
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Robert Husák

Quadrotor 3D Intuitive Flying

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: Mgr. Tomáš Plch

Study programme: Computer Science

Specialization: Programming

Prague 2014

I would like to thank my supervisor, Mgr. Tomáš Plch for his guidance and
advice. I am also grateful for the support of other members of Autonomous Aerial
Drone research group held in the university.

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Název práce: 3D intuitivńı ř́ızeńı quadrotoru

Autor: Robert Husák

Katedra: Kabinet software a výuky informatiky

Vedoućı bakalářské práce: Mgr. Tomáš Plch

Abstrakt: R-UAV (angl. Rotor-based Unmanned Aerial Vehicle - rotorové bezpi-
lotńı letouny) je robotická platforma schopná vertikálńıho vzletu a přistáńı. Ob-
vyklý zp̊usob jejich ovládáńı je pomoćı systému “dvou páček”, který je častý o
model̊u lod́ı a letadel ř́ızených přes rádiové spojeńı. Ukazuje se však, že v oblasti
R-UAV je tato metoda ovládáńı pro uživatele obt́ıžná na pochopeńı a osvojeńı.
Proto jsme vyzkoušeli jiná ovládaćı zař́ızeńı: smartphone, gamepad, joystick,
3DConnexion SpaceNavigator a Novint Falcon. 19 dobrovolńık̊u je použ́ıvalo k
plněńı dvou jednoduchých navigačńıch úkol̊u pomoćı AR.Drone, malého R-UAV
od firmy Parrot. Na základě zkušenost́ı pilot̊u s ř́ızeńım R-UAV jsme je rozdělili
do dvou skupin. U každého zař́ızeńı jsme měřili čas potřebný k plněńı jednotlivých
úkol̊u, počet nechtěných koliźı s překážkami a také mı́ru spokojenosti pilot̊u s
t́ımto zař́ızeńım. Na základě výsledk̊u tohoto experimentu se ukázalo, že joystick
a smartphone byly nejméně intuitivńı a efektivńı pro všechny piloty, zejména pro
nezkušené. Gamepad se zdá být použitelný zejména pro zkušené piloty, nezkušeńı
měli problém s rozděleńım ovládáńı mezi dvě ruce, jak jsme očekávali. Jako ne-
jlepš́ı zař́ızeńı pro nezkušené piloty se ukázaly být 3DConnexion SpaceNavigator
a Novint Falcon.

Kĺıčová slova: quadrotor, R-UAV, UAV, ovládáńı, vzdušný, drone, 3D pilotováńı,
3D myš, Novint Falcon, smartphone, gamepad, joystick

Title: Quadrotor 3D Intuitive Flying

Author: Robert Husák

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Tomáš Plch

Abstract: The Rotor-based Unmanned Aerial Vehicle (R-UAV) is a robotic aerial
platform capable of Vertical Take-Off and Landing. It is commonly controlled by
a “two stick” interface common to radio controlled models of ships and airplanes.
However, this method of control proves to be difficult to learn and master in the
domain of R-UAV. Therefore, we examined other control devices: smartphone,
gamepad, joystick, 3DConnection SpaceNavigator and Novint Falcon. They were
used by 19 volunteers to perform two simple navigation scenarios with AR.Drone,
a small R-UAV from Parrot. We separated the pilots into two groups, based on
their experience with the R-UAV remote control. We measured the time needed
for each device to fulfill every task, including the number of unwanted collisions
with obstacles, as well as the pilot’s satisfaction with it. According to the results
of the experiment, joystick and smartphone proved to be less intuitive and effec-
tive among all pilots, especially the inexperienced. Gamepad seemed to be most
usable for experienced pilots, although the inexperienced had problems distribut-
ing control between two hands, as we expected. 3DConnexion, SpaceNavigator
and Novint Falcon were rated the best devices for inexperienced users.

Keywords: quadrotor, R-UAV, UAV, control, aerial, drone, 3D piloting, 3D
mouse, Novint Falcon, smartphone, gamepad, joystick

Contents

Introduction 3
Organization . 5

I Analysis 6

1 Related Work 7

2 R-UAV Characteristics 8
2.1 Parts . 8
2.2 Configurations . 9
2.3 Manoeuvers . 10
2.4 On-board Controller . 11

3 Control Devices 14
3.1 RC Transmitter . 14
3.2 Smartphone . 15
3.3 Gamepad . 15
3.4 Joystick . 16
3.5 3D Connexion SpaceNavigator . 17
3.6 Novint Falcon . 18

4 Problem Specification 20

II Implementation 21

5 Proposed Solution 22

6 Glue Component System 24
6.1 Entities . 24
6.2 Lifetime . 26

7 AR.Drone 28
7.1 Features . 28

7.1.1 Hardware . 28
7.1.2 Software . 28
7.1.3 Communication . 30

7.2 Component Implementation . 30

8 Control Device Components 32
8.1 USB HID . 32
8.2 Novint Falcon . 33
8.3 Control Mapping . 33

9 User Interface 35

1

III Evaluation 37

10 Experiment Design 38
10.1 Scenarios . 38

10.1.1 Poles . 38
10.1.2 Maze . 39

10.2 Criteria . 40

11 Results 41
11.1 Subjective rating . 41
11.2 Poles . 44
11.3 Maze . 47

12 Discussion 48
12.1 Future Work . 49

Bibliography 50

Attachments 51

2

Introduction

The Unmanned Aerial Vehicle (UAV) platform has recently become a frequently
discussed topic, mostly in connection with their use by the US Army. The term
unmanned refers to the fact that the vehicle doesn’t carry a pilot. Instead, its
control is distributed between its on-board computer and a Ground Control Sta-
tion. Under this definition we might imagine either a building with sophisticated
pilot user interfaces or a simple, light-weight device carried by the pilot him-
self. In many scenarios, UAVs prove to have significant advantages over manned
aircraft, the most important of these being safety of the crew and economics of
the operation. [1] The most common types of UAV airframe are fixed-wing and
rotary-wing.

UAVs with fixed-wing configurations resemble ordinary airplanes. They fly
by jet engines or propellers and are mostly useful for long-range operations in
open space. However, unable to hover in a constant position, they are not useful
for close-range operations taking place at low altitude and/or over complicated
terrain. Moreover, as they are only capable of Horizontal Take-Off and Landing
(HTOL), their use in places without appropriate ‘runways’ is complicated.

(a) Standard helicopter (b) Coaxial helicopter

(c) Quadrocopter (d) Octocopter

Figure 1: The most common R-UAV rotor configurations

In this thesis, we will focus at the second type of configuration: rotary-wing.
This platform is commonly referred to as Rotorcraft-based UAV (R-UAV and flies
by the lift of the rotating wings (rotors). Due to physical laws, each rotor is both a
source of lift and torque affecting the vehicle. Therefore, the configuration of the
rotors must be very carefully designed. R-UAV piloting is done through changes

3

of the rotors’ lift, as some rotors are able to tilt their individual blades. Figure 1
shows several types of rotor configurations. The best known is the standard
helicopter (1a), but coaxial helicopters (1b), quadrocopters (1c), hexacopters and
octocopters (1d) are becoming more and more popular.

R-UAVs are used in both military and civilian applications. The primary
military applications are surveillance, reconnaissance, combat and testing of new
weapon systems. Non-military applications, apart from surveillance, include in-
dustrial systems inspection, border patrol, rescue missions, fire prevention, ter-
rain mapping and agriculture monitoring. [11] They are also used by film makers
and photographers and many universities use them for education, research and
the development of new technologies and algorithms. We should also not forget
their pure entertainment use, either by hobbyists building them by themselves or
customers buying from a manufacturer.

They have numerous advantages over the fixed-wing alternative. Regarding
their use in complicated terrain, the most important are capability of Vertical
Take-Off and Landing (VTOL), as well as hovering in constant position. They
also offer better stabilization and wider variety of manoeuver.

As for disadvantages, R-UAVs are slower and less fuel-effective for long-range
flight and as the rotors can be very complex, they are more likely to malfunction.
Apart from these technical issues, there is also a problem regarding the user
interface for remote pilots. Because many R-UAVs are radio controlled (RC),
they are designed to work with standard RC transmitters. Their main user-
interface elements are two sticks controlled by the thumbs, as seen on Figure 2a.
Both sticks can be rotated horizontally and vertically, giving four axes of control.
Usually the right stick is mapped to vertical movement and rotation around
vertical axes, while the left stick controls horizontal rotation axes. Beginners
are often confused by this mechanism, because it is not intuitive. Moreover, the
learning curve for this type of control is steep and, until it is mastered, vehicle
crashes are the norm. [6]

The goal of this thesis is to solve the problems of R-UAV remote human con-
trol. In order to do that, we will select several other devices that are commonly
available on the market and examine how intuitive they are for users. All such
devices are shown in Figure 2.

With the growing popularity of smartphones it is small wonder they are cur-
rently used as the primary control-device for several hobby R-UAVs. [8] [2] A
smartphone can use its multi-touch color display to show the R-UAV video and
accept commands from the user. Some smartphones may utilize a gyroscope or
compass to enhance the user experience. Those are reasons why we included it
in our list.

The second device examined is a gamepad. Although its user interface is
rather similar to the one the RC transmitter provides, it is very popular among
video-game players. The latter applies to a joystick as well. Moreover, it is used
mainly for flight simulators and its variations appear in cockpits of helicopters.

Next devices are two that represent new controllers designed to work in 3D,
which have recently become known to computer-game players and 3D graphic
designers. 3DConnexion SpaceNavigator, often called the 3D mouse, is a button
that fits into the palm and can be rotated and translated into all three degrees.

Novint Falcon is an advanced 3D positioning device allowing force feedback

4

(a) RC Transmitter (b) Smartphone (c) Gamepad

(d) Joystick (e) 3D mouse (f) Novint Falcon

Figure 2: R-UAV possible remote control devices

on all those three axes. In other words, it has the ability to exert a force against
the user. Although it is relatively cumbersome due to its size and need of a power
supply, we expect it to provide an interesting user experience.

Organization

The thesis consists of three parts: Analysis, Implementation and Evaluation. In
Analysis, we summarize existing research in this area, inspect R-UAV platforms
and provide information about particular control devices. Those topics are con-
tained in Chapter 1, 2 and 3 respectively. Chapter 4 summarizes and specifies
the problem we intend to solve.

The software part of the problem solution is described in Implementation,
which is divided into five chapters. Chapter 5 summarizes the proposed solution.
The remaining chapters describe the implementation of the particular parts of
the application: Glue component system, AR.Drone component, control devices
components and the user interface.

Evaluation explains how the software implemented in the previous parts is
used and consists of three chapters. In Chapter 10, all the evaluation scenarios
and criteria are described. Results measured are listed and commented upon in
Chapter 11. The last chapter contains the interpretation of results and plans for
the future.

The content of the enclosed CD is described in the Attachments section.

5

Part I

Analysis

6

1. Related Work

As the use of the R-UAV platform grew rapidly in the last two decades, it is no
wonder that it is a popular subject for research among universities and scientists
all around the world. For every research group interested in this topic it is
common to build their own R-UAV, usually an electric quadrocopter. As a first
step, they construct the hardware portion of the vehicle, make decisions regarding
the batteries used, along with motors, propellers and other components. Then
they implement its basic functionality, such as stabilization, hovering in a constant
position, taking-off and landing. From this point on, the vehicle can serve as a
platform for testing of many varied algorithms, including obstacle avoidance, path
finding, flying in a group, etc.

All the steps mentioned are not trivial and require a deep understanding of
the platform particularities. As a starting point for this purpose, we recommend
the book Advances in Unmanned Aerial Vehicles: State of the Art and the Road
to Autonomy [11]. Among others, it provides hints for R-UAV construction and
implementing algorithms for control. Moreover, it summarizes the current possi-
bilities for UAVs and identifies challenges for the future.

The authors see implementing a robust way to control and cooperate swarms
of UAVs as their most important task. Other aims include improvements in flight
time, sensors and autonomous navigation algorithms. According to the authors,
UAVs must be autonomous enough to allow their human operators to assign them
high level-commands. An example of such a command is: “Fly to a destination
provided by GPS coordinates, unobserved and perform reconnaissance over a 10
kilometer perimeter area.”

It seems that the book provides a true image of current research, because there
is an abundance of projects in the aforementioned areas. On the other hand, it is
hard to find a project concerned with user satisfaction with the low-level control
of UAVs, particularly R-UAVs. An exception is the article Development of RC
helicopter control skill study support system in consideration of user interface, by
Junichi Kunieda and Yukinobu Hoshino. [6] They understand how difficult the
RC helicopter control is for beginners and propose ways to simplify the learning
process. Among others they used a head mounted display to transfer images
from the on-board camera and sensors, which literally provided the user a better
insight into the flight of the helicopter.

The approach of this thesis is different. We believe that the whole ‘two stick’
mechanism is an inappropriate way to fly R-UAVs and we want to try other
control devices more suitable for beginners. After we select the devices, several
volunteers will use them to perform certain navigation scenarios. From their
feedback we will be able to decide which devices seem to be the most convenient.

7

2. R-UAV Characteristics

As the R-UAV platform is a broad topic, we will concentrate only on its fundamen-
tals. In the beginning, we describe the particular mechanical parts responsible for
flying and the configurations of assembling them together to build a functional
unit. The example of the quadrocopter configuration and methods of performing
manoeuvers in the air will be demonstrated. The last section of this chapter
provides an overview of an on-board controller, which is the device responsible
for fulfilling navigation commands.

2.1 Parts

The most important mechanical parts of the R-UAV necessary for flying are a
mainframe, engines and rotors. The mainframe serves as a skeleton, upon which
all the other parts of the R-UAV are attached. It is expected to endure vibrations,
centrifugal forces, hard landings and other inconveniences. Therefore, its material
is expected to be strong and durable; on the other hand, it must be light enough
to enable the vehicle to fly. For some types of engines, the mainframe material
must also withstand a substantial level of heat.

The most common metal used for this purpose is aluminum, as it is inexpen-
sive, heat resistant and strong. It is too heavy to be used on small models, but for
larger ones is suitable. On the other hand, when exposed to very high frequency
vibrations it may develop stress cracks and is prone to bend unnoticeably in cases
of hard landings or crashes. Apart from aluminum, special alloys also may be
used, especially for military purposes.

Plastic does not suffer from the weaknesses of aluminum, thanks to its flexi-
bility. Nevertheless, it is weaker and not resistant to heat, which limits its use to
small R-UAVs powered by certain “cold” engines such as electric motors.

Probably the best available material is carbon-fiber. It is stronger and lighter
than all those mentioned and also withstands heat and vibration. As such, it
is also the most expensive of the materials mentioned. As a cheaper substitute,
fiberglass can be used, which is about twice as weak. [9]

Another important aspect of every R-UAV is the particular energy it uses to
spin the rotors. Especially for large vehicles, engines powered by bio-chemical
fuels, such as petroleum fuels or diesel, are common. Those engines are divid-
ed into two categories: piston engines and gas-turbine engines. Piston engines
resemble those known in cars, as they use the combustion of the fuel to move
the pistons. The pistons are arranged in such a way as to allow them to spin an
attached shaft responsible for turning the rotor. An analysis of particular types
of piston engines can be found in [1, p. 102].

Gas-turbine engines use a different mechanism, based on the continuous stream-
ing of air. Air is compressed, mixed with the fuel and ignited. While in the case of
airplanes the resulting energy is directly transformed into the drag of the vehicle,
in rotorcraft it is used to rotate the shaft. This type of engine is often called a
turboshaft.

Electric motors are completely different types of engines. Compared to engines
based on bio-chemical fuels, they have the advantage of being the quietest and

8

with a smaller thermal signature. However, when considering the proportion of
weight and capacity of batteries, they are usable only for small R-UAVs with
flight times measured in tens of minutes. [1]

The last part of the R-UAV to be examined is the rotors. A rotor consists of
a central mast to which particular blades are attached. The shape of the blades
is similar to that of an airplane wing. Therefore, when they rotate, they draw
the air above them down. As a reaction, the vehicle is pushed upwards by the
opposite force, called thrust. Apart from the force, the rotor is also the cause of
torque in a direction opposite to its rotation. Further explanations of the physics
laws behind those mechanisms can be found in [3].

Some rotors are able to variably change the pitch of their blades, to either
increase or decrease the thrust they cause. For this operation a component is
used called swashplate. It is a circular plate surrounding the base of the mast,
around which linkages rotate to particular rotor blades parallel to the mast. When
the swashplate is elevated or lowered, the pitch of all blades is altered, which is
called ‘collective blade control.’ It is also possible to tilt the swashplate at certain
angles. In that case, the pitch of the blades (and consequently the thrust) will
differ among the particular angles of rotation, causing the vector of the resultant
thrust to tilt. This mechanism is called ‘cyclic blade control.’

When the blades of the rotor cannot change their pitch, the only method of
adjusting the rotor thrust is to alter the speed of its rotation. Fixed-pitch rotors
are sometimes referred to as propellers, although strictly speaking they are two
distinct concepts. Propeller blades are generally shorter and made from hard
materials, whereas rotor blades are expected to bend when not rotating.

2.2 Configurations

In this section we mention the most common configurations of the parts used in
the R-UAV platform, as shown in Figure 2.1. Probably the best known is the
helicopter (2.1a). At the top of its main body a main rotor is attached, capable
of both collective and cyclic blade control. In order to suppress the torque of the
main rotor, a tail-rotor with collective blade control capability is attached. It is
responsible for rotation around the vertical axis, whereas the main rotor causes
all the other types of movement. The tail-rotor is probably the greatest weakness
of this configuration, because it is vulnerable and consumes energy inefficiently.
Furthermore, it is a source of asymmetry, complicating control of the helicopter.

Those disadvantages are eliminated in the case of a coaxial rotor configuration
(2.1b). The tail-rotor is missing and repaced by a second main rotor, stacked
on the first and rotating in an opposite direction. The only downside of this
configuration is the increased mechanical complexity of the rotors.

Quadrocopters are a solution without rotors, using variable-pitch blades, some-
times called quad-rotors (2.1c). Their mainframe is shaped as a cross with four
propellers attached to its tips, while each pair of opposing propellers rotate the
opposite direction in order to nullify the torque they cause. Each propeller has
its own motor and its thrust depends only upon rotation speed. This approach
brings both ease of construction and maintenance and is suited mostly for small
electronic models. In order to enhance the reliability and stability of the vehicle,
several pairs of propellers can be added, which forms the basis of the hexacopter

9

(a) Standard helicopter (b) Coaxial helicopter

(c) Quadrocopter (d) Octocopter

Figure 2.1: The most common R-UAV rotor configurations

and octocopter (2.1d).

2.3 Manoeuvers

In order to explore available manoeuvers of the R-UAV platform, we chose the
quadrocopter as a representative. At first, we designate the parameters which we
wish to measure and affect. Those are the three-dimensional velocity vector (vx,
vy, vz)and the three angles of rotations called pitch, roll and yaw. As shown in
Figure 2.2, pitch corresponds to a y axis, roll to an x axis and yaw to a z axis. All
parameters are measured at the mass center of the air vehicle. Vertical velocity
can also be referred to as gaz. This name is preferred in the thesis.

Movement of the quadrocopter is accomplished entirely by adjusting the thrust
of the rotors. We will assume the quadrocopter is hovering in an ideal environ-
ment with no turbulence. When all propellers are provided the same thrust, the
quadrocopter either increases, decreases, or hovers at a constant altitude. If the
given thrusts of the rotors differ, certain rotation angles will change.

How to separately change the pitch, roll, yaw and gaz is shown in Figure 2.3.
When we increase or decrease the thrust of all propellers simultaneously, we al-
ter only the vertical speed. To change pitch or roll, we must affect an unbalance
between the corresponding opposite pairs of propellers. On the other hand, unbal-
ance between the thrust of the propellers on the first and second diagonal causes
the quadrocopter to perform yaw rotation. In order to change more parameters
simultaneously, we may combine those schemes.

Changing the angles affects horizontal velocity – changing the pitch affects

10

y

x

z

Yaw

Pitch

Roll

Figure 2.2: Rotation angles of an air vehicle

vx and the roll affects vy. Their dependency is not linear and varies for different
types of quadrocopters. [5, p. 9]

Ω1 + ∆ Ω2 + ∆

Ω3 + ∆ Ω4 + ∆

(a) Gaz

Ω1 + ∆ Ω2 −∆

Ω3 + ∆ Ω4 −∆

(b) Roll

Ω1 + ∆ Ω2 + ∆

Ω3 −∆ Ω4 −∆

(c) Pitch

Ω1 + ∆ Ω2 −∆

Ω3 −∆ Ω4 + ∆

(d) Yaw

Figure 2.3: Adjusting gaz, roll, pitch and yaw by modifying propellers’ angular
velocities
Symbols Ω1, Ω2, Ω3 and Ω4 denote the angular velocity of the propellers before
the operation and ∆ denotes the amount of their change.

2.4 On-board Controller

The example of the quadrocopter will also be used to present the on-board con-
troller, which is in fact the “brain” of the R-UAV. It is responsible for interpreting
commands received from the pilot and usually also provides a certain level of au-
tonomy. The lowest level is the ability to stabilize the vehicle, while higher levels

11

include following a route given by GPS coordinates, detecting and avoiding ob-
stacles or performing reconnaissance over a certain area. Because in this thesis
we are not concerned with autonomy, we will only focus on stabilization ability.

Controller

IMU

Orientation

Acceleration

Vertical
ultrasound

sensor
Altitude

MotoryRegulatory#1

MotoryRegulatory#2

MotoryRegulatory#3

MotoryRegulatory#4

Power

Power

Power

Power

RCyReceiver

Desired
anglesyand
velocity

Stateycommands

Figure 2.4: On-board controller schema
Communication between the on-board controller and other parts of the R-UAV

In Figure 2.4 shows how the controller is usually interconnected with other
parts of the vehicle. The Inertial Measurement Unit (IMU) is a set of sensors
responsible for determining actual acceleration and orientation of the R-UAV.
Other sensors may be available, for example pressure and ultrasound sensors to
measure altitude. Using image-recognition techniques, it is also possible to gath-
er information from a camera (commonly used to make velocity measurements)
more accurate. Another input of the controller is commands from the pilot. Usu-
ally every command comprises desired values of the four aforementioned flight
parameters: pitch, roll, yaw and gaz.

The task of the on-board controller is then to adjust the thrust of the pro-
pellers according to the comparison of current and desired state, stabilizing the
quadrocopter in that state. A proportional-integral-derivative (PID) controller,
known from industrial control systems, is commonly used as the implemented
algorithm. Other advanced approaches, such as the linear-quadratic regulator
(LQR) and H-infinity (H∞) can also be used; hovever, according to the study in
[11], PID is sufficient for non-aggressive flights.

Besides its stabilization capability, the controller can also launch pre-programmed
sequences. We might imagine them as collections of instructions stored in the

12

quadrocopter’s firmware. Those instructions describe actions during the se-
quence, e.g. how to change propeller thrust, or how to react to the gyroscope or
altitude.

Probably the most important of the pre-programmed sequences is take-off.
When the quadrocopter hovers just a few centimeters above the ground, it is ex-
hibit to huge turbulence. Therefore, the thrust of the propellers must be raised for
a short period. After the quadrocopter is airborne, the thrust can be diminished.

Another important sequence is landing. The thrust of the propellers must be
lowered in order to descend, but not so radically as to result in a crash. Then it
must recognize when it is on the ground, and turn off its rotors.

As we mentioned before, some quadrocopters are capable of determining their
horizontal velocity (vx, vy) and position. On those, a position-holding sequence
can be implemented. It uses simple pitch and roll adjustments to move or stop the
quadrocopter on a horizontal plane. On some quadrocopters, a variety of other
pre-programmed sentences may be available, such as a vertical flip, vibrations, a
simulated rotor malfunction, etc. [8, p. 81]

13

3. Control Devices

Having reviewed the fundamentals of the R-UAV structure and behavior, we will
analyze several devices available on the market that can be utilized to control R-
UAVs. For every device we will inspect its technical requirements, the interface
it provides to the user and summarize its advantages and disadvantages. Inspect-
ed devices are: RC transmitter, smartphone, gamepad, joystick, 3D Connexion
Space Navigator and Novint Falcon.

3.1 RC Transmitter

When Radio Control (RC) is used as a communication method, it usually consists
of a receiver on the R-UAV side and a transmitter on the user side. We use the
term ‘transmitter,’ even though some of those devices are also capable of receiving
data from the R-UAV.

The common structure of a hobby RC transmitter is described in Figure 3.1.
The antenna (A) is used to send signals to the receiver on the R-UAV side. The
user generally holds the transmitter in his hands or has it attached to his body
by a belt. He uses thumbs or a combination of thumbs and index fingers to move
the sticks (B) in horizontal and vertical directions. Both sticks affect two flight
parameters. Commonly, the left stick sets roll and pitch, whereas the right stick
controls yaw and gaz. All four axes have corresponding scroll bars (C) used to
adjust the sensitivity of the user input.

Although the RC transmitter is probably today’s most popular R-UAV control
device, it is quite unintuitive and difficult to understand for beginners.

A

B B

C C

CC

Figure 3.1: F03353 RadioLink RC Transmitter
(A) Antenna, (B) Sticks, (C) Scroll bars

14

3.2 Smartphone

We understand this term to define a mobile phone equipped with a multi-touch
screen and capable of installing additional applications. The smartphone can be
used to control R-UAVs when the both sides contain the same wireless commu-
nication technology, such as Wi-Fi or Bluetooth.

In Figure 3.2 we show a screenshot from AR.FreeFlight, an application to
control the Parrot AR.Drone. On the smartphone screen (A) we see the picture
from the AR.Drone camera. It is overlaid by the Take-off/Land toggle button
(B) and two virtual handles (C).

A

B

C C

Figure 3.2: Ar.Drone FreeFlight application on Apple iPhone
(A) Picture from the camera, (B) Take-off/Land toggle button, (C) Virtual han-
dlers

Functionality differs according to the user-settings and the capabilities of the
smartphone. In a basic case, the handles are used just as the two sticks on the
RC transmitter. When the smartphone is equipped with a gyroscope, its tilt can
be used to control the pitch and roll, replacing the function of the left handle. If
both the AR.Drone and the smartphone have a compass1, the user can use the
absolute control. This means that the given navigation commands are not relative
to the AR.Drone orientation, but to the orientation of the smartphone.

Both the use of the smartphone gyroscope and compass enhance the user
experience. However, we do not consider the yaw and gaz control as very intuitive,
as it still resembles the RC transmitter. Another problem is that the view from
the R-UAV camera is hidden behind the user’s thumbs. This can be solved by
using a tablet instead of a smartphone. An advantage of the smartphone over the
RC transmitter is that the author of the piloting application can easily extend it
to use more of its features, such as vibrations.

3.3 Gamepad

The gamepad is a controller originally used to play games on a computer or
a video game console. Even though some gamepads use Bluetooth connection
instead of wired, R-UAVs do not usually have an option to be controlled directly

1AR.Drone 2.0 contains a magnetometer, which is an extended version of the compass. The
first version of AR.Drone does not include any of these.

15

by the gamepad. Instead, it is only a user interface for the computer or another
device communicating with the vehicle.

A typical modern gamepad is described in Figure 3.3. Similarly to the RC
transmitter, it is held in both hands and mostly the thumbs are used to provide
input. The gamepad features the directional pad (A) on the left side, the set of
four action buttons forming a cross (B) on the right side and two sticks in the
center (C). [12]

A

B

C

C

Figure 3.3: Logitech Rumble Gamepad F510
(A) Directional pad, (B) Action buttons, (C) Sticks

The most popular method of using the gamepad to control an R-UAV is to use
the sticks in similar fashion to those on the RC transmitter. As some gamepads
provide information about the pressure needed to push particular buttons, the
directional pad and action buttons could also be used to control the flight pa-
rameters.

From the user interface point of view, using a gamepad instead of the RC con-
troller provides no essential advantage, as the interfaces are quite similar. The
main technical requirement - the presence of the computer - brings both advan-
tages and disadvantages. On the one hand, the programmer can use its features
(big screen and high computing power) to affect more advanced techniques, such
as image recognition. On the other hand, the user must carry a computer every-
where he wants to fly the R-UAV. All the devices listed below are dependent on
a computer.

3.4 Joystick

Alongside the gamepad, the joystick is the most widespread game controller.
The professional variants of the joystick are used as the primary human interface
controllers on many vehicles, including aircraft.

A common joystick can be seen in Figure 3.4. It consists of the stick (A)
attached to the base (B). Depending upon joystick type, the user can rotate
the stick in two or three degrees of freedom, which is the primary input. The
action buttons (C) can be attached to both parts and some joysticks also have a

16

throttle (D) - the one-dimensional input. Special joysticks are further capable of
vibrations and force feedback - the ability to exert some force on the stick.

The joystick may probably be the best choice for players of aircraft simulator
games, because they are accustomed to using it. Moreover, if the joystick supports
rotation in the three degrees of freedom and contains the throttle, the angles and
gaz of the R-UAV can be quite intuitively mapped to the orientation of the
stick. Regarding the need of a computer, the joystick has the same benefits and
drawbacks as the gamepad.

A

B

C

C

D

Figure 3.4: Logitech Extreme 3D Pro joystick
(A) Stick, (B) Base, (C) Action buttons, (D) Throttle

3.5 3D Connexion SpaceNavigator

People who work in a 3D environment, such as 3D graphic designers, encounter
many difficulties when using only a mouse and keyboard. One of those is naviga-
tion in space. To ease this task, the 3D Connexion company created several prod-
ucts known as 3D mice; namely SpacePilot Pro, SpaceMouse Pro, SpaceMouse R©
Wireless and SpaceNavigator. They mostly differ in their number of additional
buttons, although the main principle of control remains the same.

As shown in Figure 3.5, SpaceNavigator is a light-weight device resembling a
button that fits in the palm. The handle (A) sitting on the base (B) can be both
simultaneously rotated and translated in three dimensions. There are also two
buttons (C) available, optimized to be pushed by thumb and little finger.

If we implement the control in a way that the R-UAV copies the rotation from
the device, it will allow the user to virtually ‘hold the R-UAV in the hand.’ There-
fore, we expect this device to be more suitable for R-UAV control than all those

17

A

B

C

C

Figure 3.5: 3D Connexion SpaceNavigator.
(A) Handle, (B) Base, (C) Buttons

previously mentioned. The only inconvenience is the inability to communicate
directly with the R-UAV.

3.6 Novint Falcon

In order to enhance computer games player experience, the Novint Company
chose to use the sense of touch. The Novint Falcon is a haptic device, meaning
it is possible to both receive input according to the user’s manipulation and to
exert some force against the user. In order to work, it needs to be connected both
to a computer and power supply.

As we see in Figure 3.6, the Novint Falcon consists of a grip (A) attached by
three arms to a body (B) that stands on a base (C). At the top of the grip, four
buttons are located. The standard grip shown in the picture can be replaced by
a pistol-grip, which is used mostly for playing computer games.

A

B

C

Figure 3.6: Novint Falcon.
(A) Handle, (B) Body, (C) Base

18

The Novint Falcon has big potential as a R-UAV control device, because it
allows the user to operate in much larger spaces than the 3D mouse. Also, as
a haptic device, it can provide an interactive experience. The most significant
problem with the device is that it needs to be connected to a power supply, which
makes it cumbersome to use outdoors.

19

4. Problem Specification

As we see, the R-UAV is a very specific aerial platform with several unique
abilities, such as hovering in constant position and VTOL. Moreover, it offers
better stabilization and provides greater freedom of movement in space than the
fixed-wing alternative. The most common way to remotely control an R-UAV
is to repeatedly send it the desired flight parameters: pitch, roll, yaw and gaz.
Its on-board computer is then responsible for altering the thrust of particular
propellers or rotors in order to meet the requirements. Some R-UAVs are also
capable of launching preprogrammed sequences upon request, such as take-offs
and landings.

In order to control the R-UAV with a device, it must provide a way for the
pilot to independently manipulate all four flight parameters and launch the pre-
programmed sequences. We summarized a list of several devices that are com-
monly available on the market and meet those requirements. The RC transmitter
is the industrial standard for small remotely controlled vehicles; however, with
its ‘two sticks’ interface it is not very intuitive for beginners. We also chose the
smartphone, which became popular in this field because of its ability to control
the Parrot Ar.Drone. The gamepad and the joystick also appear on our list, as
they represent standard computer game controllers known to many users.

Another type of controllers are the new 3D controllers, which have recently
become known to computer game players and 3D graphic designers. From among
those, we chose the Novint Falcon and 3DConnexion SpaceNavigator. The Novint
Falcon is an advanced 3D positioning device allowing force feedback on all those
three axes. The 3DConnexion SpaceNavigator (often called 3D mouse), is a
button that fits into the palm and can be rotated and translated in all three
degrees.

As we stated in the goal of this thesis, we want to solve the problems that
arose from the extensive use of the “two sticks” mechanism with the R-UAV
remote human control, which proved not to be very intuitive for beginners. We
will summarize the tasks that need to be done in order to accomplish that goal:

First, we need to choose a particular R-UAV that will serve as a testing
platform. The next important step is to propose control devices suitable to control
the R-UAV.

Second, we will build an application that allows us to use the particular devices
to control the R-UAV. The application must be extendable, enabling the addition
of other control devices in future. Also, it must provide the user a method for
configuring the parameters of the controlling device, such as buttons and axes
mapping, sensitivity etc.

Last, we will design an experiment in which a group of volunteers will fly
the R-UAV, using the chosen controllers. We need to design several navigation
scenarios for these pilots and choose what quantities to measure among all the
flights. After performing the evaluation experiment, we must interpret the results,
essentially comparing the devices and deciding which devices to recommend as a
future method of R-UAV control.

20

Part II

Implementation

21

5. Proposed Solution

We selected Parrot AR.Drone as an R-UAV to test our controlling mechanism. It
is a widely known small size quadrocopter, originally created as a toy. However,
for its convenient price and availability it became popular across universities
and among technical enthusiasts. Unlike the majority of hobby quadrocopters,
it utilizes Wi-Fi as a base communication protocol. Its most common remote
controller is smartphone, but a custom control mechanism running on a computer
can also be implemented, because the communication protocol is public.

Thanks to that, we can utilize all the devices that can be connected to a
computer. Namely, we selected those previously mentioned: gamepad, joystick,
3D mouse, Novint Falcon and the smartphone, which is supported locally. We
only skipped the RC transmitter, as it is very complicated to connect either
to Ar.Drone or the computer. However, the mechanism of ‘two sticks’ is also
available on the gamepad, so the lack of RC transmitter will not have a negative
inpact on the trustworthiness of the research.

We understand Ar.Drone and the control devices as separate entities, where
each entity can provide output and consume input. The purpose of the application
is to interconnect their inputs and outputs, providing a simple user interface for
piloting.

Therefore, we decided to build the application upon a component system. Ev-
ery component in the system will be capable of providing a configuration and data
interface. The configuration interface consists of a set of configuration parame-
ters, whereas the data interface comprises unique typed data inputs and outputs.
We call them sinks and sources respectively, as these terms are common in this
area. The component system to instantiates particular components, configures
them and connects their data interfaces, enabling simple aggregation capabilities.
The component system was named Glue, as it is a tool to join together particular
parts of the application.

The next step is to create the Glue components, representing individual en-
tities: the Ar.Drone component, control devices components, control mapping
components and the user interface component.

The Ar.Drone component represents a handler for the vehicle, automatically
connecting to it and then providing information concerning connection status,
telemetry and the stream from the on-board camera. The sinks of this component
will accept commands to alter drone flight parameters and change its state, such
as in landing or take-off.

Most of the control device components contain only sources. Their structure
depends on the number and composition of the axes each device provides. One
source on every component also provides information concerning pressed buttons.
As Novint Falcon is a haptic device, its component will contain a sink that enables
sending it a three dimensional vector representing the force to perform.

For every control device component there is a corresponding control mapping
component. It obtains user input from the device and translates it into commands
for the drone component. The method to accomplish this is highly configurable.

The user interface component is based on the Qt Quick cross-platform frame-
work. As a configuration parameter it will expect a file in QML format, describing

22

the user interface in a declarative way. The user will see the video from the drone
on-board camera, the actual drone telemetry and the battery status. We will also
provide a way to see the list of available devices and select the one to be used to
control the drone.

When the application is assembled, we will proceed to the experiment. Its
detailed plan and the results obtained are written below in the third part of
the thesis. The current part contains details concerning the testing application
implementation.

23

6. Glue Component System

Glue was created with simplicity in mind. Its purpose was to enable a programmer
to easily write particular components with clearly specified interfaces and then
interconnect them to form the resulting application.

As a trade-off for that it is expected to consume some additional CPU and
memory, especially during the application startup. It is designed to run only in
one process, not distributed accross several processes or even devices.

It is programmed in C++11, currently the most recent standard of the C++
programming language. It is dependent on several Boost libraries, mainly on
Boost.Asio and Boost.Signals2. Because this thesis is one of the projects of the
AADrone group, it uses their common libraries for event-logging and mathemat-
ical operations.

6.1 Entities

In Figure 6.1 we illustrate a simple example of how the system may be used. On
the left side there is a component representing a handler to an elevator, whereas
on the right side we have two components to manage its altitude. The Elevator

provides the last measured altitude and accepts the desired altitude, with the
possibility of setting the frequency of communication with the actual device.
The Higher and Lower components simply receive the measured altitude, add
or subtract a value to it respectively and send it back. They are both arranged
in a way that disallows their use simultaneously, so only one must be explicitly
chosen.

ComponentsContext

ComponentsScope

Elevatord:dComponent

"Measured"

"Desired"

"Interval" 5

ComponentSet

ComponentsScope

Higherd:dComponent

"Desired"

"Measured"

Lowerd:dComponent

"Desired"

"Measured"

"Measured"

"Desired"

"Current" "Higher"

"Mediation" SELECT

Source<int>

Sink<int>

Property<int>

Property<int>

Property<Mediation>

Source<int>

Sink<int>

Source<int>

Sink<int>

Node<int>

Node<int>

Connection<int>

Connection<int>

"Elevator" "Manipulators"

"Higher"

"Lower"

Figure 6.1: An example of Glue use

24

We will inspect the most important Glue classes present in this example.
ComponentsContext serves as a container for all the other entities. It manages
their construction and contains a boost::asio::io service instance, through
which it takes care of the execution flow.

ComponentsScope may be understood as a name-scope for components and
their sources and sinks. The names of those sources and sinks may collide; how-
ever, every component in the scope must be listed under a unique name.

Component represents an application fragment with a particular function. Pro-
grammers are encouraged to use the io service object provided by the context
when performing non-blocking asynchronous operations. This should fit the com-
mon tasks for which the components are created, such as waiting for user input
or sending data to an external device. Operations that may possibly take a lot
of time to complete are better moved to a separate thread, in order not to block
the data flow in the component system. Components mostly communicate with
the rest of the application using their endpoints.

Every Endpoint provides the possibility to be marked as required. It can
either be active or inactive and how these states are implemented differs among
the subclasses. Endpoint is a superclass of Propery, Source and Sink.

Properties can be used as a method for configuring the component, as well as
to present certain information about it, which is not very often changed. Every
property holds a nullable value of a specific type and is active when the value
is set. Upon creation, it can be given a validation callback, so that not all the
values of the given type are allowed for that property.

Source and Sink are closely related to each other, as their function is to
transfer strongly typed data between the components. Every source can send
data to multiple sinks and similarly, every sink can receive data from multiple
sources. Both source and sink are considered active when they are connected to
at least one of their counterparts.

To represent this relation we have the Connection class. Once established
between a source and a sink, it enables data delivery. This may be marked as
closed to block all data coming through, which could be used in certain aggrega-
tion scenarios.

For those purposes the Node class was also created, which inherits both from
Source and Sink. Its function is simple: whenever it receives data from an
incoming connection, it passes it to all the outgoing connections.

Those features are used by ComponentSet, a specific implementation of Component.
As is apparent, it encapsulates its own ComponentsScope, into which components
may be added. For every source and sink of the unique type and name the con-
tained components create, ComponentSet creates a node and publishes it to both
scopes. As in the example, it may happen that certain of these nodes have mul-
tiple connections in the inner scope. How to behave in this situation depends on
the “Mediation” property. When set to UNITE mode, no restrictions are applied;
but when set to SELECT mode, only connections from one component remain open
and the rest are closed. Which component is active depends on the Current prop-
erty, where its name is specified. Another possibility of ComponentSet, which is
not shown in the picture, is to contain a ComponentGenerator class instance. If
that is used, the generator takes care of creating components and adding them
to the scope.

25

It may be unclear, how ComponentSet discovers that a component in its inner
scope publishes an endpoint. Moreover, how it even knows that there was a
component added to the inner scope. Thanks to Boost.Signals2 library it is
rather simple, because the entities mentioned make similar events available as
signals and anyone can subscribe a listener to them.

Another interesting topic is how we deal with the strongly typed endpoints.
In the DataTypesContext class instance there is a map containing factories for
the endpoints and connections of all the data types used. It is indexed by the
std::type index of those types. Whenever a component creates an endpoint,
its type is checked against this map and if its factory is not yet present, it is
added. In case of properties, there are also stored parsers, enabling encoding the
property value from a string.

Similarly to that, ComponentsContext contains factories for components and
component generators. However, those are indexed by their name and need to be
added manually in order to use them.

6.2 Lifetime

We have already described Glue from the static perspective, now we will explain
how it usually behaves throughout its lifetime. At first, a ComponentsContext

class instance is created along with the main scope. Then there are basically two
methods of adding components into the scope and initializing them: program-
matically or declaratively.

In the case of the first approach, we must create all the components in the
code and register them under their names in the scope. In order to alter their
properties, we obtain them by their names from the components and set them to
the appropriate values.

If we choose the declarative approach, we must provide the context the facto-
ries of all the components and component generators we expect to use. Then, we
create an XmlLoader class instance and provide it an XML document in a specific
format. This document describes how to instantiate the particular components
and select the values to set up their properties.

Every component may be, throughout its lifetime, within four different states:
uninitialized, inactive, active and destroying. Right after creation it is in the
uninitialized state, meaning it has not been yet added to a scope and not yet cre-
ated endpoints. When the component is added to a scope, the Initialize() vir-
tual method is run, in which the component creates its endpoints (sinks, sources
and properties). After initialization the component is in either an inactive or ac-
tive state, depending on whether all the required endpoints are activated. If the
component elects to destroy itself, it will change its state to destroying, causing
its scope to destroy it.

Now we are at a point where all the components have been created, published
their endpoints and their properties are set. The next step will be to interconnect
their sources and sinks by calling ComponentsScope::ConnectEndpoints(). For
the sake of simplicity, we decided to connect every pair with the same name and
data type. It might be reasonable to provide a way to make this process more
customizable, but for our needs this approach is sufficient.

26

By calling ComponentsContext::Run() we proceed to the main part of the ap-
plication, where most communication is completed by transferring data between
sources and sinks. It is also expected that a component may change the property
value of another, as in the case of the ‘CurrentItem’ property of ComponentSet.

In order to terminate the application, ComponentsContext::Stop() must be
called. The context will cancel all the pending asynchronous operations and
destroy all underlying entities.

27

7. AR.Drone

Parrot AR.Drone is a light-weight quadrocopter intended for wide audience. In
the following section, we provide general information about it. Next, we present
the implementation of its Glue component.

7.1 Features

At the time of the writing, the latest version available is Ar.Drone 2.0. We will
inspect its technical specifications, software capabilities and how an application
communicates with it.

7.1.1 Hardware

As seen in Figure 7.1, Ar.Drone 2.0 can be decomposed into several independent
parts. A mainframe (A) is made from carbon fibre tubes. Motors (B) have per-
formance of 14.5 Watt and are capable of 28,500 revolutions per minute (RPM).
They are attached to propellers (D) by gears (C). A main body (E) is protected
by an expanded polypropylene shield and from this material are also made the
indoor (Figure 7.1a) and outdoor (F) hull.

Apart from the rotation detection using IMU, it is also capable of detecting al-
titude, azimuth and horizontal speed. For altitude it contains an ultrasonic sensor
(G) and pressure sensor. The azimuth is gathered from a three axis magnetome-
ter. Its horizontal speed is acquired by a simple image recognition algorithm of
the output from a bottom-facing camera. There is also a HD camera (H) in the
front, with the maximum resolution of 1280 x 720 pixels.

We can also plug a storage device to the USB port in the main body. Storage
can be used to save flight data and video stream and Parrot also sells a USB
device that provides the AR.Drone 2.0 with a GPS. Communication with the
control device is done via the Wi-Fi adapter. Computing power of the device is
relatively high. Most of it is provided by 1GHz ARM processor and 1Gbit DDR2
RAM, there is also an 800MHz processor for video encoding.

7.1.2 Software

The operating system uses a version of embedded Linux, modified by Parrot.
The on-board controlling mechanism, communication with the control device and
video processing are implemented as a Linux executable file. We will call the file
firmware, although that name would fit the embedded Linux as well. Thus, a
firmware update is actually just a replacement of the file. As Parrot does not
provide the source code of the firmware, as this information may be convenient
to people developing their own.

Apart from the stabilization, the original firmware is capable of take-off, hov-
ering in one place, looping and landing. It is also responsible for communication
with the control device.

28

(a) Indoor hull

A

B

C
D

E

F

G

H

B

B
C

C

D

DD

(b) Outdoor hull, decomposed
(A) Main frame, (B) Motors, (C) Gears, (D) Propellers, (E) Main body, (F)
Outdoor hull, (G) Ultrasonic sensor, (H) HD camera

Figure 7.1: Parrot AR.Drone 2.0

29

7.1.3 Communication

Communication with AR.Drone is done over Wi-Fi. It creates a network and
expects the control device to connect to it. When the control device is connect-
ed, it obtains an IP address and can use ports 5554, 5555, 5556 and 5559 as
communication channels.

On UDP port 5556 the control device sends AT commands. Those are text
messages used to control flight angles, configuration and sensor calibration. Nav-
igation data, such as status, angles and velocity are sent to the control device on
UDP port 5554. A video stream is available on TCP port 5555. The protocols of
all the channels are described in the AR.Drone Developer Guide [8].

As Parrot encourages developers to create applications working with AR.Drone,
it provides ARDroneTool, a framework written in C and allowing the programmer
to use callbacks and function calls rather than implementing all the protocols.
Apple iOS application developers can also use the AR.Drone Engine, is a common
base for all applications meant to control AR.Drone.

7.2 Component Implementation

For AR.Drone communication component we decided not to use the ARDrone-
Tool, as it is a rather complex and cumbersome framework, into which we would
have little insight. Instead, we created a simple stand-alone library implement-
ing the given protocols. Its functionality is distributed between four classes:
ATCommandsSender, NavdataReceiver, ConnectionHelper and PaveVideoReceiver.
All utilize Boost.Asio and Boost.Signals2 libraries to behave as separate building
blocks, providing subscriptions to asynchronous events.

As its name suggests, ATCommandsSender is used to send the AT commands
to the drone. Available commands are represented by classes that inherit from
ATCommand. If needed in the future, new commands can be easily added.

NavdataReceiver listens on the appropriate port in order to periodically re-
ceive navigation data. It provides an interface to subscribe to the event of a
certain data receipt, for example to status or angles information.

ConnectionHelper utilizes both ATCommandsSender and NavdataReceiver

to manage connection with the drone. It handles its initialization and mainte-
nance, as well as restarts in case of disconnection.

For video frames transmission, AR.Drone uses Parrot Video Encapsulation
(PaVE) format. That is where the name PaveVideoReceiver originates. It
enables receipt of particular video frames, where every frame contains the infor-
mation concerning the used codec, resolution, its position in the stream, etc.

ARDroneGlueComponent uses the mentioned classes to incorporate AR.Drone
into Glue. In the following discussion we will inspect its interface. Its only
property is DroneState, which holds information on the current state of the
drone.

There is also a source of the same name, from which the state of the drone
is sent whenever it changes. Other important navigation data also have their
sources, namely DroneAngles, DroneVelocity, DroneAltitude and DroneBattery.
DroneCamera, a source that provides the particular video frames encoded in the
original codec.

30

The component contains two sinks. DroneStateCommand accepts commands
to change the drone state, the most important being TAKEOFF and LAND. DroneFlyCommand
is used to send the desired pitch, roll, yaw and gaz to the drone.

31

8. Control Device Components

The task of this chapter is to describe the method by which particular control
devices are plugged into the component system. Every device is represented by
at least two components. The first serves as a device driver, which implements
device inputs and outputs to the component system. The second, called the
control mapping component, provides methods to map axes and buttons of the
device to commands for the drone.

In the first section we inspect the ‘driver’ components for the joystick, gamepad
and 3D mouse. Their components are very similar, because all the devices men-
tioned belong to the USB human interface device (HID) class, whose characteristic
is summarized there. Novint Falcon cannot be utilized like that; therefore, its
component implementation is explained in the second section. The last section
reveals how the control mapping component is implemented.

8.1 USB HID

USB HID class[10] is a part of the USB specification for keyboards, mice, game
controllers and other human interface devices. Every device in this class is able
to provide a descriptor, in which are described the protocols of all the possible
reports to be sent between the device and its host. That allows the host to map
every byte on every report to the corresponding feature of the device, such as
rotation, translation, button press, etc.

Moreover, thanks to the HIDAPI library it is simple to work with these de-
vices. The library is a lightweight cross-platform layer, working on Windows,
Linux and Mac OS X. It enables the programmer to enumerate the available
USB HID class devices, connect to them and listen to their reports.

An alternative approach to enable control devices usage in a cross-platform
manner would be to use Simple DirectMedia Layer. It is a robust library created,
among others, to provide simple and unified access to game controllers. However,
we chose HIDAPI, as it provides finer control of communication with the devices.
Furthermore, if we develop a custom controlling device in the future, it will be
easier to add a support for it.

The only downside of this approach is that in order to create a general piloting
application, working with any type of input device, we must implement the HID
descriptor parser and create the endpoints dynamically. Although technically
feasible, it is not the goal of this thesis. The application is created only as a
tool for research and, as such, is not required to support all the joysticks and
gamepads available on the market. Instead, we selected a specific model of every
device type. As we know all its capabilities, we can ‘hardcode‘ the endpoints of
its component.

Speaking of the components, we must mention the HidGlueGenerator class.
When supplied to a ComponentSet, it fills it with components of the currently
connected USB HID class devices. Every component contains a HIDAPI handler
of the particular device. Whenever it receives a report from the device, it prop-
agates the axes and buttons data to the component system. The explanation of
the particular components follows.

32

As the joystick we chose Logitech Extreme 3D Pro (Figure 3.4), because it
enables rotating the stick in three degrees of freedom. Also, it contains the
throttle, giving altogether four axes to work with. Logitech Rumble Gamepad
F510 (Figure 3.3) is the second chosen device. As 3D Connexion Space Navigator
also belongs to the USB HID class, it is handled in this way as well.

8.2 Novint Falcon

Communication with Novint Falcon is done by using Novint Haptic Device Ab-
straction Layer (HDAL). [7] After the device is initialized, it creates a servo
thread. Its purpose is to communicate with the device at the frequency of 1 kHz
through callbacks that can be registered using HDAL. Callbacks can obtain the
3D position of the grip, status of the buttons and also provide the device a 3D
vector of force to perform. This interface is published to the component system
using the FalconGlueHDAL component.

In our application, we decided that without the user interaction, the grip will
stay on a center position. Whenever it is moved away from it, it uses the force
to center back. The intensity of the force grows linearly with the grip distance
from the center, which forms a virtual 3D spring. However, such a spring alone
would cause the grip to repeatedly bounce from side to side. In order to fix that,
we also added a virtual damper, which determines the grip velocity and applies
force in the opposite direction. Those two mechanisms proved to be sufficient
for rough centering, because the center position then had a threshold of about
1.5 centimeter in every direction. Therefore, we also added a small amount of
constant force targeting towards the center. That reduced the center position to
the cube with the edge of about 4 millimeters. This behavior is implemented in
the FalconHandlerGlue component.

8.3 Control Mapping

As the only aim of the control devices is to send commands to the drone, it
would be possible to put the control mapping logic directly into their components.
However, Glue allows us to perform a clear separation of concerns, which proved
itself to be the right method for designing applications. That is why we put the
mapping into a separate component called DroneControl.

Usually, components create all their endpoints when their Initialize()

method is called. DroneControl creates just a portion of endpoints instead,
namely DroneStateCommand and DroneFlyCommand sources to send the com-
mands to the drone and a configuration property named Mapping. This property
expects a list of device buttons mapped to particular drone commands and a list
of device axes mapped to pitch, roll, yaw and gaz.

Axis mapping is slightly more sophisticated than button mapping, as we need
to specify the transform function between the device and the drone command
coordinates. First, we determine the axis of the device and the flight parameter
to map it to. Second, we specify the maximum and minimum values of the axis,
along with the threshold, e.g. the size of the ‘dead zone.’ These values will be
used to map the data obtained to the interval of [−1, 1]. Finally, the magnitude

33

of the result will be passed either to linear, quadratic or cubic function, according
to the configuration.

When the Mapping property is set, the component creates the sinks for the
buttons and axes input. Whenever it recognizes a state command from any of
the buttons, it immediately sends the command through the DroneStateCommand
source. In the case of axes, it performs a simple multiplex: the desired flight
parameters are sent through the DroneFlyCommand source only when all four
flight parameters are gathered.

Mappings of particular devices are quite straightforward. Gamepad utilizes
its two sticks in the same way as the RC controller: left stick controls pitch and
roll, whereas the right stick alters yaw and gaz. For taking-off and landing LB
and RB buttons are used respectively. Joystick maps all the three rotation axes of
the stick to the rotation of the vehicle, while gaz can be altered by throttle. The
state commands mentioned are issued by buttons 1 and 2. The 3D mouse handles
the rotation in the same way as the joystick; gaz is controlled by translation on
the vertical axis. Left button is used to take-off and right button to land. In
the case of the Novint Falcon, we use the x, y and z distance from the center
to manipulate roll, pitch and gaz respectively. Yaw change is performed through
the side buttons of the handle, while taking-off and landing through the center
front and back buttons respectively.

34

9. User Interface

Qt is a robust cross-platform application framework currently developed by Digia,
a Finnish software company. It comprises, among others, Qt Quick, a framework
offering the possibility to build applications with rich graphical user interface
(GUI). The GUI is usually created using a declarative QML language, utilizing
Javascript for simple bindings, whereas the core application logic is implemented
in C++.

For the integration into Glue, we created the QmlLoader component. A QML
file specified in the File property is loaded together with any other QML files it
depends upon.

In order to publish values from the component system to the Qt Quick, we
utilize context properties. They allow publishing a QVariant or QObject instance
to the Qt Quick runtime under a unique name, which can be then used by GUI
bindings. QVariant acts as a union for the most common Qt data types, such
as numbers, strings and vectors. When a new value for the property arrives, we
overwrite the old value with it. QObject is the base class of all the classes used
in the Qt framework. We use it to provide more complicated objects to the Qt
Quick, for example RawVideoSource, through which we send video frames.

As we also wanted the GUI component to be configurable, it contains a Sinks

property that allows specifying sinks to create on the component and the names
under which they will be mapped to Qt Quick. During implementation of this
feature we overcame an unpleasant problem. As the endpoints in our application
are strongly typed, we would need to specify the type of every sink set up in
this way. However, to determine the exact type from a string would be very
problematic, as we would then need to have all the possible data types listed by
their name in certain places. The DataTypesContext class provided by Glue does
not suit this task, because it is filled dynamically and the name() obtained from
the type info is implementation-defined.

As a result, instead of directly creating the sinks, only sink intentions are
created. Every sink intention observes the relevant component scope and, when
a source with the given name appears, it creates the sink of the corresponding
type, registers it in the scope under the same name and publishes it to Qt Quick
runtime.

Another way the component interacts with the component system is by manip-
ulating the Current property of a ComponentSet. This behavior can be specified
in the Switches property, where particular switches are configured. Every switch
must obtain the name of the component it is set to operate on and the string
identifier under which to publish a QtSwitch class instance to the Qt Quick run-
time. The QtSwitch class inherits from the QAbstractListModel class used to
provide one-dimensional list to the Qt Quick runtime. When inserted into it,
QtSwitch enables the GUI components to list the names of the ComponentSet

children and to select one of them as active.
The final GUI created with the component for our application is shown in Fig-

ure 9.1. The screen serves the picture from the drone camera as the background
(A). On the bottom line, we see the information concerning battery status (B),
drone angles (C) and altitude (D). In the upper-right corner there is a drop-down

35

A

B

C D

E

Figure 9.1: Screenshot from the piloting application
(A) Picture from drone camera, (B) Battery status, (C) Angles, (D) Altitude,
(E) Control device selection

list of connected control devices (E), from which the user can choose the active
one.

36

Part III

Evaluation

37

10. Experiment Design

In order to explore new ways of R-UAV remote control, we have proposed several
devices comprising gamepad, joystick, 3DConnextion SpaceNavigator and Novint
Falcon. We have also implemented a software solution that enables us to use those
devices to control Ar.Drone quadrocopter. The next step of our research is to
compare, how much intuitive and difficult to use the particular devices are.

Therefore we decided to design an experiment where will some volunteers use
the devices to fullfil simple navigation tasks with the quadrocopter. As the vol-
unteers we need to find people interested in some sort of remotely controlled toys.
It is important to gather both experienced and inexperienced ones. Regarding
the inexperienced ones, it is useful to compare how difficult is for them to learn
to fly with the particular devices. On the other side, the experienced ones can
compare the user experience to the one they are accustomed to.

In the next two sections we will describe what flying scenarios pilots need to
perform and what are the measured variables in those scenarios.

10.1 Scenarios

Although R-UAVs are usually used in open land flying high over the ground, for
the purpose of testing we decided to fly indoors only at about altitude of 1-2
meters. That will prevent the quadrocopter to suffer damage in case of collision
with an obstacle or in case of falling to the ground; moreover, it will also allow
the capacity of the battery to be used effectively. Also, the inexperienced pilots
will more clearly see the position and orientation of the drone, allowing them to
closely focus on the control mechanism.

10.1.1 Poles

As the name of this scenario suggests, the main objects are two vertically standing
poles. Both are 2 meters high and they stand 4 meters from each other, in the
middle of this distance there is a starting point. It is a board in size of 1x1 meter
on which the quadrocopter is placed in the beginning. The pilot looks at this
scene from such a fixed point so that he can see both the poles and the starting
point and those three things do not overlap in his view. Several photographs of
this scenario are shown in Figure 10.1.

The task of the pilot is to take off and repeatedly circle the first and the second
pole, making an “8” symbol trajectory. Whenever he flies over the starting point
after circling the second pole, it counts as the end of the one round and the
beginning of the other round. He must perform 5 rounds totally for each device,
with the possibility to try it first.

The pilot is advised to use mainly the pitch and roll to perform manoeuvres.
The yaw and gaz manipulations should be used only to correct heading or height
of the quadrocopter.

38

Figure 10.1: Poles
Pictures of the first scenario

10.1.2 Maze

This scenario is going to be more difficult than the previous one, as the pilot will
be able to navigate only from the on-board camera of the quadrocopter. The pilot
must take into account the delay of the camera picture and also the distortion
caused by the camera lens.

As we can see in Figure 10.2 The ground plan of this scenario reminds a circuit
about 15 meters long with an abundance of obstacles. They have many forms,
some of them can be overcomed by flying through their center, others by flying
over them, under them etc.

Figure 10.2: Maze
Walkthrough of the second scenario

The pilot must fly through the whole circuit. Every obstacle acts as a check-
point, so that the pilot does not have to start from the beginning when he crashes.

39

For each device is enough to fly only one time; moreover, he does not have to use
all the devices, but only the ones he selects. As we have only limited amount of
time for every pilot, the maximum number of selected devices depends on how
quickly he finishes the previous scenario.

10.2 Criteria

Criteria can be split into two categories: subjective and objective. We will start
with the subjective ones. Probably the most important information about each
device is the fact how intuitive it was for the pilots to use it. Therefore, they
are asked to provide a rating in form of a number between 1 and 5 inclusively,
1 being the best and 5 being the worst. As this is the marking schema used
in Czech educational system, all the pilots should be familiar with it and have
similar measures. Along with the number they can optionally provide a written
comment.

Although we do not have the RC transmitter in the list of control devices
being tested, we added the option to provide rating for it. It is addressed to
the pilots which have an experience with this device and are able to rate and
comment it in the context of the other devices.

Regarding the objective criteria, we will measure three quantities: time needed
to fullfil the task, number of collisions with obstacles and number of crashes.
In the first scenario are those numbers counted for every round, in the second
scenario for every checkpoint.

To the measured time we do not count the time needed to take off or to
navigate to the starting position. As a collision we mean a situation when the
quadrocopter hits an obstacle, but does not fall to the ground. If the quadrocopter
falls to the ground or gets stucked in some position from which it needs to be
rescued by hand, we count it as a crash. As the obstacles we count also walls,
windows and other equipment of the room where the evaluation is taking place.

40

11. Results

Altogether, 19 volunteers attended the experiment, from which 11 had previous
experience with remotely controlled quadrocopters or similar vehicles. The topic
of this chapter presents results of the experiment, including subjective ratings of
all the devices and objective ratings of flights from both scenarios. Most of the
data presented are shown separately for three groups: all pilots, inexperienced
pilots and experienced pilots.

11.1 Subjective rating

We obtained a number-rating of each device from every pilot and moreover, 8
experienced pilots also provided a rating for the RC transmitter. The majority of
the pilots also gave text comments. Therefore, we can present a complete report
of the subjective ratings for particular devices.

In Figure 11.2 we find the complete histogram of all the ratings provided by the
pilots and means and medians for every device are summarized in Figure 11.1. As
can be seen, the least popular is joystick, followed by smartphone. The remaining
three devices have a similar average rating around 2, although their histograms
differ. An interesting fact is that in the group of inexperienced pilots, 3D mouse
and Novint Falcon clearly won. In the following paragraphs we will inspect each
device more closely with regard to its marks and comments.

The smartphone was the second least popular device. This was mostly caused
by bad ratings from inexperienced pilots, who did not find it very comfortable.
Probably the most serious problem was the fact that the right stick is virtual, so
the pilot does not feel to what extent it is shifted. Another complication appears
when he must tilt the phone and simultaneously use the right stick: the display
that must be touched is already in motion. On the other hand, the experienced
pilots gave the smartphone much better ratings, because they became used to
the mechanism relatively quickly.

The gamepad was given an average rating. On one hand, the pilot can feel the
rotation of both sticks. Also, the device is widely used for playing video games, so
many pilots were accustomed to it. On the other hand, mostly for the beginners
it was difficult to mentally distribute the control of one object into two hands, as
we expected.

The joystick received the worst rating among all devices. Pitch, roll and yaw
are controlled by one hand, which brings both advantages and disadvantages.
Some pilots found it more intuitive than the previous controllers; however, that
was outweighed by the fact that they were prone to alter the yaw by mistake.
Moreover, as the gaz is altered by the throttle, it is problematic to find the
position where the quadrocopter neither ascends nor descends.

Although the control mechanism of the 3D mouse is similar to the joystick,
its rating was much more positive. From inexperienced pilots it received no worse
mark than 2 and among the experienced there were only two pilots who gave lower
marks. Supporters of this device mostly appreciate its intuitivity, sensitivity and
the ability to combine several moves into one. When rotating the mouse, they
performed shorter moves that with the joystick. The only downside was that

41

Smartphone

Gamepad

Joystick

3D mouse

Novint Falcon

0.0 0.5 1.0 1.5 2.0 2.5 3.0

(a) All attendants

Smartphone

Gamepad

Joystick

3D mouse

Novint Falcon

0 1 2 3 4

(b) Unexperienced attendants

Smartphone

Gamepad

Joystick

3D mouse

Novint Falcon

0.0 0.5 1.0 1.5 2.0 2.5 3.0

(c) Experienced attendants

Figure 11.1: Subjective rating of particular control devices - mean and median
1 - best, 5 - worst

42

Smartphone

0
2

4
6

8
10

1 2 3 4 5

Gamepad

0
2

4
6

8
10

1 2 3 4 5

Joystick

0
2

4
6

8
10

1 2 3 4 5

3D mouse

0
2

4
6

8
10

1 2 3 4 5

Novint Falcon

0
2

4
6

8
10

1 2 3 4 5

(a) All attendants

Smartphone

0
1

2
3

4
5

1 2 3 4 5

Gamepad

0
1

2
3

4
5

1 2 3 4 5

Joystick

0
1

2
3

4
5

1 2 3 4 5

3D mouse

0
1

2
3

4
5

1 2 3 4 5

Novint Falcon

0
1

2
3

4
5

1 2 3 4 5

(b) Unexperienced attendants

Smartphone

0
1

2
3

4
5

6

1 2 3 4 5

Gamepad

0
1

2
3

4
5

6

1 2 3 4 5

Joystick

0
1

2
3

4
5

6

1 2 3 4 5

3D mouse

0
1

2
3

4
5

6

1 2 3 4 5

Novint Falcon

0
1

2
3

4
5

6

1 2 3 4 5

(c) Experienced attendants

Figure 11.2: Subjective rating of particular control devices - histograms
1 - best, 5 - worst

43

some people altered the gaz by mistake. However, unlike with the joystick, this
situation seldom occurred.

The Novint Falcon was rated as an average device among the experienced
pilots, but the inexperienced rated it similarly to the 3D mouse. As they were
not accustomed to a particular control mechanism, they accepted the Falcon,
although it significantly differs from the other devices. Some pilots found it very
intuitive; however, there were a few pilots who rated it too cumbersome.

The rating of the RC controller is merely orientational, as it was acquired by
only a portion of attendants. However, it provided an insight to how experienced
pilots see it compared with the tested devices. We observe that they rated it very
high, its rating similar to the 3D mouse rating among the inexperienced pilots.
That is caused by the fact that they are accustomed to it.

11.2 Poles

In this scenario, most of the pilots completed all five rounds. However, some of
them refused to continue when they repeatedly crashed the quadrocopter after
several rounds. Therefore, the total number of rounds performed differs slightly
among the devices, in the range of 86 to 91. Because of that, we must keep in
mind that all results should be normalized. We will present the rate of accidents
and the time needed to complete all the laps.

Speaking of accidents, for every round we measured the count of collisions
and crashes. As those quantities are closely related to each other, we decided to
present them together. Because every crash is, in fact, an unsuccessful attempt
to perform one round, for every device we defined the following variables:

total attempts = successful rounds + crashes

collision rate =
|{x ∈ rounds collisions;x > 0}|

total attempts

crash rate =
crashes

total attempts

Collision rate and crash rate are depicted in Figure 11.3. As shown, the joy-
stick had the highest crash rate among all devices, which corresponds to its poor
subjective rating, mostly by inexperienced pilots. They also reached very inter-
esting results with the 3D mouse. Although they collided with it in more than
the half the cases, they mostly managed to stabilize the quadrocopter and avoid
the crash. This phenomenon is similar to the Novint Falcon in the hands of
experienced pilots.

To present the measured round-times we decided to use a Beanplot [4], as it
provides us information concerning their distribution. Results are presented in
Figure 11.4. Again we can see, in the case of the joystick and smartphone, that
several pilots had problems using them, which extended their round-times above
40 seconds. The time distributions of the remaining three devices are similar.

44

Smartphone Gamepad Joystick 3D mouse Novint Falcon

0

10

20

30

(a) All attendants

Smartphone Gamepad Joystick 3D mouse Novint Falcon

0

10

20

30

40

50

(b) Unexperienced attendants

Smartphone Gamepad Joystick 3D mouse Novint Falcon

0

5

10

15

20

25

30

(c) Experienced attendants

Figure 11.3: Drone percentual accidents with particular devices

45

0
20

40
60

Smartphone

0
20

40
60

Gamepad

0
20

40
60

Joystick

0
20

40
60

3D mouse

0
20

40
60

Novint Falcon

(a) All attendants

0
20

40
60

Smartphone

0
20

40
60

Gamepad

0
20

40
60

Joystick

0
20

40
60

3D mouse

0
20

40
60

Novint Falcon

(b) Unexperienced and experienced attendants separated

Figure 11.4: Poles: Distribution of flight time per round in seconds

46

0
20

40
60

80
10
0

12
0

Gamepad

0
20

40
60

80
10
0

12
0

3D mouse

0
20

40
60

80
10
0

12
0

Novint Falcon

Figure 11.5: Maze: Distribution of flight time per round in seconds

11.3 Maze

Because the completion of this task was voluntary for the pilots, the amount
of data obtained differs among the devices. Only 1 pilot decided to use the
smartphone and 2 tried the joystick; therefore, we decided not to take those
devices into account in this section. Both the gamepad and Novint Falcon were
chosen by 6 attendants and the 3D mouse by 9. As there were 9 experienced
pilots and only 3 inexperienced, we decided not to divide the results.

The average numbers of collisions and crashes per track were very small: 1.5
collisions and 0.5 crashes. Moreover, it did not vary by much, so it brings no new
information to us.

The distributions of the time required to perform the track are shown in
Figure 11.5. The best results were obviously achieved with the 3D mouse.

47

12. Discussion

The purpose of this chapter is to interpret the results of the experiment in order
to provide the solution to the problem of the R-UAV remote human control.

Regarding experienced pilots, we learned that they are much less demanding
when it comes to the quality of control devices. This is mainly caused by the fact,
that they are already accustomed to use the ‘two sticks’ system. Therefore, they
mostly have little motivation to search for other methods of control. Furthermore,
special devices like Novint Falcon can seem unnatural for them.

On the other hand, inexperienced pilots have higher requirements for control
devices. The ‘two sticks’ system is not sufficiently intuitive for them and they
demand other means of control.

An analysis of all the devices follows, in which we inspect both their advan-
tages and disadvantages. We begin with the RC transmitter. Although we did
not test it directly in our evaluation, we obtained feedback from the experienced
pilots. According to them it is very similar to the gamepad and mostly differs by
its capability for use by two pairs of fingers and the greater accuracy of the sticks.
The main benefit for the pilots lies in its versatility, as one RC transmitter can be
used by several types of vehicles, including airplanes, cars and boats. However,
this is probably also its biggest problem, because it is not created specifically for
the type of the movement the R-UAV uses.

As we see from the results of the gamepad, the inexperienced pilots are not
very satisfied with the control mechanism, where four flight parameters are dis-
tributed between two hands. Furthermore, it cannot be used separately, but only
in combination with another device such as a PC or tablet. Its only advantage is
the fact, that it is commonly used by video game players.

Another device with a control mechanism similar to the previous two is the
smartphone. Pilots appreciate the use of its gyroscope in a manner that the
R-UAV copies the tilt of the phone. However, they did not become familiar
with the right virtual button, which was the source of numerous accidents. The
popularity of the smartphone as an R-UAV control mechanism grows along with
the popularity of the Ar.Drone. Regrettably, it does not bring any significant
progress to the control mechanism when compared to the RC transmitter.

To video game controllers also belongs the joystick ; moreover, it is used espe-
cially in flying simulators. Surprisingly, it appeared to be very cumbersome for
the inexperienced pilots. This was caused by the inconvenience in yaw and gaz
control mentioned before. Apparently, this method of combining three axes into
one does not prove to be beneficial.

On the contrary, 3D mouse, which combines all the four axes control in one
hand, came out as a winner, at least for the inexperienced pilots. It proved to
be the most intuitive method of control, because it feels like the pilot holds the
R-UAV in his hand. From the collision and crash rates we can see that the users
were able to avoid crashing it to the ground in case of collision with an obstacle.

The results of the Novint Falcon have shown that the experience with this
device is unique. Not only does it look different, but it also provides the user
a higher level of abstraction. When using the other devices, the users specify
the pitch and roll in order to move on a horizontal plane, On this device, they

48

simply specify the vector of the movement and let the R-UAV copy it. We must
say that not all pilots appreciated this behavior, but it was generally rated as
positive. Speaking of negatives, it lacks the fourth axis to control the yaw, as the
two buttons proved not to be satisfactory.

In conclusion, we fulfilled the goal of the thesis, as the 3D mouse and the
Novint Falcon have brought a new method of R-UAV control, which proved to be
intuitive both for beginners and experienced users. We are aware of the fact, that
the results from 19 people are statistically insignificant. However, this research
may provide a starting point for other projects, either commercial or scientific.

12.1 Future Work

An interesting topic for a project would be to extend our application to also work
on smartphones and tablets. If it proves technically feasible, it will allow people
to control the Ar.Drone using the 3D mouse without the need of a computer.
The structure of the application would enable developers to also add other types
of drones, as well as control devices.

The next step would be to incorporate the 3D mouse directly into the RC
transmitter, which would further extend the range of supported vehicles. That
would be a rather ambitious task, as the developers would probably need to
collaborate with a manufacturer.

As the Novint Falcon is dependent on a power supply, its use in practical
applications will be limited. Therefore, in order to use its presented control
mechanism, the authors would need to create a brand new device following this
principle.

49

Bibliography

[1] Reg Austin. Unmanned Aircraft Systems : UAV Design, Development and
Deployment. Wiley, 2010.

[2] Yu Takuya et al. Flexbot, 2014.

[3] Gary Fay. Derivation of the aerodynamic forces for the mesicopter simula-
tion, 2001.

[4] Peter Kampstra. Beanplot: A boxplot alternative for visual comparison of
distributions. Journal of Statistical Software, Code Snippets, 28(1):1–9, 2008.

[5] Tomáš Krajńık, Vojtěch Vonásek, Daniel Fǐser, and Jan Faigl. AR-Drone as
a Platform for Robotic Research and Education. In Research and Education
in Robotics: EUROBOT 2011, Heidelberg, 2011. Springer.

[6] Junichi Kunieda and Yukinobu Hoshino. Development of rc helicopter con-
trol skill study support system in consideration of user interface. In Proceed-
ings of the 18th International Conference on Fuzzy Systems, FUZZ-IEEE’09,
pages 957–962, Piscataway, NJ, USA, 2009. IEEE Press.

[7] Novint Technologies Incorporated. Haptic Device Abstraction Layer
(HDAL), 2008.

[8] Stephane Piskorski, Nicolas Brulez, Pierre Eline, and Frederic D’Haeyer.
Ar.Drone Developer Guide. Parrot, SDK 2.0 edition, 12 2012.

[9] John Salt. Rc helicopter material - plastic, aluminum, carbon fiber, 2008.

[10] USB Implementers’ Forum. Device Class Definition for Human Interface
Devices (HID), 2001.

[11] Kimon P. Valavanis, editor. Advances in Unmanned Aerial Vehicles. Intelli-
gent Systems, Control and Automation: Science and Engineering. Springer
Netherlands, 2007.

[12] Adrian Weber, Bernhard Jenny, Matthias Wanner, Juliane Cron, Philipp
Marty, and Lorenz Hurni. Cartography meets gaming: Navigating globes,
block diagrams and 2d maps with gamepads and joysticks. Cartographic
Journal, 47(1):92 – 100, 2010.

50

Attachments

51

CD Content

In the table below the top level folder structure of the enclosed CD is summarized.

Folder Contents
bin Executable file of the application

cmake CMake scripts to create Visual Studio projects from the
sources

doc Text of this thesis, user manual and Doxygen-generated tech-
nical documentation

evaluation Complete results of the evaluation, along with interesting
videos and images

sources Source code of the application

52

	Introduction
	Organization

	I Analysis
	Related Work
	R-UAV Characteristics
	Parts
	Configurations
	Manoeuvers
	On-board Controller

	Control Devices
	RC Transmitter
	Smartphone
	Gamepad
	Joystick
	3D Connexion SpaceNavigator
	Novint Falcon

	Problem Specification

	II Implementation
	Proposed Solution
	Glue Component System
	Entities
	Lifetime

	AR.Drone
	Features
	Hardware
	Software
	Communication

	Component Implementation

	Control Device Components
	USB HID
	Novint Falcon
	Control Mapping

	User Interface

	III Evaluation
	Experiment Design
	Scenarios
	Poles
	Maze

	Criteria

	Results
	Subjective rating
	Poles
	Maze

	Discussion
	Future Work

	Bibliography
	Attachments

