
Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

Mgr. Stanislav Slušný

Control algorithms for autonomous
embodied agents

Department of Software Engineering

Supervisor of the doctoral thesis: Mgr. Roman Neruda, CSc.

Study programme: Computer Science

Specialization: Software Engineering

Prague 2014

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Název práce: Řı́dićı mechanismy pro autonomńı vtělené agenty

Autor: Mgr. Stanislav Slušný

Katedra: Katedra softwarového inženýrstv́ı, Matematicko-fyzikálńı fakulta, Uni-
verzita Karlova v Praze

Vedoućı disertačńı práce: Mgr. Roman Neruda, CSc., Ústav informatiky Akademie
věd České republiky, v.v.i., Praha

Abstrakt: Tato práce se zabývá studiem ř́ıd́ıćıch algoritmů pro adaptivńı vtělené
agenty. Zkoumáme př́ıstupy založené na neuronových śıt́ıch, genetických algo-
ritmech a posilovaném učeńı, a navrhujeme jejich vylepšeńı. Hlavńım výsledkem
práce je návrh architektury vtěleného autonomńıho agenta, která kombinuje reak-
tivńı a deliberativńı paradigmata. Tato architektura je testována na realistických
simulacich pro řešeńı složitých úkol̊u v reálném světě. Efektivita nového vysoko-
úrovňového plánovače založeného na programováńı s omezenými podmı́nkami a
konečných automatech je demonstrována v praktické aplikaci.

Kĺıčová slova: Robotika, Neuronové śıtě, Učeńı posilovańım, Programováńı s
omezuj́ıćımi podmı́nkami.

Title: Control algorithms for autonomous embodied agents

Author: Mgr. Stanislav Slušný

Department: Department of Software Engineering, Faculty of Mathematics and
Physics, Charles University, Prague

Supervisor: Mgr. Roman Neruda, CSc., Institute of Computer Science, Academy
of Sciences of the Czech Republic, Prague

Abstract: This work studies control algorithms for adaptive embodied agents.
The available approaches, based on neural networks, genetic algorithms and re-
inforcement learning are investigated and potential improvements suggested. Ar-
chitecture of adaptive embodied autonomous agents, that combines the existing
reactive and deliberative paradigms, is proposed and demonstrated in a realistic
simulator solving a complex real world task. The performance of a novel high-level
planner based on constraint programming and finite automata is demonstrated
on a practical application.

Keywords: Robotics, Neural networks, Reinforcement learning, Constraint pro-
gramming.

Contents

Introduction 3

1 Adaptive Reactive Agents 8

1.1 Adaptation Based on Genetic Algorithms 9
1.1.1 Feedforward Perceptron Networks 13
1.1.2 Recurrent Neural Networks 14
1.1.3 RBF Networks . 15

1.2 Adaptation Based on MDPs . 17
1.2.1 Dynamic Programming . 21
1.2.2 Reinforcement Learning 23

1.3 Experimental Framework . 25
1.4 Obstacle Avoidance . 26

1.4.1 Rules Extracted from RBF Networks 28
1.4.2 Rules Induced by Reinforcement Learning 30
1.4.3 Discussion . 32
1.4.4 Comparison of NN Architectures 33

1.5 Collective Behavior . 35
1.6 Active Learning . 40
1.7 Conclusions . 44

2 Hybrid Agents 46

2.1 Agents Taxonomy . 46
2.2 Mapping . 48
2.3 Localization . 48
2.4 Motion Planning . 52
2.5 Motion Planning with Low-cost Platform 54
2.6 Waste Collection Task . 56
2.7 Conclusions . 58

3 Deliberative Planning 59

3.1 Problem Formulation . 59
3.2 Constraint Programming Planner 61

3.2.1 Model Based on Network Flows 61
3.2.2 Model Based on Finite State Automata 64
3.2.3 Embedding CP models into LS 67

3.3 Experimental Results . 68
3.3.1 Performance of the Network Flow Model 68
3.3.2 Performance of the Network Flow Model within LS 70
3.3.3 Performance of the Finite State Automaton Model 70

3.4 Conclusions . 72

Conclusions 73

List of Abbreviations 87

1

Attachments 88

1 Miniature Robots . 88
2 Rules Induced in the Obstacle Avoidance Task 90

2

Introduction

Motivation

Ever since the Czech novelist Karel Čapek formulated the term “robot”, intelli-
gent machines, which make life pleasant by doing the type work we don’t like to
do, has been an active dream for humankind. While much of robotics is still in
its infancy, robots are moving from factories and assembly lines into households.
An assembly line is orders of magnitude more predictable than a private home.
Robotics is becoming a software science, where the goal is to develop robust
software that enables machines to withstand the numerous challenges arising in
unstructured and dynamic environments.

The idea of “intelligent” devices has an enormous potential to change society
and the design of intelligent embodied agents represents one of the key research
topics of modern artificial intelligence. Learning is often viewed as an essential
part of an intelligent system. Adaptive agents modify their behavior according
to acquired knowledge and environmental changes. Learning enables agents to
perform more effectively over time. The ultimate goal of the process is to develop
an embodied and autonomous agent with a high degree of adaptive possibilities.
Since birth of the research discipline1, two dominant approaches have emerged.

In 1955, Marvine Minsky indicated that an intelligent machine “would tend to
build up within itself an abstract model of the environment in which it is placed.
If it were given a problem it could first explore solutions within the internal ab-
stract model of the environment and then attempt external experiments.” This
approach, characterized by a strong dependence upon the use of representation-
al knowledge and deliberative reasoning for robotic planning, then dominated
robotic research for the next thirty years.

In 1987, the results of Rodney Brooks captured the attention of researchers
around the world. According to Brooks, “planning is just a way of avoiding figur-
ing out what to do next”. In contrast to the deliberative approach, he emphasized
reactive agents working in dynamic, noisy and uncertain environments. He fo-
cused on the intelligent behaviors that arise as a result of an agent’s interaction
with its environment.

In general, both approaches have limitations when they are considered in iso-
lation. Modern robotic systems, which include mobile platforms for planetary
exploration or cars that travel autonomously on highways, incorporate a combi-
nation of deliberative reasoning and a lower-level reactive system. These robots
are able to cope with fundamental problems, like localization in maps, map build-
ing, path planning or collision avoidance. However, their cognitive complexity is
still very low.

The study of learning paradigms can shed more light into the problem of
designing intelligent autonomous agents. Evolutionary robotics is an ideal frame-
work for synthesizing agents whose behavior emerges from a large number of inter-
actions among their constituent parts. It is the approach that connects robotics
with two widely studied disciplines: evolutionary algorithms and artificial neural

1The birth of artificial intelligence as a distinct field is generally associated with the Dart-
mouth Summer Research Conference held in August 1955.

3

networks.
The evolutionary algorithms represent a stochastic search technique used to

find approximate solutions to optimization and search problems. They use tech-
niques inspired by evolutionary biology such as mutation, selection, and crossover.

Artificial neural networks represent one of the approaches that are able to
handle the supervised learning problem. The neural network research dates back
to the early 1950s, when McCulloch and Pitts defined a formal model of neuron.
Although their original motivation was to model neural systems of living organ-
isms, neural networks are applicable in such diverse fields as modeling, time series
analysis, pattern recognition, signal processing, and control.

Another tool widely used for developing control mechanisms for embodied
agents is reinforcement learning. Unlike supervised learning, it deals with sit-
uations when an instant reward of agent actions is not available. Positive or
negative behavior patterns of an agent are evaluated on the coarser time scale
and this information is used to strengthen successful partial behavior patterns
over time.

Automated design methodologies have been exploited mainly in reactive con-
trollers. Reactive control is a technique for tightly coupling perception and ac-
tions, typically in the context of motor behaviors, to produce timely robotic
responses in dynamic worlds. This completely different approach to robot con-
trol is represented by deliberative controllers. Deliberative reasoning systems rely
heavily on symbolic representation world models. A robot employing deliberative
reasoning requires relatively complete knowledge about the world and uses this
knowledge to predict the outcome of its actions. That enables it to optimize its
performance relative to its model of the world. In dynamic worlds, the world
model may quickly become inaccurate and the outcome of reasoning may be in-
valid. Therefore hybrid deliberative/reactive robotic architectures have recently
emerged combining aspects of traditional symbolic methods, but maintaining the
goal of providing the responsiveness, robustness and flexibility of purely reactive
systems.

As neither approach is entirely satisfactory considered separately, hybrid ap-
proach must be taken into account to produce intelligent, robust and flexible
robotic controllers. However, the nature of the boundary between deliberation
and reactive execution is not well understood at this time, and it is determined by
characteristics of the particular environment. As environmental diversity is enor-
mous and may even vary over time, controllers have to continuously adapt their
behaviors and react to changes. In other words, in order to become ubiquitous,
robots have to learn.

Goals and Objectives

The main goal of this work is to study and develop control algorithms for adaptive
embodied agents. In particular, incorporation of adaptive elements into existing
state-of-art controllers should be examined. The available approaches, based on
neural networks, genetic algorithms and reinforcement learning should be investi-
gated and potential improvements suggested. Based on the obtained theoretical
and experimental results, architecture of adaptive embodied autonomous agents
should be proposed, possibly combining the existing reactive and deliberative

4

paradigms.
The goal of the work will be achieved by means of the following objectives:

• Study of controllers for embodied autonomous agents.

Traditionally, robot controllers took advantage of deliberative reasoning.
They built representations of the outer world, reasoned about it and planned
actions accordingly. Behavior based robotic systems demonstrated how re-
active systems with relatively poor models of their environment can ef-
fectively produce robust performance in complex and dynamic domains.
Hybrid deliberative/reactive robotic architectures, which combine both ap-
proaches, are prevalent these days. These approaches should be studied
and put into comparison. Conditions determining their applicability and
superiority in dynamic environments should be defined.

• Study of adaptive paradigms for autonomous embodied agents.

Several adaptive methods have been studied so far. Supervised learning
techniques are not suitable for these kind of problems, as there is not typi-
cally any presentation of input/output pairs. The supervision of the agent
is through the notion of rewards. The agent is told the reward that repre-
sents the outcome of its previous actions, but is not told which action would
have been in its best long-term interest. Evolutionary robotics tackles the
problem through a self-organization process based on artificial evolution.
The broad class of reinforcement learning algorithms approaches the prob-
lem by extending algorithms originally developed in operations research and
statistics communities. The existing methods should be studied in detail,
put into perspective and their applicability in robotic controllers should be
discussed.

• Design of a controller for autonomous adaptive agents.

Recent advances in robotics have allowed robots to operate in cluttered and
complex spaces. However, to efficiently handle the full complexity of the real
world tasks, new reasoning strategies for real world tasks are required. To
handle changes in the environment we focus on anytime planning algorithms
that can update the plan when the goal is modified. The main concern of
further research is the creation of adaptive hybrid controllers.

• Performance evaluation of the proposed methods.

The proposed architecture should be demonstrated on a physical robot or
in a realistic simulator solving a complex real world task.

Structure of the Work

Let us describe the structure of this work in order to help its reader navigate
throughout the book. In general, the organization of this thesis reflects the course
of development of our work. It starts with chapters studying adaptive reactive
agents, continues with descriptions of hybrid agents exploiting both reactive and
deliberative planning, and ends with the chapter describing a novel high-level
planner based on constraint programming.

5

Chapter 1 introduces adaptive reactive agents and presents the two most
popular learning paradigms in robotics: evolutionary and reinforcement learning
algorithms. These automated design methodologies are intended to work with
no or minimal human intervention and to synthetize sensible behavior out of a
“tabula rasa”. The chapter starts with the description of genetic algorithms (sec-
tion 1.1) and neural networks, the cornerstones of evolutionary robotics. The
mathematical foundation of learning algorithms based on Markov decision pro-
cesses is presented in section 1.2. While dynamic programming algorithms from
subsection 1.2.1 require a model of the environment, reinforcement learning al-
gorithms examined in subsection 1.2.2 work even in cases, when the model of the
environment is not known in advance.

The experimental part of the chapter starts with section 1.4. It compares both
introduced learning paradigms on a classic benchmark task. A robot, without any
prior knowledge, has to learn to navigate and synthetize an obstacle avoidance
behavior. In subsection 1.4.4 we hypothesize, that more powerful architectures
of neural networks lead to development of better controllers. Section 1.5 demon-
strates how minimal changes to fitness function can synthetize more complex
behaviors. It deals with a group of autonomous robots, that accomplish a com-
mon task in a distributed fashion. Section 1.6 presents an experiment, when the
evolutionary algorithm develops surprisingly well performing active learning be-
havior. In the last section 1.6 we introduce a social-SLAM experiment, in which
a robot is taught to move its head and maintain as much certainty about the
state of the social environment as possible. Although this time the complexity of
the problem forces a human to manually implement the active learning behavior,
adaptive algorithms still accelerate the implementation. The chapter ends with
discussion of power and limits of reactive agents.

To overcome limitations of purely reactive agents, the hybrid architecture
that takes advantage of both reactive and deliberative approaches is introduced
in chapter 2. Section 2.1 puts both approaches into perspective and presents the
hybrid architecture that we utilized in our experiments. The remaining sections
in chapter 2 describe motion planning components, while the discussion of the
high-level planner is left the chapter 3. The localization module, responsible for
estimating the position of the robot in the known map, is described in section 2.3.
The path-planning component based on the value iteration algorithm is studied
in the section 2.4. Although path planning algorithms are well established, im-
plementation of these algorithms in low-cost robots is challenging due to their
very limited sensory system. The section 2.5 summarizes the performance of the
motion planning module within a low-cost E-puck robot.

Chapter 3 describes the deliberative planner and studies its performance on a
real life problem. The goal of the robot is to clean out a collection of wastes spread
in a building; but under the condition of not exceeding its internal storage capac-
ity and minimizing the covered trajectory. The task is an important variant of
the popular vehicle routing problem and we exploited constraint programming to
tackle it. The exact mathematical formulation is given in section 3.1. The crucial
aspect of the high-level planner in our design is the ability to produce a solution
(possibly sub-optimal) in a very short time frame. The constraint programming
planner is introduced in section 3.2. We present two approaches. The approach
presented in subsection 3.2.1 is inspired by the operations research model, name-

6

ly by the network flows. A novel constraint model based on finite automata is
presented in the subsection 3.2.2. The experimental evaluation and comparison
of both models with emphasis on the further adaptation to the robotics domain
are discussed in the section 3.3.

The main results of the work are summarized in the last chapter, where several
possible directions for future work are outlined.

Related Works by the Author

The results presented in this work have already been published in papers pre-
sented at both international and local conferences, and published in journals, or
technical reports.

Publications dealing with neural networks and their learning include [68, 65,
67]. The results concerning evolutionary robotics were published in [95, 70, 98,
111, 112, 72]. The reinforcement learning based adaptive algorithms were studied
in [73, 96, 99, 66, 69, 100]. And finally, the results of a hybrid agent incorporating
a deliberative planner were presented in [103, 102, 97, 14].

7

1. Adaptive Reactive Agents

One of the key questions of artificial intelligence is how to design adaptive agents.
In order to gain an understanding of a phenomenon as complex as natural intelli-
gence, we need to study complex behavior in elaborate environments. Traditional-
ly, AI has concerned itself with complex agents in relatively simple environments,
simple in the sense that they could be precisely modeled and involved little or no
noise and uncertainty. One of the many characteristics of intelligence is that it
arises as a result of an agent’s interaction with intricate environments. In contrast
to traditional systems, reactive and behavior based systems have placed agents
with low levels of cognitive complexity into noisy and uncertain environments.

Several techniques have been studied so far. Note, that supervised learning
techniques are not suitable for these kind of problems, as there is not typically
any presentation of input/output pairs. One approach to develop autonomous
intelligent agents, called evolutionary robotics (ER), is through a self-organization
process based on artificial evolution. It is an ideal framework for synthesizing
agents whose behavior emerge from a large number of interactions among their
constituent parts [76]. In our work, the control systems of evolutionary robots
are artificial neural networks, but they might be parameters of predefined control
programs, computer programs themselves or learning rules.

Evolutionary algorithms can be viewed as an alternative to classical optimiza-
tion techniques, based on a biological metaphor: over many generations, natural
populations evolve according to the principles of natural selection and “survival
of the fittest”, first clearly stated by Charles Darwin in The Origin of Species [30].

Artificial neural networks (NNs) are a computational paradigm modeled on
the human brain that have been applied to a variety of classification and learning
tasks for a few reasons. Despite their simple structure, they provide very gener-
al computational capabilities and they can adapt themselves to different tasks,
i.e. they are able to learn. Neural networks are popular in robotics for various
reasons. They provide straightforward mapping from input signals to output sig-
nals, several levels of adaptation and they are not sensitive to noise. The network
usually provides direct mapping between robot sensors and effectors, i.e. from the
robot sensor values to the actual speeds of robot wheels.

Most current ER applications use traditional multi-layer perceptron networks.
We will utilize classical multi-layer perceptron networks in our experiments, too,
but we will also compare their performance to recurrent Elman networks and
local unit network architecture called Radial Basis Function (RBF) networks.
RBF networks have competitive performance, more learning options, and (due to
their local nature) better interpretation possibilities.

Another possibility is to apply one of the well studied algorithms of reinforce-
ment learning. The supervision of the agent is through the notion of rewards.
The agent is told the reward that represents the outcome of its previous actions,
but is not told which action would have been in its best long-term interest. The
agent interacts with the environment with its sensors and effectors (motors) in
a discrete time perception-action cycle and we assume that it is able to sense
rewards from the environment. The goal of learning algorithm is to find a pre-
scription that defines the agent’s behavior. This behavior is usually defined as a

8

function that maps the agent’s internal state to some action.

1.1 Adaptation Based on Genetic Algorithms

Evolutionary robotics is a research discipline that uses evolutionary computation
to develop controllers for autonomous robots. The pioneering work dates back to
the late 80s, when the first simulated artificial organisms with a sensory motor
system began evolving on computer screens. In 1992, a group of researchers
surrounding Floreano and Mondada at the Swiss Federal Institute of Technology
in Lausanne, reported promising results from experiments on artificial evolution of
autonomous robots and the success of this research triggered a wave of popularity
in labs and universities around the world. The book [76] summarizes their early
results and provides a comprehensive introduction into the field of evolutionary
robotics. Teams at the University of Sussex at Brighton and at the University
of Southern California formed the field of ER, too. Since then, ER has been
reviewed in various publications [54, 42, 56, 58].

Not surprisingly, evolutionary robotics is based on Genetic Algorithms (GA).
Genetic algorithm has been investigated by Holland [44], and Fogel [37], among
others, with a marked increase in interest within the last decade. Genetic search
refers to a class of stochastic optimization techniques — loosely based on processes
believed to operate in biological evolution — in which a population of candidate
solutions evolve under selection and random “genetic” diversification operators.

The majority of experiments in evolutionary robotics have resorted to neural
networks for the control system of the evolving robot. This choice is often justified
by one or more of the following issues:

1. Neural networks offer a relatively smooth search space. In other words,
gradual changes to the parameters defining a neural network (weights, time
constants, architecture) will often correspond to gradual changes of its be-
havior.

2. Neural networks provide various levels of evolutionary granularity. One may
decide to apply artificial evolution to the lowest level specification of a neural
network, such as the connection strengths, or to higher levels, such as the
coordination of predefined modules composed of predefined sub-networks.

3. Neural networks provide a straightforward mapping between sensors and
motors. They can accommodate continuous (analog) input signals and pro-
vide either continuous or discrete motor outputs, depending on the transfer
function chosen.

4. Neural networks are not sensitive to noise. Since their units are based upon
a sum of several weighted signals, oscillations in the individual values of
these signals do not drastically affect the behavior of the network. This is
a very useful property for physical robots with noisy sensors that interact
with noisy environments.

Every member of population is called an individual and represents a potential
solution to a problem. Each individual is assigned a fitness that is a measure of

9

how good a solution it represents. The better the solution is, the higher the fitness
value. The problem is to find the maximum of fitness function. The evolution
starts from a population of (usually completely random) individuals and iterates
in generations. The population evolves toward better solutions (in terms of a
fitness function). In each generation, the fitness of each individual is evaluated,
and genetic operators (usually selective reproduction, crossover, and mutation)
are applied to generate a new population. The new population is then used in
the next iteration of the algorithm. This generational process is repeated until a
desired individual is found, or until the best fitness value in the population stops
increasing.

Algorithm 1 reveals the framework of genetic algorithm used in our experi-
ments. There is a wide variety of components that can be plugged into it and
form the final scheme of the algorithm. To fully describe the genetic algorithm,
we have to define:

• How potential solutions are represented.

• How the initial population is created.

• The form of the fitness function.

• The genetic operators.

In our experiments, the initial population is formed randomly. The exact form
of the fitness function depends on the specific experiments and will be discussed in
experimental part of this chapter. We utilize traditional crossover and mutation
operators. The crossover operator composes a pair of new individuals combining
parts of two old individuals. First, a crossover point is randomly chosen in both
individuals, and then the corresponding parts of individuals are swapped. The
positive effect of the crossover is the creation of new solutions recombining the
current individuals. Finally, the mutation operator represents small local random
changes of an individual. Both the crossover and mutation are applied with
certain probabilities only. The exact form of these operators depends on the type
of neural network and will be specified in further sections.

An artificial chromosome (genotype) is a representation of an individual (phe-
notype) that encodes its characteristics. In our experiments, each individual rep-
resents a neural network. The chromosome might encode several variables, such
as connection weights of a neural network or distribution of neurons. Several
types of encoding techniques (binary, grey coding, real valued, etc.) and alpha-
bets (binary, ternary, etc.) have been used in the literature [116]. The standard
genetic algorithm uses binary strings. In such a representation scheme, each pa-
rameter is represented by a number of bits of a certain length. Although there are
several encoding methods that encode real numbers with different range and pre-
cision, a trade off often has to be made between precision and range. Real-world
experiments demand big precision, what causes long chromosome for which the
evolution process becomes non-efficient. Therefore, a different encoding method
is utilized in our experiments. The weights are encoded using a floating-point en-
coding, when the synaptic weights of neural networks are directly encoded on the
genotype as a string of real values, so an individual is a vector of floating-point
values of network weights.

10

Input : N : number of individuals in the population
E: number of elits
Gmax: maximum number of populations

Output: The best found solution of a problem

Start: Create the initial population of N individuals P (0) = {I1, ..., IN},
i = 0.

repeat
Evaluation of individuals: To compute fitness function for every
individual I, build ANN corresponding to I and initialize the simulated
environment. Let the robot (controlled by ANN) freely carry actions
for fixed time period. Evaluate the robot by a real value, depending
how well it was doing.

Creation of new population P (i+ 1) from population P (i):
Create empty population P (i+ 1).

Selection: Choose E best individuals from population P (i) and move
them to the population P (i+ 1). Apply the selection operator, choose
N − E individuals and insert them into the population P ′(i).

Reproduction: Apply the crossover and the mutation operators on
population P ′(i), resulting population is P (i+ 1).

Crossover step: If population P ′(i) contains odd number of
individuals, insert chromosome of the first individual from population
P ′(i) into population P ′′(i). Choose pairs of chromosomes C and D
from population P ′(i) and apply on them crossover operator, insert
new chromosomes C ′ and D′ into population P ′′(i).

Mutation step: Apply mutation operator on every chromosome from
population P ′′(i), insert new chromosome into population P (i+ 1).

New generation: i = i+ 1.
until i = Gmax

Finish and return the solution represented by the individual with the
maximal value of fitness function.

Algorithm 1: Skeleton of the evolutionary algorithm.

11

Neural networks allow different levels of evolutionary adaptation. The final
form of our evolutionary algorithm is based on our previous experiences with the
evolution of neural networks [65]. Connection weights are determined by a genetic
algorithm, while network architecture is predefined in this work. Adaptation
of connection weights is usually realized by some supervised learning algorithm
(back-propagation). However, there are several reasons for evolving the values of
synaptic weights:

1. A genetic algorithm explores a population of networks, not a single network
as in other learning algorithms.

2. There are no constraints on the type of architecture, activation function,
etc.

3. It is not necessary to have a detailed specification of the network response
for each patterns, as in supervised learning methods. This point is the most
important in evolutionary robotics.

The alternative approaches to the floating-point encoding of connection weights
include a developmental encoding based on a set of rewriting rules encoded on the
genotype [50]. This method can encode quite complex networks on a very com-
pact genotype and is well suited for evolving modular networks. Work [40] has
developed this method further by encoding network structures as grammatical
trees and employed genetic programming. The blueprint of a network architec-
ture may evolve, its actual structure may develop during the initial stages of the
robot life, and its connection strengths may adapt in real time while the robot
interacts with the environment [41]. When evolving architectures, it is common
practice to encode only some characteristics of the network, such as the number
of nodes, the probability of connecting them, the type of activation function, etc.
This strategy is also known as indirect encoding to differentiate it from direct
coding of all network parameters [116]. Fine tuning of the weights is usually
obtained by applying a learning algorithm to the decoded network.

Each neural network represents a potential robot controller. Evaluation of
an individual by a fitness value is carried out in a simulation. To evaluate the
individual, a neural network is constructed from a chromosome, an environment
is initialized and the robot controlled by the constructed neural network is put
into its niche (starting location is usually chosen randomly). The inputs of neural
networks are interconnected with the robot’s sensors and outputs with the robot’s
motors. The robot is then left to “live” in the simulated environment for some
(fixed) time period, fully controlled by it’s neural network. Depending on how well
the robot is performing, the individual is evaluated by fitness value. The higher
the evaluation, the more successful the robot has been executing a particular task.
Roulette wheel selection, which performs the equivalent role to natural selection
— it chooses individuals for the next population proportionally to their fitness
values, was used in all experiments.

In our work, we utilize three neural network architectures:

• Feedforward perceptron networks

• Recurrent neural networks

12

• RBF networks

We will briefly cover each of them in the subsequent sections.

1.1.1 Feedforward Perceptron Networks

Figure 1.1: Feedforward perceptron network.

A multilayer feedforward neural network (Figure 1.1) is an interconnected
network of simple computing units called neurons, which are ordered in layers,
starting with an input layer and ending with an output layer [43]. Between these
two layers there can be a number of hidden layers. Connections in these kind of
networks only go forward from one layer to the next. This way, neural network
computes a function that is composed of constituent “semi-linear” functions con-
strained by network architecture, wherein the constituent functions correspond
to neurons.

A multilayer perceptron network (MLP) [43] is one of the most widely used
neural networks. The perceptron is a computational unit with n real inputs ~x
and one real output y. It realizes the function

y(x) = g

(

n
∑

i=1

wixi

)

, (1.1)

where x is the neuron with n input dendrites (x0 . . .xn), one output axon y(x),
(w0 . . .wn) are weights and g : R → R is the activation function. We have used
one of the most common activation functions, the logistic sigmoid function

σ(ξ) = 1/(1 + e−ξt), (1.2)

where t determines its steepness.
Weight training in ANN is usually formulated as a minimization of error

function, and is carried out by some gradient descent algorithm such as back-
propagation, or one of its many variants. Work [59] compares the performance of
a genetic algorithm with that of back-propagation on a task of sonar signal classifi-
cation. The results showed that genetic algorithms find much better networks and
in many less computational cycles than back-propagation of error. These results
have been confirmed also on a different classification task by other authors [114].
Another strategy consists of combining evolution and supervised learning for the
same task. Since back-propagation is very sensitive to initial weight values, ge-
netic algorithms can be used to find the initial weight values of networks trained
with back-propagation [15]. The fitness function is computed using the residual

13

error of the network after having being trained with back-propagation on a given
task (notice that the final weights after supervised training are not coded back
into the genotype, i.e. evolution is Darwinian, not Lamarkian).

Input : I1 = {w
1
1, . . . , w

1
N},

I2 = {w
2
1, . . . , w

2
N}

Output: {I∗1 ,I
∗
2}

kcross ← random(N)
I∗1 ← {w

1
1, . . . w

1
kcross

, w2
kcross+1, . . . , w

2
N}

I∗1 ← {w
2
1, . . . , w

2
kcross

, w1
kcross+1, . . . , w

1
N}

Algorithm 2: One-point crossover operator.

Input : I = {w1, . . . , wN}
Output: I∗

k ← random(N)
I∗ ← {w1, . . . , wk−1, wk+random(−1.0, 1.0), wk+1, . . . , wN}

Algorithm 3: Additive mutation operator.

To apply the GAs to ANN network learning, we incorporated one-point crossover
(Algorithm 2) and additive mutation (Algorithm 3) operators into Algorithm 1.

1.1.2 Recurrent Neural Networks

Copy Copy Copy Copy Copy

Figure 1.2: Left: Elman’s network. Right: Scheme of layers in the Elman’s
network.

A feedfoward network architecture has a connectivity structure that is an
acyclic graph. However, in recurrent neural networks, along with the feedforward
connections, recurrent connections can occur.

In 1990, Elman [34] introduced the simple recurrent neural network (Elman
network), which is a widely-used recurrent neural network (Figure 1.2). Elman

14

networks are used in a number of fields, including cognitive science, psychology,
economics and physics. The recurrent connections hold a copy (memory) of
the activations at the previous time step. Since hidden units encode their own
previous states, this network can detect and reproduce long sequences in time.
The sequence of operations is as follows:

• Compute hidden unit activations using net input from input units and from
the copy layer

• Compute output unit activations as usual based on the hidden layer.

• Copy new hidden unit activations to the copy layer.

The operators sketched in Algorithm 2 and Algorithm 3 were utilized to pro-
duce new offsprings in the recombination step of Algorithm 1.

1.1.3 RBF Networks

Figure 1.3: RBF network.

An RBF neural network [23, 61, 83] represents a relatively new neural network
architecture (Figure 1.3). In contrast with the multilayer perceptrons the RBF
network contains local units, which were motivated by the presence of many local
response units in human brain.

Other motivation came from numerical mathematics, particularly from the
study of interpolation problems, where radial basis function were first introduced.
A radial function is a function that is determined by its center and its output de-
pends only on the distance of the argument from this center. In a 2-d dimensional
space with the Euclidean metric, the points with the same output values lay in
circles. A radial basis function networks are a method to approximate functions
and data by applying “kernel methods” to “neural networks”.

Both the biological and numerical motivation meet with the regularization
theory that created the theoretical background for the RBF network architec-
ture. The regularization approach with radial stabilizers leads to regularization
networks with radial basis functions in their hidden layer. The hidden layer of an
RBF network consists of RBF units realizing a particular radial basis function.

Definition. (Radial Function) Let f : Rd → R be a function

f(x) = ϕ(‖ x− c ‖2), (1.3)

where ϕ : R → R and ‖ . ‖ is a suitable norm (typically the Euclidean norm).
Then f is called a radial function and c is called a center.

15

By an RBF unit we denote a neuron with n real inputs ~x and one real output
y, realizing a radial basis function ϕ, such as Gaussian.

Definition. (RBF Unit) An RBF unit is a neuron with multiple real inputs x =
(x1, . . . , xd) and one real output y, realizing a function

y(~x) = ϕ

(

‖ ~x− ~c ‖

b

)

, (1.4)

where ϕ is a radial basis function, c ∈ R
d is a center and b ∈ R is a width.

The RBF network [83, 61], used in this work, is a feed-forward neural network
with one hidden layer of RBF units and linear output layer (Figure 1.3).

Definition. (RBF Network) An RBF network is a 3-layer feed-forward network
with the first layer consisting of d input units, a hidden layer consisting of h
RBF units, and an output layer of m linear units. Thus, the network computes
the following function: f = (f1, ..., fs, ..., fm) : R

d → R
m:

fs(~x) =
h
∑

j=1

wjsϕ

(

‖ ~x− ~cj ‖

bj

)

, (1.5)

where wji ∈ R and ϕ is a radial basis function.

There are a variety of algorithms for RBF network learning. Their behavior
and possibilities of their combinations were studied in [64, 65]. The three most
significant algorithms are the three step learning, gradient learning and genet-
ic learning. All the considered learning algorithms assume that the number of
hidden units is given in advance.

The learning algorithm that we use for RBF networks was motivated by the
commonly used three-step learning. Parameters of RBF networks are divided into
three groups: centers, widths of the hidden units, and output weights. Each group
is then trained separately. The centers of hidden units are found by clustering (k-
means algorithm) and the widths are fixed so the areas of importance belonging
to individual units cover the whole input space. Finally, the output weights
are found by GA. The advantage of such an approach is the lower number of
parameters to be optimized by GA, i.e. smaller length of an individual.

To apply the GAs to RBF network learning, one has to devise a suitable way of
encoding the parameters and set the genetic operators to work on corresponding
individuals. The individual consists of h blocks:

IRBF = {B1, . . . , Bh}, (1.6)

where h is a number of hidden units. Each of the blocks contains parameter
values of one RBF units:

Bk = {ck1, . . . , ckn, bk, wk1, . . . , wkm}, (1.7)

where n is the number of inputs, m is the number of outputs, ~ck = {ck1, . . . , ckn}
is the k-th unit’s centre, bk the width and ~wk = {wk1, . . . , wkm} the weights
connecting k-th hidden unit with the output layer. The parameter values are
encoded using direct floating-point encoding.

16

Input : I1 = {B
1
1 , . . . , B

1
h}

Output: I∗1

k ← random(h)
B∗

k ← Bk

for p in B∗
k = {ck1, ..., ckd, bk, wk1, ..., wkm} do

δ ← random(−1.0, 1.0)
p← p+ δ

end

I∗ ← {B1, . . . , B
∗
k, . . . , Bh}

Algorithm 4: Additive mutation operator for RBF networks.

Input : I1 = {B
1
1 , . . . , B

1
h},

I2 = {B
2
1 , . . . , B

2
h}

Output: {I∗1 ,I
∗
2}

kcross ← random(h)
I∗1 ← {B

1
1 , . . . B

1
kcross

, B2
kcross+1, . . . , B

2
h}

I∗1 ← {B
2
1 , . . . , B

2
kcross

, B1
kcross+1, . . . , B

1
h}

Algorithm 5: One-point crossover operator for RBF networks.

1.2 Adaptation Based on MDPs

The algorithms based on dynamic programming [17] have been studied for more
than 50 years already and they have solid theoretical backgrounds built around
Markov chains and several proved fundamental results. On the other side, as we
will see shortly, it is often very difficult to fulfill theoretical assumptions of these
algorithms in the experiments. Unlike supervised learning problems, there are no
labeled examples of correct and incorrect behavior. However, a reward signal can
be perceived.

If a complete model of the environment is available, dynamic programming
can be used to teach an agent the optimal strategy. If a model is not available,
an optimal value function can be learned from experience via model-free tech-
niques, such as temporal difference learning, which combine elements of dynamic
programming with Monte Carlo estimation.

The general model of agent-environment interaction is modeled through the
notion of rewards. The essential assumption states that an agent is able to sense
rewards coming from the environment. Rewards evaluate taken actions and the
agent’s task is to maximize them. The next assumption is that the agent is
working in discrete time steps. We will denote a set of states by symbol S and a
set of actions by symbol A. In each time step t, the agent determines its actual
state and chooses one action. Therefore, the life of the agent can be written
formally as a sequence

s0a0r0s1a1r1, · · · (1.8)

17

where st ∈ S denotes state, which is determined by processing sensors input,
at ∈ A action and finally symbol rt ∈ R represents reward, that is received at
time t.

The fundamental assumption of these algorithms is the Markov property,
which states, that the agent does not need the history of previous states to make
decisions, but the decision of the agent is based on the last state st only. When
this property holds, we can use a theory from the field of Markov decision process-
es (MDPs) [84]. Originally developed in the operations research and statistics
communities, MDPs are now commonly used in artificial intelligence and robotics
communities. The term MDP comes from operations research literature, some-
times Markov decision task (MDT) is used, too.

Most physical environments have infinite state sets and are continuous time
systems. However, tasks faced by agents embedded in such environments can
frequently be modeled as MDPs by discretizing the state space and choosing
actions at some fixed frequency. It is important to keep in mind that it may be
possible to represent the same underlying physical task by several different MDPs,
simply by varying the resolution of the state space or by varying the frequency
of choosing actions.

Another strong assumption is that the state of the environment is determined
by agent’s perception, an assumption that may not be satisfied in some real-world
tasks with embedded agents.

Although general MDPs may have infinite (even uncountable) state and action
spaces, we will only work with finite discounted infinite-horizon MDPs in this
thesis, defined as a tuple (S,A, P,R, γ). The role of symbol γ will be explained
shortly.

Definition. (A Discounted Infinite Horizon Markov Decision Process) A dis-
counted infinite horizon Markov decision process is a tuple (S,A,R, P, γ), where

• S is a finite set of states,

• A is a finite set of actions,

• R denotes reward probabilities, where

P (rt+1|st, at, st−1, at−1, . . . , s0, a0)

denotes expected reward given history

{st, at, st−1, at−1, . . . , s0, a0}

• P denotes state transition probabilities, where

P (st+1|st, at, st−1, at−1, . . . , s0, a0)

denotes probability of transition to state st+1, given history

{st, at, st−1, at−1, . . . , s0, a0}

• γ is discount rate, 0 ≤ γ < 1.

18

The Markov property of the environment means that we can assume that
state transition probabilities and expected rewards depend only on the last state
and the last executed action. Formally:

P (st+1|st, at, st−1, at−1, . . . , s0, a0) = P (st+1|st, at), (1.9)

P (rt+1|st, at, st−1, at−1, . . . , s0, a0) = P (rt+1|st, at). (1.10)

This property allows us to to define symbol P a
ss′, the transition probability

from state s to state s′, given the agent chooses action a:

P a
ss′ = P (st+1 = s′|st = s, at = a). (1.11)

Similarly, we can define symbol Ra
ss′, the expected reward in state s if agent

chooses action a and enters state s′:

Ra
ss′ = E{rt+1|st+1 = s′, st = s, at = a}. (1.12)

The agent’s task is to find the optimal policy (strategy) π∗, which controls the
agent’s choice of action in a particular state. In its most general form, the chosen
action might depend upon the entire history of the agent; π : (S ×A)∗× S → A.
However, in this thesis, we only work with Markov policies, that depend on the
last state only. For every MDP (with the optimality criteria defined below), there
exists a Markov policy that performs as well as the best full policy.

The optimal policy maximizes some cumulative measure of the payoffs received
over time. Ideally, we would like to choose a policy that maximizes the long term
sum of immediate rewards. Unfortunately, the naive sum

∑∞
t=0 rt could diverge.

Therefore, different optimality criteria are utilized. The number of time steps
over which the cumulative payoff are determined is called the horizon of the
MDP. We will address only agents that have theoretically infinite life-times as
these problems are easier to model mathematically. In the case of finite horizon
problems, the optimal policies might be non-stationary (depends on time). As
for infinite-horizon discounted MDPs, there exists an optimal policy, which is
deterministic and stationary [110], we can define agent’s policies as mapping
π : S → A, where π(st) = at. We can ignore the class of stochastic (soft) policies,
which execute actions with only some probabilities in each state.

The quality of any policy π can be quantified formally through a value func-
tion. We will define the value of a state as the quantity V π(st) [76], the expected
reward, if the agent starts in state st and follows policy π. The symbol γ be-
comes apparent here. Rather than limiting the distance we look into the future,
we discount rewards we will receive in the future by a multiplicative factor, γ, for
each time step. Variable γ can be seen as an inflation rate.

Definition. (Value Function) Let (S,A,R, P, γ) be a discounted infinite horizon
Markov decision process. Value function is the function V π(st) defined as the
discounted cumulative reward of expected future payoffs, computed as:

V π(st) =
∑

i=0

γirt+i, (1.13)

where discount rate 0 ≤ γ < 1 is a constant that determines the relative value of
delayed versus immediate rewards.

19

Optimal policy π∗ is then the one, that maximizes the expected reward for all
states. Even if there are several distinct optimal policies, they all share the same
unique optimal value functions.

Definition. (Optimal policy) Let (S,A,R, P, γ) be a discounted infinite horizon
Markov decision process. The optimal policy π∗ is the policy, that maximizes the
value of all states

π∗ = argmaxπV
π(s), ∀s ∈ S. (1.14)

To simplify the notation, we will write V ∗(s) instead of symbol V π∗

(s), value
function corresponding to optimal strategy π∗

V ∗(s) = max
π

V π(s), ∀s ∈ S. (1.15)

With the framework that we have just introduced, the problem of finding an
optimal strategy for embedded agents can be reduced to the problem of finding
the optimal policy π∗ in MDP. Even within MDP frameworks, the task itself can
still be modeled at various levels of complexity:

• Discrete versus continuous MDPs.

Discrete MDPs are typically easier to solve, as it is difficult to represent
continuous actions and state spaces on computers. There is wide variety
of methods available to approximate continuous value functions (neural
networks, splines, polynomials, RBF networks, support vector machines,
decision trees, wavelets, etc.), see [46] for a comprehensive overview.

• Full versus partial observability

Partially observable Markov decision processes (POMDP) model environ-
ments, when the agent does not receive complete state information (as in
MDP), but after each step of execution, the agent receives a noisy ob-
servation. The observation may be used to determine the agent’s state.
POMDPs provide more accurate models of environments, at the price of a
bigger complexity.

• Model-based versus model-free algorithms

Model-based algorithms use a model of the environment to update the value
function, either a model that is given a priori, or one that is estimated
on-line. The model of the environment is formed by transition probabilities
and expected rewards. Sometimes the problem of deriving an optimal policy
using the full MDP model is known as planning. Model-free algorithms, on
the other hand, do not use a model of the environment and therefore have
no access to the state transitions or the payoff function for the different
policies.

• Finite versus infinite horizon problems

The finite horizon problems may require non-stationary policies that depend
on time.

20

1.2.1 Dynamic Programming

Dynamic Programming [17] (DP) is a collection of algorithms that are based on
Bellman’s1 powerful principle of optimality, which states that “an optimal policy
has the property that whatever the initial state and action are, the remaining
actions must constitute an optimal policy with regard to the state resulting from
the first action.”. There are two fundamental tasks associated with MDPs [94]:

1. Policy evaluation algorithm computes V π for all states given a MDP with
the fixed policy π.

2. In optimal control, the goal is to find an optimal control policy π∗ for a
given MDP.

If we knew to evaluate a policy, the optimal control problem might be solved
in a simplistic way by iterating all possible policies for very small MDPs (number

of all policies is |A||S| for finite MDPs). Fortunately, there are better ways. The
standard approach to finding the value function for a policy over an MDP is
using a recursive formulation (known as the Bellman equation) of the optimality
criteria. We define two backup operators based on Bellman’s equations.

Definition. (Bellman Policy Evaluation Operator) Let (S,A,R, P, γ) be a dis-
counted infinite horizon Markov decision process. Bellman policy evaluation op-
erator is a function Bπ(s) : S → R defined as:

Bπ(s) =
∑

s′

P
π(s)
ss′ [R

π(s)
ss′ + γV π(s′)], ∀s ∈ S. (1.16)

According to the Bellman’s equations, evaluating policy π requires solving the
(|S| × |S|) linear system of fixed-point equations:

V π(s) = Bπ(s), ∀s ∈ S. (1.17)

The linear system has a unique solution [110] and could be solved analytically,
but it is not feasible for bigger state spaces. We will define similar operator for
optimal control and then introduce iterative algorithms based on these operators.

Definition. (Bellman Backup Operator) Let (S,A,R, P, γ) be a discounted in-
finite horizon Markov decision process. Bellman backup operator is function
B∗(s) : S → R defined as:

B∗(s) = max
a

(
∑

s′

P a
ss′[R

a
ss′ + γV π(s′)]), ∀s ∈ S. (1.18)

One way to find an optimal policy is to find the optimal value function.
According to the Bellman’s principle of optimality [17], to determine the val-
ue function, we have to again solve the following (|S| × |S|) non-linear system
of fixed-point equations:

V ∗(s) = B∗(s), ∀s ∈ S. (1.19)

1Richard Bellman is the major name associated with dynamic programming. He established
the optimality equations that form the basis of dynamic programming.

21

Note, that both operators Bπ and B∗ require a model of the environment as
they assume knowledge of the state transition probabilities. The former operator
Bπ is linear while the latter operator B∗ is a nonlinear backup operator.

DP provides approximate iterative algorithms for solving both problems. These
algorithms use repeated application of update operators to generate an approx-
imation of value function. The updates need not be done in strict order, but
instead can occur asynchronously in parallel provided that value of every state
gets updated infinitely often on an infinite run. An algorithm is termed syn-
chronous [94] if in every k|S| applications of the state-update equation the value
of every state in set S is updated exactly k times. Different researchers have used
different models of an asynchrony in iterative algorithms. Usually, asynchronous
algorithms place no constraints on the order in which the state-update equation is
applied, except that in the limit the value of each state will be updated infinitely
often.

The repeated usage of update operator Bπ(s) could be used to evaluate a
policy π. The approximate iterative Algorithm 6 that uses operator B∗(s) can
be shown to converge to the correct V ∗ values (and therefore solve the optimal
control problem). It is called value iteration [17].

One problem with value iteration is that it is not obvious when to stop it. In
practice, value iteration can be terminated when the expected loss relative to an
optimal policy is small enough. The work [115] shows how to bound the regret of
value iteration for discounted infinite-horizon problems with the following results.
If we define Bellman residual of the current value function ǫ as

ǫ =‖ Vt − Vt+1 ‖∞ (1.20)

then the value of the greedy policy differs from the value function of the optimal
policy by no more than (2ǫγ)/(1−γ). This provides an effective stopping criterion.

Input : (S,A,R, P, γ): Discounted infinite horizon MDP
Output: Value function V such that regret(PV) ≤ δ

Initialization: ∀s ∈ S: V0(s)← 0
repeat

[Update step]
∀s ∈ S: Vt+1(s)← maxa(

∑

s′ P
a
ss′[R

a
ss′ + γV π

t (s
′)])

[Compute residual]
ǫ = maxs |Vt(s)− Vt+1(s)|

[Determine policy]
π(s) = argmaxa(

∑

s′ P
a
ss′[R

a
ss′ + γV π(s′)])

until 2ǫγ/(1− γ) ≤ δ

Algorithm 6: Value iteration for optimal control problem [94].

The path planner module (see Section 2.4) is based on the presented value
iteration algorithm.

22

1.2.2 Reinforcement Learning

In the previous section we discussed methods for obtaining an optimal policy for
an MDP assuming that we already had a model of the environment. Reinforce-
ment learning is primarily concerned with how to obtain the optimal policy when
a model of an environment is not known in the advance, and therefore agent can-
not use the transition probabilities in its calculations, but it is able to interact
with an environment.

A number of model-free (Q-learning [113], Adaptive Heuristic Critic [46],
TD(λ) [106]) and model-based (Prioritized-sweeping [62], Dyna [107], Dyna-
Q [80]) algorithms have been proposed. The work [46] surveys the field of re-
inforcement learning and summarizes a broad selection of recent work.

The first breakthrough of RL was the Q-learning algorithm [113] invented
by Watkins in his Phd thesis. Watkins proposed the notation Q(s, a) as the
state-action value function for state-action pair (s, a).

Definition. (State-action Value Function) Let (S,A,R, P, γ) be a discounted in-
finite horizon Markov decision process. State-action value function is the function
Qπ(s, a) defined as the discounted cumulative reward of expected future payoffs, if
agent takes action a in state s and follows policy π afterwards:

Qπ(s, a) = E(

∞
∑

i=0

γiri|so = s, a0 = a, π), (1.21)

where 0 ≤ γ < 1 is a discount rate.

Again, to simplify the notation, we will write Q∗(s, a) instead of Qπ∗

(s, a).
The relationship between the optimal policy π∗ and Q∗(s, a) is then

π∗(s) = argmaxaQ
∗(s, a), ∀s ∈ S, (1.22)

and the optimal value function V ∗(s) can be obtained from Q∗(s, a) by the
equality

V ∗(s) = max
a′

Q∗(s, a′), ∀s ∈ S. (1.23)

In the same way as we wrote Bellman equations for state values, it is possible
to rephrase them in Q-notations and relate a state-action value of the optimal
value function to optimal state-values which can be reached from that state using
a single local transition:

Q∗(s, a) =
∑

s′

P a
ss′(R

a
ss′ + γV ∗(s′)), ∀s ∈ S, ∀a ∈ A. (1.24)

Again, an iterative DP algorithm can be derived in terms of the Q-values.
The value iteration on Q-values would utilize the following rule in the update
step of Algorithm 6:

Qk+1(s, a)←
∑

s′

P a
ss′(R

a
ss′ + γmax

a′
Qk(s, a′)). (1.25)

This model of the environment is still required, as the previous equation it-
erates through all possible next states for state-action pair (s, a). In each step

23

the Q-function looks ahead one step using recursive update rule. It can be shown
that limk→∞Qk = Q∗, when starting from an arbitrary Q0 containing only finite
values.

We defined Q-values because Q-learning algorithm, one of most commonly
used and well-known reinforcement learning algorithms, operates on them. The
clever introduction of Q-values let Watkins overcome problem with non-linearity
of Bellman Backup operator and prove convergence of the algorithm to the op-
timal value function. It does not require a model of the environment, but uses
only an experience tuple < st, at, rt, st+1 > to update Q-values. Q-learning is a
form of temporal difference learning [106].

On each time step, agent updates its internal representation of Q-values ac-
cording to the rule

Q(st, at)← Q(st, at) + αt(r + γmax
a′

Q(st+1, a
′)−Q(st, at)), (1.26)

where αt is a learning rate and it controls to what extent the newly acquired
information will override the old information. In practice, a small constant value
is used.

Q-learning is an on-line algorithm [94]. It not only learns a value function
but also simultaneously controls a real environment, therefore it cases the tradeoff
between exploration and exploitation. In other words, it has to choose between
executing actions that allow it to improve its estimate of the value function and
executing actions that return high payoffs.

Input : S: set of states,
A: set of actions,
R: set of rewards,
γ: discount factor

Output: Q(s, a): table of Q-values

Arbitrary initialize Q(s, a), ∀(s, a).
for t=0 . . . do

Observe current state st by processing sensors
Choose and execute action at (by using ǫ-greedy policy)
Observe reward rt
Observe new state st+1

Q(st, at)← Q(st, at) + αt(r + γmaxa′ Q(st+1, a
′)−Q(st, at))

end

Algorithm 7: Q-learning algorithm [113].

Q-learning algorithm (Algorithm 7) guarantees convergence to optimal values
of Q∗(s, a), if Q-values are represented without any function approximations (in a
table), rewards are bounded and every state-action pair is visited infinitely often
in infinite run [45]:

Theorem. For finite MDPs, the Q-learning algorithm converges with probability
one to Q∗ if the following conditions hold true:

1. every state-action pair is updated infinitely often,

24

2. Q0 is finite (rewards are bounded), and

3. ∀(s, a) ∈ (S × A);
∑∞

t=0 αt =∞ and
∑∞

t=0 α
2
t =∞.

To fulfill the first condition, every action has to be chosen with non-zero
probability. When the Q-values are nearly converged to their optimal values, it
is appropriate for the agent to act greedily, taking the action with highest Q-
value. However, during learning, there is a difficult exploration vs. exploitation
trade-off. In practice, one can use an ǫ-greedy policy, which chooses an action at
random with probability ǫ and the action with the maximum expected reward
with probability 1− ǫ.

Q-learning is probably the most commonly used algorithm of RL. However,
several improvements have been suggested to speed up the algorithm. In classical
Q-learning algorithm are Q-values stored in the table. In real life applications,
state space is usually too big and convergence toward optimal strategy is slow. In
recent years, there have been a lot of efforts devoted to rethinking idea of states
by using function approximators [18], defining notion of options and hierarchical
abstractions [39]. Relational reinforcement learning [33] is approach that com-
bines RL with inductive logical programming. Our work [66] tackles the robot
learning problem via relational reinforcement learning.

1.3 Experimental Framework

We start by introducing two popular miniature robot architectures: the older one
called Khepera [3] and its successor named E-puck [2]. Robot miniaturization was
an important milestone in robotics research as it brought robots from dedicated
laboratories to scientists and students and it has brought several advantages [76].
Robot miniaturization makes possible to build complex environments on a lim-
ited surface, fundamental laws of physics give higher mechanical robustness to a
miniature robot and while the miniature robot usually resists the collision, the
other robot would probably report serious damage.

Khepera [3] (Figure 1.4, left) is a miniature mobile robot with a diameter of
70 mm and a weight of 80 g. The robot is supported by two lateral wheels that can
rotate in both directions and two rigid pivots in the front and in the back. The
sensory system employs eight “active infrared light” sensors distributed around
the body, six on one side and two on other side.

E-puck [2] (Figure 1.4, right) is a follower of the Khepera robot, as it follows
similar concept. E-puck is a widely used robot for scientific and educational
purposes — it is open-source and low-cost. Despite its cheapness and limited
sensor system, limited localization can be successfully implemented, as we will
show in Chapter 2. E-puck sensors can detect a white paper at a maximum
distance of approximately 8 cm. Sensors return values from interval [0, 4095].
Effectors accept values from interval [−1000, 1000]. The higher the absolute value,
the faster is the motor moving in either direction. See Appendix 1 for more
information about these robots.

Although experiments on real robots are feasible, they might require a long
time, especially when dealing with self-improving systems. As stated in [78], the
experiment on evolution of a homing navigation performed by authors took 10

25

Figure 1.4: Left: The first widely used miniature robot Khepera built by K-Team
SA (www.k-team.com). Right: Follower of Khepera robot named E-puck.

days when carried out entirely on physical robots. One way to avoid the problem
of time is to experiment with robots in simulation and then run the most suc-
cessful individuals on a physical robot. Simulated robots might run faster and
the power of parallel computers can be easily exploited for running more indi-
viduals at the same time. However, simulation present other problems. There is
a real danger that programs which run well on simulated robots will completely
fail on real robots because of the differences in real and simulated world sens-
ing. Fortunately several evolutionary experiments conducted in simulations and
successfully validated on real robots demonstrated that (at least for a restricted
class of robot-environment interactions) it is possible to develop robot controllers
in simulation.

One of the widely used simulation software for Khepera robots is Yaks [27]
simulator, which is freely available. Yaks can also control real robot through
serial cable connection, so algorithms successful in simulation can be directly
tested on real robot. Simulation consists of predefined number of discrete steps.
Yaks provides only some basic functionality (like customizing and designing world
with walls or obstacles), and it has been obsoleted by more modern tools.

In our later experiments, we have been using professional commercial devel-
opment environment Webots [4]. Webots provides much more possibilities. It
enables to test robot in a physically realistic world and contains models of most
popular robotic platforms (including Khepera and E-puck).

1.4 Obstacle Avoidance

We will compare both introduced learning paradigms. There are a wide variety
of both GAs and RL methods in use today. However, in order to compare these
different approaches empirically we must focus on specific instantiations. We
have chosen Q-learning and the standard version of GA, as they have been very
popular in other works. They also offer us the obvious practical advantage - their
familiarity enables us to use them with confidence and others to easily interpret
our results.

No comparison between two learning methods that are parameterized differ-
ently can be completely objective. Learning methods usually have some number

26

of parameters to set, and the amount of time devoted to adjusting them can have
a huge impact on the success of learning. Throughout our experiments, we tried
to give equal effort to optimizing the parameters of each algorithm. We are main-
ly interested in the qualitative analysis of evolved behavior and we will not focus
on other aspects of learning methods (speed of convergence), that are especially
sensitive to parameter settings.

Obstacle avoidance is a classic task that most people working in mobile
robotics have some experience with and therefore it is a suitable benchmark
task. For its simplest formulation there is already a well known optimal and
simple solution: the Braitenberg’s vehicle [20]. The work [35] compares a neural
controller trained by an evolutionary algorithm with Braitenberg’s vehicle. We
follow the methodology introduced in [35], but in our experiments, we focus on
the analysis of multiple neural architectures and an RL based controller. Both
GAs and RL methods have proven effective at developing controllers for small
mobile robots. However, since few rigorous empirical comparisons have been con-
ducted, there are no general guidelines describing the methods’ relative strengths
and weaknesses [108]. We will start with a discussion of the pros and cons of
both approaches in this section, and will point out differences in both methods
with problems of more complexity.

In our experiments, E-puck was trained to explore the environment and avoid
walls. The robot was trained in a simulated environment (we used Webots sim-
ulator) of size 100x60 cm and tested in a more complex (previously unseen) en-
vironment of size 110x100 cm. The simulation process consisted of a predefined
number of steps. In each simulation step, the agent processed sensor values and
set speed to the left and right motor. One simulation step took 32 ms.

To simplify the interpretation of the evolved behavior, we reduced the state
space. The sensor and effector values were processed before they were deliv-
ered to the robot controller. Instead of raw sensor values, learning algorithms
worked with “perceptions”. Instead of 4095 raw sensor values, we used only 5
perceptions (see Table 1.1). The effector’s values were processed in a similar way:
instead of 2000 values, the learning algorithm was allowed to choose from values
[−500,−100, 200, 300, 500]. We also grouped pairs of sensors together. The back
sensors were not used at all. This processing reduced the complexity of the task,
although learning algorithms do not require it. While neural networks directly
support continuous input values, RL methods rely on function approximators in
continuous domains, which map state-action pairs to values via parameterized
functions and use supervised learning methods to set these parameters. Howev-
er, human analysis of learned behaviors turns out to be difficult in such cases.
The reader is referred to our work [71] for analysis of evolved RBF networks on
obstacle avoidance task without described preprocessing of input values.

Pre-processing of sensor values also has another effect. It mostly removes
sensor noise and therefore effectively makes task Markovian. Without it, agents
could only partially observe the true state of the world and the task would be
non-Markovian. In other words, the probability distribution over the next states
would not be independent of the agents’ state and action histories. This fact can
cause problems for RL methods. In practice, though, they still usually perform
well even within non-Markovian tasks [105].

27

Sensor value Perception Sensor value Perception
0-50 NOWHERE 1001-2000 NEAR
51-300 FEEL 2001-3000 VERYNEAR
301-500 VERYFAR 3001-4095 CRASHED
501-1000 FAR

Table 1.1: Raw sensors values were processed, “perceptions” were then delievered
to the robot controller.

Figure 1.5: Simulated environments for agent training and testing. Left: Agent
was trained in the environment of size 100×60 cm. Right: Testing was performed
in a more complex environment of size 110× 100 cm.

1.4.1 Rules Extracted from RBF Networks

In the first experiment the evolutionary RBF network with 3 input units, 5 hidden
Gaussian units, and 2 output units was trained to control the mobile robot. The
three inputs corresponded to the coupled sensor values (two left sensors, two front
sensors, two right sensors), which were preprocessed as described in Table 1.1.
The two outputs corresponded to the left and right wheel speeds and before being
applied to the robot wheels they were rounded to one of 5 valid values.

Fitness evaluations consisted of NT = 2 trials, which differed by the agent’s
starting location (the two starting positions are on opposite ends of the maze).
The agent was left to live in the environment for NS = 800 simulation steps. In
each simulation step, the agent processed sensor values and set the speed to the
left and right motor.

In each step, a three-component score was calculated that motivated the agent
to learn to move and to avoid obstacles [35]:

Tk,j = Vk,j(1−
√

∆Vk,j)(1− ik,j).

The first component Vk,j was computed by summing the absolute values of
motor speed (scaled to 〈−1, 1〉) in the k-th simulation step and the j-th trial, gen-
erating a value between 0 and 1. The second component (1−

√

∆Vk,j) motivated
the two wheels to rotate in the same direction. ∆Vk,j was computed by adding
0.5 to each read value, substracting them together and taking the absolute value
of the difference. The value ik,j of the most active sensor (scaled to 〈0, 1〉) in the
k-th simulation step and the j-th trial provided a measure of the robot distance
to the nearest object. The closer it was, the higher the measured value in range
from 0.0 to 1.0 was. Thus, Tk,j was in range from 0.0 to 1.0.

28

In the j-th trial, the score Sj, was computed by summing normalized trial
gains Tk,j in each simulation step:

Sj =

NS
∑

k=1

Tk,j

NS

.

To stimulate maze exploration, the agent was rewarded when it passed through
one of the predefined zones. There were three zones located in the maze. They
could not be sensed by an agent. The reward ∆j ∈ {0, 1, 2, 3} was given by the
number of zones visited in the j-th trial.

The fitness value was then computed as follows:

Fitness =

NT
∑

j=1

(Sj +∆j),

thus generating values between 0 and 8.

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160 180 200

F
it
n
e
s
s

G enera tions

F itness function

m in

max

mean

Figure 1.6: The mean, minimal, and maximal fitness function over 10 runs of
evolution in the obstacle avoidance experiment. Fitness is scaled in a way that a
successful walk through the whole maze corresponds to the fitness 600 and higher.

The experiment with the evolutionary RBF network was repeated 10 times,
each run lasted 200 generations. In all cases, the successful behavior was found,
i.e. the evolved robot was able to explore the whole maze without crashing into the
walls. The average performance (as measured by the fitness function) is depicted
in Figure 1.6 (the fitness function is rescaled to an interval 0-800). In a typical
run, the robot controller quickly gained the ability to explore the environment
and pass through the zones, as indicated by the steepness of the fitness function
in 30 generations. In the following generations, the controllers mostly improved
their speed and obstacle avoidance ability near walls or corners. This is suggested
by a shallow learning curve in the remaining generations.

In work [35] authors analyzed individual terms of the fitness function in iso-
lation to gain a better understanding of the evolved behavior. We exploited
superior interpretation possibilities of RBF networks compared to MLP and ex-
amined the evolved rules. Table 1.2 shows the parameters of an evolved network

29

Sensor Width Motor

left front right left right

VERYNEAR NEAR VERYFAR 1.56 500 -100
FEEL NOWHERE NOWHERE 1.93 -500 500
NEAR NEAR NOWHERE 0.75 500 -500
FEEL NOWHERE NEAR 0.29 500 -500
VERYFAR NOWHERE NOWHERE 0.16 500 500

Table 1.2: Rules, that were learned in the obstacle avoidance experiment, as
represented by RBF units (listed values are original RBF network parameters
after discretization).

with five RBF units. We can understand them as rules providing mapping from
input sensor space to motor control. However, these “rules” act in accordance,
since the whole network computes a linear sum of the corresponding five gaus-
sians. To gain a deeper understanding of the evolved behavior, we performed
additional analysis of learned controllers. Appendix 2 shows rules from actual
run of the robot in the training arena. They were obtained by presenting specific
inputs to the robot controller and recording the generated command to robot ef-
fectors. The nine most frequently used rules are shown in the latter table. It can
be seen that this agent represents a typical evolved left-hand wall follower — a
surprisingly effective controller. Straight movement is a result of situations when
there is a wall far on the left, or both far on the left and right. If the robot sees
nothing, it rotates to the left (rule 2), The front collision is avoided by turning
right, as well as a near proximity to the left wall (rules 6–8). As the wall follower
represents a very effective strategy for the given task, we started evaluating the
performance in previously unseen environment. The evolved robot was tested
in a bigger testing maze (Figure 1.5, right). It behaved in a consistent manner,
using the same rules, demonstrating generalization of the behavior trained in the
former maze.

1.4.2 Rules Induced by Reinforcement Learning

In the second experiment we used Q-learning algorithm. Each state was rep-
resented by three perceptions. For example, the state [NEAR, NOWHERE,
NOWHERE] means that the robot sees a wall on its left side only. The ac-
tion was represented by a pair [left speed, right speed]. The learning process was
divided into 10000 episodes. Each episode took at most 800 simulation steps. At
the start of each episode, the agent was moved to one from 5 randomly chosen
positions. The episode could finish earlier, if the agent hit the wall.

The training process is depicted in Figure 1.7. Even though the agent al-
ways chose the best action in a testing phase (Figure 1.8), it crashed occasion-
ally. It’s limited sensing abilities do not allow it to recover from some difficult
situations (corners, sharp edges. . .). This fact also affected the relatively low
speed of induced strategies, as can be seen from the fitness value. However, the
representation of inducted knowledge in a table simplified the rule extraction
procedure. Table 1.3 contains states with the biggest and smallest Q-values and

30

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90 100

S
te

ps

Episode

Figure 1.7: Average number of steps (of thirty runs) executed by the agent in the
training phase of RL learning.

their best action. The states with the biggest Q-values contain mostly perception
NOWHERE. On the other side, the states with the smallest Q-values contain
perception CRASHED.

The verification of the synthetized behavior is very straightforward. Learned
behavior corresponds to obstacle avoidance behavior. The most interesting are
the states, which contain the perception “NEAR”. Expected rules “when obstacle
left, then turn right” can be found. States without perception “NEAR” were
evaluated as safe — even if a bad action was chosen in this state, it could be
fixed by choosing a good action in the next state. Therefore, these actions do
not tell us a lot about the agent’s behavior. On the other hand, an action with
the perception VERYNEAR led to a crash, usually. In these instances, the agent
was not able to avoid the collision.

State Action Q-value

left front right

NOWHERE NOWHERE VERYFAR [500, 300] 5775.71729
NOWHERE NOWHERE NOWHERE [300, 300] 5768.35059
VERYFAR NOWHERE NOWHERE [300, 500] 5759.31055
NOWHERE NOWHERE FEEL [300, 300] 5753.71240
NOWHERE VERYFAR NOWHERE [500, 100] 5718.16797

CRASHED CRASHED CRASHED [300, 500] -40055.38281
CRASHED NOWHERE CRASHED [300, 300] -40107.77734
NOWHERE CRASHED VERYNEAR [300, 500] -40128.28906
FAR VERYNEAR CRASHED [300, 500] -40210.53125
NOWHERE CRASHED NEAR [200, 500] -40376.87891

Table 1.3: 5 states with the biggest and smallest Q-values and their best actions

31

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16 18 20

S
te

ps

Episode

Figure 1.8: The average number of steps (of thirty runs) executed by the agent
in the testing phase of RL learning.

1.4.3 Discussion

We have presented two experiments, that show how RL and ER algorithms can
train a robot controller to explore an unknown maze. It is known from the
literature, and from our previous work [99], that this problem is manageable by
both paradigms. We illustrated some important features of these methods on the
obstacle avoidance task:

• It is not trivial to extract learned rules from developed controllers. We
simplified this process by reducing the state space, but this process also
significantly limited the number of the possible controllers. In more realistic
scenarios, the researcher has to verify the quality of evolved strategy in
various environments. This may be very difficult, especially in the case of
big environmental diversity (or if environment is unknown).

• The reactive controller may perform reasonably well on this simple task.
The effective policy is to follow the left or the right wall. By analyzing
learned rules, we verified, that neuro-evolution synthetized such a controller.
However, to our surprise, the RL algorithm did not. We do not conclude
that RL algorithm is worse thought. Often, changing some basic environ-
ment constraints (dimensions of the environment, for example) can have a
suprising effect on the learning process. Slight modifications of the environ-
ment are likely to cause a drop in performance. Therefore, deep analysis of
evolved behavior may be inevitable in some cases.

• Design of an appropriate fitness function may be a non-trivial task, too. Re-
active navigation is considered to be one of the simplest tasks in robotics. It
is justified to expect that our automated design methodology would evolve
reasonable policies without human intervention or prior knowledge about
sensors, motors and environments. Unfortunately, human involvement is
still required. The choice of fitness function allows learnability of the sys-
tem. There must be a path in the search space that can be discovered by

32

Figure 1.9: Left: In the exploration task, the agent is rewarded for passing
through the zone, which can not be sensed. The zone is drawn as the bigger
circle, the smaller circle represents the Khepera robot. The training environment
is 60× 30 cm. Right: The testing arena 100× 100 cm and the trajectory of any
evolved individual. The agent’s strategy is to follow the wall on it’s left side.

the limited sample of potential solutions considered. Although it has been
suggested how fitness function for reactive navigation should look [76], we
had to introduce zones to motivate the agent to move.

• It may be difficult to fulfill theoretical assumptions of RL algorithms. Even
noise, which is ubiquitous in robotics, may break Markov property. Al-
though it has been shown that RL methods work reasonably well even with
non-Markovian tasks [105].

1.4.4 Comparison of NN Architectures

The third experiment in this section compares performances of various neural
network architectures. We hypothesized that more complex neural network ar-
chitectures would develop more powerful strategies, perhaps at a price of a slower
learning progress. Authors in [79] showed how problems that can not be mas-
tered by simple reactive individuals can be solved by providing evolving robots
with more complex neural controllers able to keep trace of previously experienced
sensory states.

The Khepera robot was put in a maze of 60 × 30 cm (Figure 1.9) with a
goal to cover the longest possible distance without hitting the objects. The
experiment methodology was similar to previous experiments, however, different
environments and different parameters of evolutionary algorithm were used and
the special processing of sensors and effectors was not involved. The reader is
referred to our work [71] for further details.

The most successful individuals could have achieved a fitness value in a range
from 4 to 5. The fractional part of the fitness value reflected the speed of the agent
and its ability to avoid obstacles, while the integer part expressed the number of
randomly distributed “zones” reached in the arena.

All the networks included in the tests were able to learn the task of finding
a random zone from four starting positions. The resulting best fitness values

33

(Table 1.4) were all in the range of 4.3–4.4 and they differed only in the order of
a few percent. It can be seen that the MLP networks performed slightly better,
RBF networks were in the middle, while recurrent networks were a bit worse
in terms of the best fitness achieved. According to their general performance,
which took into account ten different EA runs, the situation changed slightly. In
general, the networks can be divided into two categories. The first one represents
networks that performed well in each experiment in a consistent manner, i.e. every
run of the evolutionary algorithm out of the ten random populations ended in
finding a successful network that was able to find the zone from each trial. MLP
networks and recurrent networks with 5 units fall into this group. The second
group has in fact a smaller trial rate because, typically, one out of ten runs of EA
did not produce the optimal solution. The observance of average and standard
deviation values in Table 1.4 shows this clearly. This might still be caused by the
less-efficient EA performance for RBF and Elman networks.

 0

 1

 2

 3

 4

 5

 0 50 100 150 200

F
itn

es
s

Generation

Max
Min

Mean

Figure 1.10: The plot of fitness curves in consecutive populations (maximal,
minimal, and average individuals) for a typical EA run (one of ten) training the
RBF network with 5 units in the exploration task.

The performance of the evolved controller in a bigger maze is depicted in
Figure 1.9. Each of the architectures was capable of efficient space exploration
behavior that had emerged during the learning to find random zone positions.
The above mentioned figure shows, that the robot trained in a quite simple arena
and endowed by a relatively small network of 5–10 units, was capable of navigating
the testing environment.

The results in terms of the best individuals were comparable for different ar-
chitectures with reasonable network sizes. The MLP is the overall winner mainly
when considering the overall performance averaged over ten runs of EA. The be-
havior of EA for Elman and RBF networks was less consistent, there were again
several runs that obviously got stuck in local extrema (Table 1.4).

In this experiment, neural networks of any of the three types were able to de-
velop the exploration behavior and typical behavioral patterns, such as following
the right wall, have been developed, which in turn resulted in the very efficient

34

 0

 1

 2

 3

 4

 5

 0 50 100 150 200

F
itn

es
s

Generation

Max
Min

Mean

Figure 1.11: The plot of fitness curves in consecutive populations (maximal,
minimal, and average individuals) for a typical EA run (one of ten) training the
MLP network with 5 units in the exploration task.

Network type Exploration task

mean std min max

MLP 5 units 4.29 0.08 4.20 4.44
MLP 10 units 4.32 0.07 4.24 4.46
ELM 5 units 4.24 0.06 4.14 4.33
ELM 10 units 3.97 0.70 2.24 4.34
RBF 5 units 3.98 0.90 1.42 4.36
RBF 10 units 4.00 0.97 1.23 4.38

Table 1.4: Comparison of the fitness values achieved by different types of network
in the exploration task.

exploration of an unknown maze. However, the best results achieved by any of the
network architectures, were quite comparable with simpler perceptron networks
(such as the 5-hidden unit perceptron) marginally outperforming Elman and RBF
networks. We did not confirm our hypothesis that more advanced neural network
architecture would lead towards the development of better controllers. We made
extra sure to run each case for a satisfactory number of generations, so that the
learning process plateaued and slower learners were not penalized.

1.5 Collective Behavior

In this experiment, we will show how fitness function from the previous experi-
ment can be extended in an iterative fashion, so that it is applicable to a different
problem domain — this time we will work with a group of robots. By changing
the fitness function, we redefine controllers at the individual level, but we will

35

evaluate the performance of the system (consisting of multiple controllers) as a
whole. Despite its extensibility, the presented fitness function describes behavior
quite precisely. We tried to avoid such detailed specification of fitness function.
Ideally, fitness measure should be a survival criterion, that would be translated
into sensible behavior by automatic design methodology. However, it is difficult
to produce such a high-level fitness function, that is not biased by human view,
as in the so-called bootstrap problem [49], which usually shows up in non-trivial
problems.

Collective robotics deals with groups of fully autonomous robots, which usu-
ally accomplish common tasks, such as motion coordination, in a distributed
fashion. Several researchers showed [25, 32], that the design of such control sys-
tems may be performed by evolutionary algorithms. The pioneering work was
done by Martinoli [55]. He solved a task, in which a group of simulated Khepera
robots were asked to find “food items” randomly distributed in an arena. The
control system was developed by the artificial evolution.

Another example of artificial evolution applied to design coordinated, cooper-
ative behavior for real robots was presented in the work [85]. Artificial evolution
was employed to design neural network controllers for small, homogeneous teams
of mobile autonomous robots. The robots were evolved to perform a formation
movement task from random starting positions, equipped only with infrared sen-
sors.

The work [11] presents a set of experiments in which a group of simulated
robots were evolved for the ability to aggregate and to move together toward
a light target. Evolved individuals displayed interesting behavioral patterns in
which groups of robots acted as a single unit. Moreover, groups of evolved indi-
viduals displayed primitive forms of “situated” specializations in which different
individuals showed different behavioral functions according to the circumstances.
The neural networks used in the experiments were simple feed forward neural
networks without hidden neurons.

A related emerging field called swarm robotics, studies systems composed of
swarms of robots that interact and cooperate to achieve common goals [12]. While
swarm robotics emphasizes decentralization of control, in our experiment, there
was a central authority controlling the other robots (leader). A group of simulated
robots was evolved to show the ability of collective homing behavior. The team
leader was equipped with a light source, while the remaining robots had sensors
measuring the reflected light intensity.

The environment (Figure 1.12) used in the experiment was a rectangular arena
of 80×50 cm surrounded by walls. The group consisted of three Khepera robots
each equipped with 8 infrared sensors. The goal of the robots was to find the
circular arena randomly located in the environment. The robots could sense
the arena with the simulated ground sensor: the sensor returned value 1, if the
robot was located in the arena and 0 if it was not. The robot sensed the world
with 17 sensors (8 active sensors, 8 passive sensors and 1 ground sensor). Sensor
measurements (17 values from the interval [0, 1]) served as input to the neural
network. The network’s output (two values from interval [0, 1]) was then used as
a command for robot effectors (two motors). All robots were guided by the same
neural network, constructed from the chromosome.

The team leader was carrying a simulated light bulb, which was attached to

36

Figure 1.12: The environment for training grouping behavior. The thick lines
represent the walls surrounding the arena of 80×50 cm. The full circle represents
the target “home” arena. The arc indicates the light intensity, but meaningful
values could be measured up to 20 cm with only the robot’s sensors. The robot
marked with “1” is the team leader, carrying the light source.

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

S
co

re

Generation

Max
Min

Mean

Figure 1.13: The plot of trial scores in consecutive populations (maximal, min-
imal, and average individuals) for a typical EA run training in the collective
experiment. Values bigger than 400 represent well trained individuals, in which
the grouping behavior is clearly present.

the top of the leader’s body at a the height of 3 cm. The remaining team members
could use information from the passive sensors to produce “following behavior” -
the emitted light could be detected up to a distance of 20 cm.

To evaluate the individuals, simulation was launched 10 times (we call “tri-
als” the individual runs). In each trial, the environment was initialized and the
starting position of robots was randomly chosen.

The robots were “put” in the simulated environment for 500 simulation steps,
fully controlled by the neural network. As soon as any robot hits a wall or
another robot, simulation was stopped. Depending on how well the robots were
performing, the individual were evaluated by “trial score”. The higher the trial
score, the more successful the robots were in executing the task in a particular

37

trial. The fitness value was then obtained by summing up all the trial scores.
Let’s denote by Tk,j the trial score in k-th simulation step and j-th trial,

generating value between 0 and 2, where

Tk,j = Lk,jM1,k,jM2,k,j.

Tk,j is computed as a product of the evaluation of the leader (Lk,j) and team
members (M1,k,j and M2,k,j):

Lk,j = Vk,j(1−
√

∆Vk,j)(1− ik,j) + Zk,j.

Lk,j is the component responsible for the evolution of obstacle avoidance be-
havior. The first component Vk,j was computed by summing the absolute values
of motor speed of the team leader in k-th simulation step and j-th trial, gener-
ating a value between 0 and 1. ∆Vk,j was computed by adding 0.5 to each read
value, substracting them together and taking the absolute value of the difference.
The value ik,j was the value of the most active sensor in k-th simulation step and
j-th trial. Finally, Zk,j held value a 1, if the robot was in k-th simulation step
and j-th trial in the target area, and 0 otherwise. Thus, Lk,j was in range from
0 to 2.

Mi,k,j is the term controlling behavior of the remaining team members:

Mi,k,j = (1−Dk,j(i, 0)),

where value Dk,j(i, 0) is a normalized distance of robot i to the team leader,
computed as follows:

Dk,j(i, j) =

{

1 : dist(i, j) > 200mm
dist(i,j)

200
: dist(i, j) ≤ 200mm

Therefore, values of Mi,k,j are in the interval < 0, 1 >. In the j-th trial,
the score Sj was computed by adding trial gains Tk,j in each simulation step,
generating a value between 0 and 1000:

Sj =

500
∑

k=1

Tk,j.

The evolutionary algorithm was stopped after the 500th generation. Starting
from approximately the 200th generation, the best individuals were able to find
the target area and they kept increasing the driving speed. This is demonstated
in Figure 1.13, which shows a typical trial curve of the population. Starting from
approximately the 300th generation, the best individuals were able to find the
target area in all ten trials, In the remaining generations, the robot increased
mostly in speed and the group became more compact. Since this point, the
learning process has plateaued and the desired behavioral patterns have started
to dominate in the population. However, the group achieved only 40% of the
speed of the best controllers trained in the previous experiment. This should
come as no surprise, given the more difficult working conditions.

The robot team, corresponding to the best individual, clearly showed grouping
behavior — the distance between team members did not get over 20 cm and the
team leader was clearly guiding the group. The remaining robots followed the

38

team leader, keeping a safe distance (Figure 1.14, left). If the distance between
robots was too small, the robots crashed or team members lost trace of the team
leader (obviously, a rapid change in direction by team leader caused the problems
for the remaining team members).

Figure 1.14: Left: Typical run of the best individual from the 500th generation.
Three robots aggregated together and were guided by the team leader (the robot
in the middle), which carried the light source. After reaching the target area,
they did not leave it. Right: Testing trained behavior when no light source was
in the environment. No group behavior was present, the robots were exploring
the environment searching for the light.

To prove their ability to follow the team leader, the robots were put into
the environment without a light source (Figure 1.14, right). In these conditions,
the grouping behavior was not present: each robot explored the environment on
it’s own. Whenever the light bulb was switched off during the experiment, the
robots scattered. The robots even ignored the target arena. After switching the
bulb on again, the group formation was slowly rebuilt. Although the robots were
guided by identical neural networks, task specialization was clearly present: the
team leader was responsible for exploring the arena, while the remaining team
members follow him. The whole group acted as a single unit.

As shown, grouping behavior emerged through the evolutionary process. The
robots did not know their relative positions. Although the team leader could
have been recognized because of the light bulb, it was impossible for the robots to
discriminate between the wall and another robot, as they were only using infrared
sensors. Despite these limitations, the evolutionary algorithm successfully solved
the task. A single neural network was able to guide the group of three robots.

As demonstrated, ER can cope with more complex problems. Although, the
design of the fitness function is not trivial, it can be found by iterative process,
when a researcher starts with a simple well-known task. The fitness measure is
then extended by terms that describe additional behavioral patterns (while elim-
inating unwanted behavior). This approach usually leads to so-called behavioral
fitness function [63]. Behavioral fitness functions generally include several sub-
functions that are combined into a weighted sum or product. These sub-functions
(behavioral terms) are intended to measure simple action-response behaviors or
low-level sensor-effector mappings. Ideally, we would like to use a more high-level
fitness function that specifies what the robot should accomplish, without spec-
ifying how. The experiment in the next section uses a type of fitness function,
called aggregate fitness function [63]. Aggregate fitness functions select only for

39

high-level success or failure to complete a task without regard as to how the task
was completed. This type of selection reduces the injection of human bias into
the evolving system. Controllers based on aggregate fitness functions often face
the so-called bootstrap problem [49]. Completely aggregate selection produces
no selective pressure in sub-minimal competent populations at the beginning of
evolution and hence the process cannot get started.

In the next section, we will demonstrate example of an aggregate fitness func-
tion in an experiment, in which the evolutionary process managed to find sur-
prisingly effective behavior.

1.6 Active Learning

The term active learning [90] applies to a wide range of situations in which a
learner is able to exert some control over its source of data. In robotics, the robot
has to actively select maximally informative actions. In this section, we will in-
troduce an experiment, that illustrates (the reader is referred to our work [101]
for more details) how an agent can utilize active learning to distinguish between
strongly overlapping sensory patterns that require different motor answers. This
process of selecting sensory patterns, which are easy to discriminate through mo-
tor actions, is usually referred to as active perception [75]. The first experiment
demonstrates active learning, which is naturally present in an evolutionary set-
ting, while the second experiment shows active learning cleverly incorporated
into a reinforcement learning algorithm by a researcher. We will compare both
approaches and outline their differences.

The first experiment follows a study originally carried out by Nolfi [74]. A
Khepera robot controlled by a neural network has to discriminate between the
sensory patterns produced by walls and small cylinders. As the agents’ sensory
system is very limited, this problem turns out to be a difficult one. Passive
networks (i.e. networks which are passively exposed to a set of sensory patterns
without being able to interact with the external environment through motor
action) are mostly unable to discriminate between these objects [76]. However,
agents that are left free to move in their environment obtain much better results.
This experiment demonstrates the advantage of embodied agents, which can use
active learning to avoid highly overlapped input spaces.

In our setting, the Khepera robot was allowed to sense the environment with
only six frontal infrared sensors, which provided it with limited information. The
fitness evaluation consisted of five trials and the individual trials differed by the
robot’s starting location. The robot was left to live in the environment for 500
simulation steps. In each simulation step, the trial score was increased by 1, if
the robot approached the cylinder, or 0.5, if the robot approached the wall. The
fitness value was then obtained by summing up all trial scores. The environment
was an arena of 40× 40 cm surrounded by walls.

The best individuals incorporated an ability to avoid walls very quickly, then
to explore the environment and stay in the vicinity of the cylinder. It should be
noted that complex obstacle avoidance behavior was not evolved. The evolution
process exploited arena constraints and the relative simplicity of the training
environment.

This task was solved quite easily by simple neural network architectures. It

40

Network Wall and cyllinder

mean std min max
MLP-5 2326.1 57.8 2185.5 2390.0
MLP-10 2331.4 86.6 2089.0 2391.5
ELM-5 2250.8 147.7 1954.5 2382.5
ELM-10 2027.8 204.3 1609.5 2301.5
RBF-5 1986.6 230.2 1604.0 2343.0
RBF-10 2079.4 94.5 2077.5 2359.5

Figure 1.15: Left: Comparison of the fitness values achieved by different types of
networks in the wall and cylinder task. Right: Trajectory of an agent doing the
wall and cylinder task. The small circle represents the target cylinder. The agent
is rewarded in the zone represented by a bigger circle. It is able to discriminate
between the wall and cylinder, and after discovering the cylinder it stays in its
vicinity.

may seem surprising, given the similarity of walls and cylinders. The advantage
of embodied agents is clearly demonstrated here. Due to the sensor limitations
of the agent, this task requires a synchronized use of a suitable position change
and simple pattern recognition. This problem seems to be more difficult than the
obstacle avoidance behavior (partially due to spare reward function), nevertheless,
most of the neural architectures were able to locate and identify the round target
regardless of its position.

The results in terms of the best individuals are again quite comparable for
different architectures with reasonable network sizes. The differences are more
pronounced than in the case of the previous tasks though. The MLP is the
overall winner, mainly when considering the performance averaged over ten runs
of EA. We hypothesized that recurrent networks might evolve new behavioral
patterns, as this task seems to be suitable for that, but we were unable to confirm
this hypothesis. The behavior of EA for Elman and RBF networks was less
consistent. There were, again, several runs that obviously got stuck in local
extrema (Table 1.15). This is in line with the results of work [74]. The authors
reported that networks without internal units were able to solve the task perfectly
well. As a consequence, the addition of internal units (recurrent networks were not
considered) did not produce any improvement in performance, but even resulted
in less efficient individuals. This might be explained by longer genotypes that
enlarged the space to be searched by GA.

Even more interesting than the performance of specific neural network archi-
tectures, is the fact that the active learning behavior was naturally synthetized
without human intervention in this task. The researcher did not have to integrate
it into fitness function (or perhaps even know about it). The agent alone “real-
ized” that it is beneficial to reduce uncertainty in its environment, and adjusted
its strategy accordingly. The presented fitness function is an example of aggregate
fitness function [63]. The robot was only rewarded if it reached some subgoal,
without specifying the steps that would lead to it. The evolutionary process did
not suffer from the bootstrap problem in this experiment. The bootstrap problem
is often recognized as one of the main challenges of evolutionary robotics: if all
individuals from the first randomly generated population perform equally poorly,

41

the evolutionary process does not generate any interesting solution. Although
several improvements to EA have been suggested [49, 36], a universally appli-
cable solution has not been found yet. Usually, the researcher has to guide the
controllers and instruct them towards better strategies. This is demonstrated in
the second experiment which works with a more complex task, and also includes
active learning. This time, EA is replaced by RL and the controller is guided to
reduce uncertainty in its environment by including an RL algorithm tailored for
this purpose (infomax control). This way, problems of a much larger complexity
can be tackled.

The goal of the “social SLAM” experiment2 was to develop a computational
framework for a social robot that would track information about locations and
facial expression of humans in a room. The agent learned to act in a way that
optimally gathered information about some phenomena in the environment.

Figure 1.16: Left: Einstein robot. Right: Probability map in social SLAM
experiment indicating the locations of people. The robot’s field of view is split
into discrete locations. The darker color means higher probability of a human
being in the location.

Unlike our previous experiments, in which controllers received rewards from
an environment, in this experiment the learner did not need any external re-
ward. The controller maintained its intrinsic reward function, which expressed
uncertainty coming from its surroundings. Recently, information gain has been
proposed as a suitable candidate of such intrinsic motivation for lifelong learning
agents. The resulting learning process is self-supervised and it can be paraphrased
as “learning to learn”.

In this experiment, the robotic head, which was designed to look like Albert
Einstein (Figure 1.16, left) had directional cameras in its eyes. Image processing
algorithms could locate human faces, detect their head pose, and recognize their
facial expressions. The robot was also equipped with a microphone array which
could localize sources of sound and a wide-field sillicon retina which could rapidly
detect a variety of subtle motion cues. The robot was placed in a large room in
which people could enter and leave randomly. The goal of the robot was to move
its head and maintain as much certainty about the state of the social environment

2The author participated on the experiment during Telluride Neuromorphic Cognition En-
gineering Workshop 2009, which was held in Telluride, Colorado.

42

as possible. Occasionally, people approached the robot and tried to interact with
it. The robot tried to track information about the location and facial expression
of people by rotating its head and selecting the maximally informative action.

The information seeking problem can be modeled as a Partially Observable
Markov Decision Process (POMDP) [84]. The term partially observable here
refers to the fact that the states of interest (e.g., location and expression of people)
are not directly observable, and we only have access to sensors that provide partial
information about the states of interest.

At first, a classic dynamic programming algorithm was tried to find exact
solutions to the POMDP problem. The approach worked well as long as the
number of locations and sensory observations was small. Unfortunately dynamic
programming approaches were utterly impractical as the number of states and
observations were increased to realistic values.

Therefore, reinforcement learning approaches were applied. The idea was to
use information gain as a reward signal and use reinforcement learning to find a
control policy for a POMDP in which movement and sensing actions are selected
to reduce Shannon entropy. The input to the controller was the probability map
(Figure 1.16, right) indicating the locations of people and their states. The output
was a camera orientation. This was a challenging problem that we approached
using infomax control algorithm. The basic goal in infomax control is to behave
in a manner that gathers as much information as possible about variables of
interest. An infomax control policy was learned in a simulated environment by
utilizing Natural Actor Critic Policy Gradient algorithm [82]).

We found that depending on the reliability of the sensors and the dynamics
governing the people in the social world, a number of different behaviors emerged
automatically from the learning algorithm, typically within a hundred timesteps.
These included tracking individual faces, occasionally its attention between peo-
ple, and turning to look towards sudden outbursts of sound.

Although problems tackled in these two experiments were different, the final
strategies involved active learning in some form. In the first experiment, behavior
reducing uncertainty was synthetized without the researcher’s intervention. That
is a very convenient and desirable feature of learning algorithms, as body mor-
phology or sensorimotor interaction did not have to be specified. Unfortunately,
this advandage quickly vanishes with an increasing complexity of problems. The
second experiment is example of such a problem. In order to develop an opti-
mal policy, a mathematical algorithm tailored to this application was used. As
can be seen, RL has a wide variety of algorithms based on solid mathematical
backround, that can be applied in specific circumstances. However, incorporation
of such algorithm is not cheap usually. In our case, it was necessary to develop
quantitative models of the properties of the sensory motor system (probability
distribution of the observations given actions and states, for example) for this
purpose.

In our previous experiments, ER bypassed the difficulties of hand-coding the
control architectures of mobile robots through an artificial selection process that
eliminated ill-behaving individuals in a population while favoring the reproduc-
tion of better-adapted competitors. According to this approach, a robot’s con-
troller, was progressively adapted to the specific environment. Unfortunately, it
is not clear yet how to generalize this approach for more complex problems. The

43

ER still lacks mathematical foundations present in RL. As of there is yet no clear
consensus on which type of evolutionary algorithm, and which parameter settings,
are appropriate for particular problems, and much experimentation is still on a
trial and error basis. Moreover, problems, that are suitable for ER, share some
common properties. For example, in more than half of the literature surveyed
in [63], wheeled robots that employed differential drive for steering were used.
For more complex problems (social SLAM problem), human knowledge must be
injected into the controller. Although this approach is much more work-intensive,
it is still more powerful.

1.7 Conclusions

In this chapter, we used the two most common automated design methodologies,
that can synthetize sensible behavior out of a “tabula rasa”. Instead of direct-
ly implementing control algorithms, these algorithms are intended to work with
little or no human intervention. As has been shown, the robots are able to learn
simple behaviors by being rewarded for the good ones, and without explicitly
specifying bad actions. Experiments in Section 1.4 illustrated, that both EA and
RL designed simple reactive navigation controllers. Unfortunately, as the com-
plexity of an environment and task increases, more prior knowledge and human
interference is required. Also, the exact form of fitness function becomes less
obvious. We hypothesized that the increasing robustness of trained controllers
would help to overcome these problems, but moving this direction did not bring
the expected outcome for us.

If the rewards provided to an agent are sparse, there is no path in the search
space that can be discovered by the limited sample of potential solutions consid-
ered and more human bias must be inserted into the learning process. Although
several methods have been suggested to beat the bootstrap problem (incremental
evolution [49], co-evolution [36], introduction of intermediate fitness scores [77]),
it is unclear, which class of problems may benefit from these improvements. As
the methodology has been missing, defining a good fitness function is a trial-and-
error process. For some problems, an experimenter may work in iterative fashion
and incrementally work towards more complex behaviors, as demonstrated in
Section 1.5. The move into multi-robot domain was surprisingly easy, but on
the other side, it violated basic principles of automated design, as it required the
inclusion of additional behavioral terms into fitness function. Ideally, it should
be feasible to perform behavior engineering of intelligent controllers without re-
sorting to explicit design of their cognitive abilities and restricting the range of
their actions.

RL algorithms have a strong mathematical background that comes with a
great deal of theoretical and empirical results developed in control theory and
therefore it may be simpler to utilize them in specific circumstances. They are
based on MDT framework, which offers many attractions for formulating learning
tasks faced by embedded agents. They deal naturally with the perception-action
cycle of embedded agents. They require very little prior knowledge about an opti-
mal solution and they can be used for stochastic environments. On the other side,
it is often difficult to fulfill their theoretical requirements, and some of these as-
sumptions are usually ignored in the real-world. In some cases, automated design

44

may utilize surprisingly good strategies, like in active learning demonstrated in
the experiment in Section 1.6. However, for more complex tasks, like social SLAM
in Section 1.6, utilization of algorithm designed for this task may be required.
Exploitation of RL algorithms may be preferred to EA in these domains. In social
SLAM experiment, successful exploitation of infomax control was demonstrated,
but it was no free lunch. It was necessary to develop quantitative models of the
properties of the sensory motor system.

The agents that we have discussed in this chapter belong to a class of agents
based on behavior-based paradigm. This paradigm in general does not use repre-
sentational knowledge, and emphasizes tight coupling between sensing and motor
actions. It might be difficult to extract learned knowledge from these architec-
tures. Automated design especially often comes up with solutions that match
an environment in ways that are often unpredictable from the perspective of an
external observer. Verification and testing of evolved controllers is far from a
trivial process. For complex, real-world robotic systems, hybrid architectures
that combine adaptive methods with traditional planning are widely used. We
will demonstrate such systems in the following chapters. The field of automat-
ic intelligent control learning for autonomous robots is in its infancy. Much of
the research focuses on learning how to perform relatively simple tasks. In the
next chapter, we will show how methods based on DP algorithms revisited in
this chapter form the core of modern path planning algorithms. Machine learn-
ing paradigms are used mostly to fine-tune the parameters of already successful
designs. Developing machine learning methods for use in robotic systems has, in
fact, become a major focus of contemporary autonomous robotics research.

45

2. Hybrid Agents

In this chapter, we will describe a hybrid design of a robot controller, that utilizes
modern path planning algorithms. Hybrid architecture, which combines both
reactive and deliberative planning will be demonstrated. Deliberative layer will
be described in detail in the next chapter. In this chapter, we will focus on motion
planning and our experiences with its implementation for small low-cost mobile
robots. The path-planning module is based on the value iteration algorithm
from the previous section (Algorithm 6). Although path planning algorithms are
established and well working in general, implementation of these algorithms in
low-cost robots is challenging due to their very limited sensory system. Further
details can be found in articles [104] and [99].

2.1 Agents Taxonomy

Traditionally, robot controllers were mostly serial processing units in AI. They
built representations of the outer world, reasoned about it and planned actions
accordingly. The internal world often comprised geometric maps and they were
often based on symbolic reasoning. Historically, Nilsson’s SHAKEY robot was the
first successful demonstration of symbolic, AI-type problem solving in robotics.
Unfortunately, it was too brittle to operate in a dynamic environment [6].

In 1986, Rodney Brooks and his colleagues, pioneered and popularized a dif-
ferent approach called behavior-based robotics [22]. They built a series of wheeled
and legged robots utilizing the subsumption architecture [21]. The behavior-based
approach states that intelligence is the result of the interaction among an asyn-
chronous set of behaviors and the environment. Behavior-based systems are also
reactive and they use relatively little internal variable states to model the en-
vironment. It has been shown that others designs based on reactive paradigm
can effectively produce robust performance in complex and dynamic domains.
The successful examples include motor schema-based systems, action-selection
or colony-architecture. These architectures, in general, do not use representa-
tional knowledge and emphasize tight coupling between sensing and action and
decomposition into behavioral units.

As we have discussed in the previous chapter, reactive design can serve as a
disadvantage at times. In some cases, exploitation of deliberative planners may be
beneficial. If the world can be accurately modeled (with restricted uncertainty)
or if there are only a few changes in the world during execution, deliberative
planning may be preferred.

In general, both approaches have limitations when they are considered in isola-
tion. Therefore, hybrid deliberative/reactive robotic architectures have emerged.
They combine aspects of traditional AI symbolic methods but maintain the goal
of providing responsiveness and flexibility of purely reactive systems. The ma-
jority of more advanced mobile agents have to address some fundamental prob-
lems, like localization in map, map building, path planning or collision avoidance.
Usually, these algorithms are implemented as interacting layers. Since the mille-
nium, a performance of a hybrid architecture has been succesfully demonstrated
several times. Modern robots contain several modules, that communicate asyn-

46

Figure 2.1: The proposed hybrid hierarchical architecture, that combines delib-
erative and reactive components.

chronously. The software architecture of tour-guide robot RHINO consisted of 20
processes, which were executed in parallel on 3-board PCs and 2 off-board SUN
workstations, connected via Ethernet [24].

A multilayered hybrid architecture, comprising top-layer planning system,
and a lower-level reactive system has been emerging as the architectural design
of choice since 1995 [5]. In general, two layers are needed at minimum: one
to represent deliberation and the other reactivity. The reactive layer is used
for short-term planning, so that the robot can operate in dynamic environment,
where changes occur quickly. The deliberative layer is used for long-term plan-
ning. Another common approach involves introducing an explicit third layer,
concerned with coordinating the two components.

Planning can be incorporated into the overall system architecture in various
ways. Work [6] contains a broader overview of hybrid architectures that combine
both reactive and deliberative planning. Planning can be viewed as configuration,
and planner component can reconfigure the system to adapt to new challenges [7].
Planning can be also viewed as advice giving (Atlantis [38]). In this case, the
planner suggests changes to reactive control system, that may be refused. Plan-
ning may also be viewed as least commitment process (Procedural Reasoning
System [57]). In this design, the planner defers making decisions on actions until
as late as possible. In our design (see Figure 2.1), planning is viewed as adapta-
tion. The planner continuously alters lower layers of the control system in light of
changing conditions within the world and task requirements. The system consists
of the following components:

• Obstacle avoidance module: The layer with a highest priority, collision
avoidance module, is activated only when any obstacle is found to be too
close. In that case, the robot executes an avoiding manoeuvre.

• Motion-planning module: This module consists of three components. The
map building component is able to fully construct a map. The localization
component determines the robot’s position and orientation in a map. Path
planning module is responsible for scheduling robot movements that bring

47

the robot from its current position to final destination. We will discuss each
component separately.

• Task control module (high-level planner): The layer with lowest priority
provides long-term plans based on inputs from lower layers. It is a layer
that usually utilizes traditional AI technique (constraint programming in
our case). This layer will be discussed in detail in the next chapter.

We will now discuss each component involved in the motion planner separately.

2.2 Mapping

We assume, that motion planning algorithms know a map of an environment in
advance (distribution of obstacles and walls in an environment and the position
of landmarks). We do not consider the more difficult simultaneous localization
and mapping (SLAM) problem in this work (the case, when a robot does not
know its own position in advance and does not have the map of the environment
available). To obtain the map, the robot is manually guided by a human to
explore the whole environment. Sensor measurements are then processed by the
mapping module (see Figure 2.1) and used to construct the map.

The output of the mapping process is the occupancy grid [109]. Occupancy of
all < x, y > locations in the environment is estimated from sensor data. Let cxy
denote a random variable with event {0, 1} that corresponds to the occupancy of
a location < x, y >. 1 stands for occupied, and 0 stands for free. The problem of
mapping is to estimate the probability of occupancy for each grid cell given the
history of measurements, denoted as

P (cxy|o1, ..., ot),

where ot is sensor measurement at a time step t.
Occupancy grids are illustrated in Figure 2.6 and Figure 2.9.

2.3 Localization

Localization is the process of estimating a robot’s current position in the known
map. In our case, we estimate the robot’s position and orientation in the 3-
dimensional space. Although even low-cost robots have devices to estimate cov-
ered trajectory, dedicated algorithms are needed to estimate robot position to
obtain satisfactory precision. Position could be estimated using robots shaft en-
coders and precise stepper motors. This process is called dead reckoning [6].
For robots equipped with a differential drive like E-puck (Figure 2.2), the dead
reckoning process is very simple. The position of the robot can be estimated by
looking at the difference in the encoder values ∆sR and ∆sL. By estimating the
position of the robot, we mean the computation of tuple < x, y,Θ > as a func-
tion of the previous position < xOLD, yOLD,ΘOLD > and encoder values (∆sR
and ∆sL):

x
y
θ

 =

xOLD

yOLD

θOLD

+

∆x
∆y
∆θ

 (2.1)

48

(a) (b)

Figure 2.2: Left: Differential drive robot schema. Right: Illustration of error
accumulation. E-puck was ordered to make 10 squares of size 30 cm, real trajec-
tory was captured by a camera. Odometry errors are caused mostly by rotation
movement.

where

∆θ = ∆sR−∆sL
L

,

∆s = ∆sR+∆sL
2

,
∆x = ∆s.cos(θ + ∆θ

2
),

∆y = ∆s.sin(θ + ∆θ
2
).

The fundamental flaw is error accumulation. Each time an encoder measure-
ment is taken, the imprecision of sensors will cause a difference between real
and calculated position. This error accumulates over time and therefore accurate
tracking over large distances is virtually impossible without additional feedback.
Tiny differences in wheel diameter will result in important errors after a few me-
ters, if they are not properly taken into account, as demonstrated in Figure 2.2.

For longer trajectories, more clever methods are needed. Several algorithms
are used to estimate a pose in the known map and cope with errors, that arise due
to inaccuracy of robot sensors and effectors. Methods based on Kalman filter [47]
(EKF localization, or some of its variants) or particle filter [88] (Monte-Carlo
localization) have shown good performance in a number of application areas. We
are using Monte-Carlo localization (MCL), one of the most popular localization
algorithms in robotics [109].

The Monte-Carlo localization works with quantity p(xt), which stands for the
probability that the robot is located at the position xt in time t. This quantity
is represented by a set of particles Xt = {x

[1]
t , . . . , x

[M]
t }. Each particle x

[m]
t

represents a hypothesis, that corresponds to a robot’s pose at time t. As opposed
to dead reckoning, MCL incorporates sensors measurements zt.

The advantage of MCL compared to some other approaches is that it can
handle the global localization problem, as demonstrated in Figure 2.3, top. Global
localization is the problem of determining the position of a robot under global
uncertainty. The other advantage of MCL is the ability to represent multi-modal
probability distributions (track many different possible positions at the same
time), as illustrated in Figure 2.3, bottom.

The more sensors an embodied agent can utilize, the better. Sensor fusion
is the combining of sensory data from disparate sources so that the resulting

49

Figure 2.3: Representation of probability distribution by a set of particles. Al-
though only the x- and y-coordinates of each particle is illustrated, each particle
is defined over the 3-dimensional space. Top: Initially unknown position is rep-
resented by particles equally distributed in the arena. Bottom: The state of
particle filter 50 steps later. Particle filter represents a multimodal distribution.
It is a consequence of symmetry of the environment.

information is more accurate than would be possible when these sources were used
individually. The algorithm requires functions that model both robot sensors
and actuators. Function motion model() implements a probablistic odometry
model, which is defined as a conditional probability distribution p(xt|ut, xt−1),
where xt and xt−1 are both robot poses and ut is a motion command. Similarly,
the function measurement model() implements a measurement model, which is
defined as a conditional probability distribution p(zt|xt), where xt is the robot
pose and zt is the measurement at time t. These probabilistic measures model
a noise and inherent uncertainty in a robot’s sensors and effectors. Such models
can be obtained in several ways, as discussed in detail in [109].

The MCL algorithm (Algorithm 8) takes the set of particles Xt−1, the most
recent control command ut and most recent sensor measurements zt as an input.
The output is a new set of particles Xt with corresponding weights. The algo-
rithm possesses three basic steps: state prediction, observation integration and
re-sampling.

1. State prediction based on odometry model: The first step is the computa-
tion of temporary particle set X̄t from Xt−1. It is created by applying the

odometry model p(xt|ut, xt−1) to each particle x
[m]
t−1 from Xt−1.

2. Correction step (observation integration): The next step is the computation

of importance factor w
[m]
t , which is the probability of the measurement zt

under particle x
[m]
t , given by w

[m]
t = p(zt|x

[m]
t). This step typically involves

integrating multiple sensor measurements.

3. Re-sampling: The last step incorporates so-called importance sampling.
The algorithm draws with replacement M particles from temporary set

50

Input : Xt−1: Set of particles at time step t− 1,
ut: Control command at time step t,
zt: Sensors measurement at time t,
M : Number of particles in set.

Output: Xt: New set of particles at time step t.

X̄t = Xt = ∅
for m = {1 · · ·M} do

State prediction based on odometry model:
x
[m]
t = sample motion model (ut, x

[m]
t−1)

Correction step:
w

[m]
t = measurement model (zt, x

[m]
t)

X̄t = X̄t+ < x
[m]
t , w

[m]
t >

end

Re-sampling:
for m = {1...M} do

draw m with probability ∝ w
[m]
t

add x
[m]
t to Xt

end

return Xt

Algorithm 8: MCL, or Monte Carlo Localization [109], a localization al-
gorithm based on particle filters.

Figure 2.4: Left: In the prediction step of MCL, an odometry model based on
movement ut−1 is applied to each particle xt−1 and new hypothesis xt is sampled
from distribution p(xt|xt−1, ut). Right: In the correction step of MCL, each
particle is assigned an importance factor, corresponding to the probability of
observation zt. If image processing detects two landmarks on the actual camera
image, particles 0 and 1 will be assigned a smaller weight than particle 2.

X̄t and creates new particle set Xt+1. The probability of drawing each par-
ticles is given by its importance weight computed in the previous step. This
is our second encounter with the survival of the fittest principle ([48]).

51

2.4 Motion Planning

The collision avoidance module considers only local constraints. The motion
planning module takes a more global view. It determines the motion strategy
that will take the robot from its current position to the desired position. There
have been plenty of algorithms designed, with different levels of complexity [52]:

1. Methods exploring a search graph

(a) Visibility graph algorithm

(b) Retraction-like algorithms

(c) Algorithms based on exact cellular decomposition

(d) Algorithms based on approximate cellular decomposition

(e) Probabilistic roadmap and its variants

2. Methods building a search tree

(a) Grid-based methods (Dynamic programming, A* algorithm...)

(b) Rapidly-Exploring Random Tree

3. Heuristic approaches

(a) Navigation function

(b) Path deformation

The majority of work addresses more complicated problems than the one
considered in this work, such as motion planning in higher-dimensional and con-
tinuous space. Motion planning for circular robots that can turn on the spot is
often performed in 2D, ignoring costs of rotation and the dynamics of the robot,
and it is our case, too. Such simplification yields only sub-optimal results, but
greatly reduces complexity of motion planning, which is known to be exponential
in the number of degrees of freedom [24].

In the previous chapter, we introduced the value iteration (Algorithm 6) in
context of a robot controller. Value iteration is a good path planning algorithm, as
well. Fundamentally, both planning and robot control address the same problem:
to select actions. The important criterion is the amount of uncertainty that these
algorithms support:

1. Deterministic versus stochastic action effects: There is no uncertainty in the
classical robot planning paradigm. Value iteration supports the stochastic
nature of the robots and their environments.

2. Fully observable versus partially observable systems: Our version of value
iteration works with fully observable worlds, and assumes that sensors can
measure the full state of the environment. As the sensors are not perfect,
this is an unrealistic assumption.

52

As the value function is computed only in x-y-space, the cost of rotation and
the robot’s velocity is ignored. Such planners, that can not cope with robot
dynamics are usually combined with fast collision avoidance modules. Consid-
eration of the full robot state would require planning in at least five dimensions
and would be much more CPU intensive.

The version of the algorithm that we use assumes finite state and action
spaces. We therefore process similar pre-processing as in the previous chapter. A
decomposed 2D grid serves as an approximation of the continuous optimal value
function, where each grid cell corresponds to one state. The finer representation
usually yields better results, at the price of increased computational requirements.
In our experiments, each grid cell is of the same size.

In the Initialization step of Algorithm 6, value function for each state is set
to ∞, besides the target location, which is set to 0:

Vx,y =

{

0, : if < x, y > is target cell,
∞, : otherwise.

In the Update step of Algorithm 6, all values of non-target grid cells are
updated by the value of their best neighbors, plus the costs of moving to this
neighbor:

Vx,y ← min
∆x=−1,0,1

∆y=−1,0,1

{Vx+∆x,y+∆y + P (cx+∆x,y+∆y)}.

The cost here is equivalent to the probability P (cx,y) that a grid cell < x, y >
is occupied. When the update converges, the value of each state measures the
cumulative cost for moving to the nearest goal.

Output of the algorithm is illustrated in Figure 2.6 and Figure 2.9. The
brighter a location, the higher its value. To determine where to move, the robot
generates a minimum-cost path to the goal. In other words, it uses greedy action
selection with respect to the computed value function. This is done by the steepest
descent in V, starting at actual robot position.

Disadvantages of value iteration usage in the path planning domain are:

• It is inefficient to allow the robot to navigate while simultaneously learning
a map.

• It is suitable for smaller low-dimensional spaces.

Attractive features a motion planner based on value iteration are:

• It is an any-time algorithm, since it allows the generation of (suboptimal)
robot action at almost any time, before the iteration has converged.

• It computes value function for each cell, not just the current location of
the robot. As a consequence, the robot can quickly react if it finds itself in
an unexpected location. This is especially important in the presence of a
collision avoidance module that can dislocate the robot from the planned
path.

53

2.5 Motion Planning with Low-cost Platform

The affordability of miniature hardware platforms such as E-puck with mature
software simulation environments makes small robots a commonly used exper-
imental platform. It is important to consider that such a platform possesses
certain special properties differentiating it from other professional robots. Small
mobile robots are usually not equipped with a suite of sophisticated sensors. This
experiment studies the performance of localization algorithm based on a particle
filter with a small miniature low-cost E-puck robot. Information from a cheap
VGA camera and eight infrared sensors are used to correct the estimation of the
robot’s pose.

Unfortunately, due to their characteristics (Appendix 1), infra-red sensors of
E-puck robot can be used as bumpers only. We distributed special objects of
different colors, called landmarks, into the arena (Figure 2.5) and implemented a
simple algorithm, which processes images obtained from the camera and performs
landmark recognition. Landmarks were objects of rectangular shape of size 5× 5
cm and three different colors — red, green and blue. We developed an image
processing module that detected a relative position of the landmark from the
robot.

Figure 2.5: Left: Performance of localization algorithm was measured in an arena
with red, green and blue landmarks. Right: Simulated arena with E-puck and
trajectory covered when executing the experiment.

Figure 2.6: Left: Occupancy grid map corresponding to the environment depict-
ed in Figure 2.5. Right: Example of value iteration over state spaces in robot
motion. The blue rectangle depicts the robot position, the red rectangle repre-
sents the goal location. Shading corresponds to the value function. The robot
trajectory covered when executing this plan is depicted in Figure 2.5, right.

54

Algorithm Error (cm)
Dead reckoning 4.9
MCL (no landmarks) 3.75
MCL (3 landmarks) 1.43

Table 2.1: Average of a localization error from 30 runs.

The localization module was based on MCL(Algorithm 8). In the correction
step of the algorithm, two types of sensors measurements were fused:

• Measurements coming from distance sensors. Because of their characteris-
tics, eight infra-red distance sensors were used as bumpers only.

• Measurements obtained by image processing. The expected position of the
landmarks and detected position of the landmarks from camera image were
compared. E-puck’s camera can be used to detect objects or landmarks.
However, the information about distance to the landmark extracted from
the camera turned out not to be reliable (due to the noise), and we did not
use it.

Output provided by the image processing algorithm was the relative position
and color of the detected landmarks (“I see red landmark by angle 15 degrees”).
Image processing incorporated the following steps (see [91]):

• Gaussian filter was used to reduce camera noise.

• Color segmentation into the red, blue and green color was performed.

• Blob detection was used to detect the position and size of the objects on
the image.

• Object detection was used to remove objects that have non-rectangular
shape from the image.

Experiments were carried out in an arena of size 1 × 0.75 meters. Three
landmarks were placed into the arena, as shown in Figure 2.5. As a first step,
E-puck robot was guided to map the environment, producing the occupancy grid
The robot was then put into the arena 30 times, ordered to cover the path from
Figure 2.6, right each time. The localization algorithm was reset on each run, so
that the robot did not know its starting position.

MCL algorithm worked with 2000 particles, and after several steps, it relo-
cated the particles into real location of the robot. The robot was able to localize
itself. The Table 2.1 shows an average error between the real and the estimated
position during experiment. The robot was able to autonomously navigate in this
simple environment. We were surprised by the flawlessness of the algorithm, as
we used only bearing information from camera (no distance information). Posi-
tion error could be easily reduced, if we put more landmarks into environment.
The utilization of landmarks improved performance of localization algorithm by
a great extent, as shown in Table 2.1. Localization without landmarks would not
be feasible. The impact of infrared sensors was obvious, too. The proximity to
the wall suddenly significantly reduced the position uncertainty.

55

The localization algorithm performed well in other arenas (Figure 2.3) and
retained such performace (in terms of average localization error) in rectangular
areas up to a size of three meters.

2.6 Waste Collection Task

Figure 2.7: Left: The more advanced mobile robot Pioneer-2 is equipped with a
SICK LMS-2000 laser sensor, which provides distance measurements over a 180
degree area up to 80 meters away. Right: Training arena for Pioneer-2 robot.

Figure 2.8: The output of the map building module. The map was built by a
random walk in the arena depicted in Figure 2.7.

Although localization and motion planning are feasible with E-puck in simple
environments, more elaborate environments require sensors with a very good
precision. Therefore, in this experiment, we will utilize a model of the professional
robot Pioneer-2. This robot is equipped with a SICK LMS-2000 laser sensor,
which provides distance measurements over a 180 degree area up to 80 meters
away. The part responsible for handling localization and motion planning is based
on the well established open-source CARMEN software [60], which contains the
complete model of Pioneer-2 (Figure 2.7, left), including the odometry model and
the motion model.

56

Figure 2.9: Left: An additional post-processing of map from Figure 2.8 increased
the side-clearance to obstacles. Right: The motion planner uses DP to compute
the shortest path to the nearest goal for every location in the unoccupied space,
as indicated by the gray shading.

CARMEN is an open-source collection of software for mobile robot control.
It is designed in a modular way to provide basic navigation primitives including
obstacle avoidance, localization, path planning, and mapping. Communications
between CARMEN modules is handled using a separate package called IPC that
shadows developer from details of inter-process communication. We connected
CARMEN with the professional simulator Webots, which contains a realistic
model of the Pioneer-2 robot.

The architecture of the robot is the same as in the previous experiment,
only motion planning modules are based on components from CARMEN toolkit.
Path planner module still implements the value iteration and the localization
is performed by MCL algorithm. The experiment workflow remains the same,
too: As a very first step, the whole environment (Figure 2.7, right) is mapped
and obtained measurements (Figure 2.8) are integrated into the occupancy grid
(Figure 2.9, left). The performance of value iteration algorithm is depicted in
Figure 2.9, right. A all software components were integrated into the simulator,
as can be seen in Figure 2.10. The measurements of a laser sensor are illustrated
in the left part of the figure (window titled “Robot Graph”). The map of the
environment is in the upper left part. The blue diamond in the map represents
the current location of the robot and the yellow circle the current target location
that was obtained from the high-level planner.

The high-level planner evaluates data from lower layers and accordingly mod-
ifies the current plan. In this experiment, the robot has to clean out a collection
of wastes (represented by red balls) spread in a building; but in any time, its
internal storage capacity cannot be exceeded. Providing the storage tank is filled
up, the robot has to empty it into one of the available collectors (represented by
the yellow circle). The goal of the planner is to come up with a routing plan,
that minimizes the covered trajectory.

Recent research in robotics has produced a variety of frameworks for task-
level planners [24]. The tour-guide robot RHINO [24] uses GOLOG [53], which
is a first-order language, that represents knowledge in the situation action calcu-
lus. Recent increasing interest in this area brought another powerful frameworks

57

Figure 2.10: Commercial Webots simulator with model of Pioneer-2 and local-
ization and motion planning modules. Map built by the robot corresponding to
the testing environment with output of the motion planner module is depicted in
the upper left corner of the figure.

(PRODIGY [26], COLBERT [51]. . .). In the next chapter we will show that con-
straint programming, which has been often overlooked in the robotics community,
fullfills all requirements given by high-level planners in robotic systems.

2.7 Conclusions

In this chapter we introduced a hybrid architecture of embodied agents, that
combines reactive and deliberative paradigms. Such architecture is typically or-
ganized into layers. We focused on layer that performs localization and motion
planning. As we have shown, the localization process can be carried out even
with low-cast robot in simple environments. More realistic experiments require
more advanced sensory systems, such as the one offered by the Pioneer-2 robot.
The algorithms that we discussed in this chapter are able to seamlessly take care
of motion planning and recompute the current plan in a few milliseconds, when
executing on moderate PCs, for environments of modest sizes. In the next chap-
ter we will discuss the high-level planner based on constraint programming that
controls the discussed motion planner. As we will show, such a planner fits well
into introduced design. It shows very good performance in our experiments and
has features that makes it suitable for deployment in robots.

58

3. Deliberative Planning

In the previous chapter, we introduced a hybrid robot architecture that combines
both a reactive execution and deliberative planning. In this chapter, we will
describe the deliberative planner, which controls high-level tasks, in detail. The
goal of the robot is to clean out a collection of wastes spread in a building; but
under the condition of not exceeding its internal storage capacity. The storage
tank can be emptied in one of the available collectors. The high-level planner has
to prepare a routing plan, which minimizes the covered trajectory.

As the high-level task can be converted into a graph exploration problem, we
modeled it using CP paradigm. The problem is an important variant of popular
vehicle routing problem (VRP) that has not been yet extensively studied. We
will model it in CP language and verify its performance in experiments. We will
discuss requirements given by the robotics domain on deliberative planners and
we will demonstrate that high-level CP planner fulfills them. The crucial aspect
of the high-level planner in our design is the ability to produce a solution (possibly
sub-optimal) in a very short time frame. We will show, that CP planner is able
to find the first solution in hundreds of microseconds on problems of reasonable
sizes.

3.1 Problem Formulation

The environment consists of navigation points defined by locations of waste and
collectors. We use a mixed weighted graph (V,E) with both directed and undi-
rected edges to represent this environment. Figure 3.1 gives an example of the
initial environment (left) and the planned path for the robot (right). The undi-
rected edges allow us to minimize the size of the representation. The set of
vertices V = {I} ∪W ∪ C ∪ {D} consists of the initial position I, the set W of
waste vertices, the set C of collectors and the destination vertex D.

There are directed arcs from I to all vertices in W , because the robot has
to visit some waste vertices from the initial position. As the robot can travel
between waste vertices, we assume a complete undirected graph between vertices

Figure 3.1: Example of waste collection task. The biggest circle represents the
robot, six smaller circles show distribution of wastes. The three squares are col-
lectors. The goal of the robot is to collect wastes and minimize covered distance.
In this example, the robot can hold at most two wastes at a time.

59

Figure 3.2: A schema of the graph describing the robot’s environment with the
navigation points.

in W . The robot can go to a collector from any waste vertex, therefore, we use
a directed edge there. The fact that the robot can go to any waste from any
collector is again modelled by a directed edge. Directed edges are required as we
need to count the number of incoming and ongoing edges for collectors. There
are no edges between the collector vertices. We use a dummy destination vertex
that is connected to all collector vertices by a directed edge. The weight of each
edge describes the distance between the navigation points. The edges going to
the dummy destination vertex D has zero weight so the robot can actually finish
at any collector. The task to find a minimal-cost path starting at I, finishing
at D and visiting each vertex in W exactly once such that the number of any
consecutive vertices from W does not exceed the given capacity of the robot.
Figure 3.2 shows the schema of the graph with the navigation points.

The task is to develop a robot solving a specific routing problem - an often
overlooked variant of the standard vehicle routing problem. The amount of lit-
erature addressing VRP subject and its derived variants is enormous. However,
to our best knowledge, the VRPSF variant has not been solved extensively. The
latest published results can be found in [13], and are mentioned also in [28].
The authors presented an exact procedure for solving the VRPSF that combines
heuristics with methods from polyhedral theory in a branch and cut framework.
They focused on obtaining an optimal solution that took almost an hour on
15-customer case instances. Nowadays, there exist truly numerous optimization
attitudes ranging from the “classic” operation research field to those inspired by
nature [16, 10]. In the published results, a majority of authors show their test-
ing method is applicable to use or even outperforms some other methods for the
studied problem variants. Therefore, to properly decide which way to choose is
a hard row to hoe.

There have been several ways of tackling VRP problem using CP presented
so far. Shaw [92] is among the first pioneers in this field, who used limited
discrepancy search (LDS) methods with large neighborhood search for capacitated
VRP and VRP with time windows (VRPTW). Another work [9] describes a
method for combining constraint programming with tabu search and guided local
search techniques to solve the standard VRP problem. A combined method was
able to outperform the other methods on most problems. To mention one more
approach, the authors of [87] studied benefits of several constraint-based operators
on 56 Solomon instances of VRPTW; the method showed good results and allowed
easy further modification of the model.

Our primary goal is to develop an algorithm that returns good solutions in
a short time (almost anytime algorithm) and that can be easily extended by
additional constraints. Hence ad-hoc exact techniques are not appropriate due

60

to their long runtime and limited extendibility and we decided to use CP to
solve the problem. Neither of the existing CP-oriented works solves the above
problem, but we can use them as the initial motivation for the design of our
constraint model. Most of the routing models are based on the formulation of the
problem using network flows [93] so we also proposed a constraint model based
on this standard technique. Nevertheless, the performance of this model was not
satisfactory in our experiments so we proposed a radically new approach to model
the problem using a finite state automaton. In our preliminary experiments,
this model outperformed the traditional model and solved larger instances of the
problem.

3.2 Constraint Programming Planner

Constraint satisfaction programming (CP) [86, 31] is the process of finding a solu-
tion to a set of constraints that impose conditions that the variables must satisfy.
The central notion is that of a constraint - a relation over the domains of sequence
of variables. One can view it as a requirement that states which combinations of
values from the variable domains are admitted. In turn, a constraint satisfaction
problem (CSP) consists of a finite set of constraints, each on a subsequence of
variables.

To solve a given problem by means of constraint programming we first for-
mulate it as a constraint satisfaction problem. This part of the problem solving
is called modeling. In general, more than one representation of a problem as a
CSP exists. Then to solve the chosen representation, we use mostly the general
methods, which are concerned with the ways of reducing the search space and
with specific search methods. The algorithms that deal with the search space
reduction are usually called constraint propagation algorithms. They maintain
equivalence while simplifying the considered problem and achieve various forms
of local consistency that attempt to approximate the notion of (global) consisten-
cy.

We present two approaches based on constraint programming techniques for
the introduced problem. The former one is inspired by the operations research
model, namely by the network flows, while the second one is driven by the concept
of finite state automaton. The experimental comparison and enhancements of
both models are discussed with emphasis on the further adaptation to the robotics
domain.

3.2.1 Model Based on Network Flows

The first model that we propose resembles the traditional operations research
models of vehicle routing problems based on network flows and Kirchhoff’s laws.
Basically, we are describing whether or not the robot traverses a given edge.
For every edge e we introduce a binary decision variable Xe stating whether the
edge is used in the path (value 1) or not (value 0). Let IN(v) and OUT (v)
denote the set of incoming and outgoing directed edges for the vertex v. For
example, for v ∈ W the set IN(v) contains the arc from the vertex I and the
arcs from the vertices in C. Let ICD(v) be a set of undirected edges incident
to vertex v. This set is empty for the collector vertices; for waste vertices it

61

Figure 3.3: An ineligible loop (left) satisfying the routing (Kirchhoff’s) con-
straints.

contains undirected edges connecting the vertex with other waste vertices. The
following constraints describe that the robot leaves the initial position I, reaches
the destination position D, and enters each collector c the same number of times
as it leaves it:

∑

e∈OUT(I)

Xe = 1,
∑

e∈IN(D)

Xe = 1, (3.1)

∀c ∈ C :
∑

e∈OUT(c)

Xe =
∑

e∈IN(c)

Xe (3.2)

Let us now describe the constraint that each waste vertex w is visited exactly
once. It means that exactly two edges incident to a waste vertex w are active
(used in the solution path) and there can be at most one active incoming and
outgoing directed edge connecting the waste with the collectors or with the initial
node.

∀w ∈ W :
∑

e∈OUT(w)∪IN(w)∪ICD(w)

Xe = 2, (3.3)

∀w ∈ W :
∑

e∈OUT(w)

Xe ≤ 1, (3.4)

∀w ∈ W :
∑

e∈IN(w)

Xe ≤ 1 (3.5)

The above constraints describe any path leading from I to D, but they also allow
isolated loops as Figure 3.3 shows. This is a known issue of this type of model
that is usually resolved by additional sub-tour elimination constraints forcing
any two subsets of vertices to be connected. In our particular setting, we need to
carefully select these pairs of subsets of vertices because there could be collector
vertices that are not visited. Hence, we consider any pair of disjoint subsets
S1, S2 ⊆ (W ∪ C), such that neither S1 nor S2 consists of collector vertices only.
More precisely, we assume the pairs of subsets S1, S2 such that:

S2 = (W ∪ C) \ S1, S1 ∩W 6= ∅, S2 ∩W 6= ∅ (3.6)

The sub-tour elimination constraint can then be expressed using the following
formula ensuring that there is at least one active edge between S1 and S2.

∑

e∈E:e∩S1 6=∅ ∧ e∩S2 6=∅

Xe ≥ 1 (3.7)

Clearly, there is an exponential number of such pairs S1 and S2, which makes
it impractical to introduce all such sub-tour elimination constraints. Some au-
thors [29] propose using single or multi-commodity flow principles to reduce the

62

number of constraints by introducing auxiliary variables. However, our combina-
tion of directed and undirected edges makes it complicated to use this approach
so we applied another approach based on the lazy (on-demand) insertion of sub-
tour elimination constraints. Briefly speaking, we start with the model without
the sub-tour elimination constraints and we find a solution. If the solution forms
a valid path then we are done. Otherwise we identify the isolated loops, add the
sub-tour elimination constraints for them, and start the solver with the updated
model. This process is repeated until a valid path is found. Obviously, it is a
complete procedure because in the worst case, all sub-tour elimination constraints
are added.

What remains is to define the constraints describing the limited capacity of
the robot. For this purpose we introduce auxiliary non-decision capacity variables
Cv for every waste vertex v ∈ W . These variables indicate the amount of waste in
the robot after visiting the particular vertex. The non-decision character of the
variables means that they are not instantiated by the search procedure, but they
are instantiated by the inference procedure only. In particular, if their domain
becomes empty during inference then it indicates inconsistency. The following
constraints are used during the inference (w ∈ W). First, if the waste vertex w
is visited directly after the collector then there is exactly one waste in the robot:

∑

e∈IN(w)

Xe = 1 =⇒ Cw = 1 (3.8)

Second, if the waste vertices u and v are visited directly before respectively after
w (or vice versa) then the following constraints must hold between the capacity
variables:

∀e, f ∈ ICD(w), e = {u, w}, f = {w, v} : Xe+Xf = 2 =⇒ |Cu−Cv| = 2 (3.9)

∀e = {u, w} ∈ ICD(w) : |Cu − Cw| = 1 (3.10)

Finally, to restrict the capacity of the robot by constant cap we use the following
constraints for the capacity variables:

∀w ∈ W : 1 ≤ Cw ≤ cap (3.11)

The objective function to be minimised is the total cost of edges used in the
solution path:

Obj =
∑

e∈E

Xe · weight(e) (3.12)

where weight(e) is the weight of edge e.

Search Procedure

The constraint model describes how the inference is performed so the model needs
to be accompanied by the search procedure that explores the possible instantia-
tions of variables Xe. Our search strategy resembles the greedy approach for solv-
ing Travelling Salesman Problems (TSP) (Ausiello et al. [8]). The variable Xe

for instantiation is selected in the following way. If the path is empty, we start at
the initial position I and instantiate the variable X{I,w} such that weight({I, w})

63

is the smallest among the weights of arcs going from I. By instantiating the
variable we mean setting it to 1; the alternative branch is setting the variable
to 0. If the path is non-empty then we try to extend it to the nearest waste.
Formally, if u is the last node in the path then we select the variable X{u,w} with
the smallest weight({u, w}), where w is a waste vertex. If this is not possible
(due to the capacity constraint), we go to the closest collector. The optimisation
is realised by the branch-and-bound approach: after finding a solution with the
total cost Bound, the constraint Obj < Bound is posted and the search continues
until any solution is found. The last found solution is the optimum.

3.2.2 Model Based on Finite State Automata

The second model that we propose brings a radically new approach not seen so
far when modelling VRPs or TSPs. Recall that we are looking for a path in
the graph that satisfies some additional constraints. We can see this path as the
word in a certain regular language. Hence, we can base the model on the existing
regular constraint (Pesant [81]). This constraint allows a more global view of
the problem so the hope is that it can infer more information than the previous
model and hence decreases the search space to be explored.

First, it is important to realise that the exact path length is unknown in
advance. Each waste vertex is visited exactly once, but the collector vertices can
be visited more times and it is not clear in advance how many times. Nevertheless,
it is possible to compute the upper bound on the path’s length. Let us assume
that the path length is measured as the number of visited vertices, the robot
starts at the initial position and finishes at some collector vertex (we will use the
dummy destination in a slightly different meaning here), and the weight/cost of
arcs is non-negative. LetK = |W | be the number of waste vertices and cap ≥ 1 be
the robot’s capacity. Then the maximal path length is 2K +1. This corresponds
to visiting a collector vertex immediately after visiting a waste vertex. Recall
that each waste vertex must be visited exactly once and there is no arc between
the collector vertices.

Our model is based on four types of constraints. First, there is a restriction
on the existence of a connection between two vertices - a routing constraint. This
constraint describes the routing network (see Figure 3.2). It roughly corresponds
to the constraints 3.1-3.5 from the previous model. Note that the sub-tour elim-
ination constraints 3.6-3.7 are not necessary here. Second, there is a restriction
on the robot’s capacity stating that there is no continuous subsequence of waste
vertices whose length exceeds the given capacity - a capacity constraint. This con-
straint corresponds to the constraints 3.8-3.11 from the previous model. Third,
each waste must be visited exactly once, while the collectors can be visited more
times (even zero times) - an occurrence constraint. This restriction was included
in the constraints 3.1-3.5 of the previous model, while we model it as a separate
constraint. Finally, each arc is annotated by a weight and there is a constraint
that the sum of the weights of used arcs does not exceed some limit - a cost
constraint. This constraint is used to define the total cost of the solution as in
3.12.

In the constraint model we use three types of variables. Let N = 2K + 1 be
the maximal path length. Then we have N variables Nodei, N variables Capi,

64

and N variables Costi(i = 1, . . . , N) so we assume the path of maximal length.
Clearly, the real path may be shorter so we introduce a dummy destination vertex
that fills the rest of the path till the length N . In other words, when we reach
the dummy vertex, it is not possible to leave it. This way, we can always look for
the path of length N and the model gives flexibility to explore the shorter paths
too.

The semantic of the variables is as follows. The variables Nodei describe
the path hence their domain is the set of numerical identifications of the ver-
tices. We use positive integers 1, . . . , K(K = |W |) to identify the waste vertices,
K +1, . . . , K +L for the collector vertices (L = |C|), and 0 for the dummy desti-
nation vertex. In summary, the initial domain of each variable Nodei consists of
values 0, . . . , K + L. Capi is the used capacity of the robot after leaving vertex
Nodei(Cap1 = 0 as the robot starts empty), the initial domain is {0, . . . , cap}.
Costi is the cost of the arc used to leave the vertex Nodei(CostN = 0), the initial
domain consists of non-negative numbers. Formally:

∀i = 1, . . . , N(N = 2K + 1) :
0 ≤ Nodei ≤ K + L
0 ≤ Capi ≤ cap,Cap1 = 0
0 ≤ Costi,CostN = 0

(3.13)

We will start the description of the constraints with the occurrence constraint
saying that each waste vertex is visited exactly once. This can be modelled
using the global cardinality constraint [89] over the set {Node1, . . . ,NodeN}. The
constraint is set such that the each value from the set {1, . . . , K} is assigned
to exactly one variable from {Node1, . . . ,NodeN} - each waste node is visited
exactly once. The values {0, K+1, . . . , K+L} can be used any number of times.
Formally:

gcc({Node1, . . . ,NodeN},
{v : [1, 1]∀v = 1, . . . , K,
0 : [0,∞],
v : [0,∞]∀v = K + 1, . . . , K + L})

(3.14)

where v : [min,max] means that value v is assigned to at least min and at
most max variables from {Node1, . . . ,NodeN}. The gcc constraint allows speci-
fying the number of appearances of the value using another variable rather than
using a fixed interval as in 3.14. Let D be the variable describing the num-
ber of appearances of value 0 (identification of the dummy vertex) in the set
{Node1, . . . ,NodeN}, then we can use the following constraints instead of 3.14:

gcc({Node1, . . . ,NodeN},
{v : [1, 1]∀v = 1, . . . , K,
0 : D,
v : [0,∞]∀v = K + 1, . . . , K + L})

(3.15)

NodeN−D > 0 (3.16)

The constraint 3.16 says that NodeN−D is not a dummy vertex; actually it is
the last real vertex in the path. We can also set the upper bound for D by using

65

the information about the minimal path length (MinPathLength is a constant
computed in advance):

D ≤ N −MinPathLength (3.17)

These additional constraints 3.16 and 3.17 are not necessary for the problem
specification but they improve inference (we use them in experiments).

The cost constraint can be easily described as

Obj =
∑

1,...,N

Costi (3.18)

so we can use the constraints Obj < Bound in the branch-and-bound procedure
exactly the same way as in the previous model.

For the cost constraint to work properly we need to set the value of Costi
variables. Recall that Costi is the cost/weight of the arc going from vertex Nodei
to vertex Nodei+1. Hence, we can connect the Cost variables with the Node
variables when specifying the routing constraint. In particular, we use the ternary
constraints over the variables Nodei,Costi,Nodei+1 i = 1, . . . , N − 1. This set
of constraints corresponds to the idea of slide constraint (Bessiere et al. [19]).
We implement the constraint between the variables Nodei,Costi,Nodei+1 as a
ternary tabular (extensionally defined) constraint; let us call it link, where the
triple (p, q, r) satisfies the constraint if there is an arc from the vertex p to the
vertex r with the cost q. In other words, this table describes the original routing
network with the costs extended by the dummy vertex. Formally:

link(p, q, r) ≡ ∃e ∈ E : e = (p, r), q = weight(e)
∨(q = r = 0 ∧ (p = 0 ∨ p > K)

(3.19)

∀i = 1, . . . , 2K : link(Nodei,Costi,Nodei+1) (3.20)

It remains to show how the capacity constraint is realised. Briefly speaking, we
use a similar approach as for the routing constraint. The capacity constraint is re-
alised using a set of ternary constraints over the variables Capi,Nodei+1,Capi+1 i =
1, . . . , N−1, again exploiting the idea of slide constraint. The constraint is imple-
mented using a tabular constraint, let us call it capa, with the following semantics.
Triple (p, q, r) satisfies this constraint if and only if:

• q is an identification of a collector vertex (q > K) or a dummy vertex
(q = 0) and r = 0

• q is an identification of a waste node (0 < q ≤ K) and r = p+ 1.

Recall that the domain of capacity variables is {0, . . . , cap} so we never exceed
the capacity of the robot. Formally:

capa(p, q, r) ≡ (q = r = 0)
∨(q > K ∧ r = 0)

∨(0 < q ≤ K ∧ r = p+ 1)
(3.21)

∀i = 1, . . . , 2K : capa(Capi,Nodei+1,Capi+1) (3.22)

66

Any solution to the above described constraint satisfaction problem defines a valid
solution of our single robot path planning problem with the capacity constraint.
Vice versa, any solution to the path planning problem is also a feasible solution
of the specified constraint satisfaction problem. We omit the formal proof due to
limited space.

Search Procedure

Similarly to the previous model, it is important to specify the search strategy.
In this second model, only the variables Nodei are the decision variables - they
define the search space. It is easy to realise that the inference through the routing
constraints 3.20 decides the values of the Costi variables and the inference through
the capacity constraints 3.22 decides the values of the Capi variables provided that
the values of all variables Nodei are known.

When searching for the solution we first use a greedy approach to find the
initial solution (the initial cost). This greedy algorithm instantiates the variables
Nodei in the order of increasing i in such a way that the arc with the smallest
cost is preferred. We select the node in which the least expensive arc from the
previously decided node leads. Naturally, the capacity constraint is taken into
account so only the nodes in which the capacity is not exceeded are assumed. This
search procedure corresponds to the search strategy of the previous model. The
difference in models allows us to use a fixed variable ordering in the model based
on finite automata which simplifies implementation of the search procedure. This
second model also has fewer decision variables but a larger branching factor.

To find the optimal solution we use a standard branch-and-bound approach
with restarts. To instantiate the Node variables we use the min-dom heuristic for
the variable selection, that is, the variable with the smallest current domain is
instantiated first. We select the values in the order defined in the problem (the
waste nodes are tried before the collector nodes). Exactly as in the first model
after finding a solution with the total cost Bound, the constraint Obj < Bound
is posted and the search continues until any solution is found. The last found
solution is the optimum. Note that using the well known and widely applied
min-dom heuristic for the variable selection is meaningful in this model because
we have larger domains, while the same heuristic is useless for the previous model
which uses binary domains.

3.2.3 Embedding CP Models into Local Search

The current state of the art techniques for solving VRPs are frequently based
on hybrid approaches. For example, the paper [87] suggests using CP techniques
to explore the neighbourhood within large neighbourhood search. We applied
a similar approach with our CP models to check if the solution quality can be
improved in comparison with the pure branch-and-bound approaches presented
above.

The basic elements in the neighbourhood local search are the concept of the
neighbourhood of a solution and the mechanism for generating neighbourhoods.
It is eminent that the performance and “success” of the local search algorithm
strongly depends on the neighbourhood operator and its state space. In our
case, the state corresponds to the plan - a valid path for the robot. The local

67

search algorithm is repeatedly choosing another solution in the neighbourhood of
the current solution with the goal to improve the value of the objective function.
This move is realised by a so called neighbourhood operator. We have implemented
an operator that is successfully used for solving the travelling salesman problems
(TSP). The operator relaxes the solution by removing an induced path of a given
length and then it calls the CP solver to complete the solution. It means that
we add to a given constraint model additional constraints that fix some edges
(for the model based on network flows) or forbid using some edges (for the model
based on finite state automata). These fixed edges correspond to the edges in
the original solution that were not removed by the neighbourhood operator. The
role of the CP solver is to optimally complete this partial solution by adding the
missing edges. The new solution is the state in which the local search procedure
moves.

As the local search repeatedly chooses a move that improves the value of the
objective function (we are minimizing the value), it can get “trapped” in a local
minimum. We utilized the simplified simulated annealing as a method of escaping
from this trap.

As the initial solution for local search we used the first solution obtained from
the pure CP model (see the description of the search procedures above).

3.3 Experimental Results

In this section we will present the experimental evaluation of the discussed solv-
ing techniques. As there is no standard benchmark set for the studied problem,
we generated new problem instances. We used a square-sized robot arena where
the positions of the waste and the initial location of the robot were uniform-
ly distributed. The collectors were uniformly distributed along the boundaries
of the arena and the weights set up as a point-to-point distance using the Eu-
clidean metric. All the following measurements were performed on Intel Xeon

CPU@2.5GHz with 4GB of RAM, running a Debian GNU Linux operating system.

3.3.1 Performance of the Network Flow Model

As stated earlier, the model based on network flows corresponds to the tradition-
al operations research approach. However, we modified the model to describe
specifics of our robot routing problem. The model was implemented in Java SE
6 using Choco, an open-source constraint programming library. The optimisation
search strategy uses the built-in branch-and-bound method, while all constraints
correspond to the mathematic formulations described earlier.

Figure 3.4 shows the runtime (a logarithmic scale) to obtain the optimal
solution as a function of the instance size measured by the number of waste and
by the number of collectors. We generated 15 instances for each problem size and
the graph shows the average time the solver needs for finding and proving the
optimality of the solution. The capacity of the robot was 3.

As already mentioned in [13], the satellite facilities in VRP (or collectors in
our formulation) heavily increase the complexity of the problem. The initial
experiment shows that the runtime is increased exponentially with the number
of waste, but it is not significantly affected by the increased number of collectors.

68

Figure 3.4: Runtime (seconds) for the network flow model.

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80

Lo
ss

 o
n

op
tim

um
 (

%
)

Time (sec)

Convergence of CP search

7 Wastes, 3 Collectors

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20

Figure 3.5: Quality convergence for the network flow model.

In fact, it seems that for different quantities of waste there are different numbers
of collectors, where the best runtime is achieved. The hypothesis is that for
a given number of waste there is some specific number of collectors that gives
the best result. Nevertheless, confirmation of this hypothesis requires additional
experiments.

While the graph in Figure 3.4 represents the total time the solver needs for
finding and proving the optimality of the solution, we are even more interested in
how fast a “good enough” solution can be found. This characteristic can be seen
in Figure 3.5, where the graph displays the convergence of the solution during
the search. We can see that even a simple greedy heuristic performs very well
and the difference from the optimal solution was less than 5% within the first 6
seconds for the instance 7 + 3.

69

-5

 0

 5

 10

 15

5 10 15 20 25 30 35 40 45 50

G
ai

n
on

 C
P

 (
%

)

Time (sec)

Convergence of CP vs LS - path operator

20 Wastes, 3 Bins

Figure 3.6: Comparison of the quality convergence of the network flow model in
the pure CP approach and the CP model embedded into local search.

3.3.2 Performance of the Network Flow Model within Lo-

cal Search

As mentioned above, the CP model can be used within the large neighbourhood
search procedure to solve larger instances, but obviously without any guarantee
of optimality. We generated 50 independent problem instances with 20 wastes
and 3 collectors (referred to as 20 + 3). The capacity of the robot was set to 7
units. The neighbourhood operator was allowed to remove 5 randomly selected
consecutive edges during the search and the embedded CP solver was allowed
to search for 1 second. The graph in Figure 3.6 shows an average one-to-one
performance of the pure CP method and the LS method (with the embedded CP
model) applied to the produced instances. The graph shows the difference in the
quality of a solution found in the corresponding time from the LS viewpoint.

The local search procedure performed better in the long run, when compared
to the pure CP method relaying only on its inner heuristic. However, CP beat LS
in the first seconds where the convergence drop was steeper. As a consequence,
CP seems to be a more appropriate method under very short time constraints,
while reasonably good solutions can be found with a combination of LS for larger
instances.

3.3.3 Performance of the Finite State Automaton Model

The network flow model represents a standard approach to solving the vehicle
routing problems. Therefore, we compared our novel constraint model based
on the finite state automaton directly to this approach. The second model was
implemented in S ICStus Prolog 1. Figure 3.7 shows the runtime (a logarithmic
scale) to obtain the optimal solution using the constraint model based on finite
state automata using the same problems as with the model based on network flows
(Figure 3.4). As can be seen, there is an exponential growth with the increased
number of waste and a weaker dependence on the number of collectors.

1SICStus Prolog: http://www.sics.se/sicstus

70

http://www.sics.se/sicstus

Figure 3.7: Runtime (seconds) for the model based on finite state automata.

Figure 3.8: Time difference (seconds) between the CP models. Positive values
means that the model based on finite state automata is faster.

To directly compare both models, we generated a graph showing the difference
of runtimes for the network model and for the automata model - the values above
zero mean faster automata model, while the times below zero mean faster network
model. Figure 3.8 shows difference times. As the graph shows, the automata-
based model is visibly better for a smaller number of collectors where the problem
is more constrained and the capacity constraints can prune more of the search
space. A bit surprisingly, it seems that the network-based model is better when
the number of collectors becomes larger.

Since in robotics, finding a good plan (relatively) fast is more important than
having the optimal one late, we investigated again the quality of the plans found
by this CP solver in a constrained time. In particular, we embedded the new CP
model in the large neighbourhood search procedure as described above and we
compared the pure CP model with this LS approach on much bigger instances
with 40 wastes and 3 collectors. To our surprise, the LS method was not able
to improve the solution found by the CP model in the 2 minutes runtime. As it

71

is required to produce a good solution in seconds, the pure CP model based on
finite state automaton seems more appropriate.

3.4 Conclusions

In this chapter, we presented a high-level planner and demonstrated its perfor-
mance on a practical application. The waste cleaning problem is an interesting
variant of VRP problem. The constraint programming techniques allowed us to
naturally define the underlying model for which the solver was able to find the
first solution in hundreds of microseconds on problems of reasonable sizes. Loose-
ly speaking, this is a form of anytime planning, where a significantly suboptimal
solution may be initially chosen and improved during execution.

The robotics domain has some strict requirements on high-level planners: at
any point a plan should be available for execution and its quality should increase
over time. The planner based on CP paradigm fullfills these requirements and
fits well into the overall architecture discussed in the previous section.

We used a constraint model based on network flows that is traditionally ap-
plied to this type of routing problems and we developed a completely new model
based on finite automata. We further studied local search techniques that are
traditionally used to improve the runtime performance of CP models for vehi-
cle routing problems and we have found that our novel model based on finite
automata performs better without them.

In summary, there are two novel contributions. First, we reformulated the
traditional network flow model to solve the waste collecting problem with the
limited capacity of the robot. Second, we proposed a novel constraint model
based on finite automata (state transitions), and we experimentally showed that
it outperforms the traditional approach if the number of waste collecting places
is small.

72

Conclusions

This chapter summarizes the work achieved in the thesis and its main results. In
addition, several possible directions for further research are discussed.

Main Results

This work deals with the complex problem of designing control algorithms for
adaptive agents. In the first chapter, we studied algorithms that can develop sen-
sible behavior out of a “tabula rasa”. We utilized evolutionary algorithms and
reinforcement learning, the two most common learning paradigms in robotics,
which are intended to work with little or no human intervention. Both method-
ologies developed effective controllers and showed a comparable performance in
a simple obstacle avoidance experiment.

In the second experiment, we studied a more complex problem, which involved
the coordination of multiple robots. We resorted to the evolutionary learning
methodology and naturally extended the fitness function from the previous ex-
periments. A group of simulated robots was evolved to show the ability of col-
lective homing behavior. The evolutionary technique turned out to be a very
effective approach for this task and the collective behavior was clearly present
in the evolved controllers. However, despite its extensibility, the fitness measure
was too specific and biased by human view. Ideally, the fitness function should
be a survival criterion, automatically translated into sensible behavior by self-
executing design methodology. An example of such aggregate fitness function
was given in the active learning experiment. The agent alone “realized” bene-
fits coming from reducing uncertainty in its environment and performed actions
appropriate to reach this goal.

In general, as the complexity of an environment and task increases, there is no
path in the search space that can be discovered by the limited sample of potential
solutions considered and more prior knowledge is required. More human bias must
be inserted into the learning process and basic principles of automated design are
violated. One way to incorporate adaptive elements into more elaborate problems
is to make use of algorithms tailored for particular tasks. In the social SLAM
experiment, we exploited the infomax control algorithm, designed for tasks that
require the active learning. In order to do so, we had to develop quantitative
models of the sensory motor system. Compared to the previous experiment when
the active learning was naturally emerged, it required more effort.

The class of synthetized behaviors is often limited to reactive and rather
simple behaviors. In the obstacle avoidance experiment, three types of neural
networks were able to develop the exploration behavior and typical behavioral
patterns, such as following the right wall, which resulted in the very efficient
exploration of an unknown maze. We hypothesized that more powerful neural
network architecture would lead towards the development of better controllers,
however, we were not able to confirm this hypothesis. The automatic design
methodology did not exploit more powerful network architectures.

To overcome limitations of a purely reactive agent, an agent that exploits a
hybrid architecture was introduced in the second chapter. Hybrid architectures

73

combine both the reactive and deliberative planning and they are appropriate
for advanced mobile agents that have to deal with localization and mapping.
These algorithms are usually implemented as interacting layers. We utilized a the
three layer architecture, which contained a reactive collision avoidance module, a
modern path-planning component based on the the value iteration algorithm and
a high-level planner. Although path planning algorithms are extensively studied
and well working with robots equipped with an advanced sensory system, we
demonstrated that they show reasonable performance even with low-cost E-puck
robots in a laboratory environment.

The deliberative planner, based on pure constraint programming paradigm,
was fully described in the third chapter. We presented its performance on a prac-
tical application — the waste cleaning problem, which is an interesting variant of
popular vehicle routing problems. We discussed the strict requirements on high-
level planners in the robotics domain. Deliberative planners must implement a
form of anytime planning, where a significantly suboptimal solution may be ini-
tially chosen and improved during execution. The proposed high-level planner
based on constraint programming paradigm fullfills these requirements and fits
well into the overall architecture. However, implementation of such a planner
for the specific task is not the low-hanging fruit. In our first attempt, we refor-
mulated the traditional network flow model to solve the waste collecting problem
with the limited capacity of the robot. Eventually we proposed a novel constraint
model based on finite automata (state transitions) and we experimentally showed
that it outperforms the traditional approach, if the number of waste collecting
places is small.

In general, the main goal of our work was to study and develop control
algorithms for autonomous embodied agents. One approach is through a self-
organization process based on evolutionary or reinforcement learning. The ad-
vantages of such an approach are the undisputed fact, but as discussed in this
thesis, the designer still has to face some unresolved problems that are tied with
these methods. The alternative approach, which requires the designer to carefully
prototype overall architecture and individual components, is widely utilized and
more successful in modern robotics. Although adaptive elements may be present
in such systems, the burden connected with their implementation falls to the hu-
man. Cognitive abilities of such agents are biased by human view and limited to
particular implementations.

Future Work

The field of aritificial intelligence is making progress by leaps and bounds. Howev-
er, the journey to the fully automated and intelligent adaptive agents is certainly
long and there are still numerous aspects that need to be addressed. The the-
sis would be incomplete if we did not mention the possible directions of further
research.

Recent research has successfully led to a range of are computationally efficient
probabilistic algorithms, for a range of hard robotics problems, like localization
or motion planning. However, the task planners often lack the explicit uncertain-
ty handling. In the future, we would like to focus on this area. The high-level
planner introduced in the last chapter did not accept feedback from the localiza-

74

tion module. However, the measure of uncertainty could have an impact on the
decision making process.

The results reported above represent just a few steps in the journey toward
intelligent agents. Cognitive agent functions are still very limited. We discussed
approaches based on neural networks, genetic algorithms or reinforcement learn-
ing. Reinforcement learning seems to be a good framework for lifelong learning,
that provides transfer of the induced knowledge across domains and agents. We
would like to focus on the continuous adaptation to rapidly changing environ-
ments in the future. As the boundary between deliberation and reactive execution
is fixed in our experiments, it is agent’s Achilles’ heel, especially if environmental
diversity is taken into account. This will be the topic of our future research, too.

75

Bibliography

[1] Cyberbotics robot curriculum.

[2] E-puck, online documentation. In http://www.e-puck.org.

[3] Khepera II documentation. http://k-team.com.

[4] Webots simulator. http://www.cyberbotics.com/.

[5] Henry H AAAI Spring Symposium, Hexmoor, David Kortenkamp, and
American Association for Artificial Intelligence, editors. Lessons learned
from implemented software architectures for physical agents papers from the
1995 AAAI Symposium, March 27-29, Stanford, California. AAAI Press,
Menlo Park, Calif., 1995.

[6] Ronald C. Arkin. Behavior-Based Robotics. The MIT Press, May 1998.

[7] Ronald C. Arkin and Douglas C. Mackenzie. Planning to behave: A hybrid
Deliberative/Reactive robot control architecture for mobile manipulation.
In International Symposium on Robotics and Manufacturing, Maui, HI,
page 5–12, 1994.

[8] Giorgio Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi,
P. Crescenzi, and V. Kann. Complexity and Approximation: Combinatori-
al Optimization Problems and Their Approximability Properties. Springer,
1999.

[9] Bruno De Backer, Vincent Furnon, Paul Shaw, Philip Kilby, and Patrick
Prosser. Solving vehicle routing problems using constraint programming
and metaheuristics. Journal of Heuristics, 6(4):501–523, 2000.

[10] Barrie M. Baker and M. A. Ayechew. A genetic algorithm for the vehicle
routing problem. Comput. Oper. Res., 30(5):787–800, 2003.

[11] G. Baldassarre, S. Nolfi, and D. Parisi. Evolving mobile robots able to
display collective behaviour. Hemelrijk C. K (ed.), International Workshop
on Self-Organisation and Evolution of Social Behaviour, page 11–22, 2002.

[12] G. Baldassarre, Vito Trianni, M. Bonani, F. Mondada, M. Dorigo, and
S. Nolfi. Self-organized coordinated motion in groups of physically connect-
ed robots. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 37(1):224–239, February 2007.

[13] Jonathan F. Bard, Liu Huang, Moshe Dror, and Patrick Jaillet. A branch
and cut algorithm for the VRP with satellite facilities. IIE Transactions,
30(9):821–834, 1998.

[14] Roman Barták, Michal Zerola, and Stanislav Slusny. Towards routing for
autonomous robots - using constraint programming in an anytime path
planner. In Joaquim Filipe and Ana L. N. Fred, editors, ICAART 2011
- Proceedings of the 3rd International Conference on Agents and Artificial

76

Intelligence, Volume 1 - Artificial Intelligence, Rome, Italy, January 28-30,
2011, pages 313–320. SciTePress, 2011.

[15] Richard K. Belew and Melanie Mitchell. Adaptive Individuals in Evolving
Populations: Models and Algorithms. Addison-Wesley, 1996.

[16] John E. Bell and Patrick R. McMullen. Ant colony optimization techniques
for the vehicle routing problem. Advanced Engineering Informatics, 18(1):41
– 48, 2004.

[17] Richard Bellman. Dynamic Programming. Princeton University Press,
Princeton, NJ, USA, 1 edition, 1957.

[18] D. Bertsekas and J. Tsitsiklis. Neuro-dynamic programming. Ahtena Sci-
entific, 1996.

[19] Christian Bessiere, Emmanuel Hebrard, Brahim Hnich, Zeynep Kiziltan,
Claude-Guy Quimper, and Toby Walsh. Reformulating global constraints:
the slide and regular constraints. In Proceedings of the 7th International
conference on Abstraction, reformulation, and approximation, SARA’07,
page 80–92, Berlin, Heidelberg, 2007. Springer-Verlag.

[20] Valentino Braitenberg. Vehicles: Experiments in Synthetic Psychology. MIT
Press, 1986.

[21] R. Brooks. A robust layered control system for a mobile robot. Robotics
and Automation, IEEE Journal of, (1):14 – 23, 1986.

[22] Rodney A. Brooks. Integrated systems based on behaviors. SIGART Bull.,
2(4):46–50, 1991.

[23] D.S. Broomhead and D. Lowe. Multivariable functional interpolation and
adaptive networks. Complex Systems, 2:321–355, 1988.

[24] Wolfram Burgard, Armin B. Cremers, Dieter Fox, Dirk Hähnel, Gerhard
Lakemeyer, Dirk Schulz, Walter Steiner, and Sebastian Thrun. Experi-
ences with an interactive museum tour-guide robot. Artificial Intelligence,
114(1–2):3–55, October 1999.

[25] Y.U. Cao, A.S. Fukunaga, A.B. Kahng, and F. Meng. Cooperative mo-
bile robotics: antecedents and directions. In 1995 IEEE/RSJ International
Conference on Intelligent Robots and Systems 95. ’Human Robot Interac-
tion and Cooperative Robots’, Proceedings, volume 1, pages 226–234 vol.1,
August 1995.

[26] Jaime Carbonell, Oren Etzioni, Yolanda Gil, Robert Joseph, Craig
Knoblock, Steve Minton, and Manuela Veloso. PRODIGY: an integrat-
ed architecture for planning and learning. SIGART Bull., 2(4):51–55, July
1991.

[27] J. Carlsson and T. Ziemke. YAKS - yet another khepera simulator. Ruck-
ert, S., Witkowski (Eds.), Autonomous Minirobots for Research and Enter-
tainment Proceedings of the Fifth International Heinz Nixdorf Symposium,
2001.

77

[28] Jean-Francois Cordeau, Gilbert Laporte, Martin W.P. Savelsbergh, and
Daniele Vigo. Vehicle routing. In C. Barnhart and G. Laporte, editors,
Transportation, Handbooks in Operations Research and Management Sci-
ence, volume 14, pages 367–428. Elsevier, 2007.

[29] Petrica C.Pop. New integer programming formulations of the general-
ized t ravelling salesman problem. American Journal of Applied Sciences,
11:932–937, 2007.

[30] Charles Darwin. The origin of species: by means of natural selection of
the preservation of favoured races in the struggle for life. New American
Library, New York, N.Y., 2003.

[31] Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers, San
Francisco, CA, USA, May 2003.

[32] Gregory Dudek, Michael R. M. Jenkin, Evangelos Milios, and David Wilkes.
A taxonomy for multi-agent robotics. Autonomous Robots, 3(4):375–397,
December 1996.

[33] S. Dzeroski, L. De Raedt, and K. Driessens. Relational reinforcement learn-
ing. Machine Learning 43, pages 7–52, 2001.

[34] J. Elman. Finding structure in time. Cognitive Science 14, page 179–214,
1990.

[35] D. Floreano and F. Mondada. Automatic creation of an autonomous agent:
Genetic evolution of a neural network driven robot. Proceedings of the third
international conference on Simulation of adaptive behavior: From Animals
to Animats 3, pages 421–430, 1994.

[36] Dario Floreano and Stefano Nolfi. Adaptive behavior in competing co-
evolving species. In PROCEEDINGS OF THE FOURTH EUROPEAN
CONFERENCE ON ARTIFICIAL LIFE, page 378–387. MIT Press, 1997.

[37] D. B. Fogel. Evolutionary Computation: The Fossil Record. MIT-IEEE
Press, 1998.

[38] Erann Gat. Reliable Goal-directed Reactive Control of Autonomous Mobile
Robots. PhD thesis, Virginia Polytechnic Institute & State University,
Blacksburg, VA, USA, 1991. UMI Order No. GAX91-23728.

[39] Mohammad Ghavamzadeh, Sridhar Mahadevan, and Rajbala Makar. Hier-
archical multi-agent reinforcement learning. Autonomous Agents and Multi-
Agent Systems, 13(2):197–229, 2006.

[40] F. Gruau. Cellular encoding of genetic neural networks. Technical report 92-
21, Laboratoire de l’Informatique du Parallilisme. Ecole Normale Supirieure
de Lyon, France, 1992.

[41] S. A. Harp, T. Samad, and A. Guha. Towards the genetic synthesis of
neural networks. In Proceedings of the Third International Conference on
Genetic Algorithms, page 360–369, 1989.

78

[42] I. Harvey, P. Husbands, D. Cliff, A. Thompson, and N. Jakobi. Evolu-
tionary robotics: the sussex approach. ROBOTICS AND AUTONOMOUS
SYSTEMS, 20:205–224, 1997.

[43] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall,
2nd edition, 1998.

[44] J. Holland. Adaptation In Natural and Artificial Systems. MIT Press,
reprinted edition, 1992.

[45] Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. Convergence of
stochastic iterative dynamic programming algorithms. Neural Computation,
6:1185–1201, 1994.

[46] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Re-
inforcement learning: a survey. Journal of Artificial Intelligence Research,
4:237–285, 1996.

[47] R. E. Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASME Journal of Basic Engineering, (82 (Series D)):45,
35, 1960.

[48] K. Kanazawa, D. Koller, and S. J. Russel. Stochastic simulation algorithms
for dynamic probabilistic networks. In Proceedings of the 11th Annual Con-
ference on Uncertainty in AI, Montreal, Canada.

[49] K. Kawai, A. Ishiguro, and P. Eggenberger. Incremental evolution of neu-
rocontrollers with a diffusion-reaction mechanism of neuromodulators. In
2001 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 2001. Proceedings, volume 4, pages 2384–2391 vol.4, 2001.

[50] Hiroaki Kitano. Designing neural networks using genetic algorithms with
graph generation system. Complex Systems Journal, 4:461–476, 1990.

[51] Kurt Konolige. COLBERT: a language for reactive control in sapphira.
In Gerhard Brewka, Christopher Habel, and Bernhard Nebel, editors, KI-
97: Advances in Artificial Intelligence, number 1303 in Lecture Notes in
Computer Science, pages 31–52. Springer Berlin Heidelberg, January 1997.

[52] Steven M. LaValle. Planning Algorithms. Cambridge University Press, May
2006.

[53] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and
Richard B. Scherl. GOLOG: a logic programming language for dynamic
domains. The Journal of Logic Programming, 31(1–3):59–83, April 1997.

[54] Deepak Kumar Lisa A. Meeden. Trends in evolutionary robotics. 1999.

[55] A. Martinoli. Swarm intelligence in autonomous Collective robotics: from
tools to the analysis and synthesis of distributed control strategies. Lau-
sanne: Computer Science Department, EPFL, 1999.

79

[56] Maja Mataric and Dave Cliff. Challenges in Evolving Controllers for Phys-
ical Robots. 1996.

[57] Amy L. Lansky Michael P. Georgeff and Marcel J. Schoppers. Reasoning
and planning in dynamic domains: An experiment with a mobile robot.
Technical Report 380, AI Center, SRI International, 333 Ravenswood Ave.,
Menlo Park, CA 94025, April 1987.

[58] Tom M. Mitchell. Machine Learning. McGraw-Hill Sci-
ence/Engineering/Math, 1 edition, March 1997.

[59] David J. Montana and Lawrence Davis. Training feedforward neural net-
works using genetic algorithms. In Proceedings of the 11th Internation-
al Joint Conference on Artificial Intelligence - Volume 1, IJCAI’89, page
762–767, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[60] Michael Montemerlo, Nicholas Roy, and Sebastian Thrun. Perspectives on
standardization in mobile robot programming: The carnegie mellon nav-
igation (CARMEN) toolkit. In In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS, page 2436–2441, 2003.

[61] J. Moody and C. Darken. Fast learning in networks of locally-tuned pro-
cessing units. Neural Computation, 1:289–303, 1989.

[62] Andrew W. Moore and Christopher G. Atkeson. Prioritized sweeping: Re-
inforcement learning with less data and less time. In Machine Learning,
page 103–130, 1993.

[63] Andrew L. Nelson, Gregory J. Barlow, and Lefteris Doitsidis. Fitness func-
tions in evolutionary robotics: A survey and analysis. Robot. Auton. Syst.,
57(4):345–370, April 2009.

[64] R. Neruda and P. Kudová. Learning methods for RBF neural networks.
Future Generations of Computer Systems, page 1131–1142, 2005.

[65] R. Neruda and S. Slusny. Variants of memetic and hybrid learning of per-
ceptron networks. In 18th International Workshop on Database and Expert
Systems Applications, 2007. DEXA ’07, pages 158–162, September 2007.

[66] R. Neruda, S. Slusny, and P. Vidnerova. Performance comparison of re-
lational reinforcement learning and RBF neural networks for small mobile
robots. In Second International Conference on Future Generation Com-
munication and Networking Symposia, 2008. FGCNS ’08, volume 4, pages
29–32, December 2008.

[67] Roman Neruda. Experiments with evolutionary and hybrid learning of
multi-layer perceptron neural networks. 2007.

[68] Roman Neruda and Stanislav Slušný. Parameter genetic learning of per-
ceptron networks. In Proceedings of the 10th WSEAS International Con-
ference on Systems, ICS’06, page 92–97, Stevens Point, Wisconsin, USA,
2006. World Scientific and Engineering Academy and Society (WSEAS).

80

[69] Roman Neruda and Stanislav Slušný. Performance comparison of two rein-
forcement learning algorithms for small mobile robots. International Jour-
nal of Control and Automation., (1):59–68, 2009.

[70] Roman Neruda, Stanislav Slušný, and Petra Vidnerová. Evolution of simple
behavior patterns for autonomous robotic agent. In Proceedings of the 6th
WSEAS International Conference on System Science and Simulation in
Engineering, ICOSSSE’07, page 411–417, Stevens Point, Wisconsin, USA,
2007. World Scientific and Engineering Academy and Society (WSEAS).

[71] Roman Neruda, Stanislav Slušný, and Petra Vidnerová. Behavior emer-
gence in autonomous robot control by means of evolutionary neural net-
works. In Sio-Iong Ao, Burghard Rieger, and Su-Shing Chen, editors, Ad-
vances in Computational Algorithms and Data Analysis, number 14 in Lec-
ture Notes in Electrical Engineering, pages 235–247. Springer Netherlands,
January 2009.

[72] Roman Neruda and Petra Vidnerová. Learning algorithms for small mobile
robots: Case study on maze exploration. In Vojtáš, P. (ed.). Information
Technologies - Applications and Theory., 2008.

[73] Slusny Stanislav Neruda Roman. Two learning approaches to maze explo-
ration: Case study with e-puck mobile robots. In Lecture Notes in En-
gineering and Computer Science, pages 655–660, San Francisco, October
2008.

[74] S. Nolfi. Adaptation as a more powerful tool than decomposition and in-
tegration. In T.Fogarty and G.Venturini, editors, Proceedings of the Work-
shop on Evolutionary Computing and Machine Learning, 13th International
Conference on Machine Learning, 1996.

[75] S. Nolfi. The power and limits of reactive agents. Technical report, Rome,
1999.

[76] S. Nolfi and D. Floreano. Evolutionary Robotics — The Biology, Intelligence
and Techology of Self-Organizing Machines. The MIT Press, 2000.

[77] Stefano Nolfi. Evolving non-Trivial Behaviors on Real Robots: a garbage
collecting robot. 1996.

[78] Stefano Nolfi and Dario Floreano. Evolutionary Robotics: The Biology,
Intelligence, and Technology of Self-Organizing Machines. The MIT Press,
March 2004.

[79] Stefano Nolfi and Davide Marocco. Evolving robots able to integrate
sensory-motor information over time. Theory in Biosciences, 120(3-4):287–
310, December 2001.

[80] J. Peng and Ronald J. Williams. Efficient learning and planning within the
dyna framework. In , IEEE International Conference on Neural Networks,
1993, pages 168–174 vol.1, 1993.

81

[81] Gilles Pesant. A regular language membership constraint for finite se-
quences of variables. In Principles and Practice of Constraint Programming,
page 482–495, 2004.

[82] Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Natural actor-critic. In
João Gama, Rui Camacho, Pavel B. Brazdil, Aĺıpio Mário Jorge, and Lúıs
Torgo, editors, Machine Learning: ECML 2005, number 3720 in Lecture
Notes in Computer Science, pages 280–291. Springer Berlin Heidelberg,
January 2005.

[83] Tomaso Poggio and Federico Girosi. A theory of networks for approximation
and learning. Technical report, Massachusetts Institute of Technology, 1989.

[84] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, Inc., New York, NY, USA, 1st
edition, 1994.

[85] Matt Quinn, Lincoln Smith, Giles Mayley, and Phil Husbands. Evolving
controllers for a homogeneous system of physical robots: Structured coop-
eration with minimal sensors. Philosophical Transactions: Mathematical,
Physical and Engineering Sciences, 361(1811):2321–2343, October 2003.
ArticleType: primary article / Issue Title: Biologically Inspired Robotics
/ Full publication date: Oct. 15, 2003 / Copyright Â c© 2003 The Royal
Society.

[86] Krzysztof R.Apt. Principles of Constraint Programming. Cambridge Uni-
versity Press, 2003.

[87] Louis-Martin Rousseau, Michel Gendreau, and Gilles Pesant. Using
constraint-based operators to solve the vehicle routing problem with time
windows. Journal of Heuristics, 8(1):43–58, 2002.

[88] Reuven Y. Rubinstein. Simulation and the Monte Carlo Method. Wiley-
Interscience, May 1981.

[89] Jean-Charles Régin. Generalized arc consistency for global cardinality con-
straint. In Proceedings of the thirteenth national conference on Artificial
intelligence - Volume 1, AAAI’96, page 209–215, Portland, Oregon, 1996.
AAAI Press.

[90] Burr Settles. Active learning literature survey. Technical report, 2010.

[91] L. G. Shapiro and G. C Stockman. Computer Vision. Prentence Hall, 2001.

[92] Paul Shaw. Using constraint programming and local search methods to
solve vehicle routing problems. In CP98, volume 1520 of LNCS, pages
417–431. Springer, 1998.

[93] Helmut Simonis. Constraint applications in networks. In Francesca Rossi,
Peter van Beek, and Toby Walsh, editors, Handbook of Constraint Program-
ming, pages 875–903. Elsevier, 2006.

82

[94] Satinder P Singh. Learning to solve markovian decision processes. Technical
report, University of Massachusetts, Amherst, MA, USA, 1993.

[95] S. Slusny and R. Neruda. Evolving homing behaviour for team of robots.
In Computational Intelligence, Robotics and Autonomous Systems. Palmer-
ston North : Massey University, 2007.

[96] Stanislav Slusny, Roman Neruda, and Petra Vidnerová. Rule-based analysis
of behaviour learned by evolutionary and reinforcement algorithms. In ICIC
(2), page 284–291, 2008.

[97] Stanislav Slušný and Roman Neruda. Local search heuristics for robotic
routing planner. In Derong Liu, Huaguang Zhang, Marios Polycarpou,
Cesare Alippi, and Haibo He, editors, Advances in Neural Networks – ISNN
2011, number 6677 in Lecture Notes in Computer Science, pages 31–40.
Springer Berlin Heidelberg, January 2011.

[98] Stanislav Slušný, Roman Neruda, and Petra Vidnerová. Behaviour pat-
terns evolution on individual and group level. In Proceedings of the 6th
WSEAS International Conference on Computational Intelligence, Man-
machine Systems and Cybernetics, CIMMACS’07, page 23–28, Stevens
Point, Wisconsin, USA, 2007. World Scientific and Engineering Academy
and Society (WSEAS).

[99] Stanislav Slušný, Roman Neruda, and Petra Vidnerová. Comparison of
RBF network learning and reinforcement learning on the maze exploration
problem. In Véra Kůrková, Roman Neruda, and Jan Koutńık, editors,
Artificial Neural Networks - ICANN 2008, number 5163 in Lecture Notes
in Computer Science, pages 720–729. Springer Berlin Heidelberg, January
2008.

[100] Stanislav Slušný, Roman Neruda, and Petra Vidnerová. Comparison of
behavior-based and planning techniques on the small robot maze explo-
ration problem. Neural Networks, 23(4):560–567, May 2010.

[101] Stanislav Slušný, Petra Vidnerová, and Roman Neruda. Testing different
evolutionary neural networks for autonomous robot control. In [ITAT 2007.
Conference on Theory and Practice of Information Theory, 2007.

[102] Stanislav Slušný and Michal Zerola. Plánovanie cesty založené na pro-
gramovańı s obmedzujúcimi podmienkami. In Informačné Technológie -
Aplikácie a Teória. S. 87-92. - Seňa : Pont, 2010 / Pardubská D., 2010.

[103] Stanislav Slušný, Michal Zerola, and Roman Neruda. Real time robot
path planning and cleaning. In Proceedings of the Advanced Intelligent
Computing Theories and Applications, and 6th International Conference
on Intelligent Computing, ICIC’10, page 442–449, Berlin, Heidelberg, 2010.
Springer-Verlag.

[104] Roman Neruda Stanislav Slusny. Localization with a low-cost robot. In
Vojtáš, P. (ed.). Information Technologies - Applications and Theor, pages
77–80, 2009.

83

[105] Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduc-
tion (Adaptive Computation and Machine Learning). A Bradford Book,
March 1998.

[106] Richard S. Sutton. Learning to predict by the methods of temporal differ-
ences. InMACHINE LEARNING, page 9–44. Kluwer Academic Publishers,
1988.

[107] Richard S. Sutton. Planning by incremental dynamic programming. In
In Proceedings of the Eighth International Workshop on Machine Learning,
page 353–357. Morgan Kaufmann, 1991.

[108] Matthew E. Taylor, Shimon Whiteson, and Peter Stone. Comparing evo-
lutionary and temporal difference methods in a reinforcement learning do-
main. In Proceedings of the 8th Annual Conference on Genetic and Evolu-
tionary Computation, GECCO ’06, page 1321–1328, New York, NY, USA,
2006. ACM.

[109] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005.

[110] H. Tijms, Stochastic Models, John Wiley, and Sons (qa T. Primary Ref-
erence S.M. Ross, Introduction to Stochastic Dynamic Programming, Aca-
demic Press (T57.83 R67). Other References.

[111] P. Vidnerova, S. Slusny, and R. Neruda. Evolutionary trained radial basis
function networks for robot control. In 10th International Conference on
Control, Automation, Robotics and Vision, 2008. ICARCV 2008, pages
833–838, December 2008.

[112] Petra Vidnerová, Stanislav Slušný, and Roman Neruda. Emergence chováńı
robotických agent̊u: neuroevoluce. In Kognice a umělý život VIII., pages
295–299, May 2008.

[113] Christopher John Cornish Hellaby Watkins. Learning from Delayed Re-
wards. PhD thesis, King’s College, Cambridge, UK, May 1989.

[114] D Whitley, T Starkweather, and C Bogart. Genetic algorithms and neural
networks: optimizing connections and connectivity. Parallel Computing,
14(3):347–361, August 1990.

[115] Ronald Williams and Leemon C. Baird. Tight performance bounds on
greedy policies based on imperfect value functions. Technical report, 1993.

[116] Xin Yao. A review of evolutionary artificial neural networks. International
Journal of Intelligent Systems, 8(4):539–567, 1993.

84

List of Tables

1.1 Processed measurements in obstacle avoidance experiment. 28
1.2 Rules from RBF networks in obstacle avoidance experiment. . . . 30
1.3 Best and worst RL states in obstacle avoidance experiment. . . . 31
1.4 Results of NNs in the exploration task. 35

2.1 E-puck localization error in a simple experiment. 55

85

List of Figures

1.1 Feedforward perceptron network. 13
1.2 Elman’s network. 14
1.3 RBF network. 15
1.4 Miniature robots. 26
1.5 Arenas in obstacle avoidance experiment. 28
1.6 RBF performance in the obstacle avoidance experiment. 29
1.7 RL training in the obstacle avoidance experiment. 31
1.8 RL testing in the obstacle avoidance experiment. 32
1.9 The training and testing arena in the exploration task. 33
1.10 Fitness of RBF network in the exploration task. 34
1.11 Performance of MLP network in the exploration task. 35
1.12 An arena in the collective experiment. 37
1.13 Fitness function in the collective experiment. 37
1.14 Trajectories in the collective experiment. 39
1.15 Khepera trajectory in wall and cylinder task. 41
1.16 Einstein robot. 42

2.1 The hybrid architecture of a robot. 47
2.2 Differential drive and an error accumulation. 49
2.3 A particle filter. 50
2.4 Two steps of the MCL algorithm. 51
2.5 Environment for the E-puck localization experiment. 54
2.6 The occupancy grid and the path planning algorithm. 54
2.7 Pioneer-2 and a bigger training environment. 56
2.8 The output of the map building module. 56
2.9 Maps for the motion planning algorithm. 57
2.10 The commercial simulator Webots. 58

3.1 Example of waste collection task. 59
3.2 Graph describing the robot’s environment. 60
3.3 An ineligible loop satistying routing constraints. 62
3.4 Network flow model - runtime. 69
3.5 Network flow model - convergence. 69
3.6 Comparison pure CP with CP and LS. 70
3.7 Automata model - runtime. 71
3.8 CP models comparison. 71

86

List of Abbreviations

AI Artificial Intelligence
ANN Artificial Neural Networks
CP Constraint Programming
CSP Constraint Satisfaction Problem
DP Dynamic Programming
EA Evolutionary Algorithm
ER Evolutionary robotics
GA Genetic Algorithm
LS Local Search
LDS Limited Discrepancy Search
MCL Monte Carlo Localization
MLP Multilayer Perceptron Network
MDP Markov Decision Process
MDT Markov Decision Task
NN Neural Network
POMDP Partially Observable Markov Processes
RBF Radial Basis Function
RL Reinforcement Learning
SLAM Simultaneous Localization And Mapping
TSP Travelling Salesman Problem
VRP Vehicle Routing Problem
VRPSF Vehicle Routing Problem with Satellite Facilities
VRPTW Vehicle Routing Problem with Time Windows

87

Attachments

1 Miniature Robots

Khepera [3] (Figure 1.4, left) is a miniature mobile robot with a diameter of 70 mm
and a weight of 80 g. The robot is supported by two lateral wheels that can rotate
in both directions and two rigid pivots in the front and in the back. The sensory
system employs eight “active infrared light” sensors distributed around the body,
six on one side and two on other side. In “passive mode”, they measure the
amount of infrared light in the environment, which is roughly proportional to the
amount of visible light. In “active mode” these sensors emit a ray of infrared
light and measure the amount of reflected light. The closer they are to a surface,
the higher is the amount of infrared light measured. The Khepera sensors can
detect a white paper at a maximum distance of approximately 5 cm. The robot
is equipped with a Motorola MC68331 CPU with 512 Kbytes of EEPROM and
512 Kbytes of static RAM.

Left: The physical parameters of the E-puck real camera (picture taken from [1]).
Camera settings used in experiments corresponds to parameters a = 6 cm, b = 4.5
cm, c = 5.5 cm, α = 0.47 rad, β = 0.7 rad. Right: Properties of E-puck IR
sensor.

Parameters Value

Maximum translational velocity 12.8 cm / sec
Maximum rotational velocity 4.86 rad / sec
Stepper motor maximum speed +- 1000 steps / sec
Distance between tires 5.3 cm

Velocity parameters of E-puck mobile robot.

E-puck [2] (Figure 1.4, right) is a follower of the Khepera robot, as it fol-
lows similar concept. E-puck is a widely used robot for scientific and educational

88

purposes - it is open-source and low-cost. E-puck is a mobile robot with a diam-
eter of 70 mm and a weight of 50 g. The sensory system employs eight “active
infrared light” sensors distributed around the body, six on one side and two on
other side. Similarly to Khepera robot, these sensors can work in active or passive
mode. E-puck sensors can detect a white paper at a maximum distance of ap-
proximately 8 cm. Sensors return values from interval [0, 4095]. Effectors accept
values from interval [−1000, 1000]. The higher the absolute value, the faster is
the motor moving in either direction. Unfortunately, because of their imprecision
and characteristics, they should be used as bumpers only. As can be seen, they
provide high resolution only within few millimeters. They are very sensitive to
the obstacle surface, as well. Besides infrared sensors, the robot is equipped with
a low-cost VGA camera with resolution 52 × 39 pixels. Despite its limitations,
the camera can be used to detect objects or landmarks. However, the informa-
tion about distance to the landmark extracted from the camera is not reliable
(due to the noise). The robot is supported by two lateral wheels that can rotate
in both directions and two rigid pivots one in the front and one in the back.
Two stepper motors support the movement of the robot. A stepper motor is an
electromechanical device which converts electrical pulses into discrete mechanical
movements. It can divide a full rotation into a 1000 steps, the maximum speed
corresponds to about a rotation every second. The robot is equipped with 16-bit
processor dsPIC 30F6014A running at 60 Mhz and 8 KB of memory.

89

2 Rules Induced in the Obstacle Avoidance Task

Sensor Motor

left front right left right

250 FEEL NOWHERE NOWHERE 500 500
172 NOWHERE NOWHERE NOWHERE 100 500
105 VERYFAR NOWHERE NOWHERE 500 500
98 FEEL NOWHERE FEEL 500 500
68 NOWHERE NOWHERE FEEL 100 500
67 FAR NOWHERE NOWHERE 500 300
60 FEEL FEEL NOWHERE 500 300
51 NEAR NOWHERE NOWHERE 500 100
20 VERYFAR FEEL NOWHERE 500 300
18 NOWHERE FEEL NOWHERE 300 300
15 NEAR FEEL NOWHERE 500 -100
15 FAR FEEL NOWHERE 500 -100
10 FAR FAR NOWHERE 500 -500
9 NEAR FAR NOWHERE 500 -500
8 NOWHERE FEEL FEEL 300 300
6 FEEL VERYFAR NOWHERE 500 -100
5 VERYFAR FAR NOWHERE 500 -500
5 NEAR VERYFAR NOWHERE 500 -500
3 NOWHERE VERYFAR FEEL 500 100
3 NEAR NEAR NOWHERE 500 -500
2 FEEL FAR NOWHERE 500 -100
2 FEEL FAR FEEL 500 -100
1 VERYNEAR NEAR NOWHERE 500 -500
1 VERYNEAR FAR NOWHERE 500 -500
1 VERYFAR VERYFAR NOWHERE 500 -500
1 VERYFAR NEAR FEEL 500 -500
1 NOWHERE FAR FEEL 500 100
1 FEEL NEAR FEEL 500 -500
1 FAR VERYFAR NOWHERE 500 -500
1 FAR NEAR NOWHERE 500 -500

Evolved rules used by the RBF network in the training arena. The first column
states how many times was the rule utilized in the experiment.

90

	Introduction
	Adaptive Reactive Agents
	Adaptation Based on Genetic Algorithms
	Feedforward Perceptron Networks
	Recurrent Neural Networks
	RBF Networks

	Adaptation Based on MDPs
	Dynamic Programming
	Reinforcement Learning

	Experimental Framework
	Obstacle Avoidance
	Rules Extracted from RBF Networks
	Rules Induced by Reinforcement Learning
	Discussion
	Comparison of NN Architectures

	Collective Behavior
	Active Learning
	Conclusions

	Hybrid Agents
	Agents Taxonomy
	Mapping
	Localization
	Motion Planning
	Motion Planning with Low-cost Platform
	Waste Collection Task
	Conclusions

	Deliberative Planning
	Problem Formulation
	Constraint Programming Planner
	Model Based on Network Flows
	Model Based on Finite State Automata
	Embedding CP models into LS

	Experimental Results
	Performance of the Network Flow Model
	Performance of the Network Flow Model within LS
	Performance of the Finite State Automaton Model

	Conclusions

	Conclusions
	List of Abbreviations
	Attachments
	Miniature Robots
	Rules Induced in the Obstacle Avoidance Task

