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David Chodounský
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relativńıch topologických vlastnost́ı byla poprvé systematicky představena
A. V. Archangelským a H. M. M. Genedim v roce 1989.

Hlavńı výsledky práce jsou (1) př́ıklad, který popisuje zp̊usob jak upravit
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orem 5.2.8) a (3) věta charakterizuj́ıćı dvojice uzavřených neoddělitelných
podmnožin Niemytzkého roviny (Theorem 4.3.4).
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Abstract: In this thesis we study the concepts of relative topological prop-
erties and present some basic facts and relations between them. Our main
focus is on various versions of relative normality, relative regularity and rela-
tive compactness. We give examples which answer some open questions and
contradict some conjectures in the literature. The theory of relative topolo-
gical properties was introduced by A. V. Arhangel’skii and H. M. M. Genedi
in 1989.

Our main results are (1) an example which presents a way to modify
any Dowker space to get a normal space X such that X × [0, 1] is not κ-
normal (Example 4.2.12). (2) A theorem which implies the existence of a
non-Tychonoff space that is internally compact in a larger regular space
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(Theorem 5.2.8), and (3) a theorem that characterizes couples of closed
subsets of the Niemytzki plane which cannot be separated by open sets
(Theorem 4.3.4).
Keywords: relative normality, relative compactness
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Chapter 1

Introduction

In general topology we often encounter the question of how a certain space
Y is located in a larger space X. Examples of pairs of spaces, where the
smaller space is specially located in a larger one, are a Tychonoff space in
its Čech-Stone extension, a Hausdorff space in its Katětov extension or a T1

space in its hyperspace. In situations like this it is natural to examine what
are properties of Y with respect to X. A particular class of such properties
is called relative topological properties of a space Y in a superspace X and
we will study it in this thesis.

The systematic study of relative topological properties was begun by
A. V. Arhangel’skii and H. M. M. Genedi in a paper published in Russian
in 1989 [4]. In 1996 Arhangel’skii wrote a survey article on this topic [2].
Parts of this thesis are based on this article and all theorems in Sections 3.1,
4.1, 4.2 and 5.1 without any citation are originated there.

Relative topological properties often generalize a global property in the
sense that if the smaller space Y coincides with the larger space X, then
the relative topological property should be the same as the global one. For
example of some global properties we mention Hausdorffness, regularity,
normality, metrizability, and compactness like properties. In this text we
will mainly study various version of relative separation axioms and relative
compactness. We will also see that some global properties can be generalized
in several ways yielding several relative versions of the global property.

In Chapter 3 we give a short survey of relative topological properties
obtained from regularity, and we also show how various relative versions of
regularity arise.

In Chapter 4 we discuss relative normality and the “normality on”, which
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has a close relation to κ-normality. The notion of κ-normality was introduced
in 1972 by E. V. Schepin in [17]. In Chapter 4 we give answers to two
questions from Arhangel’skii’s article [3] by constructing a normal space X,
such that its product with the closed unit interval X×I is not κ-normal.This
example is a joint work with Eva Murtinová. In the last part of Chapter 4
we study relative normality of subspaces of the Niemytzki plane and we
will derive a general condition for such a subspace to be relatively normal.
From this condition we easily obtain a negative answer to a question of
M. G. Tkachenko et al. in [18] by showing that the Niemytzki plane is
normal on a certain type of its dense countable subspaces.

Finally, in Chapter 5 we consider relative compactness, and answer two
questions of Arhangel’skii from [3] by proving that there exists a non-Tycho-
noff space that is internally compact in a larger regular space.

At many places of this text, propositions and theorems are trivial or
straightforward to prove or the proof is similar to some well known argument.
In such situations proofs will be only sketched or completely skipped.
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Chapter 2

Prerequisites

In this chapter we will give a short review of basic topological and set-
theoretic notions and principles. Examples and theorems presented here
will be used for various constructions in later chapters.

Our basic topological reference is [9]. For set theory e.g. [12] can be
used.

2.1 Basic Topological Notions

We use the standard notation: the set of all natural numbers is denoted by
ω, the set of all nonzero natural numbers N, the set of real numbers R, the
set of positive real numbers R+, the set of all rational numbers Q and the
set of irrational numbers P. These sets are considered with the Eauclidean
topology.

All topological spaces in this thesis are assumed to be T1 and are usually
denoted X or Y . For a subset A of a topological space (X, τ) the closure
of A in (X, τ) is denoted by A. If we want to emphasize the space or the

topology we use the notation A
X

or A
τ
. The interior of the set A in the

space X is denoted intXA or just intA.

Definition 2.1.1. Let X and Y be topological spaces. A mapping f : X → Y
is closed if f is a continuous mapping and for each closed subset A of X the
image f [A] is a closed subset of Y .
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Theorem 2.1.2. Let f : X → Y be a closed mapping onto Y . Then:

1. If X is T1, then Y is T1.

2. If X is normal, then Y is normal.

On the other hand other basic separation axioms are not preserved by
closed mappings [7]. A stronger preservation property has the class of perfect
mappings.

Definition 2.1.3. A mapping f : X → Y is a perfect mapping if X is a
Hausdorff space, f is a continuous closed mapping and for each y ∈ Y the
preimage f−1[{y}] is a compact subset of X.

Theorem 2.1.4. Let f : X → Y be a perfect mapping onto Y . Then:

1. If X is Hausdorff, then Y is Hausdorff.

2. X is regular if and only if Y is regular.

3. If X is normal, then Y is normal.

4. X is compact if and only if Y is compact.

5. X is locally compact if and only if Y is locally compact.

It easy to construct examples showing that implications in 1 and 3 cannot
be reversed.

In this thesis, we will often use relative versions of some topological
properties. So if we need to emphasize that we are dealing with a general
version of some property, we will e.g. use the notation “X is normal in
itself” instead of just “X is normal”.

Definition 2.1.5. Let Y be a subspace of a topological space X. The space
Y is C0-embedded in X if each continuous function f : Y → [0, 1] can be
extended to a continuous function F : X → R.

The next construction will be used in a counterexample in section 4.2.

Example 2.1.6. Let X be any topological space. Let us recall a construc-
tion of a space X? which contains X and is called its Alexandroff double. Put
X? = X × 2 (where 2 = {0, 1}) and topologize X? as follows. All points of
X ×{1} are isolated and a basic open neighborhood of a point x ∈ X ×{0}
is the set (O × 2) \ {(x, 1)} where O is an open subset of X containing x.

9



The following general construction is the most common way to construct
a regular non-Tychonoff space. It will be used in section 5.2.

Example 2.1.7. Let X be a T1 regular non-normal topological space. We
will sketch the construction of a canonical T1 regular non-Tychonoff space
J(X). The construction of the space J(X) uses a method called Jones
machine.

Pick two closed disjoint subsets A0 and A1 of X such that A0 and A1

cannot be separated by disjoint open neighborhoods. Add one new point z
to the product X × ω. Let the base of topology at z consist of the sets of
the form

{z} ∪
(
X × (ω \ 2n + i)

)
∪

(
(X \ Ai)× {2n− 1 + i}

)
for n ∈ N and i ∈ {0, 1}. The resulting space (X × ω) ∪ {z} will be
denoted P (X). Finally identify each point (a, 2n) in the set A0 × {2n}
with the corresponding point (a, 2n + 1) in A0 × {2n + 1} and each point
(a, 2n+1) ∈ A1×{2n+1} with (a, 2n+2) ∈ A1×{2n+2} for every n ∈ ω.
This quotient space is the Jones space J(X) and the quotient mapping will
be denoted q : P (X) → J(X). Note that q is a perfect mapping.

It follows from the construction that J(X) is a T1 regular space and the
closed set A1 × {0} and the point z cannot be separated by a continuous
real valued function, hence J(X) is not Tychonoff. The space J(X) inherits
many properties from the original space X. For details see the original paper
by F. B. Jones [13].

2.2 H-closed Spaces

A closed connection with compact spaces has the class of H-closed spaces.
In chapter 5 we will see that this notion has also a close relation with relative
compactness. We will remind just a few facts about H-closed spaces in this
section, more can be found in [14].

Definition 2.2.1. A Hausdorff space X is called H-closed if X is a closed
subspace of each of its Hausdorff superspaces.

Theorem 2.2.2 ([14]). If X is a Hausdorff space, the following conditions
are equivalent:

1. X is H-closed.
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2. For every centered family V of open subsets of X the intersection⋂
{V : v ∈ V} is non-empty.

3. Every open cover U of X has a finite subset U ′ such that⋃
{U : U ∈ U ′} = X.

Proposition 2.2.3. A regular space X is H-closed if and only if X is com-
pact.

We will also use the notion of R-closed space.

Definition 2.2.4. A regular space X is called R-closed if X is a closed
subspace of each of its regular superspaces.

2.3 Set Theory

Definition 2.3.1. A family C of sets is centered if for each finite set A ⊂ C
is

⋂
A 6= ∅.

Definition 2.3.2. Two infinite sets A and B are almost disjoint if A∩B is
finite. A system A consisting of infinite sets is called almost disjoint system
(or AD) if each two members of A are almost disjoint. Let Z be an infinite
set. The system A is a maximal almost disjoint system (or MAD) of subsets
of Z if A consists of infinite subsets of Z, A is an AD system and A is a
maximal such system (with respect to inclusion).

An ordinal number α is considered as the set of its predecessors. This
for example means that the set {0, 1} can be denoted 2.

Definition 2.3.3. Let κ be an infinite regular cardinal. The set A is a closed
unbounded set (or club) if A is an unbounded subset of κ and contains all its
limit points (κ is considered with the order topology and unbounded means
cofinal).

Definition 2.3.4. Let κ be an infinite regular cardinal. A set S ⊂ κ is
stationary if for each closed unbounded set A ⊂ κ, A ∩ S is nonempty.

Theorem 2.3.5 (Fodor’s Lemma). Let κ be an uncountable regular cardinal
and S a stationary subset of κ. Then each function f : S → κ, such that
f(α) < α for each α ∈ S, α 6= 0, is constant on some stationary subset of κ.

Theorem 2.3.6 (Solovay). Let κ be an uncountable regular cardinal and S
a stationary subset of κ. Then κ is a union of κ many pairwise disjoint
stationary subsets of κ.

11



Chapter 3

Lower Separation Axioms

3.1 Relative Regularity

Definition 3.1.1. A topological space Y is regular in X, if for each y ∈ Y
and for each subset A of X which is closed in X and such that y /∈ A, there
are two disjoint sets U and V , open in X, such that y ∈ U and A ∩ Y ⊂ V .

If the larger space X is regular, then clearly each subspace of X is regular
in X.

Proposition 3.1.2. If the space Y is regular in X, then Y is a regular (in
itself) subspace of X.

So in some cases the relative property implies an absolute property of the
smaller space. The converse is sometimes also true, but in this case absolute
regularity of the smaller space does not imply relative regularity. The next
example is a version of a classical construction of a Hausdorff non-regular
space (see, e.g. [9]).

Example 3.1.3. We will construct a regular space Y and a larger Hausdorff
space X in which Y is not regular.

Let P = {1/n : n ∈ N} be a subset of the real line R. Add one new
element R \ P to the euclidean topology of the real line and denote the
resulting topology τ . Let X be the space (R, τ) and Y = P ∪ {0}. Y is a
discrete subset of X, thus it is regular, but Y is not regular in X.

The definition of relative regularity is not the only one natural gene-
ralization of regularity. There are more definitions arising from regularity
and we will mention just one of them.
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Definition 3.1.4. A topological space is Y internally regular in X, if for
every y ∈ Y and every subset A of Y which is closed in X and such that
y /∈ A, there are two disjoint sets U and V open in X such that y ∈ U and
A ⊂ V .

The phrase “internally” is usually used when some property is required
for all subsets of the smaller space, which are closed in the larger one. Later
we will define internal normality and internal compactness in this way.

It is easy to see that if Y is regular in X then Y is internally regular in
X, but the converse is not true. A Hausdorff space X with a non-regular
subspace Y and such that Y is internally regular in X, is constructed in
Example 5.2.7.

Let us close this section by mentioning some conditions sufficient for Y
to be regular in X.

Proposition 3.1.5. If Y is a dense subspace of a space X, then Y is regular
in X if and only if Y is regular.

Theorem 3.1.6 ([5]). For a Hausdorff space Y the following conditions are
equivalent:

1. Y is regular in every larger Hausdorff space X.

2. Y is internally regular in every larger Hausdorff space.

3. Y is compact.

Proof. 3⇒1: Let Y be a compact space and X a larger Hausdorff space. If
A is a closed subset of X then A ∩ Y is a compact set and thus A ∩ Y and
any point of X \A can be separated by disjoint open neighborhoods. Hence
Y is regular in X.

Since regularity of Y in a Hausdorff space X implies internal regularity
of Y in X, it is sufficient to prove 2⇒3. Let Y be a non-compact Hausdorff
space. We will construct a larger Hausdorff space X in which Y is not
internally regular.

Fix a centered family C of closed subsets of Y , which has an empty
intersection. We may pick a C0 ∈ C which is a proper subset of Y and
assume that all the sets in C are subsets of C0. Choose y0 ∈ Y \C0. We aim
to extend Y to a Hausdorff space X, so that C0 will be closed in X but y0

and C0 cannot be separated by disjoint open subsets of X.
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Let X = Y ∪ (C0 × ω) and topologize X as follows. Let Y \ (C0 ∪ y0)
be an open subspace and let all points of C0 × ω be isolated. A basic open
neighborhood of y0 has the form U ∪ (C × ω) for U an open neighborhood
of y0 in Y \ C0 and C ∈ C. A basic open neighborhood of x ∈ C0 has the
form V ∪

(
(V ∩ C0)× (ω \ n)

)
where V is some open neighborhood of x in

Y such that y0 /∈ V and n ∈ ω.
To show that this is a correctly defined base of topology in X we need to

check that finite intersections of basic sets are open sets. Let W = U∪(C×ω)
be a basic neighborhood of y0 and let Z = V ∪

(
(V ∩C0)×(ω\n)

)
be a basic

open neighborhood of x ∈ C0. Now W ∩Z = (U ∩ V )∪
(
(V ∩C)× (ω \ n)

)
where U ∩ V ⊂ Y \ (C0 ∪ {y0}) and so W ∩ Z is an open set.

The other cases are trivial to check so the definition of the topology
works. Moreover, the topology of X coincides with the topology of Y on Y
and C0 is closed in X.

We will prove that Y is not internally regular in X. Let W = U ∪
(C × ω) be a basic open neighborhood of y0. Take arbitrary x ∈ C and let
Z = V ∪

(
(V ∩ C0) × (ω \ n)

)
be any basic open neighborhood of x. Now

{x} × (ω \ n) ⊂ W ∩ Z and thus W ∩ Z is nonempty and x ∈ W ∩ C0.
It only remains to show that X is Hausdorff. The only nontrivial case is

again y0 and x ∈ C0. The space Y is Hausdorff, hence there exist disjoint
open subsets U , V of Y such that y0 ∈ U and x ∈ V . Since the intersection
of C is empty, there exists a C ∈ C such that x /∈ C. For such C is Z = V ∩
(Y \ C) an open neighborhood of x in Y . Then x ∈ A = Z ∪ (Z ∩ C0)× ω
and y0 ∈ B = U ∪(C×ω), so A and B are disjoint open sets in X separating
y0 and x.

The first proof of equivalence 1⇔3 in Theorem 3.1.6 was given in [5]. The
authors used a different construction, which for each non-compact space Y
gives a larger space X in which Y is not regular. The proof of 2⇒3 uses a
simplified construction from [10].
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Chapter 4

Relative Normality

4.1 Relative Normality

In this section, properties obtained by generalization of normality will be
studied. There are again many natural ways how to define such a location
property. We will consider just three of them: the normality in, normality
on and internal normality. Let us start with the most common one.

Definition 4.1.1. Let Y be a subspace of a topological space X. The space
Y is said to be normal in X if for every A and B which are disjoint closed
subsets of X, there are two disjoint open sets U and V in X such that
A ∩ Y ⊂ U and B ∩ Y ⊂ V .

Proposition 4.1.2. If a space Y is normal in some larger space X, then Y
is a regular space.

Proof. If Y is normal in X then Y is obviously regular in X and due to
Proposition 3.1.2, Y is a regular space.

It is not known yet if the smaller space Y which is normal in a larger
regular space X has to be Tychonoff. There is only a consistent result; MA
+ ℵ2 < 2ℵ0 implies that there is a non-Tychonoff space normal in a larger
regular space [10].

Theorem 4.1.3. If Y is regular in X and the space Y is Lindelöf, then Y
is normal in X.

Normality of Y in X cannot be guaranteed by normality of Y , even if Y
is closed in X. Pick a non-normal space X and two closed subsets A and B
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of X which cannot be separated by disjoint open neighborhoods in X and
such that Y = A ∪ B is discrete. Then Y is a discrete closed subset of X
but Y is not normal in X.

The definition of internal normality follows the same pattern as the defini-
tion of internal regularity. Internal normality is again weaker than normality
in.

Definition 4.1.4. A topological space Y is internally normal in X, if for
every two disjoint subsets A and B of Y which are closed in X, there are
disjoint sets U and V , open in X, such that A ⊂ U and B ⊂ V .

Here we can mention some easy-to-prove propositions.

Proposition 4.1.5. Let Y be a dense subspace of a space X and Z be
internally normal in Y . Then Z is internally normal in X.

Corollary 4.1.6. Every normal subspace Y of X which is dense in X, is
internally normal in X.

The next example shows that internal normality does not coincide with
relative normality.

Example 4.1.7 ([3]). There is a Tychonoff space X with a dense subspace
Y such that Y is internally normal in X and not normal in X.

Let L be the set of all limit ordinals in ω1 and S, T two disjoint subsets
of L stationary in ω1. Put

M = (ω1 + 1) \ S,

X ′ = {(α, β) : β ≤ α ≤ ω1},

X = X ′ \ {(ω1, ω1)} and Y = (M ×M) ∩X

and let π be the projection from X ′ to the second coordinate. The topology
on X, Y and X ′ is inherited from (ω1 + 1)× (ω1 + 1). It is easy to see that
X ′ is compact, X is locally compact and Y is dense in X since S contains
only limit ordinals in ω1.

Put A = {(α, α) : α ∈ T} and B = {(ω1, α) : α ∈ T}. Obviously, A and
B are subsets of Y with disjoint closures in X. We will show that A and B
cannot be separated by disjoint open sets in X so Y is not normal in X.

Let U be an open neighborhood of A in X. For each α ∈ T fix some
δ(α) < α such that Vα = (δ(α), α]2 ∩ X is a subset of U . By Fodor’s
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Lemma (2.3.5) there exist β < ω1 and a stationary subset E of T such that
δ(α) = β for each α ∈ E. This implies that (ω1, α) ∈

⋃
{Vα : α ∈ E} ⊂ U

for each α ∈ E. Since E is a subset of T , U intersects B and A and B
cannot be separated in X.

On the other hand, we will show that Y is internally normal in X. We will
prove that each subset of Y , which is closed in X, is compact. This property
will be defined in Chapter 5 as internal compactness and Lemma 5.2.3 then
implies internal normality of Y in X.

Let P be a non-compact closed subset of X. The space X ′ is compact

so P cannot be closed in X ′ and P ′ = P
X′

= P ∪ {(ω1, ω1)}. Now π[P ′]
is a closed subset of ω1 + 1 since P ′ is compact, and ω1 ∈ π[P ′]. Thus
π[P ] = π[P ′] \ {ω1} is a closed unbounded set in ω1 and π[P ] has nonempty
intersection with the stationary set S. But this shows that P is not a subset
of Y .

Proposition 4.1.2 states, that each space normal in some larger space
is regular. Generally we can ask the question, whether a relative property
implies any absolute property of the smaller space. Arhangel’skii stated this
question in the following way [3, Question 10]: Let Y be a subspace of a
regular space X such that Y is internally normal in X. Is then Y Tychonoff?
We will give a negative answer to this question in Corollary 5.2.9.

For the definition of normality on, the following notion is used.

Definition 4.1.8. A subset A of X is concentrated on Y ⊂ X, if A ⊂ A ∩ Y
X

.

Hence closed subsets of X concentrated on Y are closures of subsets of Y .

Definition 4.1.9. A space X is normal on its subspace Y , if for every two
disjoint closed subsets A and B of X concentrated on Y there are disjoint
open sets U and V in X such that A ⊂ U and B ⊂ V .

If X is normal, then X is normal on every subspace Y of X.

Proposition 4.1.10. If X is normal on Y , then Y is normal in X.

“Normality on” is stronger that “normality in”. The following example
shows that it is strictly stronger.

Example 4.1.11. There exists a countable dense subspace Y of the space
X = Rc such that X is not normal on Y . But Y is Lindelöf and so Y is
normal in X. For details see [1].
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If Y is a non-normal subspace of a normal space X then X is normal on
Y . On the other hand, Proposition 4.1.10 and 4.1.2 imply that normality on
is sufficient for regularity of the smaller space. We will see that if a regular
space X is normal on Y then Y has to be Tychonoff (Theorem 4.2.7). The
prove this, the notion of κ-normality appears to be a useful tool.

4.2 On κ-normality

Definition 4.2.1. A space X is densely normal if there exists a dense sub-
space Y of X such that X is normal on Y .

Definition 4.2.2. A set A is a regular closed set if A is a closure of an open
set.

Definition 4.2.3. A space X is κ-normal if every two disjoint regular closed
sets in X can be separated by disjoint open neighborhoods.

The notion of κ-normality was introduced by E.V. Schepin in [17]. As we
will see, κ-normality is an absolute property, but it has interesting relations
with some versions of relative normality.

Lemma 4.2.4. If Y is dense in X then each regular closed subset of X is
concentrated on Y .

Theorem 4.2.5. Every densely normal space is κ-normal.

Proof. This follows immediately from Lemma 4.2.4.

The converse is not true; there exists a κ-normal Tychonoff space which
is not densely normal. This space is constructed in [1].

An important property of κ-normal spaces was proved in [17]. It can be
proved in a similar way to the Urysohn’s Lemma.

Theorem 4.2.6 ([17]). If X is a κ-normal space, then every two disjoint
regular closed sets A and B in X are functionally separated (there exists a
continuous function f : X → R such that f [A] ⊂ {0} and f [B] ⊂ {1}).

Theorem 4.2.6 is a natural tool for proving that certain spaces need to
be Tychonoff.

Theorem 4.2.7. If a regular space X is normal on Y , then the space Y is
Tychonoff.
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Proof. Pick any nonempty closed subset A of Y and a point b ∈ Y \A. Since
the space Y is regular, we can take two disjoint regular closed sets G and H
in Y such that A ⊂ G and b ∈ H. Note that Y is normal on Y , thus densely
normal and κ-normal. The result follows from Theorem 4.2.6.

In the class of regular spaces normality on is sufficient for the smaller
space being Tychonoff and internal normality is not sufficient. The situation
for normality in is not known yet in ZFC and the general conjecture is that
it is again not sufficient [2].

Another way to recognize that a space is normal on its subspace is given
by Proposition 4.2.8.

Proposition 4.2.8. If Y is a normal subspace of X and Y is C0-embedded
in X then X is normal on Y .

Corollary 4.2.9. If X has a dense normal subspace Y and Y is C0-embed-
ded in X, then the space X is densely normal (and hence κ-normal).

Example 4.2.10. Let Y be any normal space and X any space such that

Y ⊂ X ⊂ βY

Then X is normal on Y by Corollary 4.2.9.

Example 4.2.11. Let X be a non-normal topological space which is dense
in itself and let A and B be two closed subsets of X each of which is dense
in itself and which cannot be separated by open neighborhoods. We can
get such a space by setting X = X ′ × R for any non-normal space X ′. Let
X? = X × 2 be the Alexandroff double of X (see 2.1.6). Now A× {1} and
B × {1} are open sets and thus A × 2 and B × 2 are two disjoint regular
closed sets in X?. These two sets cannot be separated by disjoint open sets
in X? since A and B cannot be separated in X. This shows that X? is not
κ-normal and not normal on Y = X × {1}. The space Y is discrete, hence
this example shows that no separation property (even discreteness) of the
smaller space Y can be strong enough to guarantee that X has to be normal
on Y .

One of the famous questions in General Topology was the existence of a
normal space X whose product with the closed unit interval I is not normal.
Such spaces X are called Dowker spaces, and Dowker and Katětov proved
that X is a Dowker space if and only if X is normal and not countably
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paracompact ([15], [8]). The existence of such space in ZFC was proved in
[16]. Arhangel’skii gave two related questions.
[3, Question 7,8]: Is the product of a normal space X and a compact Haus-
dorff space (the closed interval I) always κ-normal?

Our next example gives a negative answer to these questions. It is a
modification of any Dowker space.

Example 4.2.12. Let Y be any Dowker space. Put X ′ = (ω + 1)× Y and
refine the product topology by declaring all points in ω × Y to be isolated.
The resulting space will be denoted X. As a subspace, the top level {ω}×Y
is isomorphic to Y and will be denoted Y ′.

The space X is normal. Indeed, let A and B be two disjoint closed
subsets of X. Then A ∩ Y ′ and B ∩ Y ′ are two disjoint closed subsets of
Y ′ and there exist disjoint open subsets U and V of Y ′ separating A ∩ Y ′

and B ∩ Y ′, since Y ′ is normal. The sets (A \ Y ′) ∪ ((ω + 1) × U) \ B and
(B \Y ′)∪ ((ω + 1)×V ) \A are disjoint open sets in X separating A and B.

The construction of canonically closed subsets of X × I is analogous
to the classical one (see, e.g., [9, Chapter 5.2]). Since Y ′ is not countably
paracompact, there exists a sequence {Fn : n ∈ ω} of closed subsets of Y
such that Fn+1 ⊂ Fn,

⋂
{Fn : n ∈ ω} = ∅ and for each sequence {Gn : n ∈ ω}

of open sets in Y , such that Fn ⊂ Gn,
⋂
{Gn : n ∈ ω} is nonempty.

For each n ∈ ω, put

Bn = (ω \ n)× Fn ×
(

1

2(n + 1)
, min

{
3

2(n + 1)
, 1

})
and

Sn = n× Y ×
[
0,

1

2(n + 2)

)
.

Note that Bn and Sn are open subsets of X × I and Bn ∩ Sm = ∅ for each
n, m ∈ ω.

We will define regular closed subsets of X × I:

F =
⋃
{Bn : n ∈ ω}

and

E =
⋃
{Sn : n ∈ ω}.

To prove that E and F are disjoint it is only necessary to show that
(Y ′ × {0})∩ F = ∅. Pick any x ∈ Y ′, fix n ∈ ω such that x /∈ {ω} × Fn and
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let O be an open neighborhood of (x, 0), where

O = (ω + 1)× (Y \ Fn)×
[
0,

1

2(n + 1)

)
.

We will show that O is disjoint from Bm for each m ∈ ω and thus disjoint
from F . If m ≤ n, then

O ⊂ (ω + 1)× Y ×
[
0,

1

2(n + 1)

)
and

Bm ⊂ (ω + 1)× Y ×
(

1

2(n + 1)
, 1

]
so O and Bm are disjoint. If n < m, then Fm ⊂ Fn so Bm ⊂ (ω +1)×Fn× I
and this set is disjoint from O.

Now it is clear that

E = (Y ′ × {0}) ∪
⋃
{Sn : n ∈ ω}

and
F =

⋃
{Bn : n ∈ ω}

where

Bn = ((ω + 1) \ n)× Fn ×
[

1

2(n + 1)
, min

{
3

2(n + 1)
, 1

}]
.

The sets E and F cannot be separated by disjoint open neighborhoods.
If F ⊂ U and U is open then {ω} × Fn × {1/(n + 1)} ⊂ U for each n and
thus {Gn : n ∈ ω}, where Gn = πY [U ∩ (Y ′×{1/(n + 1)})], is a sequence of
open sets in Y such that Fn ⊂ Gn (πY is the projection from {ω} × Y × I
onto Y ). This implies that there exists some x ∈

⋂
{Gn : n ∈ ω}. For this x

we have (ω, x, 0) ∈ U ∩E and therefore E and F cannot be separated. This
shows that X × I is not κ-normal.

4.3 Bubble Spaces

Let us now recall the definition of the Niemytzki plane N (also known as
the bubble space) and establish some notation. Let L = {(t, 0) : t ∈ R},
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E = {(r, s) : r ∈ R, s ∈ R+}, N = L ∪ E. For x = (r, s) ∈ E and 0 < ε < s
let

Bε(x) = {(r1, s1) ∈ E : (r1 − r)2 + (s1 − s)2 < ε2}

and for x = (t, 0) ∈ L and ε ∈ R+ let

Bε(x) = Bε(t, ε) ∪ {x}.

The Niemytzki plane is the set N with the topology generated by the sets
Bε(x) for x ∈ N and ε ∈ R+. On the set L we will also use the Euclidean
topology of the real line denoted by R.

The next lemma formulates a well known property of the Niemytzki
plane. It is an application of the Baire Category Theorem.

Lemma 4.3.1. The sets Q = {(t, 0) : t ∈ Q} and P = {(t, 0) : t ∈ P} are
closed subsets of N which cannot be separated by disjoint open neighborhoods
in N.

Since each countable space is normal in every larger regular space (The-
orem 4.1.3) it is natural to study normality of a topological space X on its
countable subspaces. This topic is investigated in the article of Tkachenko,
Tkachuk, Wilson and Yaschenko [18]. A special case when X is the Niemytzki
plane was mainly considered there.

Example 4.3.2 ([18]). In this example a countable dense subset C of N,
such that N is not normal on C, was constructed. Let

A = {(x, y) ∈ E : x, y ∈ Q} and Q = {(x, 0) : x ∈ Q}.

Then N is not normal on C = A ∪ Q. Details can be found in the original
article.

Example 4.3.3 ([18]). There is a separable Tychonoff space which is not
normal on any countable dense subspace. This space is constructed by a
modification of the Niemytzki plane. It is again a kind of a “bubble” space
but this space is not first countable.

In the light of the previous examples, the authors of [18] raised the fol-
lowing problem ([18, Problem 3.4]): Is it true that the Niemytzki plane is
not normal on any of its countable dense subspaces?

We answer this question in the negative by describing certain type of
countable dense subspaces of N on which N is normal.
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Theorem 4.3.4. Let G, H be disjoint closed subsets of N. Then G and H
can be separated by disjoint open sets if and only if there exist sets Gi and
Hi for i ∈ N such that G ∩ L =

⋃
i∈N Gi, H ∩ L =

⋃
i∈N Hi and

G
R
i ∩H = ∅ = H

R
i ∩G

for every i ∈ N.

We will use the following technical Lemma in the proof of Theorem 4.3.4.

Lemma 4.3.5. For each x ∈ E there exists some ι ∈ R+ such that x /∈ Bε(y)
implies Bε/2(y) ∩Bι(x) = ∅ for each y ∈ L and each ε ∈ R+, ε ≤ 1.

Proof of Lemma 4.3.5. Without loss of generality we may assume x = (0, a).
Take any ι such that ι + ι2 ≤ a2/2 and ι ≤ a/2. We will prove that this ι
works. Let y = (b, 0) ∈ L and ε ∈ R+, ε ≤ 1, be such that x /∈ Bε(y) (and
thus ε2 ≤ b2 + (a − ε)2). We have to prove that Bε/2(y) ∩ Bι(x) = ∅. This
fact can be reformulated as (ι + ε/2)2 ≤ b2 + (a− ε/2)2.

Case 1: a/2 ≤ ε ≤ 1

(ι + ε/2)2 = ε2/4 + ει + ι2 ≤ ε2/4 + ι + ι2 ≤ a2/2 + ε2/4
≤ aε + ε2/4

and here we can use 0 ≤ b2 + (a− ε)2 − ε2:

aε + ε2/4 ≤ b2 + (a− ε)2 + aε + ε2/4− ε2 = b2 + (a− ε/2)2.

Case 2: 0 < ε < a/2

(ι + ε/2)2 = ι2 + ει + ε2/4 ≤ ι2 + ι + ε2/4 ≤ a2/2 + ε2/4,

now use 0 ≤ a(a/2− ε) = a2/2− aε:

a2/2 + ε2/4 ≤ a2 − aε + ε2/4 ≤ b2 + (a− ε/2)2.

Proof of Theorem 4.3.4. We will denote G′ = G ∩ L, H ′ = H ∩ L.
First, let us show that if the condition is not fulfilled, then the sets G

and H cannot be separated. Suppose U and V are open sets, such that
G ⊂ U and H ⊂ V . To each x ∈ G′ (x ∈ H ′) assign ε(x) ∈ R+, for which
Bε(x)(x) ⊂ U (Bε(x)(x) ⊂ V , respectively). Now if Gi = {x ∈ G′ : ε(x) > 1

i
}
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and Hi = {x ∈ H ′ : ε(x) > 1
i
} for i ∈ N, then without lost of generality

(∃j ∈ N)(∃h ∈ G
R
j )(h ∈ H ′). Otherwise Gi, Hi satisfy the given condition.

This implies for such j and h,

∅ 6=
⋃

y∈Gj

Bε(y)(y) ∩Bε(h)(h) ⊂ U ∩ V

and U and V are not disjoint.
Now let us fix sets G and H, which satisfy the condition given in the

theorem, and construct the disjoint sets U and V . In the first (and crucial)
step we will separate G′ and H ′. For x = (t, 0) ∈ L let Pε(x) be “the area
between a horizontal line and a parabola”:

Pε(x) = {(r, s) ∈ E : ε > s > (t− r)2} ∪ {x}.

Now for x ∈ G1 fix any ε(x) ∈ (0, 1). For each x = (t, 0) ∈ H1 fix an
ε(x) ∈ (0, 1) such that {(t′, 0) ∈ L : |t′ − t| < 2

√
ε(x)} ∩ G1 = ∅. That is

possible since G
R
1 ∩H1 = ∅. Thus

Pε(x)(x) ∩
⋃

y∈G1

Pε(y)(y) = ∅

for every x ∈ H1.
Further, we may assume that the sets Gi (Hi, respectively) are pairwise

disjoint and we will continue inductively: to x ∈ Gn (Hn, respectively) we
assign ε(x) in the same way: for x = (t, 0) ∈ Gn let ε(x) ∈ (0, 1) be such
that

{(t′, 0) ∈ L : |t− t′| < 2
√

ε(x)} ∩
⋃
i<n

Hi = ∅.

Such ε(x) exists since
⋃

i<n Hi

R
∩Gn = ∅. For x and ε(x) chosen in this way

Pε(x)(x) ∩
⋃
i<n

⋃
y∈Hi

Pε(y)(y) = ∅.

For x ∈ Hn the construction (and also the resulting property) is similar.
From the construction it follows that⋃

y∈G′

Pε(y)(y) ∩
⋃

y∈H′

Pε(y)(y) = ∅.

24



Since Bε/2(x) ⊂ Pε(x) for x ∈ L and ε ∈ (0, 1),

U1 =
⋃

x∈G′

Bε(x)/2(x)

and
V1 =

⋃
x∈H′

Bε(x)/2(x)

are disjoint open sets in N and G′ ⊂ U1, H ′ ⊂ V1.
In the second step we will separate G′ from H: for each x ∈ G′ fix

δ′(x) ∈ (0, 1) such that Bδ′(x)(x) ∩H = ∅. For x ∈ G′ let

δ(x) = min{δ′(x)/2, ε(x)/2}.

The set
U2 =

⋃
x∈G′

Bδ(x)(x)

is open and contains G′. We will prove that U2 ∩H = ∅. Let us show that
h ∈ H ⇒ h /∈ U2.

If h ∈ H ′, then U1 ∩ V1 = ∅ and U2 ⊂ U1, V1 is open and H ′ ⊂ V1. Thus
h /∈ U2. If h ∈ H ∩ E, then h /∈ Bδ′(x)(x) for each x ∈ G′. From this and
Lemma 4.3.5 it follows that there exists ι ∈ R such that Bι(h)∩Bδ(x)(x) = ∅
for all x ∈ G′, so Bι(h) ∩ U2 = ∅ and h /∈ U2. Similarly we can construct
an open set V2 such that H ′ ⊂ V2, V 2 ∩ G = ∅ and V2 ⊂ V1, which implies
U2 ∩ V2 = ∅.

Finally, let us separate the whole sets. E is an open normal subspace of
N, G ∩E and H ∩E are disjoint closed subsets of E, so there exist disjoint
open subsets U3,V3 of E (and thus open in N) such that G ∩ E ⊂ U3,
H ∩ E ⊂ V3. Hence U = (U2 ∪ U3) \ V 2 and V = (V2 ∪ V3) \ U2 are the
desired disjoint open sets separating G and H.

Lemma 4.3.6. N is normal on E.

Proof. Consider G, H subsets of E, G∩H = ∅. We will show, that G and H
fulfill the condition of Theorem 4.3.4 and thus they can be separated. Put

Gi = {x ∈ G ∩ L : B1/i(x) ∩H = ∅}

and
Hi = {x ∈ H ∩ L : B1/i(x) ∩G = ∅}
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for i ∈ N. It is obvious that G ∩ L =
⋃

i∈N Gi and H ∩ L =
⋃

i∈N Hi, so it

remains to show that G
R
i ∩H = ∅ (H

R
i ∩G = ∅, respectively).

For contradiction assume that there is some n ∈ N and h ∈ G
R
n such

that h ∈ H. Since h ∈ H, there exists h′ ∈ H ∩B1/n(h). Now h ∈ G
R
n ,

B1/n(h) ⊂
⋃

x∈Gn

B1/n(x)

and this implies that h′ ∈ B1/n(g) for some g ∈ Gn. This is a contradiction.

The case (∃n ∈ N)(∃g ∈ H
R
n )(h ∈ G) is similar.

Corollary 4.3.7. N is normal on each subset of E.

So each countable dense subset of E (and such clearly exists) gives us an
example of a countable dense subspace of N on which N is normal.
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Chapter 5

Relative Compactness

5.1 Relative Compactness

Definition 5.1.1. A topological space Y is compact in its superspace X, if
every open cover of X has a finite subsystem which covers Y .

Observe that if Y is compact in X and Z is any subset of Y , then Z is
compact in X. It is also easy to see that Y is compact in X if and only if Y

is compact in Y
X

. These two facts together give the following Proposition.

Proposition 5.1.2. If Y is compact in X and Z ⊂ Y is closed in X, then
Z is compact.

It is also easy to prove that relative compactness can be characterized in
a similar way to absolute compactness.

Lemma 5.1.3. The space Y is compact in X if and only if for each centered

family C of subsets of Y the intersection
⋂
{PX

: P ∈ C} is nonempty.

In the case of regular spaces relative compactness appears to be quite
close to compactness. In particular a space compact in a larger regular space
has to be Tychonoff.

Theorem 5.1.4. If X is a regular space then Y is compact in X if and only

if Y
X

is compact.

Proof. If Y
X

is compact then Y is compact in Y
X

and thus compact in X.
Let Y be compact and dense in a regular space X = Y . We will prove

that X is compact. Let U be an open cover of X. Since X is regular, there
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exists an open cover O of X such that for each O ∈ O there is some U ∈ U
such that O ⊂ U . The subspace Y is compact in X so there is a finite
O′ ⊂ O which covers Y . Thus there is a finite U ′ ⊂ U such that⋃

{O : O ∈ O′} ⊂
⋃
U ′.

Now

X = Y ⊂
⋃
O′ =

⋃
{O : O ∈ O′} ⊂

⋃
U ′

and X is compact.

Proposition 5.1.5. If X is a Hausdorff space, and Y is compact in X and
dense in X, then X is an H-closed space.

Proof. Let C be a centered family of open subsets of X. The family {C ∩
Y : C ∈ C} is a centered family of subsets of Y since Y is dense in X.
Lemma 5.1.3 and Theorem 2.2.2 now imply that X is H-closed.

A folklore argument shows that compact spaces are normal. A similar
argument can be used to prove the following theorem.

Theorem 5.1.6. If X is Hausdorff and Y is compact in X, then Y is
normal in X.

Corollary 5.1.7. If X is Hausdorff and Y is compact in X, then Y is a
regular space.

Proof. This follows from Theorem 5.1.6 and Proposition 4.1.2.

This leads to the question whether a space compact in a larger Hausdorff
space also needs to be Tychonoff. Example 5.1.11 shows that this is not the
case.

Definition 5.1.8. A topological space Y is potentially compact if there is a
Hausdorff space X such that Y is compact in X.

Proposition 5.1.9. Every potentially compact space is regular and every
Tychonoff space is potentially compact.

Proof. If Y is a Tychonoff space then Y is compact in βY . The rest of the
Proposition is Corollary 5.1.7.
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We will see that potential compactness is a new absolute separation prop-
erty between regularity and T3 1

2
. An inner characterization of this property

is still unknown.

Theorem 5.1.10. If a Hausdorff space A is a preimage of a potentially
compact space under a perfect mapping, then A is a potentially compact
space.

Proof. Let Y be compact in X and let f : A → Y be a perfect mapping
onto Y . We need to construct a Hausdorff space Z in which A is compact.
Put S = X \ Y and Z = A ∪ S. A base B of the topology on Z will be
defined as follows

B = {U : U open in A} ∪ {O(s, U) : U open in X, s ∈ S ∩ U}

where O(s, U) = {s} ∪ f−1[U ∩ Y ].

Claim 1. Z is a Hausdorff space.

Claim 2. For E ⊂ A and s ∈ S; s ∈ E
Z

if and only if s ∈ f [E]
X
.

Let C be a centered family of closed subsets of A which is closed under

finite intersections. Put CX = {f [C] : C ∈ C} and CX = {f [C]
X

: C ∈ C}.
The system CX is a centered family of closed subsets of Y , thus the set
M =

⋂
CX is nonempty. If there is some c ∈ S ∩M then Claim 2 implies⋂

C 6= ∅.
Assume M ⊂ Y and pick some c ∈ M . Then B = f−1[{c}] is a compact

subset of A and C � B = {C ∩ B : C ∈ C} is a centered family of closed
subsets of B which is closed under finite intersections and which does not
contain the empty set (because c ∈ f [C]

X
∩ Y = f [C] for each C ∈ C).

Hence ∅ 6=
⋂
C � B ⊂

⋂
C and A is compact in Z.

The next example was constructed in [11] and it shows that being po-
tentially compact is strictly weaker than being Tychonoff.

Example 5.1.11. Let f : X → Y be a perfect mapping of a non-Tychonoff
space X onto a Tychonoff space Y . Such an example of f , X and Y was
constructed in [7]. Theorem 5.1.10 now implies that X is a non-Tychonoff
potentially compact space.
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There also exists an infinite potentially compact space on which every
continuous real valued function is constant. Such a space was constructed
in [6].

And now it only remains to show that being potentially compact is a
stronger property than being regular.

Proposition 5.1.12. Let Y be an R-closed space. Then Y is potentially
compact if and only if Y is compact.

Proof. Let Y be a R-closed space compact in some space X. Choose any
x ∈ X \Y and put Y ′ = Y ∪{x}. The space Y ′ is also compact in X and so
Y ′ is regular (Corollary 5.1.7) and thus Y is closed in Y ′. That means that

for each x ∈ X \ Y is x /∈ Y
X

, i. e. Y is closed in X. Proposition 5.1.2 now
implies that Y is compact.

The last proposition offers a way to recognize that certain space is not
potentially compact. Construction of a regular not potentially compact
space which uses this fact is given in example 5.1.13.

Example 5.1.13. The Jones space (the space obtained by the Jones ma-
chine) over (ω1+1)×(ω1+1)\{(ω1, ω1)} is a non-Tychonoff regular R-closed
space, so Proposition 5.1.12 implies that it is an example of a regular non-
potentially compact space. For details see [6].

5.2 Internal Compactness

We will start this section with a well known characterization of compact
spaces.

Theorem 5.2.1 ([14]). A Hausdorff space X is compact if and only if all
closed subsets of X are H-closed.

In this theorem H-closed can be obviously replaced by compact. This
gives a motivation for another definition of relative compactness.

Definition 5.2.2. A topological space Y is internally compact in X if every
subspace of Y which is closed in X, is compact.

This version of relative compactness is clearly weaker than the previous
one. The next theorem is a usual type of “compactness implies normality”
fact and the proof is standard.
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Theorem 5.2.3. If the space Y is internally compact in a Hausdorff space
X, then Y is internally normal in X.

Internal compactness has an equivalent definition similar to lemma 5.1.3.

Lemma 5.2.4. The space Y is internally compact in X if and only if for
each centered family C of subsets of Y which are closed in X the intersection⋂
C is nonempty.

Theorem 5.2.5 states that the Jones machine introduced in Example
2.1.7 preserves internal compactness in the following sense. Let Y be a non-
normal subspace of a regular space X. Suppose, moreover, that A0 and A1

are two disjoint closed subsets of Y which cannot be separated by disjoint

open neighborhoods in Y and such that A
X

0 ∩ A
X

1 = ∅. In this situation
J(Y ) can be considered as a subspace of J(X) in a natural way; the new
point (in Example 2.1.7 denoted by z) is the same for both J(Y ) and J(X).
The two sets whose points are being identified are A0 and A1 for J(Y ) and

A
X

0 and A
X

1 for J(X).

Theorem 5.2.5. Let Y be a non-normal subspace of a topological space X
and suppose that the sets A0, A1 are as in the previous paragraph. Then if
Y is internally compact in X, then J(Y ) is internally compact in J(X).

Proof. We will use the notation established in Example 2.1.7. Pick any
centered system C of subsets of J(Y ) such that all sets in C are closed in
J(X). We have to prove that the intersection

⋂
C is nonempty.

Assume that z /∈ Z for some Z ∈ C. Otherwise we are done. Then
q−1[Z] ⊂ Y × n for some n ∈ ω. Since q−1[Z] ∩ (X × {j}) is a subset of
j-th copy of Y and it is closed in j-th copy of X for each j ∈ n and since
Y is internally compact in X, the set q−1[Z] is a finite sum of compact sets
and thus compact. Hence ∅ 6=

⋂
{q−1[C] : C ∈ C} = q−1[

⋂
C] and J(Y ) is

internally compact in J(X).

Closely related to Theorem 5.1.4, Theorem 5.1.6 and Corollary 5.1.7, is
the question, whether a certain version of relative compactness does imply
any absolute separation axiom for the smaller space Y . Arhangel’skii for-
mulated one version of this problem in [3, Question 9] : Let Y be a subspace
of a Hausdorff space X such that Y is internally compact in X. Is then true
that Y is Tychonoff? What if we assume X to be regular?

A closely related Question 10 was also given in article [3]: Let Y be a
subspace of a regular space X such that Y is internally normal in X. Is
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Y Tychonoff? We will construct examples that provide negative answers to
these questions.

Example 5.2.7 was constructed by Eva Murtinová and gives a negative
answer to the first part of Question 9 from [3]. The construction uses objects
described in the following lemma.

Lemma 5.2.6. For each ultrafilter U on ω there exists a MAD system A
on ω such that A ∩ U = ∅.

Proof. Fix any ultrafilter U and consider the system of all AD systems on
ω satisfying the condition given in the Lemma, ordered by inclusion. This
system is nonempty since the empty set is such an AD system. Since this
system is closed under the union of increasing chains, Zorn’s Lemma implies
that there is a maximal such AD system A. We will show that A is a MAD
system. If not, there is an infinite set A ∈ P(ω) \ A such that A ∪ {A} is
an AD system. Split A into two infinite. Since U is an ultrafilter, at least
one of the sets A0 and A1 does not belong to U . Denote this set by Ai. Now
A ∪ {Ai} is an AD system contradicting maximality of A.

Example 5.2.7. We will describe a non-regular space internally compact
in a Hausdorff space. The idea is to construct a space X = Y ∪ Z with
Y non-regular such that all “nontrivial” infinite subsets of Y have cluster
points in Z. Then there are only few closed subsets of X contained in Y
and these are arranged to be compact.

Fix a free ultrafilter U on ω and let A be a MAD system on ω given by
Lemma 5.2.6. Put Y = {y} ∪ ((ω + 1) × ω), F = {ω} × ω ⊂ Y . Let us
endow the set X = Y ∪A with a topology by declaring each point of ω× ω
isolated,

{((ω + 1) \ n0)× {n} : n0 ∈ ω}

an open base in (ω, n) ∈ F ,

{{y} ∪ (ω × U) : U ∈ U}

an open base at y and

{{A} ∪ ((ω + 1)× (A \ n0)) : n0 ∈ ω}

an open base in A ∈ A. This obviously defines a Hausdorff topology on X,
while the closed subset F of Y cannot be separated from y, hence Y is not
regular.
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It remains to show that Y is internally compact in X. Consider a closed
subset C of X, C ⊂ Y and an infinite B ⊂ C whose cluster point is to be
found in C. Since C is closed, the set

{n ∈ A : C ∩ ((ω + 1)× {n}) 6= ∅}

is finite for every A ∈ A. Thus

N = {n ∈ ω : C ∩ ((ω + 1)× {n}) 6= ∅}

is almost disjoint from A. It follows that N is finite. As B is infinite, there
is an n0 such that B ∩ (ω × {n0}) is infinite. Now (ω, n0) is a cluster point
of B.

And a corollary of the following theorem provides an answer to the second
part of Question 9. From Proposition 5.2.3 we now also get that there exists
a non-Tychonoff space Y which is internally normal in a larger space X and
that gives a negative answer to Question 10.

Theorem 5.2.8. There exists a non-normal space Y which is internally
compact in a zero-dimensional space X.

Proof. Throughout this proof, all points in the Čech-Stone compactification
βD of a discrete space D will be identified with ultrafilters on D. For any
discrete space D let us also define a subspace γD of βD as

γD = {p ∈ βD : (∃P ∈ p) |P | ≤ ω}.

Let A and B be two disjoint sets of size ω2, put C = A×B and πA, πB

will denote the natural projections of C onto A and B. The underlying sets
for X and Y are

Y = A ∪B ∪ C

and
X = γA ∪ γB ∪ γC

and the topology is defined as follows: γC is an open subspace of X, other
basic open sets of X are

O ∪ π−1
A [O ∩ A] \K

γC

for |K| ≤ ω, O open subset of γA and

O ∪ π−1
B [O ∩B] \K

γC

for |K| ≤ ω, O open subset of γB. It is a routine to check, that we have
defined a base for a topology on X correctly.
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Claim 1. X is a Hausdorff space.

Proof. We need to show that each two distinct points a and b in X can be
separated by disjoint open neighborhoods. If a, b ∈ γC, then γC ⊂ βC
implies that these two points can be separated. If a, b ∈ γA, then there are
disjoint open sets U and V separating a and b in γA thus

U ∪ π−1
A [U ∩ A]

γC

and

V ∪ π−1
A [V ∩ A]

γC

separate a and b in X. Case a, b ∈ γB is similar. If a ∈ γA and b ∈ γB,

then fix countable sets U ⊂ A and V ⊂ B such that a ∈ U
γA

and b ∈ V
γB

.
The sets

U ∪ π−1
A [U ] \ (U × V )

γC

and

V ∪ π−1
B [V ] \ (U × V )

γC

separate a and b in X. And if a ∈ γA, b ∈ γC, then fix countable sets

U ⊂ A and V ⊂ C such that a ∈ U
γA

and b ∈ V
γC

. The sets

U ∪ π−1
A [U ] \ V

γC
and V

γC

separate a and b in X.

Claim 2. X is a zero-dimensional space.

Proof. For each x ∈ γC there is an open base at x which consists of the
sets of the form γK where K ⊂ C is such that |K| ≤ ω, and for such K is

γK = K
X

. For x ∈ γA there is an open base at x which consists of the sets
of the form

B = γO ∪ π−1
A [O ∩ A] \K

γC

where K ⊂ C, |K| ≤ ω and O ⊂ A is such that |O| ≤ ω. For such O and K
is B closed in X. The case x ∈ γB is similar.

Claim 3. A and B are closed subsets of Y which cannot be separated by

disjoint open sets in Y . Moreover, A
X ∩B

X
= ∅.
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Proof. Let U be open in Y and let A′ ⊂ U ∩ A be some set of size ω1. We
will show that U ∩ B is nonempty. For each a ∈ A′ fix a Ka ∈ [C]ω such
that

π−1
A [{a}] \Ka ⊂ U.

Hence
π−1

A [A′] \K ⊂ U

where
K =

⋃
{Ka : a ∈ A′}

and notice that |K| ≤ ω1. Each

b ∈ B \ πB[K]

(and such clearly exists) is an element of U because

π−1
B [{b}] ∩ U ⊃ A′ × {b}

and the product A′ × {b} has cardinality ω1.

A
X ∩B

X
= ∅ is a consequence of A

X
= γA and B

X
= γB.

Claim 4. If G ⊂ Y is closed in X then |G| < ω.

Proof. Suppose G ⊂ Y , ω ≤ |G|. Then at least one of the sets G ∩ A,
G ∩ B and G ∩ C must be infinite. Assume that ω ≤ |G ∩ C|. Then

∅ 6= G ∩ C
γC \ (G ∩ C) ⊂ G \ Y . Thus G is not closed. Cases ω ≤ |G ∩ A|

and ω ≤ |G ∩B| work similarly.

The last claim implies that Y is internally compact in X and the Theorem
is proved.

Corollary 5.2.9. There exists a non-Tychonoff space Y which is internally
compact in a regular T1 space X.

Proof. Use Theorem 5.2.8 and Theorem 5.2.5.
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