicate a

highly asymmetric (right-skewed) ND distribution, which means that most of

the nodes have low NDs, while a small fraction of nodes have an extraordi-

narily high NDs. Nodes with remarkably high NDs are called hubs. The ND

distribution P (d) plotted as a function of the degree d therefore displays a long

tail, which is much fatter than the tail of a normal (Gaussian) or exponential
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Figure 5.4: ND distribution in 1980, 1990 an 2000: (Left) Kernel density esti-
mation and (Right) Complementary cumulative distribution function
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Table 5.1: P-values for ND normality tests

Test 1980 1990 2000
Shapiro-Wilk test 0.0000*** 0.0000*** 0.0000***
Jarque-Bera test 0.0000*** 0.0000*** 0.0000***

Note: (*) the null hypothesis rejected at 10%, (**) the null hypothesis rejected
at 5% and (***) the null hypothesis rejected at 1%

distribution. The most popular long tail probability distribution is the power

law. Networks whose the ND distribution follows a power law are called scale-

free networks. Serrano and Boguna [9] just show that the ND distribution of

the ITN approximately follows a power law, which implies that the ITN is a

scale-free network. Li et al. [12] also present the scale-free features of the ND

distribution of the ITN. On the contrary, other authors [10, 11, 13, 17] find out

that the power-law region is only a small part of the whole ND distribution,

therefore the ITN is not a scale-free network.

We compare the ND distribution of the ITN to power law and log-normal

densities. The kernel density estimation shows that the ND distribution can be

hardly proxied by these densities. The ND distribution does not appear to be as

skewed as expected. Moreover, the ND distribution exhibits some bimodality.

Besides a modal value around 80, there exists a second peak around 150. This

means that there is a large group of countries, which trade with almost everyone

else in the sample. The bimodality is more obvious at the end of the period

(figure 5.4, left).

To check quantitatively whether the distribution comes from pre-defined

densities, we apply two additional procedures. We start with the power law,

which states that the probability P (d) of having a node with d neighbors is

defined as:

P (d) = αd−γ , (5.4)

where α is a constant and γ is the exponent of the power law. Values in the

range 2 ≤ γ ≤ 3 are typical for the ND distribution of networks. Taking the

logarithm of both sides of equation 5.4, we get:

logP (d) = logα− γ log d. (5.5)

If we depict P (d) as a function of d on log-log plot1, we should observe a

1A log-log plot is a two-dimensional graph, which uses logarithmic scales on both axes.
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Figure 5.5: Sample moments of the ND distribution: (Top-left) mean, (Top-
right) standard deviation, (Bottom-left) skewness and (Bottom-right) kurtosis
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straight line of slope −α. An alternative (and a more convenient) method

to visualize and detect a power law behavior is to draw the complementary

cumulative distribution function (CCDF) on a log-log plot. The CCDF gives

the probability that a random variable X with a given probability distribution

is higher than or equal to x:

F̃ (x) = P (X > x) = 1− F (x), (5.6)

where F (x) is the cumulative distribution function (CDF). For our purpose

the CCDF F̃ (d) describes the fraction of nodes, which has degree equal to or

greater then d:

F̃ (d) =
∞
∑

x=d

P (x). (5.7)
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Figure 5.6: NS distribution in 1980, 1990 an 2000: (Left) Kernel density esti-
mation and (Right) Complementary cumulative distribution function
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Table 5.2: P-values for NS normality tests

Test 1980 1990 2000
Shapiro-Wilk test 0.0000*** 0.0023*** 0.0002***
Jarque-Bera test 0.0007*** 0.0044*** 0.0005***

Note: (*) the null hypothesis rejected at 10%, (**) the null hypothesis rejected
at 5% and (***) the null hypothesis rejected at 1%

Given relation 5.4 and γ > 1, the CCDF F̃ (d) takes the form:

F̃ (d) =
∞
∑

x=d

P (x) = α

∞
∑

x=d

x−γ ≃ α

∫ ∞

d

x−γ dx =
α

γ − 1
d−(γ−1). (5.8)

If a ND distribution follows a power law, then the CCDF of the distribution

follows a power law. The only difference is that a given exponent is one less

than the original exponent. The CCDF of a power law plotted on a log-log

scale should also appear as a straight line. The curve of the CCDF shows a

clear downward curvature, therefore the ND distribution does not match the

power law (figure 5.4, right). We have also preferred to display the shape of the

distribution using the CCDF instead of standard (two-tailed) CDF, because the

existing literature on the ITN has taken an interest in the upper-tail behavior

of node statistics2.

To investigate whether the ND distribution follows a log-normal density we

run normality tests on the log of the ND statistics. We employ the Shapiro-

Wilk test [57] and the Jarque-Bera test [58, 59]. The hull hypothesis is that a

random variable underlying the data is normally distributed. More specifically,

the null hypothesis is that the log of the ND is normally distributed. Table

5.1 shows that the ND distribution is never log-normal, i. e. the log of ND is

never normal. We can conclude that the ND distribution is approximated by

neither power law or log-normal densities.

We further discuss in more detail the evolution of the first four moments of

the ND distribution. Figure 5.5 shows that the ND distribution seems to be

stable over time. As already noted in section 5.1, the binary ITN is charac-

terized by an extremely high density. Each country holds on average 91 trade

2Analogical method is to draw a rank size plot, which is the transformation of a standard
cumulative distribution function (CDF). Suppose that {x1, . . . , xN} are the available observa-
tions of a random variable X. Afterwards, sort the N observations to obtain {x(1), . . . , x(N)},
where x(1) ≥ x(2) ≥ · · · ≥ x(N). A rank size-plot depicts log r against log x(r), where r is the
rank. Since r/N = 1− F (x(r)), then log r = log[1− F (x(r))] + logN .
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Figure 5.7: Sample moments of the NS distribution: (Top-left) mean, (Top-
right) standard deviation, (Bottom-left) skewness and (Bottom-right) kurtosis
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partners (over a maximum of 160). Moreover, the average ND has slightly in-

creased over the years, which means that the number of trade relationships has

been weakly growing during the time. The standard deviation displays a strong

stability in the sample period, which implies that the integration has increased

without any rise in the heterogeneity of the number of trade relationships. This

conclusion is in contrast with the evolution of the skewness and kurtosis in the

last few years of the sample. The ND distribution has become less symmetric

(more left-skewed) and signalized fatter tails. We can therefore state that more

countries now display extreme ND values.

The results changes significantly if one measures the connectivity in the

weighted representation of the ITN. The researchers [15, 16, 17] show that the

NS distribution of the ITN approximately follows a log-normal density. We

compare the NS distribution to power law and log-normal densities. We can

observe that the NS distribution is definitely right-skewed, which means that
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Figure 5.8: NS-ND correlation patterns: (Left) correlation coefficient and
(Right) scatter plot in 2000

1980 1985 1990 1995 2000
-1.0

-0.5

0.0

0.5

1.0

Years

C
or

re
la

tio
n

0 50 100 150
-15

-10

-5

0

ND

L
og

of
N

S
Note: (Left) the scale set to possible values of the correlation (from −1 to 1)

the majority of countries characterized by weak trade relationships coexist with

a small number of countries characterized by very intense trade relationships

(figure 5.6, left). To verify whether the NS distribution is proxied by pre-defined

densities, we apply the same procedures as in the case of the ND distribution.

The CCDF displays a clear downward curvature (does not display a straight

line), thus the NS distribution does not follow a power law (figure 5.6, right).

Furthermore, table 5.2 indicates that the NS statistics is not even log-normal.

These findings are in contrast with the previous papers. We can see that the

NS statistics seems to be more log-normal than the ND one, however the results

are still very clear. The explanation of this contrast might be that we have used

a slightly different dataset. More specifically, our sample includes more distant

observations. For example, we have not removed countries that have total

exports equal to zero in some years. We can conclude that the NS distribution

is proxied by neither power law or log-normal densities.

Although the first four moments of the NS distribution are more volatile

than the moments of the ND distribution, the shape of the NS distribution

seems to be quite stable over time (figure 5.7). The average NS is relatively

low (at least in a [0,1] scale) in a comparison to the high average ND. More-

over, the weak increase in the ND is not matched by a similar behavior in

the NS. The average NS rather seems to decline in the sample period. The

recent wave of globalization resulted in an increased number connections, but

they are characterized by a lower intensity. The decreasing trend of standard

deviation indicates a decrease in the heterogeneity of the intensity of trade rela-
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Figure 5.9: Node disparity distribution in 1980, 1990 an 2000: (Left) Kernel
density estimation and (Right) Complementary cumulative distribution func-
tion

0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

Node disparity

K
er

ne
ld

en
si

ty

1980

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

Log of node disparity

L
og

of
C

C
D

F

1980

0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

Node disparity

K
er

ne
ld

en
si

ty

1990

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

Log of node disparity

L
og

of
C

C
D

F

1990

0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

Node disparity

K
er

ne
ld

en
si

ty

2000

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

Log of node disparity

L
og

of
C

C
D

F

2000



5. Results 40

Table 5.3: P-values for node disparity normality tests

Test 1980 1990 2000
Shapiro-Wilk test 0.0000*** 0.0000*** 0.0000***
Jarque-Bera test 0.0009*** 0.0005*** 0.0000***

Note: (*) the null hypothesis rejected at 10%, (**) the null hypothesis rejected
at 5% and (***) the null hypothesis rejected at 1%

tionships. This conclusion is undermined by the evolution of the skewness and

kurtosis. The NS distribution has become less symmetric (more right-skewed)

and displayed the fatter tails. We cannot therefore say whether fewer or more

countries now display extreme NS values.

The difference between the ND and NS distributions can be further exam-

ined by computing the correlation between the NS and ND. Figure 5.8 (left)

shows that this correlation is quite stable around 0.47. The countries having

many trade partners therefore tend to hold more intense trade relationships.

However, a high ND does not automatically implies a high NS. This can be

better appreciated by looking at NS-ND scatter plot (figure 5.8, right). We

can see that the NS variability for any given ND value is relatively high in

2000. There are definitely countries having a low ND and relatively high NS.

The conclusion is that only a subset of countries holding many trade partners

actually have a very high NS.

Since the NS is only an aggregate measure of the interaction intensity medi-

ated by a node, we finally measure the extent to which a node holds a dispersed

(or concentrated) weight profile. The right-skewness of the NS distribution im-

plies the right-skewed node disparity distribution. The majority of countries

having a portfolio of very dispersed trade relationships therefore coexist with

a fraction of countries concentrating almost all their trade relationships on a

small number of partners. The CCDF does not still indicate a straight line,

therefore the node disparity distribution does not follow a power law (figure

5.9, right). It does not also seem to be approximated by a log-normal density

(table 5.3). This suggests that the node disparity distribution matches neither

power law or log-normal densities.

The first four moments of the node disparity distribution have remained

quite stable over the years, which hints to a relatively strong stability of the

shape of the node disparity distribution. The average node disparity is rel-

atively low (around 0.16), which means that on average countries hold more
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Figure 5.10: Sample moments of the node disparity distribution: (Top-left)
mean, (Top-right) standard deviation, (Bottom-left) skewness and (Bottom-
right) kurtosis
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dispersed trade relationships. The increase of the skewness and kurtosis of the

NS is matched by a similar behavior for the skewness and kurtosis of the node

disparity (figure 5.10). More interestingly, the node disparity is negatively cor-

related with both ND (on average −0.45) and NS (on average −0.10). These

correlation patterns are also visible on the scatter plots in year 2000 (figure

5.11). We can conclude that if country holds more trade partners and more

intense trade relationships, then its trade portfolio is more differentiated. This

conclusion can be partially expected, because in the case of equally-distributed

weights node disparity should equal to the inverse of the ND.

The aforementioned results show that the binary representation of the ITN

leads to a highly connected network. On the other hand, the picture changes

substantially if the ITN is analysed from a weighted perspective. In that case,
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Figure 5.11: Node disparity correlation patterns: (Left) correlation coefficient
and (Right) scatter plot in 2000
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a majority of trade flows are weak and coexist with a few very intense trade

partnerships. This findings reflects the difference between intensive and exten-

sive interpretations stated in the microeconomic trade literature. The export

intensity is found to be much more important than the number of exporting

firms in explaining aggregate export performances.

Based on the first part of analysis, we can make an important general con-

clusion. A binary approach cannot fully extract the information about the

intensity of trade relationships. If a network is analysed from a binary per-

spective, a lot of information might be disregarded and a role of heterogeneity

in trade relationships might be dramatically underestimated. A weighted net-

work analysis can instead provide a more complete description of the underlying

topological structure of the ITN.
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Figure 5.12: Sample moments of the ANND distribution: (Top-left) mean,
(Top-right) standard deviation, (Bottom-left) skewness and (Bottom-right)
kurtosis
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5.3 Assortativity

The ND and NS statistics are only first-order indicators, because they take into

account the information about nodes lying one step away from the original one.

In other words, they do not provide any information about the greater structure

of the network. In fact, countries holding many trade relationships can only

trade with poorly connected countries. Such a network is called “disassorta-

tive”. On the contrary, countries holding many linkages can tend to trade with

other highly connected countries. In that case, the network is referred as “as-

sortative”. The statistics describing assortativity are second-order indicators,

as they look at nodes that are two step away from the analysed one.

We begin to explore the assortativity in the ITN from a binary perspective.

More specifically, we explore the behavior of the average nearest-neighbor de-
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Figure 5.13: ANND-ND correlation patterns: (Left) correlation coefficient and
(Right) scatter plot in 2000
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gree (ANND) and its correlation with other network statistics. The previous

papers [9, 10, 11, 15, 16, 17] present a strongly disassortative network. We

basically confirm their results. The first four moments of the ANND distri-

bution display a relatively stable pattern in the sample period, which implies

a stability of the shape of the ANND distribution. The average ANND stays

always above the average ND, which means that the partner of a country holds

on average more trade relationships than a given country. Specifically, each

partner holds on average 114 trade relationships (over maximum of 160). The

reduction of the skewness and kurtosis in the second half of the sample signifies

that fewer countries now display extreme ANND values (figure 5.12). The cor-

relation between the ANND and ND clearly signalizes a strongly disassortative

network, as the figures stays very close to −1 in the entire period. Moreover,

the correlation is characterized by a very limited variability. The scatter plot

shows a linear dependence between the ANND and ND (figure 5.13). In the

ITN viewed as a binary network, countries with many relationships definitely

trade with countries holding few partnerships.

If the ITN is studied from a weighted perspective, the disassortative nature

of the ITN remains evident, but the results are much weaker [15, 16, 17]. We

measure the intensity of trade relationships carried by partners of a node by

the weighted average nearest-neighbor node degree (WANND) and the average

nearest-neighbor node strength (ANNS). Figure 5.14 shows the evolution of the

first four moments of the WANND over the years. The stable moments display

a stability of the shape of the WANND distribution. The average WANND
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Figure 5.14: Sample moments of the WANND distribution: (Top-left) mean,
(Top-right) standard deviation, (Bottom-left) skewness and (Bottom-right)
kurtosis
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remains always above the average ANND, which means that links with larger

weights point out to the neighbors with the larger ND. The decline of the

skewness and the increase of the kurtosis indicate that more countries now

have extreme WANND values. The correlation between WANND and ND is

on average 0.07 across the years. Furthermore, the corresponding scatter plot

is characterized by a much more dispersed cloud of points (figure 5.15).

Similarly, the stable first four moments of the ANNS distribution hint to a

stability of the shape of the ANNS distributions. The average ANNS is always

above the average NS, which implies that the partner of a country holds on

average more intense trade relationships than a given country. The evolution

of the skewness and kurtosis basically shows a constant trend (figure 5.16).

The correlation between the ANNS and NS is still negative but weaker in the



5. Results 46

Figure 5.15: WANND-ND correlation patterns: (Left) correlation coefficient
and (Right) scatter plot in 2000
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magnitude in all years (on average −0.37). Moreover, the ANNS-NS scatter

plot shows a higher variability of the correlation (figure 5.17). If the ITN is

analysed from a weighted perspective, the disassortative pattern does not seem

to hold that robustly. The study of the ITN from a weighted perspective just

provides a different (and more insightful) picture.

The disassortative nature of the ITN indicates that countries holding many

and more intense relationships tend to trade with less and more weakly con-

nected countries. This evidence suggests that the ITN has a core-periphery

structure, which is common pattern in many social and economic networks.

For example, Hojman and Szeidl [60] propose a model of network formation,

where the unique equilibrium network architecture is the “periphery-sponsored

star”. In this equilibrium, there is only one country as a center and all other

countries maintain one link to that center. Alternatively, Rombach et al. [61]

develop a new method to investigate the core-periphery structure, which can

identify multiple cores in a network and takes into account different possible

cores. The core-periphery structure often implies that peripheral countries suf-

fer from a sort of marginalization. Fagiolo et al. [17] specifically state that

such a polarized structure is not necessarily the most efficient outcome and

that a more balanced structure of trade relationships would allow both de-

veloping and industrialized countries to better exploit the gains from trade.

Moreover, we have already shown that the WANND-ND and ANNS-NS scatter

plots are characterized by a much more dispersed cloud of points. This means

that there exists a number of countries holding relatively many partners or rel-
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Figure 5.16: Sample moments of the ANNS distribution: (Top-left) mean, (Top-
right) standard deviation, (Bottom-left) skewness and (Bottom-right) kurtosis
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atively intense relationships, which tend to trade with well connected countries.

In other words, there exist an intermediate periphery within the core-periphery

structure of the ITN.

5.4 Clustering

We now turn to investigating clustering patterns and how they correlate with

the connectivity. The main question is whether more and better connected

countries tend to establish trade relationships with countries that also trade

with each other. The statistics measuring clustering are also second-order in-

dicators, because they take into account nodes lying two step away from the

one under analysis.

We initially address the issue of clustering in terms of binary network. Ac-

cording to papers [9, 10, 11, 15, 16, 17], the average binary clustering coefficient
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Figure 5.17: ANNS-NS correlation patterns: (Left) correlation coefficient and
(Right) scatter plot in 2000
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(BCC) is very high and countries holding more trade partners are usually as-

sociated to lower clustering coefficients. We confirm these results for our data.

Figure 5.18 shows the behavior of the BCC over the years. The first four mo-

ments have remained quite stable, which implies the stability of the shape of

the BCC distribution. The average BCC has a slightly increasing trend around

0.80. Moreover, the average BCC stays always above the density of the net-

work (figure 5.1, right). In a random network, where each link is in place with

probability p ∈ (0, 1), the expected value of the BCC is equal to p. The proba-

bility of the placement of each link is equivalent to the density of the network,

therefore in a random network the expected value of the BCC is equal to its

density. This means that the binary ITN is statistically more clustered then its

random counterpart. Therefore, the countries tend to form on average trade

relationships with countries that also trade with each other. In other words, the

link between any two partners of a given node is very likely to be present. This

conclusion implies that local (regional) links still play a very important role.

The localism in this sense might not have automatically a geographic meaning,

but it rather represents a tendency to interact with traditional partners. Such

an interpretation is also confirmed by the fact that geographically structured

networks are usually highly clustered with more short-distance links. The tra-

ditional members can be members of regional group, countries with similar

level of development or simply historically close partners.

Figure 5.19 displays the correlation patterns across the years from the bi-

nary perspective. The correlation between the BCC and ND is quite strong and
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Figure 5.18: Sample moments of the BCC distribution: (Top-left) mean, (Top-
right) standard deviation, (Bottom-left) skewness and (Bottom-right) kurtosis
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negative (around −0.35). Countries holding more trade parters are therefore

less clustered than countries holding few partners. Alternatively, partners of

well connected countries are less interconnected than partners of poorly con-

nected countries. This property is sometimes referred as “hierarchy”. The

negative correlation between the BCC and ND is also reflected in the scatter

plot. The correlation patterns support the hypothesis that the ITN has a core-

periphery structure. Countries holding few trade partnerships simply do not

trade with each other, but they are connected to the hubs.

The conclusion changes again if one take into account the intensity of trade

relationships. The researchers [15, 16, 17] indicate that the average weighted

clustering coefficient (WCC) is actually very low. Furthermore, they display

that the correlation between the WCC and NS is very strong and positive3.

3To be more accurate, the strength of the correlation depends on a weighting scheme
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Figure 5.19: BCC-ND correlation patterns: (Left) correlation coefficient and
(Right) scatter plot in 2000
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Our weighted analysis also gives the opposite results. The first four moments

seem to be still stable over the years, which implies the stability of the shape of

the WCC distribution (figure 5.20). The average WCC is however significantly

smaller than its expected value in the random network. The expected value

of the WCC in a random network is equal to (3
4
)3p. The probability p is still

equivalent to the density of the network. The average WCC ranges from 0.0003

in 1999 to 0.0006 in 1980, whereas the expected value of the WCC moves from

0.1971 to 0.2556 in the corresponding years. More interestingly, the WCC

distribution lies to the left of random-network expected values in every year.

This means that no country is ever characterized by a WCC, which is above

the expected value.

The correlation between the WCC and NS is now very strong and positive

(around 0.92). The scatter plot also confirms this evidence (figure 5.21). We

can conclude that countries holding more intense trade relationships are more

likely to establish highly connected trade triangles. This feature reminds the

so-called “rich club phenomenon”. The rich club represents a small group of

rich countries, which control a large part of the world trade. Bhattacharya et

al. [13] show that a few top rich countries control one half of the world’s total

trade volume. Similarly, Fagiolo et al. [16] present that the 10 richest countries

in terms of the NS are responsible for about 40% of the total trade flows. The

presence of the “rich club phenomenon” is also in accordance with the paper by

Furusawa and Konishi [62], who propose a new model to examine the formation

used. Fagiolo et al. [16] show the WCC-NS correlation to be very close to 1 in all years.
Other authors [15, 17] suggest a sharply increasing WCC-NS correlation across time.
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Figure 5.20: Sample moments of the WCC distribution: (Top-left) mean, (Top-
right) standard deviation, (Bottom-left) skewness and (Bottom-right) kurtosis
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of free trade agreements (FTAs). They show that under several assumptions

countries sign a trade agreement only if their industrialization levels are not

very different.

5.5 Stability of Probability Distributions

We have already discussed the stable patterns for the sample moments of the

distributions of all node statistics. If the moments seemed to be quite stable

throughout the whole period (figure 5.5, 5.7, 5.12, 5.14, 5.16, 5.18 and 5.20),

we have concluded that the distribution of a node statistic is stable. Let us

now examine this evidence more quantitatively. We compute the time average

of the absolute value of 1-year growth rates of the first four moments of all

node statistics (ND, NS, ANND, WANND/ANNS, BCC and WCC). The time

average of the absolute value of 1-year growth rates of the k-th moment of the
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Figure 5.21: WCC-NS correlation patterns: (Left) correlation coefficient and
(Right) scatter plot in 2000
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statistic is defined as:
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, (5.9)

where X t
i is the value of the node statistic X at time t for country i and M

k(·)

is the moment operator that for k = 1, 2, 3, 4 gives respectively the mean,

standard deviation, skewness and kurtosis.

The results are summarized in table 5.4. The average absolute growth

rates are generally lower for the moments of the binary statistics, which hints

to a higher stability of the binary representation of the ITN. The average

absolute growth rates of the first two moments range in our sample between

0.0034 and 0.0640, which indicates a relatively high stability of them. The

average absolute growth rates of the skewness for the WANND and ANNS

display somewhat larger values (0.2911 respectively 0.1152). Similarly, the

average absolute growth rates of the kurtosis for the WANND and ANNS are

larger (0.2407 respectively 0.1544). These findings confirm that the weighted

version of the ITN displays a lower stability. The biggest issue relates the

skewness of the ND. The average absolute growth rate is very high (2.7667),

however the figure 5.5 shows that the skewness seems to be quite stable over

time. The skewness of the ND is almost zero in several years, therefore the

average absolute growth rate reaches such a high value. We can conclude

that the moments of all indicators have remained quite stable over the years,

which implies that structural properties of the ITN viewed either as a binary
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Table 5.4: Average absolute growth rates

Statistics Mean Std. dev. Skewness Kurtosis
ND 0.0145 0.0034 2.7667 0.0104
ANND 0.0079 0.0264 0.0746 0.0388
BCC 0.0043 0.0078 0.0254 0.0363
NS 0.0528 0.0477 0.0275 0.0649
WANND 0.0058 0.0605 0.2910 0.2407
ANNS 0.0595 0.0640 0.1152 0.1544
WCC 0.0611 0.0596 0.0556 0.0059

or as a weighted network have not been much influenced by the process of

globalization. This conclusion is consistent with the paper by Garlaschelli and

Loffredo [11].

5.6 Binary vs Weighted Network

The recent papers have shown that the ITN [15, 16, 17] is a great example of the

weighted networks. In order to get a more complete picture, we have decided to

investigate both binary and weighted versions of the ITN. We compare connec-

tivity (ND and NS), assortativity (ANND and WANND/ANNS) and clustering

(BCC and WCC). We have shown that the topological properties of the ITN

viewed as weighted network are significantly different from those obtained by a

binary network approach. The comparison of both approaches is summarized

in table 5.5.

Our findings suggests that accounting for heterogeneity in the capacity and

intensity of the trade relationships is crucial to better understand the archi-

tecture of complex networks. The binary representation of the ITN leads to

a highly connected network, where all links have the same effect on the pre-

sented statistics. Such a highly connected graph almost automatically implies

very large values of the ANND and BCC for the majority of nodes. This might

lead to the biased computation of correlation patterns. In fact, the links are

characterized by a very different interaction intensity in the ITN. The weighted

representation of the ITN suggests that the majority of links show very low

export/import flows. Furthermore, the network seems to be only weakly dis-

assortative. Finally, countries holding more intense trade relationships tend to

form strongly connected trade triangles, The only statistical feature, which is

common for both approaches, is the constancy of the network properties over
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Table 5.5: Binary vs weighted network

Connectivity Assortativity Clustering

Highly connected Highly clustered
Binary + Strongly +
network Bimodal ND disassortative Negative BCC-ND

distribution correlation

Weakly connected Weakly clustered
Weighted + Weakly +
network Skewed NS disassortative Positive WCC-NS

distribution correlation

time. We can therefore conclude that taking into account the intensity of the

trade relationships allow us to better appreciate the topological properties of

the analysed network.

5.7 Country-specific Characteristics

We further explore a relation between network properties and country-specific

characteristics. Baier and Bergstrand [63] show that country characteristics de-

termine the formation of free trade agreements. Alternatively, Kali and Reyes

[43] outline that a country’s position in the network can have substantial im-

plications for economic growth. Garlaschelli and Loffredo [11] confirm the in-

terplay between topology of the ITN and the dynamic of the GDP. They show

that at each time-step the GDP distribution is determined by the ITN as a

weighted network and at the same time the ITN topology is determined by the

GDP values. We specifically explore the correlation patterns between network

statistics and the GDP per capita (GDPpc) in order to see whether countries

with higher income are more or less integrated into world trade. For the pur-

pose of the analysis, we employ the GDPpc expressed in 1996 US dollars.

We start with the correlation patterns between connectivity levels and the

GDPpc. Figure 5.22 (left) signifies that the correlation appears to be relatively

strong and positive both in terms of the number of trade partners (ND) and

the intensity of trade relationships (NS). High-income countries therefore tend

to hold more partners and more intense relationships. We can further see that
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Figure 5.22: Connectivity-GDPpc correlation patterns: (Left) correlation coef-
ficient and (Right) scatter plot in 2000
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the NS-GDPpc correlation (on average 0.50) is slightly stronger than the ND-

GDPpc one (on average 0.42). This pattern is also confirmed by the scatter-

plots in year 2000 (figure 5.22, right). Whereas there seems to be a linear

dependence between the ND and GDPpc, a log-log relation is observed between

the NS and GDPpc. This implies that the GDPpc has a larger effect on the

NS rather than the ND.

The outcome is also very clear as far as the assortativity is concerned.

Figure 5.23 shows that the correlation between assortativity levels and the

GDPpc is relatively strong and negative both in terms of the ANND (on average

−0.36) and ANNS (on average −0.37). The conclusion is now that high-income

countries tend to trade with less and more weakly connected countries.

We finally turn to investigate the correlation patterns between the cluster-

ing and GDPpc. Figure 5.24 suggests that the results for correlation between

clustering and GDPpc mimic those obtained for the correlation between the
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Figure 5.23: Assortativity-GDPpc correlation patterns: (Left) ANND-GDPpc
correlation coefficient and (Right) ANNS-GDPpc correlation coefficient
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Figure 5.24: Clustering-GDPpc correlation patterns: (Left) binary CC-GDPpc
correlation coefficient and (Right) weighted CC-GDPpc correlation coefficient
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clustering and connectivity. The BCC-GDPpc correlation seems to be rela-

tively strong and negative (on average −0.59), whereas the WCC-GDPpc cor-

relation is relatively strong and positive (on average 0.54). Considering the

weighted version of the ITN, we can conclude that high income countries tend

to form highly connected trade triangles. This result supports the “rich club

phenomenon”, which has been already discussed above.
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Conclusion

In this thesis, we have employed a network analysis to explore the topological

properties of the international trade network (ITN). More specifically, we have

described trade relations as a network, where countries play the role of nodes

and trade flows represent links between nodes. This allows us to better explain

the degree of international economic integration. We have studied export and

import flows among 161 world countries over the period 1980-2000. We have

build on other studies and we have provided a more thorough analysis of the

ITN. Beside a full description of the theoretical background and a review of

all relevant literature, we have presented a comprehensive empirical analysis of

the topological properties of the ITN.

We have explored the topological properties of the ITN from a purely de-

scriptive perspective. Indeed, we have tried to characterize some robust stylized

facts pertaining to the evolution of the ITN. A network analysis allows us to

investigate not only first-order indicators associated to direct bilateral-trade

relationships of a given country but also second-order and higher-order em-

pirical facts. For example, we have been able to study the extent to which

well connected countries tend to hold trade relationships with partners that

are themselves well connected, the probability that partners of well connected

countries are themselves partners, the importance of countries in the network

and so on. The empirical regularities displayed by the data can be used as

a starting point to explain and replicate the structure of the ITN. In other

words, empirical regularities can provide some guidance for theoretical models

that attempt to explain the evolution of trade relationships.

We have employed both binary and weighted network analyses to provide

a complete picture of the topological properties of the ITN. A binary analysis
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only accounts for the mere presence of trade relationships between any two

nodes. In a weighted approach, each link is weighted by some value of trade

flows that it carries. Our analysis displays that the topological structure of

the ITN viewed from a weighted perspective is substantially different from

that obtained by using a binary approach. In fact, some findings obtained by

considering only the number of trade relationships are absolutely reversed if

we take into account the intensity of trade linkages. Based on these results,

we can make an important methodological point. If the study of the ITN is

performed from a binary perspective, one can get a misleading picture of the

underlying structure of the ITN. A weighted network analysis instead allows

us to better appreciate the relational patterns.

Our results show that the ITN is a highly symmetric network, which means

that almost all trade relationships are reciprocal. We have therefore employed

an undirected analysis to study the ITN. While the binary representation of

the ITN leads to a highly connected network, the average intensity of trade re-

lationships is rather low. In particular, the majority of countries holding weak

relationships coexist with a small fraction of countries holding very intense re-

lationships. The ITN further exhibits a disassortative pattern, which implies

that countries holding many and more intense relationships tend to trade with

less and weakly connected countries. We also show that the binary version

of the ITN is highly clustered. Moreover, countries with more trade partners

are less clustered than those with few partners. The clustering patterns are

completely different if we take into account the intensity of trade relationships.

The ITN viewed as a weighted network indicates very low clustering level and

countries with more intense trade relationships tend to establish highly con-

nected trade triangles. This implies that there exists a small group of countries

playing a dominant role in the international trade, which reminds the “rich

club phenomenon”.

We can also state one important conclusion from a policy point of view. The

aforementioned results hint to a core-periphery structure of the ITN. Moreover,

we have suggested that several relatively well connected countries tend to trade

with countries that are themselves well connected. This supports the hypothesis

that there exists an intermediate periphery within the core-periphery structure

of the ITN. We have already state that the polarized structure of the ITN is not

the most efficient one. Since the main benefit from the trade lies in the flows of

capital and the market size, it is easy to see that the growth and development

of peripheral countries might be limited.
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Furthermore, we have investigated the evolution of the topological prop-

erties of the ITN over time. The average number of trade relationships has

slightly increased through time, however all other network statistics have re-

mained remarkably stable across time. The stability of structural properties of

the ITN implies that the international economic integration has not increased

significantly over the last 20 years. A possible explanation might be that a

peak of the integration had been achieved before the sample period. We can

conclude that the recent wave of globalization has not influenced significantly

the structure of the ITN.

Finally, we have investigated the relation between network properties and

country-specific characteristics (GDP per capita). We have found that high-

income countries tend to hold more partners and more intense relationships, to

trade with less and more weakly connected countries and to be more clustered.

This also suggests the presence of the “rich club phenomenon”.

This study can be considered as a initial step towards a better understand-

ing of the structure and evolution of the ITN, therefore many extensions can

be conceived. First, one may try to explore the robustness of the results. The

procedure would include an experiment with other economically-meaningful

weighting systems. This might be an important point, because a weighted

analysis might be sensible to a particular choice of weighting procedure. For

example, the papers [16, 17] present that their results seem to be quite ro-

bust to all employed alternatives. Second, one would like to examine in more

details the in-sample dynamics and out-of-sample evolution of the topological

properties of the ITN. Third, one can be interested in whether network statis-

tics measuring connectivity, assortativity and clustering can be employed as

explanatory variables for the macroeconomic dynamics of growth and develop-

ment. Finally, one may attempt to develop economic-meaningful models that

are able to explain and reproduce the topological properties of the ITN.
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Appendix A

Tables

Table A.1: Countries in balanced panel

ID Acro Name ID Acro Name

2 USA United States 110 GUY Guyana

20 CAN Canada 115 SUR Surinam

31 BHM Bahamas 130 ECU Ecuador

40 CUB Cuba 135 PER Peru

41 HAI Haiti 140 BRA Brazil

42 DOM Dominican Rep. 145 BOL Bolivia

51 JAM Jamaica 150 PAR Paraguay

52 TRI Trinidad/Tobago 155 CHL Chile

53 BAR Barbados 160 ARG Argentina

54 DMA Dominica 165 URU Uruguay

55 GRN Grenada 200 UKG United Kingdom

56 SLU Saint Lucia 205 IRE Ireland

57 SVG St. Vincent 210 NTH Netherlands

70 MEX Mexico 211 BEL Belgium

90 GUA Guatemala 212 LUX Luxembourg

91 HON Honduras 220 FRN France

92 SAL El Salvador 221 MNC Monaco

93 NIC Nicaragua 223 LIE Liechtenstein

94 COS Costa Rica 225 SWZ Switzerland

95 PAN Panama 230 SPN Spain

100 COL Colombia 232 AND Andorra

101 VEN Venezuela 235 POR Portugal



A. Tables II

ID Acro Name ID Acro Name

260 GFR Germany 461 TOG Togo

290 POL Poland 471 CAO Cameroon

305 AUS Austria 475 NIG Nigeria

310 HUN Hungary 481 GAB Gabon

325 ITA Italy 482 CEN Centr African Rep.

331 SNM San Marino 483 CHA Chad

338 MLT Malta 484 CON Congo

339 ALB Albania 490 DRC Congo (Zaire)

345 YUG Yugoslavia 500 UGA Uganda

350 GRC Greece 501 KEN Kenya

352 CYP Cyprus 510 TAZ Tanzania

355 BUL Bulgaria 516 BUI Burundi

360 RUM Rumania 517 RWA Rwanda

365 RUS Russia 520 SOM Somalia

375 FIN Finland 522 DJI Djibouti

380 SWD Sweden 530 ETH Ethiopia

385 NOR Norway 540 ANG Angola

390 DEN Denmark 541 MZM Mozambique

395 ICE Iceland 551 ZAM Zambia

402 CAP Cape Verde 552 ZIM Zimbabwe

403 STP Sao Tome 553 MAW Malawi

404 GNB Guinea-Bissau 560 SAF South Africa

411 EQG Eq. Guinea 570 LES Lesotho

420 GAM Gambia 571 BOT Botswana

432 MLI Mali 572 SWA Swaziland

433 SEN Senegal 580 MAG Madagascar

434 BEN Benin 581 COM Comoros

435 MAA Mauritania 590 MAS Mauritius

436 NIR Niger 591 SEY Seychelles

437 CDI Cote Divore 600 MOR Morocco

438 GUI Guinea 615 ALG Algeria

439 BFO Burkina Faso 616 TUN Tunisia

450 LBR Liberia 620 LIB Libya

451 SIE Sierra leone 625 SUD Sudan

452 GHA Ghana 630 IRN Iran



A. Tables III

ID Acro Name ID Acro Name

640 TUR Turkey 771 BNG Bangladesh

645 IRQ Iraq 775 MYA Myanmar

651 EGY Egypt 780 SRI Sri Lanka

652 SYR Syria 781 MAD Maldives

660 LEB Lebanon 790 NEP Nepal

663 JOR Jordan 800 THI Thailand

666 ISR Israel 811 CAM Cambodia

670 SAU Saudi Arabia 812 LAO Laos

678 YEM Yemen 816 DRV Vietnam

690 KUW Kuwait 820 MAL Malaysia

692 BAH Bahrain 830 SIN Singapore

694 QAT Qatar 840 PHI Philippines

696 UAE Arab Emirates 850 INS Indonesia

698 OMA Oman 900 AUL Australia

700 AFG Afghanistan 910 PNG Papua

710 CHN China 920 NEW New Zealand

712 MON Mongolia 935 VAN Vanuatu

713 TAW Taiwan 940 SOL Solomon’s

731 PRK North Korea 950 FJI Fiji

732 ROK South Korea 970 KBI Kiribati

740 JPN Japan 971 NAU Nauru

750 IND India 972 TON Tonga

760 BHU Bhutan 973 TUV Tuvalu

770 PAK Pakistan
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