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Jaroslav Hájek
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e-mail vedoućıho: feist@karlin.mff.cuni.cz
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Department: Department of Numerical Mathematics
Supervisor: Prof. RNDr. Miloslav Feistauer, DrSc.
Supervisor’s e-mail address: feist@karlin.mff.cuni.cz
Abstract: This work is concerned with the numerical solution of initial-boundary value
problems for convection-diffusion partial differential equations. Three methods are stud-
ied and compared for this purpose: the combined finite element - finite volume (FE-FV)
method, the discontinuous Galerkin finite element (DGFE) method of lines, and the space-
time discontinuous Galerkin method. The combined FE-FV method uses piecewise linear
conforming finite elements for the discretization of the diffusion terms and piecewise con-
stant FV approximation of the convective terms. The relation between the FE and FV
approximations is determined by the so-called lumping operator. In the DGFE method
of lines, the space semidiscretization is carried out by piecewise polynomial functions
constructed over a triangular mesh, in general discontinuous on interfaces between neigh-
bouring elements. In the space-time DGFE method, the approximate solution is piecewise
polynomial in space as well as in time. We discuss both theoretical and practical aspects
of the methods, and present numerical results for each of them. For the DGFE method
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1 Introduction

The convection-diffusion-reaction equation arises naturally in a number of practical prob-
lems from science and technology. It has also a lot of theoretical importance being a simple
(even linear) model yet still having important properties of complex flows - convection
dominance and boundary layers. As such, it is a natural model for the development of
new techniques for solving convection-dominated problems. It is well known that applying
classical finite elements to these problems gives rise to the so-called Gibbs phenomenon
which degrades the numerical solutions or even makes them unusable. Several approaches
have been developed to face this problem. We study those based on the finite volume
method - the combined finite element - finite volume (FE-FV) method and the discontin-
uous Galerkin finite element (DGFE) method, the first being a combination of FV and
FE, the latter a natural generalization.

2 Combined Finite Element -

Finite Volume Method of Lines

The finite volume method (FVM) represents an efficient and robust method for the so-
lution of conservation laws and inviscid compressible flow. This technique is based on
expressing the balance of fluxes of conserved quantities through boundaries of control
volumes, combined with approximate Riemann solvers. On the other hand, the finite
element method (FEM), based on the concept of a weak solution defined with the aid of
suitable test functions is quite natural for the solution of elliptic and parabolic problems.
In the solution of nonlinear convection–diffusion problems, including viscous compressible
flow, it is quite natural to try to employ the advantages of both FV and FE methods in
such a way that the FVM is used for the discretization of inviscid Euler fluxes, whereas
the FEM is applied to the approximation of viscous terms. This idea leads us to the com-
bined finite volume–finite element method (FV–FE method) proposed in [24]. (Sometimes
it is also called the mixed FV–FE method.) The analysis and applications of this method
were investigated in [25], [23], [26], [1] [15]. The numerical computations for the system
of compressible viscous flow ([18], [27], [15], [20], [36]) demonstrate that the combined
FV–FE method is feasible and produces good numerical results for technically relevant
problems. The idea of using a combination of the FV and FE methods appears also in
[2], [29] and [30].
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2.1 Continuous problem

Let Ω ⊂ R2 be a bounded polygonal domain and T > 0. We consider the following
initial-boundary value problem: find a solution of the equation

∂u

∂t
+

2∑
s=1

∂fs(u)

∂xs

= ε ∆u + g in QT = Ω× (0, T ) (2.1)

with the initial condition
u(x, 0) = u0(x), x ∈ Ω, (2.2)

and the boundary condition
u|∂Ω×(0,t) = 0. (2.3)

We assume that the data have the following properties:

1. fs ∈ C1(R), fs(0) = 0, s = 1, 2,

2. ε > 0,

3. g ∈ C([0, T ]; L2(Ω)),

4. u0 ∈ L2(Ω).

Let the functions fs have a bounded derivative: |f ′s| ≤ cf ′ . Then they satisfy the Lipschitz
condition with the constant c∗l = cf ′ . The constant ε is the diffusion coefficient and the
functions fs are fluxes of the quantity u in the directions xs.

We shall use the following notation:

(u, v) =

∫
Ω

u v dx, u, v ∈ l2(Ω), (2.4)

a(u, v) = ε

∫
Ω

∇u · ∇v dx, u, v ∈ H1(Ω), (2.5)

b(u, v) =
2∑

s=1

∫
Ω

∂fs(u)

∂xs

v dx, u ∈ H1(Ω) ∩ L∞(Ω), v ∈ L2(Ω), (2.6)

(2.7)

2.2 Discrete problem

Let Th be a partition of the closure Ω of the domain Ω formed by a finite number of closed
triangles K called finite elements. We number all elements in such a way that we can
write Th = {Ki}i∈I , where I ⊂ Z+ = {0, 1, 2, . . . } is a suitable index set. We assume that
the triangulation Th satisfies the following conditions:

Ω =
⋃
i∈I

K
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and two different elements Ki, Kj are either disjoint or have a common vertex or a common
side.

Further, we shall consider a mesh Dh = {Di}i∈J formed by closed triangles Di, which
will be called finite volumes. Symbol J ⊂ Z+ denotes a suitable index set. We assume
that the mesh Dh has the same properties as the triangulation Th. If two finite volumes
Di, Dj ∈ Dh have a common side, we call them neighbours. Then we set

Γij = ∂Di ∩ ∂Dj = Γji (2.8)

and
s(i) = {j ∈ J ; j 6= i, Dj is a neighbour of Di}. (2.9)

The sides of finite volumes adjacent to the boundary ∂Ω, which form this boundary,
will be denoted by Sj and numbered by indices j ∈ Jb ⊂ Z− = {−1,−2, . . . }. Thus,
J ∩ Jb = ∅ and ∂Ω =

⋃
j∈Jb

Sj. For a finite volume Di adjacent to the boundary ∂Ω we
write

γ(i) = {j ∈ Jb; Sj ⊂ ∂Ω ∩ ∂Di} , (2.10)

Γij = Sj, for j ∈ γ(i).

If Di is not adjacent to ∂Ω, then we set γ(i) = ∅. Further, we put

S(i) = s(i) ∪ γ(i). (2.11)

Then

∂Di =
⋃

j∈S(i)

Γij, (2.12)

∂Di ∩ ∂Ω =
⋃

j∈γ(i)

Γij, (2.13)

|∂Di| =
∑

j∈S(i)

|Γij|, (2.14)

where |∂Di| is the length of ∂Di and |Γij| is the length of the side Γij. By nij we shall
denote the unit outer normal to ∂Ki on the side Γij.

For k ∈ Z+, K ∈ Th we denote by P k(K) the space of all polynomials on K of degree
≤ k. In what follows the following finite element spaces

Xh = {vh ∈ C(Ω); vh|K ∈ P 1(K) ∀K ∈ Th}, (2.15)

Vh = {vh ∈ Xh; vh|∂Ω = 0} (2.16)
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and the finite volume space

Yh = {vh ∈ L2(Ω); vh|Di
∈ P 0(Di) ∀i ∈ J} (2.17)

will be used.

The relation between the FE and FV spaces is given by the lumping operator

Lh : Xh → Yh

or, more general,
Lh : C(Ω) → Yh.

Let u be a classical solution of problem (2.1) – (2.3). We multiply equation (2.1) by a
test function v ∈ Vh, integrate over Ω and apply Green’s theorem. We obtain the identity(

∂u

∂t
, v

)
+
∑
i∈J

∫
Di

2∑
s=1

∂fs(u)

∂xs

v dx + a(u, v) = (g, v). (2.18)

In order to approximate the terms with fluxes fs, the test function v is replaced by Lhv:

∑
i∈J

∫
Di

2∑
s=1

∂fs(u)

∂xs

v dx ≈
∑
i∈J

Lhv|Di

∫
Di

2∑
s=1

∂fs(u)

∂xs

dx (2.19)

If we apply Green’s theorem to the right-hand side and approximate fluxes with the aid
of a so-called numerical flux H, we get∫

Di

2∑
s=1

∂fs(u)

∂xs

dx =

∫
∂Di

2∑
s=1

fs(u) ns dS =
∑

j∈S(i)

∫
Γij

2∑
s=1

fs(u) ns dS

≈
∑

j∈S(i)

H(Lhu|Di
, Lhu|Dj

, nij) |Γij| (2.20)

For the faces Γij ⊂ ∂Ω (i. e. j ∈ γ(i)) we use the boundary condition (2.3), on the basis
of which we set H(Lhu|Di

, Lhu|Dj
, nij) = 0. As a result we obtain the approximation of

the convective terms represented by the form

bh(u, v) =
∑
i∈J

Lhv|Di

∑
j∈s(i)

H(Lhu|Di
, Lhu|Dj

, nij) |Γij|. (2.21)

Now we define an approximate solution of problem (2.1) - (2.3) as a function uh ∈
C1([0, T ]; Vh) satisfying the conditions(

∂uh

∂t
, vh

)
+ bh(uh, vh) + a(uh, vh) = (g, vh), ∀vh ∈ Vh (2.22)
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uh(0) = u0
h = Πhu

0, (2.23)

where Πh is the operator of Xh-interpolation.

These are equivalent to a system of ordinary differential equations, which can be solved,
e.g. by the Runge-Kutta method. In [21], a priori error estimate (theoretical order of
convergence) was established for the above method with lumping operator defined as

Lhv|Di
=

1

|Di|

∫
Di

v dx, i ∈ J. (2.24)

We give the main result:

Theorem 1 Given the above assumtpions, the error eh = u − uh, where u is the exact
solution of problem (2.1) – (2.3) satisfying

u ∈ C([0, T ]; H2(Ω)). (2.25)

and uh is the approximate solution defined by (2.22), satisfies the inequalities

max
t∈[0,T ]

||eh||L2(Ω) ≤ C h (2.26)

and

√
ε

√∫ T

0

|eh(ϑ)|2H1(Ω) dϑ ≤ C h. (2.27)

This theorem states that the order of convergence of combined FE-FV method is at
least one. Here we shall verify the optimality of estimate (2.26). See section 5.2. For
many practical applications, higher order schemes are desirable, as they generally lead to
reduction in number of unknowns. The finite volume method, using a piecewise constant
approximations, is uncapable to achieve higher-order convergence on general unstructured
meshes. The discontinuous Galerkin finite element method, introduced in next section,
addresses this problem.

3 Discontinuous Galerkin Method of Lines

The discontinuous Galerkin finite element method (DGFEM) is a generalization of both
traditional FE and FV schemes. It uses a higher-order piecewise polynomial approxima-
tion (like FE scheme), but discontinuities are allowed on element boundaries and handled
by the numerical flux (like in FV schemes).

The original DGFE method was introduced in [38] for the solution of a neutron trans-
port linear equation and analyzed in [37],[35]. The DGFE techniques for the numerical
solution of elliptic problems were developed in [5], [43]. Further, the DGFE method was

9



applied to nonlinear conservation laws ([12], [34]), compressible flow ([7], [8], [9], [19], [16],
[31], [42]), and many other problems. Theoretical analysis of various types of the DGFE
method applied to elliptic problems can be found, e.g. in [6], [3] and [4]. In [39], DGFE
analysis is performed in the case of a parabolic problem with a nonlinear diffusion. In
[33], analysis of hp-version of the DGFE method applied to stationary advection-diffusion-
reaction equations is analyzed. A survey of DGFE methods and techniques can be found
in [11] and [10]. It is common to use space semidiscretization for nonstationary problems,
i.e. to discretize the equation in the space variables and consider time continuous. This
approach results in a system of ordinary differential equations, for which very spohisti-
cated solvers exist. In this section, we shall develop an a posteriori error estimate for the
DGFE space semidiscretization applied to linear convection-diffusion equation. We build
on the work presented in [41]. The estimate therein is derived with the inverse assumption
(quasi-uniformity of the mesh). Although the authors claim that it can be done without
it, it is actually used at several places of the proof. We try to get rid of this assumption
rigorously, by introducing a stronger version of the “continuous reconstruction” lemma
from [41]. We also track the contribution of problem parameters ε,γ0 into the a posteriori
estimate.

3.1 Continuous problem

Let Ω ⊂ Rd be a polygonal (for d = 2) or polyhedral (for d = 3) domain with a Lipschitz
boundary ∂Ω and let T > 0. We set QT = Ω × (0, T ). We consider the following
initial-boundary value problem: Find u : QT → R such that

∂u

∂t
+ v · ∇u− ε∆u + cu = g in QT , (3.28)

u = uD on ∂Ω− × (0, T ), (3.29)

ε
∂u

∂n
= uN on ∂Ω+ × (0, T ), (3.30)

u(x, 0) = u0(x), x ∈ Ω. (3.31)

We assume that ∂Ω = ∂Ω− ∪ ∂Ω+ and

v(x, t) · n(x) < 0 on ∂Ω−, (3.32)

v(x, t) · n(x) > 0 on ∂Ω+ ∀t ∈ (0, T ). (3.33)

By n(x) we mean the unit outer normal to ∂Ω, ∂Ω− is the inflow and ∂Ω+ is the outflow
part of the boundary. In the case ε = 0 we put uN = 0 and ignore the Neumann condition
(3.30).

3.1.1 Assumptions on data

We assume that the data satisfy the following conditions:
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1. g ∈ C([0, T ); L2(Ω));

2. u0 ∈ L2(Ω);

3. uD is the trace of some u∗ ∈ C([0, T ); H1(Ω)) ∩ L∞(QT ) on ∂Ω− × (0, T );

4. v ∈ C([0, T ); W 1,∞(Ω)), |v|, ‖∇v‖ ≤ Cv a.e. in QT ;

5. c ∈ C([0, T ); L∞(Ω)), |c(x, t)| ≤ Cc a.e. in QT ;

6. c− div v/2 ≥ γ0 ≥ 0 in QT with a constant γ0;

7. uN ∈ C([0, T ); L2(∂Ω+);

8. ε ≥ 0.

Assumption 6 is not very restrictive since we can use the transformation u = eαtw, α =
const. to get a transformed equation for w:

∂w

∂t
+ v · ∇w − ε∆w + (c + α)w = ge−αt.

The condition 6 now becomes

c + α− 1

2
div v ≥ γ0 > 0

which is satisfied with α large enough.

The weak formulation is derived as in [22]. We set

V = {ϕ ∈ H1(Ω); ϕ|∂Ω− = 0}.

The weak solution to (3.28)-(3.31) is then a function satisfying the conditions

u− u∗ ∈ L2(0, T ; V ), u ∈ L∞(QT ), (3.34a)

d

dt

∫
Ω

uϕ dx + ε

∫
Ω

∇u · ∇ϕ dx +

∫
∂Ω+

(v · n) uϕ dS

−
∫

Ω

u div(ϕv) dx +

∫
Ω

cuϕ dx =

∫
Ω

gϕ dx +

∫
∂Ω+

uNϕ dS

for all ϕ ∈ V in the sense of distributions on (0, T ),

(3.34b)

u(0) = u0 in Ω. (3.34c)

We shall assume the existence of u and its sufficient regularity, namely

∂u

∂t
∈ L1(0, T ; Hp+1(Ω)), u ∈ L1(0, T ; Hp+1(Ω)) ∩ L2(0, T ; Hp+1(Ω)), (3.35)

where p is the given degree of polynomial approximation defined in the next subsection.
It is possible to show that such a solution satisfies equation (3.28) pointwise (almost ev-
erywhere) and u ∈ C([0, T ); Hp+1(Ω)). If ε > 0, then it is possible to show the uniqueness
of the solution and a stronger regularity ∂u/∂t ∈ L2(QT ).
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3.2 Discretization

Let Th = {Ki; i ∈ I} (⊂ N is an index set) be a standard triangulation of Ω formed
by i finite number of closed triangles (d = 2) or tetrahedra (d = 3). If two elements
Ki, Kj share a (d − 1)-dimensional face, we call them neighbours. In this case we put
Γij = Γji = ∂Ki ∩ ∂Kj. For i ∈ I we set

s(i) = {j ∈ I; Kj is a neighbour of Ki}.

The boundary ∂Ω is formed by a finite number of faces of elements adjacent to ∂Ω. We
denote all these boundary faces by Sj, where j ∈ Ib ⊂ Z− = {−1,−2, . . .} and set

γ(i) = {j ∈ Ib; Sj is a face of Ki}.

Obviously for Ki not containing boundary faces γ(i) = ∅. We further set Γij = Sj for
j ∈ γ(i). By definition, s(i) ∩ γ(i) = ∅ for all i ∈ I. Writing S(i) = s(i) ∪ γ(i), we have

∂Ki =
⋃

j∈S(i)

Γij, ∂Ki ∩ ∂Ω =
⋃

j∈γ(i)

Γij.

For K ∈ Th we denote by hK the diamater of K and by ρK the radius of the largest
inscribed ball. We set hmax = maxi∈I hKi

. In the following we shall consider a family
of triangulations distinguished by the parameter h ∈ (0, h0). From now on, by the term
“global constant” we mean a positive constant that is independent of ε, γ0, h, Th or other
indices or elements. It may (and usually does) depend on p and other global constants.
We shall assume the uniform shape-regularity of Th: there exists a global constant CT
such that

hK

ρK

≤ CT ∀K ∈ Th. (3.36)

We introduce the so-called broken Sobolev space

Hk(Ω, Th) = {ϕ; ϕ|K ∈ Hk(K) ∀K ∈ Th} (3.37)

and define the seminorm

|ϕ|Hk(Ω,Th) =

(∑
i∈I

|ϕ|2Hk(K)

) 1
2

. (3.38)

For ϕ ∈ H1(Ω, Th) and i ∈ I, j ∈ s(i) we shall use the notation

ϕ|Γij
= the trace of ϕ|Ki

on Γij, (3.39)

ϕ|Γji
= the trace of ϕ|Kj

on Γji, (3.40)

〈ϕ〉Γij
=

1

2
(ϕ|Γij

+ ϕ|Γji
), (3.41)

[ϕ]Γij
= ϕ|Γij

− ϕ|Γji
, (3.42)

nij = the unit outer normal to ∂Ki on the face Γij. (3.43)
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In the sequel we shall often omit the notation |Γij
in the above, if it can be deduced, e.g.,

from the integration domain of an integral. If ϕ ∈ H1(Ω, Th) and we prescribe a boundary
condition ϕD for ϕ, then we extend the above notation in such a way that in the case
Γij = Γji ⊂ ∂Ω formulae (3.39)-(3.42) are used with ϕ|Γji = ϕD|Γji

. Further, for i ∈ I we
set

∂K−
i (t) = {x ∈ ∂Ki; v(x, t) · n(x) < 0}, (3.44)

∂K+
i (t) = {x ∈ ∂Ki; v(x, t) · n(x) > 0}, (3.45)

where n denotes the unit outer normal. In the following we shall not emphasize the
dependence of ∂K+

i and ∂K−
i on time by notation.

The derivation of the discrete problem also closely follows [22]. On the basis of (3.28),
(3.35) and Green’s theorem we find that the exact solution satisfies the following identity
for ϕ ∈ H2(Ω, Th):(

∂u(t)

∂t
, ϕ

)
+ ah(u(t), ϕ) + bh(u(t), ϕ) + ch(u(t), ϕ) + + εJσ

h (u(t), ϕ) = lh(ϕ)(t). (3.46)

The forms in (3.46) are defined as follows:

(u, ϕ) =

∫
Ω

uϕ dx, (3.47)

ah(u, ϕ) = ε
∑
i∈I

∫
Ki

∇u · ∇ϕ dx

− ε
∑
i∈I

∑
j∈s(i),j<i

∫
Γij

(〈∇u〉 · nij[ϕ]− 〈∇ϕ〉 · nij[u]) dS

− ε
∑
i∈I

∫
∂K−

i ∩∂Ω

((∇u · n)ϕ− (∇ϕ · u)u) dS,

(3.48)

bh(u, ϕ) =
∑
i∈I

∫
Ki

(v · ∇u) ϕ dx−
∑
i∈I

∫
∂K−

i ∩∂Ω

(v · n) uϕ dS

−
∑
i∈I

∫
∂K−

i \∂Ω

(v · n)[u]ϕ dS,

(3.49)

ch(u, ϕ) =

∫
Ω

cuϕ dx, (3.50)

Jσ
h (u, ϕ) =

∑
i∈I,j∈s(i)

∫
Γij

σ[u][ϕ] dS +
∑
i∈I

∫
∂K−

i ∩∂Ω

σuϕ dS, (3.51)
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lh(ϕ)(t) =

∫
Ω

g(t)ϕdx +
∑
i∈I

∫
∂K+

i ∩∂Ω

uN(t)ϕ dS

+ ε
∑
i∈I

∫
∂K−

i ∩∂Ω

σuD(t)ϕ dS + ε
∑
i∈I

∫
∂K−

i ∩∂Ω

uD(t)(∇ϕ · n) dS

−
∑
i∈I

∫
∂K−

i ∩∂Ω

(v · n)uD(t)ϕ dS,

(3.52)

where σ|Γij
= 1/ diam(Γij).

The approximate solution will be sought in the space C1([0, T ); Sh) ,where Sh is the
finite element space

Sh = {ϕ ∈ L2(Ω); ϕ|K ∈ P p(K) ∀K ∈ Th}.

For the sake of a posteriori error estimate we shall also need an additional restriction on
uD:

uD ∈ Sh(∂Ω−) = {ϕ ∈ C(∂Ω−); ∀j ∈ Ibϕ|Sj
∈ P p(Sj)}, (3.53)

where P p(Sj) denotes the set of restrictions on sj of all polynomials of degree ≤ p. This
condition is somewhat restrictive but is often satisfied in practice. Note that it is not
needed for the discrete problem. The DGFE discrete problem now reads: Find a finite
element function uh such that

uh ∈ C1([0, T ); Sh), (3.54a)(
∂uh(t)

∂t
, ϕh

)
+ ah(uh(t), ϕh) + bh(uh(t), ϕh) + ch(uh(t), ϕh)

+ ε Jσ
h (uh(t), ϕh) = lh(ϕh)(t),

(3.54b)

(uh(0), ϕh) = (u0, ϕh) (3.54c)

for all ϕh ∈ Sh. In the case ε = 0 we allow p = 0 (the finite volume method for hyperbolic
problems).

3.3 Auxiliary results

Lemma 1 There exists a global constant CΠ and a mapping Π: Hp+1(K) → P p(K), p ≥
1, such that

‖Πv − v‖L2(K) ≤ CΠhp+1
K |v|Hp+1(K), (3.55a)

|Πv − v|H1(K) ≤ CΠhp
K |v|Hp+1(K), (3.55b)

|Πv − v|H2(K) ≤ CΠhp−1
K |v|Hp+1(K) (if p ≥ 1), (3.55c)

for all v ∈ Hp+1(K), K ∈ Th, h ∈ (0, h0). The operator Π can be chosen as the L2(K)-
projection on P p(K).

14



Proof. See [22], Lemma 4.1.

Lemma 2 There exists a global constant CM such that

‖v‖2
L2(∂K) ≤ CM

(
‖v‖L2(K)|v|H1(K) + h−1

K ‖v‖2
L2(K)

)
∀K ∈ Th, v ∈ H1(K), h ∈ (0, h0).

(3.56)

Proof. See [17].

Lemma 3 There exists a global constant CI such that

|v|H1(K) ≤ CIh
−1
K ‖v‖L2(K) ∀K ∈ Th, v ∈ P p(K). (3.57)

Lemma 4 Let Q1, Q2 be a pair of nonzero quadratic forms on a real finite-dimensional
space X with Q1 positive semidefinite, and let ker Q1 ⊂ ker Q2. Then there exists a
constant C > 0 such that

C Q1(x) ≥ Q2(x) ∀x ∈ X. (3.58)

Proof. Let Y = (ker Q1)
⊥. Then Q1 is positive definite on Y , i.e. for some γ > 0

Q1(y) ≥ γ ‖y‖2 ∀y ∈ Y. (3.59)

As Q2 is continuous,
Q2(x) ≤ c ‖x‖2 ∀x ∈ X (3.60)

with some c > 0. Writing any x ∈ X as x = y + ȳ, y ∈ Y, ȳ ∈ ker Q2, we get

c

γ
Q1(x) =

c

γ
Q1(y) ≥ c‖y‖2 ≥ Q2(y) = Q2(x) (3.61)

which concludes the proof.

Lemma 5 Let Γ̂ be a reference face and let φ̂l, l = 1, . . . ,
(

p+1
d−1

)
, be a basis of the space

P p(Γ̂). Then there exists a global constant CΓ̂ such that for any Γij, i ∈ I, j ∈ S(i) and
any v ∈ P p(Γij) we have

CΓ̂‖v‖
2
L2(Γij)

≥ diam(Γij)
d−1

(p+1
d−1)∑
l=1

β2
l , (3.62)

where βl are given by the (unique) decomposition

v =

(p+1
d−1)∑
l=1

βlφl, φl = φ̂l ◦ F−1
ij (3.63)

and Fij : Γ̂ → Γij is an affine one-to-one mapping.
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Proof. We use Lemma 4 with the following pair of quadratic forms in βl, l = 1, . . . ,
(

p+1
d−1

)
:

Q1 = ‖
(p+1

d−1)∑
l=1

βlφ̂l‖2
L2(Γ̂ij)

, (3.64)

Q2 =

(p+1
d−1)∑
l=1

β2
l . (3.65)

Apparently Q1 is positive semidefinite, and since φ̂l form a basis, both Q1 and Q2 are
regular (i.e. have trivial kernel). The conditions of Lemma 4 are thus satisfied. To
complete the proof it suffices to notice that

∥∥ (p+1
d−1)∑
l=1

βlφ̂l

∥∥2

L2(Γ̂ij)
= ‖v ◦ Fij‖L2(Γ̂ij)2

=
|Γij|
|Γ̂|

‖v‖2
L2(Γij)

(3.66)

and, by shape regularity (3.36)

c |Γij| ≥ diam(Γij)
d−1 (3.67)

with a global constant c.

To be able to rigorously derive an a posteriori error estimate without an assumption of
the quasi-uniformity of the mesh (or the so-called inverse assumption), we need a more
general version of Lemma 6 in [41] about the properties of the continuous reconstruction
- construction of a globally continuous approximate solution from a piecewise continuous
one. The following lemma proves the continuous reconstruction operator to have “enough
locality”.

We define the continuous piecewise polynomial space as Ŝh = C(Ω) ∩ Sh.

Lemma 6 Let there exist a global constant ks such that any vertex, edge or face of the
mesh is shared by no more than ks elements. Then there exists a linear operator

C : Sh × Sh(∂Ω−) → Ŝh

with the following property: If wi, i ∈ I, are positive numbers satisfying the condition

wi ≤ kwwj ∀i ∈ I, j ∈ s(i) (3.68)

with a global constant kw, then there exists a global constant C such that any u ∈ Sh(Ω),
û = C(u, uD) satisfy

û|∂Ω− = uD (3.69)

and ∑
i∈I

wi‖u− û‖2
L2(Ki)

≤ C
∑
i∈I

wihKi
‖[u]‖2

L2(∂Ki)
(3.70)

with [u] on Γij = Sj given by the extended notation introduced in subsection 3.2.
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Proof. Let {φl}dim Ŝh
l=1 be a standard node-based basis for the conforming (continuous)

finite element space Ŝh and {xl}dim Ŝh
l=1 be the setof the corresponding nodes, i.e. span{φl} =

Ŝh, φl(xm) = δlm. We denote Il = {i; Ki ⊂ supp φl}. We can (uniquely) decompose u as

u =

dim Ŝh∑
l=1

∑
i∈Il

αli φl|Ki
. (3.71)

To deal with the boundary condition, we shall denote L−b = {l; xl ∈ ∂Ω−} and decompose
also uD as

uD =
∑
l∈L−b

αlb φl|∂Ω− . (3.72)

We also denote
γ(i)− = {j ∈ γ(i); Γij ⊂ ∂Ω−}. (3.73)

For simplicity of the notation, we shall treat b as a special index from an extended index
set Ib = I ∪{b} and allow the expression αli to become αlb for i = b. We shall also denote

Ib
l =

{
Il l /∈ L−b
Il ∪ {b} l ∈ L−b

. (3.74)

Now we define û as

û =

dim Ŝh∑
l=1

ᾱlφl, (3.75)

where we set

ᾱl =

{ P
i∈Il

αli

#Il
l /∈ L−b

αlb l ∈ L−b
. (3.76)

For any i ∈ I, let us denote Li = {l; Ki ⊂ supp φl}. We can write∑
i∈I

wi‖u− û‖2
L2(Ki)

=
∑
i∈I

wi

∥∥∥∑
l∈Li

(αli − ᾱl)φl|Ki

∥∥∥2

L2(Ki)

≤
∑
i∈I

wi#Li

∑
l∈Li

‖(αli − ᾱl)φl|Ki
‖2

L2(Ki)

≤ ks

dim Ŝh∑
l=1

∑
i∈Il

wi‖(αli − ᾱl)φl|Ki
‖2

L2(Ki)

≤ k1

dim Ŝh∑
l=1

(
max
i∈Il

hd
Ki

wi

)∑
i∈Il

(αli − ᾱl)
2,

(3.77)
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where k1 is a global constant. Now we use Lemma 5 to estimate∑
i∈I

wihKi
‖[u]‖2

L2(∂Ki)\∂Ω+ =
∑
i∈I

wihKi

∑
j∈s(i)∩γ(i)−

‖[u]‖2
L2(Γij)

≥ k2

∑
i∈I

wihKi

∑
j∈s(i)

∑
l∈Li∩Lj

diam(Γij)
d−1 (αli − αlj)

2

+
∑

j∈γ(i)−

∑
l∈Li∩L−b

diam(Γij)
d−1 (αli − αlb)

2


(3.78)

= k2

dim Ŝh∑
l=1

∑
i∈Il

wihKi

∑
j∈s(i)

diam(Γij)
d−1 (αli − αlj)

2

+
∑

j∈γ(i)−

diam(Γij)
d−1 (αli − αlb)

2


≥ k3

dim Ŝh∑
l=1

(
min
i∈Il

hd
Ki

wi

)∑
i∈Il

∑
j∈s(i)

(αli − αlj)
2 + #γ(i)−(αli − αlb)

2

 ,

where k2, k3 are global constants. Because of the fact that #Ib
l ≤ ks, there exists a global

constant k4 such that
min
i∈Ib

l

hd
Ki

wi ≥ k4 max
i∈Ib

l

hd
Ki

wi. (3.79)

Now we use Lemma 4. We see that to conclude the proof we must show that for some
global constant k5

Q1
l (αli, i ∈ Ib

l ) ≤ k5 Q2
l (αli, i ∈ Ib

l ), l = 1, . . . , dim Ŝh, (3.80)

where

Q1
l (αli, i ∈ Ib

l ) =
∑
i∈Il

(αli − ᾱl)
2, (3.81)

Q2
l (αli, i ∈ Ib

l ) =
∑
i∈Il

∑
j∈s(i)

(αli − αlj)
2 + #γ(i)−(αli − αlb)

2

 . (3.82)

As both Q1
l and Q2

l are sums of squares of linear terms, they are positive semidefinite
quadratic forms. To use Lemma 4 we must also show that ker Q1

l ⊂ ker Q2
l . Since⋃

i∈Il

Ki = supp φl
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and supp φl is closed and connected, the oriented graphs

Gl =
(
Ib
l ; {(i, j); i ∈ Il, j ∈ Il ∩ s(i)} ∪ {(i, b); i ∈ Il, γ(i)− 6= ∅}

)
are weakly connected. Thus

Q2
l (αli, i ∈ Ib

l ) = 0 ⇔ ∀(i, j) ∈ Gl αli = αlj

⇒ ∀i ∈ Il, j ∈ Ib
l αli = αlj ⇒ Q1

l (αli, i ∈ Ib
l ) = 0.

(3.83)

Now we can employ Lemma 4 for (3.80), but this time the quadratic forms Q1
l , Q

2
l depend

on the mesh. Although they are mesh dependent, they depend only on the graph Gl and
not on the shape or size of elements Ki. Due to the fact that #Ib

l ≤ ks, there are only
finitely many graphs and one can always pick the largest constant k5 that satisfies (3.80).
This concludes the proof.

3.4 A posteriori error estimate

Since we shall not be interested in estimating the error due to initial condition, we shall
assume that e(0) = 0, i.e. u ∈ Sh. For simplicity of notation we introduce the following
norm over a subset B of either ∂Ω or ∂Ki for some i ∈ I:

‖ϕ‖v,B = ‖
√
|v · n|ϕ‖L2(B), (3.84)

where n is the corresponding outer unit normal. Moreover, from now on we shall not
emphasize the dependence of e on time by notation, i.e. we shall write simply e instead
of e(t). We denote

ρI =
∂e

∂t
+ v · ∇e− ε∆e + ce =

∂uh

∂t
+ v · ∇uh − ε∆uh + cuh − g (3.85)

the interior residual. Moreover, on each edge we define ρB0 = [e] = [uh], ρB1 = [∇e] ·
n = [∇uh] · n. These quantities are easily computable once the approximate solution is
computed. The main result of this section follows:

Theorem 2 There exists a global constant C such that

1

2
‖e‖2

L∞(0,T ;L2(Ω)) + ε |e|2L2(0,T ;H1(Ω)) + γ0‖e‖2
L2(0,T ;L2(Ω))

≤ C
∑
i∈I

(
ε−1h2

Ki
‖ρI‖2

L2(0,T ;L2(Ki))
+ γ−1

0 hKi

∥∥∂ρB0

∂t

∥∥2

L2(0,T ;L2(∂K\∂Ω+))

+(εh−1
Ki

+ ε−1hKi
+ γ−1

0 hKi
+ 1)‖ρB0‖2

L2(0,T ;L2(∂Ki\∂Ω+))+

εhKi
‖ρB1‖2

L2(0,T ;L2(∂Ki\∂Ω−)) + γ−1
0 hKi

‖ρB0‖2
L∞(0,T ;L2(∂Ki\∂Ω+))

)
.

(3.86)

19



Proof. To derive the a posteriori estimate, we subtract (3.46) with ϕ = ϕh from (3.54b)
to get the so-called Galerkin orthogonality :(

∂e(t)

∂t
, ϕ

)
+ ah(e(t), ϕh) + bh(e(t), ϕ) + ch(e(t), ϕ) + +εJσ

h (e(t), ϕ) = 0, (3.87)

where e(t) = uh(t) − u(t). From now on, we shall write simply e instead of e(t). Now
we define ē to be the piecewise constant L2-projection of e. We set ϕ = e in (3.46) and
ϕh = ē in (3.54b) and integrate with respect to time from 0 to τ to obtain∫ τ

0

((
∂e

∂t
, e

)
+ ah(e, e) + bh(e, e) + ch(e, e) + εJσ

h (e, e)

)
dt =

=

∫ τ

0

((
∂e

∂t
, e− ē

)
+ ah(e, e− ē) + bh(e, e− ē)

+ch(e, e− ē) + εJσ
h (e, e− ē)) dt.

(3.88)

First, we shall estimate the terms on the left-hand side of equation (3.88). Obviously,(
∂e

∂t
, e

)
=

1

2

d

dt
‖e‖2

L2(Ω), (3.89)

ah(e, e) = ε|e|2H1(Ω,Th). (3.90)

Further, by (3.49), the relation e∇e = 1/2∇e2 and Green’s theorem, we have

bh(e, e) =
∑
i∈I

(∫
Ki

(v · ∇e) e dx−
∫

∂K−
i ∩∂Ω

(v · n)e2dS

−
∫

∂K−
i \∂Ω

(v · n)[e]e dS

)
=
∑
i∈I

{
−1

2

∫
Ki

e2 div v dx

+
1

2

∫
∂Ki

(v · n) e2 dS −
∫

∂K−
i ∩∂Ω

(v · n) e2 dS

−
∫

∂K−
i \∂Ω

(v · n) e(e− e−)dS

}
.

Using the decomposition ∂K = ∂K− ∪ ∂K+, we can write

bh(e, e) =
∑
i∈I

1

2

{
−
∫

Ki

e2 div v dx−
∫

∂K−
i ∩∂Ω

(v · n)e2 dS

−
∫

∂K−
i \∂Ω

(v · n)(e2 − 2ee−) dS +

∫
∂K+

i ∩∂Ω

(v · n)e2 dS

+

∫
∂K+

i \∂Ω

(v · n)e2 dS

}
.
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Now, using the relation∑
i∈I

∫
∂K+

i \∂Ω

(v · n)e2 dS = −
∑
i∈I

∫
∂K−

i \∂Ω

(v · n)(e−)2 dS,

(which follows from the fact that for each i ∈ I if Γij ⊂ ∂K+
i \ ∂Ω, then j ∈ s(i) and

Γij = Γji ⊂ ∂K−
j \ ∂Ω) we find that

bh(e, e) =
∑
i∈I

1

2

{
−
∫

∂Ki

e2 div v dx−
∫

∂K−
i ∩∂Ω

dS

−
∫

∂K−
i \∂Ω

(v · n)(e2 − 2ee− + (e−)2) dS +

∫
∂K+

i ∩∂Ω

(v · n)e2 dS

}
=

1

2

∑
i∈I

(
‖e‖2

v,∂K−
i ∩∂Ω

+ ‖[e]‖2
v,∂K−

i \∂Ω
+ ‖e‖v,∂K+

i ∩∂Ω

)
− 1

2

∫
Ω

e2 div v dx

(3.91)

and, thus, we can estimate

bh(e, e) + ch(e, e) ≥
1

2

∑
i∈I

(
‖e‖2

v,∂K−
i ∩∂Ω

+ ‖[e]‖2
v,∂K−

i \∂Ω
+ ‖e‖2

v,∂K+
i ∩∂Ω

)
+ γ0‖e‖2

L2(Ω).

(3.92)

Finally,

Jσ
h (e, e) =

∑
i∈I

∑
j∈s(i)

∫
Γij

σ[e]2 dS +
∑
i∈I

∫
∂K−

i ∩∂Ω

σe2 dS. (3.93)

Let us look at the right-hand side of the equation (3.88). Integration by parts in
ah(e, e) yields

ah(e, e− ē) = −ε
∑
i∈I

∫
Ki

∆e(e− ē) dx

+ ε
∑
i∈I

∑
j∈s(i),j<i

∫
Γij

([∇e] · nij〈e− ē〉+ 〈∇e〉 · nij[e− ē]) dS

− ε
∑
i∈I

(∫
∂K+

i ∩∂Ω

(∇e · n)(e− ē) +

∫
∂K−

i ∩∂Ω

(∇e · n)e dS

)
.

(3.94)

Using this relation, we see that the right-hand side of (3.88) can be rewritten in the
following way:∫ τ

0

(
∂e

∂t
, e− ē

)
+ ah(e, e− ē) + bh(e, e− ē) + ch(e, e− ē) + εJσ

h (e, e− ē) dt

=

∫ τ

0

(T1 + T2 + T3 + T4 + T5) dt,

(3.95)
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where

T1 =
∑
i∈I

∫
Ki

(
∂e

∂t
+ v · ∇e− ε∆e + ce

)
(e− ē) dx, (3.96)

T2 =
∑
i∈I

∑
j∈s(i),j<i

∫
Γij

ε[∇e] · nij〈e− ē〉 dS +
∑
i∈I

∫
∂K+

i ∩∂Ω

ε(∇e · n)(e− ē) dS, (3.97)

T3 =
∑
i∈I

∑
∈s(i),j<i

∫
Γij

ε〈∇e〉 · nij[e]) dS +
∑
i∈I

∫
∂K−

i ∩∂Ω

ε(∇e · n)e dS, (3.98)

T4 = −
∑
i∈I

∫
∂K−

i ∩∂Ω

(v · n) e(e− ē) dS −
∑
i∈I

∫
∂K−

i \∂Ω

(v · n)[e](e− ē) dS, (3.99)

T5 = εJσ
h (e, e− ē). (3.100)

In the following we shall estimate the terms Ti. Whenever a constant ci appears, we mean
that there exists a global constant ci such that the inequality holds, whereas for αj we
mean there exists a global constant αup

j such that the inequality holds for all αj ∈ (0, αup
j ).

We begin with the estimation of T1. We use Cauchy-Schwarz inequality∫
Ki

ρI(e− ē) dx ≤ ‖ρI‖L2(Ki)‖e− ē‖L2(Ki) (3.101)

and employ Young’s inequality and Lemma 1 to get

T1 ≤ c1

(
εα1|e|2H1(Ω;Th) +

1

εα1

∑
i∈I

h2
Ki

∫
Ki

ρ2
I dx

)
. (3.102)

To estimate the term T2, we use∑
j∈s(i),j<i

∫
Γij

ε[∇e] · nij〈e− ē〉 dS +

∫
∂K+

i ∩∂Ω

ε(∇e · n)(e− ē) dS

≤ ε‖ρB1‖L2(∂Ki\∂Ω−)‖e− ē‖L2(∂Ki).

(3.103)

Lemma 2 with Lemma 1 gives

‖e− ē‖L2(∂Ki) ≤
√

CM(CΠ + C2
Π) h

1/2
Ki
|e|H1(Ki) (3.104)

and thus, using Young’s inequality, we get

T2 ≤ c2

(
εα2|e|2H1(Ω;Th) +

ε

α2

∑
i∈I

hKi
‖ρB1‖2

∂Ki\∂Ω−

)
. (3.105)
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Similarly, we proceed for T4 and T5:

−
∫

∂K−
i ∩∂Ω

(v · n) e(e− ē) dS −
∫

∂K−
i \∂Ω

(v · n)[e](e− ē) dS

≤ Cv‖ρB0‖L2(∂Ki\∂Ω+)‖e− ē‖L2(∂Ki).

(3.106)

Hence, using (3.104) and Young’s inequality,

T4 ≤ c4

(
εα4|e|2H1(Ω;Th) +

1

εα4

∑
i∈I

hKi
‖ρB0‖2

∂Ki\∂Ω+

)
. (3.107)

Finally, ∑
j∈s(i)

∫
Γij

σ[e][e− ē] dS +

∫
∂K−

i ∩∂Ω

σe (e− ē) dS,

≤ CT

2
h−1

Ki
‖ρB0‖L2(∂Ki\∂Ω+)‖e− ē‖L2(∂Ki).

(3.108)

Again, from (3.104) and Young’s inequality,

T5 ≤ c5

(
εα5|e|2H1(Ω;Th) +

ε

α5

∑
i∈I

h−1
Ki
‖ρB0‖2

∂Ki\∂Ω+

)
. (3.109)

The term T3 is more challenging because 〈∇e〉 ·n cannot be easily handled using the trace
inequality (Lemma 2). To be able to proceed, we employ the continuous reconstruction
ûh = C(u, uD) according to Lemma 6. We shall set ξ̂ = uh − ûh and use the Galerkin
orthogonality (3.87) with ϕh = ξ̂ to get

0 =

∫ τ

0

T6 + T7 + T8 + T9 + T10 + T11 dt, (3.110)

where

T6 =

(
∂e

∂t
, ξ̂

)
(3.111)

T7 =
∑
i∈I

∫
Ki

(ε∇e · ∇ξ̂ + (v · ∇e)ξ̂ + ceξ̂) dS, (3.112)

T8 = −ε
∑
i∈I

∑
∈s(i),j<i

∫
Γij

〈∇e〉 · nij[ξ̂] dS − ε
∑
i∈I

∫
∂K−

i ∩∂Ω

∇e · nξ̂ dS, (3.113)

T9 = ε
∑
i∈I

∑
∈s(i),j<i

∫
Γij

〈∇ξ̂〉 · nij[e] dS + ε
∑
i∈I

∫
∂K−

i ∩∂Ω

∇ξ̂ · ne dS, (3.114)

T10 = −
∑
i∈I

∫
∂K−

i ∩∂Ω

(v · n) eξ̂ dS −
∑
i∈I

∫
∂K−

i \∂Ω

(v · n)[e]ξ̂ dS, (3.115)

T11 = εJσ
h (e, ξ̂). (3.116)
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Integrating (3.111) over (0, τ) with respect to t and using integration by parts yields∫ τ

0

T6 dt =

∫ τ

0

(
∂e

∂t
, ξ̂

)
dt =

(
e(τ), ξ̂(τ)

)
−
∫ τ

0

(
e,

∂ξ̂

∂t

)
dt. (3.117)

Now, using (3.111) and Young’s inequality we get∫ τ

0

T6 dt ≤ c6

(
α6

(
1

2
‖e(τ)‖2

L2(Ω) + γ0

∫ τ

0

‖e‖2
L2(Ω) dt

)
+

1

α6

(
2‖ξ̂(τ)‖2

L2(Ω) +
1

γ0

∫ τ

0

‖∂ξ̂

∂t
‖2

L2(Ω) dt

))
.

(3.118)

We notice that [ξ̂] = ρB0 and [∇ξ̂] · n = ρB1 on edges. We see that the term T8 cancels
with T3. We estimate the remaining terms:∫

Ki

(ε∇e · ∇ξ̂ + (v · ∇e)ξ̂ + ceξ̂) dx ≤ ε|e|H1(Ki)|ξ̂|H1(Ki)

+ Cv|e|H1(Ki)‖ξ̂‖L2(Ki) + Cc‖e‖L2(Ki)‖ξ̂‖L2(Ki). (3.119)

By Lemma 3 we get
|ξ̂|H1(Ki) ≤ CIh

−1
Ki
‖ξ̂‖L2(Ki) (3.120)

and thus

T7 ≤ c7

(
α7

(
γ0‖e‖2

L2(Ω) + ε|e|2H1(Ω;Th)

)
+

1

α7

∑
i∈I

(εh−2
Ki

+ ε−1 + γ−1
0 )‖ξ̂‖2

L2(Ki)

)
. (3.121)

By Lemma 2 and Lemma 3

‖∇ξ̂‖L2(∂Ki) ≤
√

CM(C2
I + C3

I ) h
−3/2
Ki

‖ξ̂‖L2(Ki) (3.122)

and thus

T9 ≤ ε
∑
i∈I

‖∇ξ̂‖L2(∂Ki)‖ρB0‖L2(∂Ki\∂Ω+)

≤
∑
i∈I

1

2

(
ε h−2

Ki
‖ξ̂‖2

L2(Ki)
+ ε h−1

Ki
‖ρB0‖2

L2(∂Ki\∂Ω+)

)
.

(3.123)

We have

−
∫

∂K−
i ∩∂Ω

(v · n) eξ̂ dS −
∫

∂K−
i \∂Ω

(v · n)[e]ξ̂ dS

≤ Cv‖ρB0‖L2(∂Ki\∂Ω+)‖ξ̂‖L2(∂Ki).

(3.124)
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By Lemma 2 and Lemma 3 we have

‖ξ̂‖L2(∂Ki) ≤
√

CM(1 + CI) h
−1/2
Ki

‖ξ̂‖L2(Ki) (3.125)

and thus

T10 ≤ c10

(∑
i∈I

h−1
Ki
‖ξ̂‖2

L2(Ki)
+ ‖ρB0‖2

L2(∂Ki\∂Ω+)

)
. (3.126)

Finally,

T11 ≤ c11

(∑
i∈I

εh−1
Ki
‖ρB0‖2

L2(∂Ki\∂Ω+)

)
. (3.127)

Noticing that (from the linearity of operator C, see Lemma 6)

∂C(uh, uD)

∂t
= C(

∂uh

∂t
,
∂uD

∂t
) =

∂ûh

∂t
,

using Lemma 6, we can estimate∑
i∈I

h−2
Ki
‖ξ̂‖2

L2(Ki)
≤ k1

∑
i∈I

h−1
Ki
‖ρB0‖2

L2(∂Ki\∂Ω+), (3.128)

∑
i∈I

h−1
Ki
‖ξ̂‖2

L2(Ki)
≤ k2

∑
i∈I

‖ρB0‖2
L2(∂Ki\∂Ω+), (3.129)

‖ξ̂‖2
L2(Ω) ≤ k3

∑
i∈I

hKi
‖ρB0‖2

L2(∂Ki\∂Ω+), (3.130)

∥∥∂ξ̂

∂t

∥∥2

L2(Ω)
≤ k4

∑
i∈I

hKi

∥∥∂ρB0

∂t

∥∥2

L2(∂Ki\∂Ω+)
. (3.131)

Substituting these estimates into (3.118), (3.121), (3.123) and (3.126), we get∫ τ

0

T6 dt ≤ ĉ6

(
α6

(
1

2
‖e(τ)‖2

L2(Ω) + γ0

∫ τ

0

‖e‖2
L2(Ω) dt

)
+

1

α6

(
2
∑
i∈I

hKi
‖ρB0(τ)‖2

L2(∂Ki\∂Ω+)

+
1

γ0

∫ τ

0

∑
i∈I

hKi
‖∂ρB0

∂t
‖2

L2(∂Ki\∂Ω+) dt

))
,

(3.132)

T7 ≤ ĉ7

(
α7

(
γ0‖e‖2

L2(Ω) + ε|e|2H1(Ω;Th)

)
+

1

α7

∑
i∈I

(εh−1
Ki

+ ε−1hKi
+ γ−1

0 hKi
)‖ρB0‖2

L2(∂Ki\∂Ω+)

)
,

(3.133)
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T9 ≤ ĉ9

∑
i∈I

ε h−1
Ki
‖ρB0‖2

L2(∂Ki\∂Ω+), (3.134)

T10 ≤ ĉ10

∑
i∈I

‖ρB0‖2
L2(∂Ki\∂Ω+). (3.135)

Plugging together (3.89)-(3.93) and (3.102)-(3.121), we see that

1

2
‖e(τ)‖2

L2(Ω) +

∫ τ

0

(ε|e|2H1(Ω;Th) + γ0‖e‖2
L2(Ω)) dt ≤

∫ τ

0

11∑
j=1

Tj dt

≤ c

[
α

(
1

2
‖e(τ)‖2

L2(Ω) +

∫ τ

0

(ε|e|2H1(Ω;Th) + γ0‖e‖2
L2(Ω)) dt

)
+

1

α

∫ τ

0

∑
i∈I

(
ε−1h2

Ki
‖ρI‖2

L2(Ki)
+ γ−1

0 hKi

∥∥∂ρB0

∂t

∥∥2

L2(∂Ki\∂Ω+)

+(εh−1
Ki

+ ε−1hKi
+ γ−1

0 hKi
+ 1)‖ρB0‖2

L2(∂Ki\∂Ω+)

+εhKi
‖ρB1‖2

L2(∂K\∂Ω−)

)
dt +

1

α

∑
i∈I

γ−1
0 hKi

‖ρB0(τ)‖2
L2(∂K\∂Ω+)

]
.

(3.136)

The a posteriori error estimate immediatelly follows from this by choosing α sufficiently
small and taking the maximum of both sides over τ ∈ (0, T ).

4 Space-Time DGFEM

In the previous section, we described a space semidiscretization of a convection-diffusion
problem by DGFEM, resulting in a system of ordinary differential equations. This ap-
proach, called the method of lines, is straightforward and efficient, because the resulting
system can be handled using sophisticated ODE solvers like LSODE. On the other hand, it
does not easily allow changing the mesh or the domain. Unlike classical FEM, DGFEM
can be used to fully discretize the problem in the entire space-time domain. This can be
done in two manners:

1. Time-uniform: Space-time elements have the form Ki × (tj, tj+1) where Ki ∈ Th

form a space triangulation and 0 = t0 < t1 < . . . < tN = T .

2. Nonuniform: Space-time elements are general polygons in d + 1-dimensional space.

The first method suffices to allow changing the mesh through time, whereas the latter
also allows changing the domain.
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4.1 Time discretization

We discretize the problem (3.28)-(3.31) also in time using the discontinuous Galerkin
method. For this purpose, we consider a partition 0 = t0 < t1 < ... < tM = T of the time
interval [0, T ] and denote Im = (tm−1, tm), Īm = [tm−1, tm], τm = tm − tm−1, m = 1, ...,M .
We have

[0, T ] =
M⋃
i=1

Īm, Im ∩ In = ∅ for m 6= n. (4.137)

On each interval, we define

Sh,m = {ϕ ∈ L2(Ω); ϕ|K ∈ P p(K) ∀K ∈ Th,m}. (4.138)

For a function ϕ defined on ∪M
i=1(tm−1, tm) we introduce the following notation:

ϕ±m = ϕ(tm±) = lim
t→tm±

ϕ(t) (4.139)

{ϕ}m = ϕ+
m − ϕ−m. (4.140)

For each time interval Im, m = 1, ...,M , we shall consider, in general, a different triangu-
lation Th,m = {Ki}i∈ih,m

of the domain Ω. For each m = 1, . . . ,M we define the forms on
Sh,m with the use of the forms (3.47)-(3.52):

Ah,m(u, ϕ) = ah(u, ϕ) + bh(u, ϕ) + ch(u, ϕ) + εJσ
h (u, ϕ), (4.141)

lh,m(u, ϕ) = lh(u, ϕ), (4.142)

where in the definition of the forms ah, bh, ch, J
σ
h , lh we set Th = Th,m. Let q ≥ 0 be an

integer. We define approximate solution as a function

U(x, t) ∈ Sh,τ =

{
ϕ ∈ L2(QT ); ϕ|Im =

q∑
i=0

tiϕi, ϕi ∈ Sh,m, m = 1, . . . ,M

}
, (4.143)

satisfying

M∑
m=1

∫
Im

((U ′, ϕ) + Ah,m(U,ϕ)) dt +
M∑

m=2

({U}m−1, ϕ
+
m−1) + (U+

0 , ϕ+
0 )

=
M∑

m=1

∫
Im

lh,m(ϕ) dt + (u0, ϕ
+
0 ) ∀ϕ ∈ Sh,τ .

(4.144)

If we denote

B(u, v) =
M∑

m=1

∫
Im

((u′, v) + Ah,m(u, v)) dt +
M∑

m=2

({u}m−1, v
+
m−1) + (u+

0 , v+
0 ),

L(v) =
M∑

m=1

∫
Im

lh,m(v) dt + (u0, v
+
0 ),

(4.145)
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we can write (4.144) in the form

B(U,ϕ) = L(ϕ) ∀ϕ ∈ Sh,τ . (4.146)

We shall assume shape regularity, namely that (3.36) holds with Th = Th,m for all m =
1, . . . ,M and the constant CT is independent of τ . Moreover, we shall assume that there
exist constants CS, ĈS such that

1

ĈS

hK ≤ τm ≤ CShK , K ∈ Th, m = 1, . . . ,M. (4.147)

We shall also assume that u ∈ H, where

H = Hq+1(0, T ; H1(Ω)) ∩ C(0, T ; Hp+1(Ω)). (4.148)

Under these assumptions one can prove the following result:

Theorem 3 Let u be the exact solution of problem (3.28) – (3.31) satisfying the condition
u ∈ H, and let U denote the approximate solution obtained with the aid of method (4.144).
Then there exists a constant C independent of h, τ and ε such that the error e = U − u
satisfies the estimate

M∑
m=1

∫
Im

(‖e‖2
L2(Ω) + ε|e|2H1(Ω,Th,m)) dt ≤ Ch2p{|u|2L2(0,T ;Hp+1(Ω)) + |u|2C([0,T ];Hp+1(Ω))}

+ Cτ 2q{|u|2Hq+1(0,T ;L2(Ω)) + |u|2Hq+1(0,T ;H1(Ω))}. (4.149)

This estimate is also valid for ε = 0, i. e. in the hyperbolic case.

5 Numerical experiments

5.1 Implementation issues

Computer programs were created for each of these methods (combined FV-FE, DGFE
method of lines and space-time DGFEM). The first two were programmed in Fortran, for
the last one, we used the FreeFEM++ environment [32]. All code examples in this chapter
are also in Fortran.

5.1.1 The lumping operator of the combined FE-FV method

In section 2 we described the combined FE-FV method on triangular meshes. Although
the discrete problem formulation (2.22) is itself not complicated, the evaluation of the
lumping operator (2.24) is not easy. As meshes do not change frequently, it is, of course,
best to assemble a sparse matrix corresponding to this linear operator. Two problems
arise:
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1. For a given Dj ∈ Dh, determine all Ki ∈ Th such that Dj ∩Ki 6= ∅.

2. Given a basis function λ on Ki, evaluate

1

|Dj|

∫
Ki∩Dj

λ(x) dx. (5.150)

The naive way to solve 1 (testing all pairs of triangles) would yield a quadratic complexity
algorithm, too slow for practical problems. If the meshes Dh and Th are completely
independent, special data structures, such as kd-trees, allowing a fast “proximity” search,
need to be involved. If the FV mesh is derived from the FE mesh in a suitable way, we
would usually have this “proximity information” in advance, i.e. for each j ∈ J we can
efficiently give a subset Nj ⊂ I such that

Dj ⊂
⋃

i∈Nj

Ki.

Still, the latter of the above problems may be a difficult task, because two triangles
may overlap in many different ways (given that the vertex order matters in a computer
program). Although sophisticated libraries exist for polygon intersections, it turns out
that the combined FE-FV method is not very sensitive to the lumping operator and an
approximate evaluation suffices. Here, the following strategy is suggested:

First, evaluate (5.150) approximately by a quasi-Monte Carlo approach. This means
that we uniformly distribute N points p1, p2, . . . , pN in Ki, then determine the set

L = {l; pl is inside Dj}.

This can be easily done by a single matrix-vector multiplication: If (xi, yi), i = 1, 2, 3, are
the coordinates of vertices of Dj, we write

M∆ =

x1 y1 1
x2 y2 1
x3 y3 1


A point (x, y) is inside Dj if and only if

(x, y, 1)M−1
∆ > 0.

(here we mean that all three components of the resulting row vector must be positive).
The approximation we use is

1

|Dj|

∫
Ki∩Dj

λ(x) dx ≈ |Ki|
|Dj|

∑
l∈L λ(pl)

N
. (5.151)
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We then enforce the conservativity of the lumping operator by scaling the rows of the
resulting sparse matrix so that each row sums up to 1 (i.e. divide each row by its sum).
By conservativity we mean the following property:∫

Ω

Lhv =

∫
Ω

v ∀v ∈ Xh. (5.152)

The implementation of the quasi-Monte Carlo is straightforward and simple, and if a small
enough N turns out to suffice, it may be even more efficient than an exact evaluation.

5.1.2 Computational efficiency of DGFEM vs. FEM

If we directly compare the continuous piecewise linear FEM to piecewise linear DGFEM
on the same mesh, the DGFEM gives roughly three times as much degrees of freedom in
the discretization. From this point of view, DGFEM may seem computationally inferior.
Nevertheless, DGFEM has also computational advantages over the FEM, although these
are less obvious. Roughly speaking, the greater “locality” of the DGFEM results not only
in more degrees of freedom (DOFs), but also in neater equation structure. We explain
this in more detail below:

The ”heart” of most PDE solvers are sparse matrices and their manipulation, especially
multiplying a vector by a sparse matrix. The sparsity structure of the resulting matrices
is given by the topology of the mesh. Since the basis functions have localized support,
one can determine a common sparsity structure which every sparse matrix resulting from
discretization of a bilinear form must fit into. In particular, for continuous finite elements,
a matrix element aij can ever be nonzero only if the supports of i-th and j-th basis
functions overlap - this can only happen, if they belong to triangles that share a vertex
of the mesh. If we shall operate with more bilinear forms (and, thus, sparse matrices) on
the same mesh, which is often needed, it is advantageous to exploit this common sparsity
in some way. Most common practice for continuous finite elements is to use a storage
scheme for general sparse matrices. One of the most popular ones is the Compressed
Sparse Row (CSR) format [40]. This format is usually represented by the dimensions m,n
of the matrix, number of its nonzero elements nnz and three arrays

real,dimension(nnz):: a

integer,dimension(nnz):: ja

integer,dimension(n+1):: ip

where all the nonzero elements are packed row-wise consecutively in the array a. Further,
ja are the corresponding column indices, and ip are pointers to these arrays such that
the i-th row is given by indices ip(i):ip(i+1)-1. For several matrices on a mesh, a
common sparsity structure can be chosen so that the arrays ja and ip are shared amongst
matrices, to save space and allow efficient adding and subtracting of the matrices (reduces
to vector operations). A simple matrix-vector multiplication y = Ax for the CSR storage
is performed like this:
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integer:: i,pl,pu

do i=1,m

pl = ia(i)

pu = ia(i+1)-1

y(i) = dot_product(a(pl:pu),x(ja(pl:pu)))

end do

Although the computation is straightforward and parallelizable (the cycles are completely
independent), it often executes slowly on modern high-performance processors. The main
trouble here is caused by the non-local indexing x(ja(pu:pl)), because the index se-
quence in ja may have many jumps and thus fairly often cause “cache mishits”, making
the processor wait for memory traffic instead of doing useful computations. Although
improved formats have been suggested for general sparse matrices to address this issue,
such as the jagged diagonal (JAD) format [40], we shall see that this can be naturally
overcome in DGFEM exploiting a block structure of the arising sparse matrices.

Suppose we have ndf degrees of freedom per triangle, there are nel triangles in total,
and we have an array

integer,dimension(3,nel):: eln

such that eln(:,i) gives the indices of neighbours of the i-th element, i.e. those triangles
with a common face (zero or negative value indicates a boundary face). If we construct
basis functions

φik; i = 1 . . . ndf, k = 1 . . . nel,

we see that in for a DGFE integral form ah involving volume and face integrals element
ah(φik, φjl) can be nonzero only if triangles Kk and Kl share a common face. A gen-
eral DGFE square matrix A (corresponding to a bilinear form ah) and vector x (either
corresponding to a DGFE function or a linear form) can thus be represented as

real,dimension(ndf,ndf,0:3,nel):: A

real,dimension(ndf,nel):: x

where A(i,j,0,K) = ah(φiK , φjK) corresponds i-th and j-th DOF of the K-th element
and A(i,j,q,k) = ah(φiK , φjL) corresponds to i-th DOF of K-th element and j-th DOF
of L-th element, with

L = eln(q,K).

The matrix-vector multiplication then proceeds as follows:

integer:: K,L,q

do K=1,n

y(:,K) = matmul(A(:,:,0,K),x(:,K))

do q=1,3
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L = eln(q,K)

if (L > 0) y(:,K) = y(:,K) + matmul(A(:,:,q,K),x(:,L))

end do

end do

The non-local indexing still exists, because the index L is being read from memory, but
now it addresses blocks instead of single elements. This means that unlike the simple CSR
case, where one multiplication is performed per one non-local memory reference (and thus
potential cache mishit), now one block multiplication and thus ndf2 mutliplications are
performed per reference, which often improves the speed of the whole algorithm by a
factor of ten or more on modern high-performance processors. Since individual cycles of
the outermost loop are completely independent, the algorithm is still well parallelizable.
A similar success is not achievable for continuous finite elements, because then the DOFs
cannot be partitioned by element.

Another great advantage of the DGFEM arises for evolution (i.e., time-dependent)
problems solved by explicit time-stepping methods such as the Euler method, because the
mass matrix (i.e. the matrix corresponding to L2-scalar product form) turns out to be
block-diagonal and can be easily inverted. On the contrary, for continuous finite elements,
one must either employ sparse direct solvers (e.g. MUMPS) or use “mass lumping” (and
degrade the order of the method).

5.1.3 Time discretization

As we have already seen, the transfer from DGFE method of lines to space-time DGFEM
is simple and straightforward. However, (4.144) might give us the feeling that we need to
solve a very large system of equations, for all the unknowns in all time levels simultane-
ously. Fortunately, this is not the case. If we choose ϕ such that ϕ|Im = 0 for m 6= m̄,
then for m̄ > 1, (4.144) becomes∫

Im̄

((U ′, ϕ) + Ah,m̄(U,ϕ)) dt + (U+
m̂−1, ϕ

+
m̂−1) =

∫
Im̄

lh,m̄(ϕ) dt + (U−
m̂−1, ϕ

+
m̂) ∀ϕ ∈ Sh,m̄

(5.153)
and for m̄ = 1∫

I1

((U ′, ϕ) + Ah,1(U,ϕ)) dt + (U+
0 , ϕ+

0 ) =

∫
I0

lh,1(ϕ) dt + (u0, ϕ
+
0 ) ∀ϕ ∈ Sh,m̄. (5.154)

These equations enable us to determine separately U |Im̂ from U |Im̂−1 and U |I1 from the
initial condition u0. The implementation thus reduces to repeatedly solving the following
problem:

Given two meshes Th, T −
h and u− ∈ S−h , determine u0, . . . , uq ∈ Sh such that

U =

q∑
i=0

tiui
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satisfies ∫ τ

0

((U ′, ϕ) + Ah(U,ϕ)) dt + (u0, ϕ0) =

∫ τ

0

lh(ϕ) dt + (u−, ϕ0) (5.155)

for any

ϕ =

q∑
i=0

tiϕi, ϕi ∈ Sh.

Given a suitable set of basis functions φk for Sh, we can write

ui =
∑

k

wk
i φk, ϕi =

∑
k

yk
i φk.

Then (5.155) transforms into∫ τ

0

q∑
i=0

q∑
j=0

(iti−1+jyT
j Mwi + ti+jyT

j Bwi) dt + yT
0 Mw0 =

∫ τ

0

q∑
j=0

tjyT
j f(t) dt + yT

0 d, (5.156)

where is wi is the vector of wk
i , yi the vector of yk

i , M is the mass matrix,

Mkl = (φl, φk),

B is the matrix of the form Ah,

Bkl = Ah(φl, φk),

f(t) is the vector corresponding to the linear form lh at time t, i.e.

f l(t) = lh(φl)(t),

and
dl = (u−, φl). (5.157)

Identity (5.156) should hold for any choice of yi vectors, thus we can eliminate them to
get ∫ τ

0

q∑
i=0

(iti−1Mwi + tiBwi) dt + Mw0 =

∫ τ

0

f(t) dt + d (5.158)

and ∫ τ

0

q∑
i=0

(itj+i−1Mwi + tiBwi) dt =

∫ τ

0

tjf(t) dt (5.159)

for j = 1, . . . , q. By integrating the left-hand sides, we get

q∑
i=1

τ iMwi +

q∑
i=0

τ i+1

i + 1
Bwi + Mw0 =

∫ τ

0

f(t) dt + d (5.160)
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and
q∑

i=1

iτ j+i

j + i
Mwi +

τ i+j+1

i + j + 1
Bwi =

∫ τ

0

tjf(t) dt (5.161)

for j = 1, . . . , q. This is a square linear system of (q+1)N equations (N = dim Sh), which
can be solved, e.g.,by an iterative linear solver. If a direct solver has to be used, however,
there is a better strategy - treat the matrix as a (q + 1) × (q + 1) matrix of N × N
blocks, and perform block gaussian elimination on this matrix first. This is especially
advantageous if banded structure is exploited for the blocks.

As we have already mentioned, the solution proceeds by advancing over the intervals
I1, I2, . . . , IM and repeatedly solving (5.155) with τ = tm − tm−1, lh(t) = lh,m(t + tm−1)
and u− = U−

m−1, i.e. we “shift” the problem from interval (tm−1, tm) to (0, τ) and take the
new initial condition from the previous step. If the mesh did not change, i.e. Th = T −

h ,
we can see from (5.157) that

d = Mw−,

where
u− =

∑
k

wk
−φk

and wk
− are the elements of the vector w−. If the mesh did change, u− ∈ T −

h 6= Th, we
can substitute the L2-projection of u− onto Sh, ΠShu−, into (5.155) to get∫ τ

0

((U ′, ϕ) + Ah(U,ϕ)) dt + (u0, ϕ0) =

∫ τ

0

lh(ϕ) dt + (ΠSh
u−, ϕ0) (5.162)

Thus, we can roughly say that switching the mesh means L2-projecting the current state
onto the new mesh and continuing integration with the new mesh (of course, we need
to update the sparse matrices). This might suggest a similar strategy what to do when
changing the mesh for other time-stepping methods: project the necessary data from the
old mesh to the new mesh via L2-projection and continue. However, such an approach is
purely heuristic here.

5.2 Numerical results

5.2.1 Combined FE-FV method

We verified the estimates (2.26), (2.27) by numerical experiments. We applied the com-
bined FV-FE method to the scalar 2D viscous Burgers equation

∂u

∂t
+ u

∂u

∂x1

+ u
∂u

∂x2

− ε∆u = g (5.163)

with ε = 0.1 in the space-time domain QT = Ω × (0, 1), Ω = (−1, 1)2, equipped with
Dirichlet boundary condition u|∂Ω = 0, and initial condition u|t=0 = 0. The right-hand
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side g is chosen so that it conforms to the exact solution

uex = (1− e−2t)(1− x2
1)

2(1− x2
2)

2.

The time discretization is carried by a semiimplicit Euler scheme:(
uk

h − uk−1
h

τ
, vh

)
+ bh(u

k−1
h , vh) + ah(u

k
h, vh) = (gk−1, vh), (5.164)

which should have better stability properties than a purely explicit scheme with no added
computational cost, because the FE mass and stiffness matrices share their sparsity struc-
ture. As we want to examine the error of the space discretization, we overkill the time
step so that the time discretization error is negligible. The numerical flux we use is given
by the formula

H(u, v, n) =

{
u2(n1 + n2)/2 if (u + v)(n1 + n2) > 0
v2(n1 + n2)/2 if (u + v)(n1 + n2) < 0

. (5.165)

In each computation we consider the FE mesh primary and derive the FV mesh from
it. We successively refine the FE mesh and for each refinement we evaluate the so-called
experimental order of convergence (EOC1,EOC2) defined as follows:

EOC1 =
log e1

h′ − log e1
h

log h′ − log h
(5.166)

EOC2 =
log e2

h′ − log e2
h

log h′ − log h
(5.167)

where h′ refers to the refined FE mesh and h to the original one. e1
h stands for the

L∞(L2) error (see (2.26)), e2
h for the L2(H1) error from (2.27). We also consider two

different methods of deriving the secondary FV mesh: The first method (Method 1 in the
first table) consists in simply copying the FE mesh, in the second method (Method 2 in
the second table) we create an interior FV node as a center of each FE triangle, add the
FE boundary nodes and triangulate these nodes by means of Delaunay triangulation. Two
of these secondary FV meshes are shown in Figures 7,7. The approximate construction
of the lumping operator described in subsection 5.1.1 is used in the second case.

The results are given in Appendix in Tables 1, 2.

5.2.2 DGFE method of lines

In this subsection we present some numerical experiments concerning the derived a pos-
teriori error estimates for the DGFE method of lines. We solve the equation (3.28)
(convection-diffusion) with Ω = (0, 1)2, T = 0.8, v = (1, 1)T , c = 0.2 and ε = 0.005. The
boundary and initial conditions were chosen in such a way that they conform to the exact
solution

uex =
x + y

2
+ (1− e−2t)(1− yev1(x−1)/ν)(1− xev2(y−1)/ν),
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where ν is a parameter determining the steepness of the boundary layer in the solution.
We evaluate the true squared error

err = ‖e‖2
L∞(0,T ;L2(Ω)) + ε |e|2L2(0,T ;H1(Ω)) (5.168)

over the interval T ∈ (0, Tmax). We also evaluate the a posteriori error estimate

est = E1 + E2 + E4 + E4, (5.169)

where

E1 =
∑
i∈I

ε−1h2
Ki
‖ρI‖2

L2(0,T ;L2(Ki))
, (5.170)

E2 =
∑
i∈I

γ−1
0 hKi

∥∥∂ρB0

∂t

∥∥2

L2(0,T ;L2(∂Ki\∂Ω+))
, (5.171)

E3 =
∑
i∈I

(εh−1
Ki

+ ε−1hKi
+ γ−1

0 hKi
+ 1)‖ρB0‖2

L2(0,T ;L2(∂Ki\∂Ω+)), (5.172)

E4 =
∑
i∈I

εhKi
‖ρB1‖2

L∞(0,T ;L2(∂Ki\∂Ω−)). (5.173)

(5.174)

The last term from (3.86) is omitted for simplicity, because

‖ρB0‖L∞(0,T ;L2(∂Ki\∂Ω+)) ≤ k
∥∥∂ρB0

∂t

∥∥
L2(0,T ;L2(∂Ki\∂Ω+))

(5.175)

with a global constant k, and thus it can be included in E2. We define the effectivity
index as

EI =

√
est

err
.

The complete results (program output for different meshes) are given in Tables 3-9.
Test starts with a coarse uniform mesh (Table 3). This mesh was subsequently refined
uniformly (Tables 4-6) and (independently) adaptively (Tables 7-9) via the method of
anisotropic mesh adaptation [14]. The computation proceeded by forward Euler method
with time step τ . The error and a posteriori estimate were evaluated every Nerr steps and
the integrals dumped every Ndump steps. We also tracked the relative contributions of Ei

((5.170)-(5.173)) to est, given in percents in the columns E1-E4.

5.2.3 The Space-Time DGFEM

In this section we present some numerical experiments with the space-time DGFE method
described and analyzed in previous sections. We solve equation (3.28) in QT = (0, 1)2 ×
(0, 1) with v1 = v2 = 1, c = 0.5 and two choices of ε: ε = 0.005 (parabolic case) and ε = 0
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(hyperbolic case). The right-hand side g, boundary and initial conditions are chosen in
such way that they conform to the exact solution

uex(x1, x2, t) = (1− e−t)
(
2x + 2y − xy + 2(1− ev1(x1−1)/ν)(1− ev2(x2−1)/ν)

)
,

where ν = 0.05 is a constant determining the steepness of the boundary layer in the exact
solution. The problem is solved on a sequence of non-nested nonuniform space meshes
Th1 , Th2 , . . ., kept unchanged on all time levels. We inspect the experimental order of
convergence (EOC) with respect to τ and h, which are varied simultaneously due to
condition (4.147). For successive pairs (τ, h) and (τ ′, h′) we evaluate the experimental
order of convergence in space and time defined as

EOCspace =
log
(
‖eτ ′h′‖L2(QT )

)
− log

(
‖eτh‖L2(QT )

)
log h′ − log h

,

EOCtime =
log
(
‖eτ ′h′‖L2(QT )

)
− log

(
‖eτh‖L2(QT )

)
log τ ′ − log τ

,

where eτh = uex−U is the error of the method, when the exact solution uex is approximated
by the DG approximate solution U computed with the aid of a space triangulation of size
h and a time interval partition of size τ . Moreover, we compute the global experimental
order of convergence with the aid of additional data sets with halved time step and fitting
a general nonlinear model of the form

‖eτh‖L2(QT ) ≈ C1 hr + C2 τ s

through the data via the method of nolinear least squares, using the MINPACK package
[44]. The results are shown in Tables 10 – 13 in Appendix.

The space-time DGFE computations were carried out with the aid of the FreeFEM++

modelling environment from [32], which was adapted to the DGFE space-time discretiza-
tion. The time integrals were evaluated by quadrature formulae exact for polynomials of
degree 5 and 9 in the case of elements linear in time and quadratic in time, respectively.
The quadrature formulae used for the integration over triangles and their sides were exact
for polynomials of degree 5 both for linear and quadratic elements. The nonsymmetric
linear problem was solved in each time step by the multifrontal direct solver UMFPACK

([13]).

6 Conclusion

We have studied approaches for solving the convection-diffusion equation, especially the
DGFE method of lines, for which we developed a posteriori error-estimate improving
the one given in [41]. We also discussed some practical implementation aspects. While
the DGFE method itself holds much promise and is definitely worth further studying,
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practical uses of explicit a posteriori error estimates for DGFEM are questionable due to
the presence of unknown constants, like the constant C in (3.86). Note that the proofs
of all estimates are ”constructive” and potentially allow C to be explicitly evaluated.
Nevertheless, given that the estimates are crude in a number of places, the resulting
value would probably be practically useless. Without the possibility to guess C better
(e.g., from a more accurate error approximation), explicit a posteriori error estimates
are often used as refinement indicators. Specifically, the error contribution on a given
element is considered proportional to the contribution to the a posteriori estimate of that
element (the bracketed expression in (3.86)). Again, without further analysis there is
no theoretical justification for this assumption. Moreover, there are many other quite
successful techniques for mesh adaptation.
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7 Appendix

#I h e1
h EOC1 e2

h EOC2

128 3.54E-01 6.57E-02 - 1.09E-01 -
512 1.77E-01 2.95E-02 1.16 5.58E-02 0.97

2048 8.84E-02 1.40E-02 1.08 2.81E-02 0.99
8192 4.42E-02 6.87E-03 1.03 1.41E-02 0.99

32768 2.21E-02 3.40E-03 1.02 7.05E-03 1.00
131072 1.11E-02 1.69E-03 1.01 3.53E-03 1.00
Average 1.06 0.99

Table 1: Method 1

#I h e1
h EOC1 e2

h EOC2

128 3.54E-01 7.50E-02 - 1.13E-01 -
512 1.77E-01 4.57E-02 0.71 6.18E-02 0.87

2048 8.84E-02 1.78E-02 1.36 3.01E-02 1.04
8192 4.42E-02 1.18E-02 0.59 1.62E-02 0.89

32768 2.21E-02 4.37E-03 1.43 7.56E-03 1.10
131072 1.11E-02 2.99E-03 0.55 4.12E-03 0.88
Average 0.93 0.96

Table 2: Method 2
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T err est EI E1 E2 E3 E4
0.040 2.045E-10 1.129E-07 23.49 62.0 24.2 0.8 13.0
0.080 1.598E-09 7.232E-07 21.28 75.9 7.1 1.0 16.0
0.120 5.019E-09 2.185E-06 20.86 79.0 3.3 1.1 16.6
0.160 1.137E-08 4.881E-06 20.72 80.2 1.8 1.1 16.9
0.200 2.084E-08 8.889E-06 20.65 80.8 1.2 1.1 17.0
0.240 3.431E-08 1.459E-05 20.62 81.1 0.8 1.1 17.0
0.280 5.132E-08 2.178E-05 20.60 81.2 0.6 1.1 17.1
0.320 7.296E-08 3.092E-05 20.59 81.4 0.4 1.1 17.1
0.360 9.815E-08 4.156E-05 20.58 81.4 0.3 1.1 17.1
0.400 1.283E-07 5.428E-05 20.57 81.5 0.3 1.1 17.1
0.440 1.617E-07 6.839E-05 20.57 81.5 0.2 1.1 17.1
0.480 2.001E-07 8.463E-05 20.56 81.6 0.2 1.1 17.1
0.520 2.415E-07 1.021E-04 20.56 81.6 0.2 1.1 17.1
0.560 2.878E-07 1.217E-04 20.56 81.6 0.1 1.1 17.2
0.600 3.366E-07 1.423E-04 20.56 81.6 0.1 1.1 17.2
0.640 3.903E-07 1.649E-04 20.56 81.6 0.1 1.1 17.2
0.680 4.459E-07 1.884E-04 20.56 81.6 0.1 1.1 17.2
0.720 5.062E-07 2.139E-04 20.56 81.6 0.1 1.1 17.2
0.760 5.680E-07 2.400E-04 20.55 81.7 0.1 1.1 17.2
0.800 6.343E-07 2.680E-04 20.55 81.7 0.1 1.1 17.2

τ = Tmax/10000 , Nerr = 25 , Ndump = 500
#I = 512 , hmax = .884E − 01 , hmax/hmin = .100E + 01

Table 3: Case uni1
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T err est EI E1 E2 E3 E4
0.040 4.021E-08 3.061E-05 27.59 8.9 86.9 2.3 1.9
0.080 2.770E-07 7.946E-05 16.94 26.5 61.4 6.5 5.6
0.120 8.549E-07 1.661E-04 13.94 40.9 40.8 9.8 8.5
0.160 1.883E-06 3.050E-04 12.73 50.1 27.5 11.9 10.5
0.200 3.443E-06 5.070E-04 12.13 55.9 19.2 13.2 11.7
0.240 5.591E-06 7.799E-04 11.81 59.6 14.0 14.0 12.4
0.280 8.367E-06 1.129E-03 11.62 62.0 10.6 14.5 12.9
0.320 1.179E-05 1.558E-03 11.49 63.6 8.2 14.9 13.3
0.360 1.588E-05 2.068E-03 11.41 64.8 6.5 15.1 13.5
0.400 2.063E-05 2.659E-03 11.35 65.7 5.3 15.3 13.7
0.440 2.603E-05 3.332E-03 11.31 66.3 4.4 15.5 13.8
0.480 3.207E-05 4.084E-03 11.29 66.8 3.7 15.6 13.9
0.520 3.874E-05 4.914E-03 11.26 67.2 3.1 15.6 14.0
0.560 4.601E-05 5.820E-03 11.25 67.5 2.7 15.7 14.1
0.600 5.386E-05 6.797E-03 11.23 67.8 2.4 15.7 14.1
0.640 6.227E-05 7.844E-03 11.22 68.0 2.1 15.8 14.2
0.680 7.121E-05 8.958E-03 11.22 68.1 1.8 15.8 14.2
0.720 8.065E-05 1.013E-02 11.21 68.3 1.6 15.8 14.2
0.760 9.056E-05 1.137E-02 11.20 68.4 1.5 15.9 14.3
0.800 1.009E-04 1.266E-02 11.20 68.5 1.3 15.9 14.3

τ = Tmax/50000 , Nerr = 100 , Ndump = 2500
#I = 2375 , hmax = .441E − 01 , hmax/hmin = .176E + 01

Table 4: Case uni2
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T err est EI E1 E2 E3 E4
0.040 1.827E-08 8.428E-06 21.48 11.8 82.1 2.3 3.7
0.080 1.314E-07 2.415E-05 13.56 31.6 52.6 5.9 10.0
0.120 4.119E-07 5.423E-05 11.47 45.0 32.5 8.3 14.2
0.160 9.150E-07 1.039E-04 10.66 52.7 21.0 9.6 16.6
0.200 1.681E-06 1.772E-04 10.27 57.2 14.3 10.4 18.1
0.240 2.740E-06 2.768E-04 10.05 59.9 10.3 10.9 18.9
0.280 4.110E-06 4.048E-04 9.92 61.7 7.7 11.2 19.5
0.320 5.803E-06 5.622E-04 9.84 62.9 5.9 11.4 19.8
0.360 7.826E-06 7.497E-04 9.79 63.7 4.7 11.5 20.1
0.400 1.018E-05 9.674E-04 9.75 64.3 3.8 11.6 20.3
0.440 1.286E-05 1.215E-03 9.72 64.7 3.1 11.7 20.4
0.480 1.585E-05 1.492E-03 9.70 65.1 2.6 11.7 20.5
0.520 1.916E-05 1.798E-03 9.69 65.4 2.2 11.8 20.6
0.560 2.277E-05 2.132E-03 9.67 65.6 1.9 11.8 20.7
0.600 2.667E-05 2.492E-03 9.67 65.7 1.7 11.8 20.7
0.640 3.085E-05 2.878E-03 9.66 65.9 1.5 11.9 20.8
0.680 3.529E-05 3.288E-03 9.65 66.0 1.3 11.9 20.8
0.720 3.999E-05 3.722E-03 9.65 66.1 1.2 11.9 20.8
0.760 4.492E-05 4.177E-03 9.64 66.2 1.0 11.9 20.9
0.800 5.008E-05 4.654E-03 9.64 66.2 0.9 11.9 20.9

τ = Tmax/200000 , Nerr = 250 , Ndump = 10000
#I = 4433 , hmax = .316E − 01 , hmax/hmin = .188E + 01

Table 5: Case uni3
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T err est EI E1 E2 E3 E4
0.040 4.864E-09 1.204E-06 15.74 18.0 72.0 2.3 7.6
0.080 3.603E-08 4.161E-06 10.75 39.5 38.8 5.0 16.8
0.120 1.141E-07 1.037E-05 9.54 50.5 21.7 6.4 21.5
0.160 2.546E-07 2.098E-05 9.08 55.9 13.3 7.1 23.8
0.200 4.692E-07 3.685E-05 8.86 58.7 8.8 7.4 25.0
0.240 7.663E-07 5.859E-05 8.74 60.4 6.2 7.6 25.7
0.280 1.151E-06 8.661E-05 8.67 61.5 4.6 7.8 26.2
0.320 1.628E-06 1.212E-04 8.63 62.1 3.5 7.9 26.5
0.360 2.197E-06 1.624E-04 8.60 62.6 2.8 7.9 26.7
0.400 2.859E-06 2.103E-04 8.58 63.0 2.2 8.0 26.8
0.440 3.614E-06 2.649E-04 8.56 63.2 1.8 8.0 26.9
0.480 4.459E-06 3.259E-04 8.55 63.4 1.5 8.0 27.0
0.520 5.393E-06 3.933E-04 8.54 63.6 1.3 8.0 27.1
0.560 6.411E-06 4.668E-04 8.53 63.7 1.1 8.1 27.1
0.600 7.512E-06 5.463E-04 8.53 63.8 1.0 8.1 27.2
0.640 8.691E-06 6.314E-04 8.52 63.9 0.9 8.1 27.2
0.680 9.945E-06 7.219E-04 8.52 63.9 0.8 8.1 27.2
0.720 1.127E-05 8.175E-04 8.52 64.0 0.7 8.1 27.3
0.760 1.266E-05 9.180E-04 8.51 64.0 0.6 8.1 27.3
0.800 1.412E-05 1.023E-03 8.51 64.1 0.6 8.1 27.3

τ = Tmax/400000 , Nerr = 500 , Ndump = 20000
#I = 16384 , hmax = .156E − 01 , hmax/hmin = .100E + 01

Table 6: Case uni4
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T err est EI E1 E2 E3 E4
0.040 3.928E-09 1.133E-06 16.98 24.9 63.7 1.9 9.6
0.080 2.916E-08 4.456E-06 12.36 47.9 30.1 3.6 18.4
0.120 9.241E-08 1.180E-05 11.30 57.7 15.8 4.4 22.2
0.160 2.064E-07 2.458E-05 10.91 62.1 9.4 4.7 23.8
0.200 3.805E-07 4.381E-05 10.73 64.3 6.2 4.8 24.7
0.240 6.215E-07 7.026E-05 10.63 65.6 4.3 4.9 25.2
0.280 9.339E-07 1.044E-04 10.57 66.4 3.2 5.0 25.5
0.320 1.320E-06 1.466E-04 10.54 66.9 2.4 5.0 25.7
0.360 1.782E-06 1.970E-04 10.51 67.2 1.9 5.0 25.8
0.400 2.320E-06 2.555E-04 10.50 67.5 1.5 5.0 25.9
0.440 2.932E-06 3.222E-04 10.48 67.7 1.3 5.1 26.0
0.480 3.618E-06 3.969E-04 10.47 67.8 1.1 5.1 26.0
0.520 4.376E-06 4.793E-04 10.47 67.9 0.9 5.1 26.1
0.560 5.202E-06 5.693E-04 10.46 68.0 0.8 5.1 26.1
0.600 6.096E-06 6.665E-04 10.46 68.1 0.7 5.1 26.1
0.640 7.052E-06 7.706E-04 10.45 68.2 0.6 5.1 26.2
0.680 8.070E-06 8.813E-04 10.45 68.2 0.5 5.1 26.2
0.720 9.145E-06 9.983E-04 10.45 68.2 0.5 5.1 26.2
0.760 1.028E-05 1.121E-03 10.45 68.3 0.4 5.1 26.2
0.800 1.146E-05 1.250E-03 10.44 68.3 0.4 5.1 26.2

τ = Tmax/100000 , Nerr = 250 , Ndump = 5000
#I = 3359 , hmax = .885E − 01 , hmax/hmin = .924E + 01

Table 7: Case ad1
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T err est EI E1 E2 E3 E4
0.040 2.190E-09 1.726E-06 28.08 38.3 52.5 1.4 7.8
0.080 1.619E-08 7.884E-06 22.07 63.5 21.4 2.3 12.8
0.120 5.123E-08 2.211E-05 20.77 72.2 10.6 2.6 14.6
0.160 1.143E-07 4.718E-05 20.31 75.8 6.2 2.7 15.3
0.200 2.107E-07 8.515E-05 20.10 77.6 4.0 2.8 15.6
0.240 3.440E-07 1.375E-04 19.99 78.5 2.8 2.8 15.8
0.280 5.168E-07 2.052E-04 19.93 79.2 2.0 2.9 16.0
0.320 7.306E-07 2.889E-04 19.89 79.5 1.5 2.9 16.0
0.360 9.861E-07 3.889E-04 19.86 79.8 1.2 2.9 16.1
0.400 1.283E-06 5.053E-04 19.84 80.0 1.0 2.9 16.1
0.440 1.622E-06 6.378E-04 19.83 80.2 0.8 2.9 16.2
0.480 2.002E-06 7.861E-04 19.82 80.3 0.7 2.9 16.2
0.520 2.421E-06 9.500E-04 19.81 80.3 0.6 2.9 16.2
0.560 2.878E-06 1.129E-03 19.81 80.4 0.5 2.9 16.2
0.600 3.372E-06 1.322E-03 19.80 80.5 0.4 2.9 16.2
0.640 3.901E-06 1.529E-03 19.80 80.5 0.4 2.9 16.2
0.680 4.464E-06 1.749E-03 19.79 80.5 0.3 2.9 16.2
0.720 5.059E-06 1.982E-03 19.79 80.6 0.3 2.9 16.2
0.760 5.684E-06 2.226E-03 19.79 80.6 0.3 2.9 16.2
0.800 6.337E-06 2.482E-03 19.79 80.6 0.2 2.9 16.2

τ = Tmax/100000 , Nerr = 250 , Ndump = 5000
#I = 2457 , hmax = .861E − 01 , hmax/hmin = .136E + 02

Table 8: Case ad2
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T err est EI E1 E2 E3 E4
0.040 3.455E-07 7.742E-04 47.34 5.8 91.7 2.2 0.2
0.080 1.878E-06 1.769E-03 30.69 18.8 73.3 7.0 0.9
0.120 5.199E-06 3.327E-03 25.30 32.7 54.1 11.8 1.5
0.160 1.074E-05 5.690E-03 23.02 43.5 39.1 15.4 2.0
0.200 1.882E-05 9.041E-03 21.92 51.2 28.6 17.8 2.4
0.240 2.966E-05 1.351E-02 21.34 56.4 21.5 19.5 2.6
0.280 4.339E-05 1.920E-02 21.03 60.1 16.5 20.7 2.8
0.320 6.010E-05 2.615E-02 20.86 62.7 13.0 21.5 2.9
0.360 7.980E-05 3.441E-02 20.76 64.6 10.4 22.0 3.0
0.400 1.025E-04 4.397E-02 20.71 66.0 8.5 22.4 3.0
0.440 1.281E-04 5.485E-02 20.69 67.1 7.1 22.8 3.1
0.480 1.566E-04 6.700E-02 20.68 67.9 6.0 23.0 3.1
0.520 1.879E-04 8.041E-02 20.69 68.6 5.1 23.2 3.1
0.560 2.219E-04 9.504E-02 20.70 69.1 4.4 23.3 3.2
0.600 2.584E-04 1.108E-01 20.71 69.5 3.8 23.4 3.2
0.640 2.974E-04 1.278E-01 20.73 69.9 3.4 23.5 3.2
0.680 3.388E-04 1.457E-01 20.74 70.2 3.0 23.6 3.2
0.720 3.823E-04 1.648E-01 20.76 70.4 2.7 23.7 3.2
0.760 4.280E-04 1.847E-01 20.78 70.7 2.4 23.7 3.2
0.800 4.757E-04 2.056E-01 20.79 70.8 2.2 23.8 3.2

τ = Tmax/600000 , Nerr = 800 , Ndump = 30000
#I = 23235 , hmax = .285E − 01 , hmax/hmin = .210E + 02

Table 9: Case ad3

h τ ‖eτh‖L2(QT ) EOCspace EOCtime

0.2838 0.2500 4.5853E-02 - -
0.2172 0.2000 3.5474E-02 0.96 1.15
0.1540 0.1667 2.2387E-02 1.34 2.52
0.1035 0.1000 1.2945E-02 1.38 1.07
0.0768 0.0769 5.3557E-03 2.95 3.36
0.0532 0.0526 2.3742E-03 2.22 2.14
0.0398 0.0400 1.3345E-03 1.98 2.10
0.0270 0.0270 5.2577E-04 2.40 2.38
0.0223 0.0222 2.7946E-04 3.30 3.23
0.0144 0.0145 1.1835E-04 1.98 2.01
Global order of convergence 2.07 2.11

Table 10: ε = 0.005, p = 1, q = 1 (parabolic case)
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h τ ‖eτh‖L2(QT ) EOCspace EOCtime

0.2838 0.2500 2.0470E-02 - -
0.2172 0.2000 1.0103E-02 2.64 3.16
0.1540 0.1667 4.3992E-03 2.42 4.56
0.1035 0.1000 1.6821E-03 2.42 1.88
0.0768 0.0769 4.9668E-04 4.08 4.65
0.0532 0.0526 1.6550E-04 3.00 2.90
0.0398 0.0400 7.7630E-05 2.61 2.76
0.0270 0.0270 2.7654E-05 2.66 2.63
Global order of convergence 2.89 2.78

Table 11: ε = 0.005, p = 2, q = 2 (parabolic case)

h τ ‖eτh‖L2(QT ) EOCspace EOCtime

0.2838 0.2500 4.9212E-02 - -
0.2172 0.2000 3.8843E-02 0.89 1.06
0.1540 0.1667 2.5997E-02 1.17 2.20
0.1035 0.1000 1.5581E-02 1.29 1.00
0.0768 0.0769 6.9089E-03 2.72 3.10
0.0532 0.0526 3.2904E-03 2.02 1.95
0.0398 0.0400 1.8620E-03 1.96 2.07
0.0270 0.0270 7.5458E-04 2.32 2.30
0.0223 0.0222 4.1924E-04 3.07 3.00
0.0144 0.0145 1.7556E-04 2.01 2.04
Global order of convergence 1.95 1.99

Table 12: ε = 0, p = 1, q = 1 (hyperbolic case)

h τ ‖eτh‖L2(QT ) EOCspace EOCtime

0.2838 0.2500 2.3451E-02 - -
0.2172 0.2000 1.2484E-02 2.36 2.83
0.1540 0.1667 6.1746E-03 2.05 3.86
0.1035 0.1000 2.6342E-03 2.14 1.67
0.0768 0.0769 8.0848E-04 3.95 4.50
0.0532 0.0526 2.6400E-04 3.05 2.95
0.0398 0.0400 1.0761E-04 3.09 3.27
0.0270 0.0270 2.7962E-05 3.47 3.44
Global order of convergence 2.87 2.98

Table 13: ε = 0, p = 2, q = 2 (hyperbolic case)

47



-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

Figure 1: FV mesh for case 1
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Figure 2: FV mesh for case 3
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[23] M. Feistauer, J. Felcman, M. Lukáčová, G. Warnecke: Error estimates of a combined
finite volume - finite element method for nonlinear convection - diffusion problems.
SIAM J. Numer. Anal. 36 (1999), 1528-1548.

[24] M. Feistauer, J. Felcman, M. Lukáčová, Combined finite element–finite volume solu-
tion of compressible flow, J. Comput. Appl. Math., 63 (1995), 179-199.

50
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