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2.1 ChceteMě sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Ratings frequency diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Values frequency diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Distributions of rating similarities . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Mean sizes of rating overlap for different similarities . . . . . . . . . . . . . 14
2.6 Distributions of score similarities . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Mean sizes of score overlap for different similarities . . . . . . . . . . . . . 15
2.8 Distributions of score adjusted similarities . . . . . . . . . . . . . . . . . . 16
2.9 Mean sizes of rating overlap for different adjusted similarities . . . . . . . . 16

4.1 ColFi architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 DataManager interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 DataManagerListener interface . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Cached matrix implementation . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 DataManager implementations hierarchy . . . . . . . . . . . . . . . . . . . 33
5.5 Service interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.6 Algorithm interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.7 Algorithm implementations hierarchy . . . . . . . . . . . . . . . . . . . . . 40

6.1 AllButOne strategy pseudo-code . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 GivenRandomX strategy pseudo-code . . . . . . . . . . . . . . . . . . . . . 44
6.3 GivenRandomX strategy benchmark results - MovieLens . . . . . . . . . . 49
6.4 GivenRandomX strategy benchmark results - Jester . . . . . . . . . . . . . 50
6.5 GivenRandomX strategy benchmark results - ChceteMě . . . . . . . . . . . 51
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Title: Recommender System for a Dating Service

Author: Lukáš Brožovský
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

This chapter makes the reader acquainted with the concept of collaborative filtering and
introduces its utilization in the environment of dating services.

Since long before the industrial revolution, information has been the most valuable
element in almost all human activities. For the last five decades, with the great expansion
of technology, and especially with the Internet boom over the last few years, the amount of
readily available information has increased exponentially. Objectively, searching through
the vast amount of available information has become a true challenge for everyone. This
phenomenon, mostly referred to as the information overload, describes the state of hav-
ing too much information to make relevant decisions or remain informed about a certain
topic [2].

The task of making well-informed decisions supported by finding relevant information
is addressed in research of the domain of information retrieval, which is “. . . the art and
science of searching for information in documents, searching for documents themselves,
searching for metadata which describe documents, or searching within databases, whether
relational stand alone databases or hypertext networked databases such as the Internet or
intranets, for text, sound, images or data” [3].

The research on information retrieval has developed several technology-based solutions
addressing information overload: intelligent agents, ranking algorithms, cluster analysis,
web mining/data mining, personalization, recommender systems and collaborative filter-
ing [10]. This thesis focuses on recommender systems relying on collaborative filtering.

1.1 Collaborative Filtering, Recommender Systems

Typically, a search for a specific piece of information is based on some kind of a query
supplied by a user. For example, a search for textual documents or web pages is mostly
performed with a simple query containing words or phrases desired in the returned docu-
ments. In search for audio files a structured query might be used, combining for example
song title, artist, album name, genre and release date. These examples fall within the

1



CHAPTER 1. INTRODUCTION

category of the content-based searches (also called the retrieval approach).
In contrary to the content-based searches, there exists a different technique called in-

formation filtering (employed by information filtering systems). Generally, the goal of an
information filtering system is to sort through large volumes of dynamically generated in-
formation and present to the user those which are likely to satisfy his or her information
requirement [27]. Information filtering does not have to be based on an explicit user query.
A good example of information filtering from every day life could be the filtering of news
web sites, research articles or e-mails.

Closely related to information filtering is the concept of recommender system. Rec-
ommender system is a system or a program which attempt to predict information/items
(movies, music, books, news, web pages or people) that a user may be interested in. These
systems often use both, query supported retrieval approaches and information filtering
approaches based on information about the user’s profile. This need of utilization of user
profiles frequently classifies the recommender systems as the personalized information sys-
tems.

Collaborative filtering represents the information filtering approach, used by many
present-day recommender systems. The main idea of collaborative filtering is to select and
recommend items of interest for a particular user based on opinions of other users in the
system. This technique relies on a simple assumption, that a good way to find interesting
content is to identify other people with similar interests, and then select or recommend
items that those similar people like.

Someone browsing an e-commerce web site might not always have a specific request and
so it is the web site’s interest to provide compelling recommendations to attract customers.
For example, a web interface of e-shop with audio CDs could store the set of CDs particular
user viewed during the session and then recommend to him/her albums bought by other
users browsing around similar set of CDs (e.g., similar titles, genres) [24].

1.1.1 Existing Applications

One of the earliest implementations of collaborative filtering approach was used in the
Tapestry experimental mail system developed at the Xerox Palo Alto Research Center in
the year 1992 [17]. This system was used as a mail filtering information system utiliz-
ing the collaborative sense of a small group of participating users. The Tapestry system
did not use a definite concept of automated collaborative filtering1 as the actual filtering
technique was strictly bound to the concrete user-defined queries. Every Tapestry user
maintained personal list of filtering queries based on SQL-like language – Tapestry Query
Language (TQL). The collaborative part was included as an extension to TQL, allowing
users to link their queries to the queries of other specific users. For example, a query re-
turning all messages selected by Terry’s “Baseball” query that contain the word “Dodgers”
would be: m IN Terry.Baseball AND m.words = (‘Dodgers’).

1Automated collaborative filtering – collaborative filtering where the system automatically selects the
co-users whose opinions are used

2
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The concept of real automated collaborative filtering first appeared in the GroupLens
Research Project2 system using neighborhood-based algorithm for providing personalized
predictions for Usenet news articles [31]. Since then, the research on collaborative filtering
has drawn significant attention and a number of collaborative filtering systems in broad
variety of application domains have appeared.

Probably the most publicly aware system using collaborative filtering in the last few
years has been the item-to-item recommender at Amazon.com. It is used to personalize the
online store for each customer. The store radically changes based on customer interests,
showing programming titles to a software engineer and baby toys to a new mother [24].

More examples of commercial systems using collaborative filtering are:

• NetFlix.com – the world’s largest online DVD movie rental service

• GenieLab::Music – a music recommender system (compatible with iTunes)

• Musicmatch Jukebox – a music player, organizer and recommendation system

• AlexLit.com – Alexandria Digital Literature, eBookstore under the Seattle Book

• Findory.com – personalized news website

And the examples of non-commercial systems using collaborative filtering are:

• inDiscover.net – music recommendation site (formerly RACOFI Music)

• GiveALink.org – a public site where people can donate their bookmarks

• Gnod.net – the Global Network of Dreams, a recommender system for music, movies
and authors of books

• FilmAffinity.com – a movie recommender system

1.2 Dating Services

Wikipedia definition of dating service (or dating system) states: “A dating system is
any systemic means of improving matchmaking via rules or technology. It is a specialized
meeting system where the objective of the meeting, be it live or phone or chat based, is to
go on a live date with someone, with usually romantic implications” [1]. The matchmaking
is any expert-run process of introducing people for the purposes of dating and mating,
usually in the context of marriage [4].

Typically, with most dating or matchmaking services, user has to waste considerable
time filling out lengthy personality questionnaires and character trait analyzation charts
as the matching phase of the service is strictly content-based. Most of the time the user

2GroupLens Research Project – http://www.cs.umn.edu/Research/GroupLens/
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has to simply browse through thousands of user profiles returned by some complex query-
based search (a user might be for example interested in blue-eyed blondes with university
education). And this situation is the same for both online and offline dating services and
also for both free and commercial dating services.

Most of the commercial sites let users register for free and bill them later for information
on contacts to other users. Some examples of dating services are:

• America’s Internet Dating – http://www.americasinternetdating.com/

• Date.com – http://www.date.com/

• Match.com – http://www.match.com/

• Perfect Match – http://www.perfectmatch.com/

• Grand – http://www.videoseznamka.cz/

• Ĺıb́ımSeTi – http://www.libimseti.cz/

In the last few years, a specific subgroup of online dating service web applications
has emerged on the Internet. Their main idea is to let users store personal profiles and
then browse and rate other users’ profiles3. Usually, the registered user is presented with
random profiles (or with random profiles preselected with a simple condition - for example
only men of certain age) and rates the profiles on a given numerical scale.

Table 1.1 shows the example online dating services based on the rating of user profiles:

Server M users F users M pictures F pictures Ratings

chceteme.volny.cz 2,277 48,666
libimseti.cz 194,439 11,767,448

podivejse.cz 3,459 5,858 805,576
ukazse.cz -
vybersi.net N/A 916 2,321 43,357
qhodnoceni.cz 8,440 2,520 12,482 6,843 N/A
palec.cz -
facka.com -
tentato.sk N/A 663 353 -

Table 1.1: Example online dating services based on rating of profiles in the Czech Republic

Overview of Czech online dating services based on the rating of user profiles and their numbers of
male/female users, male/female photographs and votes. In this study, the data sets for

Chceteme.volny.cz (ChceteMě) and Libimseti.cz (Ĺıb́ımSeTi) were available.

3Typically, user profiles are based on user photo(s) or sometimes on short audio/video records.
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None of these applications uses any kind of sophisticated matchmaking or recommender
system. They are all query oriented allowing users to use only simple filters and then browse
the selected user profiles. To date and to my knowledge, there is only one and relatively
new online dating service web application using profile rating that claims to use collabora-
tive filtering for matchmaking - ReciproDate.com (http://www.reciprodate.com/). Their
software is proprietary.

1.3 Contribution

The attempts on application of automated collaborative filtering to the online dating
services have been very limited even though dating service is one of the often cited examples
of its possible applications [7, 36, 5]. This thesis therefore focuses on the application of
collaborative filtering technique in the domain of the online dating services based on the
rating of user profiles. It appears that most users of dating services have a common need
of recommendations based on a specific elusive criteria. Not even a complex query would
capture the preferences of a regular user. Moreover, with the growing number of users
registered in these online applications, it is no longer possible for them to browse through
the huge amount of unsorted search results returned by any kind of query.

It is apparent, that the massive data sets of ratings that were gathered from the users
of the dating service systems could be used as the input for any collaborative filtering
algorithm to either directly recommend matching users or at least sort the results of any
content-based search.

In this thesis, an open source recommender system (the ColFi System) is imple-
mented, employing several basic collaborative filtering algorithms. The second part of the
thesis presents benchmarks of these algorithms on the real online dating service data sets.

1.4 Outline

The rest of the thesis is organized in six remaining chapters. In Chapter 2, four ex-
perimental data sets are described and analysed in detail. Then, chapter 3 introduces
basic collaborative filtering algorithms. Chapter 4 and chapter 5 present the ColFi Sys-
tem architecture and implementation respectively (these chapters are developer oriented).
The benchmarking methodology and results are discussed in chapter 6. The concluding
chapter 7 summarizes the contributions of the thesis and proposes possible directions for
future work.

1.5 Notation

Throughout the following chapters of the thesis, a common basic concepts and typo-
graphic notation is used.

5
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The typical data model consists of N users 1 . . . N and the complete ratings matrix R.
The ratings matrix is a two-dimensional matrix, where ri,j ∈ R denotes the rating given by
a user i to a user j (also called the score for a user j obtained from a user i). A single row
of the ratings matrix is referred to as the ratings of particular user and represents all the
ratings given by that user. A single column of the ratings matrix is referred to as the scores
for particular user and represents all the scores obtained by that user. The total number
of all non-empty (non-null) individual ratings (∼ votes) in the ratings matrix is R = |R|.
All the ratings matrix values are represented in a discrete ratings scale 〈rmin..rmax〉.

Every Java™ related text (e.g., java package names, classes, methods and code listings)
are typeset in teletype font.

6
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Chapter 2

Data Sets Analysis

This chapter describes in detail several data sets used to develop and evaluate ColFi
collaborative filtering algorithms.

Collaborative filtering is not so interesting without any reasonably large data set. Four
independent experimental data sets were chosen. These data sets were used to evaluate
the emergent collaborative filtering algorithms during the design and development phase.
At the end, these data sets were also used to benchmark the final implementations - see
chapter 6 on the page 41.

The data sets are based on the explicit data of various applications. Most of these
applications do store other information along with the plain ratings matrix, but these
additional data were discarded as they are out of the scope of this thesis. Some of the
original data had to be modified in certain way to satisfy the requirements of the dating
service application data set. These modifications were specific for each data source and
they are described individually in the following paragraphs.

2.1 MovieLens Data Set

The MovieLens data set is the most popular publicly available experimental data set.
The MovieLens is a web-based recommender system for movies1, based on GroupLens
technology (part of the GroupLens Research Project). The MovieLens data set originated
from the EachMovie movie recommender data provided by HP/Compaq Research (formerly
DEC Research).

In this thesis, the so called 1 Million MovieLens data set was used in its full extent.
Both MovieLens users and MovieLens movies were declared as ColFi users to conform the
square ColFi ratings matrix. The original ratings scale 〈1..5〉 was linearly scaled into the
ColFi’s internal scale 〈1..127〉. This way transformed data set is further referred to as the
MovieLens data set.

1MovieLens web page – http://movielens.umn.edu/
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2.2 Jester Data Set

The Jester data set is another well known and publicly available experimental data
set. The Jester Joke Recommender System is a web-based recommender system for jokes2,
created by Prof. Ken Goldberg and the Jester team at the Alpha Lab, UC Berkeley. The
Jester data set contains continuous ratings of jokes collected between April 1999 – May
2003.

In this thesis, the complete Jester data set was used. Both Jester users and Jester jokes
were declared as ColFi users to conform the square ColFi ratings matrix. The original
continuous ratings scale 〈–10..10〉 was linearly adjusted into the ColFi’s internal discrete
scale 〈1..127〉. This way transformed data set is further referred to as the Jester data
set.

This data set is very specific due to the fact that it originally contained only 100 jokes
which all the Jester users may have rated. This resulted in “almost empty” square ratings
matrix with very dense 100 columns.

2.3 ChceteMě Data Set

The ChceteMě data set is based on the production data of the ChceteMě web applica-
tion3. This web application lets users store their photographs in the system to be rated by
other users. Photographs are not limited to the user’s portraits (people store pictures of
their pets, cars, etc.), so this web is not a straight forward dating service application. On
the other hand, the main concept is close enough.

The original data did not include explicit identity of the rating users. The only thing
application stored is the target user, rating value, time of the rating and the IP address
of the rater. This information was used to scan for possible user sessions as follows: the
session was declared as a set of ratings initiated from the same IP address and not having
the idle period between any two contiguous ratings greater then T minutes. The figure 2.1
reflects the dependence of the number of unique sessions found based on the value of the
parameter T . Ultimately the value T = 15 minutes was selected, according to the graph
and the fact that the web application automatically logs any idle user out after exactly 15
minutes. This approach could never be absolutely accurate as one user might log in from
different computers with different IP addresses or there might be multiple users rating
simultaneously from behind the proxy server and so on.

Both original target users and found sessions were declared as ColFi users to conform
the square ColFi ratings matrix. The original ratings scale 〈0..10〉 was linearly adjusted
into the ColFi’s internal scale 〈1..127〉. This way transformed data set is further referred
as the ChceteMě data set.

Anonymized version of the final data set is publicly available as a part of the ColFi
Project in the file named colfi-dataset-chceteme.ser.

2Jester Joke Recommender System web page – http://shadow.ieor.berkeley.edu/humor/
3ChceteMě web application – http://chceteme.volny.cz/
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Figure 2.1: ChceteMě sessions

The number of unique sessions found in the original ChceteMě data based on the parameter T . The
selected value T = 15 minutes is highlighted (∼ 1,690 sessions ∼ 2,277 ColFi users).

2.4 Ĺıb́ımSeTi Data Set

The Ĺıb́ımSeTi data set is the most important data set through out this thesis as it is
the target data set ColFi System was initially designed for. It consists of real online dating
service data based on the Ĺıb́ımSeTi web application4.

In this thesis, a snapshot of the Ĺıb́ımSeTi production database (ratings matrix data
only) from July 2005 was used. The original ratings scale 〈1..10〉 was linearly scaled into
the ColFi’s internal scale 〈1..127〉. The original data set distinguishes between the not
rated and the not observed - this extra information was discarded and both states were
interpreted as not observed. This way transformed data set is further referred to as the
Ĺıb́ımSeTi data set.

Anonymized version of the final data set is publicly available as a part of the ColFi
Project in the file named colfi-dataset-libimseti.ser.

2.5 Data Sets Comparison

Although all the mentioned data sets have a common structure after the appropriate
conversions, there are certain major differences between them as the original data had each
their own specificity. Table 2.1 summarizes the basic characteristics of all the data sets
(their sizes, sparsity, values, etc.).

This table shows some interesting facts. First, not so surprisingly, the data set sizes are
quite different and the ratings matrix density tends to be smaller for data sets containing
more users (although this observation might be influenced by a very specific Jester data

4Ĺıb́ımSeTi web application – http://www.libimseti.cz/
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MovieLens Jester ChceteMě Ĺıb́ımSeTi

Inception date February 2003 May 2003 June 24, 2004 July 26, 2005

Total number of users 9,746 73,521 2,277 194,439
Number of active users 6,040 73,421 1,806 128,394
Number of passive users 3,706 100 499 120,393
Total number of ratings 1,000,209 4,136,360 48,666 11,767,448
Ratings matrix density 10.5302 ‰ 0.7652 ‰ 9.3864 ‰ 0.3113 ‰
Max. ratings from 1 user 2,314 100 445 15,060
Max. scores for 1 user 3,428 73,413 354 69,365

Mean rating value 82.20 68.71 70.19 63.84
Median rating value 95 73 77 57
Standard deviation 35.05 33.62 42.73 46.26

Table 2.1: Data sets overview

An overview of the data set’s basic characteristics. An active user is a user who have rated another user
at least once. And passive users are users that have been scored at least once. The last three rows

contain values characteristics in the ColFi’s internal ratings scale 〈1..127〉. The ratings matrix density is
expressed as a ratings matrix saturation (in ‰).

set). The second fact observed is the significant difference in the standard deviation of the
ratings values between data sets which originated from the dating services data (ChceteMě
and Ĺıb́ımSeTi) and non-dating services data sets (MovieLens and Jester). This can be
explained by rather dissimilar ratings value frequencies among these data sets as shown in
the section 2.5.2 on the page 11.

2.5.1 Rating Frequencies

The ratings frequencies (or the ratings frequency diagrams), as shown in the figure 2.2,
analyse the exact number of ratings given by each user. The diagrams show the total
number of users per specific number of ratings given for all data sets. The absolute number
of users depends on the particular data set size, so it is more interesting to compare the
relative distributions among the data sets. It is obvious that there are more users with
little number of ratings given. Those are the users who have rated few items/users and
probably did not come back later to rate more. This observation is not so evident at first
sight on the graphs for MovieLens and Jester data set, because there are missing values
for low numbers of ratings given. That is caused by a data pre-selection performed on the
original data by their authors5. Nevertheless, even for those data sets, the number of users
grows for smaller numbers of ratings given and this tendency might be probably assumed

5Only such users who have rated at least 20 movies were selected into the MovieLens original data set.
The Jester data set had a similar pre-selection condition - only users who have rated at least 15 jokes were
selected.
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Figure 2.2: Ratings frequency diagrams

These frequency diagrams show the total number of users per specific number of ratings given for all
data sets. The y-axis scale is dependent on the particular data set size.

also for the cropped data.
The Jester data set frequency diagram shows two more facts. First, there is majority

of users who have rated all 100 jokes in the original data set. And second, there exists a
strong group of users who have rated between 70 and 75 jokes. This is just a data set’s
specific feature and it has nothing to do with similar peak(s) in the frequency diagram of
the Ĺıb́ımSeTi data set.

2.5.2 Value Frequencies

The values frequencies (or the values frequency diagrams), as shown in the figure 2.3,
analyse the different ratings values given by users.

The graph for the Jester data set is greatly influenced by the original “continuous”
ratings scale. Although the ratings scale really was continuous, users of the Jester web
application were limited to discrete values due to the actual implementation. This fact,
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Figure 2.3: Values frequency diagrams

These frequency diagrams show the relative frequencies of the different ratings values in the internal
ColFi’s scale 〈1..127〉. The number of distinct values in each graph is influenced by the size of the

original data ratings scale.

together with rounding issues during the data set rescaling process, led to the regular local
peaks seen in the diagram.

Despite these irregularities, there is significant similarity between MovieLens and Jester
data set and between ChceteMě and Ĺıb́ımSeTi data set. Again this is probably caused
by the fact that the first two data sets did not originate from the dating service data, in
contrary to the ChceteMě and Ĺıb́ımSeTi data sets.

It is interesting that users of dating services favour the minimum and the maximum
value of the ratings scale. This is probably because of the fact that todays collaborative
filtering dating services are mainly based on users photographs and because of that some
people tend to rate in binary manner (like/dislike) and choose the scale’s boundary values
as their opinion.
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2.5.3 Similarity Frequencies

The main concept of the collaborative filtering algorithms is to utilize the relative
similarities6 between users’ ratings or scores. The similarity frequencies (or the similarities
frequency diagrams) show the distributions of similarities for individual data sets.

Ratings Similarity Frequencies

The ratings similarity frequencies, as illustrated in the figure 2.4, display the distrib-
utions of similarities among users’ ratings vectors (the rows of the ratings matrix). Six
different distributions are presented for each data set to see the impact of the required
minimum number of common votes in the vectors (which is a parameter of the similarity
metric7).

The distribution for the Jester data set for at least 5 common items and for at least 10
common items turned out to be almost the same. That is because the number of ratings
vector couples having at least 5 common items and not having 10 or more common items
is very low (due to the original nature of this data set).

It is evident that the Ĺıb́ımSeTi data set distributions are quite different from the other
three data sets. It appears that in this data set users pretty much agree on their opinions
and that could be the main reason why collaborative filtering techniques are predetermined
to be more than suitable for recommendations in the dating services environment.

The figure 2.5 shows the mean sizes of overlaps of ratings vectors for different similari-
ties. The key point noticed are very low overlaps near similarity 1 for all data sets.

Scores Similarity Frequencies

The scores similarity frequencies, in the figure 2.6, display the distributions of simi-
larities among users’ scores vectors (the columns of the ratings matrix). The Jester data
set distributions are not very informative as the data set contains only 100 valid columns
(∼ 100 very dense vectors, where each couple has just too many common items). All the
other diagrams encourage the observation made in the previous paragraphs, although the
differences are not so intense.

The adjusted scores similarities frequencies, as shown in the figure 2.8, display the
distributions of similarities among user’s scores vectors (the columns of the ratings matrix)
adjusted by each user’s ratings mean. This similarity metric is used in the adjusted Item-
Item algorithm (see the section 3.4 on the page 19).

The figures 2.7 and 2.9 show the mean sizes of overlaps of scores vectors for different
similarities, for both classic Pearson’s correlation coefficient and its adjusted variant.

6Vector similarities - see the section 3.3.1 on the page 19
7To calculate the similarity of two given vectors, a certain minimum number of common (non-empty

in both vectors) items is required. If the two vectors have less common items than such minimum, their
similarity is considered undefined.
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Figure 2.4: Distributions of rating similarities

The distributions of similarities among users’ ratings vectors (the rows of the ratings matrix) for different
limits on the minimal number of common votes in the vectors. The classic Pearson’s correlation

coefficient is used as the similarity metric.
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Figure 2.5: Mean sizes of rating overlap for different similarities

The distributions of ratings vectors’ mean overlap sizes for different ratings vectors’ similarities (among
the rows of the ratings matrix). The classic Pearson’s correlation coefficient is used as the similarity

metric.
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Figure 2.6: Distributions of score similarities

The distributions of similarities among users’ scores vectors (the columns of the ratings matrix) for
different limits on the minimal number of common votes in the vectors. The classic Pearson’s correlation

coefficient is used as the similarity metric.
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Figure 2.7: Mean sizes of score overlap for different similarities

The distributions of scores vectors’ mean overlap sizes for different scores vectors’ similarities (among the
columns of the ratings matrix). The classic Pearson’s correlation coefficient is used as the similarity

metric.
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Figure 2.8: Distributions of score adjusted similarities

The distributions of similarities among users’ scores vectors (the columns of the ratings matrix) for
different limits on the minimal number of common votes in the vectors. The adjusted Pearson’s

correlation coefficient is used as the similarity metric.

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0-1.0
0

10

20

30

40

50

60

70

Adjusted Pearson’s correlation coefficient

M
e
a
n

s
c
o
r
e
s

o
v
e
r
la

p

MovieLens data set

aaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0-1.0

0

Adjusted Pearson’s correlation coefficient

M
e
a
n

s
c
o
r
e
s

o
v
e
r
la

p

Jester data set

a aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaa a aaaq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqq q qqq

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0-1.0
0

5

10

15

20

25

30

Adjusted Pearson’s correlation coefficient

M
e
a
n

s
c
o
r
e
s

o
v
e
r
la

p
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Figure 2.9: Mean sizes of rating overlap for different adjusted similarities

The distributions of scores vectors’ mean overlap sizes for different scores vectors’ similarities (among the
columns of the ratings matrix). The adjusted Pearson’s correlation coefficient is used as the similarity

metric.
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Chapter 3

Algorithms

This chapter focuses on the algorithms presented in this thesis and their main ideas.

The fundamental task in collaborative filtering is to predict a set of missing ratings of a
particular user (the active user) based on the data contained in the ratings matrix (some-
times referred to as the user database). There exists the following two general approaches
to collaborative filtering:

1. Memory-based algorithms – these algorithms operate in the online manner over
the entire ratings matrix to make predictions

2. Model-based algorithms – these algorithms, in contrast, use the ratings matrix
in the offline manner to estimate a model, which is then used for predictions

The memory-based algorithms usually yield better absolute results and are more adapt-
able to dynamic environments where the ratings matrix gets modified very often. On the
other hand, the memory-based approach is very computationally expensive, so applications
using large data sets may prefer the approximation offered by model-based algorithms.

This thesis examines two most popular collaborative filtering algorithms based on the
(k)-Nearest Neighbours Algorithm: User-User Nearest Neighbours Algorithm and
Item-Item Nearest Neighbours Algorithm. These are probably the most important
algorithms in the memory-based category. Two more trivial algorithms (the Random
Algorithm and the Mean Algorithm) are introduced to have a simple common base for
later comparison.

3.1 Random Algorithm

According to the above “definitions”, the Random Algorithm is more of a model-based
then a memory-based collaborative filtering algorithm. Its every prediction is an uniformly
distributed random value within the ratings value scale. For fixed users a and j it shall
always predict the same random rating value pa,j. Keeping this constraint ensures that
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the algorithm’s predictions stay random, but the algorithm’s behaviour is invariable even
when involved in the independent runs.

This algorithm with its theoretical possible accuracy results are mentioned in the Ap-
pendix A of [18].

3.2 Mean Algorithm

The Mean Algorithm is a very simple but surprisingly effective memory-based collab-
orative filtering algorithm. It is sometimes referred to as the Item Average Algorithm or
the POP algorithm [9] as it falls within the so called popularity prediction techniques [37].
The prediction pa,j is calculated as the mean value of all the non-empty ratings targeted
to the user j (∼ the mean score for the user j). If the Sj is a set of users which have rated
the user j, then the mean score for the user j is defined in (3.1) as:

sj =
1

|Sj|
∑
v∈Sj

rv,j (3.1)

and that is also the prediction (pa,j = sj). It is obvious that this approach completely
ignores the information entered to the system by the active user.

This algorithm together with the Random Algorithm act mainly as a baseline for an
accuracy comparison among other presented algorithms and their variants.

3.3 User-User Nearest Neighbours Algorithm

The User-User variant of the (k)-Nearest Neighbours Algorithm is the most essential
algorithm in the whole concept of collaborative filtering. The main idea of this approach
is quite simple, yet ingenious. When predicting ratings of the active user a, the user
database is first searched for users with similar ratings vectors to the user a (users with
similar opinions or “taste” - the so called neighbours). The ratings similarity, in most of
the literature denoted as w(i, a), can reflect for example the distance or correlation between
each user i and the active user a. The opinions of the k most similar neighbours are then
used to form the predictions of the active user.

The predicted rating pa,j of the active user a for another user j is assumed to be a
weighted sum of the ratings for user j of those k most similar neighbours, as shown in the
following equation (3.2):

pa,j = ra + ξ

k∑
i=1

w(a, ni)(rni,j − rni
) (3.2)

where ni is the i-th nearest neighbour with a non-zero similarity to active user a and
a non-empty rating rni,j for user j, ξ is a normalizing factor such that the absolute values
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of the similarities w(a, ni) sum to unity, and ru is the mean rating of the user u based on
all his non-empty ratings. If the Ru is a set of users which the user u has rated, then the
mean rating of the user u is defined in (3.3) as:

ru =
1

|Ru|
∑
v∈Ru

ru,v (3.3)

Various collaborative filtering algorithms based on the nearest neighbours approach are
distinguished in terms of the details of the similarity calculation. This thesis concentrates
on the similarity metric based on the well known Pearson’s correlation coefficient, described
in the following section.

3.3.1 Pearson’s Correlation Coefficient

The Pearson’s product-moment correlation coefficient or simply the sample cor-
relation coefficient, is a measure of extent to which two samples are linearly related. This
general formulation of statistical collaborative filtering first appeared in the published lit-
erature in the context of the GroupLens Research Project, where the Pearson’s correlation
coefficient was used as the basis for the similarity weights [31].

The correlation between the ratings of users a and j is shown in the equation (3.4):

w(a, j) =

∑
i(ra,i − ra)(rj,i − rj)√∑

i(ra,i − ra)2
∑

i(rj,i − rj)2
(3.4)

where the summations over i are over the users which both users a and j have rated
(∼ common votes). For very small ratings vector overlaps, this similarity metric returns in-
accurate results. That is why the actual implementations use a required minimum number
of common votes to actually calculate a valid similarity1.

3.4 Item-Item Nearest Neighbours Algorithm

The Item-Item variant of the (k)-Nearest Neighbours Algorithm uses a different point
of view on the ratings matrix. Instead of utilizing the ratings matrix rows similarities (like
the User-User variant), it utilizes the ratings matrix columns similarities. In the dating
service environment, both rows and columns represent users, so the “Item-Item” qualifier
adopted from the classic collaborative filtering scenarios might be a little misleading.

When predicting rating pa,j of the active user a, the user database is first searched
for users with similar scores vectors to the user j (users being rated alike - also called
neighbours). The users’ scores similarity w̃(i, j) is calculated in the same manner as for

1There exists another way of overcoming the “small ratings vector overlaps” problem called default
voting [11].

19



CHAPTER 3. ALGORITHMS

the User-User variant between each user i and the target user j (only working with columns
instead of rows of the ratings matrix). The ratings of the active user a for the k most similar
neighbours to j are then used to form the prediction pa,j, as shown in (3.5):

pa,j = sj + ξ
k∑

i=1

w̃(j, ni)(ra,ni
− sni

) (3.5)

where ni is the i-th nearest neighbour with a non-zero similarity to the target user j
and a non-empty rating ra,ni

from user a, ξ is a normalizing factor such that the absolute
values of the similarities w̃(j, ni) sum to unity, and su is the mean score for the user u, as
explained in (3.1).

3.4.1 Adjusted Pearson’s Correlation Coefficient

One major difference between the similarity computation in the User-User variant and
the Item-Item variant of the (k)-Nearest Neighbours Algorithm is that in case of the User-
User variant the similarities are computed along the rows of the ratings matrix but in case
of the Item-Item variant the similarities are computed along the columns of the ratings
matrix. The similarity in case of the Item-Item variant suffers from the fact that each pair
of common votes during the similarity calculation belongs to a different user with different
subjective ratings scale. The adjusted Pearson’s correlation coefficient is trying to answer
this drawback by subtracting the user’s mean rating from each such pair. Formally, the
similarity of scores of users j and l is described in (3.6):

w̃adj(j, l) =

∑
i(ri,j − ri)(ri,l − ri)√∑

i(ri,j − ri)2
∑

i(ri,l − ri)2
(3.6)

where the summations over i are over the users which have rated both users j and l
(∼ common votes).
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Chapter 4

ColFi Architecture

This chapter outlines the ColFi System architecture design and the main decision steps
leading to it.

4.1 ColFi Architecture Overview

ColFi System architecture is designed to be maximally simple and flexible, so users
or developers can focus on collaborative filtering instead of the system complexity. The
core of the system is the server side of typical stateless TCP/IP client-server solution. It
consists of a global data manager, a set of ColFi services and a communication module
with its own specific communication protocol (CCP - ColFi Communication Protocol).
The data manager serves as the main data provider for all the components in the system
and ColFi services contain logic exposed to the outside world (to the clients). Particular
data manager and ColFi services implementations are provided as server plug-ins.

The illustration 4.1 summarizes ColFi architecture design:

ColFi Server

Collaborative 
filtering data 

storage

Data manager ColFi service 1

ColFi service 2 (Algorithm service)

ColFi service N

JDBC,
file system,

...

Collaborative filtering algorithm

CCP

CCP

CCP

Client A

Client B

Web server

HTTP

HTTP

Figure 4.1: ColFi architecture

The communication protocol between the data storage and the data manager is implementation
dependent. Each ColFi service is represented by one TCP/IP port number.
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4.2 Pure Client-Server Solution

Pure stateless TCP/IP client-server solution was chosen among many others for its
simplicity, platform independency, scalability and mainly for the best performance results.
Each ColFi service instance has its own unique TCP/IP port number and is independent on
all the other ColFi services. Thus, multiple client connections are supported and handled
in parallel.

ColFi Server contains a communication module with its own specific client-server com-
munication protocol (CCP), which is, in a way, very similar to popular Java RMI1 protocol.
Again, CCP is a very simple protocol and it allows only limited remote method invoca-
tions. That makes it very fast (unlike SOAP2) and does not require anything special on
the client side (unlike Java RMI). See the section 5.1.5 on the page 28 for details.

Number of other solutions were implemented and rejected, either for weak overall per-
formance (e.g., Web Services) or for complicated installation and setup of the server envi-
ronment for end users of the ColFi System (e.g., EJB, JSP, Servlets).

4.3 Data Manager

The data manager is the heart of the ColFi Server. It is a general interface that provides
all the other ColFi components with data necessary for collaborative filtering. There is
always exactly one data manager instance per server instance. Its concrete implementation
is in a form of a plug-in to the ColFi Server and its actual behavior can differ in many
ways. The data manager can cache data in the memory or it can directly access some other
data storage (e.g., database or specifically designed file system). In some cases, read only
implementation may be desired and so on.

Although both cached and direct access is supported, only cached variants achieve
reasonable performance parameters. Direct access is meant to be used mainly with small
data sets or in some specific test scenarios.

4.4 ColFi Services

The ColFi service is the only part of the system exposed to the outside world. Each
service has its own TCP/IP server port number where it listens for incoming client requests.
ColFi services are stateless (sessionless), so each request is both atomic and isolated and
should not affect any other instant requests (that allows simple parallel handling of multiple
client connections from the server’s point of view). The only requirement to each ColFi
service is that it should be able to get associated with the data manager instance.

1RMI (Remote Method Invocation) – remote method invocation protocol implemented in Java, which
forces the client to use Java

2SOAP (Simple Object Access Protocol) – general and platform independent remote object access
protocol based on XML, which makes it quite slow
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The ColFi service is not limited to do collaborative filtering, it is only limited to do
operations with data obtained from the data manager (it can do some statistical operations
for example).

Implementation details are discussed later in the section 5.3 on the page 34.

4.5 Algorithm Service

The algorithm service is special abstract implementation of the ColFi service with focus
on collaborative filtering. It contains an Algorithm interface, which represents collabora-
tive filtering algorithm. By default, this ColFi service exposes basic matrix in/out data
operations together with prediction and recommendation methods.

The detailed implementation is described in the section 5.3.1 on the page 35.
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Chapter 5

ColFi Implementation

This chapter focuses on the implementation details of the ColFi System and is intended
to be read mainly by developers.

The main implementation goals were simplicity, good overall performance, enough ab-
straction, system extensibility and target platform independency. To achieve these goals,
the J2SE™ 5.01 was chosen for its good abstraction, platform independency and reason-
able performance issues. The ColFi System is implemented to run in the latest version2

of the Sun Microsystems JVM which is the most popular and widely used Java solution.
The presented implementation is currently tested in practice as a part of real world web
application at http://www.libimseti.cz/ (running the Gentoo Linux distribution3).

Java source files are compiled into four separate jar files for better transparency and
development administration:

• colfi-server.jar – the main ColFi Server implementation classes, network com-
munication, threads management

• colfi-commons.jar – public common utilities and handy routines, fast arrays, sim-
plified hash table, general configuration and logging facilities

• colfi-datamanagers.jar – the data manager implementations, possibly dependent
on some 3rd party libraries (e.g., database drivers)

• colfi-algorithms.jar – the algorithm service and all the algorithm implementa-
tions (∼ collaborative filtering and recommender core)

As colfi-server.jar contains the Java main method, it acts as the main “executable”
part of the system. The rest of the jar files are understood as plug-ins, from which only
colfi-commons.jar is required to successfully start the standalone ColFi Server.

1J2SE™ 5.0 (Java™ 2 Platform Standard Edition 5.0) – http://java.sun.com/
2Currently J2SE™Development Kit 5.0 Update 7.
3Gentoo Linux – http://www.gentoo.org/
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The details not mentioned in this chapter can be found in the form of a standard
Javadoc4 documentation as a part of the ColFi Project.

5.1 ColFi Server

As stated above, ColFi Server implementation classes are stored in colfi-server.jar.
The Java main method is located in the class Server and it does the following:

• Initializes logging – every server run is logged into a separate log file with unique
timestamp in its name

• Initializes configuration – opens the configuration property file based on the server’s
command line argument (see further)

• Initializes data manager – creates concrete data manager instance based on the cur-
rent configuration and initializes it

• Initializes ColFi services – creates concrete service instances based on the current
configuration and initializes them (passing them the global data manager instance
created earlier)

5.1.1 Logging

ColFi Server logging facilities are based on standard Java logging API, which was
chosen instead of other popular logging libraries (like Log4j5) for its simpler configuration
and sufficient features. Also no other 3rd party library is necessary this way, because it is
all part of J2SE. ColFi Server logs its activity into standard output console and into XML6

log file log/colfi-[X].log, where X stands for the timestamp of server start.
This default behavior is defined in the class Logger and it may be extended by a

developer. Standard way of logging things from inside the system is done through the
singleton pattern as follows:

Logger.getInstance ().log(Level.WARNING , "Cannot close file \"" + fName + "\".", ioException);

5.1.2 Configuration

ColFi Server configuration is stored in a standard property file, which is specified by
the server’s command line argument. Only the first command line argument arg1 is used

4Javadoc is a tool for generating API documentation in HTML format from doc comments in source
code.

5Log4j – part of the open source Apache Logging Services project, designed for Java environment
(http://logging.apache.org/log4j/)

6Resulting XML’s DTD is http://java.sun.com/dtd/logger.dtd.
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to form the path to the property file as conf/[arg1].properties. When no command
line argument is present, value default is used instead. The configuration file is required.

There are two basic techniques used to get to the configuration properties. The simpler
of the two is just reading one property from the configuration file. For example this is the
way to define global configuration property, whether ColFi Server should resolve client’s
IP addresses upon incoming requests:

colfi.resolveClientIP = true

And this is the standard way of reading such configuration property through the sin-
gleton pattern (static methods):

final boolean resolveClientIP = CommonTools.booleanValue (Configuration.getBoolean ("colfi.resolveClientIP"));

This is the basic mechanism of reading one simple configuration property and using it
in the system. The class Configuration contains methods for reading numbers, strings
and boolean values.

There also exists a second, more complex, approach. It is used for universal instantia-
tion of the classes which are unknown till runtime, through Java reflexion. This mechanism
actually substitutes general java class constructor calls. Let keyPrefix be the configura-
tion key for such class. Then the property [keyPrefix].class contains a fully qualified
java class name of the desired class. Such class must implement Configurable interface
and must have a public constructor that takes no parameters. The class instance is then
obtained as follows:

• Constructor with no parameters is called.

• Class is scanned for methods with ConfigurableParameter annotation7 present.
Each of these methods correspond to some value in the configuration file and the
configuration key for that value is determined from parameterName field of the an-
notation ([keyPrefix].parameter.[parameterName]). There are two more anno-
tation fields considered before the actual method call is invoked: required - whether
this parameter is required in the configuration file; and defaultValue - default value
used when no value is found in the configuration file. If all looks good, the method is
invoked with obtained value as an argument (automatic type conversion is applied).
Each annotated method is supposed to have exactly one argument and its type is
limited to some primitive types (boolean, byte, int, long, String) or it can be
another Configurable object (yes - it can go recursive in here).

• After all the annotated methods are called, method configurationDone() from the
Configurable interface is called and the final instance is considered ready for use.

This is the actual example from the configuration file, where FileDataManager class
should serve as the main ColFi Server data manager instance:

7See http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html.
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colfi.dataManager.class = cz.cuni.mff.colfi.data.cached.file.FileDataManager

colfi.dataManager.parameter.fileName = /tmp/colfi-tmp-matrix.ser

colfi.dataManager.parameter.value.no = 0

colfi.dataManager.parameter.value.min = 1

colfi.dataManager.parameter.value.max = 10

One of the annotated methods8 in the FileDataManager implementation looks like
this:

@ConfigurableParameter(parameterName = "fileName", required = true)

public final void setFileName(final String newFileName) {
fileName = newFileName;

}

And this is the standard way of instantiating such class in the system:

final DataManager dataManager = (DataManager)Configuration.getConfigurableInstance ("colfi.dataManager");

5.1.3 Data Manager Instance

Even though data manager is the heart of the ColFi Server, there is no assumption to
its implementation other then that it is supposed to implement the general DataManager
interface (see further). The DataManager interface extends the Configurable interface,
therefore the specific data manager instance is obtained through configuration file as de-
scribed above. The configuration property key is colfi.dataManager.

There is always exactly one data manager instance per server instance. It is global for
all the ColFi Server components (∼ ColFi services).

5.1.4 ColFi Service Instances

ColFi services are instantiated in the same manner as the data manager. Again, the
only assumption about service is that it implements the Service interface which also
extends the Configurable interface. Specific service instances are obtained through con-
figuration file. Their configuration property keys are colfi.service.[n], where n goes
from 1 to the total number of services. There is no limit on the total number of ColFi ser-
vices per server instance. For each service there are two more configuration property keys
(for server purposes): colfi.service.[n].name - contains the name of the service, and
colfi.service.[n].port - contains the server port on which that service should listen
for incoming requests.

Each ColFi service gets initialized with the global data manager created earlier and
then gets started in its own thread which is implemented in the class ServiceThread.

Each incoming connection (possibly containing multiple requests) to the ColFi service
is served in an extra new thread which is implemented in the class ResponseThread. That
is also the place, where the ColFi Communication Protocol is mainly implemented.

8See the complete FileDataManager source code for the rest of the annotations.
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5.1.5 ColFi Communication Protocol

ColFi Server uses its own communication protocol. Every client request is basically a
remote ColFi service method invocation and server response is serialized return value of
that method call. Service method may have some arguments of these primitive types: byte,
int or boolean. This limitation can be easily extended by a developer, although there
is no need for other argument types. Client request consists of the ColFi service method
name (which is case sensitive) followed by left parenthesis, argument types definition, which
is closed by right parenthesis and after that there are serialized method arguments (big-
endian representation). The argument types definition is formed in the following manner:

• Each character represents one argument type.

• The definition is case sensitive: b stands for boolean, B for byte and I for int.

This is an example client request for invoking ColFi service method getRating with
two int arguments (actual values used are 1 and 12345):

g e t R a t i n g ( I I ) 1 12345

0x67 0x65 0x74 0x52 0x61 0x74 0x69 0x6E 0x67 0x28 0x49 0x49 0x29 0x00 0x00 0x00 0x01 0x00 0x00 0x30 0x39

The response of the server consists of the response error code (one byte) and the result.
The response error code value has these meanings:

• 0x00 – OK, no error occurred and valid result follows (when not void)

• 0x01 – unknown command (unknown ColFi service method)

• 0x02 – unexpected end of a input stream from the client side

• 0x03 – some ColFi internal service exception

Generally, non zero value means some error has occurred. In that case, serialized String

with exception description follows. In case of no error, serialized return value of invoked
method is returned. The client must know the form of the result content to be able to
parse it. Primitive types are just simply written into the output stream (again big-endian
representation) and other objects must implement StreamableToByteArray interface to
be successfully “serialized” into the output stream. This could be also very easily extended
by a developer if this should not suffice.

5.2 Data Managers

As mentioned above, ColFi Server includes exactly one global data manager instance
which is supposed to implement the DataManager interface. The role of this data manager
instance is to provide access to the collaborative filtering data to all the other components in
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the system (mainly to all the ColFi services). The data being provided is the content of the
ratings matrix together with the list of so called active users. Users are identified by their
unique id (32 bits) and the data manager should know whether a user with given id exists
(is active) or not. All the matrix values on the server side are converted to the internal value
scale as defined in the DataManager interface. Only the updateRating(int,int,byte)

method uses external value scale for its last argument, because the value it gets origins
from the client side. Both internal and external values are limited to 8 bits. The last global
contract to the implementation of the DataManager interface is that self-ratings are not
allowed. In other words, it is not possible for any user to rate himself and therefore the
main diagonal of the ratings matrix should always be empty.

The figure 5.1 shows the complete list of the methods in the DataManager interface.

public interface DataManager extends Configurable {
/** Returns data manager’s name. */

String getName();

/** Returns data manager’s implementation version. */

byte getVersion();

/** Returns ’null’ value of external scale. */

byte getExternalNoValue();

/** Returns minimum value of external scale. */

byte getExternalMinValue();

/** Returns maximum value in external scale. */

byte getExternalMaxValue();

/** Closes this data manager. No further operations are allowed. */

void close() throws DataManagerException;

/** Gets the lock which should be used for multi-read operations to preserve their isolation. */

Lock getReadLock();

/** Adds a new listener for ratings matrix modification events. */

void addDataManagerListener(DataManagerListener l);

/** Removes attached listener for ratings matrix modification events. */

void removeDataManagerListener(DataManagerListener l);

/** Returns all active users sorted by ids in ascending order. */

SortedAscIntArray getAllUsers() throws DataManagerException;

/** Returns users not rated by user u1. Unsorted. */

IntArray getNotRatedUsers(int u1) throws DataManagerException;

/** Returns users who have not yet rated user u2. Unsorted. */

IntArray getNotScoredUsers(int u2) throws DataManagerException;

/** Adds new user to ratings matrix. It gets next available id, which is then returned. */

int addUser() throws DataManagerException;

/** Adds new user to ratings matrix with specified id. Throws exception when given id is already occupied. */

void addUser(int u) throws DataManagerException;

/** Removes existing user from ratings matrix. */

void removeUser(int u) throws DataManagerException;

/** Returns rating ru1,u2. */

byte getRating(int u1, int u2) throws DataManagerException;

/** Returns all ratings from user u1 sorted by user id in ascending order. */

SortedAscIntFixedByteArray getRatings(int u1) throws DataManagerException;

/** Returns all scores for user u2 sorted by user id in ascending order. */

SortedAscIntFixedByteArray getScores(int u2) throws DataManagerException;

/** Updates rating ru1,u2. External ’null’ value can be used to delete specified rating. */

void updateRating(int u1, int u2, byte externalValue) throws DataManagerException;

}

Figure 5.1: DataManager interface

The DataManager interface, which represents the main data storage access point for all the other
components in the ColFi System.

All data manager implementations have to be careful about the fact that their instance
is used in multi-threaded environment. So if it is intended to be used with more than
one ColFi service (or more precisely in a multi-client environment), the implementation
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should be thread-safe9. That might be particularly difficult when dealing with modifiable
implementation (meaning that one of the methods addUser, removeUser or updateRating
is implemented). For such modifiable implementations there is prepared standard java lis-
tener pattern (class DataManagerListener) for other components using the data manager
to get notification events about the data manager content modifications. The figure 5.2
shows the complete list of the methods in the DataManagerListener interface.

public interface DataManagerListener extends EventListener {
/** User u was added. */

void userAdded(int u);

/** User u was removed. */

void userRemoved(int u);

/** New rating ru1,u2 with value value was added. */

void ratingAdded(int u1, int u2, byte value);

/** Existing rating ru1,u2 was modified from value oldValue to value newValue (oldValue != newValue ). */

void ratingUpdated(int u1, int u2, byte oldValue, byte newValue);

/** Existing rating ru1,u2 was removed. Previous value was oldValue. */

void ratingRemoved(int u1, int u2, byte oldValue);

}

Figure 5.2: DataManagerListener interface

The DataManagerListener interface, which represents the standard java event listener, able to receive
the data manager modification events.

The meaning of these event listener methods is obvious. All the “value” arguments
used are in the ColFi’s internal value scale. Although the DataManager interface contains
only one method for actual ratings matrix modification (updateRating), there are three
separate methods in the DataManagerListener for ratings matrix modification events
(ratingAdded, ratingUpdated and ratingRemoved). This feature might make data man-
ager implementation little more complicated, but on the other hand it also helps a lot in
implementing the modification event consumers (see the section 5.4.2 on the page 36).

There are methods in the DataManager interface that are actually redundant and their
return value could be acquired with the help of other data manager methods. One such
method is getNotRatedUsers. The reason to have these methods in the interface is
the possibility that some implementations may have data stored in a very specific way
and could return such values directly improving overall performance. The default im-
plementation of these methods, based on other DataManager methods is written in the
DataManagerAdapter class. This class also implements the listener pattern together with
some other useful methods for eventual descendants.

5.2.1 Cached Matrix and Cached Data Manager Adapter

All the presented cached data manager implementations are descendants of the class
CachedDataManagerAdapter. It is an abstract implementation of modifiable data manager,
which caches all the data in the memory in the data structure called cached matrix.
It implements all the essential DataManager interface methods and the only thing the

9Thread-safe code is code that will work even if many threads are executing it simultaneously.
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descendant class must take care of is the initial filling of cached matrix by implementing
the initCachedMatrix method. The implementation is thread-safe.

The cached matrix structure is implemented in the CachedMatrix class. It is a complex
data structure representing the entire ratings matrix content. The matrix is stored as a
map10 of rows (hashed by user ids) and as a map of columns (again hashed by user ids).
This “two-way” storage uses twice the space but speeds up most of the desired operations
over the matrix. The relevance of particular user id is equivalent with the existence of
non-null entries in both maps for such user id.

Each row and column is stored as a list of pairs (user id and value) sorted by user id in
ascending order. This particular list is implemented in SortedAscIntFixedByteArray as a
part of the arrays (arrays.multi) package in colfi-commons.jar. This package contains
various forms of array implementations designed for maximum performance. There are
implementations of modifiable arrays of few primitive types and all of them share common
effort to minimize the number of memory reallocations during their “life”. The main idea
behind their implementation is to allocate some constant space in advance so later array
modifications can be mostly handled without the time consuming memory reallocations.
This feature uses a little extra memory, but it significantly improves performance. Also,
such array instances are often passed as method arguments inside the ColFi System and
they get rarely duplicated. The original object is passed as it is, so developers have to be
careful about unintentional modifications.

Cached matrix implementation is fully synchronized so in other words thread-safe. The
illustration 5.3 recapitulates preceding paragraphs.
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Original ratings matrix Cached matrix

Figure 5.3: Cached matrix implementation

An example ratings matrix and its representation in memory as a cached matrix data structure. Only
rows hash map is demonstrated as the columns hash map is similar. The empty array hashed under user

3 denotes that this user exists but has no ratings in the ratings matrix.

10Own special IntHashMap is used instead of the standard java java.util.Map interface. This implemen-
tation allows only primitive int keys which makes it about 30% faster and consumes less memory.
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Because the cached matrix structure is the performance bottleneck for all the presented
data manager implementations, it is important to know its memory and time complexity.

The memory complexity is affected by the fact that the matrix is stored both as a map
of rows and a map of columns. The memory used is proportional to twice the number
of ratings in the matrix. The memory complexity is therefore linear with the number of
ratings. To observer some real numbers, current cached matrix implementation uses about
74 MB of memory to store matrix with 100,000 users and 5,000,000 random ratings.

The time complexity is much more important characteristics. The mostly used opera-
tion over the cached matrix is reading rows, columns or explicit ratings. Getting rows or
columns can be done with a constant time complexity, because it is just looking up the
user id key in one of the two hash maps. Getting a single explicit rating is little more
complicated. Let N be the total number of active users and let R be the total number of
ratings in the matrix. In average case, ratings are uniformly distributed over the whole
matrix and the matrix itself is very sparse (N2 � R � N). The row and also the column
of the target rating is obtained in constant time. Both are arrays of pairs sorted by user id,
so either one can be used to perform binary search for desired target rating. Assuming the
uniform ratings distribution, it does not matter which one is used for the search (although
of course real implementation do choose the smaller one). The average length of such an
array is R/N , so the time complexity to get an explicit rating is O(log R/N).

The important fact is that getting rows and columns is done with a constant time
complexity and that it actually returns the array sorted by user id. That is greatly utilized
later in the algorithm implementations (see section 5.4.3 on page 37 for details).

5.2.2 Empty Data Manager

The simplest possible descendant of the CachedDataManagerAdapter is implemented
in the class EmptyDataManager. It initializes the cached matrix with no data and no users.
It is fully functional modifiable data manager, it just starts with an empty initial ratings
matrix. It is mainly used for automatic testing of the CachedDataManagerAdapter class
and the data manager concept altogether. Another application could be in situations where
ratings matrix persistence is not important.

5.2.3 File Data Manager

Because every DataManagerAdapter descendant must implement a way of serializing
its data into the file (method serializeDataIntoFile), there should exist a data manager
capable of reading those serialized files. The class FileDataManager is such a data man-
ager implementation based on the CachedDataManagerAdapter. It initializes its cached
matrix with data from the serialized file and it expects the file to contain plain serialized
CachedMatrix java object instance. By a convention, the standard file name extension for
serialized java objects is ser .

And for example, the total size of serialized cached matrix with 100,000 users and
5,000,000 random ratings is about 74 MB (both rows and columns map gets serialized into
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the file because it makes deserialization of the data about 6 times faster, even though the
file uses twice the size).

5.2.4 Cached MySQL Data Manager

The majority of ordinary applications do store their ratings matrices in some per-
sistent way. Mostly in databases. The class CachedMySQLDataManagerAdapter extends
CachedDataManagerAdapter and implements data manager based on the MySQL11 data-
base. This adapter class has two descendants: CachedMySQLDataManager and read-only
version CachedMySQLReadOnlyDataManager. Although they are both modifiable data man-
ager implementations, only the former reflects the modifications back to the database.

Even though specific database engine was chosen, the implementation is not really
dependent on it as it uses JDBC12 technology. It is commonly used standard for Java ap-
plications to connect to the database. Databases of all major vendors do have implemented
their JDBC drivers so they can be easily accessed from applications in an uniform way.

The ratings matrix data are loaded from one database table which is required to have
at least these three database columns: user-id1, user-id2 and value. Each rating is
stored as one database record in that table. Values out of external value scale and values
on the main diagonal of the ratings matrix are silently ignored.

As MySQL database server drops client connections after 8 hours of inactivity, there
is the MySQLAutoAlivePingThread class, which periodically touches the database to keep
the connection alive.

DataManager

��
DataManagerAdapter

��
CachedDataManagerAdapter

rrfffffffffffffffff

�� ,,YYYYYYYYYYYYYYYYYYYYY

EmptyDataManager CachedMySQLDataManagerAdapter

ssgggggggggggggggggg

,,XXXXXXXXXXXXXXXXXXXX FileDataManager

CachedMySQLDataManager CachedMySQLReadOnlyDataManager

Figure 5.4: DataManager implementations hierarchy

This diagram shows the data manager classes hierarchy (highlighted classes are final data managers
ready for use, the rest are interfaces or abstract adapter classes):

11MySQL (the world’s most popular open source database) - http://www.mysql.com/
12JDBC - Java DataBase Connectivity

33

http://www.mysql.com/


CHAPTER 5. COLFI IMPLEMENTATION

5.3 ColFi Services

ColFi service is an isolated server component exposed to the client side of the system.
It contains the server “logic” over the data set provided by the global data manager in-
stance. Each service is obliged to implement the Service interface (which also extends
the Configurable interface, so it can be instantiated from the configuration property file).
The Service interface has only one method, as shown in the figure 5.5.

public interface Service extends Configurable {
/** Initializes this Service data source. */

void setDataManager(DataManager newDataManager);

}

Figure 5.5: Service interface

The Service interface represents the ColFi service - a part of the ColFi System exposed to the outside
world. The one thing required from the service is that it should be able to associate itself with a given

data manager during its initialization phase.

This method is used during the service initialization phase to pass the global data
manager instance to it. It is invoked exactly once, and it is not supported to later switch
the data manager (although this could be extended by a developer if needed). And that is
the only thing required from the service implementation.

Every ColFi service implementation has several methods, which are intended to be
exposed to the clients. The ServiceMethod annotation is a method marker annotation used
to specify such methods. The annotation has one boolean parameter named quit used to
select the service “exit” method(s) - its invocation immediately terminates the service (the
main ColFi Server exits when there are no more running ColFi services). As mentioned
earlier, there exist some restrictions about service methods parameter and return types.
Parameter types are limited to these primitive types: boolean, byte and int. Method
return type is limited to these types: boolean, Boolean, byte, Byte, int, Integer, String
and implementations of the StreamableToByteArray interface. The method is supposed
to throw the ServiceException when anything goes wrong and the client should know
about it. Any other exception is considered “unexpected”. The following is an example
service method from one service implementation:

@ServiceMethod

public final byte predictRating(final int u1, final int u2) throws ServiceException;

The ServiceAdapter class is an abstract Service implementation which exposes most
of the data manager methods as service methods. That actually allows the client to work
directly with the associated data manager. The complete list of exposed methods is:

34



CHAPTER 5. COLFI IMPLEMENTATION

String getDataManagerName();

byte getDataManagerVersion();

SortedAscIntArray getAllUsers() throws ServiceException;

IntArray getNotRatedUsers(int u1) throws ServiceException;

IntArray getNotScoredUsers(int u2) throws ServiceException;

int addUser() throws ServiceException;

void addUser(int u) throws ServiceException;

void removeUser(int u) throws ServiceException;

byte getRating(int u1, int u2) throws ServiceException;

SortedAscIntFixedByteArray getRatings(int u1) throws ServiceException;

SortedAscIntFixedByteArray getScores(int u2) throws ServiceException;

void updateRating(int u1, int u2, byte value) throws ServiceException;

5.3.1 Algorithm Service

The algorithm service is the main presented Service implementation based on the
abstract ServiceAdapter class. It is a basic ColFi service for all collaborative filtering and
recommender routines. The main collaborative filtering computational logic is contained
in the service as an implementation of the Algorithm interface. The figure 5.6 shows the
complete list of all the methods in that interface (methods marked with black arrow are
exposed to the clients by the AlgorithmService class):

public interface Algorithm extends Configurable, DataManagerListener {
II /** Returns algorithm’s name. */

II String getName();

II /** Returns algorithm’s implementation version. */

II byte getVersion();

II /** Return associated data manager (possibly null ). */

II DataManager getDataManager();

II /** Associates given data manager with this algorithm (null to detach current one). */

II void setDataManager(DataManager dataManager) throws AlgorithmException, DataManagerException;

II /** Predicts rating for ru1,u2. */

II byte predictRating(int u1, int u2) throws AlgorithmException, DataManagerException;

II /** Predicts ratings for user u1. Using all users or just unrated ones. */

II FixedIntFixedByteArray predictRatings(int u1, boolean all) throws AlgorithmException, DataManagerException;

II /** Predicts scores for user u2. Using all users or just unscored ones. */

II FixedIntFixedByteArray predictScores(int u2, boolean all) throws AlgorithmException, DataManagerException;

II /** Recommends top-n users for the user u. Using all users or just unrated ones. */

II IntArray recommendUsers(int u, int n, boolean all) throws AlgorithmException, DataManagerException;

}

Figure 5.6: Algorithm interface

The Algorithm interface represents a collaborative filtering algorithm. It is used by an algorithm service.
The boolean parameter named all tells the method to either use all the users in the data set or to use

just users with no real value in the ratings matrix (unrated users).

The Algorithm implementation is associated with the data manager instance. Unlike
the Service implementations, the Algorithm implementations are supposed to support
online data managers switching (that is mainly for the research purposes - for example a
learning algorithm of some kind might learn on one data set and then switch to another
data set and run some tests).

Notice that the Algorithm interface also extends the Configurable interface, and
therefore the actual instances are created and based on the configuration property file.
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5.4 Algorithms

Every collaborative filtering algorithm implementation must realize the Algorithm in-
terface mentioned in previous sections. Most implementations have some common char-
acteristics. The AlgorithmAdapter abstract class assumes for its descendants that all
predictions and recommendations are based on one method (predictRating), and that
each such prediction is independent on any other predictions. There is also convention
that if there exists real value in the ratings matrix for the rating ru1,u2, then the prediction
for this rating is that particular value. Under these assumptions, the AlgorithmAdapter

implements all the other Algorithm interface methods and leaves just one method to its
descendants:

byte predictRatingReal(int u1, int u2) throws AlgorithmException, DataManagerException;

This method is called when the actual prediction is needed, which means there is
no real value in the ratings matrix for ru1,u2. All Algorithm implementations based on
AlgorithmAdapter have to implement the predictRatingReal method and also all the
methods from the DataManagerListener interface as the Algorithm interface extends it
and AlgorithmAdapter leaves their implementations to its descendants.

5.4.1 Random Algorithm

The Random algorithm (the RandomAlgorithm class) is the simplest descendant of the
AlgorithmAdapter class. Its every prediction is a random value within the internal value
scale. For fixed users u1 and u2 it always predicts for the rating ru1,u2 the same random
value. Each instance has its own set of random generator instances (see java.util.Random).
All the data manager modification events are ignored as there is nothing cached inside the
algorithm instance. This algorithm has no configurable parameters.

The RandomAlgorithm implementation is thread-safe and both time and memory com-
plexity are constant.

5.4.2 Mean Algorithm

The Mean algorithm (the MeanAlgorithm class) calculates its prediction for the rating
ru1,u2 as the mean value of all the ratings for the user u2 (∼ the mean score of the user
u2). The mere implementation is trivial, but there are two interesting principles.

All the array implementations from the colfi.arrays package do cache their total
summation at all times, so the calculation of any array’s mean value is in fact just one
simple division. But this is dependent on the data manager implementation (for example
direct data manager implementations still have to read the arrays from somewhere).

The second and more interesting thing is, that the MeanAlgorithm class may cache all
the means it used itself. The mean is cached in the CachedMean class as a summation
and a size of an array (so again getting the mean is a question of a simple division -
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and that is done only once, because then it is cached in the CachedMean object as a
byte return value to even avoid the division). The MeanAlgorithm implements all the
DataManagerListener methods and corrects the appropriate cached means every time a
data manager modification event arrives - so it does not need, possibly slow, data manager
call to calculate the mean again. Of course this is just a simple example of utilization of
the data manager listener callbacks and is really contra productive when using together
with a cached data manager (due to many CachedMean objects allocations).

The Mean algorithm has one boolean configurable parameter called useCaching, used
to turn on/off the mean-caching as described above. For the reasons mentioned, direct
data managers should use the mean caching and cached data managers should not.

The MeanAlgorithm implementation is thread-safe. The memory complexity is linear
with the number of users (one CachedMean object per ratings matrix column), when using
the mean caching facilities (otherwise the memory usage is constant). The time complexity
is constant, but data manager dependent. In case of some direct data manager the time
complexity would be linear with the total number of users (∼ read the ratings matrix
column and calculate its mean value).

5.4.3 User-User Nearest Neighbours Algorithm

The User-User variant of the (k)-nearest neighbours algorithm (implemented in the
UUNearestNeighboursAlgorithm class) is the most popular collaborative filtering algo-
rithm and it is also one of the most computationally expensive ones. The prediction for
the rating ru1,u2 is done in these three separate steps:

1. The vector similarities for the ratings of the user u1 and all the other users are
calculated.

2. The final set of neighbours is created with a special intersection operation.

3. The resulting prediction is calculated as a neighbours’ weighted mean rating for user
u2, based on the previous steps.

When a prediction for rating ru1,u2 is demanded, most likely the next prediction will be
again for the same base user u1. This implementation focuses on the cases when predictions
for one ratings matrix row are needed consecutively. The user u1 is declared as a cached
working user and his similarities to all the other users are calculated and cached. The
UUNearestNeighboursAlgorithm class contains a small cache of recent cached working
users (LRU style), so sequent similarities calculation (step 1) is mostly bypassed and the
values are retrieved from this local cache instead. The size of such local cache depends
on the actual application using this algorithm and corresponds to an average number of
online users at the same time requesting their recommendations. The real similarities
calculation (when needed) benefits from the fact that the data manager returns rows of
the ratings matrix as arrays sorted by user id in ascending order. Having two such ratings
vectors, a similarity can be calculated with a linear time complexity. Still, it is the most
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time consuming part of the implementation as the total number of users is quite large.
This users’ ratings similarity calculation is implemented in the following method of the
VectorTools class:

static float getUsersSimilarity(SortedAscIntFixedByteArray ratingsU1, SortedAscIntFixedByteArray ratingsU2, int minCommonVotes);

The next step is to select the k nearest neighbours, which will be later used for the
actual prediction. All the possible neighbours were acquired earlier, but not all of them
shall be used. Because the prediction is desired for the user u2, only the neighbours which
have rated user u2 can be used. Also only positive similarities are taken into account,
because experiments proved it to yield better results (both accuracy and performance).
The intersection operation, which finds the k most similar (nearest) neighbours, which
have rated user u2, is implemented in the following method of the VectorTools class:

static FixedIntSortedDescFloatArray intersect(SortedAscIntFixedFloatArray cacheU1, SortedAscIntArray ratersU2, int maxNeighbours);

The final prediction is then calculated as a weighted average of the nearest neighbours’
ratings of user u2. The ratings are weighted by calculated similarities between user u1 and
the selected neighbours.

This algorithm has the following five experimental configurable parameters:

• minRatings (mR) – the minimum number of given ratings required from a user to
allow predictions for him/her

• minCommonVotes (mCV) – the minimum required common non-empty items in
two ratings vectors to successfully calculate their similarity

• minNeighbours (minN) – the minimum required size of the final neighborhood

• maxNeighbours (maxN)13 – the maximum used size of the final neighborhood
(when the neighborhood is bigger, only the top-maxN neighbours are used for a
weighted average calculation)

• cacheSize (cS) – the size (the number of users) of the local working users cache

The UUNearestNeighboursAlgorithm implementation is thread-safe. The memory
complexity depends linearly on the total number of users in the system. For C cached
active users and their similarities, the memory complexity is O((C + 1) ·N)14, where N is
the total number of users.

The time complexity of a single rating prediction is formed by a time complexity of
the similarities calculation, a time complexity of the intersection operation and a time
complexity of the final weighted average calculation. The most “expensive” is the initial

13For this implementation of the (k)-nearest neighbours algorithm, the k parameter in the algorithm’s
name actually vary on the real data (minN ≤ k ≤ maxN).

14(C + 1) ∼ the entire cache plus the algorithm’s structures
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similarities calculation. The similarity of two ratings vectors can be calculated in O(N)
or more precisely O(R/N), when assuming sparse and uniform matrix with R ratings and
N users. For a prediction of rating ru1,u2, a total number of (N − 1) similarities have to
be calculated (ratings of the user u1 against the ratings of all the other users). This sums
up into the time complexity of the similarities calculation as O(N2) or O(R). The time
complexity of the intersection operation is O(log N · R/N), because there are R/N scores
for user u2 and for each such score a field in the cached similarities has to be found using
binary search. The time complexity of the final weighted average calculation is O(k) as
the algorithm uses k nearest neighbours (typically k � N , so it could be also omitted as
O(1)). The total time complexity of a single rating prediction is therefore O(R) for users
not yet in the cache, and O(log N ·R/N) for already cached user u1.

Now, as in every algorithm implementation based on the AlgorithmAdapter, the rec-
ommendation of top Q users has to do about (N −R/N) predictions to complete the row
of the ratings matrix to be able to choose the best users to recommend. This would mean
that the time complexity of a single recommendation is O(N ·R+N · log Q) ∼ O(N ·R)15.
Luckily, the similarities have to be calculated only once (thanks to the similarity cache),
so the real time complexity is O(R · log N).

5.4.4 Item-Item Nearest Neighbours Algorithm

The Item-Item variant of the (k)-nearest neighbours algorithm (implemented in the
IINearestNeighboursAlgorithm class) is a “mirror” of the User-User variant, so the
implementation basics are mostly the same.

Instead of calculating similarities over the ratings vectors (the rows of the ratings ma-
trix), the scores vectors (the columns of the ratings matrix) are used. An important
implementation difference is the absence of the similarities cache, as there is no assump-
tion that predictions for one ratings matrix column would be needed consecutively. When
predicting the rating ru1,u2, the similarities are calculated between the scores vector for user
u2 and the scores vectors for other users. Because of that, there is no reason to have the
similarities cached as the recommendation operation needs to predict the complete ratings
matrix row anyway.

The scores similarities are calculated each time a prediction is requested. On the other
hand, the absence of the cache means that the similarities do not have to be calculated
with all the other users as in the User-User variant. In this case, the intersection operation
only needs similarities between the scores vector for user u2 and the scores vectors for
users rated by user u1 (when predicting ru1,u2). That is especially useful for data sets with
many users and a low mean number of rated users in general16. Also without the cache,
the Item-Item variant does not have to do any recalculations during the ratings matrix
updates.

15Q is insignificant (Q ≪ N).
16The Ĺıb́ımSeTi data set is a great example with about 200,000 users and only 60 given ratings per

user in average.
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There are two different similarity metrics used: a classic Pearson’s correlation coefficient
and its adjusted variant. Both of them are very similar and both of them are implemented
in the VectorTools class:

static float getUsersSimilarity(SortedAscIntFixedByteArray scoresU1, SortedAscIntFixedByteArray scoresU2, int minCommonVotes);

static float getUsersSimilarityAdjusted(DataManager dataManager, SortedAscIntFixedByteArray scoresU1, SortedAscIntFixedByteArray

scoresU2, int minCommonVotes);

In contrary to the User-User configurable parameters stated above17, the cacheSize
parameter is not used because there is no cache and one more parameter is added:

• adjusted – boolean parameter whether to use adjusted similarity metric or just a
classic version of the Pearson’s correlation coefficient

The IINearestNeighboursAlgorithm implementation is thread-safe. The memory
complexity is linear with the total number of users as the similarities have to be calculated
and locally stored (even though there are no similarities cached in the process).

The time complexity for a single rating prediction is obtained in very similar way as for
the User-User variant. In the first step, only R/N similarities have to be calculated, which
means the time complexity O(R) or more precisely O((R/N)2) for sparse and uniform
ratings matrix. The intersection operation in fact just selects top-k neighbours from the
calculated similarities, which is done in O(R/N · log k) ∼ O(R/N). The final weighted
average calculation is done exactly the same way as in the User-User variant. All this
sums up into the total time complexity of a single rating prediction of O((R/N)2).

When performing the recommendation, again about (N −R/N) predictions have to be
calculated to complete the row of the ratings matrix. The real time complexity of a single
recommendation is therefore O(R ·R/N).

Algorithm

��
AlgorithmAdapter

ssffffffffff

wwooooooooooooooooooo

''OOOOOOOOOOOOOOOOOO
++WWWWWWWWWWW

RandomAlgorithm MeanAlgorithm

UUNearestNeighboursAlgorithm IINearestNeighboursAlgorithm

Figure 5.7: Algorithm implementations hierarchy

This diagram shows the algorithm classes hierarchy (highlighted classes are final algorithms ready for
use, the rest are interfaces or abstract adapter classes).

17In case of the Item-Item variant, minScores (mS) is used instead of minRatings (mR).
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Chapter 6

Benchmarks

This chapter describes the benchmarks of all the presented algorithms (implementations)
and compares their performance and accuracy on several test data sets.

The purpose of this chapter is to compare implemented collaborative filtering and rec-
ommender algorithms described in previous chapters and benchmark them both standalone
and as a part of the complete ColFi System solution. All the algorithms shall go through
the same set of test cases with the same input conditions (including the test computers’
hardware/software configuration). Most of the presented benchmarks are very complex
and the test data sets are quite large, so a distributed framework1 had to be implemented
to successfully realize all the tests. The Charles University lab computers together with
some other voluntary machines were used to form a distributed environment of about 100
computers2 to run the presented benchmarks.

In the first part, the automated laboratory simulation benchmarks are described, while
the second part summarizes some real world experimental results based on the ColFi Sys-
tem deployment in the Ĺıb́ımSeTi web application environment.

6.1 Simulation Benchmarks

The simulation benchmarks are automated test cases with an explicit design based
solely on the data contained in the ratings matrix of the test data set. The result of such
simulation benchmark test case shall be some simple value or graph that can be easily
interpreted and compared to other similarly obtained results.

This part purposely focuses merely on the simulation benchmarks of the prediction
abilities of the algorithms as the recommendation function is implemented equally for all
of them and is based on that prediction. There is a possibility for some algorithm to have
a bad absolute prediction results and still be a very good recommendation algorithm, but

1The fragments of all benchmarks implementation code are located in the colfi-benchmarks package.
2Most of the machines used were: PC (x86), Pentium 4 2,6/2,8/3 GHz, 512/1024 MB RAM (dual

channel), running the Gentoo Linux distribution.
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this fact is out of the scope of this section. Recommendation abilities are benchmarked in
a different experimental way in the section 6.2 on the page 58.

6.1.1 Simulation Benchmarks Design

Three different simulation benchmark strategies were chosen to compare the algorithms.
Each strategy focuses on some specific feature of the prediction ability:

• AllButOne strategy – focuses on the absolute prediction accuracy

• GivenRandomX strategy – examines the influence of the amount of initial infor-
mation given to the algorithm about a single user

• Production strategy – tests the overall parameters of the ColFi System solution in
the simulated production environment

The first two simulation benchmark strategies are designated to test standalone algo-
rithms and compare mainly their absolute prediction accuracy. Both of them were executed
in the distributed environment so only approximate prediction speed measurements were
performed as more complex distributed framework would be needed for accurate numbers.
The third simulation benchmark strategy (Production strategy) is designated to test the
algorithms as a part of the complete ColFi System solution and compare mainly their
prediction accuracy and performance/speed over time with concurrent data modifications.

There are 10 algorithms (or algorithm variants) to be tested:

• Random

• Mean (cache=off)

• User-User Nearest Neighbours (mR=mCV =5, minN=1, maxN=1)3

• User-User Nearest Neighbours (mR=mCV =5, minN=1, maxN=10)

• User-User Nearest Neighbours (mR=mCV =5, minN=1, maxN=50)

• User-User Nearest Neighbours (mR=mCV =10, minN=1, maxN=1)

• User-User Nearest Neighbours (mR=mCV =10, minN=1, maxN=10)

• User-User Nearest Neighbours (mR=mCV =10, minN=1, maxN=50)

• Item-Item Nearest Neighbours (mS=mCV =10, minN=1, maxN=50)

• Adjusted Item-Item Nearest Neighbours (mS=mCV =10, minN=1, maxN=50)

3The meanings of all the algorithms’ parameters are explained in the section 5.4 on the page 36
(mR=min. ratings by user, mS=min. scores for user, mCV =min. common votes for similarity,
minN=min. required size of the neighborhood, maxN=max. used size of the neighborhood).
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All the simulation benchmarks have a common base idea. Some part of a test data set
gets hidden (the specific part definition is dependent on the selected strategy). The tested
algorithm is then asked for a prediction for at least one of the “missing” ratings contained
in the hidden part. This is usually done many times with different hidden parts of the test
data set, according to the actual strategy. At the end the normalized mean absolute error
(NMAE) is calculated over the set of all the obtained predictions in compliance with the
equation (6.1):

NMAE =
1
c

∑c
k=1 |p̃k

ij − rij|
rmax − rmin

(6.1)

where c is the total number of ratings predicted in the run, p̃k
ij are those predicted

ratings and rij are the real ratings in the hidden part of the test data set. The denominator
represents normalization by the ratings value scale to express errors as percentages of a
full scale. The lower the NMAE value gets, the better the algorithm’s accuracy is.

As stated above, each simulation benchmarks strategy has its own protocol to define
the hidden part of the test data set. These protocols are described in the following sections.

AllButOne Strategy Protocol

The AllButOne strategy protocol is the most commonly used benchmark among many
collaborative filtering papers [18, 9]. It is the simplest protocol of the three and it is believed
to be the best method for measuring the algorithm’s absolute prediction accuracy. The idea
behind this protocol is to select exactly one rating and hide it from the tested algorithm.
Algorithm is then asked to predict that one hidden rating and the prediction error is the
absolute difference between the hidden rating value and the predicted rating value. This
is repeated for every single rating in the test data set.

It is possible that some algorithms “refuse” to predict certain ratings due to their
internal state (mostly due to the absence of information needed for a successful prediction,
i.e. too little ratings from active user). These cases are ignored and not included in the
final NMAE result4 and only the total number of such unsuccessful predictions is reported.

The main result of the AllButOne strategy protocol is just one simple NMAE value.
The figure 6.1 shows schematic pseudo-code for AllButOne strategy.

Initialize the data manager DM with tested data set

Initialize the tested algorithm ALG

For every non-empty rating R from DM do

Remove R from DM

Predict R with ALG based on actual DM

Put R back into DM

EndFor

Calculate resulting NMAE from all successful predictions

Figure 6.1: AllButOne strategy pseudo-code

4Experiments proved this has no actual impact on the final benchmark result.
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GivenRandomX Strategy Protocol

The GivenRandomX strategy protocol is more complex and is intended to examine the
algorithm’s performance with less active user’s data available. This protocol consists of
the following steps:

1. Choose one user U with at least 100 ratings given.

2. Hide all the user’s U ratings from the algorithm.

3. Randomly select 99 of those hidden ratings and mark them as an ordered group A.
The rest of the hidden ratings (given by user U) mark as a group B.

4. For X : 0 → 99, reveal to the algorithm the first X ratings from the ordered group A
and then ask for predictions for all the ratings in the group B. The currently unre-
vealed ratings from the group A are purposely not used for test predictions together
with the group B ratings, as the content of the set of ratings for test predictions
should be independent on a given X value (for a comparison to be possible).

These four steps are repeated for all the users having at least 100 ratings given. Again,
it is possible for any tested algorithm to “refuse” the prediction of any single rating due
to its internal state. These cases are ignored and not included in the final NMAE result
as in the previous AllButOne strategy protocol.

This strategy reflects the performance of the various algorithms during their startup
period, when a user is new to a particular collaborative filtering recommender and show
how the algorithms react as user enters more information into the system.

The result of the GivenRandomX strategy protocol is a graph of the NMAE values
based on the parameter X (which goes as X : 0 → 99). The figure 6.2 shows schematic
pseudo-code for GivenRandomX strategy.

Initialize the data manager DM with tested data set;

Initialize the tested algorithm ALG;

For every user U with at least 100 ratings given do

RU := Get all the non-empty ratings given by user U from DM;

Remove complete RU from DM;

A := Select 99 ratings from RU at random;

B := RU - A;

For X := 0 to 99 do

If X != 0 then

Put A[X] back into DM;

EndIf

For every rating R from B do

Predict R with ALG based on actual DM;

EndFor

EndFor

Put B back into DM;

EndFor

For X := 0 to 99 do

Calculate resulting NMAE[X] from all successful predictions under given X;

EndFor

Figure 6.2: GivenRandomX strategy pseudo-code

44



CHAPTER 6. BENCHMARKS

Production Strategy Protocol

The Production strategy protocol is designated to test the algorithm as a part of the
complete ColFi System. The entire test data set gets randomly divided into two disjunctive
parts5: the snapshot part and the simulation part. Both parts are initially about
the same size. The ColFi Server is started with an algorithm being tested, which gets
associated with a data manager containing the snapshot part of the test data set. As soon
as the system is initialized, the simulation phase begins. At most Nmax clients (users)
concurrently inserts ratings from the simulation part of the test data set into the snapshot
part through the ColFi Server interface (this includes additions of new users to the systems
as well). Ratings from the simulation part are selected at random. Prior to every single
rating insertion on the server side, a prediction of the rating being inserted is computed by
the tested algorithm. After every K-sized set of insertions, the NMAE of that set/block is
calculated from the obtained predictions.

Although the tested algorithms are issued with the same random sequences of modifi-
cations from the clients, the result is not always exactly the same due to a rather chaotic
concurrent access in threads. But that is not significant as the number of total modifica-
tions/predictions grows very quickly.

The tested algorithms get all the data manager modification events. And it is up to
the algorithm implementation whether it discards these events or reacts to them by some
sort of internal recalculation (or it may cache some amount of these events and once in
a time do the complete recalculation). This benchmark protocol is the most conformable
test case to a real world application deployment.

The Production strategy protocol result is a graph of NMAE values based on the
index of the K-sized block of insertions. And for the most part, each algorithm’s effective
implementation speed performance is measured.

6.1.2 Simulation Benchmarks Results

All of the results obtained during the simulation benchmarks are actually in a form of
the NMAE (either single value or a graph of some kind). The NMAE equation (6.1), as
stated above, is normalized by the ratings value scale. All ratings are internally represented
in the scale 〈1..127〉 and therefore all predictions are also in the same scale. It is inter-
esting how much the NMAE results differ if calculated over the internal scale ratings and
predictions, or if both ratings and predictions are first linearly converted to the data set’s
original scale (for example 〈1..5〉). This observation is demonstrated only in the results
table of the AllButOne strategy benchmark and the rest of the results are calculated in
the ColFi’s internal scale6 〈1..127〉.

5The actual data set division is implemented in the cz.cuni.mff.colfi.benchmarks.Split class.
6The NMAE values calculated over wider discrete scale should yield more accurate results as the

rounding issues will not scatter the predictions that much.
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AllButOne Strategy Benchmark Results

All the results of the AllButOne strategy benchmark are summarized in the table 6.1.
Each tested algorithm was benchmarked against all four test data sets. Every table cell
contains these four fields:

• two NMAE values (the bold one is normalized by the ColFi’s internal scale 〈1..127〉)

• the total number of unsuccessful predictions during the benchmark run

• the approximate algorithm implementation speed (in predictions per second)

The speed results are omitted for the trivial algorithms (Random and Mean) as their
implementations do predict in constant time and the performance numbers gathered in the
distributed environment would be completely inaccurate.

The results table reveals few interesting things. First, an expected observation, that
bigger neighborhood results in a better accuracy of the User-User algorithm. Further
experiments did confirm that more then 50 neighbours would not significantly improve the
efficiency (this was also presented in [18]). That is also the main reason why only such
Item-Item algorithm variants with reasonable neighborhood sizes of 50 were selected for
benchmarking.

The speed results show that the algorithm implementation performance is not that
much influenced by the size of the neighborhood. This is because the time consuming
similarity calculations are the same for arbitrary final neighborhood size and the specific
selection of top-N neighbours is then very fast.

Probably the most important thing observed from this benchmark is that the Ĺıb́ımSeTi
data set yields very low NMAE values for practically all the tested algorithms. This may
be caused by the simple fact, that the nature of this data set (and presumably any data
set in the dating services area) is just quite suitable for collaborative filtering techniques.
And although the Item-Item algorithms did better for most of the data sets (or at least
in the adjusted variant), it seems that for the Ĺıb́ımSeTi data set the User-User algorithm
has slightly better results and should probably be preferred, as the Item-Item variants are
also generally slower (at least in the recommendation).

A surprising result is a very low NMAE value for the simple Mean algorithm for the
Ĺıb́ımSeTi data set. The difference of 2.41% between the Mean algorithm and the best
User-User algorithm variant is very low. And according to the fact that the speed and com-
plexity of those two algorithms differ to a great extent, it is probably up to the deployment
environment to choose the “more appropriate” one7.

7See the empirical results in the section 6.2 on the page 58 to understand what other important differ-
ences there are between the two mentioned algorithms when performing recommendation.
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Random

34.92% 32.41% 36.98% 38.57%
37.82% 32.41% 38.16% 39.72%

0 0 0 0
– – – –

Mean
19.45% 21.05% 26.21% 16.48%
18.67% 21.05% 26.03% 15.69%

(cache=off)
114 0 0 24,785
– – – –

User-User Nearest Neighbours
24.42% 22.46% 22.58% 19.10%
25.50% 22.46% 22.91% 19.11%

(mR=mCV=5, minN=1, maxN=1)
320 360 3,450 74,560

104 p/s 8 p/s 1,165 p/s 48 p/s

User-User Nearest Neighbours
18.52% 17.28% 17.71% 15.13%
18.17% 17.28% 17.52% 14.54%

(mR=mCV=5, minN=1, maxN=10)
320 360 3,450 74,560

103 p/s 8 p/s 1,159 p/s 48 p/s

User-User Nearest Neighbours
17.73% 16.66% 17.38% 14.56%
17.16% 16.66% 17.11% 13.85%

(mR=mCV=5, minN=1, maxN=50)
320 360 3,450 74,560

98 p/s 8 p/s 1,115 p/s 48 p/s

User-User Nearest Neighbours
23.82% 22.45% 21.69% 17.47%
24.84% 22.45% 22.00% 17.41%

(mR=mCV=10, minN=1, maxN=1)
357 360 5,178 174,352

104 p/s 8 p/s 1,278 p/s 61 p/s

User-User Nearest Neighbours
18.29% 17.28% 17.46% 14.18%
17.98% 17.28% 17.29% 13.56%

(mR=mCV=10, minN=1, maxN=10)
357 360 5,178 174,352

103 p/s 8 p/s 1,249 p/s 60 p/s

User-User Nearest Neighbours
17.63% 16.66% 17.25% 14.07%
17.11% 16.66% 16.99% 13.34%

(mR=mCV=10, minN=1, maxN=50)
357 360 5,178 174,352

102 p/s 8 p/s 1,193 p/s 60 p/s

Item-Item Nearest Neighbours
17.03% 16.63% 16.71% 15.03%
16.15% 16.63% 16.22% 14.51%

(mS=mCV=10, minN=1, maxN=50)
2,296 0 481 476,893

117 p/s 12 p/s 1,241 p/s 78 p/s

Adjusted Item-Item Nearest Neighbours
16.95% 16.16% 16.09% 14.60%
16.05% 16.16% 15.57% 14.06%

(mS=mCV=10, minN=1, maxN=50)
2,587 51 825 252,623
28 p/s 1 p/s 311 p/s 35 p/s

Table 6.1: AllButOne strategy benchmark results

Each algorithm evaluated over all test data sets with AllButOne strategy benchmark. Every table cell
contains four numbers:

(1) NMAE of the algorithm prediction calculated in the 〈1..127〉 scale
(2) NMAE of the algorithm prediction calculated in the data set’s original scale

(3) Number of all skipped rating predictions (due to insufficient data provided to the algorithm)
(4) Approximate algorithm implementation speed (p/s ∼ predictions per second)
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GivenRandomX Strategy Benchmark Results

The results of the GivenRandomX strategy benchmark are presented as NMAE graphs
in the figures 6.3, 6.4, 6.5 and 6.6. Each tested algorithm was benchmarked against all
four test data sets. The results for the trivial Random algorithm are not displayed8 as the
values are not so interesting and relatively high which would make the final graphs uneasy
to read.

The results confirm that using only one single neighbour for User-User (and presum-
ably also for Item-Item) algorithm is not very efficient and principally even worse than a
simple Mean algorithm approach. Other algorithms tend to show better behaviour with
dramatically decreasing NMAE values for the first few ratings inserted (for low X values).
After the user enters about 30-40 ratings, algorithm’s accuracy gets pretty much stabilized
(∼ algorithm gets to the point where it has enough information available to “classify” the
active user).

Except for the relative comparison of the algorithms prediction accuracy with simi-
lar results as from the previous AllButOne strategy benchmark, there are another three
interesting facts to notice:

• The graph for the ChceteMě data set suffers from the fact that the data set is quite
small and there are only very few users with required 100 or more ratings. That is why
the resulting graph is little scattered as there is not statistically enough information
present.

• Second, the NMAE values do not converge towards the appropriate results from the
AllButOne strategy benchmark for higher X values as one might expect. This is
caused by a rather restrictive GivenRandomX protocol requirements which lead to a
very different and much smaller group of predictions made during the benchmarking.
Further experiments did prove that this is the only reason why the values are slightly
different.

• For certain algorithms and certain test data sets (namely the User-User variants with
little neighborhood used in the Ĺıb́ımSeTi data set) the NMAE values increase with
higher X values. This unexpected behaviour is caused by too low minimum common
votes parameter together with overall sparsity of the test data sets. More detailed
analysis of this result is presented in appendix A on the page 63.

Overall, the Adjusted Item-Item algorithm seems to outperform all the other algorithm
variants for all the data sets except the Ĺıb́ımSeTi data set, for which the User-User
algorithm has generally lower NMAE values. As the Ĺıb́ımSeTi data set is the main target
data set in this thesis, the User-User algorithm is probably the better choice of the two.

8The actual results for the Random algorithm are mentioned in the caption texts, next to each graph.
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Figure 6.3: GivenRandomX strategy benchmark results - MovieLens

All tested algorithms were benchmarked with the GivenRandomX strategy on the MovieLens data set.
The result is a graph of NMAE values based on the number of ratings given by a potential new user. The
graph shows the behaviour of the algorithms as they get more information about particular user. Data
for the Random algorithm are not displayed as it has relatively high constant NMAE value of 34.46%.
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Figure 6.4: GivenRandomX strategy benchmark results - Jester

All tested algorithms were benchmarked with the GivenRandomX strategy on the Jester data set. The
result is a graph of NMAE values based on the number of ratings given by a potential new user. The

graph shows the behaviour of the algorithms as they get more information about particular user. Data
for the Random algorithm are not displayed as it has relatively high constant NMAE value of 32.04%.
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Figure 6.5: GivenRandomX strategy benchmark results - ChceteMě

All tested algorithms were benchmarked with the GivenRandomX strategy on the ChceteMě data set.
The result is a graph of NMAE values based on the number of ratings given by a potential new user. The
graph shows the behaviour of the algorithms as they get more information about particular user. Data
for the Random algorithm are not displayed as it has relatively high constant NMAE value of 37.34%.
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Figure 6.6: GivenRandomX strategy benchmark results - Ĺıb́ımSeTi

All tested algorithms were benchmarked with the GivenRandomX strategy on the Ĺıb́ımSeTi data set.
The result is a graph of NMAE values based on the number of ratings given by a potential new user. The
graph shows the behaviour of the algorithms as they get more information about particular user. Data
for the Random algorithm are not displayed as it has relatively high constant NMAE value of 38.27%.
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Production Strategy Benchmark Results

The Production strategy benchmark was run on PC, 2x AMD Opteron™ 250 (2.4GHz,
1MB), 8 GB RAM, running Red Hat Linux 3.2.3-47. The variable parameters of the
protocol were set as follows: K = 10, 000 and Nmax = 100 (∼ hundred concurrent clients).

The result of the Production strategy benchmark is composed of two parts. First, the
NMAE graphs are presented in the figures 6.7, 6.8 and 6.9. And second, the implementation
speed performances are summarized in the table 6.2. The ChceteMě data set was not
used in this benchmark, because it does not contain enough ratings. The results for the
trivial Random algorithm are not displayed in the NMAE graphs9 as the values are not so
interesting and relatively high which would make the final graphs uneasy to read.

As expected, this benchmark did not reveal anything surprisingly new, concerning the
NMAE results. Similarly to previous sections, single neighbour variants of the User-User
algorithm have significantly higher NMAE values than all the other tested algorithms.
And even relative comparison among individual algorithms mainly conform to precedent
benchmarks’ results. Despite it, there are two important facts for discussion:

• The algorithms’ behaviour appears to be slightly unstable with the NMAE values
scattered (especially for the Ĺıb́ımSeTi data set). Yet, the values deviation almost
does not exceed 1%, which corresponds to a mean absolute prediction error differ-
ence of 1.3 in the ColFi’s internal scale. In case of the Ĺıb́ımSeTi data set and it’s
original scale 〈1..10〉, that means fluctuation of only about 0.1. These generally small
irregularities are caused by a random selection of ratings for insertions together with
relatively low K/Nmax ratio10.

• Second, it is interesting how similar the NMAE graphs for all the tested algorithms
are within each test data set. This observation confirms findings from the previous
paragraph, that the graph fluctuations are caused by a random data selection rather
than by an algorithm instability.

The table with implementation speed results confirms the estimated time complexities
from the section 5.4 on the page 36. The simple Random and Mean algorithms naturally
outperform all the other tested algorithms, as they both predict in constant time. All User-
User algorithm variants extensively utilize the local working users cache11 as described
in the section 5.4.3 on the page 37. This cache is also the reason for lower performance
numbers in case of the Jester test data set with high number of valid neighbours, which have
to be recalculated every time the cache has to be updated. Item-Item algorithm variants
did very good in terms of a single prediction performance, but the recommendation would
then use N such predictions, which makes it generally slow. According to these facts and
algorithms’ accuracy, the User-User algorithm (10-1-50 variant) seems to be the best choice
for deployment scenarios similar to Ĺıb́ımSeTi web application.

9The results for the Random algorithm are mentioned in the caption texts, next to each graph.
10See the actual implementation in cz.cuni.mff.colfi.benchmarks.SimulatedClients.
11For this benchmark a cache size of 150 users was used.
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Figure 6.7: Production strategy benchmark results - MovieLens

All tested algorithms were benchmarked with the Production strategy on the MovieLens data set. The
result is a graph of NMAE values based on the index of K-sized set/block of insertions. Data for the

Random algorithm are not displayed as it has relatively high mean NMAE value of 35.53%.
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Figure 6.8: Production strategy benchmark results - Jester

All tested algorithms were benchmarked with the Production strategy on the Jester data set. The result
is a graph of NMAE values based on the index of K-sized set/block of insertions. Data for the Random

algorithm are not displayed as it has relatively high mean NMAE value of 32.44%.
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Figure 6.9: Production strategy benchmark results - Ĺıb́ımSeTi

All tested algorithms were benchmarked with the Production strategy on the Ĺıb́ımSeTi data set. The
result is a graph of NMAE values based on the index of K-sized set/block of insertions. Data for the

Random algorithm are not displayed as it has relatively high mean NMAE value of 39.12%.
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Random 18,192 6,784 12,971

Mean
20,214 6,803 13,175

(cache=off)

User-User Nearest Neighbours
168 18 103

(mR=mCV=5, minN=1, maxN=1)

User-User Nearest Neighbours
166 17 98

(mR=mCV=5, minN=1, maxN=10)

User-User Nearest Neighbours
165 17 87

(mR=mCV=5, minN=1, maxN=50)

User-User Nearest Neighbours
176 23 113

(mR=mCV=10, minN=1, maxN=1)

User-User Nearest Neighbours
175 20 113

(mR=mCV=10, minN=1, maxN=10)

User-User Nearest Neighbours
158 15 108

(mR=mCV=10, minN=1, maxN=50)

Item-Item Nearest Neighbours
324 51 1,264

(mS=mCV=10, minN=1, maxN=50)

Adjusted Item-Item Nearest Neighbours
111 3 576

(mS=mCV=10, minN=1, maxN=50)

Table 6.2: Production strategy benchmark results

All benchmarked algorithms evaluated over the three main test data sets. Every table cell contains
approximate algorithm effective implementation speed in predictions per second (p/s).
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6.2 Empirical Benchmarks

The recommendation performance of an algorithm is rather subjective issue to the
involved users [21]. Therefore an exact numerical benchmark of the recommendation ability
is probably not so accurate12. That is the main reason why an empirical approach was
chosen instead. As the ColFi System is experimentally deployed in the Ĺıb́ımSeTi web
application environment for testing purposes, it was used to gather some feedback from
users.

6.2.1 Empirical Benchmarks Design

Only one empirical benchmark protocol is presented, due to its time complexity. It is
called the Ĺıb́ımSeTi experiment. There are 5 algorithms (or algorithm variants) to be
tested:

• Random

• Mean (cache=off)

• User-User Nearest Neighbours (mR=mCV =10, minN=1, maxN=50)13

• Item-Item Nearest Neighbours (mS=mCV =10, minN=1, maxN=50)

• Adjusted Item-Item Nearest Neighbours (mS=mCV =10, minN=1, maxN=50)

Several hundreds of selected users were presented with exactly 150 random user profiles
(photos) to rate. After that, each rater was presented with two recommendations from the
two distinct randomly selected algorithms being tested. Each recommendation for user u1
was calculated not from all the users in the data set, but only from the not rated users
by user u1. Every recommendation contains exactly top 10 users. An additional external
information about each profile’s user gender was used to recommend only the users in the
desired gender (according to the chosen filter).

Every user was then repeatedly asked which recommendation is more relevant to
him/her - as shown on the example screen shot 6.10. The benchmark results are sum-
marized in the next section.

6.2.2 Empirical Benchmarks Results

Even though the amount of data gathered during this empirical benchmark is not
even close to the sizes of test data sets used in the simulation benchmarks in previous
sections, the results are very similar. Table 6.3 summarizes the outcomes of individual

12Although the recall-precision benchmark is sometimes used [32].
13The meanings of all the algorithms’ parameters are explained in the section 5.4 on the page 36

(mR=min. ratings by user, mS=min. scores for user, mCV =min. common votes for similarity,
minN=min. required size of the neighborhood, maxN=max. used size of the neighborhood).
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Figure 6.10: Ĺıb́ımSeTi experiment

An example screen shot of the Ĺıb́ımSeTi experiment user interface (the recommendation phase).

“recommendation duels” between all tested algorithms. The highlighted cell means that
the algorithm A is preferred over the algorithm B by a majority of users.

There are few interesting results observed:

• The Random algorithm naturally “lost” against all the other collaborative filtering
algorithms. On the other hand, the numbers in the table for the Random algorithm
are quite high, as for example only 3 out of 4 people favour the sophisticated adjusted
variant of the Item-Item algorithm over the simple Random approach.

• By numbers, the User-User algorithm “won” against all the other algorithms, al-
though it was close with both Mean and the basic Item-Item algorithm.

• Mainly the high numbers for the Mean algorithm seem to prove that there exists a
strong universal preference pattern on which most of the users agree.

Nevertheless, the important fact is that the Mean algorithm actually entirely ignores
ratings of the active user, which results in the equal recommendations for all users. That is
a great limitation for a real life application. According to this observation and the overall
benchmark results, the User-User nearest neighbours algorithm variant is the best choice
among all tested algorithms.
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Random - 16.87% 12.50% 21.13% 25.88%

Mean

83.13% - 35.62% 55.71% 68.67%
(cache=off)

User-User Nearest Neighbours

87.50% 64.38% - 63.53% 78.02%
(mR=mCV=10, minN=1, maxN=50)

Item-Item Nearest Neighbours

78.87% 44.29% 36.47% - 58.06%
(mS=mCV=10, minN=1, maxN=50)

Adjusted Item-Item Nearest Neighbours

74.12% 31.33% 21.98% 41.94% -
(mS=mCV=10, minN=1, maxN=50)

Table 6.3: Empirical benchmark results

This table shows the outcomes of individual “recommendation duels” between all tested algorithms.
Each table cell contains the winning rate of algorithm A over algorithm B. All cases where algorithm A

was generally preferred over algorithm B are highlighted (> 50%).
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Chapter 7

Conclusion

This concluding chapter summarizes the contributions of the thesis and proposes possible
directions for future work.

7.1 Contribution

This thesis was concerned with application of collaborative filtering approach in the
domain of online dating services. The main goals and structure of the work were:

• General collaborative filtering research

• Application of collaborative filtering concept to the online dating services environ-
ment

• Open-source recommender system implementation

• Benchmarks of the presented solution on the real dating service data sets

All these goals were successfully accomplished. The general collaborative filtering re-
search is summarized in chapters 1 through 3, where the concept of collaborative filtering
is described together with several collaborative filtering algorithms. The application of
collaborative filtering concept to the online dating services environment is presented as a
detailed dating service data sets analysis. Chapters 4 and 5 deal with the implementation
of the open-source recommender system1 (the ColFi System). And finally, the benchmarks
of the presented solution on the real dating service data sets were realized in chapter 6.

Interesting results gathered in this thesis proved that collaborative filtering is a vi-
able promising approach that could simplify and improve the matchmaking process in
online dating services with a relatively little effort. And even though collaborative filtering
algorithms are quite computationally expensive, for their application in dating services
environment the matchmaking process does not necessarily have to be real-time, as offline
recommendation computations are sufficient.

1Open-source recommender system ColFi - http://sourceforge.net/projects/colfi/
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7.2 Future Work

The application of collaborative filtering is only the first important step in improving
the online dating services. There are several more issues that need to be worked on in the
future:

• Scalability – presented basic collaborative filtering algorithms are too general and
therefore unoptimized and computationally expensive. More advanced algorithms
should be tested or developed to answer the problem of growing number of users and
huge data sets.

• Distributed solution – another answer to the scalability issue could be a distributed
recommender system as most of the computations could utilize massive parallelism.

• Hybrid algorithms – there is an extensive area of so called hybrid collaborative
filtering algorithms. These algorithms are combining the collaborative filtering ap-
proach together with a simple content-based search.

• Bilateral matchmaking – the problem with relationships is that “A likes B” does
not imply “B likes A”. Therefore each user should be probably presented with recom-
mendations of such users, who are also interested in him/her. This is an important
fact, which needs to be researched and maybe some specific algorithms, little beyond
collaborative filtering, could be developed.

�
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Appendix A

Detailed GivenRandomX Analysis

The following paragraphs discuss the results of the GivenRandomX strategy benchmark
presented in the section 6.1.2 on the page 48, mainly the results for the Ĺıb́ımSeTi test
data set observed in the figure 6.6.

At least three of the tested algorithms tend to have increasing NMAE values for higher
X values. In other words: algorithm’s accuracy decreases with more data inserted by
an active user. This unexpected behaviour is caused by too low minimum common votes
(∼ MCV ) algorithm parameter together with overall sparsity of the test data set.

With every inserted rating by an active user, the total number of possible neighbours
increases dramatically (mainly because of the low MCV ). For each prediction, the User-
User variant of the (k)-nearest neighbours algorithm selects the top-k (at most k) most
similar neighbours to the active user. The Pearson’s Correlation Coefficient vectors simi-
larity function is designed in such a way that it tends to return higher values for couples
of vectors with smaller number of common items/votes (small overlaps)1. For example
with MCV = 5, the overlap of five votes is enough to calculate the similarity and there
is a great chance that two users do completely agree on their ratings for those five users
(the overlap). But in fact, such a neighbour could have completely different preferences for
users outside the overlap. On the other hand a “twin” user with almost the same ratings
as the active user, but with the overlap, for example, 50 votes, will never achieve extremely
high nor perfect similarity.

All these facts lead to a state when the algorithm prefers neighbours with small ratings
overlaps and high similarity coefficients over the “actually good neighbours” with larger
ratings overlaps and not as high similarity coefficients. That is why the algorithm have
worse accuracy results for higher X values, where the number of possible neighbours is
very high and this effect becomes evident.

A simple answer to this problem is avoiding extremely low MCV for sparse data sets
with low ratings overlaps. Another solution might be weighting the similarity function
with the actual overlap size.

1This fact may also be observed in the section 2.5.3 on the page 13
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