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Abstract

In this thesis, we deal with the Arrow-Debreu model of general equilibrium,
which is an integrated model of production, exchange and consumption.

At the beginning, we present and discuss the original assumptions of the
Arrow-Debreu model, i.e. the assumptions introduced by Kenneth J. Arrow
and Gerard Debreu in 1954. Under these assumptions, Arrow and Debreu
proved the existence of a general equilibrium.

As a part of the proof, Arrow and Debreu showed that the equilibria of
their model are the same as the equilibria of an abstract economy, or a gen-
eralized Nash equilibrium problem (GNEP). We describe the GNEP and look
at whether there is a connection which allows to apply results developed by
researchers from other disciplines to the Arrow-Debreu model.

A part of the thesis is dedicated to a two-factor, two-commodity, two-
consumer model, which is based on the original assumptions of Arrow and
Debreu. In order to find the solution, we use a method called applied general
equilibrium modelling and a software called GAMS. We examine the impact
of better technology and taxes on consumers and producers.

We have brief remarks on applications of the model at the end.

Abstrakt

V této práci se zabýváme Arrowovým-Debreuovým modelem všeobecné rovno-
váhy, což je model integruj́ıćı výrobu, směnu a spotřebu.

Na začátku uvád́ıme a diskutujeme p̊uvodńı předpoklady Arrowova-Deb-
reuova modelu, tj. předpoklady představené Kennethem J. Arrowem a Gerar-
dem Debreuem roku 1954. Za těchto předpoklad̊u dokázali Arrow a Debreu
existenci všeobecné rovnováhy.

V jedné části tohoto d̊ukazu Arrow a Debreu ukázali, že rovnováhy v je-
jich modelu jsou zároveň rovnováhami v jisté abstraktńı ekonomice, neboli
v problému zobecněné Nashovy rovnováhy. Vysvětlujeme, co problém zobec-
něné Nashovy rovnováhy je, a d́ıváme se, zda existuje spojitost, která dovo-
luje výsledky dosažené výzkumńıky z jiných discipĺın aplikovat na Arrowův-
Debreůuv model.

Část práce je věnována modelu se dvěma výrobńımi faktory, dvěma ko-
moditami a dvěma spotřebiteli, založeném na p̊uvodńıch předpokladech Ar-
rowa a Debreua. Abychom nalezli řešeńı, použ́ıváme metodu aplikovaného
modelováńı všeobecné rovnováhy a software nazvaný GAMS. Zkoumáme vliv
lepš́ı technologie a dańı na spotřebitele a výrobce.

Na konci máme stručné poznámky k aplikaćım modelu.
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1 Introduction

In 1954, Kenneth J. Arrow and Gerard Debreu, both Nobel Prize laureates,
proved the existence of an equilibrium for an integrated model of production,
exchange and consumption. New advances have been made in the theory of the
model since 1954, but the core of the model has remained unchanged and is the
basis of what is now known as the Arrow-Debreu model of general equilibrium.

At the beginning of the thesis, in chapter 2, we present the original assump-
tions of the Arrow-Debreu model, i.e. those assumptions introduced by Arrow
and Debreu in 1954. As some of these assumptions may appear unrealistic, we
provide further discussions and acquaint the reader with how Arrow, Debreu
and other authors tried to weaken such assumptions. Also in chapter 2, the
existence theorem of Arrow and Debreu is stated.

The proof of this theorem works with the concept of an abstract econ-
omy. Generalized Nash equilibrium problem (GNEP) is another name for the
abstract economy. GNEPs have found many applications in various fields re-
cently. In chapter 3, we try to look at whether there is a connection which
allows to apply results developed for GNEPs to the Arrow-Debreu model.

In chapter 4, we examine uniqueness and stability of general equilibria in
the Arrow-Debreu model.

We deal with a two-factor, two-commodity, two-consumer model (a 2×2×2
model) in chapter 5. This 2×2×2 model is based on the original assumptions
of the Arrow-Debreu model. In order to find the solution, we use a method
called applied general equilibrium modelling or computable general equilibrium
modelling and a software called General Algebraic Modeling System (GAMS).
Among other things, we address the following question: What is the effect of
innovations in the technology of a producer on the consumers in our 2× 2× 2
model? Then we add the government to the model, to illustrate one of the
most typical applications of applied general equilibrium modelling: an analysis
of the impact of tax reforms.

In chapter 6, we provide comments on finding solutions to the Arrow-
Debreu model.

We have brief remarks on applications of the model in chapter 7.
The aims of the thesis are primarily

• to provide a good description of the Arrow-Debreu model which would
reflect modern scientific advances and applications;

• and to draw attention to the fact that there still might be room for
improvement of the model.
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2 Original Assumptions of the Arrow-Debreu Model

A model of general equilibrium was first formulated by Walras in 1874. Wal-
ras set the problem and research agenda perhaps for all of twentieth-century
mathematical general equilibrium theory by formulating his model (Starr 2011,
p. 8). Walras did not, however, prove the existence of general equilibrium.

The existence of general equilibrium was proved in 1954, almost simulta-
neously by Arrow and Debreu and by McKenzie.

This section includes nine assumptions, denoted by Roman numerals, which
were introduced by Arrow and Debreu (1954) in their seminal paper Existence
of an Equilibrium for a Competitive Economy and can be considered the orig-
inal assumptions of the Arrow-Debreu model of general equilibrium.

The assumptions are divided into two groups: assumptions on the produc-
tion process and assumptions on the consumption process.

After discussing the assumptions, we present a note on Arrow-Debreu com-
modities and then we state the original existence theorem for the Arrow-Debreu
model.

2.1 Original Assumptions of Arrow and Debreu on the Production
Process

Let l be the number of commodities. The index h, which runs from 1 to l, will
designate different commodities.

Let n be the number of producers. The index j, which runs from 1 to n,
will designate different producers. Let yj be a particular production plan of
the j-th producer. Let yjh be the amount of produced commodity h according
to the particular production plan yj. Commodities which serve as inputs in
the production plan yj will be treated as negative components. Let Yj be the
set of all possible production plans for the j-th producer, j = 1, . . . , n.

I For all j ∈ 1, . . . , n, Yj is a closed convex subset of Rl containing 0 (which
is a vector all of whose components are 0).

Arrow and Debreu (1954, p. 267) argue that the assumption I implies
non-increasing returns to scale. They implicitly suppose that producers
can be output inefficient, i.e. that they can use a particular combination
of inputs to produce less output than how much output it is actually
possible to produce from those inputs. Nevertheless, a profit-maximizing
producer will, of course, never be output inefficient. By assuming that
Yj contains 0 it is meant that a producer does not have to produce.

II Y ∩W = 0, where

Y = {y | y =
n∑
j=1

yj, yj ∈ Yj}

and
W = {w | w ∈ Rl

+}.

This assumption, called weak essentiality, means that there is no prac-
ticable input-output schedule for the production sector as a whole such

2



that some output is produced without using any input. It follows that
no producer is able to produce anything from nothing.

III Y ∩ −Y = 0.

The assumption, sometimes called irreversibility, means that a producer
can never use their output to obtain back all of the inputs used to produce
the output. The assumption reflects the fact that some labour or energy
always have to be used in the production process.

2.2 Original Assumptions of Arrow and Debreu on the Consump-
tion Process

Let m be the number of consumers. The index i, which runs from 1 to m, will
designate different consumers. Let xi be a particular vector in Rl representing
consumption of the i-th consumer. This vector will be called the consumption
bundle of the i-th consumer. Let xih be the amount of consumed commodity h
according to the consumption bundle xi. If h denotes a labour service, then
xih ≤ 0. Let Xi be the set of all consumption bundles for the i-th consumer,
i = 1, . . . ,m.

IV Xi, i = 1, . . . ,m, is a closed convex subset of Rl bounded from below,
i.e. there is a vector ξi such that ξi ≤ xi for all xi ∈ Xi.

Arrow and Debreu (1954, pp. 268-269) interpret the set Xi as a set in-
cluding all consumption bundles xi among which the i-th consumer could
conceivably choose if there were no budgetary restraints. The justifica-
tion of why Xi should be bounded from below is that consumers cannot
supply more than 24 hours of labour services per day and they cannot
consume less than nothing.

Consumers are supposed to be capable of comparing their consumption
bundles between each other based on their preferences. Arrow and Debreu
(1954) present utility function ui to describe preferences of the i-th consumer.
For ui, i = 1, . . . ,m, it holds:

• ui(x′i) = ui(x
′′
i ) if and only if the i-th consumer is indifferent between x′i

and x′′i ;

• ui(x′i) > ui(x
′′
i ) if and only if the i-th consumer prefers x′i to x′′i .

V ui(xi) is a continuous function on Xi.

Debreu (1954) showed that this assumption is equivalent to the assump-
tion that for all x′i the better set for x′i, i.e. {xi | xi ∈ Xi and x′i is preferred
or indifferent to xi}, as well as the worse set for x′i, i.e. {xi | xi ∈ Xi and
xi is preferred or indifferent to x′i}, are closed in Xi. It means that the
better set and the worse set will have a part of their boundaries in com-
mon. This part will be composed of points xi for which ui(xi) = ui(x

′
i).

The set of such points xi is called the indifference set. Gravelle and Rees
(2004, p. 14) tell us that, thanks to such an assumption, given two goods
in the consumption bundle of a consumer, we can reduce the amount of
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one good, and however small this reduction is, we can always find an
increase in the other good which will leave the consumer with a con-
sumption bundle indifferent to the first.1 But, if the two goods in his
consumption bundle were, for example, race horses and chocolate, it is
open to doubt whether there exists a part of a race horse which would
exactly offset one bar of chocolate (since one race horse would be typi-
cally worth of many bars of chocolate, whereas a part of a horse would
be typically worth nothing, or even a negative amount).

Facchinei and Kanzow (2010, p. 192) show that there is a possibility of
replacing the continuity assumption with a weaker assumption of pseudo-
continuity in generalized Nash equilibrium problems. As we will see later,
the Arrow-Debreu model can be considered an example of generalized
Nash equilibrium problems.

VI For every x′i there exists x′′i such that ui(x
′′
i ) > ui(x

′
i).

So, there is no point of saturation, i.e. no consumption bundle which
would be preferred to all other consumption bundles.

VII If ui(x
′′
i ) > ui(x

′
i) and 0 < t < 1, then ui[tx

′
i + (1− t)x′′i ] > ui(x

′
i).

Arrow and Debreu (1954, pp. 269-270) show that this assumption is
stronger than the assumption of quasi-concavity2 but weaker than the
assumption of strict quasi-concavity.3

VIII αij ≥ 0 for all i, j and
∑m

i=1 αij = 1 for all j, where αij is the contractual
claim of the i-th consumer to the share of the profit of the j-th producer.

All profits are paid out to shareholders (who are consumers at the same
time), i.e. no earnings are retained in firms.

IX xi < ζi for some xi ∈ Xi, where ζi ∈ Rl is the vector of initial endowment
for the i-th consumer.

This assumption is by far the most problematic one. What the assump-
tion says is that every consumer owns such an amount of each commodity
that after consuming out of his initial endowment in some feasible way,
they will still have a positive amount of each commodity available for
trading in the market. Necessity of an assumption like this results from
the fact that it must be secured that every consumer owns at least one
commodity which is valuable at the market. Nevertheless, Arrow and

1Gravelle and Rees do not include labour services in the consumption bundles at this part of
their book.

2Let M ⊂ Rk, k ∈ N, be a convex set and let f be a function defined on M . We say that f is
quasi-concave on M if

∀a, b ∈M ∀t ∈ [0; 1] : f(ta+ (1− t)b) ≥ min {f(a); f(b)}.

3Let M ⊂ Rk, k ∈ N, be a convex set and let f be a function defined on M . We say that f is
strictly quasi-concave on M if

∀a, b ∈M,a 6= b ∀t ∈ (0; 1) : f(ta+ (1− t)b) > min {f(a); f(b)}.
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Debreu (1954, pp. 279-280) were able to come up with a weakening of
the assumption – namely, they showed that it is sufficient to assume in-
stead that a commodity exists which is desired by everyone and that each
consumer is endowed with a commodity which cannot be produced and
which is always productive.4 Labour could be considered such a commod-
ity. However, it is important to remember that labour of a doctor and
labour of an ice-cream vendor will be considered different commodities
in a typical economy.

Since then, other authors managed to weaken the assumption IX. McKen-
zie (1959, 1961) shows that the condition of irreducibility can be assumed
instead of the assumption IX so that the existence of a general equilib-
rium still can be proved. The condition of irreducibility means that no
such a partition of economic agents (consumers and producers) into two
groups exists that one group is not capable of supplying any commodi-
ties to the other group while the former group wants some commodi-
ties that the latter group has. Maxfield (1997) shows that the assump-
tion IX can be relaxed when utility functions and sets of all production
plans are restricted to a special class of forms. According to Maxfield,
e.g. Cobb-Douglas and constant elasticity of substitution (CES) utility
functions can be used for representing preferences of consumers, while
Cobb-Douglas and constant elasticity of substitution (CES) production
functions can be used for representing technology of producers.5

2.3 Arrow-Debreu Commodities

Let us focus on the notion of commodity for a while. Commodities are goods
and services transferable in the market. Arrow and Debreu suppose that there
is a finite number of distinct commodities. They distinguish commodities
according to

1. their attributes;

2. the location at which they are made available;

3. and the date at which they are made available.

4A productive commodity can be described as a commodity such that, if no restriction is imposed
on the amount of this commodity, it is possible to increase the output of at least one commodity
that is desired by every consumer without decreasing the output or increasing the input of any
commodity other than the productive commodity under consideration. A precise mathematical
definition is given by Arrow and Debreu (1954, p. 280).

5The Cobb-Douglas utility function for the i-th consumer is a function of the form

ui(xi) =

l∏
h=1

x
βih
ih ,

where βih ≥ 0, h = 1, . . . , l.
The CES utility function for the i-th consumer is a function of the form

ui(xi) = (

l∑
h=1

aihx
βi
ih)1/βi ,

where aih ≥ 0, h = 1, . . . , l and βi < 1.
The Cobb-Douglas and CES production functions are defined similarly, see Maxfield (1997, p. 31).
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So, for instance,

1. wheat available today in Prague and barley available today in Prague are
deemed to be different commodities;

2. wheat available today in Prague and wheat available today in Bratislava
are deemed to be different commodities;

3. wheat available today in Prague and wheat available in Prague in twelve
months are deemed to be different commodities.

Clearly, the set of possible bundles of attributes, the set of possible locations
and the set of possible dates must be finite, should the number of distinct
commodities be finite.

If there are two commodities which differ so little that the difference influ-
ences neither the decisions of consumers nor the decisions of producers (they
are perfect substitutes for everyone), we can effectively consider these two com-
modities to be the same commodity. Such a commodity is sometimes referred
to as the Arrow-Debreu commodity.

When the descriptions [of commodities] are so precise that further refinements

cannot yield imaginable allocations which increase the satisfaction of the agents

in the economy, then the commodities are called Arrow-Debreu commodities.

(Geanakoplos 1989)

This definition is illustrated on the following example:
Suppose that there are three squares in a city and that these squares are

identical perfectly competitive ice-cream markets (there are many ice-cream
vendors in each of these squares).

The first two of these squares are very close to each other. Ice cream in
the first square and ice cream in the second square are perfect substitutes
for all consumers in the city, irrespective of where the consumers are. Hence,
ice cream in the first square and ice cream in the second square are a single
Arrow-Debreu commodity.

In contrast, the third of these squares is quite far from the other squares.
Some consumers who are close to the third square would purchase the same
amount of ice cream in the third square even if the price was slightly higher
than the price of the same ice cream in the first two squares. Similarly, some
consumers who are close to the first two squares would purchase the same
amount of ice cream in one of the first two squares even if the price was
slightly higher than the price of ice cream in the third square. Hence, it is
necessary to regard ice cream in the third square as another Arrow-Debreu
commodity.

2.4 Existence of an Equilibrium for the Arrow-Debreu Model

The notion of equilibrium for an economy satisfying the assumptions given
above needs to be defined, before we start to occupy ourselves with the exis-
tence of an equilibrium. We should point out that Arrow and Debreu denote
general equilibrium in their model as competitive equilibrium. Other names
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for the competitive equilibrium appear in the literature, such as the Arrow-
Debreu equilibrium or the Walrasian equilibrium. Let ph be the price of the
h-th commodity, h = 1, . . . , l, and let p be the vector of prices of those l
commodities.

Definition 1. A set of vectors (x∗1, . . . , x
∗
m, y

∗
1, . . . , y

∗
n, p
∗) is said to be a com-

petitive equilibrium if the following conditions are satisfied:

1. y∗j maximizes (p∗)Tyj over the set Yj for each j;

2. x∗i maximizes ui(xi) over the set

{xi | xi ∈ Xi, (p
∗)Txi ≤ (p∗)T ζi +

n∑
j=1

αij(p
∗)Ty∗j};

3. p∗ ∈ {p | p ∈ Rl, p ≥ 0,
∑l

h=1 ph = 1};

4. z∗ ≤ 0, (p∗)T z∗ = 0, where

z =
m∑
i=1

xi −
n∑
j=1

yj −
m∑
i=1

ζi.

The first condition means that producers maximize their profits,6 while
they take prices as given (which is a usual assumption of perfect competition).
The second condition means that consumers maximize their utility functions
while being constrained by their budgets. The third condition means that
prices must be non-negative and at least one of them must be positive. The
fourth condition means that there may be some free goods, so that supply may
exceed demand, but it can never happen that demand exceeds supply in an
equilibrium (since prices would rise in such a case).

Now we are ready to state the existence theorem.

Theorem 1. For any economic system that satisfies assumptions I-IX there
exists a competitive equilibrium.

The proof is provided by Arrow and Debreu (1954, pp. 274-279). Arrow and
Debreu made use of the Kakutani’s fixed-point theorem, which is a generaliza-
tion of the Brouwer’s fixed-point theorem. The use of a fixed-point theorem
for demonstrating the existence of an equilibrium of a game was pioneered by
Nash in 1950 (Starr 2011, p. 10). It should be noted that McKenzie (1954)
used the Kakutani’s fixed point theorem as well to show the existence of a
general equilibrium. McKenzie’s paper was published one month earlier than
the 1954 paper of Arrow and Debreu (which was written independently of the
McKenzie’s paper, though). That is why the Arrow-Debreu model is some-
times called the Arrow-Debreu-McKenzie model. Unlike Arrow and Debreu,
McKenzie never received the Nobel Prize. Geanakoplos (1989) writes that
the disadvantage of the McKenzie’s theorem, compared to the Arrow-Debreu
theorem, was that the assumptions were made on demand functions, rather

6Because (p∗)T yj includes revenues as well as costs.
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than on preferences. The roles of these three authors as well as some issues
concerning the Nobel Prizes are discussed by Dueppe and Weintraub (2014).

The proof by Arrow and Debreu works with the concept of an abstract
economy. As a part of the proof, Arrow and Debreu showed that the equilibria
of their model are the same as the equilibria of their abstract economy. It
emerged that the abstract economy is a really useful concept not only in eco-
nomics, but also in many other fields. Another name for the abstract economy
is frequently used: the generalized Nash equilibrium problem.

8



3 Generalized Nash Equilibrium Problems

We find it useful to look at the other properties of the Arrow-Debreu equi-
librium, such as uniqueness or stability, from a more general perspective of
generalized Nash equilibrium problems. The generalized Nash equilibrium
problems are presented in this chapter.

The Nash equilibrium problem is a multi-player non-cooperative game
where the goal is to find a solution in which no player has any motivation
to change their own strategy unilaterally (Kubota and Fukushima, 2009). The
generalized Nash equilibrium problem (GNEP) is a generalization of the Nash
equilibrium problem in which each player’s strategy set depends on the chosen
strategies of other players. The following formal description of the GNEP is
based on a description of the GNEP by Facchinei and Kanzow (2010).

Let there be k players, each player ν controlling decision variables dν ∈ Rqν .
We denote by d the vector formed by all these decision variables:

d := (d1, . . . , dν , . . . , dk)T ,

which has the dimension

q := q1 + . . .+ qν + . . .+ qk.

Furthermore, we denote by d−ν the vector formed by all the decision variables
but for the decision variables controlled by player ν:

d−ν := (d1, . . . , dν−1, dν+1, . . . , dk)T .

Each player has an objective function θν : Rq → R which depends on his
own decision variables dν as well as on the decision variables of all the other
players d−ν .

In addition, each player’s strategy must belong to a strategy set

Dν(d
−ν) ⊂ Rqν .

The aim of player ν, given the other players’ strategies d−ν , is to choose a
strategy dν , which solves the following maximization problem:

maximize
dν

θν(d)

subject to dν ∈ Dν(d
−ν).

Let us denote the solution set of this maximization problem as Sν(d
−ν).

Then the GNEP is the problem of finding a vector d̄ such that

d̄ν ∈ Sν(d̄−ν) for all players ν = 1, . . . , k.

Such a point d̄ is called a generalized Nash equilibrium. If the strategy
sets Dν(d

−ν) do not depend on the strategies of the other players, the GNEP
reduces to the Nash equilibrium problem.

The GNEP was first formally introduced by Debreu (1952), who used the
term social equilibrium. This paper was intended to be a preparation for the
Arrow and Debreu 1954 paper, where the term abstract economy was used.
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Their abstract economy is a GNEP where there are k = n+m+ 1 players:
n producers, m consumers and 1 fictitious market participant.

The problem of the j-th producer, who controls the variables yj, is:

maximize
yj

pTyj

subject to yj ∈ Yj.
The problem of the i-th consumer, who controls the variables xi, is:

maximize
xi

ui(xi)

subject to xi ∈ Xi,

pTxi ≤ pT ζi + max {0;
n∑
j=1

αijp
Tyj}.

The problem of the fictitious market participant is:

maximize
p

pT z

subject to p ∈ Rl, p ≥ 0,
l∑

h=1

ph = 1,

where

z =
m∑
i=1

xi −
n∑
j=1

yj −
m∑
i=1

ζi.

The problem of the fictitious market participant corresponds to the clas-
sical law of supply and demand. Indeed, for a given z, the fictitious market
participant’s objective function can be increased by increasing ph for those
commodities for which zh > 0 or by decreasing ph for those commodities for
which zh < 0.

The need for formulating the economic system as a GNEP in the Arrow-
Debreu model arises from the fact that consumers are subject to the restriction
that the cost of the commodities chosen at current prices does not exceed their
income. But the prices and possibly some or all of the components of their
income are determined by the choices of the other consumers and by the choices
of producers as well.

So, the Arrow-Debreu model can be classified as a GNEP.
Generalized Nash equilibrium problems tend to occur where the players

share a common resource (for example a communication link or an electrical
transmission line) or where the players share a common limitation, such as a
common limit on the total pollution in an area (Facchinei and Kanzow 2010,
p. 181).

GNEPs are being frequently used in many different fields. Facchinei and
Kanzow write that GNEPs lie at the intersection of disciplines such as eco-
nomics, engineering, mathematics, computer science and operations research.
Quite naturally, researchers from some disciplines have sometimes worked in-
dependently of researchers from other disciplines. This means that it might
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be really beneficial for economists to check the results obtained in other dis-
ciplines, as well as for researchers from other disciplines to check the results
obtained in economics.
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4 Uniqueness and Stability of General Equilibrium

4.1 Uniqueness of General Equilibrium

Facchinei and Kanzow (2010, p. 196) say that global uniqueness results, as far
as the GNEPs are concerned, can be obtained, but it is usually possible only
in the context of some specific problems. We will see that some results were
actually obtained in the context of the Arrow-Debreu model, but only under
restrictive assumptions. Furthermore, Facchinei and Kanzow state that local
uniqueness might be also of interest.

Two notions need to be explained: a null set (or a set of measure zero) and
a pure exchange economy.

We say that a subset of Rn, n ∈ N, is null if it has Lebesgue measure zero in
Rn (Debreu 1970, p. 388). In a simplified way, if we say that something is true
outside a null subset, we mean it is true almost everywhere (Bartoszynski and
Niewiadomska-Bugaj 2008, p. 145). Examples of null subsets in Rn include
finite sets or sets of all elements of a countable sequence in Rn.

A pure exchange economy is such an economy in which economic agents
have given endowments of commodities and exchange the commodities among
themselves to achieve preferred consumption patterns (Gravelle and Rees 2004,
p. 92). Such an economy does not contain a production sector. In the pure
exchange economy, each consumer can transform their endowed bundle of com-
modities into some other bundle through exchange, but the total amount con-
sumed of each commodity cannot exceed the total initial amount of it. This
implies that a pure exchange economy can be cast as a GNEP (von Heusinger
2009, p. 13).

According to Facchinei and Kanzow (2010), a significant paper in terms of
local uniqueness is Economies with a Finite Set of Equilibria by Debreu (1970).
Debreu showed that outside a null closed subset of the space of pure exchange
economies, every economy has a finite set of equilibria under the assumptions
that there are l commodities and m consumers whose needs and preferences
are fixed and whose resources vary and that there is a consumer by whom every
commodity is desired. In addition, it is assumed that excess-demand functions
(functions expressing the excess of quantity demanded over quantity supplied)
are differentiable functions of both prices and the distribution of endowments.
Arrow and Hahn (1971, p. 244) believe that the result achieved by Debreu
is the best possible result, in terms of uniqueness of competitive equilibrium,
that is short of too restrictive assumptions.

Local uniqueness is a prerequisite for comparative statics to be well defined
in the Arrow-Debreu model (Geanakoplos 1989, p. 121). The method of com-
parative statics is used, for example, in applied general equilibrium modelling,
when it is being examined what the effect of a policy could be (Cardenete et
al. 2012, p. 15). Later on, when dealing with the 2 × 2 × 2 model, we will
incorporate the government to the Arrow-Debreu model and look at how it is
possible to study potential effects of a tax levied by the government.

In addition, local uniqueness provides a satisfactory foundation for conduct-
ing research on the stability of competitive equilibria (Debreu 1970, p. 387).
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However, local uniqueness is not enough to secure that comparative statics
can be used without problems (Kehoe 1998, p. 38).

Under some further assumptions, the equilibrium of the Arrow-Debreu
model can be proved to be even globally unique. For this purpose, we de-
fine gross substitutes (according to Arrow and Hurwicz 1960).

Definition 2. Commodities are all said to be gross substitutes, if
∂zh1
∂ph2

> 0 for

all h1 6= h2. Here, zhk , k = 1, 2, is the excess demand for commodity hk, i.e.

zhk =
m∑
i=1

xihk −
n∑
j=1

yjhk −
m∑
i=1

ζihk .

Arrow and Hahn (1971, p. 222) present the following theorem:

Theorem 2. If all commodities are gross substitutes for every set of equilib-
rium prices and if there exists a numeraire, then the equilibrium is globally
unique.

A numeraire is a commodity in terms of which all prices in the economy
are expressed.

The condition that there exists a numeraire replaces the condition that∑l
h=1 ph = 1. Since the price of the numeraire will be 1, it is guaranteed that

at least one price will be positive.

The condition
∂zh1
∂ph2

> 0 for all h1 6= h2 is a sufficient condition for global

uniqueness, while
∂zh1
∂ph2

≥ 0 for all h1 6= h2 is a necessary condition (Kehoe

1998, p. 43).
Gross substitutability is quite a restrictive assumption. Under gross substi-

tutability, demands for all commodities must be elastic, because if a rise in the
price of the commodity h raises the demand for every commodity other than
h, then the total expenditure on the commodity h must diminish. However,
Fisher (1972) shows that there exist some common utility functions for which
gross substitutability holds – for instance the Cobb-Douglas utility function.
We will make use of this fact later.

Instead of gross substitutability, the weak axiom of revealed preference can
be assumed to hold (Kehoe 1998, pp. 44-47). However, the weak axiom of
revealed preference has a big disadvantage compared to the condition of gross
substitutability – even though all excess demand functions satisfy the axiom,
their sum may not and there may be non-unique equilibria (Kehoe 1998, p. 45).

4.2 Stability of General Equilibrium

The condition of gross substitutability plays a key role also as far as the sta-
bility of general equilibrium is concerned. Gravelle and Rees (2004, p. 206)
give the following definition of globally stable systems:

Definition 3. Assume that there exists at least one equilibrium price vector
p∗ = (p∗1, p

∗
2, . . . , p

∗
l ), and at an initial moment of time t = 0, there exists a price

vector p(0) 6= p∗. Furthermore, assume that time varies continuously, and the
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price vector is a vector-valued function of time, p(t) = (p1(t), p2(t), . . . , pl(t)).
Then a system is said to be globally stable if

lim
t→∞

p(t) = p∗

given any initial price vector p(0).

Let the time path of prices, p(t), be determined by the tâtonnement adjust-
ment process. Then it can be shown (Gravelle and Rees 2004, pp. 262-265) that
a system is globally stable, if all goods in the economy are gross substitutes.

Again, the condition of gross substitutability can be replaced by the weak
axiom of revealed preference in proving the stability of general equilibrium
(Kehoe et al. 2005, p. 4).

The results regarding the stability of general equilibrium presented here
were achieved by Arrow et al. (1959) and by Uzawa (1960).

An interesting general result regarding stability was obtained by Morgan
and Scalzo (2008).

Definition 4. Let f : M ⊂ Rn → R be a function.

• f is said to be upper pseudo-continous at x ∈ M , if for all y ∈ M such
that f(x) < f(y), we have

lim sup
z→x

f(z) < f(y),

and f is said to be upper pseudo-continuous on M if it is upper pseudo-
continuous at every point x ∈M .

• f is said to be lower pseudo-continuous at x ∈M (on M) if −f is upper
pseudo-continous at x (on M).

• f is said to be pseudo-continuous at x ∈ M (on M) if it is both upper
and lower pseudo-continuous at x (on M).

Morgan and Scalzo investigate the stability of GNEPs using an alternative
name for GNEPs: social Nash equilibrium. They show that it is possible to get
stability results for GNEPs even in such cases where the objective functions are
not continuous but only pseudo-continuous. Again, since the Arrow-Debreu
model can be represented as a GNEP, the results achieved by Morgan and
Scalzo could be applied to the Arrow-Debreu model.
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5 The 2× 2× 2 Model

In what follows a special case of the Arrow-Debreu model will be discussed –
a two-factor, two-commodity, two-consumer model (a 2 × 2 × 2 model). We
will show a method to obtain solutions to 2× 2× 2 models.

To learn the way of obtaining solutions to 2×2×2 models may be considered
the first step in learning how to apply the general equilibrium theory. As we
will see later, the Arrow-Debreu model does have real-world applications. One
class of these applications is called the applied general equilibrium (AGE), or
sometimes the computable general equilibrium (CGE).

The very first researcher to come up with a numerical application of the
general equilibrium theory was Johansen (1960) who tried to reveal the sources
of economic growth in Norway.

Scarf (1967) came up with an algorithm which guaranteed that equilibria
could be found to any desired degree of approximation. The ideas contained
in his 1967 paper were further developed in the monograph The Computation
of Economic Equilibria, which was written by Scarf and Hansen (1973).

5.1 Assumptions of the 2× 2× 2 Model

In order to obtain the solution to our 2 × 2 × 2 model, we will adopt an
approach descended from the input-output models, which were pioneered by
Nobel laureate Wassily Leontief (see, for instance, Leontief 1966). Such an
approach was used for example in the monograph Applied General Equilibrium:
An Introduction by Cardenete et al. (2012) and we adopt their approach in this
thesis. We will see that this approach is in accordance with the assumptions
of the Arrow-Debreu model. The methodology that will be used is applied
general equilibrium modelling and the software that will be used is GAMS.

Hosoe et al. (2010) adopt a similar approach and use GAMS as well (and
advise the readers how they can use GAMS on their own). Their computable
general equilibrium model contains even only one household.

The 2×2×2 model will be further elaborated afterwards, as we would like
to show how the government can be incorporated. Including the government
gives rise to one of the most important application of computable general
equilibrium modelling: evaluation of taxes.

We assume there are two producers, j = 1, 2, each of whom produces
a distinct commodity h = 1, 2, respectively. In spite of the small number of
agents, we assume that the producers act as price takers. The same is assumed
in the case of consumers i = 1, 2. Alternatively, we can imagine that there
are two perfectly competitive industries in the economy, j = 1, 2, each of the
industries consisting of identical firms, and two groups of consumers, i = 1, 2,
each group containing consumers who are similar to each other, as far as their
utility functions and initial endowments are concerned. Then it would be
plausible to assume that the producers and consumers act as price takers. For
clarity, however, we will keep saying just producer 1, producer 2, consumer 1
and consumer 2 in what follows.

In the process of production, the producers use two factors of production,
say labour and land, which are commodities initially owned by the consumers.
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These factors of production are therefore the initial endowments of the con-
sumers.

Preferences of our consumers are represented by the Cobb-Douglas utility
functions of the following form:

u1(x11;x12) = xβ1111 x
β12
12 ,

u2(x21;x22) = xβ2121 x
β22
22 ,

where β11, β12, β21, β22 > 0, β12 = 1− β11, β22 = 1− β21.
Recall please that xih refers to the amount of commodity h consumed by

the i-th consumer (where i = 1, 2 and h = 1, 2 in this case). However, we
do not stick to the convention that labour (or land) are negative components
of xi, hoping that it will not lead to any confusion. Cobb-Douglas utility
functions are strictly quasi-concave so that the assumption VII of chapter 2
holds, according to the note below the assumption. Clearly, the assumptions
V and VI hold too.

The endowment vectors are of the form

ζ1 = (ζ11, ζ12),

ζ2 = (ζ21, ζ22),

where ζig, i = 1, 2 and g = 1, 2, is the initial endowment of the i-th consumer
with the g-th factor of production (g = 1 refers to labour and g = 2 refers to
land). We assume that ζig > 0, i = 1, 2 and g = 1, 2.

The assumption IV is fulfilled because our consumers cannot consume neg-
ative components of commodities h = 1, 2 and, at the same time, they cannot
offer more labour than ζi1 and more land than ζi2. Unfortunately, the assump-
tion IX is violated in this setting. However, as is mentioned below the assump-
tion IX, the purpose of the assumption is to secure that every consumer owns
at least one commodity which is valuable at the market. This requirement will
be met in our setting, as labour and land are always needed for production.
Thus, the price of labour and land will be positive if something is produced in
the economy, which can be taken for granted.

The technology of the producers will be described by the Leontief produc-
tion functions

yj = min

{
φj
vj

;
ψj1
aj1

;
ψj2
aj2

}
, j = 1, 2,

where φj are auxiliary production functions which are used to represent the
substitution possibilities of both producers between labour and land; ψj1 =
aj1yj, ψj2 = aj2yj are the amounts of commodities 1 and 2 (those produced
by producers 1 and 2) needed to produce commodity j (intermediary inputs
for commodity j); aj1, aj2 are input-output coefficients that describe the re-
lation between the output and intermediary inputs in the production process
conducted by the j-th producer.

In our 2× 2× 2 model,

φj = µjχ
γj1
j1 χ

γj2
j2 ,
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where γj1, γj2 > 0, γj2 = 1 − γj1. Furthermore, χj1, χj2 are the amounts of
factors of production, i.e. labour and land, respectively. Again, we decided not
to stick to the convention that inputs are negative components of yj.

The coefficients ajh can be either positive, or zero; but if ajh = 0, we have to

drop the expression
ψjh
ajh

from the production function yj = min
{
φj
vj

;
ψj1
aj1

;
ψj2
aj2

}
.

We can arrange the coefficients ajh into the input-output matrix

A =

(
a11 a21
a12 a22

)
.

Hosoe et al. (2010, p. 3) write that, for practical purposes, the world-
wide input-output tables, as well as other data needed for computable general
equilibrium modelling, are prepared by the Global Trade Analysis Project.

In what follows we assume that ajh > 0, j = 1, 2 and h = 1, 2. In such
a case, we can, according to Arrow and Debreu (1954, p. 270), use another
assumption instead of the assumption IX that will guarantee that a solution
to our 2 × 2 × 2 model exists: Each commodity enters into every production
process as an input or as an output.

Our production functions exhibit constant returns to scale, which means
that the assumption I is fulfilled. The assumptions II and III are fulfilled as
well, thanks to the form of the Leontief production functions.

There is one more assumption we have not discussed yet – the assumption
VIII. We will see that this assumption is not violated, as one of our equilibrium
conditions will require that the price of the commodity produced by the j-th
producer equals to the average costs (costs per unit of the commodity) of the
j-th producer; and the profits are therefore zero. Of course, we could include
the income from dividends into the budget constraints of our consumers, but
this would not enrich our analysis very much.

Hence, all of the Arrow-Debreu assumptions can be considered fulfilled.
This implies that an equilibrium should exist.

As for the uniqueness of general equilibrium, we have already mentioned
that if the assumption of gross substitutability holds, the solution is unique.
Fisher (1971) conducted research on which utility functions are in accord with
the assumption of gross substitutability. He found out that, if all initial en-
dowments are strictly positive (they are in our case), then the Cobb-Douglas
utility function yields individual demand functions with the gross substitute
property. Hence, we can expect that our solution will be unique.

Our task now is to find

1. the demand for commodity h by consumer i (i.e. xih), h = 1, 2 and
i = 1, 2,

2. the demand for factor of production g by producer j (i.e. χjg), g = 1, 2
and j = 1, 2, and the demand for commodity h (intermediary input h)
by producer j (i.e. ψjh), h = 1, 2 and j = 1, 2.

5.2 The Consumers’ Demands

The budget constraint of the i-th consumer is

p1xi1 + p2xi2 = ω1ζi1 + ω2ζi2,
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where ω1 denotes the wage rate, while ω2 denotes the rent for land. So, the
maximization problem of the i-th consumer is as follows:

maximize
xi

ui(xi1;xi2)

subject to p1xi1 + p2xi2 = ω1ζi1 + ω2ζi2,

xi1, xi2 ≥ 0.

Let us suppose that xi1, xi2 > 0. The marginal rate of substitution is

MRSi21 =
∂ui
∂xi1
∂ui
∂xi2

(xi1;xi2) =
xβi2i2 βi1x

(βi1−1)
i1

xβi1i1 βi2x
(βi2−1)
i2

=
βi1xi2
βi2xi1

.

The marginal rate of substitution must equal the ratio of the price of the
commodity 1 to the price of the commodity 2, so that

βi1xi2
βi2xi1

=
p1
p2
.

So,

xi2 =
βi2p1xi1
βi1p2

.

This expression can be plugged into the budget constraint:

p1xi1 + p2
βi2p1xi1
βi1p2

= ω1ζi1 + ω2ζi2.

Thus,

xi1 =
ω1ζi1 + ω2ζi2

p1 + p1
βi2
βi1

=
βi1(ω1ζi1 + ω2ζi2)

p1
,

since βi1 + βi2 = 1 according to our assumption.
It is then clear that

xi2 =
βi2(ω1ζi1 + ω2ζi2)

p2
.

5.3 The Producers’ Demands

We will determine the conditional demand for factor of production g by pro-
ducer j, where the demand will depend on the value of the function

φj = µjχ
γj1
j1 χ

γj2
j2 .

To be able to do so, we can make the j-th producer solve the cost mini-
mization problem

minimize
χj

ω1χj1 + ω2χj2

subject to φj = µjχ
γj1
j1 χ

γj2
j2 ,

χj1, χj2 ≥ 0.
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Let us suppose that χj1, χj2 > 0. The marginal rate of technical substitu-
tion is

MRTSj21 =

∂φj
∂χj1

∂φj
∂χj2

(χj1;χj2) =
µjχ

γj2
j2 γj1χj1γj1−1

µjχ
γj1
j1 γj2χj2γj2−1

=
γj1χj2
γj2χj1

.

The marginal rate of technical substitution must equal the ratio of the wage
rate to the rent for land, so that

γj1χj2
γj2χj1

=
ω1

ω2

.

So,

χj2 =
γj2ω1χj1
γj1ω2

.

This expression can be plugged into φj = µjχ
γj1
j1 χ

γj2
j2 , where φj is a fixed

value now:

φj = µjχ
γj1
j1

(
γj2ω1χj1
γj1ω2

)γj2
.

Thus,

χj1 =
φj
µj

(
γj1ω2

γj2ω1

)γj2
.

Apparently,

χj2 =
φj
µj

(
γj2ω1

γj1ω2

)γj1
,

since γj2 = 1− γj1 according to our assumption.

The form of the production function yj = min
{
φj
vj

;
ψj1
aj1

;
ψj2
aj2

}
implies, along

with the principle of cost minimization, that

• φj = vjyj,

• ψj1 = aj1yj,

• ψj2 = aj2yj,

where yj is a fixed value now – it will be determined based on the principle of
profit maximization.7

From the fact that φj = vjyj, we can see that

χj1 =
vjyj
µj

(
γj1ω2

γj2ω1

)γj2
,

and

χj2 =
vjyj
µj

(
γj2ω1

γj1ω2

)γj1
.

So, we have got all demands for inputs, be it factors of production or in-
termediary inputs, but these demands are conditional on the output yj. What

7This principle is in harmony with the principle of cost minimization; or rather, cost minimization
is a necessary condition for profit maximization.
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we would like to get is demands for inputs expressed as functions of prices –
the producers need to know how much to produce. We can try to find it out
through profit maximization, i.e. through maximizing the difference between
the value of the revenue function and the value of the cost function.

The revenue function Rj(yj) is of the form

Rj(yj) = pjyj

(pj does not depend on yj in the conditions of perfect competition), while the
cost function is of the form

Cj(yj) = ω1χj1 + ω2χj2 + p1ψj1 + p2ψj2,

where χj1, χj2, ψj1 and ψj2 are the conditional demands we have obtained when
solving the problem of cost minimization.

Hence,

Cj(yj) = ω1
vjyj
µj

(
γj1ω2

γj2ω1

)γj2
+ ω2

vjyj
µj

(
γj2ω1

γj1ω2

)γj1
+ p1aj1yj + p2aj2yj =

=
vjyj
µj

(
γ
γj2
j1 ω

γj2
2 ω

γj1
1

γ
γj2
j2

+
γ
γj1
j2 ω

γj1
1 ω

γj2
2

γ
γj1
j1

)
+ p1aj1yj + p2aj2yj =

=
vjyj
µj

γj1ω
γj2
2 ω

γj1
1 + γj2ω

γj1
1 ω

γj2
2

γ
γj1
j1 γ

γj2
j2

+ p1aj1yj + p2aj2yj =

=
vjω

γj1
1 ω

γj2
2 yj

µjγ
γj1
j1 γ

γj2
j2

+ p1aj1yj + p2aj2yj.

The function that is the difference between the revenue function Rj(yj) and
the cost function Cj(yj) is often called the profit function Πj(yj).

The final problem of the j-th producer is the problem of profit maximiza-
tion:

maximize
yj

Πj(yj)

subject to yj ≥ 0.

It can be seen that Πj(yj) is linear in our case:

Πj(yj) =

(
pj −

vjω
γj1
1 ω

γj2
2

µjγ
γj1
j1 γ

γj2
j2

− p1aj1 − p2aj2

)
yj.

If pj was higher than

vjω
γj1
1 ω

γj2
2

µjγ
γj1
j1 γ

γj2
j2

+ p1aj1 + p2aj2,

which is the marginal and average cost of the j-th producer, then the j-th
producer would like to produce an infinite amount of the output, which would
mean infinite profits for them. However, the consumers have only limited en-
dowments. At the same time, the j-th producer cannot produce an infinite
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amount of the output from finite amounts of the inputs – because the j-th
producer is restricted by the technology. They cannot also gain infinite prof-
its. Rather, the more the j-th producer would produce, the more pj would
decrease. But then the j-th producer would stop being a price taker, which
is our assumption. Thus, we can conclude that it makes no sense for pj to be
higher than the marginal and average cost of the j-th producer in our simplified
model of perfect competition.

On the other hand, if pj was lower than the marginal and average cost of the
j-th producer, then the profit-maximizing strategy of the producer would be
not to produce. As there is no one else in our economy who would produce the
same commodity as the j-th producer, the commodity would not be produced
at all. However, the utility functions of the consumers suggest that if one of
the commodities was not produced, then even the other commodity could not
bring any utility to the consumers. Hence, neither of the commodities would
be produced and there would be no economy to analyse. That is why it is
sensible to conclude that pj will be equal to the marginal and average cost of
the j-th producer.

If prices equal average costs, our producers will have zero profits. One may
ask why the producers would waste their time doing business when their profits
are zero. It is necessary to realize, though, that the owners of the producers
(i.e. firms) must be our consumers. At the same time, the employees of the
firms are our consumers too. So, one can take it so, that the owners receive
wages from their firms (they are owners as well as employees) and these wages
are subsequently involved in the costs of the firms. So, if the owner of a firm
decided to stop doing their business, they would lose their job and wages and
would not be able to consume as much as now. As long as price equals marginal
cost, every firm will adjust its output level to match the demand.

An interesting thing is that the amounts of produced outputs y1 and y2 are
not virtually determined by the producers in our case – the output levels are
not determined independently of demand. It is a consequence of the fact that
the production functions we chose exhibit constant returns to scale (Cardenete
et al. 2012, p. 27).

5.4 The Equilibrium Equations

In our setting, the equilibrium (we expect there will be only one equilibrium)
will be characterized by the following conditions:

• Supply equals demand in both markets for produced commodities;

• supply equals demand in both markets for factors of production;

• both producers maximize their profits.

The equilibrium system therefore consists of the following six equations:

1)
y1 = x11(p;ω) + x21(p;ω) + ψ11(y) + ψ21(y),
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i.e.

y1 =
β11(ω1ζ11 + ω2ζ12)

p1
+
β21(ω1ζ21 + ω2ζ22)

p1
+ a11y1 + a21y2;

2)
y2 = x12(p;ω) + x22(p;ω) + ψ12(y) + ψ22(y),

i.e.

y2 =
β12(ω1ζ11 + ω2ζ12)

p2
+
β22(ω1ζ21 + ω2ζ22)

p2
+ a12y1 + a22y2;

3)
ζ11 + ζ21 = χ11(ω; y) + χ21(ω; y),

i.e.

ζ11 + ζ21 =
v1y1
µ1

(
γ11ω2

γ12ω1

)γ12
+
v2y2
µ2

(
γ21ω2

γ22ω1

)γ22
;

4)
ζ12 + ζ22 = χ12(ω; y) + χ22(ω; y),

i.e.

ζ12 + ζ22 =
v1y1
µ1

(
γ12ω1

γ11ω2

)γ11
+
v2y2
µ2

(
γ22ω1

γ21ω2

)γ21
;

5)

0 = p1 −
v1ω

γ11
1 ωγ122

µ1γ
γ11
11 γ

γ12
12

− p1a11 − p2a12;

6)

0 = p2 −
v2ω

γ21
1 ωγ222

µ2γ
γ21
21 γ

γ22
22

− p1a21 − p2a22.

It can be seen that we have a system of 6 equations and 6 unknowns: p1, p2,
ω1, ω2, y1 and y2. But this alone does not mean we will get a unique solution.8

Since all the demand functions are homogeneous of degree zero in prices, it
holds that if the price vector (p; ω) is an equilibrium price vector, then the
price vector (kp; kω), k > 0, will be another equilibrium price vector. We can
easily fix it by assuming that

p1 + p2 + ω1 + ω2 = 1.

Such an assumption is in harmony with the definition of competitive equi-
librium above.

In order to have only 6 equations again, we can get rid of one of the original
equations9 according to the Walras’s law. The Walras’s law tells us that at

8Or even any solution at all (Cardenete et al. 2012, p. 28).
9For instance the equation 1).
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any price vector the total value of excess demands equals zero, whether or not
the prices are equilibrium prices. Mathematically,

l∑
h=1

phzh = 0,

where

zh =
m∑
i=1

xih −
n∑
j=1

yjh −
m∑
i=1

ζih.

Then it follows directly from the Walras’s law that in an economy with l
commodities, whenever there is market equilibrium for l − 1 goods, the l-th
market clears too (Starr 2011, p. 20). Now we have 6 equations and 6 unknowns
and the solution should be unique, by the Arrow-Debreu theorem and by the
fact that the utility functions have the property of gross substitutability.

5.5 Solving the Equilibrium Equations

We will not try to solve the system of 6 equations manually. Instead, we will
assume some particular values for the coefficients involved in the 6 equations,
after which we will use the General Algebraic Modeling System (GAMS).

Let ζ11 = 30, ζ12 = 20, ζ21 = 20, ζ22 = 5; β11 = 0.3, β12 = 0.7, β21 = 0.6,
β22 = 0.4; a11 = 0.2, a12 = 0.3, a21 = 0.5, a22 = 0.25; γ11 = 0.8, γ12 = 0.2, γ21 =
0.4, γ22 = 0.6; v1 = 0.5, v2 = 0.25; µ1 = γ−γ1111 γ−γ1212 , µ2 = γ−γ2121 γ−γ2222 . These
are values used by Cardenete et al. (2012). As we will see, this combination
of values has the nice property that all prices, i.e. p1, p2, ω1, ω2, are the same.
Then it will be easier to perceive the price changes when some of the coefficients
are changed.

We report the GAMS results in Figure 1 in the Appendix.
By plugging the computed values of p1, p2, ω1, ω2, y1 and y2 into the

original equilibrium equations, we can verify that p1, p2, ω1 and ω2 are indeed
equilibrium prices and y1 and y2 are indeed equilibrium outputs. In Figure
2 in the Appendix, the verification is done. Besides, it is straightforward to
verify that the sum of all prices is 1.

In addition, it may be interesting to compute the GDP. This can be done
by means of the formula

GDP = p1 · x11 + p2 · x12 + p1 · x21 + p2 · x22.

It can be calculated that x11 = 15, x12 = 35, x21 = 15 and x22 = 10. Hence,
the GDP is equal to

0.25 · 15 + 0.25 · 35 + 0.25 · 15 + 0.25 · 10 = 18.75.

Let us look at how the equilibrium prices, outputs, consumptions and GDP
change when some of the coefficients change. Imagine, for example, that the
producer 2 comes up with an innovation that reduces the dependence on the
output of the producer 1, so that a21 = 0.25 now.

It can be seen in Figure 3 in the Appendix that p1 and p2 decreased. Price
p2 could have decreased because it is cheaper now to produce a unit of the
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commodity 2, while the condition of zero profits still holds. The reason why p1
slightly decreased may be that the total demand for the commodity 1 (which
is as large as the total supply of commodity 1) decreased. Then, given that
the sum of all prices must be 1, the other prices must have increased (or at
least one of them).

As for the outputs, the output of the producer 1 increased, whereas the
output of the producer 2 decreased. This might have been expected, essentially
because of the same reasons that were given when we were arguing what the
reasons for the changes in p1 and p2 might have been.

A really interesting thing is that all the equilibrium consumptions, x11, x12,
x21 and x22 increased – now, x11

.
= 18.1, x12

.
= 56.3, x21

.
= 17.3 and x22

.
= 15.4.

Thus, the innovation has had a positive impact on consumers.
The nominal GDP increased. We can be sure that the real GDP increased

as well, since x11, x12, x21 and x22 increased.
In Figure 4 in the Appendix, it can be checked that the left side and the

right side of the equilibrium equations still equal (there is some rounding error,
as GAMS does not return exact values).

5.6 Including the Government Sector

We will continue with adding the government sector into our model. This will
enable us to analyse the influence of introducing taxes. We will occupy our-
selves with an ad valorem tax, which is a tax based on the value of transactions.
An example of such an ad valorem tax is a value-added tax.

Let τj be the ad valorem tax rate on the output of producer j. Then the
equilibrium equations 5) and 6) will change as follows:

5’)

0 = p1 − (1 + τ1)

(
v1ω

γ11
1 ωγ122

µ1γ
γ11
11 γ

γ12
12

+ p1a11 + p2a12

)
;

6’)

0 = p2 − (1 + τ2)

(
v2ω

γ21
1 ωγ222

µ2γ
γ21
21 γ

γ22
22

+ p1a21 + p2a22

)
,

where p1 and p2 are the gross-of-tax prices of commodities 1 and 2, respectively
(i.e. prices that are paid by consumers). Thus, with respect to what the prices
mean now, the equations 5’) and 6’) do not differ much from the equations 5)
and 6). It must hold that the marginal revenues of the j-th producer (i.e. the
price pj) equal the marginal cost of the j-th producer, which in turn equals
the average cost of the j-th producer in our model.

If the total amount of taxes collected by the government is denoted as T
and the weights according to which the amount T is distributed between the
two consumers are denoted as δ1 and δ2, where δ1 + δ2 = 1, then the budget
constraint of the i-th consumer, i = 1, 2, changes to

p1xi1 + p2xi2 = ω1ζi1 + ω2ζi2 + δiT.

So, the new equilibrium equations 1’) and 2’) will be
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1’)

y1 =
β11(ω1ζ11 + ω2ζ12 + δ1T )

p1
+
β21(ω1ζ21 + ω2ζ22 + δ2T )

p1
+ a11y1+

+ a21y2;

2’)

y2 =
β12(ω1ζ11 + ω2ζ12 + δ1T )

p2
+
β22(ω1ζ21 + ω2ζ22 + δ2T )

p2
+ a12y1+

+ a22y2.

As we will assume that expenditures of the government equal its revenues,
a new equilibrium equation is

7)

T = τ1y1

(
v1ω

γ11
1 ωγ122

µ1γ
γ11
11 γ

γ12
12

+ p1a11 + p2a12

)
+

+ τ2y2

(
v2ω

γ21
1 ωγ222

µ2γ
γ21
21 γ

γ22
22

+ p1a21 + p2a22

)
.

Suppose that τ1 = τ2 = 0.1, δ1 = δ2 = 0.5. Moreover, we return to the
case that a21 = 0.5 as at the beginning. The other coefficients stay the same.
Again, we apply the condition that the sum of p1, p2, ω1 and ω2 is equal to 1.

Then the results can be found in Figure 5 in the Appendix.
It can be seen that the prices p1 and p2 are now higher and the prices ω1

and ω2 relatively lower than in the case with no taxes (when all prices were
equal to 0.250). This is because the producers need to offset the losses from
taxes they have to pay now.

As for the outputs, y1 rose a little bit, while y2 dropped a little bit. One may
have expected some large dead-weight losses because of the tax. However, this
is not the case because we assume full employment of labour as well as land.
Cardenete et al. (2012) show how it is possible to incorporate unemployment
into the model.

The government collected 5.14 on taxes which is approximately 24 % of
GDP. A government could use a model like this to see how much money could
be collected from tax-payers, after a tax is levied.

One can notice that the nominal GDP increased but, as for now, we cannot
be sure whether the real GDP increased as well. In order to find it out, one
could use the Laspeyres index or the Paasche index.

According to the Laspeyres method, we use the old prices to calculate the
real GDP. The real GDP before the ad valorem tax was levied had equalled
the nominal GDP, i.e. 18.75. The new real GDP (the real GDP after the ad
valorem tax was levied) can be calculated as the inner product of old prices
and new consumptions, that is,

GDPnew
real

.
= 0.25 · 14.523 + 0.25 · 32.147 + 0.25 · 17.339 + 0.25 · 10.966

.
= 18.744.
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The Laspeyres index (LI) is then computed as

LI
.
= 18.744/18.75

.
= 0, 9997,

which implies that the real GDP decreased by approximately 0.03 %.
By contrast, according to the Paasche method, we use the new prices to

calculate the real GDP. The new real GDP is therefore 21.415, while the old
real GDP was

GDPold
real

.
= 0.277 · 15 + 0.292 · 35 + 0.277 · 15 + 0.292 · 10 = 21.45.

The Paasche index (PI) is then computed as

PI
.
= 21.415/21.45

.
= 0.9984,

which implies that the real GDP decreased by approximately 0.16 %.
We can say that there was virtually no real GDP growth or decline.
Furthermore, one can notice (Figure 6 in the Appendix) that the consumer 2

is now better off while the consumer 1 is worse off. Since the consumer 1 could
have been considered richer (because his or her consumption of each commodity
was greater than or equal to the consumption by the consumer 2 before the
tax was levied), the tax probably did not deepen inequality.

Again, the reader can check that all (7, in this case) equilibrium equations
hold as equalities in the equilibrium.

In a similar way, the model can be extended to include income taxes (Car-
denete et al. 2012).

As for other possible extensions of the model, the government can be al-
lowed to operate a non-balanced budget, the external sector can be included
and the model can be even allowed for unemployment (Cardenete et al. 2012).

Applied general equilibrium modelling is a vivid field and much more com-
plex than we were able to show here. More on this topic can be found in Notes
and Problems in Applied General Equilibrium Economics (Dixon et al. 2014).
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6 Solution Techniques for the Arrow-Debreu Model

The 2×2×2 model we have just occupied ourselves with is a special type of the
Arrow-Debreu model which in turn is a generalized Nash equilibrium problem
(GNEP). We were able, by means of GAMS, to find the solution to our simple
2 × 2 × 2 model. But recall that we have made some special assumptions
regarding the utility and production functions – we assumed Cobb-Douglas
utility functions and Leontief production functions. In full generality, where
no specific functional forms are assumed, it is really difficult to come up with
a method capable of finding solutions to the Arrow-Debreu model or to GNEPs.

The proof of existence of an equilibrium for a competitive economy by
Arrow and Debreu was non-constructive and an algorithm for finding prices is
therefore needed, should the prices be determined.

Facchinei and Kanzow (2010) summarize general results that were obtained
in terms of GNEPs and they enumerate and describe methods suitable for
finding solutions to GNEPs. They write (p. 207) that what is typical for
dealing with generalized Nash equilibrium problems is that the problems are
transformed into other problems that are understood better, such as variational
inequalities or quasi-variational inequalities. However, in the same breath,
Facchinei and Kanzow add that this approach has had only a limited success.
The reasons are that the conditions under which the transformations are done
may be very demanding or of difficult interpretation.

According to Facchinei and Kanzow (2010, p. 207), there are currently two
possibilities how to cope with these difficulties. One of them is studying prob-
lems with special structures, such as web or telecommunication applications,
or the Arrow-Debreu model. The other possibility is to study classes of GNEPs
special from the mathematical point of view, such as jointly convex GNEPs.

In her PhD. thesis elaborated under the advice of Kanzow, von Heusinger
(2009, p. 13) points out an article written by Codenotti and Varadarajan
(2007). The article introduces convex programming techniques to compute
market equilibria in the pure exchange economy, which is such a case of the
Arrow-Debreu model where no production sector exists, and afterwards in the
Arrow-Debreu model as such. The pure exchange economy as well as the
Arrow-Debreu model can be cast as a GNEP.

Important papers dealing with computing market equilibria were those by
Scarf (1967) and Hansen and Scarf (1973), authors who have already been
mentioned. Other algorithms were provided by Jain (2007) or by Ye (2008).
The algorithms by Jain and Ye make use of the concept of the pure exchange
economy.
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7 Applications of the Arrow-Debreu Model

Geanakoplos (1989) devotes an entire section of his paper to what the Arrow-
Debreu model in its full generality does not explain. He mentions that in
Arrow-Debreu equilibrium, there is no trade in shares of firms – shares of firms
are not taken as Arrow-Debreu commodities in the Arrow-Debreu model.10 In
addition, if there were a market for firm shares, there would not be any trade
anyway, since ownership of the firm and the income necessary to purchase
it would be perfect substitutes (Geanakoplos 1989). Besides, money does not
appear in the Arrow-Debreu model. Another thing is that all trade takes place
at the beginning of time – that is, time does not appear in the Arrow-Debreu
model as well. It is because an equilibrium is reached at the beginning of time
and the economic agents have no incentive to trade afterwards.

Nevertheless, the Arrow-Debreu model is a crucial part of general equilib-
rium analysis. Starr (2011, p. 5) believes that general equilibrium analysis
has proved fundamental in modern economics in describing the efficiency and
stability of the market mechanism, in providing the logical foundations of mi-
croeconomics, and even in macroeconomic analysis.

Starr (2011, p. 6) continues that general equilibrium theory provides the
basis for major innovations in modern economic theory and for the full math-
ematically rigorous confirmation of long-held traditional views in economics.

Another important fact is that the research that has been conducted in
terms of the Arrow-Debreu model has had large impact on other fields. We
have shortly discussed generalized Nash equilibrium problems. These GNEPs
were introduced by Debreu (1952) and Arrow and Debreu (1954). Besides,
many important properties of GNEPs were revealed through elaborating the
Arrow-Debreu model. We have seen that for example the proofs of existence
or local uniqueness of solutions to GNEPs were obtained thanks to elaborating
the Arrow-Debreu model. Since GNEPs are now being used in other fields as
well, the Arrow-Debreu model can be said to have influenced these fields. This
should be always remembered, even by people who are sceptical of the Arrow-
Debreu model (e.g. because of too much mathematics used by researchers who
have worked on the Arrow-Debreu model).

As for the real-world applications, we have paid close attention to applied
general equilibrium modelling, which is a discipline based on the Arrow-Debreu
model.

According to Kehoe et al. (2005, p. 5), applied general equilibrium mod-
elling was adopted by many governments all around the world (e.g. the United
States, Australia, the United Kingdom, the Netherlands) or by international
organizations such as the World Bank, the World Trade Organization or the
International Monetary Fund.

After a government, an external sector or investments and savings are in-
cluded into the model, applied general equilibrium modelling can be used for
analysing issues such as the impact of tax reforms, global warming problems,
assistance for developing countries or deregulation of electric power industry
(Hosoe et al. 2010).

10The Arrow-Debreu commodities were discussed in subsection 1.3.
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Kehoe et al. state that the great strength of applied general equilibrium
modelling has been its ability to provide numerical assessments of the equity
and efficiency implications of microeconomic policy changes – which is hard
to do with conventional econometric models. Further, they write that in some
situations of simultaneous changes in several policies, there is no alternative
to applied general equilibrium modelling.

Hosoe et al. (2010, p. 5) notice that a great advantage of applied general
equilibrium models over econometric models is that usually only data for one
year is needed in case of applied general equilibrium models, while data for
several years may be needed in case of econometric models so that the models
have a sufficient amount of degrees of freedom. Thus, the applied general
equilibrium models can be highly preferred for economies that experienced
drastic changes or where the data is not available.
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8 Conclusion

In this thesis, we dealt with the Arrow-Debreu model of general equilibrium.
The original assumptions of the Arrow-Debreu model, i.e. the assumptions
introduced by Kenneth J. Arrow and Gerard Debreu in their seminal paper
Existence of an Equilibrium for a Competitive Economy, were presented and
discussed at the beginning. Particularly one of these assumptions may be
considered rather problematic: the assumption IX says that each consumer is
endowed with a positive amount of every commodity. Arrow and Debreu were
aware of the fact that the assumption was unrealistic and tried to address the
problem already in their paper just mentioned. Several years later, McKenzie
(1959, 1961) came up with an alternative assumption, called irreducibility.
Another author who tried to address the problem was Maxfield (1997).

Under the original assumptions, Arrow and Debreu (1954) managed to
prove the existence of a competitive equilibrium, using the Kakutani’s fixed-
point theorem. McKenzie (1954) achieved the same success in the same year,
albeit under slightly different assumptions. That is why the model is sometimes
called the Arrow-Debreu-McKenzie model.

It is really interesting to think of the Arrow-Debreu model in terms of
generalized Nash equilibrium problems (GNEPs). As a part of their proof of
the existence of a competitive equilibrium, Arrow and Debreu (1954) showed
that the equilibria of their model are the same as the equilibria of a certain
GNEP. Thus, there is a connection which allows to apply results developed for
GNEPs to the theory of the Arrow-Debreu model. At the beginning, GNEPs
were considered mainly by economists working on the Arrow-Debreu model.
Recently, however, researchers from the areas of mathematics, engineering,
computer science or operations research have increasingly begun to explore
and develop the theory of GNEPs (Facchinei and Kanzow 2010). Economists
who are aware of this fact might bring some new insights to their discipline.

After the introduction of GNEPs, it was easier to comment on the progress
made in exploring the properties of solutions, such as the uniqueness, local
uniqueness or stability of Arrow-Debreu equilibria.

A part of the thesis was dedicated to a two-factor, two-commodity, two-
consumer model, which was based on the original assumptions of Arrow and
Debreu. In order to find the solution, we used a method called applied gen-
eral equilibrium modelling or computable general equilibrium modelling (Car-
denete et al. 2012). We chose some specific forms of the consumers’ utility
functions (Cobb-Douglas utility functions) and of the functions representing
the producers’ technology (Leontief production functions). Then we derived
the equilibrium equations, chose the values of coefficients and solved the equa-
tions by means of GAMS. Afterwards, we tried to change the values of some
coefficients and found out that a better technology of a producer had a positive
impact on both consumers in our setting (while the profits of both producers
remained zero). Thereafter, to illustrate a real-world application of applied
general equilibrium modelling, we added the government sector, which enabled
us to analyse the influence of introducing taxes on consumers and producers.
We dealt with an ad valorem tax. The same method, i.e. applied general
equilibrium modelling, has been used by governments and international orga-
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nizations all around the world (Kehoe et al. 2005). After a government, an
external sector or investments and savings are included into the model and
coefficients of utility and production functions are estimated, applied general
equilibrium modelling can be used not only for analysing the impact of tax
reforms, but also issues as various as global warming problems, assistance for
developing countries or deregulation of electric power industry (Hosoe et al.
2010).

Besides the fact that the Arrow-Debreu model serves as a framework for
applied general equilibrium modelling, its role was crucial in developing mi-
croeconomic theories (Starr 2011). In addition, the Arrow-Debreu model has
had a positive impact on disciplines dealing with GNEPs.

As for our recommendations on future follow-ups, we believe that there is
a possibility to enrich the theory of the Arrow-Debreu model by using new
advances in the theory of generalized Nash equilibrium problems. In this
respect, it could be even possible to make some contributions to applied general
equilibrium modelling. For example, algorithms developed by researchers in
the area of generalized Nash equilibrium problems could perhaps be used by
applied general equilibrium modellers.
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Appendix

Figure 1: GAMS Results – Initial Values of Coefficients
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Figure 2: Testing the GAMS Results – Initial Values of Coefficients
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Figure 3: GAMS Results – Better Technology
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Figure 4: Testing the GAMS Results – Better Technology
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Figure 5: GAMS Results – Including the Government Sector
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Figure 6: Testing the GAMS Results – Including the Government
Sector
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