
Univerzita Karlova v Praze

Matematicko-fyzikální fakulta

BAKALÁŘSKÁ PRÁCE

Filip Ressler

Wildmen: strategická hra v terraformovatelném
světě.

Katedra distribuovaných a spolehlivých systémů

Vedoucí bakalářské práce: Mgr. Pavel Ježek, Ph.D.

Studijní program: Informatika

Studijní obor: Programování

Praha 2014

Na tomto místě bych rád poděkoval všem lidem, kteří se podíleli na této práci.
Především děkuji mému vedoucímu, Mgr. Pavlu Ježkovi Ph.D., za ochotu,
trpělivost, připomínky ohledně struktury a za pomoc při psaní této práce.

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně a výhradně s
použitím citovaných pramenů, literatury a dalších odborných zdrojů.

Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze
zákona č. 121/2000 Sb., autorského zákona v platném znění, zejména skutečnost,
že Univerzita Karlova v Praze má právo na uzavření licenční smlouvy o užití této
práce jako školního díla podle § 60 odst. 1 autorského zákona.

V Praze dne 31.7.2014

Název práce: Wildmen: strategická hra v terraformovatelném světě

Autor: Filip Ressler

Katedra / Ústav: Katedra distribuovaných a spolehlivých systémů

Vedoucí bakalářské práce: Mgr. Pavel Ježek, Ph.D., Katedra distribuovaných a
spolehlivých systémů

Abstrakt: Dnešní real-time strategie jsou založeny na konfliktu znepřátelených
frakcí, kde proti sobě bojují armády jednotlivých hráčů. Nicméně, tyto strategické
hry neobsahují jednotku, která by reprezentovala hráče. Takovou jednotku, která by
měla schopnost měnit terén mapy, používat silné útoky na nepřátelské síly a jejíž
ztráta by pro hráče znamenala prohru.

V této práci prezentujeme 2.5D real-time strategickou hru používající jazyk C#
a .NET Framework, kterou lze hrát po síti s dalšími hráči. Tato hra se zaměřuje na
schopnosti kritické jednotky reprezentující hráče, její útoky a schopnosti měnit
terén. Tento projekt umožňuje upravovat a přidávat jednotky, budovy, zdroje a
schopnosti jednoduše pomocí editace souborů XML, souborů obsahujících
zdrojový C# kód a souborů s texturami.

Klíčová slova: Real-time strategie, multiplayer hra, terraformace mapy,
modifikovatelná hra

Title: Wildman: A real-time strategy game with world terraforming features

Author: Filip Ressler

Department / Institute: Department of distributed and dependable systems

Supervisor of the bachelor thesis: Mgr. Pavel Ježek, Ph.D., Department of
distributed and dependable systems

Abstract: Nowadays real-time strategies are based on the conflict of enemy
fractions, where the armies of the players fight against each other. However, these
strategic games do not have a unit which would represent the player on the
battlefield. A unit which would have the power to alter the landscape or use
powerful attack against the enemy forces, but a unit which loss would mean defeat
for its player.

In this thesis we present a 2.5D real-time strategy using the C# language and .NET
Framework, which can be played with other players over the network. This game
focuses on the abilities of the critical unit representing player, its attacks and
abilities to alter terrain. This project allows simple modification of the game or
addition of a new content by editing XML files, files with C# code and image files.

Keywords: Real-time strategy, multiplayer game, map terraformation, modifiable
game

Table of Contents

1 Introduction 1

1.1 RTS genre 1
1.1.1 Real-time play 3
1.1.2 Resource gathering 3
1.1.3 Unit management 4
1.1.4 Victory conditions 4
1.1.5 Progression 5
1.1.6 Base building 5

1.2 Our goals 7
1.2.1 Game elements 7
1.2.2 Under the hood 8

2 Problem analysis 10

2.1 Gameplay design 10
2.1.1 Map representation 10
2.1.2 Map generation 12
2.1.3 Spell system 14
2.1.4 Entity data 15
2.1.5 Victory conditions 16

2.2 Technical issues 16
2.2.1 Game engine and graphics 16
2.2.2 Extendability 21
2.2.3 Network communication 23

3 Programmer documentation 25

3.1 Structure of the solution 25
3.1.1 Namespaces 25
3.1.2 Initialization process 26
3.1.3 Main loop 26
3.1.4 Structure of the WildmenGame class 27

3.2 Class WildmenGame 28
3.2.1 Class MapBoard 29
3.2.2 Class Player 29

3.3 Class GameObject 30
3.3.1 Class Unit 31
3.3.2 Class Building 34
3.3.3 Class Resource 35

3.4 Class GameEffect 35
3.5 Class MapUI 36
3.6 ScreenManager and ControlManager 38
3.7 Scripting 39
3.8 Networking 39

4 User documentation 44

4.1 Installation 44
4.2 Individual game screens 44

4.2.1 MapUI 45

4.3 Game entities and spells 47
4.3.1 Units 47
4.3.2 Buildings 48
4.3.3 Resources 50
4.3.4 Spells 50

5 Advanced user documentation 52

5.1 XML data 52
5.1.1 Unit entry 52
5.1.2 Building entry 53
5.1.3 Resource entry 54
5.1.4 Effect entry 54

5.2 Script data 55
5.2.1 SpellEntry 55
5.2.2 Interfaces 56

5.3 Example of new content addition 61

6 Comparison 68

7 Conclusion 71

8 Future work 72

9 Attachments 73

10 References 74

INTRODUCTION 1

1 Introduction

A real-time strategy – or RTS for short – is a type of video game where the player
assumes control over a faction of people and leads them towards victory. It is a game where
one can test their tactical abilities by carefully thinking out their tactics and trying to be one
step ahead of the enemies. Player must also be ready to make fast decisions in the middle of
the battle in order to tip the favor to his or her side. However, if the decision turns out to be a
bad one, the player might lose the battle and ultimately the game.

Nowadays, there are many RTS games, for example StarCraft [1] or Age of Empires [2],
which are excellent games where one can spend many hours of their free time. However
what most of these games have in common is, that the game doesn't really end until all
buildings of the enemies are destroyed. Or, to be more precise, until all buildings that can
ensure that opponent can come back are destroyed. But what we would like to have is an
RTS where the battle is even more intense.

For example, the Age of Empires added a game type, where the objective was to
eliminate the kings of all other enemies while keeping them from killing yours. The king was
not in any way a powerful figure – it was (combat wise) weak unit that was best kept in the
castle surrounded by thick walls. However, if we invert the situation, we might get some
interesting results. Let us make our critical unit a superhero, a person of extraordinary power
which would make him an excellent unit to be thrown into the fray of battle. This concept
was already explored some time ago in the game Populous: The Beginning [3] by adding
such critical unit – a shaman that leads its tribe with strong and powerful spells.

We would like to re-examine the same concept, since there are not many recent games
with this mechanism. Our goal is to make an RTS game where our central unit can call down
a rain of fire on the enemies or summon a big volcano where the vanguard of the enemy
army was just a few seconds ago. A unit with spells that can rise and sink land and allow
armies to cross lakes and seas. But also a unit whose death would mean that comeback will
be really, really difficult.

In the rest of the chapter we will summarize the basic concepts behind our game and in
order to do that, we first have to clarify what the RTS genre actually is and what are its key
components.

1.1 RTS genre
When we look at the name of the genre – real-time strategy, it is clear that the game will

be played out continuously. That means the orders we give will be carried out as soon as
possible (for example, as soon as the building finishes current construction or as soon as the
unit arrives at given position) unlike in turn-based games, where players take turns and the
game won't continue until all players gave the orders to game objects under their control –
until they finish their turn. That means that whatever we do will not only rely on our overall
strategy, but we have to pay attention during the entire game so we will not get unpleasantly
surprised.

INTRODUCTION 2

Now let us move to the second part of the name, strategy. The Wikipedia on topic of
strategy says “[a] strategy is a high level plan to achieve one or more goals under conditions
of uncertainty. Strategy is important because the resources available to achieve these goals
are usually limited.“ [4] Which perfectly matches what RTS games are. At the start we are
presented with basic building and few units and we are left to make our own plan how to win
the game without knowing anything about the opponents' intentions. And our resources
might be what we find around the map in form of game object, that needs some form of
interaction from our units, or something we will get periodically from the game, but our most
important resource is time, which is generally vital for defeating the opponents.

However, such description of a genre not only matches RTS games, but also few others
which would not necessarily fall under this category. And those games would be for example
simulation games. Let us look at the SimCity [5] series. SimCity games are based on
building a thriving city from scratch. At the start you are lent money and you use them to
build a town which will gradually grow into a big city. Or not, depending on your abilities
and your own goals. But the point is, that the town you are building takes time to grow, so
this is a real-time game. Also, you are deciding what to build, where to build and when to
build, therefore you are making a plan for your city. And finally, your resources are the
money. So, if we used the description we figured out from the name of the RTS genre, we
would have to consider SimCity one of the games of the RTS category. However SimCity, by
conventional understanding of the video-games genres, would be a city-building simulator.
Therefore, we need to specify the genre a bit more.

The problem here is the fact, that while we call these games strategic it's more often
than not a tactical game. Chris Taylor, a game designer who worked on RTS games like Total
Annihilation or Supreme Commander said “[..] realizing that although we call this genre
"Real-Time Strategy," it should have been called "Real-Time Tactics" with a dash of strategy
thrown in.“ [6] What he meant is that the only way how to defeat the enemy is by attrition –
to wear down the enemies, before they wear us down – one can't win just by diplomatic
means. Players have to build a force with which they will defend themselves from the
opponents and eventually, in order to win, these forces will have to engage one another and
at that point the one with better tactics (or luck) will come out of the conflict victorious.

If we were to sum up the key components, we would get following list:

(C1) The game plays out in real time.

(C2) The game features resources players have to acquire and utilize.

(C3) The game requires player to build and maintain control of a force that will bring
down enemies. This includes dealing with the issue of having diverse army,
staying within population limit and being able to use abilities of special units at
correct times.

(C4) There is a condition that will declare one of the player or team a winner of the
game.

Additionally, RTS games might include following features:

(C5) Player can progress and upgrade his or her forces throughout the game. It might
be enabling additional build orders or improving of existing units that occurs

INTRODUCTION 3

once player builds certain building or spends a resources on a “research.”
Additionally, another form of a progress is idea of unit getting stronger after
each battle.

(C6) Introduction of a concept of a base, where different types of buildings are being
constructed and the possibility of expanding the base.

Now we will go through these components (C1) – (C6) individually.

1.1.1 Real-time play
The real time aspect of the game (C1) ensures the players will play simultaneously. That

means, as mentioned earlier, all unit orders are carried out immediately. Only way a
command can be delayed is by the execution of queued earlier actions and by the timeouts
that are there to prevent from continuous stream of the same actions and are simulating the
time unit or building needs to prepare for the ordeal.

1.1.2 Resource gathering
Resource management (C2) is another important aspect of an RTS. Rule of thumb is

that players should aim for getting as much resources as they can, because the entire
economy is based on them. Without resources you will not be able to build or research
anything and usually the player that is able to gather more resources will have higher chance
of success.

The resources are usually represented as objects on a map which have to be collected by
special type of unit and the same unit will then bring the resource back to the gathering point.
The resource can be either permanent source which will never deplete or it can have a limit
how many times it can be harvested before vanishing. This mechanism will add the need for
looking for another resources to keep player's economy running.

For example, let us consider wood as a resource – a lumberjack (the special unit) first
has to go to the forest (the resource), then over some time cuts down the tree (collecting the
resource) and then brings it back to the sawmill (gathering point). We might consider that a
new tree will grow immediately after we cut the old one down (simulating permanent
resource) or that once the tree is cut it will not reappear (a resource that will vanish after set
amount of collections).

The economy also doesn't have to be restricted only to one resource – there might be as
many resources and types of their sources as the developer desires. The problem here is,
however, that more resources adds to the complexity of the game. Having too many kinds of
resources might lead to confusion of the player, not to mention that they will have to be
placed somewhere on the map, which will make it more cluttered.

Additionally, one might consider time as a resource as well. The main reason is that
everything you build or research usually have a timer that will start when player gives order
and the requested order is available once the timer runs out.

In our game we will consider two resources randomly spread on the map that will be
gathered by a base unit and will be depleted after given amount of collections and will force
players to seek out new grounds for their bases and will eventually introduce more conflicts.

INTRODUCTION 4

1.1.3 Unit management
Unit control (C3) is a core mechanism of an RTS. Units won't do much without player's

interaction, safe for self defense when they are attacked. Players have to give them orders in
order to utilize them and this is where the tactics comes into play.

It's important to keep army diverse in order to ensure the best efficiency. Different types
of units have their advantages and disadvantages against other kinds of units. For example,
an archer would be perfect against slow warrior, since the archer can pick warrior off before
he comes close. However, archer will not be as successful when attacking shield-bearer or
fast unit like cavalry. Therefore, if army consists only of one type of unit, it's easy to produce
a counter unit, defeating the entire force with ease.

The diversification also goes in hand with the population limit. The goal of population
limit concept simulates limited amount of personnel available at a time and exists to keep
armies to reasonable size. Otherwise, at some point it might seem easier to build an absurd
amount of units which would “roll over” just anything.

Unit management becomes even more difficult when we add one or more abilities to
units, that have to be activated manually by player. Also, it makes the potential skill ceiling
very high as it becomes more and more difficult to handle all units and their abilities in
combat.

Our goal is to have several types of units and with exception of the basic unit they will
have bonuses and disadvantages against certain other types of units and attacks. Some types
of units will have special abilities that couldn't be controlled by player and shaman – the
central unit will be able to use spells controlled and directed by player.

We will have two kinds of population limits. First one will be dynamic limit that will be
directly dependent on number of house buildings. These buildings will increase the limit
when they are built and decrease it when they are destroyed. If the population limit has not
been reached yet (the number of current units is lower than the limit) a house buildings will
start producing basic unit until the limit is reached.

The second population limit will be maximum amount of units a player can have and
can only be changed when the game is being created. Reason for this threshold is the absence
of any limit on the number of house buildings increasing the dynamic limit, which would
defeat the original purpose of the population limit.

1.1.4 Victory conditions
As we mentioned earlier, the victory conditions (C4) revolve around military

domination over the game battlefield, but while the best way is to destroy all enemies there
can still be variance in the conditions to some extend.

The first and most straightforward way would be, as we just said, to eliminate everyone
else simply by destroying all of their buildings. That is the most usual victory condition.
Another way how to win can be a building race to special building like the wonder
construction in Age of Empires 2, where the goal is to build this expensive wonder that takes
very long time to construct. And while one might argue for this to be very non-military
strategy, we have to consider that usual counter-move is to take the army and simply march
on and destroy this very construction.

INTRODUCTION 5

Next example of victory condition is named King of the hill (which is also featured in
Age of Empires 2) and the goal here is to control given areas for specified amount of time.
And as the last but not the least example we have the Assassinate the king game mode, where
the game is won by killing a special unit of each enemy while keeping your special unit
alive.

Our game will be revolving around the idea of a central unit – a shaman. Every player
will have one shaman that will be available from the start and if player doesn't have shaman,
one will be produced in central building. The goal of the game is eliminate all shamans of the
opponents and the means of their recreation.

1.1.5 Progression
The idea of progression (C5) goes in hand with the base building. The motivation is that

as the game plays out, the game should progress, effectively delaying the pace of the game.
At first there will be basic buildings and weak general purpose units. Later, after certain
requirements are met (usually in form of constructed building or a research in the building)
another set of build orders is available for player, allowing the construction of better
buildings and specialized units.

However, it's important to mention that it doesn't mean that the conflicts are postponed
to the later stages of the game. Example might be a surprise early attack which itself
introduces a problem if the opponent is either underestimated or overestimated, which would
lead to significant economical throwback.

Another form of progression is unit upgrading. Most common ways of doing that are by
research and by combat experience. Researching an upgrade in a building usually applies
upgrade to all existing and future units of given type. It might be in a form of boosting base
attribute like health or attack strength, or in a form of additional abilities. Such upgrades
aren't very cheap but they can ensure that early game units can stay relevant in the game for
longer time.

Other way of improving unit is via its experience in combat. The more enemies the unit
dispatches, the better it gets. Making individual units more powerful will make player
treasure these experienced units and add another layer of complexity for unit management.

1.1.6 Base building
The concept of base building (C6) is based on having a central point – a headquarters if

you will, from where we will expand and control our mission. It is a place where we
concentrate our production and research facilities, and as such needs to have good defense,
since these buildings are usually expensive.

Not all RTS games have the base building part, for example Command & Conquer 4:
Tiberian Twilight [7] introduced a super-unit, that would serve as a self-powered production
facility that requires no resource. While some might argue that the unit is the base itself, it
still lacks many aspects of the traditional base like the entire concept of resource gathering
and the build order of the buildings.

Base building is usually where the first major deciding takes place. We have to decide
which buildings we need the most at the moment and will build them first and which

INTRODUCTION 6

buildings can be delayed. In following sub-chapter we will describe four main types of
buildings available to players with specific abilities that are most common in RTS games.

Building types
• Resource gathering buildings either produce resources or serve as gathering

points, where resources needs to be carried to. Both cases make these buildings
one of the most important, since if player loses control of them it will throw back
his or her economy giving the opponents an edge and if the player loses all of
these buildings, they most likely lost the game, since the entire economy will
lose the influx of resources and they won't be able to produce anything.

• Production buildings, as the name suggest, is used to create products, in this case
new units. These will build your army and it's important to strike the right
number of these buildings, because one's economy might have limited put-
through. If player builds much more production facilities than the economy can
efficiently support, it would mean that player has wasted the resources they have
spent on the construction of this building.

• Research buildings are core to the development of your base and units, they
allow you to upgrade their abilities, basic attributes or provides you with
additional build options. While in short run these buildings are usually
expensive, in the long run the bonuses they provide usually decide the battles.

• The defensive structures helps in the defense of the base and are important for
holding off enemies until defender's units reach the site and supporting them.
Additionally they might provide better sight radius – an area around the
structures/units that is revealed. Well placed tower might reveal sneak attack
early and rises defender's chance of fending off the attack.

Base expansion
In order to prevent the players from building structures anywhere they want (like in the

middle of the enemy base) and to simulate logistics within the base a restriction has to be
implemented. One way is to simulate the logistics directly. This can be illustrated in the
Settlers [8] game series where a path has to be built between buildings and resources are
carried by people following this path. A different and more common way is by setting a
restriction allowing new buildings to be built only in given radius around a central building.
This approach to the problem will force players to think carefully where to place it and how
to organize the buildings they want to build inside their bases and the defenses. Alternatively,
the game might limit the buildings only partially and only restrict key buildings like resource
gathering structures.

Both these attempts will ensure, that players will have to expand their primary base if
they want to be more efficient. That means the player will have to build a special structure –
an outpost or a new center, that will serve as a heart of a new secondary base and will allow
for constructing new buildings nearby or serve as a new gathering point for resources.

In order to build these expansions player must dedicate substantial amount of resources
to afford the new base. And because of the new base's cost it's important to secure it, which
means that the player now has two bases to defend from potential attacks bringing many

INTRODUCTION 7

problems with the unit distribution between these bases and increased need for defensive
structures. What this means is it is best to build the expansions near to the primary base.

However, there are few reasons why to consider remote expansion. Depending on the
map design, there might be places on the map, that are either in the middle of everyone's
sight or are very distant, that offer rich resource fields. Such expansion would then be both
high risk and high reward endeavor. Other case would be a distant advanced base near
enemy, which if kept undetected will allow for gaining upper hand by the possibility of
surprise attack from this position.

For our game we will have a central building that would define the radius of our base
where we will be able to place new buildings. The central building will also allow re-
spawning of our critical unit and will also serve as a gathering point for resources. In order to
keep its exclusivity, we will have an outpost building that will have same function except for
the re-spawning part, so that we can expand, but keep the importance of the primary base.

Next base building will be a house, which will increase population limit and where new
basic units are produced if the limit is not reached. We will have training buildings that will
allow specialization of the units. We will have research building that once built will enable
abilities and additional buildings.

1.2 Our goals
In this chapter we summarize what we will try to accomplish in this project.

1.2.1 Game elements
Here we will go over the main elements of the game that are interacting with the

players.

(G1) Victory condition
The game will revolve around the central unit – a shaman. Every player can have only

one such unit and a central building that will allow for this shaman to respawn after a while.
If both the building and the unit are destroyed, player loses the game. The last player in game
is victorious.

(G2) Map
Our game will play out on a two dimensional map. The areas on the map will have

certain height which will determine whether it's a land or water and depending on the
surroundings cliffs or very steep slopes may occur. These obstacles will separate players and
will require terraforming abilities that will allow changing heights.

Units will be able to walk across the map on the land and will not be able to step into
the water or into steep slopes. Buildings can be placed on a flat land terrain.

(G3) Resources
Our resources will be placed on the map and will be gathered by units. Every resource

on the map will have counter how many times it can be collected and once the counter
reaches zero, the resource will be depleted.

Unit will have to come to the resource in order to collect it and then will have to return
with it to the collection point – a central building or outpost. Also, after resource is collected,

INTRODUCTION 8

it will have a cooldown before next collection can happen. This will encourage gathering
from more sources.

(G4) Buildings
The buildings in this game have to be constructed on flat land terrain. First, a unit will

initiate a construction, provided player have sufficient amount of resources, and then player
has to order a unit or more to spend time building this structure. The building can not be used
until it is constructed.

The game will have following buildings:

• The central building will serve as a resource gathering center and will respawn
central unit – a shaman after given delay.

• The house will increase current population limit. It will produce basic units until
the limit is reached.

• The stockpile building will have only function - to serve as a resource gathering
point, but will be cheaper compared to the central building.

• Training buildings will allow specialization of units. Once a unit will enter the
structure it will re-emerge as different type of unit after a delay. This process will
cost resources.

(G5) Units
The basic unit is automatically produced in the houses until the population limit is

reached. These unit can do most tasks like resource gathering and building other buildings.
This unit can be then upgraded in the training buildings for given resource price.

Various types of units will have bonuses against other types of units forcing the players
to diversify their armies.

(G6) Shaman unit
The shaman unit behaves as regular unit with exception that it can cast spells. Once

killed, it will start re-spawning in the central building. If there is no central building and the
shaman is killed, the player loses the game.

(G7) Spells
The spells are effects that may affect building, units and terrain in specific way. They

might change certain properties of the objects, damage or heal them, they might rise or lower
the terrain. They will have large impact on the game and will be available only to the shaman
unit.

Players will be able to “unlock” various spells throughout the game in order to limit
their power in order to delay the game progress.

1.2.2 Under the hood
This chapter will summarize the concepts which aren't directly related to the game

design.

(G8) Multiplayer
The game is a multiplayer game – more players will be able to concurrently control

their units and buildings and interact with other players in the game.

INTRODUCTION 9

(G9) Extendability of the game
The game will be modifiable without the need to recompile the entire game. It will be

possible to add, change or remove units, buildings, spell or parts of them through editation of
external files.

(G10) Programmed in C#
The game will be programmed in the C# language with use of the Microsoft .NET

Framework.

PROBLEM ANALYSIS 10

2 Problem analysis

Now, that we established our goals and expectations we have to look over their possible
realizations and implementation details. We split the problems into two categories. In the
first category there are the gameplay-related problems, where we describe problems
concerning the game objects (units, buildings and resources), the map and the spell system.
Second category is about the technical issues that are not directly related to the gameplay like
network communication, graphics an extendability of the project.

2.1 Gameplay design
In this sub-chapter we will look at the game design details and possible issues that

might occur. We will take a look at how the map will be represented and how will be
generated, as mentioned in goal (G2). Then, we consider our options for the representation of
the spells – goal (G7). After that, we analyze what information we need to store about the
map (G2), the spells (G7) and the objects (goals (G3) through (G6)). And at last we will take
a look at the victory conditions (G1).

2.1.1 Map representation
We have to decide how we are going to the represent our game-board. What we know

from goal (G2) is that our game-board will be a map where the game objects will be placed
and interact with each other. The goal specifies that the map shall be two-dimensional and
should support elevation. However, if we are to implement our map, we will need more
details about the map. Specifically, we will have to decide how the map will be restricted and
how the elevation of the map regions will be handled.

Restriction of the map
A map may or may not be restricted and by restriction we mean that the map will have

given width, height and depth.

An unrestricted map is a map where the size is virtually boundless. We say virtually,
because we will always be subject to the limitation of the data representation or computer
storage, but for all rational intents and purposes it is safe to assume that the world does not
have a limit. The map is not created completely at the start, but is procedurally generated as
the players explore the world. However, this style of map representation is not very suitable
for a competitive strategy as the layout of the map does not allow to completely contain the
players. It is more suited, as we already hinted, for an exploration or building games where
the space restriction limits the creativity. Example of a game with limitless map can be
Minecraft [9].

The other way of map representation is a restricted map, which has its size determined
at the start of the game and nothing can be built or moved beyond this boundary. It allows to
contain the gameplay in one area and ensures the tension and conflicts between the players.
The limit on the dimensions allows us to create the map at the start of the game and allows
us to use less dynamic data structures for representation of the map. In case of restricted map

PROBLEM ANALYSIS 11

we can chose to implement a map-wrapping which allows to simulate a globe by
“connecting” the ends on one axis of the mapboard.

Considering our goal (G1) about victory by elimination of opponents meaning that
players have to engage one another to win, and the goal (G3) saying the resources are
limited, we will pick the second approach which is limited in both available space and
number of resources.

Terrain elevation
Our game has to allow terraforming (goals (G6) and (G7)), therefore we have to

represent an elevation of the terrain. We have to consider that we will need several elevation
levels for the terraforming spells and that we will need to check for an elevation differences
for building placement or for determining accessibility mentioned in goal (G2).

• One way of simulating elevation is through impassable game objects that will
represent the obstacles that occur in real elevation maps, like for example cliffs or
coastal areas. While the areas on both sides are at the same level as the elevation
information isn't stored anywhere, the obstacle can make an illusion of elevated
terrain on one side. We can find example of this implementation in the game Age of
Empires II, where water and land tiles are on the level and the inaccessible cliff only
makes an illusion of the elevation.

• A different implementation is to assign the elevation value to every point on the map,
which allows for better representation of small height differences on the map. The
resulting array of values is called elevation map. An example is on the figure 1
where on the left side the elevation value is represented by shade of gray, on the right
side is the rendered terrain. This approach makes the transitions between levels
smooth, however, checking the elevation in an area would force us to go through all
the points in the concerned place.

• The third way is a simplified version of the second case. The map is split into small
areas called tiles which hold information about themselves - in our case it would be
mainly their elevation. The tile system also simplifies the way how the map is drawn
and how the game objects interacts with it. For example in case of buildings we only
have to check the elevation of few tiles. Example of a game with this mechanism is

Figure 1: Elevation map on the left side as a 2D bitmap, on the right side as a rendered image.

(reprinted from [10] and [11])

PROBLEM ANALYSIS 12

Chaos Reborn, with a screenshot from early version of the game on the figure 2
where we can see hexagon tiles with various elevations.

The first approach is simple, however it isn't ideal for game with more than few
elevation levels as the game would get cluttered with these “elevation” objects as a result.
The per-point elevation system as described in second case is not ideal as the checking for
slope differences and determining whether unit or building can be on this place will require
checking of every pixel in area. That is why we will pick the tile-based representation of the
map as it will be best for our terraforming oriented game.

2.1.2 Map generation
Now, that we know how we will represent our map we have to figure out how the map

data will be generated. In order to fulfill our goal (G2) we need a terrain that we could move
around with our units (the map should have flat areas or areas with low elevation
differences), we need a sea-level forming inaccessible areas and we also need passages with
steep slopes that would not allow units to pass through.

Random terrain generation
The first thought was be to generate a new random number for every tile through a

random function that does not accept any parameters. We took values from already generated
surroundings of the tile and then used the random number which specified variance of the
terrain. The problem with this approach was that the terrain was very unpredictable,
generating either terrains that did not have many flat areas, making movement around the
map difficult, or terrains that were too flat.

It was clear, that using random number generator with one or less than one parameter
was not enough or that it would require a lot of additional parameters and restrictions to keep
the map reasonably diverse while not being completely random.

Elevation through Perlin noise generator
The (2D) Perlin noise [10] is a noise generator that takes two parameters representing

the position and gives us result directly depending on these numbers. The spatially close
positions would have similar values allowing for relatively smooth transitions. An example
of a generated texture using a method involving Perlin noise is on the figure 3.

Figure 2: Representation of tiles in alpha version of the game Chaos Reborn. (reprinted from

[12])

PROBLEM ANALYSIS 13

The results of using Perlin noise better represents a map and fulfills our requirements
for both flat and steep areas.

Polygonal map elevation
Another approach to the map generation would be to split the map into polygons and

then work with these objects.

The algorithm [12] will first generate a polygon map (usually by creating Voronoi
polygons from randomly placed points). Then a function is used for shaping the landmass
(usually using a noise map, like the Perlin noise mentioned above) and then the elevation of
the tiles is determined either from distance to the sea or, again, by using a noise function. An
example of a map generated through these steps can be seen on the figure 4.

Such map then can be even more improved by using a rainfall noise simulating rainfall
and allowing to define rivers and lakes, and distorting the edges of the map allows to create
more realistic feeling of the map.

Comparison
On the figure 5 we can see the comparison of the results from the Perlin noise and

polygonal map generating techniques after being divided into regular cells. While the
polygonal generation seems to have generated more cohesive landmass, we have to
remember that the shape was taken from noise function and the elevation inside the
generated island was measured by distance from water. Not to mention that using distance
from water would be the best approach as this way we would not get any cliffs on the map.

Figure 3: Example of a texture generated

using Perlin noise (reprinted from [11])

Figure 4: Example of map generated

through map elevation (reprinted from [13]

PROBLEM ANALYSIS 14

Therefore, if we use the the noise function directly to the individual tiles we will save
time by not computing Voronoi diagrams and smoothing functions for the polygons, and will
get more unpredictable terrain within the landmasses.

Picking starting locations
After we generate the map, we have to pick appropriate location for the player to start.

The player should start on a land of at least size that would allow to place several buildings
around the start point. Additionally, the game should not place the player too close to avoid
conflicts right from the start of the game.

In order to solve the first problem, we define zones of the map, where the zone
represents all tiles that are accessible from any tile within the zone. Since we need the
starting zone to be flat in all directions, we calculate for each tile its distance to the edge of
the zone it belongs to. This distance represents a radius in which all tiles do have low
differences in elevation and can support a building. There is a constant defining the
minimum distance and if zone does not have any tile that would reach this minimum number,
it is excluded from the picking process. If there is no zone on the map that would reach the
minimum number, the map is regenerated.

When picking starting position for the first player we simply pick the biggest zone and
we take the tile with the largest distance to the edge of its zone. This starting tile will then
form a new zone and recalculate the zone-edge distances for tiles, which will cause drop of
the edge-distance values in tiles surrounding the starting position.

For every other player we have to re-check whether a zone with minimum size is
available. Additionally, we skip any candidate-tile for starting position that's too close to any
already defined starting position.

2.1.3 Spell system
Another mechanic to explore are the spells (G7) and the process of spell casting. A spell

is an effect (a process) that will alter the game or its part in some way. In our case the
alteration will affecting only the game objects (units, buildings and resources) and the
terrain.

We could generalize spells into two types:

• Immediate spells

• Over-the-time spells

Figure 5: Comparison of height map from Perlin noise (left) and

from polygonal generation (right) divided into regular cells.

PROBLEM ANALYSIS 15

The immediate spells doesn't present much of an issue in terms of implementation. The
spell can be a function that will modify the objects and the end result will show once the
function has ended. This means that the process or a mid-state of the spell doesn't have to be
stored in any way.

The over-the-time spells present more complicated scenario. The spell will modify the
game as long as it is active, therefore it has to be revisited every update frame. It also means
that at any time the state of the spell have to be serializable if the game is stopped and the
spell is still active.

In both cases, the effects will have to contain a code that will describe such process.
With respect to our goal (G9), which we will examine later in this chapter, these instructions
ca not be hard-coded in the game (directly programmed in the game code and compiled with
the game at compile-time). This means that we will need to provide interfaces to the game
elements that will allow for editing the properties of the game elements.

2.1.4 Entity data
Every game object in the game will need some information that will represent it,

describe its relation to the other objects and/or map, and data that will define this object.
Here we will look at the properties the units, buildings, resources, spells and map tiles will
require.

Map tiles
The map tiles themselves only need to know their elevation, however, for easier

handling, we will include information about it's position in the map array and on the screen.
Also, tile will contain information about units currently present on top of it and the resource
or building if there are any, which will allow us faster access to the information as we will
not have to iterate through all units, buildings or resources to check what is placed on the
tile.

Units
The unit has to contain information about it's position on the map. It will be a vector, so

that unit isn't restricted to tile, but may move around freely. Additionally, it needs to know it's
health, it's owner, whether it's selected or not, what order is it executing right now.

Also, in order to be compliant with our goals (G5) and (G6) it needs to know
information related to the type of this unit, which are information about which texture it has,
what is its name and speed, whether it can gather resources, construct buildings and/or attack
enemies.

Buildings
Again as with unit, we need to store information about the position, but unlike unit, the

building will be tied to tiles which the building will exclusively occupy, so we need to store
info about this tile instead. We will also need to store information about the health of the
building and about the construction progress of the building.

The building, as mentioned in goal (G4), will also need to know what unit it can
produce or transform, what other building is required so that construction of this building can
even be started, the cost of this building and whether the building can serve as a resource
gathering center.

PROBLEM ANALYSIS 16

Resources
Resources will, in terms of their relation to map, behave similarly to building – they will

occupy tiles. Then, by following the description of goal (G3), we need to store information
about amount available in this resource and the timeout before another gathering can occur.
And at last but not least, we need to store information about type of this resource.

Spells
Spells, in addition to the code that will determine what will happen at the beginning,

during and at the end of the effect have to contain information about the duration of the
effect, the speed how often the update is called on this spell, what can be target of the spell
(unit, building, resource, tile), which building will unlock this spell and how long will it take
for the caster unit to recover before it can do anything again.

Player
The player class needs to store the lists of his or her units and buildings, list of the

resources and how much of them is available to the player at the moment and the color of the
player.

2.1.5 Victory conditions
As mentioned in the goal (G1), we need to keep track of a shaman for each player. If the

shaman is killed, the respawn process should start at the central building. If there is no
central building, player have lost. The last player in game is victorious.

2.2 Technical issues
Now, that we established the needs of the game elements, we have to clear the technical

problems concerning our game. These problems are the picking of the game engine, which
will handle the graphics and the way how the window of the game is updated. We will also
have to focus on the details of the goal (G9), the extendability of the game, specifically, the
extend of the possible modifications and their implementations. Then we will have to decide
the network side of the game and the connectivity between players as required by the goal
(G8).

2.2.1 Game engine and graphics
If we would break the code of any game to the most basic elements, we would find that

in most games there are two main functions which keep the game alive. One for updating the
game and checking the user input and the other for updating the screen. In some older games
these two functions might be merged into one, meaning that the game updates will be tied to
the screen refresh rate. While this would be of no issue on older computers it is not ideal,
because of following two problems. Either the game will update every time and at better
computers we would have to limit the screen refreshing speed and not fully use the potential
of the computer. Or, in the second case, we would have too many update functions called per
second which would make everything in the game happen faster.

Graphical style
We also have to make decision on how complex our graphics will be. While using the

3D graphics would allow for better representation of terrain elevations, it would also mean,
that 3D models of units and buildings will be required, which are fairly limiting the

PROBLEM ANALYSIS 17

extendability for less skilled users. Considering that the extensibility is among our goal (G9)
we decided to go with 2D scene for our game.

However, the 2D scenes allows to have several kinds of projection – the way we look at
the map. Now we will consider them and see which will fit our use.

• The top-down perspective, also known as the bird's view perspective, is the case
where the camera (in our case the game window) is above the gameboard and we
are looking straight down at the game objects. This will entirely leave out the
third axis and the terrain would seem flat, which is not ideal for our use.
Example of such perspective can be found in the game Dune 2 [14] as pictured
on the figure 6.

• The side view, also known as side-scrolling, is very similar to the top-down one
with the exception that we are looking at the game from the side of the
gameboard. While this will allow us to show the elevation of the terrain, it will
not be able to show more than one slice of the terrain at a time. The game Mario
[16] uses this technique, as pictured on the figure 7.

Figure 7: Mario, example of side-scrolling graphics (taken from [17])

Figure 6: Dune 2, example of top-down perspective (reprinted from [15])

PROBLEM ANALYSIS 18

• The 2.5D view, also known as pseudo-3D, is a mix of top-down and a side view
in a sense, that the camera is rotated at given angle between these two positions.
Such projection allows us to see all three axis at the cost of inability to see areas
that are behind tall objects. However, if we are careful with how we represent
the terrain elevations, we can minimize this flaw to acceptable level. Example of
such game is SimCity 2 [5] as pictured on figure 8.

We will not be able to use the side-scrolling view, since our map is two-dimensional, so
our decision is between the top-down view and pseudo-3D. Since our game will have
terraforming (as mentioned in our goal (G7)), we will lean towards perspective that handles
the elevations better from these two options, which is the pseudo-3D view.

Game engine
Now that we clarified which graphic representation we will use for our game we have to

consider which game engine to use. The reason for picking a game engine is that there is
already quite a few of them and it would be unnecessary to create our own implementation as
there might already be a library that would fully suit our needs. Our expectations of the game
engine are as follows:

• As our goal (G10) states, we will make this game in C# language, therefore, the
game engine also has to be made for C#.

• We need the game engine to handle the main game loop – calling of the update
and draw functions. As we already established earlier in this chapter, these are
the basic functions game a has to have.

Figure 8: SimCity 2 uses the 2.5D perspective.(reprinted from [18])

PROBLEM ANALYSIS 19

• As we picked the 2D graphics, we would prefer if there is a relatively easy way
of drawing two dimensional textures on the screen, so we do not have to rely on
low-level drawing functions.

• The goal (G9) about extendability of the game will need to load additional game
content that will not be known at the compile-time, therefore, the game engine
should support loading new graphical content at the run-time. Preferably, it
should be able to load conventional graphical formats like portable network
graphics (PNG) or GIF file without any preprocessing from user side in order to
make the extendability available even for less skilled users.

• Preferably, the game engine should be up to date and with proper documentation.

• The game engine has to be free of charge.

Unity3D
The Unity3D [19] is a very popular and powerful game engine. It allows multi-platform

development ranging from Windows and Linux platforms to Android and iOS, making it
very universal tool.

The programming is based on scenes, which contain objects that are automatically
rendered and every object can have assigned either Javascript or C# script, that allows
modifying the object or the game when specific event arises by overriding methods. As we
can see in figure 9 in the IDE user can add additional “components” to the object that will
modify its properties, rendering and the behavior towards other objects.

Figure 9: On the left side we see example of object properties in Unity3D. On

the right side there is a context menu for adding a new property.

PROBLEM ANALYSIS 20

However, the 2D rendering is somewhat limited because - as the name of the engine
itself suggests - it's designed primarily for the 3D development and the support and
documentation reflect that. And while there are various 3 rd party plug-ins for the 2D
programming in Unity3D, they are not free of charge.

Microsoft XNA
The Microsoft's XNA Framework [20] was designed for game development for XBox

360, however, applications using XNA are compatible with other Microsoft platforms like
Windows and Windows Phone.

The library provides an abstract class Game, that has (among others) overridable
methods Update and Draw. The Update method is called approximately 60 times per second
and in the meantime between the update calls the Draw function is called as many times as it
can be called.

The resources can be loaded either through the ContentManager component, which at
compile-time compiles all game resources into unified format and automatically manages
them. However, it is still possible to load resources from file stream and manage them
manually.

Nevertheless, the XNA libraries have been discontinued and are no longer developed
which presents an issue since the last version of XNA isn't compatible with the current
version of .NET.

SharpDX
The SharpDX [21] is a C# wrapper for DirectX and therefore supports most versions of

Windows. Using DirectX functions directly would be difficult, but the SharpDX provides a
toolkit namespace, that simulates the interfaces of XNA, which we will focus on. The toolkit
does not bring any new functionality, however, unlike XNA, the SharpDX is up-to-date and
does not have issues with the latest .NET libraries.

The documentation is focused mainly on the low level functions with little focus on the
Toolkit, however the main reason for this is, again, the similarity with XNA and the most
functions are identical in their use and functionality.

OpenTK
The OpenTK [22] is a C# wrapper for OpenGL. However, unlike SharpDX's Toolkit, it

does not provide many functions for easier manipulation with textures or drawing. The
texture processing heavily depends on the use of the Bitmap class instead of the
ContentManager. The library contains a GameWindow abstract class that allows overriding
functions OnUpdateFrame and OnRenderFrame that are called given times per second.

The documentation is not as complete as the one for XNA and using directly the
OpenGL documentation would be problematic as the functions are not very similar.

MonoGame
The MonoGame [23] is a library that under the hood is using OpenTK and SharpDX

depending on whether the current platform supports DirectX or OpenGL. As such, the library
can be used to develop for Windows, Linux, Android and other platforms. The library is part
of the Mono project which is an open source implementation of the Microsoft's .NET
Framework.

PROBLEM ANALYSIS 21

The idea behind is to fully implement the XNA API, so the functions are
indistinguishable from the original XNA ones and therefore does not offer any new
functionality for 2D development.

Conclusion on graphics libraries
We dismissed the XNA because it is no longer supported. We also dismissed the

Unity3D, because it is a 3D engine and at the time of the beginning of this project it did not
have implicit free 2D support. And the problem with OpenTK is the lack of simpler way of
drawing textures.

Therefore the decision is between SharpDX Toolkit and MonoGame. Considering we
will be making this game only for the Windows platform, then they are for our purposes
equally useful. And when we look at the functions of those libraries, they are similar enough
that migrating from one to another of these libraries should be relatively easy in case of need.
Therefore we selected with SharpDX's Toolkit.

2.2.2 Extendability
Another important part of our project is the extendability of the game content. The goal

(G9) requires a way how to load and store the data about units, buildings, resources and
spells. This way we can separate the code part from the content part of the game, which
simplifies the editing of the properties of game elements as we do not have to recompile the
entire game. It also allows modification of the game after the development cycle is
completed and the users may add or remove game content without knowing the source code
of the game itself.

When we talk about extendability of the game, there are three types of content and each
will require different handling, storing and loading. These are the types:

(T1) Graphical data, mostly in form of textures that will represent given game entity
(unit, building, resource or spell effect) on the screen.

(T2) Definition data, which contain information about game entities, like displayed
name, maximum health, etc.

(T3) Script data, that will store the description of a spell from which the game will
be able to execute this spell.

As was stated by the goal (G9), all graphical data (T1) should loadable from outside the
game (as opposite to embedding resources directly in the executable), preferably from a
widely used file format, so that the less experienced users can modify the game as well.
Luckily, the Texture2D allows for loading texture externally (that is without the pre-
compilling and loading via ContentManager) and supports for PNG format, which will be
sufficient for our needs.

The definition data (T2) store the basic information about buildings, units and resources
which were described in the gameplay-related problems. Using databases directly seem to be
excessive for such small amount of data, therefore we will look at the alternative ways of
storing information on disk that will be loaded into memory at the start of the game.

There are many file formats for holding data. Examples may be XML, JSON or CSV.
Considering our intent is to load the files into the list of objects that will hold these
information at the start of the program, we do not need any sophisticated features these

PROBLEM ANALYSIS 22

formats may have beyond simple iteration through elements. Our only condition is to have
format, that allows us simply edit the values without knowing the loading process of these
files, which means that we need a format that would allow us to specify value of given
property as opposed to just having a set of values. As we can see on figure 10 on example of
a unit, the XML file may take more space than the CSV file, but is more descriptive and
allows to immediately see, what properties the unit have. Even more, the XML allows us to
skip certain parameters that have to be present in the CSV file.

Also, we would like to use the existing .NET features for this task so we do not have to
concern us with the reliability and the documentation of 3rd party libraries. For these reasons
we picked XML, as the structure of the file is reasonable for our usage and the
System.Linq.XML already allows parsing of these files. Additionally, the XML allows us to
define schema file, that will tell the user (or the proper XML editor) how the definition of the
game object should look like, which would help the modification of these files

The last (but not the least) type of extendable content are the script data (T3). The
original idea is that we need is a description of the spell, that would interact with the game
objects and the map. And since describing such process in the XML files would be
challenging at least, we decided we will use a script to define the behavior of the spell.

As was the case of the previous extendable content, there are many variants of scripting
languages that can be embedded in our program to pick from. Examples might be Python or
Lua. However, we do not have any important requirements for the language itself, so we
might first see if the abilities of the .NET Framework itself does not have any form of
scripting language, which would allow us to stay with the current libraries. Also, using C#
code would allow us to only expose interfaces which would be implemented in the game
objects. This is unlikely to work with other languages as the calling conventions would be
different and the exposed functions would require additional handling.

First idea would be to let the users to compile their C# code directly into DLL library
with provided interfaces and load them from the game. However, that would defeat one of
the purposes of why we are making this game extendable – allowing the users to edit the
game, without having to compile the code themselves and without forcing them to acquire a
C# compiler. Therefore this is not what we are looking for.

Figure 10: On the left we see example of XML file, on the right CSV file.

PROBLEM ANALYSIS 23

However, the .NET Framework allows us to compile C# code at runtime via the
Microsoft.CSharp.CSharpCodeProvider class. This allows us to directly compile code
from a plain text C# source file, which perfectly suits our needs.

2.2.3 Network communication
Another component of our game to look at is the network communication. As our game

is a multiplayer-only game, the networking is one of the key components. Here we discuss
some of the issues with the communication.

Communication flow
There are two ways how the communication can be directed:

• Peer to peer communication

• Client server communication

Let us take a look at the peer-to-peer variant first. In this case the clients are sharing
data between themselves and are on the same level in a sense, that there is no arbiter who
would decide the results of the actions. The positive of this is, that any player can drop from
the game and the game can continue without them. However, the problematic part is, that as
there is no arbiter that would clearly state what happened and what did not, the peer to peer
variant might not be a good choice for us, as there might be ambiguous states of game
objects which would lead to some problems.

We might consider a code that would share the states between clients and decide which
one shall be used based on consensus (between clients, not players) or by rolling a random
numbers, but relying on randomization might not be the best way to go as the lack of
determinism might be problematic in case of various delays between users resulting in unfair
decisions.

The second approach, is the client-server communication. The server is locally running
the game and updating it. The clients send the data about players decisions to the server and
the server will apply the data on its game and inform all other clients about actions
happening in this server's game. This will ensure, that all players are looking at the same
game objects and map without any ambiguity, since all the commands are run at server
locally, which prevents these ambiguous events to happen. The downside is that the game
requires a server, which would mean, that if the server gets disconnected, the game will be
disrupted entirely.

We will pick the client-server communication, as the disparity between client game-
states is more problematic than the server getting disconnected.

Data packets
Next thing in network communication to consider is the content of the sent and received

packets. The data from the game have to be transformed into linear stream, sent and then on
the other side transformed back into game data. This process of transformation is called
serialization and deserialization.

Let us first look at the serialization that .NET Framework provides. We may set the
object to implement ISerializable interface, which will allow to use the serialization
methods on the instances of this class. All variables with the [Serializable()] attribute
will be included in the process of serialization, if the variable is value-based we do not need

PROBLEM ANALYSIS 24

to take any extra steps, in case of objects we have to make sure these objects implement this
ISerializable interface as well. However, this way we would always have to serialize the
entire object, which is not always needed, and especially in case of map or player update
would transmit too much data while only fraction is needed.

Therefore, we should implemented our own methods, that will serialize content
according to our needs. When the serialization is required, our serialization method will
determine from the function argument which data are related to the request and will store
them in string format along with the context-defining argument and will return the string.
Vice-versa, when the deserialization method is called on a string, it will determine from the
string the context and then proceeds to restore the information contained within the string.

In case of game objects like units, we need to determine which unit is in question. For
this reason every game object shall have a unique ID that is passed every time data are
serialized for this object and when the data are being deserialized, this ID allows to
determine which object should apply these changes.

PROGRAMMER DOCUMENTATION 25

3 Programmer documentation

In this chapter we will describe the main parts of the program and the relations between
them. We will go through the important classes and will comment on the functions and how
they interact with other classes of this game.

We used the Microsoft Visual Studio 2013 to develop and compile this game with the
addition of the SharpDX libraries. The solution (as provided in the attachment [A]) contains
three projects: the Wildmen game project with the game itself, the WildmenExposedData
with the interfaces exposed to the scripts and an installer for the game

3.1 Structure of the solution
First, let us take a look at the structure of the solution, what namespaces is the solution

composed of and what are the relations between individual namespaces.

3.1.1 Namespaces
The entire project is divided into 7 namespaces which contain logically similar classes.

Namespace Wildmen
The root namespace for this project contains only the main classes that aren't specific

enough to fit any other namespace. One of them is the Program class which contains the
entry function of the application. Then there is the GameWindow, which is a descendant of the
SharpDX's Toolkit.Game class that handles calling of the Update and Draw functions. This
namespace also contains the UI class that contains code for checking user input, handles
loading and storing textures, fonts and the functions for drawing them.

Namespace Wildmen.Game
This namespace contains objects that are directly related to the gameplay, which means

classes that handle map, tiles, objects that are on the map, class that represent player and
finally a class WildmenGame that contains the instances of these classes and represent the
game as a whole.

Namespace Wildmen.Database
The Wildmen.Database namespace contains classes that load and store information

about different types of units, buildings, resources and spells.

Namespace Wildmen.Networking
This namespace contains classes related to the network communication.

Namespace Wildmen.Screens
This namespace contains individual game screens representing different application

states, and the ScreenManager that keeps track of the active screen.

Namespace Wildmen.Controls
This namespace contains user controls that are used in screens for interaction with user.

PROGRAMMER DOCUMENTATION 26

Namespace WildmenExposedData
This namespace contains enumerables, interfaces and abstract classes for the spell

scripts.

3.1.2 Initialization process
On the figure 11 we can see the initialization process of the game. When the game starts

(that is when the GameWindow class is instantiated and started with the method Run()), the
method Initialize is invoked, which will then call the initialization methods on the
instance of ScreenManager class and on the singletons of Db and UI class.

The initialization of the Db singleton is responsible for scanning the /Data folder for
XML files, which contain the definition data (as mentioned in chapter 2.2.2, type T2) and
depending on the content of the file calling parsing method of proper class that will load the
contents of the XML file into dictionary. The initialization method of Db will also look for
any CS files, which are C# source files (chapter 2.2.2, T3) and tries to compile and load
them.

The UI singleton initialization is split into two parts, the first one will initialize
variables related to input control (KeyboardManager, MouseManager) and event handlers for
the window. The second part will load the graphical data (chapter 2.2.2, T1) from the /gfx
folder to Dictionary<string, Texture2D> and will store the fonts from the /gfx/fonts in
Dictionary<string, SpriteFont>.

And finally, the initialization of the ScreenManager will populate the list of available
game screens and initialize all of them, which will load all the user controls for given screen.

3.1.3 Main loop
At the core of the game there is the GameWindow class in the Wildmen namespace that

contains the functions Update and Draw, that are periodically invoked (as mentioned in the
chapter 2.2.1). In the figure 12 we see an illustration of which classes have their update (light
gray line) and draw (dark gray line) functions called. When Update or Draw function is
called, the GameWindow will request corresponding action from the ScreenManager which,
depending on currently active scene, will update or draw the Screen that is responsible for
representation of current state of the game. In the case that the game itself (instance of the

Figure 11: Initialization of the game

PROGRAMMER DOCUMENTATION 27

WildmenGame class) is running (which is the game state illustrated in the figure 12) the next
step depends whether or not is the application serving as client and/or server.

In case of application serving as a client, there is a MapUI class that handles the user's
interaction with the game, their keyboard and mouse input and then from this class the
WildmenGame is updated or drawn. The WildmenGame takes and applies the network
information about the game from the NetworkClient class.

In the second case, when the application is being a server, the game does not require any
mouse or keyboard interaction and can be updated directly by calling the Update method
on the server's instance of the WildmenGame class. The network messages from clients are
taken by the GetServerMessages function from the NetworkServer class. As the server
does not require direct user interaction and all commands are taken from clients over the
network interface, there is no need to draw the current game on the screen and the Draw
function is not called.

3.1.4 Structure of the WildmenGame class
The WildmenGame class holds all the information about the game itself as illustrated on

the figure 13, so if the game is being saved it is this class that is processed and serialized.
The WildmenGame class contains list of all players (List<Player> Players), a special
player that represents neutral game objects (Player NaturePlayer), an instance of
MapBoard class that holds the information about map (MapBoard Map) and then a list of
active game effects and spells (List<GameEffects> Effects).

Figure 12: Illustration of calling hierarchy in running game

PROGRAMMER DOCUMENTATION 28

The players are represented by the class Player and the player's units and buildings are
stored in List<Unit> Units and List<Building> Buildings in this class. Lastly, this
class also contains list of resources (List<Resource>).

The MapBoard class holds the data about the map in form of a 2D array of tiles.

3.2 Class WildmenGame
As we mentioned earlier, this class contains all information about the game. The class

will call the update and draw functions for all the game objects present in the game, as well
as the map and the game effects.

There are two public functions for drawing the game. The first one, Draw, will draw the
regular content of the map – which are the individual tiles and the game objects. The second
one, DrawOverlay, will draw additional graphical elements of the game objects and game
effects, for example selection effect of the game object or a floating text.

There are two delegates that handle network communication, one is for sending data
(Action<string> SendData) and the second one is for receiving data (Func<string[]>
ReceiveData). Both of them are set when the game is being created in the
CreateGameScreen class along with the flag (bool IsServer) which determine whether
game should behave like server or client. The difference is that as a client the game objects
are relaying the commands they receive from the user to the server and will not execute any
action, except for movement. Once server receive these orders from client, it will pass these
orders to its own instance of the game and send the players the result of the action (for
example gathered resource or appearance of a new building). If the order cannot be
completed, the server will only send updated information about the unit. This solves any
ambiguous events that might occur, which were mentioned in the chapter 2.2.3. We will talk
more about handling network communication in the later chapter dedicated to the
networking.

Figure 13: Classes stored in the WildmenGame class

PROGRAMMER DOCUMENTATION 29

3.2.1 Class MapBoard
The MapBoard class contains all information about the map and the constants restricting

and defining the map, like what ranges the map can be, what is the maximal elevation of a
tile or at which height is the sea level.

Since the map tiles can have various height and are viewed from a 2.5D view, there is
not a simple way of converting point on the screen under the cursor to a tile coordinates. For
this reason we have the Tile GetTile(..) function, that will first find tile that would be
under the cursor if the map was had no elevations. Then, by calling the function
Stack<Tile> GetStackTilesBelow, we check all the tiles that are downwards from the tile
that could by the potential tile (we can determine how many tiles we have to check, because
we know the maximal elevation of a tile). Now we only have to get first tile that match the
position of the cursor by checking the position of the surface of the tile.

The MapBoard contains nested class MapGenerator that uses PerlinNoise2D random
number generator (adapted from pseudocode at [32]) to generate terrain (as described in
chapter 2.1.2) and is used to assign elevation valued to the Tile classes in the map array. This
nested class also determines the starting positions for the players.

Additionally, as the individual tiles are drawn as an column of blocks, in order to
improve the performance we are only drawing few blocks of the tile. However, the tile itself
does not know how many blocks it should draw, because it is determined by the tiles in front
of the tile (on the screen it is downwards from the tile), therefore we have
GetTerrainBarHeight function in the MapBoard class, that will calculate how many blocks
have to be drawn to ensure the graphical compactness and avoid tiles “floating” in the space
(which would happen if a tile would have high elevation while all tiles around would have
low elevation).

3.2.2 Class Player
The players are represented by the Player class, which contains the list of units,

buildings and resources. It also holds the player's name, color, available resources,
population limits and fog of war data.

The fog of war is implemented as an array of bytes of the same size as the map, where
the value 0 represents unknown terrain, 1 means explored but not visible tile and 2 means the
tile is visible. When update is called, all values 2 are replaced with 1 and for all units and
buildings of this player, values in the array in given radius around the position of the object
are set to 2 using the midpoint algorithm for determining the edges of the area.

The UpdateUnitCounts function goes through all the player's buildings and units and
checks how many units the buildings can support and how many units the player actually has
or is currently producing. This way we can tell whether in the UpdateSpawners function a
new unit should be produced (as mentioned in goal (G5)). The building, before it can spawn
a unit, has to be constructed and is not already spawning another unit. Additionally, in order
to involve the new buildings in unit production, they are given priority when picking where
the production will be started. Therefore, the building selection is split into two phases – first
pass will only pick buildings that have not spawned given number of units and the second
pass then picks first available building for spawning of a new unit.

PROGRAMMER DOCUMENTATION 30

The function ShamanAvailable attempts to find whether shaman is alive or whether it
can be revived (as per victory conditions mentioned in chapter 2.1.5). If the shaman is not
alive, it will attempt to find a building, that can produce shaman and is constructed. If there
is no such building, the function returns false.

3.3 Class GameObject
The GameObject class is an abstract class containing common members of the entities

on the map and is their ancestor. These entities are units (Unit class), buildings (Building
class) and resources (Resource class).

Initialization, the vector-bound objects and tile-bound classes
The GameObject class contain the main properties for the entity, like health, position on

the map, nearest tile, current elevation of the entity, owner, variables for graphical
corrections (Size and AlignmentOffset). Additionally, there is member Entry, which is
pointing to the reference for this entity and defines what kind of building or unit this entity
will be.

Because we have two types of game objects – ones that are bound to the tile they are
occupying (buildings and resources) and ones that are free to move around the map (units),
there are two intermediate abstract classes, the GameObjectTileBound and
GameObjectVectorBound abstract classes. These classes only contain declaration of the
Initialize method and differ in the last parameter where the first one accepts a Tile and
the second one accepts a two dimensional vector representing position on the map. In
addition, we have to provide the EntryDb parameter, that defines the subtype of the entity,
the WildmenGame instance of the game this entity is in and an owner (Player instance) for
this entity.

Members related to drawing
In the function InitializeGraphics we have to assign values to the Size and

AlignmentOffset members as various entities may have different sizes which have to be
drawn in different positions with respect to the actual position of the entity. Additionally, we
load textures that are not primary to the entity (the texture that is defined in the XML file of
the entity).

The RecalcGameObjectPosition function will recalculate the position on the map and
will find the nearest tile. This is important, since the object position is stored either as a 2D
vector on the flat representation of the terrain for easier handling of movement or a map Tile.
Therefore, we need to calculate the position at which the entity will be drawn and in case of
vector-positioned game objects we need to determine the nearest tile, which is what the
RecalcGameObjectPosition is for. Since this function does not have to be ran every draw
or update frame, there is the bool RecalculatePosition variable, that indicates when the
recalculation is needed and in which case it is handled by the Update function.

There are two drawing functions. The first one, Draw, should be drawing the entity
itself whereas the DrawOverlay should be drawing only the overlay elements for this object,
like selection highlighting. The reasoning behind this is that the map is drawn in two phases.
The first one is drawing the elements with respect to the Z-level. That means the draw
functions have special parameter that specifies Z-level and all the objects are drawn once the

PROGRAMMER DOCUMENTATION 31

phase is over in order from lowest Z-level value to the highest value. That means that the
entities have to select a Z-level (usually taken from the tile they are “on”, which is calculated
by the RecalcGameObjectPosition, as mentioned earlier), so they are drawn in the correct
order. However, when drawing an overlay, it is more desirable to draw over all other
elements, so that the overlay is visible regardless of the Z-level of the entity. In this case the
Z-level is not used, because it would have to be the highest number and drawing two objects
in the same Z-level causes graphical artifacts if they are overlapping. Therefore, we decided
to split the map drawing into two phases, where the second one is drawn in deferred mode,
which performs the drawing when the phase is over in the order the drawing functions were
called.

Class members related to orders
The ordering of the entity is done via the CanDoOrder, SetOrder and CancelOrder

functions. However, the actual orders are handled differently by each type of the
descendants, so these virtual functions only simulates the behavior of an entity that does not
accept any order and the code is overridden in the classes that can accept orders.

The SetOrder function that checks whether the order can be performed and sets the
variables to proper values. Since direct user input is required to give unit an order, this
method should be only called at client's game. When setting orders we will modify several
variables. The float OrderRange specify how close we have to be to perform the order, for
example the spells can be cast from range, but melee attacks has to be performed at close
quarters. The Vector2 OrderPosition represents the vector where the the order should be
performed, which is used when we move to given position or cast spell on some tile. The
GameObject OrderTarget is similar to OrderPosition but refers to an another game entity
that should be targeted, example attacking another unit. The int OrderTimeout ensures that
there is a delay between individual actions meaning the game object is not performing order
every update frame and for example killing enemy unit only several update frames. And the
last is the EntryDb OrderEntry that allows us to specify (in case of constructing a new
building or casting a spell), which type of building or spell we are about to construct or
perform.

3.3.1 Class Unit
The Unit class is a representation of a unit. When they are initialized, the unit type entry

is copied from the original entry in the Db class, because we allow to change the unit
properties, but do not want to affect all units, unlike other game objects which can not have
instance specific building types. Another difference between this class and other game
entities descending from the GameObject class is that units can move freely on the map.

Receiving orders
Let us take a look how the orders are received. First, the CanDoOrder reports whether

unit can perform the order. When giving out orders the basic checks are made. If those
checks are passed, then the variables mentioned above are set. The State variable is set to
MovingToOrder, because the distance checking to the target will be handled in the Update
function automatically switching the State variable when the unit is in range.

Executing orders
If the order is set (the State variable has value MovingToOrder or DoOrder), the

Update function will execute the order. However, before doing so, it will perform certain

PROGRAMMER DOCUMENTATION 32

checks as illustrated on the figure 14. If the order is to gather resources, it will check whether
the unit should go towards the resource or return to the resource gathering center. The
conditions are reaching the carry capacity of the unit, the depletion of the resource and the
mismatching types of the carried resource and targeted resource – if any of these condition is
matched, the unit will return to the resource center to unload the cargo.

If the unit is not in range of the set position or target entity, it will change set the State
to MoveToOrder, so that the unit will move towards the location. If the target of the order is
dead or in case of build order the target construction is constructed, the order is canceled.

Finally, if none of these conditions are met, the State is set to DoOrder and the order is
performed in the UpdateDoOrder() function. Then, regardless of the matched conditions,
the Update function checks whether the State is set to MoveToOrder, in which case the
UpdateMoveToOrder() function is called.

Orders
The UpdateDoOrder will perform order set in the Order variable with the parameters

we mentioned earlier in this chapter. Now, let us look what orders a unit can have and how
they are are executed.

• Idle order, which is not performing any action and only makes sure the unit is
standing in sufficient distance from others

• Attack order, which makes unit deal damage to other objects.

• Construct order, which makes unit either initiate construction or contribute to
building already initiated construction.

Figure 14: Changing order depending on situation

PROGRAMMER DOCUMENTATION 33

• Spell order, which makes unit initiate a spell.

• Gather order, which makes unit gathering resource and walk between resource
and resource center.

• Train order, which makes the unit enter building that can train this building.

Idle order
Idle order means, that no action needs to be performed, therefore, this is result of simple

move order which has now completed. When ordering the unit to move, we are not checking
whether the unit will step on the same place as other unit as there is likely possibility, that the
other unit will already be gone by the time we get there. However, it is possible, that when
the unit arrives to given place, another unit will wander around to the same place. In that case
we would have two or more units on the same place, which would bring an issue that we can
not simply tell how many units are in that position, which would be problematic. For this
reason, when unit finishes its move order, we check if there isn't any unit in close proximity
(float MIN_IDLE_DISTANCE constant). If so, we order the unit that just finished moving to
move slightly aside (float DODGE_DISTANCE constant).

Attack order
When the unit it attacking and is in range, the client will only create a combat

animation, nothing else. The actual damage calculation is done by server (for reasons we
described in the chapter 2.2.3) which will then report the results to the players.

Now, as for the interaction between units let us have a situation where attacker unit A
attacked unit D (as defender). Unit A, as every other combat unit, has a strength attribute
(stored in the UnitDb instance for the unit type). Moreover, the unit A can also have a bonus
or a disadvantage against the D's unit type (as referred to in the goal (G5)), therefore it is
required to adjust the damage value the A unit will deal to the D. Once the value is calculated
the method D.ReceiveDamage(int value) is called, which will subtract the damage from
the D's health pool and send the message about received damage or death (if the health pool
drops below 0).

Construct order
This order, just like the attack order, will be executed at the server side of the game and

clients will only be informed about the results. This order depends on whether the order was
set with target building or not. If the target building was set, than it means that the unit will
contribute to the construction process of the building (since as mentioned in goal (G4) and
chapter 2.1.4, the buildings, in addition to being placed, will also have to be constructed).
The progress is handled in similar fashion as the damage is handled when being attacked –
the target building has function ConstructionProgress that will update the progress and
perform additional actions once the building is completed. The amount the unit contributes to
the construction is defined in the UnitDb entry of the unit.

In the second case, when the Construct order is set without the target building, a new
building will be placed at given position. However, first it has to be checked whether the
building can be placed at this position. We have to check whether there is any tile-bound
game entities at this position and whether the terrain is flat enough for a construction.
Additionally, the player must meet the conditions mentioned in the building type definition
(in the BuildingDb class for this building), such as the restriction of one building per player,

PROGRAMMER DOCUMENTATION 34

requiring another building to be built first and the resource cost of the building. If all these
conditions are passed, the building is created and initialized, the resource cost is deduced
from player's stockpile (in the Player class instance) and the unit is automatically set to start
construction of this building.

Spell order
This order will only check whether the spell is unlocked (required building is built, as

mentioned in the goal (G7)) and then, depending on the type of spell, will be created an
instance of a GameEffect class in the server's instance of the game, that will receive either
tile or game entity as target, depending on the spell entry (SpellDb class).

Gather order
The Gather order will perform action depending whether the unit has just returned to

the resource gathering center (a building which BuildingDb entry has the ResourceCenter
set on) or whether the unit is by the resource. In the first case the unit will transfer all the
resource it is carrying to the owner's resource stockpile and then will head back towards the
resource after a short delay. In case the resource source is depleted, the unit will cancel its
orders. The second option, when the unit is by the resource, will first check whether the
resource has an active cooldown (that prevents multiple units to gather the resource at the
same time, as mentioned in the goal (G3)). The amount unit can get from the resource is
specified in the UnitDb entry of the unit, which is passed as parameter in the function Take
of the resource instance. The Take function then compares the requested amount with the
available amount and returns smaller of both number and then deduce this number from the
available amount, which will ensure that the unit can not take more than available amount
from the resource. Again, this order is performed on the server side.

Train order
This order will first check whether building can train this unit now and is not training

other unit, in which case the unit will attempt again after certain cooldown (int
TRAIN_QUEUE_CHECK_TIMEOUT). Then the player resources are check whether they contain
enough resources for the task and if so then the spawning process is started, resources
deduced from the player and the unit submitted for training is killed (because the process
will spawn new unit). This command is ran at the server's instance of the game.

Movement
As we mentioned earlier, the movement is done when the State variable is set to

MovingToOrder and is carried out at the end of the unit's Update function. The movement is
simple. As long as the tile in the direction of the movement is on the map, doe nots have
elevation difference larger than given threshold (float MapBoard.CLIFF_THRESHOLD) and
is above the sea level, the unit will go forward. If the path forward is unavailable, the unit
will try to go in either orthogonal direction with the same restriction as with the forward
path. If none succeeds, the movement is canceled along with the entire order.

3.3.2 Class Building
The Building class represents an unmovable structure on the map. This GameObject

descendant, unlike others, has a construction progress, splitting the buildings into the not-
constructed and the constructed ones. Also, buildings can produce units.

PROGRAMMER DOCUMENTATION 35

The building is placed across multiple tiles, therefore after initialization they all have to
be claimed by the building by the function ClaimTiles. The reason is that when the building
is being drawn, then we have to draw it in certain Z-level (as we mentioned in the chapter
3.3), but if the tiles would draw themselves at their default Z-level, they would cover the
building, and if we would adjust the level of the building, it would cover surrounding tiles it
should not cover. This is avoided by assigning the building to the tiles, so they can determine
how they should be drawn. Additionally, when the building is placed, all the tiles below are
flatted into same height, so that the building is not floating on one side or is not borrowed
into the ground.

As we mentioned earlier, the building has two stages. The first one is the construction
stage. In this state the building is being constructed by units capable of constructing and the
building can not perform any task nor can be used to unlock spells or other buildings. Once
the building is completed (the construction progress reaches the value in ConstructionTime
member of the BuildingDb instance), the Completed function is called and the building can
be used.

The second mentioned specific ability of the buildings is the ability to produce units.
This is done via the function StartUnitSpawner which will create a SpawnerEffect (which
is descendant of GameEffect) which will, after given amount of updates (the speed
parameter), spawn a new unit of given type. Additionally, we can set a new spawner directly
with the function ResetSpawner, but this function is only used when the spawner is
disposing or when the spawner is created by deserialization. We will talk more about this
SpawnerEffect class in later chapter.

3.3.3 Class Resource
Finally, the last descendant of the GameObject is the Resource class. This class is

representing a resource and keeps information about amount of the resource this instance has
available for gathering and cooldown before the resource can be gathered again. Both these
values are defined in the ResourceDb class for given resource type and the values are
updated when the Take function is called.

3.4 Class GameEffect
The GameEffect class is the class that represents the spells, the animations and the

spawning processes. The spells are events handled directly by the GameEffect class and are
defined by their description and the script, which are stored in the EffectDb class. The
animations using this class are the unit death animation (UnitDeathEffect class) where
unit's color slowly bleach into white, the scrolling text (ScrollTextEffect class) and an
animation from a texture (AnimationEffect class), which used for example when two units
fight. And finally, there is the spawning process (SpawnerEffect class). All these are classes
descending from the GameEffect class.

As we mentioned, the GameEffect class is just a skeleton for an effect (or a spell) that is
extended either by overriding the methods or by the delegates stored in the EffectDb entry.
Additionally, all spells have to set a tile in the initialization and only the players, that can see
this tile (their fog of war value for this tile is set to 2) will be able to observe the graphical
animations - the effects, that have set the Graphical or GraphicalOverlay flags. The

PROGRAMMER DOCUMENTATION 36

difference between these two is when the draw function will be called – either in first or in
second draw pass.

The Speed member determines how many global update frames will pass between
individual calls of the GameEffect's Updates. The Duration then specifies how many times
the Update will be called before the GameEffect will be deactivated and disposed. The
UpdateOffset stores the offset of the global update counter at the time of initialization of
this GameEffect. The offset is important when determining when the Update should be
called as the decision when to update the GameEffect is decided by using modulo Speed on
the global update counter, which without offset would lead to triggering the first Update
early.

Let us take a look first at the spells made from the EffectDb. The spells can be called
either on a tile or on a game entity (a game object), which will changed which delegate will
be called and which objects can be targets of the spells. The OnSpellStartGameEntity is
called for spells targeting game entities and OnSpellStartTile for spells targeting tiles.
After that the code is same for both types of spell. Every time the GameEffect is updated the
OnSpellStep is called and on the last Update call the OnSpellFinish is called before the
spell is declared as inactive. We will talk about the scripts in later chapter dedicated to
scripting.

The UnitDeathEffect is an effect that will take the information from the unit passed in
the constructor and will create texture on the screen that will slowly bleach the color from
the player's color to the transparent color.

The ScrollTextEffect's constructor accepts text, position, time and vector and will
display this text at given position, that will for certain amount of updates move in specified
vector.

The AnimationEffect, similarly, will take animation, position and time and will
display an animation. The animation is loaded through the TextureTileSet2D struct, which
contains a texture with a series of images and the struct provides information which part of
the image should be drawn.

Finally, the SpawnerEffect will create a new unit once the Step is called, provided the
building still exists and the effect is running at server. While it might seem unnecessary to
run this effect at the client's instances of the game, the building provides visual feedback how
long it takes for the spawner to spawn a new unit and these data are taken from this
SpawnerEffect's data.

3.5 Class MapUI
The MapUI is an intermediate step between the GameScreen, which is one of the scenes

that define individual states of the application (they will be mentioned later in their own
chapter), and the MapBoard of the Game. As such, it provides the interface the user needs to
control their forces and overview the situation.

Once the MapUI is initialized, a player has to be selected using the
AssignControllingPlayer function. MapUI will then draw map this player (Player
controllingPlayer) according to this player's fog of war and will allow to control the

PROGRAMMER DOCUMENTATION 37

game objects owned by this player. If no player is selected, the MapUI will draw entire map
with full visibility and will not allow the player to control any game objects.

MapUI states
The MapUI's behavior depends on the InGameState variable which defines its current

mode. When the variable has the value Default, it means no game object is selected. The
DragSelecting value means, that selection is in progress. The DefaultSelected indicates
that one or more objects have been selected, but no order has been specified. In addition to
these types there is an enum value for every type of order. When we want to order the game
object to do something, we first select the order we want to give this unit and then apply the
order on a target. We need this InGameState as the orders do not share the same
requirements (attack can be performed only on other object, unit can move only on tiles, for
constructing a new building we need to first select the building type).

Selecting order and target
When we select an order, the InGameState is changed by the ChangeIngameState

function, which will change the behavior of the drawing and target selecting functions. Once
we select the desired target, the function ExecuteOrder will pass the selected order and
target to the game object through the GameObject.SetOrder function.

The most important changes that depend on selected order are the tile highlighting
(bool mouseoverTileTracking) that will keep the the track of an tile under the mouse
(Tile mouseoverTile) and game object highlighting (bool gameObjectTracking) which
keeps track of the game entity under the cursor (GameObject mouseoverGameObject). Both
are handled by the UpdateTracking function. In addition to these, when spell order or build
order is selected, the selection menu is drawn, which allows to select spell or building that
should be cast or built.

Additionally, if no command is explicitly selected once the unit is picked, the
SmartCursor function will try to select the most suitable order for the tile or game object
under the cursor. This will happen continuously (bool autoCursor), until order is explicitly
changed.

Drawing and updating
The Draw function is split into two phases that will call the Draw and DrawOverlay

functions of the WildmenGame class (which are described in the previous chapter 3.2). In
addition to that, after the game's overlay is drawn, the MapUI will draw its own overlay
consisting of player information (player's name and available resources), selection menu
when a build or a spell order-mode is active and the user controls for selecting order.

There are two update functions. First one, Update, implements regular updating logic
for the MapUI. The second one, BackgroundUpdate, serves for updating the game and
interface when the escape menu is activated, in which case we want the user input to be
ignored while having the game updated. Which function is used depends on the GameScreen
class and on the ScreenManager that handle all the screens, which we will describe in later
chapter.

PROGRAMMER DOCUMENTATION 38

3.6 ScreenManager and ControlManager
The screens (Screen abstract class) define individual phases of the application and

handle updating and the content drawn on the screen. These screens and their transition is
managed by the ScreenManager class that keeps track of the active screen. These screens
make use of the user controls, which are managed by the ControlManager class.

Class ScreenManager
The ScreenManager contains a dictionary of screens with the screen's name as a key,

which allows to switch between screens with just their name. The switching is done by the
SwitchScreen method, which will first call OnDeactivate method on the old screen and
then OnActivate method on the new screen. It is important to keep in mind, that after calling
SwitchScreen, the current screen must finish their current Update call after having their
OnDeactivate method called.

The subscreens are screens that are displayed “over” the current screen. The subscreen
is activated by calling the CallSubscreen method and are closed by the CloseSubscreen
method. When the subscreen is active, the original underlying screen is calling
BackgroundUpdate method instead of Update method, allowing the screen to implement
update logic with exclusion of user input code.

The screen abstract class contains along the abstract and virtual methods also fonts and
styles for the user controls. All the methods in this class are called from the ScreenManager
and should not be called manually. The screens should use the ScreenManager's functions
for interacting with other screens instead.

Class GameCreateScreen
An instance of this class represents screen where user can create and configure new

game or join to existing game.

When a new game is created, an instance of NetworkServer is created which will
handle its communication. The user then can change the size of the map and unit limit, where
these information are being passed to the server. When the user starts the game, the server is
told to start the game via NetworkServer.StartGame and if the map of given parameters
can be created, the server transmits serialized form of the game to the clients, assign users
their players and the game is started. The screen is switched to the instance of the
GameScreen class.

When the application joins as client to a server, an instance of NetworkClient is
created and connects to given IP. Once the client is connected, all the game-related messages
are retrieved from the NetworkClient via the GetServerMessage method and are parsed in
the HandleClientMessages function. There the update messages for the game are checked
and once the game is transferred and player assigned, the screen is switched to the instance
of the GameScreen.

We will describe the network communication more in later chapter.

Class GameScreen
Instance of this class represents the screen where the game is played. When the screen is

activated, the game, the server, the client and the player parameters are passed from the
previous GameCreateScreen screen. During activation of the screen, the instance of MapUI is

PROGRAMMER DOCUMENTATION 39

created and controlling player is assigned. Additionally, the SendData and ReceiveData
delegates of the WildmenGame are set. If the application runs only dedicated server (the
application is only running as server, not as client), the EscapeScreen subscreen is invoked
when the screen is activated.

The messages from the server are acquired by the NetworkClient.GetServerMessage
method, which returns game-related messages, they are then further filtered in the
HandleClientMessages method that applies changes concerning the entire game (end of the
game, restart of the entire game) or how the game is controlled (assignment of a player to
user). The rest is then stored in messageQueue, that is then queried by the
WildmenGame.ReceiveData delegate.

The update and draw functions calls their MapUI counterparts and if the application is
running as a server (either as a dedicated or along the client), the update is called on the the
server's instance of the game.

3.7 Scripting
The scripting mechanism is used for the game effects (as mentioned in chapter 3.4),

where it defines shaman's spells, specifically, the initialization of the spell, the individual
steps of the spell and the finalization of the spell. These scripts interacts with the individual
game meta-objects (game entities, map tiles, players, game itself) through the exposed
interfaces from the second project WildmenExposedData of the solution.

The scripts are handled in the EffectDb class. First the LoadSpellScripts method
looks for all cs files in the /Data folder. Then it will try to compile every file using the
Microsoft.CSharp.CSharpCodeProvider, with the WildmenExposedData.dll as a
referenced assembly. If the compilation finishes without any problems, then the code is
loaded into dictionary of SpellEntry objects using the System.Reflection, the XML
entries then refer to these SpellEntries through the SpellCodeId, which is the
SpellEntry.Id field.

Namespace WildmenExposedData
The WildmenExposedData project contains interfaces for game meta-objects, struct that

represents a spell entry (SpellEntry struct), interface for retrieving spell entries
(Interface ISpellCodeProvider) and few helper enumerations. We placed them in
separate namespace in order to prevent the scripts from accessing internal information of the
classes from the Wildmen assembly. The game meta-objects implement these IScript-
interfaces and if they return any meta-object, it is cast into proper IScript- instance.

The individual spell scripts are represented by the struct SpellEntry, where we
define the Id of the spell, the type of the target and the individual delegates with the code.
When the target is set to Tile the OnSpellStartTile is called when the spell is being
initialized, when target is GameEntity the OnSpellStartTile is called instead. When the
effect updates the OnSpellStep is called and when the last update is called, the
OnSpellFinish delegate is called.

The scripts can save their temporary data in the IScriptGameEffect.LocalData.

PROGRAMMER DOCUMENTATION 40

3.8 Networking
The Wildmen.Networking namespace is handling the network communication and is

split into three classes. The Network class is a static class that contains static information
about the networking, like port number and is responsible for composing the network
messages for which the INetworkSerializable interface is used.

The NetworkServer class is encapsulating a TcpListener and represents the server.
When a client is connected a new instance of ClientConnection class is created an the
network messaging with this client is handled through this class. The NetworkClient is the
client side of the communication built around the TcpClient class.

Initialization of the connection between server and client
Figure 15 illustrates the network messages between client and server when the client

connects to the server and in the second part when server starts the game. When client
connects, the server informs is about about its id and temporary name through the
MessageType.Hello message. Then, the client is informed about current server settings
(map width, height and unit limit) in the MessageType.ServerSettings message and
finally in the MessageType.UserList the client is informed about already connected users.
The client responds with a nick change request to new nick (MessageType.NickChange)
which will either get approved and the server will respond with MessageType.NickChange
message or gets denied, in which case the response is MessageType.Failed.

Figure 15: Diagram of network communication when client connects and when the game starts

PROGRAMMER DOCUMENTATION 41

When the game is starting, first the game state is changed to GameState.Starting,
which will disable any changes in game settings and then tries to generate a map with current
settings. If successful, the serialized game is sent through the MessageType.GameTransfer
followed by MessageType.PlayerAssign, which will assign the individual clients their
players. Once all users receive the map, the game state is switched to GameState.Started.
If the map generation fails, the game state falls back to GameState.Lobby and the players
are informed that map could not be created with given parameters.

Examples of handling the network communication
On the figure 16 we can see an example of how network message for unit update is

made and sent. First, a message is made using the Network.MakeClientMessage method,
which as a first parameter accepts type of a message, followed by a list of arguments. The
MakeClientMessage will decide according to the message type what to do with the
arguments. In this case, the GameObjUpdate message means the first argument is a game
object and we want to inform all clients about its current state. Therefore, a Serialize
method (as declared by the INetworkSerializable interface) will transform the unit data
into text stream. Once the message is composed, it is passed to the WildmenGame.SendData
function, which (when the game is in the server mode) pass the message to NetworkServer
that will redistribute it among the ClientConnection classes representing individual clients.

On the figure 17 we can see the process of applying unit update from the network
message. First the NetworkClient will asynchronously receive message from server. It will
check whether it concerns the connection itself (like disconnection or user renaming), if not
it will store the message in the Queue serverMessages. When the GameScreen is updated in
the regular update frame, it will check for any new messages in the NetworkClient's
serverMessages queue. It will check if the message doesn't change the game itself or the
way how the game is controlled (restart of the map, assignment of controlled player) and

Figure 16: Example of a process for sending unit update (at the server side)

PROGRAMMER DOCUMENTATION 42

then pass the message into Queue messageQueue. Later, still in the same update frame
WildmenGame.Update is called, which will invoke the HandleNetworkMessage function,
which will check the GameScreen's messageQueue and apply them. Our example message
contains unit update, which has MessageType.GameObjUpdate identifier. This message type
means, that following number in the message is an id of the concerned game object, which
allows us to select correct entity and pass the message to the Deserialize method of the
entity (as declared by the INetworkSerializable interface).

Class Network
The static Network class, as mentioned above, contains the port number and is

responsible for composing messages. Also, this class contains list of user messages where the
chat messages between players are stored along with server notices.

There are two main functions in this class – MakeServerMessage and
MakeClientMessage. These functions compose the network message depending on the
provided message type, which define how the provided arguments should be handled (as
shown on the figure 17. The reason why all network messages are made through this
function and are not serialized directly is to separate the serialization and network
communication and to unify how the server messages are made, since not all messages
contains the INetworkSerializable interface instances as their parameter. There are two
functions for making messages in order to differentiate between requests for message
composition from the client and from the server, because the client can make only fraction of
all possible messages.

Figure 17: Example of updating unit from the network message (at client side)

PROGRAMMER DOCUMENTATION 43

INetworkSerializable interface
The INetworkSerializable interface represents game meta-objects, that can be

changed directly by the network messages. The serialization method has a MessageType
parameter which allows the class to limit the amount of information it will serialize and then
store to the provided instance of StringBuilder, which is provided in the second parameter.
The class should then be able to deserialize these information back from an array of strings
using the same MessageType.

Class NetworkServer
The server class is built around the TcpListener class. When the server is started (via

the Start method) it will create a TcpListener listening on all IP addresses at the
Network.PORT port. Then it will asynchronously accept client connections. When client
connects the server an instance of the ClientConnection class is made for this client.

The instance of ClientConnection class is handling the sending and receiving of
messages of a single client. Messages are sent using the ClientConnection.StartSend
method and when a message is received, the callback delegate provided in constructor is
used which points to the NetworkServer.ReceiveMessage function. If the received
message is not game-related (client requests a list of users, nick change, client sends a chat
message), the server will respond to it, otherwise the message is en-queued in the
clientMessages queue where waits until a handling function from the update thread checks
the messages.

The reason why the server can not process the game-related messages directly is due to
the asynchronicity of the network communication. Since we do not know if the main game
thread is updating or drawing, we would risk changing object that is currently being
processed, resulting in inconsistent state of the object and therefore of the entire game.

The server is periodically sending MessageType.Ping to all its clients expecting same
reply. If the server does not receive MessageType.Ping back from a client before it sends
another wave of pings, the client connection is closed.

As we mentioned earlier in the chapter 2.2.3, the server is running its own instance of
the game which is updated from the game thread in the update frame.

The server will only accept 4 clients at a time, if 5 th tries to connect, it will be
immediately closed.

USER DOCUMENTATION 44

4 User documentation

In this chapter we will look at the user side of this application, we describe the
individual game screens, the visual interface that allows to control the map and give orders to
units. We will then describe the individual game objects and spells.

4.1 Installation
The game is installed starting the setup.exe as provided in the attachment [C]. The

installer will also check for prerequisite and if it is missing, it will download and install it.
The prerequisite is Microsoft .NET Framework 4.5 (x86 and x64). The firewall exception
might be needed for the TCP/IP port 31240.

4.2 Individual game screens
The first screen the users will see when they start the application is be the main screen.

The only purpose of this screen is to show simple interface that helps the users understand
what they are seeing. This screen only contains two buttons, one “Exit” will exit the game,
the other “Multiplayer” will take the user to the game creation screen.

The game creation screen (as pictured on the figure 18) allows to start a server or
connect to one on given IP. If the application is running as server, it allows to set the
parameters of the game and to start the game. And finally, if the server is running or the
application is connected to a server, it is possible to chat with other players.

Figure 18: Screen for game creation with description of individual controls

USER DOCUMENTATION 45

4.2.1 MapUI
The figure 19 illustrates example of the game. On the left side there are the available

commands for the selected objects, on the right side we can see the information about the
player and below we can see a menu (visible when picking either a spell or a building).
Below the overlay we see the map with units, buildings and resources.

Camera movement
The current view of the map can be moved using the WSAD keys, where W moves the

camera upwards, S downwards, A leftwards and D rightwards. Additionally, pressing Q will
center the screen on the shaman's position, pressing H will center on the first building that
can respawn shaman and pressing C will center on the first selected object.

Revealed areas
Every unit and building reveals an area around it. As long as the area is revealed, we see

any enemy building or unit in this area. Once the unit moves away, the area becomes known,
which means we can see the terrain and the resources on it, but we can not see any enemy
unit or building on the known tiles. The gray tiles are unknown area, and these are tiles we
have not yet visited and we only know its relief.

Selecting object
In order to select a game object, we can either left click on it or drag the mouse over

them, which will select multiple objects. However, if drag-selection contains at least one
unit, all other types of objects (that means buildings and resources) will be excluded from the
selection. If we left click on an empty space or drag over empty space, no object will be
selected.

Giving orders
When a game object is selected, it can be given order. If we do not specify the order

explicitly, the game will try to guess correct order from the objects under the cursor. We can
specify order either by clicking on a button on the left side of the screen or by pressing
proper key (the keys are mentioned in the labels of the buttons in square brackets). Only
units can receive and execute orders.

Figure 19: Interface of the game

USER DOCUMENTATION 46

The unit can receive following orders and only under certain circumstances:

• Move order, which will move the unit to target tile. A unit can move only if its
speed is greater than zero.

• Attack order, which will make the unit attack target game object. A unit can
attack only if its attack damage is greater than zero.

• Construction or build order, which will make the unit either initiate a new
building construction of selected type at the target tile or contribute to already
started target construction. A unit can build only if its construction contribution
amount is greater than zero.

• Train order, which will make the unit to enter target building that can train this
type of units.

• Gather order, which will make the unit gather target resource and walk between
the resource and nearest resource center. A unit can gather resources only if its
carry capacity is greater than zero.

• Cast or spell order, which will make the unit to cast spell of selected type at the
target tile or game object. A unit can cast spells only if it is a shaman unit.

Move order
When ordering unit to move we right click at a tile on the map. The unit will go

straightforward towards the selected tile, but if it encounters steep slope or water, it will stop.

Attack order
The attack order can be performed on any other game object. The attacking unit will

first move to the attack range distance from the target and then will start damaging the target.
For the movement to the target same restrictions applies as for the move order.

Train order
The training order can only be performed on a building that can train the selected unit.

This process will consume given amount of resources and during the training process the unit
will be unavailable.

Construction or build order
The construction order can either be performed on an existing building or an empty tile.

In first case the unit will move towards the building and then contribute to the construction
progress if the building is not constructed.

When the construction order is performed on empty tile, the unit will attempt to start a
new construction of the selected building (represented by the semi-transparent ghost of the
building as illustrated on the left side of the figure 20) on this tile. The building type is
selected in the menu on the right side of the window by hovering over the entry with cursor
or by using scroll wheel or by using the up and down arrow keys. The menu entries contain
information about the building along with the resource cost and other requirements. If the
player has enough resources and the requirements of selected entry are met, the entry is
highlighted by green rectangle otherwise the rectangle is red.

USER DOCUMENTATION 47

Additionally, the tile has to fulfill certain conditions, otherwise it can not support new
building, which causes the ghost of the building to be shaded to red (figure 20, right side).
The tile and the three tiles above it (tiles to the top-left, top and top-right) must have low
difference between their elevations, must be devoid of any
other building or resource and must be visible to the owner
of the building. Only then the new building can be built on
the new position, the unit will move towards the target tile,
will create the new building and automatically continues
with construction order on this building. When the building
is started, the resource cost is deduced the from the player's
available resources.

Gather order
The gathering order can be performed on a non-depleted resource. The depleted

resource is half saturated than non-depleted resource as illustrated on the figure 21. When
unit is ordered to gather a resource, the unit will start moving
between the resource and nearest resource center (Tribe center
for example) until the resource is depleted. If the unit is carrying
another type of resource, the unit will first return the resource to
the resource center and then will start gathering the new
resource.

Spell or cast order
The spell can be selected from the menu on the right side of the screen and can be

picked either by hovering over the entry with cursor, or using the scroll wheel or by using the
up and down arrow keys. The spell is either targeting map tile or a game object depending on
the spell properties. The shaman will first move towards the target and when in range will
cast the spell. After spell is cast, the shaman is unable of any action for brief period of time.

4.3 Game entities and spells
In this sub-chapter we will describe individual game objects and their properties. We

have total of 9 unit, 9 building types, 2 resources and 8 spells.

4.3.1 Units
The units have their color tinted to the color of the player,

allowing their identification. On the figure 22 on the left we can
see the worker unit texture from the file and on the right we see
green player's worker unit.

Shaman unit
The shaman unit is slower than other units, but has more health than

others. It has long-range attacks and can cast spells. If player loses this
unit, it will start re-spawning in the tribe center building. The shaman does
not fare well against workers and shield-bearers.

Figure 21: Resource

and depleted resource

Figure 22: Image from

texture file and in-game

Figure 20: Building placement

USER DOCUMENTATION 48

Worker unit
The worker unit is the only unit that can gather resources and build

other buildings. They are the most basic unit and have fairly low health
and attack. They are spawned in the house building.

Warrior unit
The warrior unit is the basic combat unit. It has high health and

average short-range damage. This unit is trained from worker in the
training grounds building.

Archer unit
The archer unit is a unit with excellent range, exceeded only by

shaman, and they are faster than all foot units. It has attack bonus against
workers, warriors and spearmen, but does not fare well against shamans
and shield-bearers. This unit is obtained by training worker in archery
range building.

Spearman unit
The spearman unit is a ranged unit with good amount of health. Its

range is not as good as archer's, but in addition of bonus versus workers,
warriors and archers, this unit is very good against any mounted unit. This
unit does not fare well against shamans and shield-bearers. This unit is
trained at weapon-master's camp building from warrior.

Shield-bearer unit
The shield-bearer unit is a slow melee unit with no attack modifiers,

however most units do not deal much damage to it, making them good for
taking out ranged unit. This unit is trained at armor-master's camp
building from warrior.

Mounted scout unit
The mounted scout is the fastest unit in the game, however is is also

the weakest unit (right after workers) and have disadvantage when
fighting shamans or shield-bearers. This makes them good for exploring
the terrain and picking out the enemy workers. This unit is trained at
stables building from worker.

Mounted warrior unit
The mounted warrior is a short range mounted unit. This unit has

strong attacks and has advantage against archers. This unit is trained at
riding trainer's camp building from spearman unit.

Mounted archer unit
The mounted archer is a long range mounted unit. This unit has

strong long-range attacks, but they are very slow. Also, this unit has low
health and disadvantage when fighting shamans or shield-bearers. This
unit is trained at riding trainer's camp building from archer unit.

USER DOCUMENTATION 49

4.3.2 Buildings
In the left column there is texture of the building when it is not yet constructed and in

the middle column there is texture when the building is built. Enemy buildings are identified
by faint red glow.

Stockpile building
This building serves as resource center and is given

to the player at the start of the game. This building has
low health and is slow to build.

Tribe center building
This building serves as resource center, can be built

only once and spawns the shaman when it is killed. This
building is expensive, takes very long to build and has a
lot of health.

House building
The house building serves to spawn new workers

and increases soft population limit. This building is
cheap, fast to build, but has very low health.

Training grounds building
This building serves to train warriors from workers.

This building requires the player to have at least one
constructed house building. This building is fairly
cheap, is quick to build and has medium health.

Archery range building
This building serves to train archers from workers.

This building requires the player to have at least one
constructed training grounds building.

Weapons-master's camp building
This building serves to train spearmen from

warriors. This building requires the player to have at
least one constructed training grounds building. This
building has fair amount of health, is expensive and
takes medium time to build.

Armor-master's camp building
This building serves to train shield-bearers from

warriors. This building requires the player to have at
least one constructed training grounds building. This
building has fair amount of health, is expensive and
takes medium time to build.

Stables building
This building serves to train scouts from workers.

This building requires the player to have constructed
tribe center building.

USER DOCUMENTATION 50

Riding-trainer's camp
This building serves to train mounted warriors

from spearmen and mounted archers from archers. This
building requires the player to have at least one
constructed stables building. This building has medium
amount of health, is expensive and takes medium time
to build.

4.3.3 Resources
Food resource

This resource is fairly common on the map. Food is fast to gather,
but does not last long (is depleted quick).

Stone resource
This resource is less common on the map. Stone is slow to gather,

but has very large amount of how many times it can be gathered

4.3.4 Spells
There are three types of spells, first type targets allies, second type targets enemies and

the last type are neutral spells that either do not do damage or do not discriminate when
dealing damage.

Blessing of the water
This spell will increase the movement speed of friendly units in area, but will reduce

their attack damage. The effect will slowly diminish until the values returns to their original
state.

Blessing of the fire
This spell will increase the attack damage of the friendly units in the area, but will deal

damage to them. The attack speed bonus will fade slowly over time.

Blessing of the earth
This spell will increase health of friendly units, but will slow their attack speed and

movement speed.

Heal
This spell will fully heal all friendly the targets in the area.

Curse
This spell will inflict damage on the enemies and additional damage over time.

Disruption
This spell will shake the ground around target tile and damage anything that is in range.

Once the spell's effect wears off, it kills any non-shaman unit that remained in the area.

Rejuvenation
This spell will replenish a resource.

USER DOCUMENTATION 51

Volcano
This spell will raise the volcano, dealing heavy damage to any unit in the area where the

volcano is rising.

ADVANCED USER DOCUMENTATION 52

5 Advanced user documentation

In this chapter we will focus on the extendability of the game an on adding new content
to the game. We will describe individual fields in the XML data and provide an example of
an extension by adding new unit, building, resource and spell.

5.1 XML data
The XML data define the properties of game objects or spells. They are stored in the

/Data folder and should conform to the Game.xsd schema file. The data definitions might be
in multiple files since all XML files from the /Data folder are loaded and their type is
determined by the root element of the file. We will now describe individual fields, for the
type (integer, float, string) of the field please refer to the schema file.

5.1.1 Unit entry
The unit entry consists of following fields:

• Id, which is an identifier of this unit entry.

• Name, which is the displayed name for this unit.

• Health, which defines the maximum health of this unit.

• UnitGroup, which defines the group of this unit. The buildings extending soft
unit limits are extending unit capacity for the unit group of the unit type the
building spawns. Therefore, the Tribe center building is increasing the shaman's
unit group capacity to one, the House building is increasing the worker's unit
group capacity by two. And since all other units (except for shaman) are sharing
the unit group with the worker, no additional workers are spawned when the unit
is trained to another unit.

• Texture, which defines the name of the texture from the /Gfx folder without the
“tex_” prefix.

• Shaman, which defines the unit as shaman. When player does not have any unit
with this flag and does not have any building that spawns unit that would have
this flag, the player is defeated. Units with this flag can cast spells.

• Speed, which defines unit's speed. Absence of this field will disable move order
capability of the unit.

• PopCount, which defines the “population cost” of this unit. If a unit has for
example PopCount set to two, it will be counted as two units for the purposes of
unit limits.

• GivenOnStart, which defines how many units of this type will be given to
player at the start of the game.

• AttackRange, which defines the range at which the unit can attack.

ADVANCED USER DOCUMENTATION 53

• AttackSpeed, which defines how frequent the attacks will be.

• AttackAmount, which defines how powerful the attacks will be. Unit without
this field is not able to perform attack order.

• ConstructRange, which defines range at which the unit can construct a
building.

• ConstructSpeed, which defines how frequent the contribution to the
construction will be.

• ConstructAmount, which defines how much the unit will contribute to the
construction. Unit without this field can not perform construct or build order.

• GatherRange, which defines range at which this unit can gather resources.

• GatherSpeed, which defines how fast this unit can gather resources.

• GatherAmount, which defines how much resource can unit gather per tick.

• GatherCapacity, which defines how much resource can unit carry. Unit without
this field can not gather resources.

• Modifiers, which defines the attack modifiers against certain types of units and
contains a list of Modifier with fields:

◦ UnitId, which identifies target unit type (Unit entry's Id).

◦ Mod, which modifies the power of the attack. Value of 1 means no change.

5.1.2 Building entry
The building entry consists of following fields:

• Id, which is an identifier of this building entry.

• Name, which is the displayed name for this building.

• Tier, which only defines where in the menu will the entry be shown. Lower
values are located earlier in the menu.

• Health, which defines the maximum health of this building.

• ConstructionTime, which defines the amount of construction required before
the building is constructed.

• Texture, which defines the name of the texture from the /Gfx folder without the
“tex_” prefix.

• TextureConstruction, which defines the name of the texture from the /Gfx
folder without the “tex_” prefix. This texture is used when the construction of
the building isn't finished.

• ResourceCenter, which defines building, where units can unload gathered
resources.

• BuiltOnStart, which defines whether players will start with this building.

• OnlyOneAllowed, which defines whether only one building of this type can be
built.

ADVANCED USER DOCUMENTATION 54

• UnlockedBy, which defines what building is required in order to be able to build
this building (Building entry's Id)

• Costs, which defines the cost of this building, its fields are mentioned later

• Trains, which defines what units can this building train, contains a list of Train
with fields:

◦ From, which defines what unit can be trained (Unit entry's Id).

◦ To, which defines what unit will emerge (Unit entry's Id).

◦ Speed, which defines how long will the training take.

◦ Costs, which defines the cost of the training, its fields are mentioned later.

• Spawns, which defines what units can this building spawn, contains a list of
Spawn with fields:

◦ Entry, which defines the unit type (Unit entry's Id).

◦ Speed, which defines how long will the spawning take. If speed is set to -1,
this building will not spawn this unit.

◦ Capacity, which defines how much will this building add to the soft limit
for the entry's unit class.

Common sub-entries
• Costs field contains a list of Cost with fields:

◦ Resource, which defines the resource type (Resource entry's Id)

◦ Amount, which defines amount of the resource required.

5.1.3 Resource entry
The resource entry consists of following fields:

• Id, which is an identifier of this resource entry.

• Name, which is the displayed name for this resource.

• Texture, which defines the name of the texture from the /Gfx folder without the
“tex_” prefix.

• StartWith, which defines how much of this resource will every player have at
the start of the game.

• Amount, which defines the amount of the resource in single instance.

• OccurChange, which defines the rarity of this resource on the map.

• Cooldown, which defines how often can be gathered from this resource.

5.1.4 Effect entry
The effects only define the metadata for the spell, the code itself is in the script file, as

described in the next sub-chapter. The effect entry consists of following fields:

• Id, which is an identifier of this effect entry.

• Name, which is the displayed name for this effect.

ADVANCED USER DOCUMENTATION 55

• Tier, which only defines where in the menu will the entry be shown. Lower
values are located earlier in the menu.

• Texture, which defines the name of the texture from the /Gfx folder without the
“tex_” prefix. This texture is displayed in the menu.

• SpellCodeId, which is the id of the script tied with this entry.

• Duration, which is the duration of the effect (number of update calls).

• Speed, which defines how often the update is called.

• CastRange, which defines the range shaman has to be from the target.

• AutoRepeat, which defines, whether the casting is automatically canceled after
first cast.

• Cooldown, which defines the period of time shaman can not perform any action.

• UnlockedBy, which defines what building is required in order to be able to cast
this spell (Building entry's Id)

5.2 Script data
The script data define the behavior of the spells. In order to make a script file one needs

an editor for C# files. Plain notepad would suffice, but it will not highlight the syntax, which
makes the programming more difficult. The scripts are stored in the C# source files (cs file
extension) in the /Data folder. When the game is initialized, all the C# source files from this
folder are compiled.

5.2.1 SpellEntry
The basic element of a script file is a class that implements the ISpellCodeProvider.

This interface implements one method – List<SpellEntry> GetEntries(), that returns the
list of SpellEntry structs, that defines the spell. This SpellEntry struct then contains
following fields:

• Id, which is an id of the spell used by the spells XML data to know which code
are the XML metadata for.

• Target, which specifies the target type for the spell – it can be either
TargetType.Tile which targets tile or TargetType.GameEntity, which targets
game entity (unit, building or resource). Depending on Target, there are two
delegates that are called when the spell is cast:

◦ OnSpellStartTile, which accepts IScriptGame parameter representing
the game, IScriptGameEffect parameter representing the spell itself,
IScriptUnit parameter representing the caster (shaman) and IScriptTile
representing the tile this spell was cast upon.

◦ OnSpellStartGameEntity, where first three parameters are same like in
the previous case, but the last parameter is IScriptGameEntity
representing the target unit, building or resource this spell was cast upon.

ADVANCED USER DOCUMENTATION 56

• OnSpellStep, which specifies single update of the spell and has IScriptGame
parameter representing the game and IScriptGameEffect representing the spell
itself.

• OnSpellFinish, which specifies action that happens on the last update and has
same parameters as the OnSpellStep delegate.

This example will create an empty spell code.

using WildmenExposedData;

namespace MyNamespace {

 public class MyClass : ISpellCodeProvider {

 public List<SpellEntry> GetEntries() {

 SpellEntry exampleSpell = new SpellEntry();

 exampleSpell.Id = "exampleSpell";

 exampleSpell.Target = SpellEntry.TargetType.Tile;

 // Spell code here

 List<SpellEntry> entries = new List<SpellEntry>();

 entries.Add(exampleSpell);

 return entries;

 }

 }

}

The most important facts on the example are:

◦ Our class is public, non-static and implements ISpellCodeProvider

◦ Our class contains public function GetEntries() that returns
List<SpellEntries>

◦ The GetEntries() code does not return null

As you might have noticed, it does not matter how we name our namespace or class. For
easier referencing, it is recommended to add “using WildmenExposedData;” as shown on
line one.

5.2.2 Interfaces
We can find all the interfaces of the game the script can use in the documentation, but

let us look at the most important interface functions.

IScriptGame
This interface represents the game. It provides (among others) these main methods:

◦ IScriptTile GetTile(int x, int y)
will retrieve tile on given x, y position in the map.

◦ IScriptUnit CreateUnit(IScriptDbEntry entry, Vector2 position,
IScriptPlayer owner)
will create unit of given type on given position that will be assigned to target
owner.

ADVANCED USER DOCUMENTATION 57

◦ IScriptBuilding CreateBuilding(IScriptDbEntry entry, IScriptTile
tile, IScriptPlayer owner)
will create building of given type on given tile that will be assigned to target
owner.

◦ IScriptResource CreateResource(IScriptDbEntry entry, IScriptTile
tile)
will create resource of given type on given tile.

◦ IScriptUnitDbEntry GetUnitDbEntry(string id)
will return a unit type for given id.

◦ IScriptDbEntry GetBuildingDbEntry(string id)
will return a building type for given id.

◦ IScriptDbEntry GetResourceDbEntry(string id)
will return a resource type for given id.

As we mentioned earlier, we are given instance implementing this interface in the
delegates from SpellEntry we described. Let us improve our example spell from previous
sub-chapter and add code near the “// Spell code here” part. Let us

And now we add a code that will spawn a new resource on the tile.

exampleSpell.OnSpellStartTile = (game, gameEffect, caster, target) => {

 var foodResource = game.GetResourceDbEntry("resFood");

 var tile = game.GetTile(5, 5);

 game.CreateResource(foodResource, tile);

The first line will make a delegate function for the initialization of the spell – the first
parameter game is the IScriptGame instance. The second line will get DbEntry of the
resource with “resFood” id, the third line gets the tile with coordinates [5, 5]. And the fourth
line will create the resource on the. Now, let us also add a unit on this position.

 var workerUnit = game.GetUnitDbEntry("untWorker");

 var player = caster.GetOwner();

 var position = tile.GetPosition();

 game.CreateUnit(workerUnit, position, player);

}

The first line will get DbEntry of the worker unit. The second line will get the owner
player of the shaman that cast this spell. We will look at this command later in next sub-
chapter Since unit is placed on vector position unlike resource, we have to first get the
position from the tile. Then we can create the unit on the position.

If we save this code now into the /Data directory along with XML code with metadata
for this spell, this spell once cast will create a food resource and a worker unit on the tile [5,
5].

IScriptTile
This interface represents a map tile. It provides (among others) these main methods:

◦ int GetElevation()
will return the elevation of the tile

ADVANCED USER DOCUMENTATION 58

◦ void SetElevation(int newHeight)
sets a new elevation for the tile

◦ Vector2 GetPosition()
gets the vector position of the tile, this is useful when we need spawn a unit on a
tile, since the unit does not accept tile, but vector

◦ List<IScriptUnit> GetUnits()
returns list of units on this tile

◦ IScriptBuilding GetBuilding()
returns the building that is occupying this tile (or null if there is none)

◦ IScriptResource GetResource()
returns the resource that is occupying this tile (or null if there is none)

IScriptPlayer
This interface represents a player. It provides (among others) these main methods:

◦ IScriptUnit GetShaman()
returns (first) shaman unit of the player

◦ List<IScriptUnit> GetUnits()
returns list of player's units

◦ List<IScriptBuilding> GetBuildings()
returns list of player's buildings

◦ int GetResourceAmount(IScriptDbEntry resourceType)
returns how many of target resource player has.

◦ void SetResourceAmount(IScriptDbEntry resourceType, int
newAmount)
sets the amount of the given resource player has.

As we might notice, we already used player when we were creating new unit in the last
example. Let us improve it even further and modify the last lines of the delegate
OnSpellStartTile.

 game.CreateUnit(workerUnit, position, player);

 // IScriptPlayer example starts here

 foodAmt = player.GetResourceAmount(foodResource);

 player.SetResourceAmount(foodResource, foodAmt + 100);

}

We have added the second, third and fourth line. The third line detects amount of food
does the player have right now and the fourth will set the amount increased by 100.

IScriptGameEntity
This interface, as we might have noticed earlier in this chapter, is used when the shaman

casts spell on a game entity. We have to first determine what entity the spell was cast upon
and then re-cast the target into the proper IScript- interface (IScriptUnit,
IScriptBuilding or IScriptResource). It provides this property:

ADVANCED USER DOCUMENTATION 59

◦ GameEntityType GetEntityType
will return the enum type specifying the type of the entity

IScriptResource
This interface represents a resource placed on the map. This interface is descendant of

IScriptGameEntity. It provides (among others) these main methods:

◦ IScriptTile GetNearestTile()
will return the nearest IScriptTile (the tile the resource is on).

◦ int GetAmount()
will return the amount of charges remaining in this resource.

◦ void SetAmount(int newAmount)
will set new amount of charges for the resource.

Let us create a new spell. This spell will increase the amount of charges of a resource.

 SpellEntry exampleSpell2 = new SpellEntry();

 exampleSpell2.Id = "exampleSpell2";

 exampleSpell2.Target = SpellEntry.TargetType.GameEntity;

 exampleSpell2.OnSpellStartGameEntity = (game, gE, caster, target) => {

 if (target.GetEntityType != GameEntityType.Resource) return;

 var resource = (IScriptResource)target;

 int resAmt = resource.GetAmount();

 resource.SetAmount(resAmt+100);

 }

The first four lines are similar to the last example, but instead of targeting tile, we target
a game entity. The fifth line checks whether the target is resource or not, seventh line will get
the current amount of charges from the resource and the eighth line will set new amount.

Do not forget to make the XML entry for this new spell and add the spell to the list of
spells.

 entries.Add(exampleSpell2);

IScriptBuilding
This interface represents a building placed on the map. This interface is descendant of

IScriptGameEntity. It provides (among others) these main methods:

◦ IScriptTile GetNearestTile()
will return the nearest IScriptTile (the tile the building is based on).

◦ int GetHealth()
returns the current amount of health of the building.

◦ void SetHealth(int newHealth)
sets the amount of health of the building.

◦ void Kill(bool noMessage = false);
destroys the building.

◦ int GetConstructionProgress()
gets the current progress of the construction.

ADVANCED USER DOCUMENTATION 60

◦ void SetConstructionProgress(int newProgress)
sets the construction progress.

◦ bool IsConstructed();
returns whether the building is complete.

◦ IScriptPlayer GetOwner();
returns the owner of the building.

Let us make a new script. We will take the last example “exampleSpell2“ and just
change the content of the OnSpellStartGameEntity delegate.

 if (target.GetEntityType != GameEntityType.Building) return;

 var building = (IScriptBuilding)target;

 if (building.IsConstructed()) {

 int currentHp = building.GetHealth();

 building.SetHealth(currentHp / 2);

 }

 else { building.Kill(); }

Just like in the last example, the first line checks whether we have targeted a building. If
so, we check (line three) whether the building is constructed or not. If it is constructed, we
damage it for half of its current health, if it is not, we will destroy the structure (line seven).

IScriptUnit
This interface represents a building placed on the map. This interface is descendant of

IScriptGameEntity. It provides (among others) these main methods:

• IScriptTile GetNearestTile()
will return the nearest IScriptTile to this unit.

• int GetHealth()
returns the current amount of health of the unit.

• void SetHealth(int newHealth)
sets the amount of health of the unit.

• void Kill(bool noMessage = false);
kills the unit, the noMessage specifies whether a scroll-up message should be
generated.

• Vector2 GetPosition()
gets the current position.

• void SetPosition(Vector2 newPosition)
sets the position.

• bool IsConstructed()
returns whether the building is complete.

• IScriptPlayer GetOwner()
returns the owner of the unit.

• IScriptUnitDbEntry GetDbEntry()
returns the clone of the IScriptDbEntry of this unit. It's important to note that

ADVANCED USER DOCUMENTATION 61

this will clone the entry and if the entry is modified, it needs to be re-applied to
unit.

• void SetDbEntry(IScriptUnitDbEntry newEntry)
clones the IScriptDbEntry and applies it to this unit, if any value is invalid
then nearest valid value is picked instead (1 for Health and 0 for all other
editable properties).

Let us make another script. We will take the same example as the last time, the
“exampleSpell2“ and just change the content of the OnSpellStartGameEntity delegate.

 if (target.GetEntityType != GameEntityType.Unit) return;

 var unit = (IScriptUnit)target;

 var unitDbEntry = unit.GetDbEntry();

 unitDbEntry.Speed = 1.5f;

 int maxHp = unitDbEntry.Health;

 unit.SetHealth(maxHp);

 unit.SetDbEntry(unitDbEntry);

Now, this example first checks whether the type of the target is a unit on line one. On
line three we retrieve the IScriptDbEntry from the unit. On line four we set a new speed for
this entry, on line five and six we heal the unit to its full health and finally, on line seven we
set the IScriptDbEntry back to the unit. So, this code will heal and speed up (or slow
down) a unit (when the spell is cast on a unit, of course).

IScriptGameEffect
The IScriptGameEffect represents the spell itself. It is passed to the delegates and

contains following properties:

• int Time
which will return the number of the current step since the start of the spell

• int Duration
which will return the total number of steps this spell will have

• List<object> LocalData
which allows the script to store data between the steps, initialization and
finalization. These data have to be either game objects, tiles or data that can be
converted to and from a string.

5.3 Example of new content addition
We will now show on an example how to add new content to the game. We will add a

new resource Awesomnium, which will allow the construction of the Spectral barracks
building which will allow the training the Warrior unit to the a Spectre unit – a low health
unit with lethal short-ranged melee attack. Then we will add a spell that will all non-Spectre
friendly units in range, boost the health of all Spectre units in range and kill them after the
spell wears off.

Textures
First we prepare five textures that will represent new resource, unit, building, building

in construction and spell. We will name our textures (on the figure 23 from left to right)

ADVANCED USER DOCUMENTATION 62

tex_unit_spectre.png, tex_resAwe.png, tex_structureSpecBarracks.png,
tex_structureSpecBarracksProgress.png and tex_spectral_boost.png and we will put them in
the /Gfx folder. We included our example textures in attachment [D].

Now, we will create following five files in the /Data folder.

Resource
SpecResource.xml with following XML content will make a resource entry with

aweRes id named Awesomnium,

<?xml version="1.0" encoding="utf-8" ?>

<Resources xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Game.xsd">

 <Resource>

 <Id>resAwe</Id>

 <Name>Awesomnium</Name>.

it will use the resAwe texture (tex_resAwe.png file),

 <Texture>resAwe</Texture>

 <StartWith>0</StartWith>

every instance of the resource will contain 300 of awesomnium,

 <Amount>300</Amount>

it will have 0.4% change of spawning on a tile,

 <OccurChance>0.004</OccurChance>

and it unit will be able to gather the resource every 120 update frames (which is circa 2
seconds).

 <Cooldown>120</Cooldown>

 </Resource>

</Resources>

Unit
SpecUnit.xml with following XML content will make a unit with spectreUnit id named

Spectre.

<?xml version="1.0" encoding="utf-8" ?>

<Units xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Game.xsd">

 <Unit>

 <Id>untSpectre</Id>

 <Name>Spectre</Name>

It will have 20 health points,

 <Health>20</Health>

will belong to unit group 1 (same unit group as Worker, Warrior, etc),

 <UnitGroup>1</UnitGroup>

unit will use unit_spectre texture (tex_unit_spectre.png file)

 <Texture>unit_spectre</Texture>

and will move 1.3x faster than normal speed.

ADVANCED USER DOCUMENTATION 63

 <Speed>1.3</Speed>

The unit will have attack range of 10 pixels

 <AttackRange>10</AttackRange>

and will deal 60 damage every 10 update frames.

 <AttackSpeed>10</AttackSpeed>

 <AttackAmount>60</AttackAmount>

 </Unit>

</Units>

Building
SpecBuilding.xml with following XML content will make a building with

specBarracksBuilding id named Spectral Barracks.

<?xml version="1.0" encoding="utf-8" ?>

<Buildings xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Game.xsd">

 <Building>

 <Id>bldSpectralBarracks</Id>

 <Name>Spectral Barracks</Name>

 <Tier>2</Tier>

The buildings will have 450 health points

 <Health>450</Health>

and will require 300 construction points before it will be constructed.

 <ConstructionTime>300</ConstructionTime>

It will use structureSpecBarracksProgress texture for non-finished version of the
building and structureSpecBarracks texture for constructed version of the building.

 <Texture>structureSpecBarracks</Texture>

 <TextureConstruction>structureSpecBarracksProgress</TextureConstruction>

The building is unlocked by constructing training grounds

 <UnlockedBy>bldTrainGrounds</UnlockedBy>

and will cost 500 of awesomnium to create this building

 <Costs>

 <Cost>

 <Resource>resAwe</Resource>

 <Amount>500</Amount>

 </Cost>

 </Costs>

This building can train warrior unit into spectre unit in 250 update frames costing 20 of
the awesomnium resource.

 <Trains>

 <Train>

 <From>untWarrior</From>

 <To>untSpectre</To>

ADVANCED USER DOCUMENTATION 64

 <Speed>250</Speed>

 <Costs>

 <Cost>

 <Resource>resAwe</Resource>

 <Amount>20</Amount>

 </Cost>

 </Costs>

 </Train>

 </Trains>

 </Building>

</Buildings>

Spell
SpecEffect.xml with following XML content will make a spell with spectralSurgeSpell

id named Spectral surge.

<?xml version="1.0" encoding="utf-8" ?>

<Effects xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Game.xsd">

 <Effect>

 <Id>splSpectralSurge</Id>

 <Name>Spectral surge</Name>

 <Tier>1</Tier>

Spell will use spectral_boost texture in the selection menu

 <Texture>spectral_boost</Texture>

and will use code with spectralSurgeCode id.

 <SpellCodeId>spectralSurgeCode</SpellCodeId>

The spell will update 10 times and will wait 60 frames between updates.

 <Duration>10</Duration>

 <Speed>60</Speed>

 Shaman will have to be at most 20 pixels away from the target,

 <CastRange>20</CastRange>

will not automatically repeat the spell

 <AutoRepeat>false</AutoRepeat>

and will have to wait for 600 updates after casting the spell before it can do anything.

 <Cooldown>600</Cooldown>

The spell is unlocked by building spectral barracks.

 <UnlockedBy>bldSpectralBarracks</UnlockedBy>

 </Effect>

</Effects>

And finally a SpecSpellScript.cs with following script content:

using System.Collections.Generic;

ADVANCED USER DOCUMENTATION 65

using WildmenExposedData;

namespace WildmenSpellLibrary

{

 public class Main : ISpellCodeProvider

 {

 private SpellEntry SpectralSurgeEntry()

 {

We create a new SpellEntry,

 SpellEntry entry = new SpellEntry();

set the id and target type,

 entry.Id = "spectralSurgeCode";

 entry.Target = SpellEntry.TargetType.Tile;

then we set the initializing function, which will first select all units on the tile and tiles
surrounding this tile,

 entry.OnSpellStartTile = (game, gameEffect, caster, target) =>

 {

 List<IScriptUnit> unitsInRange = new List<IScriptUnit>();

 unitsInRange.AddRange(target.GetUnits());

 foreach (var d in Misc.OmniDirection)

 {

 IScriptTile surrtile = target.GetSurroundingTile(d);

 if (surrtile != null)

 {

 unitsInRange.AddRange(surrtile.GetUnits());

 }

 }

and then will filter out spectre units which will get the boost (and will be stored in the
LocalData list) and all other non-shaman units of the owner will be killed.

 foreach (var unit in unitsInRange)

 {

 int currentHp = unit.GetHealth();

 if (currentHp == 0) continue;

 if (unit.GetDbEntry().GetId == "untSpectre")

 {

 unit.SetHealth(currentHp + 40);

 gameEffect.LocalData.Add(unit);

 }

 else if (!unit.IsShaman && unit.GetOwner() == caster.GetOwner())

 {

 unit.Kill();

 }

ADVANCED USER DOCUMENTATION 66

 }

 };

We will skip update function as we do not have any use for it and will define finalizing
function which will kill all the boosted spectre units.

 entry.OnSpellStep = null;

 entry.OnSpellFinish = (game, gameEffect) =>

 {

 foreach (IScriptUnit unit in gameEffect.LocalData)

 if (unit.GetHealth() != 0)

 unit.Kill();

 };

 return entry;

 }

Then we have to expose the list of the spells we defined in this script to the game
through the ISpellCodeProvider interface.

 public List<SpellEntry> GetEntries()

 {

 List<SpellEntry> entries = new List<SpellEntry>();

 entries.Add(SpectralSurgeEntry());

 return entries;

 }

 }

}

Now we only make sure all the players have our new files and we can play with these
new game objects and spell (figure 24).

Figure 24: Spectre unit with spectral

barracks and an awesomnium resource.

Figure 23: New textures for the example content

COMPARISON 67

6 Comparison

In this chapter we will compare our game with the selection of other real-time strategy
games that are similar to our game.

Populous 3: The Beginning
The Populous 3: The Beginning [3] is the game we were inspired by the most and where

some of the core features of our game are from. The Populous game is situated in the world
represented by spherical 3D model where the shaman is the central unit which can cast
powerful spells and alter the landscape. The spells and new buildings are gained by
worshiping gods in the altars placed throughout the map. The regular units are gained
through the house buildings, which produces simple units that can be then trained in special
buildings. The Populous 3 game is however older game (released in 1998) and newer
operating systems and the newer graphics cards have problems with starting this game.

The most apparent difference between our game and Populous 3 is the difference in map
representation. The Populous game has 3D map, whereas our game is played out on a 2D
map. With the map representation is also associated the portrayal of game objects where we
can use simple textures allowing for simpler addition of new graphical content to the game.

The Populous game, unlike our game, does not have the fog of war concept that
conceals areas of the map when user does not have any unit nearby, which adds an element
of surprise to the game. And as we hinted, our game supports extending the game content
directly by editing or adding text files containing XML or script data, which can not be done
directly in the Populous 3 game.

Our game, however, does not contain any form of single player campaign or AI player,
unlike the Populous 3 game.

Age of Empires 2
The Age of Empires 2 [2] is another real-time strategy game and, just like in our game,

its game map is a two-dimensional map with isometric perspective. However, the game does
not represent very well various degrees of differences between terrain elevation.

This game offers various victory conditions, the most similar to ours is the “Protect the
King” victory type, where players have to defend their central unit – king. However, unlike
our game, this unit can not perform any offensive actions and is completely defenseless.

While the Age of Empires 2 allows modifications of the game, it requires additional
software to do so, unlike our game that allows to change the game data directly. Also, unlike
our game, the units in the Age of Empires game does not have to be trained from basic units
but are produced directly.

This game also provides a single-player campaign and custom games against AI players,
which our game does not offer.

Warcraft 3
The Warcraft 3 [25] game is a 3D real-time strategy game. The 3D map, just like in the

Populous game, allows the terrain to form ramps, slopes or cliffs, however with the fog of

COMPARISON 68

war mechanism. The unit production system is same as in the Age of Empires 2, where units
can be directly trained from the building.

The Warcraft 3 game allows the player to build a hero units, that will gain experience
which will allow the unit to gain powerful abilities, however, unlike in our game, when this
unit is killed (and the player does not have any means of it re-creation), the player is not
defeated. The exception is the single-player, where player might have to protect a hero from
the AI players. This brings us to the topic of single-player, which the Warcraft 3 game offer
both in form of campaign and in form of custom skirmish against computer, neither of which
our game game provides.

The game content can be modified, but again, 3rd party software is needed in order to
change the data and use of 3D models makes the modding even less accessible to the
inexperienced users.

Command and Conquer 4: Tiberium Twilight
The Command and Conquer 4: Tiberium Twilight [7] is basically a Warcraft 3 style

game, but differs from other real-time strategies with the concept of a base as a moving unit,
which can produce units “on the go”. This game, however, entirely dropped the resource
gathering side of the genre and units will only take time to be built, not resources.
Additionally, there is no base building and the decision what units the player has access to is
decided outside the game through a leveling system, where player gets points for playing
games. When certain level is reached a new set of units is unlocked for the player and the
base may build them.

This base-unit is certainly a powerful and critical unit for the player, filling same
position as the shaman in our game. The number of units player can build is also reduced and
set fairly low, having similar functionality to our unit soft-limit.

Other than that, the Tiberium Twilight shares many similarities with the Warcraft 3
game (as we mentioned earlier). The map is three dimensional, with fog of war. The game
alongside multiplayer also offers singleplayer and campaign. The modding options for this
game are basically nonexistent.

The Settlers 7: Paths to a Kingdom
The Settlers 7: Paths to a Kingdom [8] offers a different take on real-time strategy

games. In this game player is building a city and has to take care of the entire production
chain, starting with fishing, ending with weapon forging. Player has a number of available
civilians and is assigning them to buildings or conscripting them to military (if the player has
sufficient amount of resources).

The game is played out on a 3D map with no fog of war. The player is constructing
buildings, which will gather or produce resources (if the building is occupied by a civilian).
When civilians are recruited into military, they can attack other player's buildings. Player
wins either by eliminating all opponents or by accumulating victory points (by non-military
means). There is no critical unit.

Again, this game offers single-player games and can not be extended. Unlike our game.

COMPARISON 69

Other similar products
Other notable real-time strategies are more-less conceptually and mechanically similar

to those we mentioned. The StarCraft [26] and Command and Conquer: Red Alert 2 [27] are
similar to the Age of Empires 2 game with its isometric graphics. The StarCraft 2 [1], Red
Alert 3 [28] or Emperor: Battle for Dune [29] games are then similar to the Warcraft 3 only
placed in different universe and different time. And the Anno 2070 [30] game is similar to
the Settlers 7 game. While these games are not exactly similar and are running on different
game engines, the basic concepts (like direct production of units or the lack of critical unit)
are same.

Summary
Now, that we have compared our game to similar products we can summarize our

observations.

Our game have the two-dimensional graphics, which puts us at a disadvantage as the 3D
games have better graphical fidelity and allows better orientation on the map. However, the
use of simpler (2D) graphics allows us to have easier extendability of our game allowing less
skilled users to add and modify the content of the game, which is not what we usually see in
the RTS games.

We can see that the concept of gradually training our units from the very basic ones to
the specialized ones is not very usual among the games as they are rather built directly by
proper building. The concept of a powerful critical unit is also uncommon and appears just in
the Populous 3 game (where we adopted the idea from), Command and Conquer 4: Tiberium
Twilight and occasional occurrences in single-player campaigns.

A significant difference between our game and the similar games is the lack of single-
player play in our game. As we noticed, most of the games have both multi-player and
single-player in form of either custom skirmishes or scripted campaigns.

CONCLUSION 70

7 Conclusion

In this chapter we will conclude this thesis. We will assess the result and we will
compare it with the goals we established in the chapter 1.2.

The game is played out on two-dimensional map divided into tiles, which have given
elevation. We look at this map from 2D isometric perspective, which allows us to see the
elevations of individual tiles. The player has won the game if all other players have lost their
shaman unit and none of their building can re-produce it. In order to achieve victory players
utilize these three types of game objects: units, buildings and resources.

The units can receive orders which interacts with other game objects on the map and the
map itself. The units can move around map, with exception of moving into tile with steep
elevation difference or below sea level. There is several types of units and each has different
properties. We have provided 9 unit types - a shaman unit, a basic worker unit and 7 combat
units. The shaman unit can cast spells, which modifies properties of the players, map, map
tiles or game objects. Once a spell is cast, the shaman is unable to receive orders for brief
moment. The worker units gather resources and builds buildings. The combat units each have
different attack ranges and bonuses against other types which forces player to diversify the
composition of their army.

The buildings serve as progression system where buildings can unlock spells and other
buildings and can train specialized units from more basic ones. Just like units, there can be
multiple types of buildings which define their properties. The player can build total of 9
types of buildings. Some buildings extend the population limit, which determines how many
units player can have. Some buildings may start producing a basic unit when the population
limit is not reached, depending on their type. The buildings require resources in order to be
built. When the building is placed down it is in construction mode, where it can not be used
until building finishes the construction.

The resource game objects are gathered by units and then used for either constructing
new buildings or training new units. They are randomly placed around the map at the
beginning of the game and they have limit on how many times they can be gathered.

The game content is stored in the XML files, which define the properties of individual
types of game objects. The graphical data are stored in the PNG files, allowing to add or
modify the graphical representation of game objects. The spells are defined by the code in
the C# source files and these files are automatically compiled when the game starts.

The game features multiplayer game mode, where players connects to the instance of
the game running in server mode, which can accept up to 4 clients. and the game is played in
real-time, meaning that the players are ordering their forces concurrently with other players.

We have made this game with the use of the C# language, Microsoft's .NET Framework
and SharpDX libraries.

When we compare our game with the goals mentioned in the chapter 1.2 we can
conclude that we have fulfilled all of them.

FUTURE WORK 71

8 Future work

While our game matches the goals we set up, we have noticed during the development
certain areas of the game that could be improved further.

• As we compared our game with other games, majority of similar RTS games
contain some form of single-player, either in form of a campaign with a story or
just as a game where instead of human players we play against computer.
Therefore, adding an AI player would certainly bring the game closer to the
modern games.

• The units in this game are walking straight-forward to their mission and when
they reach an obstacle they can not pass, they will stop. It would improve the
quality of the gameplay if a path-finding algorithm is implemented.

• While the map generation is sufficient for our use, it could certainly be further
improved. Adding a map editor that would allow to create own maps could help
ensuring fair starting points for all involved players.

• This game allows to create new network connections only when the game is
being set up. Once the game is started it is not possible for another player to join
and spectate the game, or replace an inactive player that has quit the game.
Allowing the players to reconnect if their connection fails would improve the
user experience from the game.

• The units can only perform limited amount of orders. It is common in other
games for unit to be able to perform special ability of the unit, which adds
additional value to the unit and requires the player to concentrate on controlling
of these units as their abilities have to be manually activated.

• The user interface of the game could be improved allowing for better orientation
of the player by adding information about selected units or adding a minimap – a
miniaturized view of the game, which would allow to react on situations that
happen outside the current view.

• The orientation could also be improved if units were forbidden from crossing
and moving into one another when performing orders. The lack of this
mechanism makes larger combat situation difficult.

ATTACHMENTS 72

9 Attachments

Attachment A: Source code
The source code for the Wildmen solution can be found in the /WildmenSource

directory. The folder contains the Wildmen project with the game source code,
WildmenExposedData project with source code of exposed data to the script files and
WildmenSetup project which compiles the installer of the game using the
VisualStudioInstaller plug-in [24].

Attachment B: Documentation
The documentation is located in the /Documentation directory and is made from the

source code using the Sandcastle Help File Builder [24] project.

There are two files, one WildmenDocumentation.chm contains documentation of all
members and methods from the Wildmen and WildmenExposedData projects. The
WildmenExposedDataDocumentation.chm contains documentation of public members and
methods from the WildmenExposedData project.

Attachment C: Installer
The setup can be found in the /Setup directory and the game is installed by running the

setup.exe program.

Attachment D: Example extension data
Example extension data are provided in the /ExtensionExample directory.

REFERENCES 73

10 References

1. StarCraft 2: Wings of Liberty game. Official website:
http://us.battle.net/sc2/en/

2. Age of Empires II: The Age of Kings game. Official website:
http://www.ageofempires.com/AoE2.aspx

3. Populous 3: the Beginning game. Wikipedia article:
http://en.wikipedia.org/wiki/Populous:_The_Beginning

4. GameSpy: Supreme Commander Interview article. Online document available at
http://pc.gamespy.com/pc/supreme-commander/631678p1.html

5. SimCity 2000 game. Wikipedia article:
http://en.wikipedia.org/wiki/SimCity_2000

6. Wikipedia article about strategy. Online document available at:
http://en.wikipedia.org/wiki/Strategy

7. Command & Conquer 4 Tiberian Twilight game. Official website:
http://www.ea.com/command-and-conquer-4

8. The Settlers 7: Paths to a Kingdom game. Official website:
http://thesettlers.uk.ubi.com/the-settlers-7/

9. Minecraft game. Official website: https://minecraft.net/

10. Wikipedia article about Perlin noise. Online document available at:
http://en.wikipedia.org/wiki/Perlin_noise

11. Rendered height-map image. Online source:
http://en.wikipedia.org/wiki/File:Heightmap_rendered.png

12. Polygonal Map Generation for Games article. Online document available at:
http://www-cs-students.stanford.edu/~amitp/game-programming/polygon-
map-generation/

13. Polygon elevation map image. Online source: http://www-cs-
students.stanford.edu/~amitp/game-programming/polygon-map-
generation/elevations.png

14. Dune 2 game. Wikipedia article: http://en.wikipedia.org/wiki/Dune_II

15. Dune 2 screenshot image. Online source:
http://www.myabandonware.com/media/captures/D/dune-ii-the-building-
of-a-dynasty/dune-ii-the-building-of-a-dynasty_14.jpg

16. Mario game. Wikipedia article:
http://en.wikipedia.org/wiki/Super_Mario_Bros.

17. Screenshot from Mario game. Online source: http://www.ellick-lee.com/wp-
content/uploads/2013/01/8Bit-eLlicky-Mario.png

http://www-cs-students.stanford.edu/~amitp/game-programming/polygon-map-generation/
http://www-cs-students.stanford.edu/~amitp/game-programming/polygon-map-generation/
http://en.wikipedia.org/wiki/Perlin_noise
http://pc.gamespy.com/pc/supreme-commander/631678p1.html

REFERENCES 74

18. SimCity 2000 screenshot image. Online source:
http://www.freegameempire.com/Img/Cache/Games/SimCity-
2000/Screenshot-2.png

19. Unity3D game engine. Official website: http://unity3d.com/

20. Microsoft XNA framework. Official website: http://msdn.microsoft.com/en-
us/centrum-xna.aspx

21. SharpDX framework. Official website: http://sharpdx.org/

22. OpenTK, OpenGL wrapper for C#. Official website: http://www.opentk.com/

23. MonoGame libraries. Official website: http://www.monogame.net/

24. Visual Studio Installer Projects plug-in. For Visual Studio Website:
http://visualstudiogallery.msdn.microsoft.com/9abe329c-9bba-44a1-
be59-0fbf6151054d

25. Warcraft III: Reign of Chaos game. Official website:
http://us.blizzard.com/en-us/games/war3/

26. Starcraft game. Official website: http://us.blizzard.com/en-us/games/sc/

27. Command & Conquer: Red Alert 2 game. Wikipedia article:
http://en.wikipedia.org/wiki/Command_%26_Conquer:_Red_Alert_2

28. Command & Conquer: Red Alert 3 game. Official website:
http://www.ea.com/command-and-conquer-red-alert-3

29. Emperor: Battle for Dune game. Wikipedia article:
http://en.wikipedia.org/wiki/Emperor:_Battle_for_Dune

30. Anno 2070 game. Official website: http://anno-game.ubi.com/anno-2070/en-
GB/home/

31. Sandcastle Help File Builder project. Website: https://shfb.codeplex.com/

32. Algorithm for generating 2d perlin noise. Website:
http://freespace.virgin.net/hugo.elias/models/m_perlin.htm

	Univerzita Karlova v Praze
	Matematicko-fyzikální fakulta
	BAKALÁŘSKÁ PRÁCE
	Filip Ressler
	Wildmen: strategická hra v terraformovatelném světě.
	Katedra distribuovaných a spolehlivých systémů
	Vedoucí bakalářské práce: Mgr. Pavel Ježek, Ph.D.
	Studijní program: Informatika
	Studijní obor: Programování
	Praha 2014
	Na tomto místě bych rád poděkoval všem lidem, kteří se podíleli na této práci. Především děkuji mému vedoucímu, Mgr. Pavlu Ježkovi Ph.D., za ochotu, trpělivost, připomínky ohledně struktury a za pomoc při psaní této práce.
	Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně a výhradně s použitím citovaných pramenů, literatury a dalších odborných zdrojů.
	1 Introduction
	1.1 RTS genre
	1.1.1 Real-time play
	1.1.2 Resource gathering
	1.1.3 Unit management
	1.1.4 Victory conditions
	1.1.5 Progression
	1.1.6 Base building
	Building types
	Base expansion

	1.2 Our goals
	1.2.1 Game elements
	(G1) Victory condition
	(G2) Map
	(G3) Resources
	(G4) Buildings
	(G5) Units
	(G6) Shaman unit
	(G7) Spells

	1.2.2 Under the hood
	(G8) Multiplayer
	(G9) Extendability of the game
	(G10) Programmed in C#

	2 Problem analysis
	2.1 Gameplay design
	2.1.1 Map representation
	Restriction of the map
	Terrain elevation

	2.1.2 Map generation
	Random terrain generation
	Elevation through Perlin noise generator
	Polygonal map elevation
	Comparison
	Picking starting locations

	2.1.3 Spell system
	2.1.4 Entity data
	Map tiles
	Units
	Buildings
	Resources
	Spells
	Player

	2.1.5 Victory conditions

	2.2 Technical issues
	2.2.1 Game engine and graphics
	Graphical style
	Game engine
	Unity3D
	Microsoft XNA
	SharpDX
	OpenTK
	MonoGame
	Conclusion on graphics libraries

	2.2.2 Extendability
	2.2.3 Network communication
	Communication flow
	Data packets

	3 Programmer documentation
	3.1 Structure of the solution
	3.1.1 Namespaces
	Namespace Wildmen
	Namespace Wildmen.Game
	Namespace Wildmen.Database
	Namespace Wildmen.Networking
	Namespace Wildmen.Screens
	Namespace Wildmen.Controls
	Namespace WildmenExposedData

	3.1.2 Initialization process
	3.1.3 Main loop
	3.1.4 Structure of the WildmenGame class

	3.2 Class WildmenGame
	3.2.1 Class MapBoard
	3.2.2 Class Player

	3.3 Class GameObject
	Initialization, the vector-bound objects and tile-bound classes
	Members related to drawing
	Class members related to orders
	3.3.1 Class Unit
	Receiving orders
	Executing orders
	Orders
	Idle order
	Attack order
	Construct order
	Spell order
	Gather order
	Train order
	Movement

	3.3.2 Class Building
	3.3.3 Class Resource

	3.4 Class GameEffect
	3.5 Class MapUI
	MapUI states
	Selecting order and target
	Drawing and updating

	3.6 ScreenManager and ControlManager
	Class ScreenManager
	Class GameCreateScreen
	Class GameScreen

	3.7 Scripting
	Namespace WildmenExposedData

	3.8 Networking
	Initialization of the connection between server and client
	Examples of handling the network communication
	Class Network
	INetworkSerializable interface
	Class NetworkServer

	4 User documentation
	4.1 Installation
	4.2 Individual game screens
	4.2.1 MapUI
	Camera movement
	Revealed areas
	Selecting object
	Giving orders
	Move order
	Attack order
	Train order
	Construction or build order
	Gather order
	Spell or cast order

	4.3 Game entities and spells
	4.3.1 Units
	Shaman unit
	Worker unit
	Warrior unit
	Archer unit
	Spearman unit
	Shield-bearer unit
	Mounted scout unit
	Mounted warrior unit
	Mounted archer unit

	4.3.2 Buildings
	Stockpile building
	Tribe center building
	House building
	Training grounds building
	Archery range building
	Weapons-master's camp building
	Armor-master's camp building
	Stables building
	Riding-trainer's camp

	4.3.3 Resources
	Food resource
	Stone resource

	4.3.4 Spells
	Blessing of the water
	Blessing of the fire
	Blessing of the earth
	Heal
	Curse
	Disruption
	Rejuvenation
	Volcano

	5 Advanced user documentation
	5.1 XML data
	5.1.1 Unit entry
	5.1.2 Building entry
	Common sub-entries

	5.1.3 Resource entry
	5.1.4 Effect entry

	5.2 Script data
	5.2.1 SpellEntry
	5.2.2 Interfaces
	IScriptGame
	IScriptTile
	IScriptPlayer
	IScriptGameEntity
	IScriptResource
	IScriptBuilding
	IScriptUnit
	IScriptGameEffect

	5.3 Example of new content addition
	Textures
	Resource
	Unit
	Building
	Spell

	6 Comparison
	Populous 3: The Beginning
	Age of Empires 2
	Warcraft 3
	Command and Conquer 4: Tiberium Twilight
	The Settlers 7: Paths to a Kingdom
	Other similar products
	Summary

	7 Conclusion
	8 Future work
	9 Attachments
	Attachment A: Source code
	Attachment B: Documentation
	Attachment C: Installer
	Attachment D: Example extension data

	10 References

