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The objective of this thesis is to propose strategies for pairs trading using cointegration approach. 
The idea of pairs trading is based on fluctuations around the long-run equilibrium of the two stocks 
that form a pair. The quantity representing the difference in normalized prices between the two 
stocks is called the spread. When the value of the spread substantially deviates from its mean 
value, a long-short position is taken with the assumption that the spread will revert back to its 
equilibrium. If this is the case, the position is unwound and, consequently, profit is made. In the 
thesis we will focus on implementing trading strategies for various trading horizons, ranging from 
intraday to weekly and monthly holding periods. We will compare our results and discuss profitability 
of each strategy.  
As a first step of the process, after providing theoretical background supporting the whole thesis, we 
will need to identify suitable stocks for trading pairs. There are two possibilities how to form pairs. 
One of them is stock fundamentals analysis, which involves looking at company’s data, e.g. 
revenue, debt-to-equity ratio, etc. The second approach focuses on technical analysis and takes 
into account historical prices of stocks. The latter approach is the one we will follow along in our 
thesis. We will form suitable pairs by ordering the stocks with minimum-distance method of their 
normalized historical prices. 
After identification we need to test whether the stocks in a pair are cointegrated. We will use 

MATLAB computing software to attest the right choice of pairs using cointegration framework (Engle 

and Granger (1987), Johansen (1988)). Once this is achieved, we will set the trade signals for each 

pair according to historical comovement of both stocks.  

As a last step, the two strategies will be backtested and their functionality will then be verified on 

out-of-sample data. The purpose of this work, however, is not to practically prove the profitability of 

the strategies; it should serve as an inspiration on a possible method of trading pairs in various 

trading horizons, which, no matter how promising results it may yield, does not take into account the 

real-world trading obstacles. 
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Introduction

"... Human beings don’t like to trade against human nature, which
wants to buy stocks after they go up not down."

- Nunzio Tartaglia

Pairs trading is an investment strategy that was pioneered at the
New York Stock Exchange by a group of people around quantitative
analyst Nunzio Tartaglia (Bookstaber (2007)). Up until 1980s, when
this kind of statistical arbitrage was born, financial world was aware
of returns to simultaneous buy-low and sell-high strategy. Trading in
pairs, however, was a major breakthrough, for it found a way how to
tie up shares together based on their long-run equilibrium value. The
equilibrium value is termed the spread, and it captures the degree of
mutual mispricing of one security relative to the other. Because the
securities move largely together, pairs trading expects mean-reverting
behavior of the spread and avails of temporary divergence from the
equilibrium value. It sells the relatively overvalued security and buys
the relatively undervalued one with an expectation that the mispricing
will correct itself in the future. The greater the mispricing, the higher
the potential return.

Three traditional methods of pairs trading are recognized: cointegra-
tion, distance and stochastic spread method. All of them have received
much attention among hedge funds and institutional investors, not so
in academic literature. To this time, the distance-approach study by
Gatev et al. (1999) has been the only renown empirical analysis. Few
more similar works exist, but evidence of performance of the strategy
outside the US is scarce.

This thesis contributes to the field by analyzing methods of distance
and cointegration at the Prague Stock Exchange (PSE). The distance
method largely follows Gatev et al. (2006) and it is based on the sum of
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squared deviations between normalized historical returns. Cointegration
method has its grounding in the article by Engle and Granger (1987).
We compare which approach yields better results, and evaluate whether
pairs trading in the PSE would be a good investment strategy in terms of
risk and reward. Comparison is made with Gatev et al. (2006) in order
to see how much number of shares listed, size of the equity market and
other characteristics affect return distribution.

This bachelor thesis is organized as follows. Chapter 1 provides re-
view of literature that laid cornerstones to the theory of pairs trading.
It touches the topic of mean reversion, zooms in on the evolution of
findings in regard to return reversals and states important contradict-
ing explanations for short-term contrarian profits that were in the center
of research around 1990. It then describes present-day trends that are
driven by diminishing returns of the strategy. Chapter 2 focuses on data
issues and explains distribution of sample periods. Chapter 3 summa-
rizes theory pertaining to the cointegration method, and explains nor-
malization of returns. Chapter 4 is devoted to methodology; it presents
two approaches to pairs formation and trading that we employ in em-
pirical research: cointegration and distance criterion. Computation of
returns and measurement of investment performance follow. Chapter 5
states scenarios that could be the outcome of empirical analysis. Re-
sults of the analysis are shown in Chapter 6, along with their possible
explanation, and differences in outcomes between the two methods of
pairs formation are contrasted. A paragraph is devoted to the compar-
ison of distance method with evidence from the US market. In the last
part of the thesis we present conclusion.
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1 Literature Review

Pairs trading investment strategy was first documented by Gatev et al.
(1999), yet the concepts which it builds upon, namely reversion of stock
prices and simultaneous long and short position, had been in center of
focus among traders and financial mathematicians long before that.

Mean-reverting behavior of the stock market was investigated and
evidenced by Poterba and Summers (1988) in a study on the NYSE
and 17 foreign equity markets. The authors used variance ratio tests to
conclude that over long horizons monthly stock returns exhibit negative
serial correlation and as such have significant predictable components.
Fama and French (1988) updated on the finding by subperiod testing
which suggested that the mean reversion in 1926-1985 was largely caused
by the 1926-1940 period. De Bondt and Thaler (1985) in their market-
behavioral research focused on the links between mean reversion and
overreaction hypothesis. The hypothesis asserted that individuals tend
to overweight consistent pattern of news pointing in the same direction,
resulting in systematical overshooting of stock prices. Such irrational
behavior, as the empirical test confirmed, is corrected by subsequent
price movement in inverse direction to its fair market value. Buying
underpriced losers and selling overpriced winners yielded cumulative
abnormal returns even five years into the investment period.

Later on, Jegadeesh (1990) and Lehmann (1990) conclude abnormal
returns even for short-term contrarian strategies and explain them as ev-
idence of inappropriate reaction to new information in accordance with
the paper of De Bondt and Thaler (1985). These early documentations
of short-term return predictability provide academical evidence for the
potential of statistical arbitrage to generate significant profits, proven
already by the Morgan Stanley hedge fund in the preceding years (Book-
staber (2007)). Jegadeesh (1990) buys and sells stocks on the basis of
their prior-month returns and holds them for one month with a differ-
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ence in abnormal returns on the extreme decile portfolios of 2.49 percent
per month. Lehmann (1990) uses a shorter, weekly scale, however even
such time frame for contrarian strategy results in positive profits in 90
percent of the weeks. Since changes in fundamental valuation of firms
over such short intervals are improbable, the paper disfavours the asso-
ciation of expected security returns with the security’s fundamentals.

Forces driving the price swings and contrarian profits had become
a source of disagreement and contradictory theories in subsequent pa-
pers. Lo and MacKinlay (1990) disputed the overreaction explanation
and attributed majority of the expected profits from contrarian invest-
ing to positive cross-correlation between securities.1 The authors made
a case by construction of a return-generating process in which returns
of each security were serially independent. Still, positive expected prof-
its from buying losers and selling winners persisted. Five years later,
Jegadeesh and Titman (1995b) refuted findings of Lo and MacKinlay
(1990). According to them, the analysis by Lo and MacKinlay (1990)
did not relate systematic stock price over- or underreactions to con-
trarian profits because delayed reactions to common factors that imply
lead-lag structure affected both covariances as well as cross-covariances,
i.e. the two components of equation by Lo and MacKinlay (1990). They
designed another equation for decomposition of contrarian profits that
included a more detailed set of stock price reaction scenarios, with under
and overreaction to common factors and idiosyncratic news. With their
alternative decomposition, Jegadeesh and Titman (1995b) showed that
delayed reactions could not be exploited by contrarian trading scheme,
and supported conclusions of Lehmann (1990) and Jegadeesh (1990).
Moreover, they contributed to the literature when they claimed rever-
sal of a firm-specific component of returns as the primary source of
contrarian profits.

1This relationship arises from asymmetrical sensitivity of stocks to new information when high
return for one stock today suggests high probability of rising return for another stock the following
day, resulting in a lead-lag structure.
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All the cited works shared one identical conclusion: they proved
predictability of stock returns, and hence gradually rendered obsolete
weak-form efficient markets hypothesis advocated by Fama (1970).

It was not until few years later when Gatev et al. (1999) published the
first empirical test of pairs trading strategy. Pairs trading evolved from
simple contrarian principles, but while in contrarian investing stocks
were not related, pairs trading used the idea of relative pricing between
them. Gatev et al. (1999) employed sum of squared deviations (SSD)
between normalized historical prices to form pairs and attained profits
robust to modest transaction costs. In the paper he concentrated on
mechanism and practical issues of the strategy, nevertheless the article
also continued in the footsteps of its predecessors in that it investigated
the importance of mean reversion for generating pairs trading profits.
The idea behind the bootstrapping test conducted for that purpose was
following: if mean reversion were the only driving force of profits, it
would suffice to randomly match stocks to become profitable. The out-
come shed further light on the technique because such contrarian strat-
egy did not make money. The paper found alternative explanation which
stated that profits of the strategy arise from temporary mispricing of
close substitutes2, and they are influenced by common factor exposures
of stock prices.

Subsequent version of the paper (Gatev et al. (2006)) extended the
testing period by five years and continued to object to certain sources
of pairs trading profits claimed to be the driving force of profitability
in earlier literature, in particular to unrealized bankruptcy risk and
the inability of arbitrageurs to take advantage of the profits due to
short-sale constraints. It further discovered diminishing returns, and,
by implementing a one-day waiting rule, it disproved that contrarian
trading profits cannot be realized by traders transacting at bid and ask

2From the notion of relative pricing, close substitutes should sell for the same price; if they do
not, the Law of One Price (see for example Chen and Knez (1995)) is broken, suggesting market
inefficiency and possibility to avail of relative-value arbitrage, i.e. pairs trading.
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prices, a theory advocated by Jegadeesh and Titman (1995a).

In the meantime, other authors presented their advance in the field,
albeit with much less attention. Vidyamurthy (2004) provided de-
tailed discussion of cointegration approach based on Engle and Granger
(1987), and Elliott et al. (2005) proposed stochastic spread method.
These two methods, together with the SSD by Gatev et al. (1999), now
represent main approaches that have been widely adopted by practi-
tioners.

However, neither of the papers carried empirical results, which is
not unusual when we research literature. Articles presenting practi-
cal implementation of the strategies are generally scarce. This may be
explained by lack of interest among academia or likely by proprietary
nature of the findings. Since Gatev et al. (2006), only one academi-
cal work, written by Broussard and Vaihekoski (2012), replicated and
tested the SSD strategy on a market outside the US. Works which would
empirically explore the two other leading methods are practically non-
existent, or limited to university theses and working papers that have
not been published by recognized journals. Broussard and Vaihekoski
(2012) investigated pairs trading in Finland and found excess returns
slightly higher than those in Gatev et al. (2006), which was probably
caused either by thinner trading and wider bid-ask spreads in compar-
ison with the US market, or due to different consideration of pairs: in
Broussard and Vaihekoski (2012), majority of pairs are represented by
multiple share classes of the same stock while Gatev et al. (2006) forms
pairs by matching stocks issued by different companies.

Extant papers on pairs trading have been consistently bringing forth
evidence of declining profits for traditional strategies (Gatev et al. (2006),
Do and Faff (2010), Do and Faff (2012)). As a consequence, current
trends attempt to explore new analytical techniques of pairs formation
and trading that would halt this course, for example by more reliable
identification of close substitutes or by giving correct trading signals.
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The former has been researched by Huck (2009) and Do and Faff (2010),
trading triggers have been investigated by Liew and Wu (2013).

Huck (2009) designs another metrics for pairs selection through fore-
casting and multi-criteria decision methods and reports non-zero excess
returns at 1% significance level for the S&P100 index. However promis-
ing, these results cannot be assessed or compared with the distance
method as Huck (2009) does not account for transaction costs and uses
weekly data. Do and Faff (2010) add two additional metrics to the con-
ventional SSD, resulting in enhanced profits: frequency of zero crossings
of paired stocks and industry homogeneity. The authors make us believe
in the conclusion that the industry grouping is an innovative approach
but its pioneeer is in fact Gatev et al. (1999). Yet, Do and Faff (2010)
contribute to our knowledge of the strategy when they test it during
the recent financial crisis, through which they show its substantial per-
formance in turbulent periods. Also, the paper disproves long believed
fallacy that profits are carried away by increased competition of hedge
funds; rather, majority of the decline can be attributed to worsening
arbitrage risks3.

Liew and Wu (2013) criticize conventional approaches to pairs trad-
ing that we are going to use in this thesis and instead propose to apply
copulas4 between two stock returns. The association between financial
assets, they claim, is rather complex to be captured by linear associ-
ation such as cointegration error term or linear correlation coefficient.
The paper ascertains that the copula approach results in more trading
opportunities and, since it is independent of correlation and cointegra-
tion, its authors regard it to be a new alternative method. Nonetheless,
its empirical grounding requires further research because the single pair
it uses is by no means an indicator of success at a stock exchange as a
whole.

3To be mentioned in Chapter 2
4Copula is a multivariate probability distribution for which the marginal probability distribution

of each variable is uniform.
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The evolution of pairs trading lies in exploring new methods rather
than testing the conventional ones. With markets becoming more effi-
cient, hedge funds will seek to gain competitive advantage and to avail of
arbitrage opportunities with greater or at least constant profits. Thus,
pairs trading is likely to become a black box even more so than it is to-
day, with practical outcomes and know-how hidden from public aware-
ness.
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2 Data
We use daily data for the Prague Stock Exchange over June 2008 - March
2014. Number of stocks varies between 12 and 14, and the number of
pairs that could potentially be tradeable is computed as

PN =
(
N

2

)
= N !

2!(N − 2)!

where N is the total number of stocks eligible for trading. The high-
est number of pairs is 91. Our sample comprises nine periods where
each is divided into two stages: period of formation and the trading pe-
riod. Gatev et al. (2006) uses a 12-month time frame of daily data for
identifying suitable pairs and 6 months of data for simulated trading,
and rolls the time period forward by one month. In this thesis we keep
the trading period at 6 months but extend the formation period to 15
months, as the method of cointegration requires a longer time scale to
reliably identify matching stocks. Unlike Gatev et al. (2006), we roll pe-
riods forward by 6 months, making the trading periods follow up. The
formation and trading horizons remain our time frames throughout the
analysis. For sample periods and stocks included, refer to Table A.1.
The number of stocks and pairs considered for pairs formation in each
period is in Table A.2.

Industry-group structure of the PSE is greatly diversified, with indus-
tries comprising Integrated Telecommunications Services, Banks, Mul-
tiline Insurance, Broadcasting, Tobacco, Casinos and Gaming, Textiles
and Leather Goods, Electric Utilities, Coal, Real Estate Development,
Distillers andWineries, Leisure and Recreation, Oil and Gas 5. The PSE
ranks among small equity markets, therefore constructing pairs with re-
striction to the same industry is not feasible. Throughout all sample
periods only two stocks are from identical sector: Erste and KB. This
may represent a potential pitfall because pairing up of stocks across

5These are the industry groups as classified by the Thomson Reuters Classification.
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sectors induces a threat of industry-wide shocks that could bring about
losses in the trading period. Gatev et al. (2006) shows that average ex-
cess return for unrestricted pairs is lower than for homogenous-industry
strategy. We comment on this issue in Chapter 6.

We impose two restrictions on stocks to include them in the analysis:

1. Each stock is traded on every business day while listed in order to
avoid illiquidity.

2. Each stock is listed throughout at least one whole formation and
investment period, i.e. a 21-month frame.

Evaluation of these criteria requires forward-looking information and
thus introduces a look-ahead bias, treatment of which is beyond the
scope of this thesis. Criterion 1 is met by all stocks except for the ECM,
which was not traded since 21 June 2011 until its delisting in 2013,
although during that time it was still listed on the PSE. We keep the
ECM until 21 June 2011 but screen it out from our data samples after
this date. Criterion 2 is not fulfilled by Zentiva, Tatra Mountain Resort
and Stock Spirits Group. The last two mentioned can not be considered
for research because they went public on the PSE in the fourth quarter
of 2012 and 2013, respectively, a time frame not sufficient to include
it in both formation and trading period. Zentiva left the PSE before
the end of the first formation period. The shares of ECM, KIT Digital,
AAA Auto Group and Fortuna were either introduced or delisted in the
course of the analysis, and as such are included only in certain samples.
For illustration, Fortuna went public on the PSE in October 2010 and is
therefore included in the next nearest pairs formation period, starting
in December 2010.

Irregularities affecting stock prices such as stock splits or stock div-
idends do not occur. Few companies underwent a capital reduction, a
type of restructuring that does not need to be taken into consideration
by data adjustments because theoretically the effect on share price is
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minimal. The case of Telefonica CR, however, shows that in practice it
is not always so and animal spirits may affect prices. In November 2012
the company decreased shareholders’ equity through reduction in face
value of its shares by 13%. The decision came into force on October
17, 2010, and over the following two months the company’s share price
dropped by 20%. This difference in market price pre- and post-capital
restructuring probably reflects sentiment-driven response of investors
rather than rational behavior: first, earnings per share remained un-
changed; second, increased debt-to-equity ratio of the Czech Republic
subsidiary was more than compensated for by a year-on-year decrease
in debt-to-equity ratio of Telefonica SA.
Telefonica CR underwent a second round of capital reduction in the last
quarter of 2013 through share cancellation and repurchase. This time
the decision and implementation left its share price almost unaffected,
which can be attributed to two opposing tendencies: the company is
devalued by the exact amount of cash disbursed to buy back shares,
but also shares of the remaining shareholders represent ownership of a
greater fraction of the company. In neither case do we adjust data for
this kind of capital restructuring.

All calculations and pairs trading models are programmed in the
software R.
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3 Theory

3.1 Preliminaries

In order to understand the cointegration approach, the key concepts
of time series data need to be clarified. We define here the notion of
covariance stationarity, integration and cointegration, show how we can
test for stationarity and illustrate on a problem of spurious regression
how cointegration helps us determine whether two nonstationary series
are related. We then continue to describe the method, based on En-
gle and Granger (1987). The last subsection explains the process of
normalization necessary for executing the distance method.

Covariance stationarity is a weaker form of stationarity6, although
fully sufficient for our purposes. A time-series process yt with finite
second moment (E(y2

t ) < ∞) is covariance stationary if, for all values,
its mean and variance are constant and independent of time ((3.1) and
(3.2)) and the covariances depend only upon the distance between the
two time periods, but not the time periods per se ((3.3)):

E(yt) = µ (3.1)
V ar(yt) = σ2 (3.2)

Cov(yt, yt+i) = γi ∀ i ≥ 1 (3.3)

For an example of nonstationary vs. stationary process we select a
period dating from December 6, 2008 until March 5, 2010 to compare
a plot of CEZ daily stock prices in logarithms with a plot of their first
differences, which is the approximate percentage change in price:

6A stationary process is a stochastic process whose joint probability distribution remains un-
changed when shifted in time, i.e. if we take any collection of random variables in the sequence and
shift that sequence ahead i time periods, the joint probability distribution must remain stable.
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Figure 3.1: Nonstationary and Stationary Stochastic Process
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Process on the left-hand side in Figure 3.1 shows a trending behavior
and therefore is clearly nonstationary. At a minimum, it does not fulfill
condition (3.1). On the other hand, the series for the change variable
shown on the right exhibits the property of mean reversion bceause it
fluctuates around a constant value. By appearance we may guess that
the change variable is covariance stationary.

There are many analytical ways how to determine whether a series
is stationary or not. The most popular one, and the one employed by
Engle and Granger (1987), is a formal test for a unit root formulated
by Dickey and Fuller (1979). Three variants of the test exist, depending
on the role of the constant term and the trend. The test begins with
least squares estimation of AR(1) model:

yt = α + ρyt−1 + et, t = 1, 2, ... (3.4)

where et are independent random errors with zero mean and constant
variance. yt has a unit root if, and only if, ρ = 1. We are interested
in testing this hypothesis against the possibility that yt is stationary,
and so our alternative is one-sided ρ < 17. We do not consider the case
when ρ > 1 since it would imply that yt is explosive, which is not the
case for stock prices on our time scale.

7Practically this means 0 < ρ < 1
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Amore established and convenient form for carrying out the unit root
test is to subtract yt−1 from both sides of (3.4) and define θ = ρ− 1:

yt − yt−1 = α + ρyt−1 − yt−1 + et (3.5)
∆yt = α + θyt−1 + et, (3.6)

and estimate (3.6) by OLS. Then, the hypotheses are as follows:

H0 : ρ = 1⇔ H0 : θ = 0

H1 : ρ < 1⇔ H1 : θ < 0

If we fail to reject H0, we conclude that the series is nonstationary and
has a unit root. If we reject H0, the series does not have a unit root.
This test is known as the Dickey-Fuller test.
The asymptotic critical values for rejection of H0 depend on the model
and are taken from Davidson and MacKinnon (1993):

Table 3.1: Asymptotic Critical Values for the Dickey-Fuller Test
Significance level

Model 1% 5% 10%
∆yt = θyt−1 + εt -2.56 -1.94 -1.62
∆yt = α+ θyt−1 + εt -3.43 -2.86 -2.57
∆yt = α+ λt+ θyt−1 + εt -3.96 -3.41 -3.13

The critical values need to be specially generated because under H0,
yt is nonstationary, which means that its variance increases with the
sample size and the t statistic does not have an approximate standard
normal distribution. They are more negative than the t distribution
critical values.

Under the condition E(et|yt−1, yt−2, ..., y0) = 0, (3.6) is a dynami-
cally complete model, but oftentimes finite distributed lag models such
as (3.6) may suffer from dynamic form misspecification. One impli-
cation of this is that their adjacent errors are positively correlated,
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which violates the Gauss-Markov assumption of no serial correlation:
∀ t 6= s, E(etes|xt,xs) = 0, where for our case xt = yt−1,xs = ys−1.
As a consequence, estimates of the regression coefficients are inefficient
and the usual OLS standard errors are biased downward, rendering the
significance tests on the coefficients invalid. That is why we need to
make sure we capture the full dynamic nature of the process, and in-
clude sufficient lag terms. We may allow ∆yt to follow an AR model in
an extended equation of the form

∆yt = α + λt+ θyt−1 +
m∑
p=1

γp∆yt−p + et, (3.7)

where |γp| < 1. We can add p lags of ∆yt to the equation to account for
the dynamics of the process, and the lag length is often dictated by the
frequency of the data and the sample size. The optimal number of lags
can be determined through the use of measures of the quality of a model
such as Akaike information criterion (AIC) or Bayesian information cri-
terion (BIC), but the more lags we include, the more initial observations
we lose, possibly resulting in small sample power of the test. The unit
root test based on (3.7) is referred to as the augmented Dickey-Fuller
(ADF) test. The hypotheses remain as in the nonaugmented version,
and the same critical values apply.

Referring back to Figure 3.1, we now have a formal tool to confirm
that the left-hand side graph is indeed nonstationary. However, after
differencing once, the series shows the property of mean reversion, and
we reject the null hypothesis of a unit root. The minimum number of
times a series must be differenced to make it stationary is called order
of integration, and denoted I(d). Therefore, the process on the right
is said to be integrated of order zero, or I(0), while the process on the
left is integrated of order one, or I(1). We observe that the concepts of
stationarity and integration are tightly linked.

Knowing whether a time series is stationary or nonstationary is of

15



paramount importance in regression analysis. For nonstationary series
we may encounter a problem of obtaining significant regression results
when in fact the series are not related. Such relationships are said to
be spurious.

We demonstrate our point in a manner similar to Granger and New-
bold (1974), one of the earliest studies of spurious regression phenomenon,
albeit in our example we run single realization instead of Monte Carlo
simulation done by Granger and Newbold (1974). We use the R software
to generate two independent random walks xt and yt:

xt = xt−1 + εt, t = 1, 2, ..., 200,
yt = yt−1 + υt, t = 1, 2, ..., 200,

where εt and υt are i.i.d. random errors, εt, υt ∼ N(0, 1), and we set
the initial values of the series to x0 = y0 = 0. Since εt and υt are
mutually independent processes, xt and yt are also independent, and we
should find no evidence of a relationship between them. However, when
we look at Figure 3.2, we see that these entirely unrelated series have
positive relationship. We continue to study this relationship in a more

Figure 3.2: Time Series of Two Random Walk Variables
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analytical manner through running the OLS regression of y on x:

y1 = β0 + β1x1 + u,
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Table 3.2: OLS Regression Results

Dependent variable:
y1

x1 0.577∗∗∗ (0.037)
Intercept −9.056∗∗∗ (0.567)
Observations 200
R2 0.553
Residual Std. Error 6.176 (df = 198)
F Statistic 244.950∗∗∗ (df = 1; 198)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

summary of which is displayed in Table 3.2. For 198 degrees of freedom
one can use the standard normal 5% critical value c = 1.96 for testing
H0 : β1 = 0 against H1 : β1 6= 0. The regression yields huge t statistic
on x: tβ̂1

= 0.577/0.037 ≈ 15.6, implying that the estimated slope co-
efficient is significantly different from 0 at any conventional significance
level. Spurious regressions typically have low Durbin-Watson statistic,
and this one is no different: DW = 0.0328. With 200 observations, one
regressor and a model with intercept, the 1% critical values for one-sided
DW test are dL = 1.664 and dU = 1.684. DW < dL is a condition for
rejection of H0 that claims errors to be uncorrelated. Thus, the errors
exhibit positive serial correlation and are a source of downward-biased
standard error for x1 and the inflated t statistic. The regression model
has an R-squared of 0.553, and so xt is estimated to explain about 55.3%
of the variation in the dependent variable. In any case, these results,
no matter how appealing, are completely meaningless for we already
explained that the processes are independent.

Using a real example from our thesis, we next choose sample period
one with 13 stocks and 315 observations8, dating from June 6, 2008
until September 5, 2009, and perform simple OLS regression for every
possible pair. Except for one, all t statistics for slope coefficients are
found to be statistically different from zero for two-tailed 1% level test.

8For sample periods and stocks included see Table A.1
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In fact, the t statistic is in most cases in order of tens. Of the 78 pairs,
15 have R2 greater than 0.85. Because it is unlikely that all stocks
would relate to one another, we are again dealing with the problem of
spurious regression. Later we reveal how many pairs are truly related.

Obviously, I(1) variables should be used in regression analysis with
great caution. Still, nonstationarity is ubiquitous in economics and
financial data and it certainly is a property of stock prices, hence we
need to establish a concept which would ensure that regressing one I(1)
variable on another will provide informative results. Such concept is
cointegration.

3.2 Cointegration

We are now ready to present the definition of cointegration as intro-
duced by Engle and Granger (1987):

The components of the vector xt are said to be cointegrated of order
d, b, denoted xt ∼ CI(d, b), if (i) all components of xt are I(d); (ii)
there exists a vector α(6= 0) so that zt = α′xt ∼ I(d − b), b > 0. The
vector α is called the cointegrating vector.

If we concentrate on the case of d = 1, b = 1 and a two-component
vector xt, this tells us that in general, linear combination zt = α1x1t −
α2x2t of two I(1) processes x1t, x2t will result in an I(1) process for any
vector α. This means that the series may wander off far from each
other without future convergence. However, for some particular α 6= 0
the linear combination may yield a stationary I(0) process, i.e. a process
exhibiting mean reversion, constant variance and autocorrelations that
depend only on the time distance between the two variables. If such α
exists, then x1t, x2t are cointegrated, and share similar stochastic trends.
Briefly, cointegration asserts that the variables have a stable long-run
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relationship. In this thesis, we focus on the situation when xt ∼ CI(1, 1)
and leave the general case aside, as it is beyond the scope of the text.

In practice, the coefficient on x1t is fixed at unity and α2 is called the
cointegration parameter, and we will follow this along in the rest of the
thesis. The cointegration parameter tells us how many shares of x2t we
should buy/sell if we sell/buy one share of x1t. It is the ratio in which
to hold our position.

In pairs trading terminology, the linear combination zt is termed the
spread. Since the value of the spread reflects the degree of mutual mis-
pricing between stocks, it is central to the strategy, for pairs trading
attempts to avail of occasional temporary divergence from the mean
value of the spread and subsequent returns to it. Because the expecta-
tion that the spread will revert back needs to be fulfilled in order to have
profit potential, pairs trading heavily relies upon cointegration between
stocks.

The most commonly used test of cointegration for two assets is based
on a two-step procedure by Engle and Granger (1987):

1. After nonstationarity verification of x1t, x2t, the coefficients from
the equation x1t = α2x2t + zt are estimated by OLS and the resid-
uals ẑt are saved.

2. Residuals ẑt are tested for stationarity using the unit root test:
∆ẑt = γẑt−1 + υt (or with lags of ∆ẑt to account for serial corre-
lation)

The test is named the (augmented) Engle-Granger (AEG) test. It is
basically a test of the stationarity of the least squares residuals. The
null hypothesis states that the processes are not cointegrated, hence if
H0 cannot be rejected, the regression is spurious. The potential cointe-
gration parameter α2 needs to be estimated, which induces errors that
are carried over into the second estimation through the use of residu-
als. Due to this, asymptotic distributions of the cointegration tests are
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different from those of ordinary unit root tests such as ADF, and so
are their asymptotic critical values, taken from Hamilton (1994) and
displayed in Table 3.3.

Pointing back to the OLS regressions for period one, majority of
which were suspected to be spurious, we can now use the AEG test
to verify whether this is the case. The two-step procedure yields five
cointegrated pairs - a fraction of the pairs suggested to be related by
the t test, and so the problem of spurious regression is proven to exist in
our data. Statistics on the number of cointegrated pairs in each period
is in Table A.2.

Table 3.3: Asymptotic Critical Values for the Cointegration Test
Significance level

Regression model 1% 5% 10%
x1t = α2x2t + zt -3.39 -2.76 -2.45
x1t = α0 + α2x2t + zt -3.96 -3.37 -3.07
x1t = α0 + λt+ α2x2t + zt -3.98 -3.42 -3.13

3.3 Normalization

The distance method, proposed by Gatev et al. (2006), is less sophis-
ticated than the method of cointegration. It relies on the process of
standardization (or normalization) that accompanies both pairs forma-
tion and trading. Standardization is a conversion process when from
individual data points we subtract the population mean and divide the
difference by the population standard deviation. Obtained score is a
dimensionless quantity that represents number of standard deviations a
data point is above or below its mean. In our analysis, means and stan-
dard deviations are sample statistics since they are computed from data
points in formation periods, a relatively small data sets. Therefore, the
resulting score is a sample version of a standard score requiring popu-
lation parameters. Hence, to take this difference into consideration, we
will refer to the process as normalization.
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4 Methodology

4.1 Cointegration Approach

In accordance with the cointegration definition by Engle and Granger
(1987) applied to the case CI(1, 1), stock prices first need to fulfill the
condition of nonstationarity (be I(1) processes) to be considered for
having a cointegrating relationship. Vidyamurthy (2004) claims that
the assumption that the logarithm of stock prices is a random walk is a
rather standard one. Based on a visual inspection of plots of stock prices
in our sample periods and the fact that stock prices generally exhibit
long periods of growth and decline, we choose equation that includes
both a constant and a deterministic trend:

yt = α + λt+ ρyt−1 + +
5∑
p=1

γp∆yt−p + et, t = 1, 2, ... (4.1)

∆yt = α + λt+ θyt−1 +
5∑
p=1

γp∆yt−p + et, (4.2)

where yt represents time series of logarithms of stock prices. We further
set the maximum number of augmenting lags to five (trading week) to
allow for the possibility that error terms are autocorrelated. In the
thesis, optimal number of lags is determined by minimizing AIC, done
automatically by the R software. Since BIC penalizes free parameters
more strongly, AIC is more appropriate for the choice of lag terms, as
in the trade-off between the danger of losing observations and that of
autocorrelation, the latter is more severe. The maximum data points
we can lose for each series is five, a negligible amount compared to the
number of data points we have available, and so the test power will not
be affected.

For the ADF unit root test based on (4.2), the null and alternative
hypotheses are H0 : θ = 0 and H1 : θ < 0, respectively. Under the null,
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yt has a unit root while under the alternative, yt is trend-stationary. We
perform the one-tailed test on a standard significance level of 5% with
309-317 data points, which means that the asymptotic critical value
c = −3.41 applies (see Table 3.1). H0 is rejected if a t statistic on
yt−1, tθ̂, is lower than the critical value: tθ̂ < c. Strictly speaking,
trend-stationary variables are not I(1) processes, and hence all stocks
identified as such are excluded from the analysis. Had we not taken
into account the linear trend, we would have mistakenly identified the
trend-stationary processes as nonstationary.

Carrying on to conduct the AEG test, we need to build up an OLS
model. The series we use have nonzero mean, so a constant term is
necessary. After the preceding step we are left only with nonstationary
stocks, resulting in the model

yt = µ+ βxt + et, (4.3)

i.e. without a linear time trend, where yt, xt are time series of logarithms
of stock prices. Estimating (4.3) by OLS gives residuals (the spread)
of the form êt + µ̂ = yt − β̂xt. The OLS estimator β̂ is the potential
cointegration coefficient that we will use in trading periods as a ratio
in which to buy and sell stocks in case the pair is cointegrated, µ̂ is
the equilibrium value, and êt is a time series with zero mean. The
linear relationship on the right-hand side of the equation is also termed
the equilibrium relationship. In order to eliminate the risk of serial
correlation, five extra lag terms are added to the equation based on
which we test for cointegration:

∆et = θet−1 +
5∑
p=1

γp∆et−p + ut (4.4)

As in equation (4.2), number of lags in equation (4.4) is optimized
by AIC, and the same null and alternative hypotheses as for the ADF
test apply for the AEG test. The cointegration-test asymptotic critical
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value for a model with a constant is c = −3.37, found in Table 3.3.
Cointegrated pairs are ones for which tθ̂ < c. While in testing of stock
prices for unit root the ideal state was not to reject H0, in the AEG test
of residuals the aim is the opposite and we wish to achieve rejection
of the null hypothesis in as many cases as possible. Having the fewest
stationary stocks (the fewest stocks for which unit root is rejected to
be concrete) and the most cointegrated pairs potentially increases the
number of trades and thus may lead to more statistically indicative
results.

Aside from cointegration, we require β̂ to be positive. Trading with
β̂ < 0 is not a contrarian investment strategy as the positions are both
long or both short. All pairs that satisfy β̂ > 0 and are found to
be cointegrated are eligible for trading. The remaining pairs are not
considered throughout the rest of the analysis.

Once we have obtained the cointegrated pairs, we need to establish
the spread as a necessary metric for trading. The estimators β̂ and µ̂ of
cointegrated pairs are carried over from the formation period, in which
they were estimated, to the trading period where they form the trading
spread between the same stocks: êTt + µ̂F = yTt − β̂FxTt , where F and T
denote whether the values were sourced in formation or trading period.
Neither the intercept µ̂ nor the cointegration parameter β̂ can be derived
from OLS model estimated in the trading period itself because that
would introduce a look-ahead bias; in the trading period we attempt to
simulate real conditions and we cannot use data that are not available
at any moment during the trading period.

4.2 Distance Approach

In a manner similar to Gatev et al. (2006), pairs are selected on the
basis of minimized SSD between standardized historical returns of two
stocks. The methodology proceeds in the following steps:
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(1) In formation period, we compute daily returns for each stock as
a logarithm of a ratio of stock price to its value on the preceding
day:

rit = log
(
Pit
Pit−1

)
(4.5)

This has an interpretation of approximate percentage return (stan-
dardly used in the literature).

(2) Returns are normalized by subtracting their sample mean and di-
viding by their sample standard deviation:

rZit = rit − E(ri)
σri

(4.6)

(3) The returns rZit are added by cumulative summation, and such se-
ries, denoted as r∗i , are then used in the equation of the SSD:

SSD =
N∑
t=1

(r∗it − r∗jt)2 ∀ i 6= j (4.7)

(4) Values obtained from equation (4.7) are ordered and five pairs with
the lowest SSD are chosen for trading. This method is consis-
tent with selection based on criterion of maximum correlation be-
tween cumulative returns. The remaining pairs are not considered
throughout the rest of the analysis.

In the distance method, the spread reflects degree of relative mispric-
ing between stocks as it did in the cointegration approach, although its
computation lies on other grounds. In this case, the spread is the differ-
ence between cumulatively summed normalized returns of stocks that
form a pair. Normalization is done such that the mean and standard
deviation computed from percentage returns in the formation period
are carried over to the trading period and what we normalize are trad-
ing period returns: rZit = rT

it−E(rF
i )

σF
i

, with F and T signifying in which
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period the values were obtained. These series are added by cumulative
summation, and the spread is represented by the difference between the
summed series. The risk of look-ahead bias precludes us from using
mean and standard deviation computed right in the trading period.

4.3 Trading Rules

Both cointegration and distance method use oscillations about the equi-
librium value of the spread as a way how to assess when to open a po-
sition. When the spread crosses a preestablished threshold, it means
that the degree of mutual mispricing between two stocks has deviated
far from its historical mean, which is a signal for entering the trade.
The steps how in each method these thresholds are generated follow the
same principle: they are based on standard deviations calculated from
the formation-period values of the spread.

In the cointegration method, the long-run equilibrium value of the
linear combination yt − β̂xt is µ̂. The standard deviation of this com-
bination is computed from the residual series: ∆ =

√
V ar(µ̂+ êt). We

put on the trade on a distance of 2∆ in either direction from the mean
µ̂, and unwind the position upon reversion to it, i.e. when the spread of
the pair crosses the value µ̂. More specifically, we buy (long) the spread9

when, at time t, the relative mispricing reaches deviation of −2∆ from
the mean, and sell (short) the spread at time t+i:

yt − β̂xt = µ̂− 2∆ (4.8)
yt+i − β̂xt+i = µ̂ (4.9)

Conversely, we sell (short) the spread when, at time t, it is +2∆ above
9To buy the spread means that we buy the relatively underpriced stock xt and sell the relatively

overpriced yt
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the mean, and buy (long) the spread at time t+i:

yt − β̂xt = µ̂+ 2∆ (4.10)
yt+i − β̂xt+i = µ̂ (4.11)

We refer to µ̂ as the closing threshold. The profit on the trade is the
incremental change in the spread, 2∆.

In the distance method, the equilibrium value of the spread is com-
puted as mean of the spread in formation period. From the same spread
we obtain standard deviation. As in the cointegration method, trading
signals are set at two standard deviations from the equilibrium, and
position is closed upon mean reversion:

rTit − rTjt = E(rFit − rFjt)± 2
√
V ar(rFit − rFjt)), i 6= j (4.12)

rTit − rTjt = E(rFit − rFjt), i 6= j, (4.13)

where F and T denote whether the values were taken from formation
or trading period.

In both methods pairs can have multiple cash flows during the trading
period, or they may have none in case the prices never diverge by more
than two historical standard deviations. If a pair remains open on the
last day of the trading period the position is liquidated regardless of
convergence.

Contrarian investment strategies, including pairs trading, are sub-
ject to bid-ask bounce (Harris (2002), Jegadeesh (1990), Jegadeesh and
Titman (1995a)) that inflates computed profits and therefore needs to
be treated in pursuance of more realistic profit estimation. On equity
markets we may see two different prices of stock: the price quoted for
an immediate sale - bid, and that for an immediate purchase - ask. This
discrepancy is called bid-ask spread and is common for almost all kinds
of assets. However, it often happens that sellers sell near an ask price
and buyers near a bid price, a phenomenon termed as bid-ask bounce.
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In pairs trading, it is likely that winners’ price reflects an ask quote and
losers’ price a bid quote, making the divergence of prices appear larger
than it actually is. Upon convergence, the converse is true and the
winners are traded at a bid quote (losers analogically), which further
contributes to an upward bias in profits. To minimize the effect of the
bias, we initiate a trading position one day after receiving a signal of di-
vergence and liquidate it on the day following the reversion to the mean
value of the spread. This waiting rule should provide a more realistic
return estimation because it makes provision for potential difficulties
and time delays investors encounter when executing a trade. Gatev et
al. (2006) and Broussard and Vaihekoski (2012) use the drop in excess
returns resulting from the one-day gap as an estimate of transaction
costs, and we do likewise.

4.4 Computation of Returns and Performance

To clear out any upward bias in profits and get a more accurate estima-
tion of returns arising solely from pairs trading strategy, we assume that
in times when no positions are opened we earn zero return on capital.

For computation of portfolio returns in the cointegration method we
follow Vidyamurthy (2004):

[log(PL
t+i)− log(PL

t )]− β[log(P S
t+i)− log(P S

t )] (4.14)

from which, after rearranging, we get

[log(PL
t+i)− β log(P S

t+i)]− [log(PL
t )− β log(P S

t )], (4.15)

where β is the cointegration coefficient and L, S represent long and
short position, respectively. The equations (4.14) and (4.15) refer to
the case when we long the spread. During trading period, it may occa-
sionally happen that a stock in a pair that was once bought as relatively
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underpriced will in the same trading period become relatively overpriced
(or vice versa), and hence the spread will be once bought and the next
time shorted. When the spread is shorted, we trade the stocks in the
same ratio but now the profit computation follows the equation

−[log(P S
t+i)− log(P S

t )] + β[log(PL
t+i)− log(PL

t )] (4.16)

Due to the way the trading signals are generated, holding both long
and short position in the spread of identical pair on the same days is
not attainable.

Portfolio returns generated by the distance method are calculated as
daily weighted percentage returns for long and short position, and are
going to be executed according to the formula

rpt = w1tr
L
t − w2tr

S
t (4.17)

where rLt and rSt are daily returns for the positions, and w1t, w2t rep-
resent their daily weights. From Broussard and Vaihekoski (2012), this
formula gives basically the same result as the one in Gatev et al. (2006):
rpt =

∑
i∈p

witrit∑
i∈p

wit
if the weights are adjusted accordingly. Our weights

initially start at one to take into account that the strategy is dollar-
neutral10, and are marked-to-market daily based on changes in the value
of stocks: wit = wit−1(1 + rit−1), which implies that we compute rpt as
the daily reinvested payoffs. Had we not adjusted the weights daily but
rather assumed them to be one at all times, the strategy would have
incurred tremendous transaction costs due to daily buying and selling
orders executed in an effort to keep the weights constant. This is not
necessary nor would the results generated this way be any indicative of
potential real-world profits.

Because the initial investment in a trade sums to zero, rpt from equa-
tion (4.17) can be interpreted as daily excess return. To compute profits

10Each position has the same absolute dollar amount at t=0, and thus starts as a net zero
position, without any investment.
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for one pair throughout the entire holding period, we simply sum equa-
tion (4.17) across all days on which the position is held, and obtain its
cumulative total excess return.

In order to make the two analyzed methods directly comparable,
we compute the distance-method returns once again by using formulas
(4.15) and (4.16)11. β in this case is the ratio of stocks constructed to
obtain market-neutral portfolio12. For the sake of clarity, we denote this
ratio as k and use β in its classical financial meaning, i.e. as a measure
of systematic risk of a stock in comparison to the market as a whole. To
determine k, we first regress return series of portfolio stocks on market
returns:

r1 = α1 + β1rm + υ1 (4.18)
r2 = α2 + β2rm + υ2, (4.19)

where rm is the PX index return, r1, r2 are stock returns and β1, β2 are
measures of systematic risk. Lets assume that in our pairs portfolio we
buy one unit of stock 1 and sell k units of stock 2; then the return is
rp = r1 − kr2. After plugging in for r1, r2 from (4.18) and (4.19) we
receive

rp = α1 + β1rm + υ1 − k(α2 + β2rm + υ2) (4.20)
rp = α1 − kα2 + (β1 − kβ2)rm + υ1 − kυ2 (4.21)

For this porfolio to be market-neutral, the correlation of its returns and
the market returns must be 0: β1 − kβ2 = 0. Hence, k = β1

β2
: for each

unit of stock 1 that we long/short, we short/long k units of stock 2.

As a measure of the risk-adjusted investment performance we choose
11This is not a part of the included R code.
12Market-neutral portfolio is a portfolio whose return is uncorrelated with the market return.

Regardless of whether the market is bullish or bearish, market-neutral strategy performs in a steady
manner and with lower volatility
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information ratio designed by Treynor and Black (1973):

IR = E(Rp −Rb)√
V ar(Rp −Rb)

(4.22)

where Rp is the portfolio return, Rb is the benchmark return, which is
in our case the PX equity index, the numerator represents the expected
active return and the denominator is the standard deviation of the ac-
tive return, or tracking error. The information ratio is a commonly
employed performance measure among hedge funds because it uses ap-
propriate benchmark which eliminates market risk, showing only risk
taken form active management. As such, it shows value added relative
to this benchmark. The infamous and still very popular Sharpe ratio
(Sharpe (1966)) has been criticized for using the risk-free rate because
it places all managers on the same playing field irrespective of style.

Opinions on what level of information ratio should be regarded as
satisfying are not consistent. According to Grinold and Kahn (2000),
the information ratio is analogous to a normal bell-shaped curve with
IR=0 as the mean of the distribution. Generally speaking, a figure of
0.5 reflects a good performance, 0.75 very good and 1.00 outstanding.
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5 Scenario Analysis
The proposed scenarios take into account specifics of the PSE that do
not pertain to the US and Finnish equity markets, such as size, indus-
try diversity, liquidity, efficiency and volumes traded. Although these
factors did not alter our methodology used from what is outlined in
Gatev et al. (2006) or Broussard and Vaihekoski (2012), they are likely
to affect the ability to form pairs and generate profits. We expect three
possible outcomes:

Scenario 1: Due to the absence of pairs that would belong to the
same sector, industry shocks will cause that no stocks will be identified
as cointegrated, and using the cointegration method for trading will not
be feasible.

In the distance method, trading five pairs with the smallest SSDs
will lead to situations when pairs wander-off from each other and po-
sitions remain open longer than our preestablished threshold, basically
changing the strategy to buy-and-hold one. Positions in these trades
will need to be closed regardless of convergence, most of them will yield
negative returns and average excess return will be negative as well. Us-
ing evidence from the Finnish stock market presented by Broussard
and Vaihekoski (2012), who trade a pair on average 23 days, we set
our threshold for average days per trade at twice this value to make
allowance for the fact that multiple share classes may have stronger
mean-reverting behavior. In the distance-method Scenario 1, we expect
average return per trade to be negative and average days per trade to
be above 46:

S1: r̄ < 0
days > 46
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Scenario 2: The cointegration method will reveal certain cointe-
grated pairs. However, due to industry diversity, sector shocks will
break the cointegrating relationship in trading periods, resulting in non-
convergence and losses.

Pairs selected in the distance method will take long time to converge
once the trade is entered, averaging beyond the threshold set in Sce-
nario 1. Nevertheless most traded pairs will gradually move toward the
equilibrium value of their spread, and the average excess return will be
positive:

S2: r̄ > 0
days > 46

Scenario 3: Because the PSE is a small equity market, where stocks
are generally more interrelated, and it is considerably influenced by
events in Germany and within the European Union, sentiment of in-
vestors will be similar regarding all the stocks. In each sample period
there will be at least 10% of cointegrated pairs. Industry heterogeneity
will be causing sector shocks, affect stock prices and swing the spreads,
nevertheless the spreads will revert back to their mean values in time
horizons averaging at most 30 days for the cointegration approach. The
optimal number of average days per trade was determined based on av-
erages from the formation period, where we obtained the value of 20
days. In trading period we need to take into account the fact that the
cointegration coefficient β was taken from the formation period, and so
we should expect the average days per trade to be inflated in trading
samples. The executed trades will lead to positive returns.

In Scenario 3, we expect the outcome of the distance method to be
average days per trade lower than 46, and if trades need to be closed
on the last day of trading period, their returns will mostly be positive.
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They will generate positive average excess return:

S3: r̄ > 0
days < 46
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6 Empirical Results and Discussion

6.1 Cointegration-Based Trading

Table A.2 shows the number of stationary stocks and cointegrated pairs.
In the cointegration method, the necessary condition of nonstationarity
is met by nearly every stock. In four sample periods, the ADF test
leads to the rejection of unit root in the share price of Unipetrol. On
this account, Unipetrol has to be detracted from the periods concerned.

Cointegrated pairs with positive cointegration coefficient β are scarce,
reaching a maximum 11.5% of all pairs only in one sample period, with
total average across all samples 4.14% of the number of pairs. Ten coin-
tegrated pairs are taken out because they have β < 0. The sample
period nine does not contain any cointegrated pair, and is not suitable
for trading. As a result, we do not reject Scenario 1.

Scenario 2 cannot be rejected in any sample period apart from sam-
ple nine because we are able to identify cointegrated pairs in every one
of them. However, once traded, these pairs do not seem to be related
anymore. For illustration, in Figure 6.1 we plot price series in abso-
lute values13 of the shares of Erste and Pegas in trading period three.
Trading signal is generated at time 35 and the position is liquidated at
a loss of −4.63% on the last day of the period. Not surprisingly, coin-
tegration test in the trading period reveals that this pair is no longer
cointegrated. Investigation of possible causes that could stand behind
the boom in share price of Erste shows that in the middle of 2010, bank-
ing sector, one of the sectors that was worst affected by the debt crisis,
starts picking up. The positive sentiment is brought about by rising
profits of European banks and declining risk aversion of investors. In
October, Erste presents press report for the 3rd quarter of 2010 with

13The cointegration was investigated in logarithms of prices. We plot here absolute values for
clearer depiction of the price development.
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increased Y-o-Y net profit, better interest margin and lower operating
costs. The rise in the banking industry that does not impact Pegas,
the textile producer, is an example of how industry shock can break
cointegrating relationship.

Figure 6.1: Time Series of Prices of Erste and Pegas in Trading Sample 3
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The long-short position in Erste and Pegas from period three rep-
resents one of the 82% trades that need to be closed on the last day
of trading as the spread diverges without subsequent mean reversion.
Pursuant increasing evidence that cointegration between selected stocks
is no longer in place in trading periods, we decide to analyze cointegra-
tion in trading samples as well. Cointegration tests verify that virtually
none of the pairs that we selected would not qualify for long-run relation-
ship anymore. Research of historical events in industries and companies
concerned confirms that industry heterogeneity is a cause of loss among
many pairs that do not converge to the equilibrium until the end of the
trading period. Due to that, Scenario 2 is further substantiated.

One implication of the industry shocks and broken cointegrating rela-
tionships is evidenced by histogram of percentage returns, shown in Fig-
ure A.1. The distribution statistics are displayed in Table A.3. Returns
are measured per trade, and trades occur on time scale of a 6-month
trading period. The strategy yields negative average return -5.17%,
nearly 50% of the trades end up in loss and the distribution of returns
shows high downside risk, also referred to as ’fat-tail’ risk: its kurtosis
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is extremely positive and its skewness large and negative. The posi-
tive excess kurtosis (leptokurtosis) of 8.023 means that the distribution
has significant mass concentrated in outliers, and so extreme events are
more probable. This characteristic would not be so worrying if skew-
ness were positive. However, its value of -2.579 along with the shape of
the histogram tell us that the strategy has high percentage of returns
concentrated around zero but also large negative returns with smaller
probability. The combination of leptokurtic and negatively skewed dis-
tribution results in large downside tail, which is not a strategy any
investor would undertake, as strategies should exhibit no skewness and
relative platykurtosis. In fact, such negative statistics are rarely seen
among hedge funds.

Based on the described properties of return distribution it is reason-
able to expect large minimum and modest maximum in returns. The
minimum is -0.896: during one single trade we lost 89.6% of the initial
value of the investment. Maximum is 13.5%. Sample standard deviation
0.218 as a measure of dispersion confirms high volatility of returns and
therefore riskiness of our strategy. Most of the time, trades will end up
in the range between -26.97% and 16.63%. For example the S&P 500,
a common benchmark for large-cap funds, had a standard deviation of
0.217 in May 2011. Nonetheless, since we are not merely holding an
index but have a developed strategy, we would expect to receive reward
for this strategy and the risk undertaken. Its excess return relative to a
benchmark index is captured by average information ratio. It is 0.0697,
which implies that the technique does not outperform the PX index, and
perceived by the metrics of Grinold and Kahn (2000), it is considered
poor.

Table A.3 presents comparison between strategy that delays the
opening of the pairs position by one day with rule that opens a po-
sition at the end of the day that prices diverge by more than 2 histori-
cal standard deviations. With one day of waiting, the trading yields a
negative average return of −5.17%. Contrary to what is expected from
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the theory of bid-ask bounce, end-of-the-day opening of the position
gives slightly more negative return:−5.27%. A possible explanation is
that the trading signal is generated immediately after crossing of the
2-deviation trading threshold; however, that does not guarantee the
spread will start mean-reverting from that exact instance. Oftentimes,
it does not, and hence higher value of the spread on the day following
the opening signal raises returns. On the closing day, delaying liquida-
tion by one day should again increase the spread and returns. In Figure
6.2 for instance, the first trade, at time 8, deviates further behind the
selling threshold for another week before it crosses the threshold back
on the way towards its mean14. Without waiting, the return on the
trade is 0.446; with a one-day lag, it jumps to 0.54315.

Unfortunately, the waiting rule as an approximation of transaction
costs fails to deliver meaningful results. Rather, it puts into question
whether it would not be more convenient to delay the trading as a part
of the strategy. Nevertheless, despite the seeming advantage of one-day
lag, it is with high probability nothing else but another consequence of
non-cointegration. Hence, instead of waiting for one day before trade
execution, one should refrain from trading the pair completely. We
find support for this theory in other measures that are in favour of the
no-waiting approach: minimum and maximum are shifted to the right
on the return axis, skewness is less negative and excess kurtosis less
leptokurtic.

With average days per trade of ≈ 58, we can reject Scenario 3 that
the average would be at most 30 days. This large number only confirms
that once industry shocks occur, prices of paired stocks do not maintain
the cointegrating relationship.

14This trade is taken from the distance method for the sake of illustration.
15Computed by using (3.16)
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6.2 Distance-Based Trading

Histogram of returns per trade is shown in Figure A.2, return distri-
bution statistics in Table A.4. Average excess return employing for-
mula (4.17). i.e. value-weighted approach, is 2.927% calculated with a
one-day lag. The distance method recognizes the discrepancy between
waiting vs. immediate execution of trade as we expect it from the the-
ory of bid-ask bounce; with the latter approach, returns rise to 3.44%.
We can therefore assume the one-day lag outcome to be an estimate of
returns after inclusion of transaction costs. If it were not for the low
information ratio, it would be considered a good performance. But the
IR = 0.105 is close to zero, and so we obtained no active return on
investment. Considering the shortselling constraints and costs, it would
be preferable to hold the PX index.

Based on the standard deviation of 0.165, majority of the trades
should fall in the range between -13.57% and 19.43%. While we got
positive average return, only 32.7% of trades are round-trips, average
number of days the pairs are traded is 53.88 and 38% of trades end up
in loss, which indicates that long-run relationship often does not hold.
Out of the trades liquidated at the end of the period, majority have
negative returns as stated in Scenario 1. But Scenario 1 also states that
average return is negative, so we reject it. Scenario 2 correctly predicts
that the average number of days per trade will be over 46. At the same
time, it claims positive average return. We do not reject it. Almost
half of the trades which close at the end of the period are profitable,
suggesting that the comovement of stocks happens on a larger time scale
but the lockstep in the development of returns is persistent. Hence, it is
true that most traded pairs converge toward the spread’s equilibrium.
Finally, we reject Scenario 3 because the average time per trade is not
lower than 46 days.

The histogram of returns shows some evidence that the underlying
disribution is normally distributed. By making a Q-Q plot we prove
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that our distribution has heavier tails than the normal because the Q-
Q plot does not form a straight diagonal line but its ends are bent to
the shape of S. The points are arched and refer to negative skewness,
which is all confirmed in the excess return distribution in A.4. These
properties are not optimal as they induce a risk of extreme adverse
events. Moreover, they hamper our ability to test hypotheses. Return
data have a unimodal distribution, but they are not entirely symmetric
and the sample comprises of 52 points. The ideal conditions of normality
and large sample, required for a one-sample t test for the mean, cannot
be fulfilled. Still, we decide to include t statistic and conduct the t
test, results of which have only orientational character. We want to test
whether the average excess return is zero against an alternative that the
return is positive: H0 : r = 0, H1 : r > 0. The t statistic is computed
as t = r̄−0

se(r̄) = 0.0293−0
0.023 ≈ 1.277. The 5% critical value for 51 degrees of

freedom is c = 1.675. Because tr < c, we find that the average return is
not statistically greater than zero.

To give an example on how the pairs are traded, in Figure 6.2 we
illustrate the spread between normalized returns of CETV and AAA in
the trading period seven. The spread is formed such that when it is sold,
we sell shares of CETV and buy shares of AAA, and vice versa. Hor-
izontal trading thresholds indicate the boundaries above/below which
values of the spread deviate by more than two historical standard de-
viations. The dashed horizontal line informs when the position should
be liquidated, and vertical lines represent buy and sell signals for the
spread. During the period, the position is opened three times: twice as
a short position in the spread (at times 8 and 113) and once as a long
position (at time 26). All trades have positive returns.

Distance-based trading does not have in the PSE as good perfor-
mance as is presented by Gatev et al. (2006), who trades pairs in the
S&P 500. We attribute this to greater number of potential pairs in the
US market that allows to select pairs from the same industry and hence
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Figure 6.2: Spread Between CETV and AAA with Thresholds and Trading Triggers
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achieve a more stable relationship. Our surmise is confirmed by the
percentage of mixed-sector pairs in the S&P 500 analysis, which is mere
20%. The industry heterogeneity puts the PSE in a great disadvantage,
reflected in almost all compared values. The US market yields nearly
twice as many trades per pair (1.16 vs 2.02) and its pairs are more likely
to be traded at least once in the 6-month trading period. The time per
trade is shorter, which could again be caused by tighter comovement
in stocks, or by greater trading volume and hence better liquidity and
efficiency in general. It is calculated as average time pairs are open
in months divided by average number of trades per pair: 3.75

2.02 = 1.86
months for the S&P 500 vs. 2.23 months for the PSE. Regarding re-
turns, the principal difference is that the t statistic in empirical analysis
of Gatev et al. (2006) leads to strong rejection of hypothesis of zero
returns, while in our case zero returns cannot be rejected even at 10%
significance level16. The skewness is also in favor of the US market,
with 0.34 vs -0.344. Range of attained returns is over 84% in the PSE,
a great volatility, against the range 27% in the S&P 500. The single
measure in which the trading in the PSE outperformed the other one is

16The 10% critical value for a one-tailed t test with 51 df is 1.298.
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excess kurtosis; still, since the minimum and maximum of returns is not
spread out far from zero in the S&P, it does not present serious problem
in terms of outliers. Comparison measures are in Table A.6.

Overall, the S&P market offers more trading opportunities and non-
zero returns with shorter time to achieve them, and if conditions in the
S&P persist until today, we can consider it superior for employing pairs
trading strategy. Analysis of present-day suitability of the US equity
market for pairs trading is beyond the scope of this text.

6.3 Comparison of Cointegration and Distance Method

Table 6.1 summarizes trading differences between the two analyzed
methods. The distance method yields nearly twice as many trades and
has almost two times higher fraction of round-trips - positions that re-
vert to the mean in the course of the trading period17. This measure
alone is already a sign of its superior performance, since mean reversion
of the spread ceteris paribus generates higher returns than convergence
that does not reach the closing threshold. Both strategies have their
trades open for average time of 2.59 months (distance) and 2.78 months
(cointegration), which is far beyond Broussard and Vaihekoski (2012)
(23 trading days) and even high above Gatev et al. (2006) (1.86 months).
Distance method has a lower fraction of distinct pairs, which is another
indicator that its outcome might be better than that of the cointegration
method, as it indicates that the same pairs are chosen in more samples
and therefore have a more stable mean-reverting relationship.

The use of similar methodology, which is in both cases based on the
concepts of spread divergence and reversion to the equilibrium value,
leads to the selection of the same most frequent pair, made up of
KB (banks) and VIG (multiline insurance). Despite industry diver-

17From the original definition in stock trading context, round-trip means purchase/sale and
subsequent sale/purchase of securities, regardless of whether it occurs during or at the end of a
period. We change slightly the meaning to fit our purposes
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Table 6.1: Trading Statistics: One-Day Waiting Rule

Cointegration Distance
Total number of trades* 28 52
Total number of round-trips* 5 17
Total number of nondistinct pairs* 30 45
Total number of distinct pairs* 24 32
Average number of trades opened per trading period 4.11 5.78
Average number of days per trade 58.0357 53.8846

Stocks most frequently paired up (# of nondistinct
pairs)

KB (11), AAA
(8), VIG (5)

Erste (13), KB
(12), VIG (9)

Most frequent pair (# periods) KB+VIG (4) KB+VIG (5)
*across all periods; round-trip = trade which is closed before the end of the trading period

sity among all stocks (except for Erste and KB), the methods achieved
to find a pair in which shares are as close in the type of industry as
they can get. Contrary to the past, when they were separate entities,
banks and multiline insurance companies are nowadays becoming more
and more interrelated as banks offer insurances as investment opportu-
nities. The institutional reposition of finance has played a major role
in bringing the industries together and we have evidence of this in our
analysis. In the distance method, the three most frequent pairs are KB
and VIG (5 periods), Erste and VIG (3), and KB and Erste (3). In the
cointegration method, the pairs are much more distinct.

Another meaningful statistic are shares that were most frequently
paired up. Again, banking and insurance are in the first places. The
influence of these industries on other companies listed on the PSE is
economically straightforward - during economic booms, the demand for
loans, banking and insurance services boosts earnings of these institu-
tions. Along with that, lending standards are looser and the consumer
demand for products and services of companies increases. Hence, the
prosperity of banks moves together with the prosperity of companies. In
a recession, banks compensate for a riskier environment by tightening
their lending conditions and consumer demand is weak, leading to the
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comovement with other sectors in opposite direction.

This is about all what the two methods share in common. Table A.5
and Figure A.3 reveal major differences between return distributions,
where returns for the two methods are calculated along the same metric
based on equations (3.15) and (3.16). The results are in favour of the
distance method in all aspects except for the average information ratio.
The distance-based return distribution is leptokurtic, but far less than
in the cointegration method, and the positive skewness means that if
extreme events occur, they bring large positive returns. The average
return of the distance method reaches 3.72%, i.e. it is by 8.89% higher,
and it is achieved with lower volatility. Maximum return is 84.3%,
nothing compared to 13.5% in the cointegration-based trading. Even
though the distance method has not beaten the PX index held on exactly
the same days, in terms of other metrics it has performed considerably
better than the method of cointegration.
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Conclusion
The purpose of this thesis was to investigate pairs trading strategies
of cointegration and minimum distance in the Prague Stock Exchange.
The choice of the topic was motivated by scarce published empirical
research and by evidence of declining profitability of pairs trading in
the US market, presumably caused by worsening arbitrage risk and
increased efficiency. Since the PSE is a small equity market, chances
were that pairs trading profits might not be arbitraged away as quickly,
and that events within the European Union and our most influential
neighbor, Germany, could affect stocks similarly, regardless of industry.
On the other hand, conditions in the market such as the low number of
stocks and industry diversity indicated that the success of the strategy
may not be so straightforward.

We aspired to analyze how the individual methods would perform,
which one would be a better investment strategy and if pairs trading
would yield more satisfactory results in the US equity market than in
the PSE.

The cointegration method identified on average 4.76% of pairs to
be cointegrated. This relationship, however, did not last until trading
periods and 46% of trades had negative return. The method failed in
all measured statistics, including maximum loss, volatility, information
ratio and average return. Investigation of causes showed that industry
diversity is a crucial factor when it comes to cointegration, because
industry shocks were the reason why the spread between pairs of stocks
increased and did not revert to its equilibrium value. The distance
method, returns of which were computed along the formula proposed
by Gatev et al. (2006), revealed almost a bell-shaped distribution of
returns and average return not statistically different from zero. When
compared to pairs trading results in the S&P 500, presented by Gatev et
al. (2006), the method did not generate as many trading opportunities,
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had greater risk, and the mean reversion occured in longer time span.
We claim this to be the result of higher number of potential pairs in the
S&P 500, which ensures that pairs with a more stable comovement of
prices will be selected for trading.

When we compared the two approaches, we found few intriguing
similarities. The pair that was most frequently selected in both was
formed by the shares of KB and VIG. We attribute this to the narrow
link between banking and insurance sectors as these institutions nowa-
days frequently offer similar services. Moreover, shares that were most
frequently paired up also belonged to banking and insurance industries
(KB, Erste, VIG). One possible explanation is positive correlation be-
tween prosperity in these industries and prosperity of companies, arising
from economic cycles. The comparison further showed that the distance
method greatly outperformed the method of cointegration in terms of
trading opportunities, the share of trades with negative return and con-
sistency of pairs choice. We can state that the distance method is a
more appropriate technique in the context of the PSE. Nevertheless,
the selection of strategy is a Sophie’s choice, for in both cases it would
be better to simply hold the PX index.

This thesis is a unique evidence of pairs trading in the PSE. Still,
it omits some considerations that, if implemented, would considerably
improve the meaningfulness of results. The recommendation for future
research includes employing risk control measures such as stop-loss at
20% of position value or maximum holding period, incorporating short-
selling costs and expanding the number of sample periods. These could
notably alter the return distributions and would reflect more realistic
estimation of performance. The improvement towards better results is,
however, questionable.
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Appendix

Table A.1: Sample Periods

Sample Formation Period
(D/M/Y) Points Trading Period

(D/M/Y) Points Stocks

1 6/6/2008-5/9/2009 315 6/9/2009-5/3/2010 123 Erste, KB, CEZ, Telefonica,
Unipetrol, CETV, Orco, Philip
Morris, Pegas, NWR, VIG,
AAA, ECM

2 6/12/2008-5/3/2010 309 6/3/2010-5/9/2010 127

3 6/6/2009-5/9/2010 314 6/9/2010-5/3/2011 125

4 6/12/2009-5/3/2011 313 6/3/2011-5/9/2011 128
Erste, KB, CEZ, Telefonica,
Unipetrol, CETV, Orco, Philip
Morris, Pegas, NWR, VIG, AAA

5 6/6/2010-5/9/2011 316 6/9/2011-5/3/2012 126

Erste, KB, CEZ, Telefonica,
Unipetrol, CETV, Orco, Philip
Morris, Pegas, NWR, VIG,
AAA, Kit Digital

6 6/12/2010-5/3/2012 317 6/3/2012-5/9/2012 127

Erste, KB, CEZ, Telefonica,
Unipetrol, CETV, Orco, Philip
Morris, Pegas, NWR, VIG,
AAA, Kit Digital, Fortuna

7 6/6/2011-5/9/2012 317 6/9/2012-5/3/2013 123

Erste, KB, CEZ, Telefonica,
Unipetrol, CETV, Orco, Philip
Morris, Pegas, NWR, VIG,
AAA, Fortuna

8 6/12/2011-5/3/2013 314 6/3/2013-5/9/2013 127
Erste, KB, CEZ, Telefonica,
Unipetrol, CETV, Orco, Philip
Morris, Pegas, NWR, VIG, For-
tuna

9 6/6/2012-5/3/2014 314 6/9/2013-5/3/2014 123

Table A.2: Formation and Trading Statistics
Period Stocks Pairs Stationary Cointegrated Trades, COIN Trades, DIST

1 13 78 0 5 3 4
2 13 78 1 9 6 6
3 13 78 0 1 1 7
4 12 66 0 1 2 6
5 13 78 0 2 4 8
6 14 91 0 9 8 3
7 13 78 1 2 3 7
8 12 66 1 1 1 5
9 12 66 1 0 - 6

Stocks = original number of stocks, without detractions due to stationarity; Pairs = original number
of pairs, without detractions due to stationarity or β < 0; Stationary = stocks with unit-root rejection;
Cointegrated = cointegrated pairs with positive beta; Trades, COIN = number of trades generated using
the cointegration method; Trades, DIST = number of trades generated using the distance method
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Figure A.1: Histogram of Cointegration-Trading Returns: One-Day Lag
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Table A.3: Return Distribution for Cointegration Trading: One-Day Lag
vs. End-of-the-Day Execution

One Day
Waiting Rule No Waiting

Average excess return* -0.0517 -0.0527
Standard deviation 0.218 0.221
Average information ratio 0.0697 0.0607

Excess return distribution
Median 0.0153 -0.004
Skewness -2.579 -2.390
Excess kurtosis 8.023 6.975
Minimum -0.896 -0.888
Maximum 0.135 0.141

* Per trade in a 6-month trading period
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Figure A.2: Histogram of Distance-Trading Returns: Value-Weighted Approach, One-Day Lag
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Table A.4: Return Distribution for Distance Trading: One-Day Lag vs.
End-of-the-Day Execution; Value-Weighted Approach

One Day
Waiting Rule No Waiting

Average excess return* 0.0293 0.0344
Standard deviation 0.165 0.159
Standard error 0.023 0.022
t-statistic 1.277 1.565
Average information ratio 0.1051 0.0875

Excess return distribution
Median 0.0385 0.0241
Skewness -0.344 -0.512
Excess kurtosis 1.439 1.055
Minimum -0.409 -0.393
Maximum 0.431 0.368

* Per trade in a 6-month trading period
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Figure A.3: Comparison of Return Histograms: One-Day Lag
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Table A.5: Comparison of Return Distributions for Cointegration and Dis-
tance Methods: One-Day Waiting Rule

Cointegration Distance
Average excess return -0.0517 0.0372
Standard deviation 0.218 0.210
Average information ratio 0.0697 -0.0897

Excess return distribution
Median 0.0153 0.0313
Skewness -2.579 1.328
Excess kurtosis 8.023 5.114
Minimum -0.896 -0.472
Maximum 0.135 0.843
Share of negative observations 46.4% 36.5%
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Table A.6: Comparison of Distance Method with Analysis by Gatev et al. (2006)

S&P500-Market
Analysis by Gatev et al.

(2006)*
Average number of pairs traded per 6-month period 4.56 4.81
Average time pairs are open in months 2.59 3.75
Average number of trades per pair 1.16 2.02
Average number of months per trade 2.23 1.86

t statistic 1.277 6.26

Excess return distribution
Skewness -0.344 0.34
Excess kurtosis 1.439 10.64
Minimum -0.409 -0.126
Maximum 0.431 0.144
Observations with excess return <0 38% 35%

*measures for top 5 pairs
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1 IS= lapply ( paste ("IS", 1:9 , sep=’’), get )
2 OOS= lapply ( paste ("OOS", 1:9 , sep=’’), get )
3
4 ### COINTEGRATION METHOD ###
5
6 # FORMATION
7 # Unit root test for stationarity
8 mylist . names =c("ADF1", "ADF2", "ADF3", "ADF4", "ADF5", "ADF6", "ADF7", "ADF8", "ADF9")
9 ADF= sapply ( mylist .names , function (x) NULL)

10 for(k in 1: length (IS)){
11 for(i in 1:( ncol(IS [[k]]) -1)){
12 AA=ur.df(IS [[k]][ ,i+1] , type=c(" trend "), lags =5, selectlags =c("AIC"))
13 ADF [[k]][i]= attributes (AA)$ teststat [1]
14 }
15 }
16
17 max.len=max( sapply (ADF , length ))
18 corrected .list= lapply (ADF , function (x) {c(x, rep (0, max.len - length (x)))})
19 ADF=do.call(rbind , corrected .list)
20
21 # Removing stock for which unit root hypothesis was rejected
22 for(k in 1: nrow(ADF)){
23 for(i in 1: ncol(ADF)){
24 if(ADF[k,i] <( -3.41)){
25 IS [[k]][ , which (ADF[k ,] <( -3.41))+1]= NULL
26 OOS [[k]][ , which (ADF[k ,] <( -3.41))+1]= NULL
27 }
28 }}
29
30 # Residual vectors
31 resid1 = matrix (nrow=nrow(IS1),ncol=sum (1:( ncol(IS1) -2)))
32 resid2 = matrix (nrow=nrow(IS2),ncol=sum (1:( ncol(IS2) -2)))
33 resid3 = matrix (nrow=nrow(IS3),ncol=sum (1:( ncol(IS3) -2)))
34 resid4 = matrix (nrow=nrow(IS4),ncol=sum (1:( ncol(IS4) -2)))
35 resid5 = matrix (nrow=nrow(IS5),ncol=sum (1:( ncol(IS5) -2)))
36 resid6 = matrix (nrow=nrow(IS6),ncol=sum (1:( ncol(IS6) -2)))
37 resid7 = matrix (nrow=nrow(IS7),ncol=sum (1:( ncol(IS7) -2)))
38 resid8 = matrix (nrow=nrow(IS8),ncol=sum (1:( ncol(IS8) -2)))
39 resid9 = matrix (nrow=nrow(IS9),ncol=sum (1:( ncol(IS9) -2)))
40 resid = lapply ( paste (" resid ", 1:9 , sep=’’), get )
41 mju= matrix (nrow= length (IS), ncol=sum (1:( max( sapply (IS ,ncol)) -2)))
42
43 for(m in 1: length (IS)){
44 ind =1
45 for(j in 1:( ncol(IS [[m]]) -1)){
46 for(i in (j+1) :( ncol(IS [[m]]) -1)){
47 if ((i!=ncol(IS [[m]]))&((i!=ncol(IS [[m]]) -1)|(j!=ncol(IS [[m]]) -1))){
48 resid [[m]][ , ind ]= residuals (lm(IS [[m]][ ,j+1]~IS [[m]][ ,i+1]))
49 mju[m,ind ]= lm(IS [[m]][ ,j+1]~IS [[m]][ ,i+1])$ coeff [1]
50 ind=ind +1
51 }
52 }}}
53
54 # Cointegration test: AEG on residual vectors
55 mylist . names =c(" TRIADF1 ", " TRIADF2 ", " TRIADF3 ", " TRIADF4 ", " TRIADF5 ", " TRIADF6 ", " TRIADF7 ", " TRIADF8 ",

" TRIADF9 ")
56 TRIADF = sapply ( mylist .names , function (x) NULL)
57 for(m in 1: length (IS)){
58 for(i in 1: sum (1:( ncol(IS [[m]]) -2))){
59 TRI=ur.df( resid [[m]][ ,i], type=c(" drift "), lags =5, selectlags =c("AIC"))
60 TRIADF [[m]][i]= attributes (TRI)$ teststat [1]
61 }
62 }
63
64 # Finding number of cointegrated pairs
65 max.len=max( sapply (TRIADF , length ))
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66 corrected .list= lapply (TRIADF , function (x) {c(x, rep (0, max.len - length (x)))})
67 TRIADF =do.call(rbind , corrected .list)
68
69 icount =NULL
70 for(m in 1: length (IS)){
71 icount [[m]]=0
72 for(i in 1: ncol( TRIADF )){
73 if( TRIADF [m,i] <( -3.37)){
74 icount [[m]]= icount [[m]]+1
75 }
76 }}
77 icount
78
79 # Removing sample periods with no cointegrated pairs
80 ind =0
81 for(m in 1: length ( icount )){
82 if( icount [m ]==0) {
83 IS [[m-ind ]]= NULL
84 OOS [[m-ind ]]= NULL
85 TRIADF = TRIADF [-m+ind ,]
86 ind=ind +1
87 }
88 }
89 icount = icount [ icount !=0]
90
91 # Cointegrated pairs , ordered from lowest t- statistic
92 ndx=NULL
93 for(m in 1: length (IS)){
94 ndx [[m]]= order ( TRIADF [m ,]) [1: icount [[m]]]
95 }
96
97 # TRADING
98 # Cointegration coefficient ( ratio in which to trade stocks )
99 beta= matrix (nrow= length (IS), ncol=sum (1:( max( sapply (IS ,ncol)) -2)))

100 for(m in 1: length (IS)){
101 ind =1
102 for(j in 1:( ncol(IS [[m]]) -1)){
103 for(i in (j+1) :( ncol(IS [[m]]) -1)){
104 if ((i!=ncol(IS [[m]]))&((i!=ncol(IS [[m]]) -1)|(j!=ncol(IS [[m]]) -1))){
105 beta[m,ind ]= lm(IS [[m]][ ,j+1]~IS [[m]][ ,i+1])$ coeff [2]
106 ind=ind +1
107 }
108 }}}
109
110 # Formation of trading - period spreads
111 regoos1 = matrix (nrow=nrow(OOS [[1]]) ,ncol=sum (1:( ncol(OOS [[1]]) -2)))
112 regoos2 = matrix (nrow=nrow(OOS [[2]]) ,ncol=sum (1:( ncol(OOS [[2]]) -2)))
113 regoos3 = matrix (nrow=nrow(OOS [[3]]) ,ncol=sum (1:( ncol(OOS [[3]]) -2)))
114 regoos4 = matrix (nrow=nrow(OOS [[4]]) ,ncol=sum (1:( ncol(OOS [[4]]) -2)))
115 regoos5 = matrix (nrow=nrow(OOS [[5]]) ,ncol=sum (1:( ncol(OOS [[5]]) -2)))
116 regoos6 = matrix (nrow=nrow(OOS [[6]]) ,ncol=sum (1:( ncol(OOS [[6]]) -2)))
117 regoos7 = matrix (nrow=nrow(OOS [[7]]) ,ncol=sum (1:( ncol(OOS [[7]]) -2)))
118 regoos8 = matrix (nrow=nrow(OOS [[8]]) ,ncol=sum (1:( ncol(OOS [[8]]) -2)))
119 regoos = lapply ( paste (" regoos ", 1:8 , sep=’’), get )
120
121 for(m in 1: length ( regoos )){
122 ind =1
123 for(j in 1:( ncol(OOS [[m]]) -1)){
124 for(i in (j+1) :( ncol(OOS [[m]]) -1)){
125 if ((i!=ncol(OOS [[m]]))&((i!=ncol(OOS [[m]]) -1)|(j!=ncol(OOS [[m]]) -1))){
126 regoos [[m]][ , ind ]= OOS [[m]][ ,j+1] - beta[m,ind]*OOS [[m]][ ,i+1]
127 ind=ind +1
128 }
129 }}
130 regoos [[m]]= regoos [[m]][ , ndx [[m]]]
131 regoos [[m]]= as. matrix ( regoos [[m]])}
132
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133 # Means and standard deviations
134 model1 = matrix (nrow=nrow(IS1),ncol=sum (1:( ncol(IS1) -2)))
135 model2 = matrix (nrow=nrow(IS2),ncol=sum (1:( ncol(IS2) -2)))
136 model3 = matrix (nrow=nrow(IS3),ncol=sum (1:( ncol(IS3) -2)))
137 model4 = matrix (nrow=nrow(IS4),ncol=sum (1:( ncol(IS4) -2)))
138 model5 = matrix (nrow=nrow(IS5),ncol=sum (1:( ncol(IS5) -2)))
139 model6 = matrix (nrow=nrow(IS6),ncol=sum (1:( ncol(IS6) -2)))
140 model7 = matrix (nrow=nrow(IS7),ncol=sum (1:( ncol(IS7) -2)))
141 model8 = matrix (nrow=nrow(IS8),ncol=sum (1:( ncol(IS8) -2)))
142 model = lapply ( paste (" model ", 1:8 , sep=’’), get)
143
144 for(m in 1: length ( model )){
145 ind =1
146 for(j in 1: sum (1:( ncol(IS [[m]]) -2))){
147 for(k in 1: nrow( resid [[m]])){
148 model [[m]][k,j]= resid [[m]][k,j] +mju[m,j]
149 ind=ind +1
150 }}
151 model [[m]]= model [[m]][ , ndx [[m]]]
152 model [[m]]= as. matrix ( model [[m]])}
153
154 mylist . names =c(" mean1 ", " mean2 ", " mean3 ", " mean4 ", " mean5 ", " mean6 ", " mean7 ", " mean8 ")
155 mean= sapply ( mylist .names , function (x) NULL)
156 mylist . names =c("sd1", "sd2", "sd3", "sd4", "sd5", "sd6", "sd7", "sd8")
157 sd= sapply ( mylist .names , function (x) NULL)
158
159 for(m in 1: length ( model )){
160 mean [[m]]= colMeans ( model [[m]])
161 sd [[m]]= colStdevs ( model [[m]])
162 }
163
164 max.len=max( sapply (mean , length ))
165 corrected .list= lapply (mean , function (x) {c(x, rep (0, max.len - length (x)))})
166 mean=do.call(rbind , corrected .list)
167 max.len=max( sapply (sd , length ))
168 corrected .list= lapply (sd , function (x) {c(x, rep (0, max.len - length (x)))})
169 sd=do.call(rbind , corrected .list)
170
171 # Trading signals
172 a=c(1 ,1 ,1 ,1)
173 b=c( -2 ,0 ,2 ,0)
174 Thresholds = array (rep(NA), dim=c(nrow(mean),ncol(mean),length (a)))
175 for(k in 1: length (a)){
176 for(i in 1: nrow(mean)){
177 for(j in 1: ncol(mean)){
178 Thresholds [i,j,k]=a[k]*mean[i,j]+b[k]*sd[i,j]
179 }
180 }}
181
182 # Points of entry /exit: finding rows where spreads are below or above trading signals
183 iakcie =NULL
184 rtime =NULL
185 for(m in 1: length ( regoos )){
186 iakcie [m]= ncol( regoos [[m]]); rtime [m]= nrow( regoos [[m]])
187 }
188 indBuyL =NULL; indSellL =NULL; indSellS =NULL; indBuyS =NULL
189
190 for(m in 1: length ( regoos )){
191 indBuyL [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
192 indBuyL [[m]][ is.na( indBuyL [[m]]) ]=0
193 indSellL [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
194 indSellL [[m]][ is.na( indSellL [[m]]) ]=0
195 indSellS [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
196 indSellS [[m]][ is.na( indSellS [[m]]) ]=0
197 indBuyS [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
198 indBuyS [[m]][ is.na( indBuyS [[m]]) ]=0
199 }
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200
201 for(m in 1: length ( regoos )){
202 for(i in 1: iakcie [m]){
203 ind1 =1; ind2 =1; ind3 =1; ind4 =1
204 for(j in 1: rtime [m]){
205 if( regoos [[m]][j,i]<= Thresholds [m,i ,1]){ indBuyL [[m]][ ind1 ,i]=j
206 ind1=ind1 +1}
207 if( regoos [[m]][j,i]>= Thresholds [m,i ,2]) { indSellL [[m]][ ind2 ,i]=j
208 ind2=ind2 +1}
209 if( regoos [[m]][j,i]>= Thresholds [m,i ,3]) { indSellS [[m]][ ind3 ,i]=j
210 ind3=ind3 +1}
211 if( regoos [[m]][j,i]<= Thresholds [m,i ,4]) { indBuyS [[m]][ ind4 ,i]=j
212 ind4=ind4 +1}
213 }
214 }}
215
216 ### Calculating profits
217 ## In each time
218 # Long and short spreads
219 profitbottomup1 = matrix (nrow=nrow(OOS [[1]]) -1,ncol=ncol( regoos [[1]]) )
220 profitbottomup2 = matrix (nrow=nrow(OOS [[2]]) -1,ncol=ncol( regoos [[2]]) )
221 profitbottomup3 = matrix (nrow=nrow(OOS [[3]]) -1,ncol=ncol( regoos [[3]]) )
222 profitbottomup4 = matrix (nrow=nrow(OOS [[4]]) -1,ncol=ncol( regoos [[4]]) )
223 profitbottomup5 = matrix (nrow=nrow(OOS [[5]]) -1,ncol=ncol( regoos [[5]]) )
224 profitbottomup6 = matrix (nrow=nrow(OOS [[6]]) -1,ncol=ncol( regoos [[6]]) )
225 profitbottomup7 = matrix (nrow=nrow(OOS [[7]]) -1,ncol=ncol( regoos [[7]]) )
226 profitbottomup8 = matrix (nrow=nrow(OOS [[8]]) -1,ncol=ncol( regoos [[8]]) )
227 profitbottomup = lapply ( paste (" profitbottomup ", 1:8 , sep=’’), get )
228
229 profitupbottom1 = matrix (nrow=nrow(OOS [[1]]) -1,ncol=ncol( regoos [[1]]) )
230 profitupbottom2 = matrix (nrow=nrow(OOS [[2]]) -1,ncol=ncol( regoos [[2]]) )
231 profitupbottom3 = matrix (nrow=nrow(OOS [[3]]) -1,ncol=ncol( regoos [[3]]) )
232 profitupbottom4 = matrix (nrow=nrow(OOS [[4]]) -1,ncol=ncol( regoos [[4]]) )
233 profitupbottom5 = matrix (nrow=nrow(OOS [[5]]) -1,ncol=ncol( regoos [[5]]) )
234 profitupbottom6 = matrix (nrow=nrow(OOS [[6]]) -1,ncol=ncol( regoos [[6]]) )
235 profitupbottom7 = matrix (nrow=nrow(OOS [[7]]) -1,ncol=ncol( regoos [[7]]) )
236 profitupbottom8 = matrix (nrow=nrow(OOS [[8]]) -1,ncol=ncol( regoos [[8]]) )
237 profitupbottom = lapply ( paste (" profitupbottom ", 1:8 , sep=’’), get )
238
239 for(m in 1: length ( profitbottomup )){
240 for(i in 1: ncol( regoos [[m]])){
241 profitbottomup [[m]][ ,i]= diff( regoos [[m]][ ,i])
242 profitupbottom [[m]][ ,i]=- diff( regoos [[m]][ ,i])
243 }
244 null=rep (0, length =ncol( regoos [[m]]))
245 profitbottomup [[m]]= rbind (null , profitbottomup [[m]])
246 profitupbottom [[m]]= rbind (null , profitupbottom [[m]])
247 }
248
249
250 ## For each particular trade
251 PXOOS = lapply ( paste (" PXOOS ", 1: length (IS), sep=’’), get )
252 # Long
253 buyL=NULL
254 sellL =NULL
255 profitL =NULL
256 profitPXL =NULL
257 for(m in 1: length ( regoos )){
258 buyL [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
259 sellL [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
260 profitL [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
261 profitPXL [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
262 }
263
264 for(m in 1: length ( regoos )){
265 for(i in 1: iakcie [m]){
266 ind =1
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267 isellL =0
268 for(j in 1: rtime [m]){
269 if( indBuyL [[m]][j,i]> isellL ){
270 for(k in 1: rtime [m]){
271 if (( indSellL [[m]][k,i]>= indBuyL [[m]][j,i])&( indBuyL [[m]][j,i]!= rtime [m])){
272 ibuyL = indBuyL [[m]][j,i]+1
273 isellL = indSellL [[m]][k,i]+1
274 buyL [[m]][ ind ,i]= indBuyL [[m]][j,i]+1
275 sellL [[m]][ ind ,i]= indSellL [[m]][k,i]+1
276 profitL [[m]][ ind ,i]= sum( profitbottomup [[m]][( buyL [[m]][ ind ,i]+1): sellL [[m]][ ind ,i],i])
277 profitPXL [[m]][ ind ,i]= sum( PXOOS [[m]][( buyL [[m]][ ind ,i]+1): sellL [[m]][ ind ,i] ,3])
278 ind=ind +1
279 break
280 }
281 if ((k== rtime [m])&( indBuyL [[m]][j,i]!= rtime [m])){
282 ibuyL = indBuyL [[m]][j,i]+1
283 isellL = rtime [m]
284 buyL [[m]][ ind ,i]= indBuyL [[m]][j,i]+1
285 sellL [[m]][ ind ,i]= rtime [m]
286 profitL [[m]][ ind ,i]= sum( profitbottomup [[m]][( buyL [[m]][ ind ,i]+1): sellL [[m]][ ind ,i],i])
287 profitPXL [[m]][ ind ,i]= sum( PXOOS [[m]][( buyL [[m]][ ind ,i]+1): sellL [[m]][ ind ,i] ,3])
288 ind=ind +1
289 }
290 }
291 }}}
292 buyL [[m]][ is.na(buyL [[m]]) ]=0
293 sellL [[m]][ is.na( sellL [[m]]) ]=0
294 buyL [[m]]= as. matrix (buyL [[m]])
295 sellL [[m]]= as. matrix ( sellL [[m]])
296 }
297
298 # Information ratio , long
299 IRL= array (rep(NA), dim=c(4, max( sapply (buyL , ncol)),length (buyL)))
300 for(m in 1: length ( regoos )){
301 for(i in 1: ncol(buyL [[m]])){
302 for(k in 1: nrow(buyL [[m]])){
303 if(buyL [[m]][k,i]!=0){
304 IRL[k,i,m]= mean( profitbottomup [[m]][( buyL [[m]][k,i]+1): sellL [[m]][k,i],i]- PXOOS [[m]][( buyL [[m

]][k,i]+1): sellL [[m]][k,i] ,3])/sd( profitbottomup [[m]][( buyL [[m]][k,i]+1): sellL [[m]][k,i],
i]- PXOOS [[m]][( buyL [[m]][k,i]+1): sellL [[m]][k,i] ,3])

305 }
306 }}}
307 IRL
308
309 # Short
310 sellS =NULL
311 buyS=NULL
312 profitS =NULL
313 profitPXS =NULL
314 for(m in 1: length ( regoos )){
315 sellS [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
316 buyS [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
317 profitS [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
318 profitPXS [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
319 }
320
321 for(m in 1: length ( regoos )){
322 for(i in 1: iakcie [m]){
323 ind =1
324 ibuyS =0
325 for(j in 1: rtime [m]){
326 if( indSellS [[m]][j,i]> ibuyS ){
327 for(k in 1: rtime [m]){
328 if (( indBuyS [[m]][k,i]>= indSellS [[m]][j,i])&( indSellS [[m]][j,i]!= rtime [m])){
329 isellS = indSellS [[m]][j,i]+1
330 ibuyS = indBuyS [[m]][k,i]+1
331 sellS [[m]][ ind ,i]= indSellS [[m]][j,i]+1
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332 buyS [[m]][ ind ,i]= indBuyS [[m]][k,i]+1
333 profitS [[m]][ ind ,i]= sum( profitupbottom [[m]][( sellS [[m]][ ind ,i]+1):buyS [[m]][ ind ,i],i])
334 profitPXS [[m]][ ind ,i]= sum( PXOOS [[m]][( sellS [[m]][ ind ,i]+1):buyS [[m]][ ind ,i] ,3])
335 ind=ind +1
336 break
337 }
338 if ((k== rtime [m])&( indSellS [[m]][j,i]!= rtime [m])){
339 isellS = indSellS [[m]][j,i]+1
340 ibuyS = rtime [m]
341 sellS [[m]][ ind ,i]= indSellS [[m]][j,i]+1
342 buyS [[m]][ ind ,i]= ibuyS
343 profitS [[m]][ ind ,i]= sum( profitupbottom [[m]][( sellS [[m]][ ind ,i]+1):buyS [[m]][ ind ,i],i])
344 profitPXS [[m]][ ind ,i]= sum( PXOOS [[m]][( sellS [[m]][ ind ,i]+1):buyS [[m]][ ind ,i] ,3])
345 ind=ind +1
346 }
347 }
348 }}}
349 sellS [[m]][ is.na( sellS [[m]]) ]=0
350 buyS [[m]][ is.na(buyS [[m]]) ]=0
351 sellS [[m]]= as. matrix ( sellS [[m]])
352 buyS [[m]]= as. matrix (buyS [[m]])
353 }
354
355 # Information ratio , short
356 IRS= array (rep(NA), dim=c(4, max( sapply (sellS , ncol)),length ( sellS )))
357 for(m in 1: length ( regoos )){
358 for(i in 1: ncol( sellS [[m]])){
359 for(k in 1: nrow( sellS [[m]])){
360 if( sellS [[m]][k,i]!=0){
361 IRS[k,i,m]= mean( profitupbottom [[m]][( sellS [[m]][k,i]+1):buyS [[m]][k,i],i]- PXOOS [[m]][( sellS [[m

]][k,i]+1):buyS [[m]][k,i] ,3])/sd( profitupbottom [[m]][( sellS [[m]][k,i]+1):buyS [[m]][k,i],i
]- PXOOS [[m]][( sellS [[m]][k,i]+1):buyS [[m]][k,i] ,3])

362 }
363 }}}
364 IRS
365
366 ### DISTANCE METHOD ###
367
368 # Logarithms of prices
369 IS= lapply ( paste ("IS", 1:9 , sep=’’), get)
370 OOS= lapply ( paste ("OOS", 1:9 , sep=’’), get)
371
372 # Absolute values of prices
373 PIS= lapply ( paste ("PIS", 1:9 , sep=’’), get)
374 POOS= lapply ( paste ("POOS", 1:9 , sep=’’), get)
375
376 ISa=list (); OOSa=list (); PISa=list (); POOSa =list ()
377 for(m in 1: length (IS)){
378 ISa [[m]]= IS [[m]][ , -1]
379 OOSa [[m]]= OOS [[m]][ , -1]
380 PISa [[m]]= PIS [[m]][ , -1]
381 POOSa [[m]]= POOS [[m]][ , -1]
382 }
383
384 # FORMATION
385 ret1= matrix (nrow=nrow(IS [[1]]) -1,ncol=ncol(ISa [[1]]) )
386 ret2= matrix (nrow=nrow(IS [[2]]) -1,ncol=ncol(ISa [[2]]) )
387 ret3= matrix (nrow=nrow(IS [[3]]) -1,ncol=ncol(ISa [[3]]) )
388 ret4= matrix (nrow=nrow(IS [[4]]) -1,ncol=ncol(ISa [[4]]) )
389 ret5= matrix (nrow=nrow(IS [[5]]) -1,ncol=ncol(ISa [[5]]) )
390 ret6= matrix (nrow=nrow(IS [[6]]) -1,ncol=ncol(ISa [[6]]) )
391 ret7= matrix (nrow=nrow(IS [[7]]) -1,ncol=ncol(ISa [[7]]) )
392 ret8= matrix (nrow=nrow(IS [[8]]) -1,ncol=ncol(ISa [[8]]) )
393 ret9= matrix (nrow=nrow(IS [[9]]) -1,ncol=ncol(ISa [[9]]) )
394 ret= lapply ( paste ("ret", 1:9 , sep=’’), get )
395
396 for(m in 1: length (ISa)){
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397 for(i in 1: ncol(ISa [[m]])){
398 ret [[m]][ ,i]= diff(ISa [[m]][ ,i])
399 }
400 null=rep (0, length =ncol(ISa [[m]]))
401 ret [[m]]= rbind (null , ret [[m]])
402 }
403
404 mylist . names =c(" meanD1 ", " meanD2 ", " meanD3 ", " meanD4 ", " meanD5 ", " meanD6 ", " meanD7 ", " meanD8 ")
405 meanD = sapply ( mylist .names , function (x) NULL)
406 mylist . names =c("sdD1", "sdD2", "sdD3", "sdD4", "sdD5", "sdD6", "sdD7", "sdD8")
407 sdD= sapply ( mylist .names , function (x) NULL)
408
409 for(m in 1: length (ret)){
410 meanD [[m]]= colMeans (ret [[m]])
411 sdD [[m]]= colStdevs (ret [[m]])
412 }
413
414 # Cumulative sum of standardized returns
415 retN1 = matrix (nrow=nrow(ret [[1]]) ,ncol=ncol(ret [[1]]) )
416 retN2 = matrix (nrow=nrow(ret [[2]]) ,ncol=ncol(ret [[2]]) )
417 retN3 = matrix (nrow=nrow(ret [[3]]) ,ncol=ncol(ret [[3]]) )
418 retN4 = matrix (nrow=nrow(ret [[4]]) ,ncol=ncol(ret [[4]]) )
419 retN5 = matrix (nrow=nrow(ret [[5]]) ,ncol=ncol(ret [[5]]) )
420 retN6 = matrix (nrow=nrow(ret [[6]]) ,ncol=ncol(ret [[6]]) )
421 retN7 = matrix (nrow=nrow(ret [[7]]) ,ncol=ncol(ret [[7]]) )
422 retN8 = matrix (nrow=nrow(ret [[8]]) ,ncol=ncol(ret [[8]]) )
423 retN9 = matrix (nrow=nrow(ret [[9]]) ,ncol=ncol(ret [[9]]) )
424
425 retN= lapply ( paste ("retN", 1:9 , sep=’’), get )
426 for(m in 1: length (ret)){
427 for(i in 1: ncol(ret [[m]])){
428 for(k in 1: nrow(ret [[m]])){
429 retN [[m]][k,i]=( ret [[m]][k,i]- meanD [[m]][i])/sdD [[m]][i]
430 }
431 retN [[m]][ ,i]= cumsum (retN [[m]][ ,i])
432 }}
433
434 # Sum of squared deviations of normalized returns
435 devN= matrix (nrow= length (retN), ncol=sum (1:( max( sapply (retN , ncol)) -1)))
436 for(m in 1: length (retN)){
437 ind =1
438 for(j in 1:( ncol(retN [[m]]) -1)){
439 for(i in (j+1):ncol(retN [[m]])){
440 devN[m,ind ]= sum (( retN [[m]][ ,j]-retN [[m]][ ,i]) ^2)
441 ind=ind +1
442 }
443 }}
444
445 # Pairs with minimized distance , ordered from the lowest SSD
446 bdx=NULL
447 for(m in 1: nrow(devN)){
448 bdx [[m]]= order (devN[m ,]) [1:5]
449 bdx [[m]]= as. matrix (bdx [[m]])
450 }
451
452 # TRADING
453 # Retrieving stocks from pairs
454 stock1 = array (rep (0) , dim=c(1, max( sapply (bdx , length )),length (ISa)))
455 stock2 = array (rep (0) , dim=c(1, max( sapply (bdx , length )),length (ISa)))
456 for(m in 1: length (ISa)){
457 for(n in 1: length (bdx [[m]])){
458 ind =1
459 for(j in 1:( ncol(ISa [[m]]) -1)){
460 for(i in (j+1):ncol(ISa [[m]])){
461 if(bdx [[m]][n]== ind){
462 stock1 [1,n,m]=j
463 stock2 [1,n,m]=i
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464 }
465 ind=ind +1
466 }
467 }}}
468
469 # Standardization of OOS returns
470 retoos1 = matrix (nrow=nrow(OOSa [[1]]) -1,ncol=ncol(OOSa [[1]]) )
471 retoos2 = matrix (nrow=nrow(OOSa [[2]]) -1,ncol=ncol(OOSa [[2]]) )
472 retoos3 = matrix (nrow=nrow(OOSa [[3]]) -1,ncol=ncol(OOSa [[3]]) )
473 retoos4 = matrix (nrow=nrow(OOSa [[4]]) -1,ncol=ncol(OOSa [[4]]) )
474 retoos5 = matrix (nrow=nrow(OOSa [[5]]) -1,ncol=ncol(OOSa [[5]]) )
475 retoos6 = matrix (nrow=nrow(OOSa [[6]]) -1,ncol=ncol(OOSa [[6]]) )
476 retoos7 = matrix (nrow=nrow(OOSa [[7]]) -1,ncol=ncol(OOSa [[7]]) )
477 retoos8 = matrix (nrow=nrow(OOSa [[8]]) -1,ncol=ncol(OOSa [[8]]) )
478 retoos9 = matrix (nrow=nrow(OOSa [[9]]) -1,ncol=ncol(OOSa [[9]]) )
479 retoos = lapply ( paste (" retoos ", 1:9 , sep=’’), get )
480
481 retoosw1 = matrix (nrow=nrow(OOSa [[1]]) -1,ncol=ncol(OOSa [[1]]) )
482 retoosw2 = matrix (nrow=nrow(OOSa [[2]]) -1,ncol=ncol(OOSa [[2]]) )
483 retoosw3 = matrix (nrow=nrow(OOSa [[3]]) -1,ncol=ncol(OOSa [[3]]) )
484 retoosw4 = matrix (nrow=nrow(OOSa [[4]]) -1,ncol=ncol(OOSa [[4]]) )
485 retoosw5 = matrix (nrow=nrow(OOSa [[5]]) -1,ncol=ncol(OOSa [[5]]) )
486 retoosw6 = matrix (nrow=nrow(OOSa [[6]]) -1,ncol=ncol(OOSa [[6]]) )
487 retoosw7 = matrix (nrow=nrow(OOSa [[7]]) -1,ncol=ncol(OOSa [[7]]) )
488 retoosw8 = matrix (nrow=nrow(OOSa [[8]]) -1,ncol=ncol(OOSa [[8]]) )
489 retoosw9 = matrix (nrow=nrow(OOSa [[9]]) -1,ncol=ncol(OOSa [[9]]) )
490 retoosw = lapply ( paste (" retoosw ", 1:9 , sep=’’), get )
491
492 for(m in 1: length (OOSa)){
493 for(i in 1: ncol(OOSa [[m]])){
494 retoos [[m]][ ,i]= diff(OOSa [[m]][ ,i])
495 }
496 null=rep (0, length =ncol(OOSa [[m]]))
497 retoos [[m]]= rbind (null , retoos [[m]])
498 retoosw [[m]]= retoos [[m]]+1
499 }
500
501 OOSN1 = matrix (nrow=nrow(OOSa [[1]]) ,ncol=ncol(OOSa [[1]]) )
502 OOSN2 = matrix (nrow=nrow(OOSa [[2]]) ,ncol=ncol(OOSa [[2]]) )
503 OOSN3 = matrix (nrow=nrow(OOSa [[3]]) ,ncol=ncol(OOSa [[3]]) )
504 OOSN4 = matrix (nrow=nrow(OOSa [[4]]) ,ncol=ncol(OOSa [[4]]) )
505 OOSN5 = matrix (nrow=nrow(OOSa [[5]]) ,ncol=ncol(OOSa [[5]]) )
506 OOSN6 = matrix (nrow=nrow(OOSa [[6]]) ,ncol=ncol(OOSa [[6]]) )
507 OOSN7 = matrix (nrow=nrow(OOSa [[7]]) ,ncol=ncol(OOSa [[7]]) )
508 OOSN8 = matrix (nrow=nrow(OOSa [[8]]) ,ncol=ncol(OOSa [[8]]) )
509 OOSN9 = matrix (nrow=nrow(OOSa [[9]]) ,ncol=ncol(OOSa [[9]]) )
510 OOSN= lapply ( paste ("OOSN", 1:9 , sep=’’), get )
511
512 for(m in 1: length (OOSa)){
513 for(i in 1: ncol(OOSa [[m]])){
514 for(k in 1: nrow(OOSa [[m]])){
515 OOSN [[m]][k,i]=( retoos [[m]][k,i]- meanD [[m]][i])/sdD [[m]][i]
516 }
517 OOSN [[m]][ ,i]= cumsum (OOSN [[m]][ ,i])
518 }}
519
520 # For chosen pairs , difference between normalized cumulative returns
521 dif1= matrix (nrow=nrow(OOSN [[1]]) ,ncol=nrow(bdx [[1]]) )
522 dif2= matrix (nrow=nrow(OOSN [[2]]) ,ncol=nrow(bdx [[2]]) )
523 dif3= matrix (nrow=nrow(OOSN [[3]]) ,ncol=nrow(bdx [[3]]) )
524 dif4= matrix (nrow=nrow(OOSN [[4]]) ,ncol=nrow(bdx [[4]]) )
525 dif5= matrix (nrow=nrow(OOSN [[5]]) ,ncol=nrow(bdx [[5]]) )
526 dif6= matrix (nrow=nrow(OOSN [[6]]) ,ncol=nrow(bdx [[6]]) )
527 dif7= matrix (nrow=nrow(OOSN [[7]]) ,ncol=nrow(bdx [[7]]) )
528 dif8= matrix (nrow=nrow(OOSN [[8]]) ,ncol=nrow(bdx [[8]]) )
529 dif9= matrix (nrow=nrow(OOSN [[9]]) ,ncol=nrow(bdx [[9]]) )
530 dif= lapply ( paste ("dif", 1:9 , sep=’’), get )
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531
532 for(m in 1: length (OOSN)){
533 for(n in 1: length ( stock1 [1,,m])){
534 if( stock1 [1,n,m]!=0){
535 dif [[m]][ ,n]= OOSN [[m]][ , stock1 [1,n,m]]- OOSN [[m]][ , stock2 [1,n,m]]
536 }
537 }
538 dif [[m]]= as. matrix (dif [[m]])
539 }
540
541 # Trading signals
542 meanN = array (rep(NA), dim=c(1, ncol( stock1 ),length (retN)))
543 sdN= array (rep(NA), dim=c(1, ncol( stock1 ),length (retN)))
544 for(m in 1: length (retN)){
545 for(n in 1: ncol( stock1 )){
546 if( stock1 [1,n,m]!=0){
547 meanN [1,n,m]= mean(retN [[m]][ , stock1 [1,n,m]]- retN [[m]][ , stock2 [1,n,m]])
548 sdN [1,n,m]= sd(retN [[m]][ , stock1 [1,n,m]]- retN [[m]][ , stock2 [1,n,m]])
549 }
550 }}
551
552 a=c(1 ,1 ,1 ,1)
553 b=c( -2 ,0 ,2 ,0)
554 Thresholds = array (rep(NA), dim=c( length (OOSN),ncol( meanN ),length (b)))
555 for(k in 1: length (b)){
556 for(i in 1: length (OOSN)){
557 for(j in 1: ncol( meanN )){
558 Thresholds [i,j,k]=a[k]* meanN [1,j,i]+b[k]*sdN [1,j,i]
559 }
560 }}
561
562 # Points of entry /exit: finding rows where spreads are below or above trading signals
563 iakcie =NULL
564 rtime =NULL
565 for(m in 1: length (dif)){
566 iakcie [m]= ncol(dif [[m]]); rtime [m]= nrow(dif [[m]])
567 }
568 indBuyL =NULL; indSellL =NULL; indSellS =NULL; indBuyS =NULL
569
570 for(m in 1: length (dif)){
571 indBuyL [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
572 indBuyL [[m]][ is.na( indBuyL [[m]]) ]=0
573 indSellL [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
574 indSellL [[m]][ is.na( indSellL [[m]]) ]=0
575 indSellS [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
576 indSellS [[m]][ is.na( indSellS [[m]]) ]=0
577 indBuyS [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
578 indBuyS [[m]][ is.na( indBuyS [[m]]) ]=0
579 }
580
581 for(m in 1: length (dif)){
582 for(i in 1: iakcie [m]){
583 ind1 =1; ind2 =1; ind3 =1; ind4 =1
584 for(j in 1: rtime [m]){
585 if(dif [[m]][j,i]<= Thresholds [m,i ,1]){ indBuyL [[m]][ ind1 ,i]=j
586 ind1=ind1 +1}
587 if(dif [[m]][j,i]>= Thresholds [m,i ,2]) { indSellL [[m]][ ind2 ,i]=j
588 ind2=ind2 +1}
589 if(dif [[m]][j,i]>= Thresholds [m,i ,3]) { indSellS [[m]][ ind3 ,i]=j
590 ind3=ind3 +1}
591 if(dif [[m]][j,i]<= Thresholds [m,i ,4]) { indBuyS [[m]][ ind4 ,i]=j
592 ind4=ind4 +1}
593 }
594 }}
595
596 ### Calculating profits
597 PXOOS = lapply ( paste (" PXOOS ", 1: length (IS), sep=’’), get )
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598
599 ## Long ##
600 buyLD =NULL
601 sellLD =NULL
602 for(m in 1: length (dif)){
603 buyLD [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
604 sellLD [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
605 }
606
607 for(m in 1: length (dif)){
608 for(i in 1: iakcie [m]){
609 ind =1
610 isellL =0
611 for(j in 1: rtime [m]){
612 if( indBuyL [[m]][j,i]> isellL ){
613 for(k in 1: rtime [m]){
614 if (( indSellL [[m]][k,i]>= indBuyL [[m]][j,i])&( indBuyL [[m]][j,i]!= rtime [m])){
615 ibuyL = indBuyL [[m]][j,i]+1
616 isellL = indSellL [[m]][k,i]+1
617 buyLD [[m]][ ind ,i]= indBuyL [[m]][j,i]+1
618 sellLD [[m]][ ind ,i]= indSellL [[m]][k,i]+1
619 ind=ind +1
620 break
621 }
622 if ((k== rtime [m])&( indBuyL [[m]][j,i]!= rtime [m])){
623 ibuyL = indBuyL [[m]][j,i]+1
624 isellL = rtime [m]
625 buyLD [[m]][ ind ,i]= indBuyL [[m]][j,i]+1
626 sellLD [[m]][ ind ,i]= rtime [m]
627 ind=ind +1
628 }
629 }
630 }}}
631 buyLD [[m]][ is.na( buyLD [[m]]) ]=0
632 buyLD [[m]]= as. matrix ( buyLD [[m]])
633 sellLD [[m]][ is.na( sellLD [[m]]) ]=0
634 sellLD [[m]]= as. matrix ( sellLD [[m]])
635 }
636
637 # Returns for each pair traded
638 weight11 = matrix (nrow=nrow( retoos [[1]]) ,ncol =10)
639 weight12 = matrix (nrow=nrow( retoos [[2]]) ,ncol =10)
640 weight13 = matrix (nrow=nrow( retoos [[3]]) ,ncol =10)
641 weight14 = matrix (nrow=nrow( retoos [[4]]) ,ncol =10)
642 weight15 = matrix (nrow=nrow( retoos [[5]]) ,ncol =10)
643 weight16 = matrix (nrow=nrow( retoos [[6]]) ,ncol =10)
644 weight17 = matrix (nrow=nrow( retoos [[7]]) ,ncol =10)
645 weight18 = matrix (nrow=nrow( retoos [[8]]) ,ncol =10)
646 weight19 = matrix (nrow=nrow( retoos [[9]]) ,ncol =10)
647 weight1 = lapply ( paste (" weight1 ", 1:9 , sep=’’), get)
648
649 weight21 = matrix (nrow=nrow( retoos [[1]]) ,ncol =10)
650 weight22 = matrix (nrow=nrow( retoos [[2]]) ,ncol =10)
651 weight23 = matrix (nrow=nrow( retoos [[3]]) ,ncol =10)
652 weight24 = matrix (nrow=nrow( retoos [[4]]) ,ncol =10)
653 weight25 = matrix (nrow=nrow( retoos [[5]]) ,ncol =10)
654 weight26 = matrix (nrow=nrow( retoos [[6]]) ,ncol =10)
655 weight27 = matrix (nrow=nrow( retoos [[7]]) ,ncol =10)
656 weight28 = matrix (nrow=nrow( retoos [[8]]) ,ncol =10)
657 weight29 = matrix (nrow=nrow( retoos [[9]]) ,ncol =10)
658 weight2 = lapply ( paste (" weight2 ", 1:9 , sep=’’), get)
659
660 for(m in 1: length ( POOSa )){ind =1
661 for(i in 1: ncol( buyLD [[m]])){
662 for(j in 1: nrow( buyLD [[m]])){
663 if (( buyLD [[m]][j,i]!=0)&( buyLD [[m]][j,i]!= sellLD [[m]][j,i])&( buyLD [[m]][j,i]+1!= sellLD [[m]][j,i])&(

buyLD [[m]][j,i]+2 < sellLD [[m]][j,i])){
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664 weight1 [[m ]][1:(( sellLD [[m]][j,i]) -( buyLD [[m]][j,i]+1)),ind ]= cumprod ( retoosw [[m]][( buyLD [[m]][j,i
]+2) :( sellLD [[m]][j,i]) ,stock1 [1,i,m]])

665 weight2 [[m ]][1:(( sellLD [[m]][j,i]) -( buyLD [[m]][j,i]+1)),ind ]= cumprod ( retoosw [[m]][( buyLD [[m]][j,i
]+2) :( sellLD [[m]][j,i]) ,stock2 [1,i,m]])

666 ind=ind +1} else{
667 if (( buyLD [[m]][j,i]!=0)&( buyLD [[m]][j,i]== sellLD [[m]][j,i])){
668 weight1 [[m]][1 , ind ]=0
669 weight2 [[m]][1 , ind ]=0
670 ind=ind +1} else{
671 if (( buyLD [[m]][j,i]!=0)&( buyLD [[m]][j,i ]+1== sellLD [[m]][j,i])){
672 weightS1 [[m]][1 , ind ]=0
673 weightS2 [[m]][1 , ind ]=0
674 ind=ind +1} }}
675 }}
676 unity =rep (1, length =ncol( weight1 [[m]]))
677 weight1 [[m]]= rbind (unity , weight1 [[m]])
678 weight2 [[m]]= rbind (unity , weight2 [[m]])}
679
680 retL1 = matrix (nrow=nrow( retoos [[1]]) ,ncol =4)
681 retL2 = matrix (nrow=nrow( retoos [[2]]) ,ncol =4)
682 retL3 = matrix (nrow=nrow( retoos [[3]]) ,ncol =4)
683 retL4 = matrix (nrow=nrow( retoos [[4]]) ,ncol =4)
684 retL5 = matrix (nrow=nrow( retoos [[5]]) ,ncol =4)
685 retL6 = matrix (nrow=nrow( retoos [[6]]) ,ncol =4)
686 retL7 = matrix (nrow=nrow( retoos [[7]]) ,ncol =4)
687 retL8 = matrix (nrow=nrow( retoos [[8]]) ,ncol =4)
688 retL9 = matrix (nrow=nrow( retoos [[9]]) ,ncol =4)
689 retL= lapply ( paste ("retL", 1:9 , sep=’’), get)
690
691 for(m in 1: length ( buyLD )){ind =1
692 for(i in 1: ncol( buyLD [[m]])){
693 for(k in 1: nrow( buyLD [[m]])){
694 if( buyLD [[m]][k,i]!=0){
695 for(j in 1:(( sellLD [[m]][k,i]) -( buyLD [[m]][k,i]))){
696 retL [[m]][j,ind ]= weight1 [[m]][j,ind]* retoos [[m]][j+ buyLD [[m]][k,i],

stock1 [1,i,m]]- weight2 [[m]][j,ind]* retoos [[m]][j+ buyLD [[m]][k,i
], stock2 [1,i,m]]

697 }} else{ break }
698 ind=ind +1
699 }}
700 retL [[m]][ is.na(retL [[m]]) ]=0}
701
702 profitLD = matrix (ncol=max( sapply (buyLD , nnzero )), nrow= length (OOSa))
703 for(m in 1: length (OOSa)){
704 for(i in 1: ncol(retL [[m]])){
705 profitLD [m,i]= sum(retL [[m]][ ,i])
706 }}
707
708 # Information ratio , long
709 IRLD= matrix (nrow= length (OOSa), ncol=max( sapply (buyLD , nnzero )))
710 for(m in 1: length (OOSa)){
711 ind =1
712 for(n in 1: ncol( buyLD [[m]])){
713 for(i in 1: nrow( buyLD [[m]])){
714 if( buyLD [[m]][i,n]!=0){
715 IRLD[m,ind ]= mean(retL [[m ]][1:( sellLD [[m]][i,n]- buyLD [[m]][i,n]) ,ind]- PXOOS [[m]][( buyLD [[m]][i,

n]+1): sellLD [[m]][i,n] ,3])/sd(retL [[m ]][1:( sellLD [[m]][i,n]- buyLD [[m]][i,n]) ,ind]- PXOOS [[
m]][( buyLD [[m]][i,n]+1): sellLD [[m]][i,n] ,3])

716 ind=ind +1
717 }else{ break }
718 }}}
719
720 ## Short ##
721 sellSD =NULL
722 buySD =NULL
723 for(m in 1: length (dif)){
724 sellSD [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
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725 buySD [[m]]= matrix (nrow= rtime [m],ncol= iakcie [m])
726 }
727
728 for(m in 1: length (dif)){
729 for(i in 1: iakcie [m]){
730 ind =1
731 ibuyS =0
732 for(j in 1: rtime [m]){
733 if (( indSellS [[m]][j,i]> ibuyS )&( indSellS [[m]][j,i]!= rtime [m])){
734 for(k in 1: rtime [m]){
735 if( indBuyS [[m]][k,i]>= indSellS [[m]][j,i]){
736 isellS = indSellS [[m]][j,i]+1
737 ibuyS = indBuyS [[m]][k,i]+1
738 sellSD [[m]][ ind ,i]= indSellS [[m]][j,i]+1
739 buySD [[m]][ ind ,i]= indBuyS [[m]][k,i]+1
740 ind=ind +1
741 break
742 }
743 if ((k== rtime [m])&( indSellS [[m]][j,i]!= rtime [m])){
744 isellS = indSellS [[m]][j,i]+1
745 ibuyS = rtime [m]
746 sellSD [[m]][ ind ,i]= indSellS [[m]][j,i]+1
747 buySD [[m]][ ind ,i]= ibuyS
748 ind=ind +1
749 }
750 }
751 }}}
752 sellSD [[m]][ is.na( sellSD [[m]]) ]=0
753 sellSD [[m]]= as. matrix ( sellSD [[m]])
754 buySD [[m]][ is.na( buySD [[m]]) ]=0
755 buySD [[m]]= as. matrix ( buySD [[m]])
756 }
757
758 # Returns for each pair traded
759 weightS11 = matrix (nrow=nrow( retoos [[1]]) ,ncol =10)
760 weightS12 = matrix (nrow=nrow( retoos [[2]]) ,ncol =10)
761 weightS13 = matrix (nrow=nrow( retoos [[3]]) ,ncol =10)
762 weightS14 = matrix (nrow=nrow( retoos [[4]]) ,ncol =10)
763 weightS15 = matrix (nrow=nrow( retoos [[5]]) ,ncol =10)
764 weightS16 = matrix (nrow=nrow( retoos [[6]]) ,ncol =10)
765 weightS17 = matrix (nrow=nrow( retoos [[7]]) ,ncol =10)
766 weightS18 = matrix (nrow=nrow( retoos [[8]]) ,ncol =10)
767 weightS19 = matrix (nrow=nrow( retoos [[9]]) ,ncol =10)
768 weightS1 = lapply ( paste (" weightS1 ", 1:9 , sep=’’), get)
769
770 weightS21 = matrix (nrow=nrow( retoos [[1]]) ,ncol =10)
771 weightS22 = matrix (nrow=nrow( retoos [[2]]) ,ncol =10)
772 weightS23 = matrix (nrow=nrow( retoos [[3]]) ,ncol =10)
773 weightS24 = matrix (nrow=nrow( retoos [[4]]) ,ncol =10)
774 weightS25 = matrix (nrow=nrow( retoos [[5]]) ,ncol =10)
775 weightS26 = matrix (nrow=nrow( retoos [[6]]) ,ncol =10)
776 weightS27 = matrix (nrow=nrow( retoos [[7]]) ,ncol =10)
777 weightS28 = matrix (nrow=nrow( retoos [[8]]) ,ncol =10)
778 weightS29 = matrix (nrow=nrow( retoos [[9]]) ,ncol =10)
779 weightS2 = lapply ( paste (" weightS2 ", 1:9 , sep=’’), get)
780
781 for(m in 1: length ( POOSa )){ind =1
782 for(i in 1: ncol( sellSD [[m]])){
783 for(j in 1: nrow( sellSD [[m]])){
784 if (( sellSD [[m]][j,i]!=0)&( sellSD [[m]][j,i]!= buySD [[m]][j,i])&( sellSD [[m]][j,i]+1!= buySD [[m]][j,i])&(

sellSD [[m]][j,i]+2 < buySD [[m]][j,i])){
785 weightS1 [[m ]][1:(( buySD [[m]][j,i]) -( sellSD [[m]][j,i]+1)),ind ]= cumprod ( retoosw [[m]][( sellSD [[m]][j

,i]+2) :( buySD [[m]][j,i]) ,stock1 [1,i,m]])
786 weightS2 [[m ]][1:(( buySD [[m]][j,i]) -( sellSD [[m]][j,i]+1)),ind ]= cumprod ( retoosw [[m]][( sellSD [[m]][j

,i]+2) :( buySD [[m]][j,i]) ,stock2 [1,i,m]])
787 ind=ind +1} else{
788 if (( sellSD [[m]][j,i]!=0)&( sellSD [[m]][j,i]== buySD [[m]][j,i])){
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789 weightS1 [[m]][1 , ind ]=0
790 weightS2 [[m]][1 , ind ]=0
791 ind=ind +1} else{
792 if (( sellSD [[m]][j,i]!=0)&( sellSD [[m]][j,i ]+1== buySD [[m]][j,i])){
793 weightS1 [[m]][1 , ind ]=0
794 weightS2 [[m]][1 , ind ]=0
795 ind=ind +1} }}
796 }}
797 unity =rep (1, length =ncol( weightS1 [[m]]))
798 weightS1 [[m]]= rbind (unity , weightS1 [[m]])
799 weightS2 [[m]]= rbind (unity , weightS2 [[m]])}
800
801 retS1 = matrix (nrow=nrow( retoos [[1]]) ,ncol=max( sapply (sellSD , nnzero )))
802 retS2 = matrix (nrow=nrow( retoos [[2]]) ,ncol=ncol( sellSD [[2]]) )
803 retS3 = matrix (nrow=nrow( retoos [[3]]) ,ncol=ncol( sellSD [[3]]) )
804 retS4 = matrix (nrow=nrow( retoos [[4]]) ,ncol=ncol( sellSD [[4]]) )
805 retS5 = matrix (nrow=nrow( retoos [[5]]) ,ncol=ncol( sellSD [[5]]) )
806 retS6 = matrix (nrow=nrow( retoos [[6]]) ,ncol=ncol( sellSD [[6]]) )
807 retS7 = matrix (nrow=nrow( retoos [[7]]) ,ncol=ncol( sellSD [[7]]) )
808 retS8 = matrix (nrow=nrow( retoos [[8]]) ,ncol=ncol( sellSD [[8]]) )
809 retS9 = matrix (nrow=nrow( retoos [[9]]) ,ncol=ncol( sellSD [[9]]) )
810 retS= lapply ( paste ("retS", 1:9 , sep=’’), get)
811
812 for(m in 1: length ( sellSD )){
813 ind =1
814 for(i in 1: ncol( sellSD [[m]])){
815 for(k in 1: nrow( sellSD [[m]])){
816 if( sellSD [[m]][k,i]!=0){
817 for(j in 1:(( buySD [[m]][k,i]) -( sellSD [[m]][k,i]))){
818 retS [[m]][j,ind ]= -( weightS1 [[m]][j,ind]* retoos [[m]][j+ sellSD [[m]][k,i], stock1 [1,i,m]]-

weightS2 [[m]][j,ind]* retoos [[m]][j+ sellSD [[m]][k,i], stock2 [1,i,m]])
819 }} else{ break }
820 ind=ind +1
821 }}
822 retS [[m]][ is.na(retS [[m]]) ]=0}
823
824 profitSD = matrix (ncol=max( sapply (sellSD , nnzero )), nrow= length (OOSa))
825 for(m in 1: length (OOSa)){
826 for(i in 1: ncol(retS [[m]])){
827 profitSD [m,i]= sum(retS [[m]][ ,i])
828 }}
829
830 # Information ratio , short
831 IRSD= matrix (nrow= length (OOSa), ncol=max( sapply (sellSD , nnzero )))
832 for(m in 1: length (OOSa)){
833 ind =1
834 for(n in 1: ncol( sellSD [[m]])){
835 for(i in 1: nrow( sellSD [[m]])){
836 if( sellSD [[m]][i,n]!=0){
837 IRSD[m,ind ]= mean(retS [[m ]][1:( buySD [[m]][i,n]- sellSD [[m]][i,n]) ,ind]- PXOOS [[m]][( sellSD [[m]][i

,n]+1): buySD [[m]][i,n] ,3])/sd(retS [[m ]][1:( buySD [[m]][i,n]- sellSD [[m]][i,n]) ,ind]- PXOOS [[
m]][( sellSD [[m]][i,n]+1): buySD [[m]][i,n] ,3])

838 ind=ind +1
839 }else{ break }
840 }}}
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