Charles University in Prague
Faculty of Mathematics and Physics

DOCTORAL THESIS

Towards Static Analysis of
Languages with Dynamic Features

David Hauzar

Department of Distributed and Dependable Systems
Advisor: Prof. Frantisek Plasil

I would like to thank all those who supported me in my doctoral study and
in the research that resulted in this thesis. I very appreciate the help received
from my advisor Prof. Frantisek Plasil and my co-advisor Dr. Jan Kofron.
I thank all my colleagues from the department for their continuous feedback
and fruitful discussion. In particular, my thanks go to the rest of the formal
methods group: Pavel Janéik, Jakub Daniel, Pavel Parizek, Ondiej Sery, and
Tom4s Poch. T would like to thank Viliam Simko, with whom I collaborated
on the FOAM method. Next, I would like to thank to students who joined
WEVERCA project and helped me with implementation. In particular, I
would like to thank Mirek Vodoldan and Pavel Bastecky.

This work and the related research was partially supported by the Grant
Agency of the Czech Republic project 14-11384S and Charles University
institutional funding (SVV-2014-260100, PRVOUK, SVV-2011-263312, and
GAUK Project No 431011).

Last but not least, I am in debt to Aja and Jonas. Their endless support
and patience made this work possible.

I declare that I carried out this doctoral thesis independently, and only with
the cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the
Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the
fact that the Charles University in Prague has the right to conclude a license
agreement on the use of this work as a school work pursuant to Section 60
paragraph 1 of the Copyright Act.

In Prague, June 26, 2014 David Hauzar

Annotation

Title Towards Static Analysis of Languages with Dynamic
Features

Author David Hauzar
hauzar@d3s.mff.cuni.cz
Advisor Prof. Frantisek Plasil
plasil@d3s.mff.cuni.cz
(+420) 221 914 266
Department Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics
Charles University in Prague
Malostranské nam. 25, 118 00 Prague, Czech Republic

Abstract

Dynamic features of programming languages such as dynamic type
system, dynamic method calls, dynamic code execution, and dynamic
data structures provide the flexibility which can accelerate the devel-
opment, but on the other hand they reduce the information that is
checked at compile time and thus make programs more error-prone
and less efficient. While the problem of lacking compile time checks
can be partially addressed by techniques of static analysis, dynamic
features pose major challenges for these techniques sacrificing their
precision, soundness, and scalability. To tackle this problem, we pro-
pose a framework for static analysis that automatically resolves these
features and thus allows defining sound and precise static analyses
stmilarly as the analyzed program would not use these functions. To
build the framework, we propose a novel heap analysis that models as-
sociative arrays and dynamic (prototype) objects. Next, we propose
value analysis providing additional information necessary to resolve
dynamic features. Finally, we propose a technique that automatically
and generically combines value analysis and a heap analysis modeling
associative arrays and prototype objects.

Keywords
Static analysis, dynamic languages, heap analysis, combining heap
and value analysis

Anotace

Nazev Statickd analyza jazyku s dynamickymi funkcemsi

Autor David Hauzar
hauzar@d3s.mff.cuni.cz
(+420) 221 914 285
Skolitel Prof. Frantisek Plasil
plasil@d3s.mff.cuni.cz
(+420) 221 914 266
Katedra Katedra distribuovanych a spolehlivych systému
Matematicko-fyzikdlni fakulta
Univerzita Karlova v Praze
Malostranské nam. 25, 118 00 Praha, CR

Abstrakt

Dynamické funkce programovacich jazyku, jako je dynamicky typovy
systém, dynamické volani funkci, dynamické vykondvdni kodu a dy-
namické datové struktury, poskytujgi flexibilitu, kterd urychluje vijvoj.
Tyto funkce ale snizZuji mnozstvi informact, které jsou kontrolovdiny
v dobé kompilace. To md za nasledek niZsi vykon a vétsi chybovost
programu. Tento problém je mozné wvyresit pomoci technik statické
analyzy. Dynamické funkce bohuzZel pro tyto techniky predstavuji
prekdzku a zdisadné omezugi jejich presnost, spolehlivost a vijkonnost.
Abychom tento problém pomohli vyresit, navrhujeme framework pro
statickou analyzu, ktery automaticky tesi dynamické funkce, a tim
umoznuje definovat presné a spolehlivé statické analyzy podobné jako
v pripadé, kdy program dynamické funkce neobsahuje. Aby bylo
takovy framework mozné vytvorit, navrhujeme novou techniku heap
analyzy, kterd modeluje asociativni pole a (prototypové) objekty. Ddle
navrhujeme analyjzu hodnot proménnijch, kterd zjistuje dalsi informace
potrebné pro vyporddant se s dynamickymi funkcemi. Nakonec navrhu-
jeme techniku, kterd umozZnuje automaticky a genericky kombinovat
analyzu hodnot promeénnyjch s heap analyzou.

Klicova slova
Staticka analyza, dynamické jazyky, heap analyza, kombinace heap
analyzy a analyzy hodnot proménnych

Contents

(1 _Introduction|

[2.1 Static Analysis of Dynamic Languages|

[2.1.1 Static Security Analysis|
[2.1.2 Type Analysis| 0oL
[2.1.3 Heap Analysis|. 0.

[2.1.4 Reducing Dynamic Information|

[2.1.50 Code Optimization|

[2.2 Combining Heap and Value Analyses|

B Goals Revisitedl

[4 Heap Analysis|

[4.1.1 Variables, Arrays, and Objects|.

[4.1.2° Dynamic Accesses|.
[4.1.3 Explicit Aliasing] 000 .

[4.1.4 Comparison to other languages|

[4.1.5 Overview of the Approach|
4.2 Formalization|
[4.2.1 Analysis State Space| . . .
[4.2.2 Data-flow equations|. . . .
423 Access Pathsl

/] O v O

13
14
16
17
17
18
19

21
21
21
23
24
25
26
27

31

33
33
33
35
35
36
36
38
38
39
41
41
43
49
52

11

CONTENTS

[4.3 Summary ot Chapter 4]

[> Framework to Static Analysis of Dynamic Languages|

.2 Overview and Architecture] . .
[5.3 Intermediate Representation| .
.4 Buwlding IR}
[5.5 Analysis Domain|

[5.5.1 Declaration Analysis| .

[>.5.2 Heap Analysis|.

[5.5.3 Value Analysis|
(5.7 Join and Wideningl
Isi,és]la“sls” l ““S l’l!z“sl
[>.9 Summary Heap Identifiers| . .
[>.10 Summary of Chapter 5|

6 Implementation|
[6.1 Analysis Frameworkl
[6.2 Eclipse-based Tooll
[6.2.1 AST-level Functionality]|

[6.2.2 Static Analysis Functionality|.

(7 Experimental Results|
[7.1 Scalability of Heap Analysis| .
[(.2 Case Studies.
[7.2.1 Benchmark Application|
((.2.2 Fmail Clientl.
[7.3 Summary of Chapter 7]

8 __Conclusion and Future Workl
[8.1 Open Issues and Future Work|

[References|

55
26
o7
58
61
63
63
64
66
67
67
68
70
71

7
77
79
79
81

85
85
87
87
90
95

97
99

102

12

Introduction

In recent years, there has been a rapid growth in popularity of dynamically
typed languages [50] such as JavaScript, PHP, Perl, Python, and Ruby.

By employing runtime information, they typically provide dynamic fea-
tures such as virtual and dynamic method calls, dynamic includes and code
execution, duck typing, and built-in dynamic data structures. On one hand,
dynamic languages provide flexibility for accelerating of development, and,
on the other, they make programs more error-prone and less efficient since
the information checked at compile time is reduced [60]. This is a significant
problem, since a high level of security and performance of many applications
written in dynamic languages can be of particular importance—consider, e.g.,
web applications typically developed in these languages.

Static program analysis gathers information about programs indepen-
dently of their inputs. Usual answers that could static analysis provide are
related to possible types and values of variables, the information whether
variables can be influenced by the input, the information whether a variable
is always assigned before it is used, and the information about heap locations
to which a variable can point. This information can be used, e.g., for error
detection, security analysis, program debugging, code optimization, and code
refactoring. Thus, static program analysis can make programs written in dy-
namic languages both less error-prone and more efficient eliminating their
major disadvantages.

Unfortunately, dynamic features pose major challenges to static analysis.
To resolve these features, the end-user analysis (e.g. taint analysis) needs to
be combined with other analyses. For instance, in case of dynamic type sys-
tem, types of variables are completely unspecified and any interprocedural
static analysis needs to be combined with type analysis to determine tar-
gets of method calls. Moreover, method calls and include statements can
be dynamic in the sense that the name of the method to be called or the
file to be included is specified by expression computed at run-time. That
is, the resulting analysis must track values of variables and evaluate these
expressions. In dynamic languages, all these data can be manipulated using

CHAPTER 1. INTRODUCTION

dynamic data structures, such as multi-dimensional associative arrays and
objects with similar semantics—object properties can be created at run-time
and accessed via arbitrary expressions. Employing heap analysis, model-
ing these data structures is essential for the precision of resulting analysis.
Importantly, the value and the heap analyses must interplay. To resolve dy-
namic accesses to data structures, the heap analysis needs value analysis to
evaluate value expressions and the value analysis must track values not only
over variables, but also over array indices and object properties.

|1 Running Example

In this section, a PHP code snippet in Fig. is used to illustrate some of
dynamic features that are challenging for static analysis.

At lines (1)—(9) classes for processing the output are defined. They can
either log the output or show the output to the user. At lines (13)-(16)
the application mode is set based on the value of DEBUG either to log—the
application will log the output—or to show—the application will show the
output to the user. At lines (17)—(20) the skin is set based on user input. At
line (21), the array $users is initialized with the address of administrator.
This value is not taken from any source of sensitive information and can be
directly shown to the user. Note that the update at line (11) is correct even
if the variable $users is uninitialized. In PHP, if a non-existing index is
updated, it is automatically created. Moreover, if the update involves next
dimension, the index is initialized with an empty array and another index is
created in the next dimension. Next, at lines (23)—(24) information about the
user name and user address is assigned to the array $users. At lines (25)-
(26) data are processed to the output. Finally, at lines (27)-(36), function
logAdmin is defined and used to log information about administrator.

The code uses the following dynamic features:

Dynamic function and method calls. Dynamic (indirect) function or
method call is a call where a name of the function or method is specified by
an expression. Consequently, to determine the target of a call, the analysis
needs to track values of variables.

An example of dynamic method call is at line (25). The method call is

specified with the variable $mode. Depending on the value of the variable,
either method log() or method show() is called.

14

1.1. RUNNING EXAMPLE

Duck typing. Duck typing defines the semantics of method calls in dyna-
mically-typed languages. Because variables have not declared types (classes),
to call a method, a variable is not enforced to be of a class that defines the
method or inherits the method definition. Instead, at the time of the method
call, the method is searched in the object to which the variable is pointing.
If the object contains the method, it is called, otherwise the call results
in a runtime error. Consequently, from the perspective of static analysis,
duck typing is similar to virtual method calls—the analysis must compute
information about objects to which the variable can point. However, to
support prototype-based programming where methods can be dynamically
added to objects, it is not sufficient to abstract objects by their types.

For the examples of duck typing, see lines (25) and (26). The variable $t
can contain instances of classes Templ1 and Templ2 having the class Templ as
common ancestor. The class Templ does not define the method show() that
can be called here, thus in static language, the method could not be called.
However, with respect to duck typing, the code is correct—both instances
contain the method.

Dynamic data structures. Dynamic languages usually contain built-in
support for dynamic variables, associative arrays, and prototype objects.
Variables, array indices, and object properties need not be declared. If a
specified index exists in an array, it is overwritten; if not, it is created. The
same holds for object properties. Arrays as well as objects can have arbitrary
depth.

Moreover, for some dynamic languages such as PHP and Perl, updates au-
tomatically create empty arrays and objects if also further dimensions are up-
dated. For example, at line (11), the update automatically creates an array in
a variable $users and creates another array in the index $users[’admin’].
Unfortunately, this makes it impossible to decompose updates of such struc-
tures. Splitting the update at line (11) into updates $t = $users[’admin’]
and $t[’addr’] = get_..._db() results in different semantics. While the
update at line (11) creates an index containing an array in $users[’admin’]
in the case it does not exist, the read access in $t = $users[’admin’] re-
turns null and the subsequent update $t[’addr’] = get_..._db() fails.

Note that in some other dynamic languages such as JavaScript and Pyt-
hon, updates do not automatically create arrays and objects and they can
therefore be decomposed. However, even in these languages, the aforemen-
tioned semantics can be emulated using reflection. That is, the update at
line (11) can be emulated in JavaScript in the following way:

if (typeof users[’admin’] == ’undefined’) {

CHAPTER 1. INTRODUCTION

users[’admin’] = [1;
}

users[’admin’][’addr’] = ’admin’;

Dynamic accesses to data structures. In dynamic languages, variables,
indices of arrays, and properties of objects can be accessed with arbitrary
expressions. Update can thus involve more than one element and can be even
statically unknown. Since variables, arrays indices, and object properties
that are updated and do not exist are created, the set of variables, array
indices and object properties is not evident from the code. As an example, at
line (23) the $users array with an index determined by the value of variable
$id value, which is statically unknown, is assigned. Next, the update at line
(24) is also statically unknown and may or may not influence the access at
lines (26).

Dynamic name binding. The names of functions, classes, and constant
are bound to concrete definitions during runtime. Consider the code at lines
(27)—(36). If DEBUG is true, function logAdmin is defined per the first decla-
ration and both address and name of the administrator is logged. Otherwise,
the second definition is used and only administrator name is logged.

1.2 Problem Statement

Dynamic features provide flexibility that accelerates the development, in par-
ticular, the development of web applications. According to [53], most of the
web applications are written in languages where such features are explicitly
present. Web applications written in other languages often simulate dynamic
features, e.g., using reflection, casting, and hash tables. Unfortunately, dy-
namic features make it impossible to use mature static analysis techniques.
While there has been a lot of research concerning precise and scalable mod-
eling of dynamic features, important features are still covered insufficiently,
which limits the precision and scalability of existing techniques. The com-
mon source of imprecision is the modeling of dynamic data structures, such
as associative arrays and prototype objects, which are used often, in particu-
lar in web applications. Next, there are no means for automatically resolving
dynamic features and existing static analyses must deal with these features
ad hoc. from scratch and in its own way. Thus, they became overly com-
plex or imprecise. Consequently, there is a lack of specialized analyses for

16

1.3. RESEARCH GOAL AND OBJECTIVE

dynamic languages, e.g., analyses for error detection, code optimization, and
code refactoring.

1.5 Research Goal and Objective

The goal of the thesis is to make it possible to specify precise static analyses of
languages with dynamic features in a simple way. In particular, the goals are
(1) design precise heap analysis modeling data structures that are common in
dynamic languages, (2) design techniques that will allow automatic resolving
of dynamic features and thus allow defining static analyses independently of
these features.

1.4 Contributions and Publications

Our first motivation for static analysis of dynamic languages stems from
aiming at detecting security vulnerabilities in web applications via static
taint analysis. In [23], we noticed that a precise value analysis together
with heap analysis modeling associative arrays and objects is necessary for
resolving dynamic constructs and crucial for the precision and soundness of
a technique. To reduce the number of false-positive warnings, we proposed
a technique of path-sensitive validation of security vulnerabilities. When
prototyping static analyzer for PHP, we further elaborated these techniques
(subsequently published in [24]).

In [26], we presented a novel heap analysis modeling associative arrays
and prototype objects and backed it with a full formalization. It tackles
the following challenges in static analysis of associative arrays: (1) Indices
are not declared—if an updated index exists, it is overwritten, otherwise it
is created. (2) Indices can be accessed using arbitrary expressions, which
can yield even statically unknown values. Consequently, the set of indices
employed for an array is not evident from the code. (3) Specifically for
multidimensional arrays, updates cannot be decomposed. The reason is that
updates create indices if they do not exist and initialize them with empty
arrays if also further dimensions are updated; on contrary, read accesses do
not.

To precisely resolve dynamic features, a value analysis modeling all of
the primitive types, native operators, and implicit conversions needs to be
defined. A fundamental challenge here lies in defining interplay between the
value and heap analyses modeling associative arrays, prototype objects, and
accesses to these data structures with arbitrary expressions. In this thesis,

17

CHAPTER 1. INTRODUCTION

we defined such interplay in a generic way, so that the heap analysis can be
combined with arbitrary value analysis (including taint analysis) and each of
them can be defined independently.

As a proof-of-the-concept, we designed a static analysis framework for
PHP applications presented in [25].

Publications

[23] David Hauzar and Jan Kofron. Hunting bugs inside web applications.
Technical report, Department of Informatics, Karlsruhe Institute of Technol-
ogy (presented in FoVeOOS ’11), 2011

[24] David Hauzar and Jan Kofron. On security analysis of php web appli-
cations. In COMPSACW ’12: Proceedings of the 2012 IEEE 36th Annual
Computer Software and Applications Conference Workshops, pages 577-582,
Washington, DC, USA, 2012. TEEE Computer Society

[26] David Hauzar, Jan Kofron, and Pavel Bastecky. Data-flow analysis of
programs with associative arrays. In ESSS ’14: Proceedings of the 3rd Inter-
national Workshop on Engineering Safety and Security Systems, Electronic
Proceedings in Theoretical Computer Science, pages 56-70. Open Publishing
Association, 2014

[25] David Hauzar and Jan Kofron. WEVERCA: Web verification for php.
In SEFM ’14: Proceedings of the 12th International Conference on Software
Engineering and Formal Methods, Lecture Notes in Computer Science, Berlin,
Heidelberg, 2014. Springer-Verlag

[44] Viliam Simko, David Hauzar, Tomas Bures, Petr Hnetynka, and Fran-
tisek Plasil. Verifying temporal properties of use-cases in natural language.
In FACS ’11: Proceedings of the 8th International Symposium on Formal
Aspects of Component Software, Lecture Notes in Computer Science, pages
350-367, Berlin, Heidelberg, 2011. Springer-Verlag

[45] Viliam Simko, David Hauzar, Tomas Bures, Petr Hnetynka, and Fran-
tisek Plasil. Formal verification of annotated textual use-cases. In Computer
Journal (submitted), 2014 (current status: minor revision)

1.5 Structure of the Thesis

The thesis is structured in the following way: Chapter[2] provides an overview
of existing approaches to static analysis of languages with dynamic features

18

1.6. NOTE ON CONVENTIONS

and approaches to combining heap and value analyses. Chapter [4] focuses
on heap analysis modeling dynamic data structures. Chapter [5| presents
a framework for static analysis of dynamic languages that allows defining
static analyses independently of dynamic features. Chapter [6|presents project
WEVERCA, which was developed in scope of this thesis. It consists of a static
analysis framework for PHP and a tool for analysis of PHP web applications.
Chapter [7] evaluates the scalability of the heap analysis and presents two
case-studies evaluating the scalability and precision of the implemented tool.
Finally, Chapter [§| concludes the thesis and proposes direction for future
research.

1.0 Note on Conventions

The text of this work is partially based on the aforementioned publications.
To distinguish a text included verbatim from the publications, corresponding
paragraphs are marked with a vertical bar on the right or left side of the
text. Where appropriate, the original text was slightly modified (in a way
not changing the meaning) to make the thesis coherent and easy to read.
Here is an example of how paragraphs are marked to indicate a verbatim
copy. It means that from this point, the text appeared in the paper [X].

19

CHAPTER 1. INTRODUCTION

1|class Templ {

2| function log($msg) {...}

3}

4/ class Templl : Templ {

5 function show($msg) { sink($msg);
6|

7|class Templ2 : Templ {

8 function show($msg) { not_sink($msg); 1}
9}

10| function initialize (&$users) {

11 $users[’admin’][’addr’] = ’admin’;
12|}

13| switch (DEBUG) {

14 case true: $mode = "log"; break;

15 default: $mode = "show';

16| }

17| switch ($_GET[’skin’]) {

18 case ’skinl’: $t = new Templl(); break;
19 default: $t = new Templ2();

20|}

21|initialize ($users) ;

22/ $id = $_GET[’userId’];

23| $users[$id]l[’name’] = $_GET[’name’];
24| $users[$id]l[’addr’] = $_GET[’addr’];
25| $t ->$mode ($users [$id]l [’name’1);

26| $t ->%mode ($users[’admin’][’addr’]) ;
271 if (DEBUG) {

28| function logAdmin($templ, 3$users) {
29 $t->log ($users[’admin’][’addr’]);
30 $t->log ($users[’admin’][’name’]);
31}

32| else

33 function logAdmin($templ, $users) {
34 $t->log ($users[’admin’][’name’]);
35 }

36| logAdmin ($t, $users);

Figure 1.1: Running example

20

N)

State of the Art

In this chapter, we describe state-of-the-art of static analysis of dynamic
languages. Since we are aiming at designing heap analysis modeling dynamic
data structures and we want to allow defining static analyses independently
of modeling these data structures, we also examine the work on combining
heap and value analyses.

2.1 Static Analysis of Dynamic Lan-
guages

Static analysis of applications developed in dynamic languages is a very hot
research topic. This section presents its main application areas. The section
provides a summary of the most influential approaches focusing on the way
how these approaches deal with dynamic features.

2.1.1 Static Security Analysis

Dynamic languages are widely used in the development of web applications.
Since these applications often store sensitive data and offer a wide spectrum
of possible attacks to malicious users, security of these applications is of the
primary importance. This is the reason why the work on static analysis
of dynamic languages emerged from demands of security analysis and has
drawn a rich body of techniques. Most of these techniques perform static
taint analysis. Static taint analysis tries to find critical commands (sinks),
which use data that can be manipulated by a potential attacker (tainted
data).

The pioneering work in this area is the work of Huang et al. [27]. They
developed a static analysis for PHP applications in WebSSARI tool and
perform static taint analysis to identify vulnerabilities. Xie [57] discusses the
limitations of their approach, in particular that it is intraprocedural and it

21

CHAPTER 2. STATE OF THE ART

does not model dynamic features such as dynamic arrays, objects, dynamic
variables, and dynamic includes.

The approach of Xie et al. [57] uses interprocedural analysis to find
SQL injection vulnerabilities in PHP applications. To model sanitization
process, they perform taint analysis. Sanitization can occur via calls to spec-
ified sanitization functions, casting to safe types, and a regular expression
match. The analysis models automatic conversions of particular scalar types,
uninitialized variables, dynamic accesses to associative arrays, and include
statements. However, it leaves important parts of PHP unmodeled. In par-
ticular, it does not model multi-dimensional associative arrays, references,
object oriented features of PHP, and it ignores recursive function calls.

Wasserman et al. [54, [55] use grammar-based string analysis following
Minamide [39] to find a set of possible string values of a given variable at
a given program point and gain this information to detect SQL injections.
However, the employed static analysis has an incomplete support for ref-
erences, does not track type conversions and omits modeling of associative
arrays.

Pixy [31], B2] performs taint analysis of PHP programs and provides in-
formation about the flow of tainted data using dependence graphs [4]. Pixy
performs a flow-sensitive, interprocedural, and context-sensitive data flow
analysis along with literal and alias analysis to achieve precise results. The
main limitations of Pixy include limited support for statically-unknown up-
dates to associative arrays, ignoring classes and the eval command, omitting
type inference, and limited support for handling file inclusion and aliasing.
Alias analysis introduced in Pixy incorrectly models aliasing when associative
arrays and objects are involved.

Balzarotti et al. [4] extended Pixy to perform the analysis of the saniti-
zation process. Their analysis is performed after Pixy computes control flow
and relies on dependence graphs provided by Pixy. They represent values
of variables at concrete program points using finite state automata tracking
what parts of strings are not sanitized and perform string analysis through
language-based replacement. The main limitation of their string analysis is
that they approximate variables updated by loop as arbitrary strings. To
filter-out false positive warnings, for each sink discovered by static analysis,
they use dependence graphs provided by Pixy to generate code representing
all possible sanitization operations manipulating tainted data along the path
between the source of sensitive data and this sink. Finally, they exercise
this code with a set of inputs simulating attacks. If a malicious input is not
reduced to non-malicious values, the input is reported as a concrete example
that violates the security of the application.

Yu et al. [58] also use dependence graphs computed by Pixy to perform

2.1. STATIC ANALYSIS OF DYNAMIC LANGUAGES

the analysis of the sanitization process. They developed an automata-based
string analysis that enables to prove that an application is free from attack
patterns specified as regular expressions. To tackle the problem of handling
variables updated in loops, they incorporate the widening operator [5] and
thus in these cases obtain better approximations than [4].

Andromeda static taint analyzer [51] fights the problem of scalability
of taint analysis by computing data-flow propagations on demand. It uses
forward data-analysis to propagate tainted data and ignores propagation of
other data. If tainted data are propagated to the heap, it uses backward
analysis to compute all targets to which the data should be propagated. An-
dromeda analyzes Java, .NET, and JavaScript applications. The drawback
of the approach is that it propagates only taint information. Especially for
dynamic languages, the control-flow of the application can depend on other
information which is then not available. To reduce this problem, Andromeda
uses FAF [47], which reduces the amount of information that are not known
statically.

Livshits et. al. [36] propose a method of fully automatic placement of
security sanitizers and declassifiers. They place sanitizers statically whenever
possible and they try to minimize the amount of run-time tracking. The
input of their analysis is a data-flow graph generated by a static analyzer.
The quality of sanitization placement—the reduction of the amount of run-
time tracking—depends on the quality of the data-flow graph and thus on
the precision of static analysis.

2.1.2 Type Analysis

Dynamic languages do not allow declaring types of variables and a single
variable can contain values of different types depending on the context. As
type information is necessary for computing control-flow and establishing the
correctness of the program, there have been developed several type analyses
meant as a basis for further program analyses and also for checking type
properties of programs.

Phantm [34] is a PHP 5 static analyzer for type mismatch based on data-
flow analysis; it aims at detection of type errors. To obtain precise results,
Phantm is flow-sensitive, i.e., it is able to handle situations when a single
variable can be of different types depending on program location. However,
it omits updates of associative arrays and objects with statically-unknown
values and aliasing, which can lead to both missing errors and reporting false
positives.

TAJS [30] is a JavaScript static program analysis infrastructure that in-

DO
w

CHAPTER 2. STATE OF THE ART

fers type information. To gain precise results, the analysis is context-sensitive
and precisely models intricate semantics of JavaScript, including prototype
objects and associative arrays, dynamic accesses to these data structures,
and implicit conversions. It tackles the problem that dynamic features of
JavaScript make it impossible to construct control-flow before the static anal-
ysis by constructing control-flow on-the-fly during the analysis. To capture
information about dynamically allocated data, it uses recency abstraction [2].
Since TAJS models JavaScript semantics precisely, it has been successfully
used to enable additional analyses. In [I7, 18], TAJS program analysis infras-
tructure is used to build a tool for refactoring of JavaScript and in [29] TAJS
is used to enable technique of statically resolving eval constructs. However,
TAJS combines heap and value (type) analysis ad-hoc, which results in in-
tricate lattice structure and transfer functions. Next, TAJS assumes that
updates to multi-dimensional arrays and objects can be decomposed to up-
dates of length one. While this is true for JavaScript, this assumption leads
to significant loss of precision in case of some other dynamic languages.

2.1.3 Heap Analysis

Heap analysis attempts to statically determine the structure of the heap. In
the context of dynamic languages, which do not allow direct pointer ma-
nipulation, heap analysis usually computes the set of objects and arrays to
which a variable, an object field, and an array index may point. Dynamic
languages pose fundamental challenges here—they allow creating new array
indices and object fields at runtime and accessing both arrays and objects
via arbitrary expressions. Moreover, since updating non-existing array index
or object field creates the index or the field and reading the index or the field
returns undefined value, updates to associative arrays and objects cannot be
decomposed. However, since information about heap structure is essential
for soundness and precision of static analyses when objects are considered,
there were developed several points-to analyses meant as a basis for further
program analyses.

Sridharan et. al. [48] present static flow-insensitive points-to analysis for
JavaScript. They model objects in JavaScript using associative arrays that
can be accessed by arbitrary expressions. They show that in this setting,
the complexity of flow-insensitive points-to analysis becomes O(N?), where
N is the program size, in contrast to the O(N?3), which is the case when
the accesses are constant. To enhance the precision and scalability of the
analysis, they identify correlations between dynamic property read and write
accesses. If the updated location and stored value can be accessed by the

24

2.1. STATIC ANALYSIS OF DYNAMIC LANGUAGES

same first class entity (variable), it is extracted to a function parametrized
by this entity; this function is then analyzed context-sensitively with the
context being the variable. Thus, the correlation between the update and
store is preserved. However, important limitation of their technique is that
it assumes that updates to arrays and objects can be decomposed to updates
of depth one.

Jang [28] presents flow-insensitive points-to analysis for JavaScript. It
models variables, arrays, and objects using associative arrays. Limitations
of their work include that it precisely models only assignments to constant
indices—for all other assignments, a special unknown field is used. Moreover,
the same as Sridharan [48], they assume that updates to associative arrays
can be decomposed.

2.1.4 Reducing Dynamic Information

As the excess of information that are only available at runtime pose a major
problem to static analysis, several techniques have been developed that try
to enable static analysis of dynamic languages by making this information
statically available prior to the static analysis.

F4F [47] focuses on static taint analysis of web applications that use
frameworks. They use a semi-automatically generated specification of fra-
mework-related behaviors to reduce the amount of statically-unknown infor-
mation, which arises, e.g., from reflective calls.

Schafer et. al. [43] present a dynamic analysis for identifying variables and
expressions that always have the same value at a given program point inde-
pendently on the context. Such values can be used, e.g., to make constrained
dynamic constructs static and thus enhance the scalability and precision of
static analysis.

Phantm [34] reduces the number of information that static analysis must
compute and possibly overapproximate by collecting this information at run-
time. It first lets the application execute and collect this information and
then invokes static analysis from a particular runtime state. The authors
reported significant improvement of analysis precision, in particular when
dynamic and nested data structures are used.

Wei et. al. [56] reduce the number of statically-unknown information in
static analysis of JavaScript by using a technique of blended static analy-
sis [15]. This technique collects statically-unknown information at run-time
and uses it during static analysis. To collect statically-unknown information,
it executes a test suite and collects execution traces of an application. Then,
the technique processes each execution trace as follows. First, it extracts

[N}
ot

CHAPTER 2. STATE OF THE ART

run-time information from the trace. This information consists of call graph
of the trace, types of created objects, and dynamically generated code. Next,
static analysis of the application with respect to information from the exe-
cution trace is performed. That is, information from the execution trace is
used to resolve dynamic constructs. Finally, solutions from different execu-
tion traces are combined into a single solution for the application. Authors
show that by this resolving dynamic constructs using runtime information,
they can significantly increase the scalability and precision of static analy-
sis. However, the approach is not sound and error coverage depends on the
quality of the test suite.

2.1.5 Code Optimization

Dynamic languages provide flexibility at the cost of performance. As there
are a lot of applications developed in dynamic languages that are compu-
tational demanding, e.g., web applications, which can serve a huge number
of requests, there have been attempts for automatic code optimization of
programs developed in dynamic languages.

Zhao et. al. [60] tackle the performance problem of interpreting PHP by
static compilation. They noticed that much overhead is caused by runtime
type checking. Since variables can contain values of different types during
execution, they are kept in generic, boxed values. Since PHP native oper-
ations are mostly untyped and have different semantics for different types
of operands, in order to perform appropriate action, the types of operands
are checked at runtime. To tackle this problem, they perform static type
inference. For symbols whose types can be inferred, specific inferred types
are used, for which the runtime system contains fast implementations. For
static type inference, they soundly approximate the dynamic constructs and
the analysis can infer specific types only in simple cases. While even this led
to a significant gain in performance (approximately 2x), the authors claim
that the precision of type inference plays a central role in their compiler. The
more types can they statically infer, the better the performance would be.
Consequently, by modeling dynamic constructs, much better results could be
achieved.

Biggar et al. [7] perform context sensitive, flow sensitive, interprocedural
static analysis of PHP in order to gain information usable for code optimiza-
tions in their PHP compiler. They combine alias analysis, type inference
and literal analysis, model arrays, PHP’s variable-variables construct, ob-
jects, references, scalar operations, casts, and weak type conversions. Un-
fortunately, the authors provide only an informal description, and details of

26

2.2. COMBINING HEAP AND VALUE ANALYSES

their method are not clear.

2.2 Combining Heap and Value Anal-
yses

While heap and value static analyses have been studied mainly as orthogonal
problems, to support verification of real programs, they usually need to be
combined together[19, 52]. This problem of combining heap and static value
analysis is particularly relevant for static analysis of dynamic languages. As
programs written in dynamic languages often manipulate associative arrays
and prototype objects, heap analysis modeling these data structures is neces-
sary to allow precise and sound data propagation. Since these data structures
can be dynamically accessed with arbitrary expressions, to resolve such ac-
cesses, the heap analysis needs to be combined with value analysis modeling
usually intricate value semantics of dynamic languages. Unfortunately, to
our best knowledge, there is no technique that generically combines heap
and value analyses for dynamic languages.

Gopan et. al. [2I] studied the problem of designing summarizing ab-
stract numeric domains from existing numeric domains. In addition to classic
numeric domain, which tracks values on variables, summarizing abstract nu-
meric domain tracks values on summary objects. Summary objects represent
potentially unbounded collections of numeric objects, e.g., heap-allocated ob-
jects and array elements abstracted by a single abstract object. This also
happens when combining heap and value analysis—value analysis must track
values also on heap identifiers, which are usually summary objects. Gopan
et. al. discovered the following problems of summarizing value domains: (1)
value analysis cannot perform strong update [35] when assigning a value to
a summary object—since the update affects only one concrete object rep-
resented by the summary object and we do not know which one, we must
keep all values that the summary object has before the update and only
add assigned value. (2) Value analysis cannot correlate summarized objects
to non-summarized objects. E.g.; assigning value of summary object means
that after the assignment, one concrete object represented by the summary
object is equal to the target object. Not that the all the concrete objects
represented by the summary object are equal to the target object. That is,
the summary object is not equal to the target object. They solved these
problems and extended existing numerical domains to summarized domains
in a generic way.

Clousot [16] preprocesses the program applying heap analysis, and uses

[N]
|

CHAPTER 2. STATE OF THE ART

a value numbering algorithm to compute under-approximation of must-alias
to replace heap accesses with heap identifiers. The value analysis then tracks
values on variables and also on these heap identifiers. While the approach
allows using arbitrary value analysis, it only allows using specific heap anal-
ysis, the heap analysis cannot use information from value analysis, and their
technique is not sound.

McCloskey et. al. [38] allow to combine heap and numerical value analy-
ses in a generic way. The heap analysis splits the heap into disjoint regions
and value analysis tracks values on variables and heap identifiers correspond-
ing to these regions. While each analysis can choose to represent its abstract
elements however it desires, to define semantics of combined analysis, they
require each analysis to provide first order logic predicates, which are shared
among the analyses. This can make the specification of combined analyses
laborious. Importantly, they assume that assignments do not affect separa-
tion of heap into regions—the set of individuals belonging to the region is
never changed. That is, they allow only to change predicates that hold over
the members of a class. This makes it impossible to precisely model, e.g.,
adding of new object fields and array indices using dynamic updates.

Chang and Leino [8] face the problem of subexpressions that are unknown
to given abstract domains (e.g. heap accesses are unknown to value domain)
by using congruence-closure abstract domain parametrized by these abstract
domains—base domains. The congruence-closure abstract domain stores
congruence-closed equivalence classes of terms. These equivalence classes are
represented as variables, giving base domains an illusion that these terms are
just variables. Congruence-closure domain consults its base domains during
such updates—Dby evaluating parts of such updates, which are known to a
particular base domain, the base domain supply the congruence-domain in-
formation, which can the congruence-domain use to unify more terms and
thus gain more precision. While the main advantage of their technique is
that it can work with arbitrary (slightly extended) value domains and since
equivalence classes may be dissolved as the variables of the program change,
it can be extended to model adding of new object fields and array indices
using dynamic updates, the main limitation is it forces the heap analysis to
be based on equalities.

Miné et. al. [40] combine type based pointer analysis and numeric value
analyses in a generic way. The pointer analysis models pointer arithmetic,
union types and records of stack variables in C programs. The general lim-
itation of this technique is that it relies on type based heap analysis, which
is too coarse for many applications. In particular, their technique does not
support summary nodes and dynamic allocation.

Fu [20] combines numeric value analysis and points-to analysis. His

2.2. COMBINING HEAP AND VALUE ANALYSES

method uses points-to analysis to partition possibly infinite set of heap ref-
erences into a finite set of abstract locations (heap identifiers) and use value
analysis to track values on variables and also on heap identifiers. The method
is both generic—it allows to reuse existing analyses as black-boxes—and
automatic—it does not require to provide any annotations specific to a par-
ticular heap and value analysis. The fundamental limitation of the technique
is that it relies on flow-independent naming scheme for points-to analysis.
That is, a concrete reference is always mapped to the same abstract location
independently of program location. On one hand, this assumption allows the
technique to assume that change of the heap component of the analysis state
has no effect on the value component of the state and that two states can be
joined component-wise. On the other hand, this assumption limits modeling
of adding new object fields and array indices using statically-unknown up-
dates. To illustrate the limitation, consider that a statically-unknown index
of an empty array $a is updated ($alrand()]=..). At this point, points-
to analysis must represent all concrete indices of the array with the same
abstract location h. Next, if a concrete index of the array, e.g., $al[1], is
updated ($al1]=..), the analysis must still represent the index $a[1] with
h and thus cannot distinguish this index from other indices in $a.

The technique of Ferrara [19] generically combines numeric value analy-
sis and heap analysis overcoming the limitation of flow-independent naming
scheme. To manage the mapping of concrete references to abstract locations,
it introduces the concept of substitutions. Substitutions allow heap analysis
to materialize abstract locations, i.e., to replace a single abstract location in
the pre-state with more abstract locations in the post-state. Substitutions
also allow the heap analysis to summarize abstract locations, i.e., to replace
more abstract locations in the pre-state with a single abstract location in the
post-state. Importantly, the substitutions are propagated to value analysis
and the propagation is proven to be correct.

CHAPTER 2. STATE OF THE ART

30

OV

Goals Revisited

As it is apparent from the Section [2] modeling of associative arrays and
prototype objects in heap analyses for dynamic languages is not sufficiently
covered. Existing techniques either do not model these data structures at
all [27, 4], model them incorrectly [31], use coarse over-approximations [60],
model them in a limited way—they precisely model only the semantics of
updates that does not automatically create empty arrays and objects (i.e.,
allows to decompose multi-dimensional updates) [57, 30, 48], model only ac-
cesses to constant indices and fields [28], and model statically-unknown read
accesses, but omits statically-unknown updates [34]. As these data struc-
tures are ubiquitous, especially in web applications, which manipulate a lot
of input, this constitutes a significant source of unsoundness and imprecision.

Next, to resolve dynamic constructs and thus allow any static analysis,
it is necessary to perform complex value analysis tracking values of all prim-
itive types, modeling dynamic type system, native operators, and implicit
conversions.

Importantly, to gain precise and sound results, heap and value analyses
cannot be performed separately, but need to interplay. For example, value
analysis needs information from heap analysis in order to correctly propagate
value information and heap analysis needs information from value analysis
in order to resolve dynamic index and property accesses.

Since heap and value analyses have been studied mainly as orthogo-
nal problems, it is often not clear how to combine them in a precise and
scalable way. While techniques of combining heap and value analyses ex-
ist [20], 19L 38, [8, [40], it is not possible to apply them for dynamic languages,
where object properties and array indices can be added at runtime and ac-
cessed using arbitrary expressions. Existing techniques for static analysis
of dynamic languages thus combine heap and value analyses ad hoc, which
makes defining these analyses complex and error-prone. Consequently, these
techniques often combine heap and value analyses inappropriately or omit
some important analysis aspect thus sacrificing soundness, precision, and
scalability.

CHAPTER 3. GOALS REVISITED

To summarize, defining even simple static analysis for a dynamic lan-
guage (e.g., taint static analysis), requires additionally to define the following
things: (1) heap analysis, (2) complex value analysis tracking values of all
primitive types of the language, and (3) the interplay of all analyses. This
makes a huge barrier preventing static analysis to be more used in the context
of dynamic languages.

In order to tackle these problems, the thesis aims at the following goals:

e G1 Design heap analysis for dynamic languages.

Design a heap analysis modeling built-in data structures used in dy-
namic languages. These include multi-dimensional associative arrays
and objects. In particular, the goal is to model constant, non-constant,
and statically unknown updates and read accesses to associative ar-
rays and objects. Moreover, the heap analysis will precisely model
the semantics of multi-dimensional updates to associative arrays and
objects that automatically creates empty arrays and objects if also fur-
ther dimensions are updated and thus does not allow decomposing the
updates. This goal is reflected in Chapter [4]

o G2 Generically define interplay of heap and value analyses for dynamic
languages.

Design a technique that will allow automatic combining of various heap
and value analyses for dynamic languages. In particular, the technique
will allow value analysis to track values not only on variables, but also
on heap identifiers—array indices and object fields—and it will prop-
agate changes done by the heap analysis to value analysis using stan-
dard operations of the value analysis domain. These changes include
creating new heap identifiers both during the join operation and the
assignment and updating heap identifiers during the assignment. This
goal is reflected in Chapter

e G3 Design framework for static analysis of dynamic languages.

Design a framework that will allow defining static analyses for dynamic
languages (e.g., static taint analysis) independently of computing con-
trol flow and accessing data structures. In particular, this includes
defining how control flow and accesses to data structures are resolved
using information from value analysis. As a proof of the concept, static
taint analysis will be defined. This goal is reflected in Chapter

32

Heap Analysis

In dynamic languages, data are manipulated using built-in data structures
such as multi-dimensional associative arrays and objects with similar seman-
tics—object properties can be created at run-time and accessed via arbitrary
expressions, e.g., variables. This happens relatively often, e.g., in web ap-
plications, which manipulate a lot of input. Consequently, while tracking
values is necessary for resolving dynamic features such as virtual and dy-
namic method calls and dynamic includes, in dynamic languages it cannot
be done precisely and soundly without interplay with heap analysis modeling
these data structures.

In this chapter we present our approach to these challenges. Our con-
tribution includes: (1) creating heap analysis of associative arrays that can
have arbitrary depth and can be accessed using variables and array indices
containing even statically unknown values, (2) precise modeling of the se-
mantics of multi-dimensional updates that does not allow decomposing the
updates, and (3) modeling explicit aliases between variables, array indices,
and object properties.

|1 Motivation and Overview

In this section, we show some dynamic features that impact the data-flow
analysis and present an overview of our approach. We use PHP as the repre-
sentative of a dynamic language; the main reason for this choice has been its
worldwide usage making it the number one among the web-app languages.
For the illustration of our concepts, we use the code in Fig. as a running
example.

4.1.1 Variables, Arrays, and Objects

Variables as well as indices and object properties need not be declared. If a
specified index exists in an array, it is overwritten; if not, it is created. At

w
(OS]

[26]

CHAPTER 4. HEAP ANALYSIS

1/ $any = $_GET[’user_input’)l; // an arbitrary user
input
2|$alias = 1; $alias2 = 1; $alias3 = 1;
3[if ($any) {
4 $arr[$any]l = &$alias;
5 $t = $arr[1]l; // t can be either undefined or can
have the wvalue 1
6 $t[2] = 2; // can update also $alias[2] and e.g.
$arr[1][2]
7 $arr[1]1[2] = 3;
8 $arr[1]1[3] = 4;
9 $arr[2][3] = 5;
10/} else {
11 $arr [$any] [2] = 6;
12 $arr[1]1[$any]l = 7; // can update also some of
vartables involved by the previous update
131}
14
15| $arr [2][1] = &$alias2; // $arr[2][1] and $alias2 can
be aliased also with $alias[1]
16| $arr [2] = &%$alias3; // $alias[1] can still be aliased
with $alias2
17| $arr2 = $arr; // deep-copies $arr, including aliases
18/ $arr2[2] = 8; // updates also $arr[2] and $alias3
19| $arr2[3] = 9; // can update also $arr[3] and Falias
20| $arr [$any] = arr2;

Figure 4.1: Associative arrays-like data structures.

line 7 in Fig. [L.1] a new array is created in $arr and index 2 is added to this
array. Next, at line 8, index 3 is added to this array.

Arrays can have an arbitrary depth. Unfortunately, updates of such struc-
tures cannot be decomposed. That is, splitting the update at line 7 into two
updates at lines 5-6 results in different semantics. The first reason is that the
array assignment statement deep-copies the operand. The update at line 6
thus does not update the array stored at $arr[1], but its copy. The second
reason is that while updates create indices if they do not exist and initialize
them with empty arrays when also further dimensions are updated, read ac-
cesses do not; while the update at line 7 creates an index $arr[1] in the case
it does not exist and initialize it with empty array and then creates further
index $arr[1] [2] in this array, the read access at line 5 returns null in this

34

4.1. MOTIVATION AND OVERVIEW

case and the update at line 6 fails.

The semantics of the PHP object model is similar to the semantics of
associative arrays. Objects’ properties need not to be declared. If a non-
existing property is written, it is created. As well as indices, properties can be
accessed via arbitrary expressions. Objects can also have an arbitrary depth
in the sense of reference chains. In the following, we describe associative
arrays, however, the same principles apply to objects as well. We write
associative arrays-like data structures to emphasize this fact.

4.1.2 Dynamic Accesses

In dynamic languages, variables, indices of arrays, and properties of objects
can be accessed with arbitrary expressions. At line 4 in Fig. the $arr
array with an index determined by the variable $any is assigned; if a given
index exists in $arr, it is overwritten; if not, it is created. Therefore, the set
of variables, array indices and object properties is not evident from the code.

An update can involve more than one element and can be statically un-
known. The update at line 4 is statically unknown and thus may or may
not influence accesses at lines 5, 7, 8, 9, 15, and 20. Similarly, line 11 can
access index 2 in any index at the first level. In particular, it can access
also index 1 at the first level, which is updated at the following line. That
is, reading $arr[1][2] can return either of values 6, 7, and undefined,
reading $arr[1] [1] can return 7 and undefined, reading $arr[2] [2] can
return 6 and undefined, and reading $arr[2] [1] always returns undefined.
Next, after two branches of the if statement are merged at line 13, reading
of $arr[1][2] can return values 6, 7, 3, and undefined.

4.1.3 Explicit Aliasing

PHP makes it possible for a variable, index of an array, and property of an
object to be an alias of another variable, index, or property. After an update
of an element, all its aliases are also updated. Aliasing in PHP is thus similar
to references in C++ in many aspects.

Unlike C++, in PHP each variable, index, and property can be aliased
and later un-aliased from its previous aliases and become an alias of a new
element. As an example, the statement at line 16 un-aliases $arr[2] from
its previous aliases. Moreover, a variable can be an alias of another variable
only at some paths to a given program point, e.g., if it is made an alias in a
single branch of the if statement.

[26]

CHAPTER 4. HEAP ANALYSIS

The statement at line 4 makes variable $alias an alias of a statically
unknown index of array $arr. Hence, the statement at line 7 accesses
$arr[1]1[2] and may also access $alias[2]. Similarly, the statement at
line 15 makes $alias2 an alias of $arr[2] [1] and may also make it an alias
of $alias[1]. If an array is assigned, it is deep-copied. However, if an index
in the source array has aliases, the set of aliases in the corresponding index
in a target array consists of these aliases and the source index. Consequently,
the statement at line 18 updates also $arr[2] and its alias $alias3. Simi-
larly, the statement at line 19 may update also $arr[3] and $alias, because
the statement at line 3 may make these aliases of each other.

4.1.4 Comparison to other languages

We have chosen PHP as the language we would use in the rest of the paper
for demonstration of our approach. Nonetheless, it is worth mentioning that
many other languages, especially those connected with the development of
web applications, provide built-in associative arrays-like data structures with
similar semantics.

For example, the same way as PHP, Perl, JavaScript, Python, and Ruby
provide associative arrays and objects with indices and properties that can
be added at runtime. Moreover, Perl provides the same semantics of multi-
dimensional updates as PHP. This semantics does not allow to decompose
the updates without the loss of precision. It initializes new array indices and
object properties with empty arrays and objects when also further dimensions
are updated (see, e.g., the assignment at line (7) of Fig. [4.1). Note that in
other dynamic languages, this semantics can be emulated using reflection.
That is, reflection can be used to check whether updated index exists and if
not, the index can be created and explicitly initialized with empty array or
empty object.

Moreover, to ease the development, libraries of “ordinary” programming
languages emulate some of these features and offer the developer API behav-
ing in a similar way. Hence, our approach is not limited to PHP.

4.1.5 Overview of the Approach

Our approach consists of the following key parts: (1) definition of analysis
state, (2) definition of read accesses to associative arrays, (3) definition of
write accesses to associative arrays (i.e. the transfer function), and (4) defi-
nition of merging associative arrays (i.e. the join operator).

36

4.1. MOTIVATION AND OVERVIEW

The fundamental part of analysis state consists of representation of as-
sociative arrays. Fach associative array contains a set of indices including a
special index called unknown field. This index stores information that has
been written to statically unknown indices of the array. All indices (includ-
ing unknown fields) can contain a set of values and also can point to another
associative array—the next dimension. Next, unknown fields always con-
tain value undefined. Note that (multi-dimensional) unknown fields allow
for dealing with statically unknown accesses, however, they pose a challenge
both to definition of new indices and definition of merging associative arrays.

Both indices that are read by a read access and indices that are updated
by a write access to a multi-dimensional associative array are specified using
a list of expressions. Each expression specifies an access to one dimension of
the array. Note that specifically for updates, this is necessary to take into
account that the updates cannot be decomposed. At each level, indices cor-
responding to values of an expression corresponding to the level are followed.
If the expression yields a statically unknown value, all indices (including the
unknown field) are followed. The read access differs from the write access
in the way it handles the case when there is no corresponding index defined.
While the read access follows the unknown field, the write access defines
the index. Note that in the latter case, all data that could be assigned to
the new index using previous statically unknown updates are copied to this
index. The reason is that these data are stored in unknown fields and un-
known fields are not followed by statically known read accesses. Next, unlike
a read access, a write access distinguishes indices that certainly must be up-
dated and indices that only may be updated. Former indices are strongly
updated—original data are replaced with new data, the latter indices are
weakly updated—original data are joined with new data.

Example 1: At line 5, value 1 is used to read-access the first dimension of
an associative array. Because the array has no index corresponding to this
value, the unknown field is followed. It contains value 1 from the update at
line 4 and also value undefined.

Example 2: At line 12, value 1 is used to write-access the first dimension
of an array $arr. The array has no index corresponding to this value and
the index $arr[1] is thus created. Because statically unknown assignment at
line 11 could involve also the index $arr[1], the data from this assignment

37

CHAPTER 4. HEAP ANALYSIS

are copied to a new index and thus also the index $arr[1] [2] (with values
6 and undefined) is defined.

The principal challenge of merging multi-dimensional associative arrays
with unknown fields is to determine the set of indices of the resulting array.
That is, the resulting array may contain indices that are not present in any
array being merged. The reason again stems from the fact that unknown
fields are not followed by statically known read accesses.

Example 3: As an example, see the join point at line 13. The array $arr
contains all indices that are defined in either of merged branches plus the
index $arr[2] [2] (with values 6 and undefined). The reason of creating
new index is that while in the second branch the read access to this index in
the first level follows the unknown field and then reaches the value assigned
at line 11, in the merged array the read access follows the index $arr[2].

1 Formalization

We formalized our data-flow analysis using data-flow equations for the for-
ward data-flow analysis [41]. The formalization includes handling associative
arrays of unlimited depth and accesses with arbitrary expressions to such
structures. It does not explicitly include handling of objects. While objects
are treated analogously to arrays in our implementation, there are subtle dif-
ferences. Therefore, we excluded handling of objects from our formalization
to make it more clear.

4.2.1 Analysis State Space

Tab. presents elements of the state space of our data-flow analysis. Every
state contains a variable, which represents the symbol-table. Because top-
level variables can be accessed dynamically ($$var is a variable whose name
is given by a value of variable $var), we model top-level variables as indices
of the symbol-table variableﬂ Function Map maps a variable to a set of its
possible values. Function Inder maps a variable and an index name to a

! Consequently, the notions of index and variable refer to the same abstraction and we
use them interchangeably. That is, an index of an associative array in an arbitrary depth
is a first class name the same way as a variable.

38

4.2. FORMALIZATION

s€EY = Var x Map x Index x Aliases
m € Map =Var — P(Val)
i € Index = (Var x Val) - Var
a € Aliases = Aliasesmpys X Aliasespqy
st € Aliases g = Var x Var
Amay € Aliasesyq, = Var x Var

Table 4.1: Data-flow analysis state-space.

undefVar € Var is a variable representing an undefined variable.
x € Val is the statically-unknown value.
undefined € Val is the undefined value.
e cVal is the value representing index-name of unknown field.

Table 4.2: Special variables and values.

variable containing an array which has the first variable on the index with
this name. In the following, we say that variable v is an index of variable
p identified by value ind if ((v,ind),p) € indezOf (i.e., v is p["ind’]). A
pair of relations Aliases relates variables that are must and may aliases.
Tab. presents special variables and values. The value e identifies the
unknown field of a given variable. The unknown field of a variable is used
to access statically-unknown indices of the variable. In Tab. [4.3] there are
several helper functions (projections) defined; we use them in the subsequent
definitions.

4.2.2 Data-flow equations

For propagating states through the nodes of the control-flow graph (CFG), we
use a modification of standard data-flow equations for the forward problem.
Each node k of CFG has six states associated: INy, GEN), IN;, GEN,
KILLy, and OUTy. INy represents the data coming to k; it is created by
merging the states going out from all predecessors of k. In the case that the
node has more predecessors, we call this state join point and the operation
mergeStates merges information from different states. If the node has only
one predecessor, the operation mergeStates only copies the information. The
state GENj, defines variables that are newly defined by the update and data
of these variables (note that these data can come only from unknown fields).
The state KILL; defines data that is removed from variables by the update
while G ENj, defines data that is added from the right-hand side of the update

39

CHAPTER 4. HEAP ANALYSIS

statement. Finally, the state OUT} represents updated data, i.e., the data
going out from this node. The predicate pred(k) returns the set of n output
states associated with the predecessors of k.

The data-flow equations are:

INy = mergeStates({OUT,}),p € pred(k)
IN, = IN,UGEN,
OUT}, = GEN, U (IN, — KILLy)

For the initial node 7, the output state is as follows:
OUT; = (root, {(root,), (unk, {undefined})}, {((unk, ®), root)}, (0,0))

That is, the state contains variable root representing a symbol table and
a variable unk which is its unknown field—it represents statically-unknown
variables.

’ # \ Expression ‘

Let x = (root, map, 1, (Gmay, Amust)) be a state.

(1) |r(z) = root
(2) |values(z,v € Var) = {wals, (v — vals) € map}
(3) |values(z,V € P(Var)) = {values(z,v),v € V}
(4) |valuesynges(z,V € P(Var)) =wvalues(z,V) if V#0
= {undefined} it V=10
(5) |values(x, undefVar) = {undefined}
(6) |indexOf(x) =1
(7) lindices(z,V € P(Val)) = {iv, JpevIneva((iv,n),v) € i}
(8) |indices(xz,V € P(Var),I € P(Val))

= {iv, Elvevzlmdej((iv7 an)7 U) € Z}

(9) |aliasesmust/may(2) = {(v1,v2), (v1,v2) € Amust/may
\/(U27 Ul) € amust/may}

{

{

a, (v, a) € aliasesmystmay(T) }
(a,v),a € aliasesSmyst/may(T, V),
veV}

(12)|aliases(x,v € Val) = aliases ey (T, v) U aliasespys(z, v)

(10) |aliasespmyst/may(z, v € Val)
)| aliasesmust jmay(x, V € P(Val))

Table 4.3: List of helper functions and projections.

40

4.2. FORMALIZATION

4.2.3 Access Paths

We describe expressions for accessing variables and associative arrays of an
arbitrary depth using access paths. An access path consists of a single value
or a sequence of access paths:

AP :=a,a € Val
= [J([AP])

Each access path from the sequence represents the expression for accessing
the level of an associative array given by the position of the access path in
the sequence. This makes it possible to perform accesses to any associative
array of an arbitrary depth where at each level of the array the set of values
used for indexing is specified with an arbitrary read-access. As we will see
later, a read access using an access path returns a set of values, which can
include the undefined and the * values.

An access path describes an access from a given index (variable). In
the following, [v]([AP])* denotes an access path [[([AP])* from variable v.
Access paths express any PHP expression describing data-access without
loss of information. For example, consider the following PHP expressions
and the corresponding access paths in the state s: $a[$b]—[r(s)][a][[r($)][0]],

33a—[r(s)][[r(s)][al], $a[SO[Sc][2]-[r(s)][alllr (s)I[o][[r ()][lN][2].

4.2.4 Read Accesses

Tab. defines the read access. Fwval defines the set of values accessible
via an access path from a symbol-table variable at a given state (13). Vars
defines the set of variables accessible via an access path from the symbol-table
variable (14) or from an arbitrary variable (15).

If the access does not identify any variable, the set consists of the un-
defined variable undefVar (15-a)—(15-b). Otherwise the set of variables is
obtained by a traversal of the indexOf relation. The traversal starts from the
specified variable (16). At each level, the access can be performed either with
a statically-unknown value (17-a) or with a set of statically-known values (17-
b). In the first case, the set of variables at the next level involves all indices
of all variables at the current level. Note that these indices include unknown
fields. If the access is performed with a set of statically-known values, the set
of variables at the next level includes indices of all variables at the current
level that are identified by the values (18-a). Moreover, if the accessed index
is not yet defined for a variable at the current level, the unknown field of the
variable is added (18-b). Note that it is not necessary to follow aliases. The

11

CHAPTER 4. HEAP ANALYSIS

| # |Expression |
(13)| Eval(x, AP) = {a} if AP =a,a € Val
= {values(z,v),v € Vars(x, AP)} if AP =[][AP]*
(14)|Vars(z, AP) = Vars(z,r(z), AP)
(15)|Vars(z,v € Var, AP) = {undefVar} if AP =a,a € Val (a)
= {undefVar} it AP = [|[AP]...[AP,)]
ANVars,(z,v,AP) =0 (b)
= Varsy(z,v, AP) if AP =]] (c)
=Vars,(z,v, AP) if AP =[|[AP\]...[AP,]
AVarsy(z,v,AP) #0 (d)

)| Varso(z,v, AP)= {v}
(17)|Viet,.n :
Vars;(z,v, AP) = indices(x,Vars;_(z,v, AP))

if ¥ € Eval(z, AP;) (a)
= indices,(x,Vars,_i(z,v, AP), Eval(z, AP;))
if x ¢ Eval(z, AP;) (b)
(18) |indices,(x,V € P(Var),I € P(Val)) = indices(x,V, I)U (a)
UvEV,indEI{UJ ((u7 .)7 U) < Z.ndel"Of(I) (b)

/\ﬂwEVars((wv an)> U) € aneIOf(I)}

Table 4.4: Definition of read accesses.

42

4.2. FORMALIZATION

reason is that a write access copies the data to all possible targets, including
all possible aliases.

If a set of values at each level of an access path contains exactly one value,
the Var function yields a single variable. We use the notation [var|[vy]..[v,]
in state x to denote the variable Vars(z,var, [|[v1]...[uy]). If the state and
the variable from which the access is performed is clear from the context, we
write only [J[v1]...[vn].

Example 4: Assume the read-access at line 5 in Fig The access is
performed from the root variable of the state using the access path [|[arr][1].
The variable [|[arr] is defined at line 4, while the index [|[arr][1] of this
variable is not defined. Thus, the first level consists of variable [|[arr], while
the second level consists of its unknown field—[|[arr][e].

41.2.5 Write Accesses

Tab. defines the GEN' set, which contains variables that are created
by the assignment and alias statements—the variables statically mentioned
for the first time in the left-hand side of the statement?l It also defines
the variables that are updated by these statements. Tab. defines KILL
and GEN sets, which contains data that are removed and added to these
variables. Tab. defines the deep copy of a variable, which is used when a
new variable is created and when an existing variable is assigned to another
one.

Collecting Variables

Tab. defines four sets of variables. Must and may (22) are variables that
either must or may, respectively, be updated by the assignment statement,
must’ and may' (23) are variables for the alias statement. If a variable
must be updated, a strong update is performed—new information replaces
current information. If a variable only may be updated, a weak update is
performed—new information is added to the information already present at
the variable.

2In PHP, variables are defined also when they are mentioned for the first time in the
right-hand side of the alias statement, i.e., the statement $a = &$b defines the variable $b
if it is not defined. While we model this behavior in our implementation, we omit it from
the formalization to make the presentation of our approach more clear.

CHAPTER 4. HEAP ANALYSIS

Example 5: An example of a weak update is the update at line 4 in
Fig. [4.1]—it is not statically known which index of the variable [][arr] is up-
dated. Weak updates are also performed, e.g., at line 19 in Fig. While
variable [|[arr2][3] is strongly-updated, variables [|[arr][3] and [|[alias] that
may be aliases of [|[arr2][3] are only weakly-updated.

| # |Expression
(19) | deepcopyyssign (S € X x Var, T € ¥ x Var) :

(x5, V) € SA
(It; Ut) € TN
values (s, vy) D values(xg, vg) A (a)

vvsiEVarviSiEVal((Usiyisi)yvs) € mdexOf(:z:s) = ((b)
vy = createindex(xy, vy, ig) A
deepcopy((zs, Vi), (T4, V))A
(ﬂvunknEVaT((vunkn7 .)7 /US) E anexOf(x)/\

/ - .
- = createinder(xy, vy, @)\

values(xy, v, .n)

D {undefined}))
(20) | deepcopy(S € ¥ x Var, T € ¥ x Var) : deepcopy,sgign (S, T)A
(x5, V) € SA
(g, v4) e TA
aliaseSpust(Te, v1) 2 {a,a € aliases,ysi(Ts, vs) FA
aliaseSmay(x,vr) 2 {a,a € aliasesyay(xs, vs5) A

(21) | createindex(x, parent € Var,ind € Val) = {var, var = newvar(x)A
indezOf(x) 2 {((var,ind), parent) }\
values(z,var) 2 {undefined} A

aliaseSpyst(x,var) 2 {var}}

Table 4.5: Definition of deep copy of the index.

Similarly to read accesses, the variables which are updated by a statement
are defined by a traversal of the indexOf relation starting in the root variable
of the state. The traversal uses the access path of the left-hand side (LHSAP).
However, the traversal differs from that of a read access. The first difference
is that for a write access also the corresponding aliases are followed. That
is, all aliases whose data can be possibly changed are updated by the write
access. That is why it is not necessary to follow the aliases during read
accesses. The second difference is that if a write access to an index identified
by a statically known value is performed and this index does not exist, it is
created.

44

4.2. FORMALIZATION

] # \Expression ‘
Assignemnt / Alias: LHSAP = RHSAP/LHSAP = &RHSAP
LHSAP ~ [|[AP][AP,)]...[AP,]
Vj:172 ,,,,, an = EU&Z(APJ)
)|must = must, A may = mayy,
(23) |must’ = must!, A may' = may!,
)indices,,(V € P(Var),I € P(Val))
= indices(IN,V, 1)U
Uveviinaert defindex(v, ind),
Buevar((w,ind),v) & indesOfIN UGEN")}
(25) | defindex(v € Var,ind € Val)
= {i, ((u,®),v) € indexOf(IN U GEN")A
i = createindex(GEN', v, ind) A
deepcopy((IN UGEN' u), (GEN',i))}
) musty = {r(IN)} Amayy =0
(27) |Vjer2,.n
(L= 1AL # (1) A ()
must; = aliasess(indices,,(must;_q, 1;))\
may; = aliases(INy,indices,(may;_1,1;))U
aliasesyay(IN, indices, (must;_1,1;))))V

(] > 1 s ¢ L) A((b)
must; = QA
may; = aliases(INy,indices,,(may;_U
must; 1, 1j))))V
(re LAl (©
must; = A

may; = aliases(INy,indices(IN;, may;—1 Umust;_1))))
(Il = 1A 1, # {*}) A
must), = indices (must;_1))A
may,, = indices) (may;_1)))V
(] > 1A ¢ 1) A (
must], = DA

28

~—

may,, = indices!, (may;_1 Umustj_1)))V
(x € I, A (

must;, = OA

may, = indices(IN}, may,—1 Umust, 1)))

Table 4.6: Definition of collecting variables for an update.

CHAPTER 4. HEAP ANALYSIS

Creating new indices when traversing the indexOf relation is handled by
the definition of the indices,, set (24). Note that write accesses to unknown
fields in preceding program points could update also the newly defined index
and its sub-indices. Thus the new index contains a deep copy of the unknown
field (19). That is, it contains all values and aliases from the unknown field
(20)—(21-a) and also a deep copy of all indices of the unknown field (19-b).

Example 6: The statement at line 12 in Fig. creates a new variable
[[[arr][1]. The write access to the unknown field [|[arr][e] at line 11 could
update also this new variable and the data from this unknown field is thus

copied to a new variable. Thus the sub-index [|[arr][1][2] of the variable
[J[arr][1] is defined.

The traversal begins with the musty set initialized with the variable r (I Ny),
which corresponds to the symbol table and the mayy set initialized with the
empty set (26). The statement (27) describes a single step of the traversal
at the level j. The set I; of values used to access the j-th level of an asso-
ciative array can have (27-a) a single statically-known value, (27-b) several
statically-known values, or (27-c) it can contain a statically-unknown value.

Example 7: As an example of case (27-a), see the statement at line 9 in
Fig. The musty set consists of variable [r(GEN')|[arr][2], the may, set
of variable [r(IN)][alias], and the set of values I3 consists of value 3. Thus,
the musts set contains must aliases of the index [r(GEN')|[arr][2][3]. The
only must-alias of this index is the index itself. The mays; set contains all
aliases of index [r(GEN’)|[alias][3], which is again only the index itself and
all may-aliases of index [r(GEN')][arr][2][3], which is the empty set.

In (27-b) and (27-c), the must; set is empty—it is not known which index
is accessed. The may, set consists of all aliases of the indices of variables
in must;_, and may,_;. In case of (27-c), the variables do not need to be
identified by values of I; and no new variables are created.

Example 8: As an example, see the statement at line 12 in Fig. At
the second level, must, set consists of the variable [r(GEN")][arr]|[1] and the
may, set is empty. The musts set is empty, while the mays set consists of

variables [r(GEN')|[arr][1][2] and [r(GEN')|[arr][1][e].

16

4.2. FORMALIZATION

The difference between computing variables that will be updated by the
assignment and the alias statement (28) is caused by the fact that the assign-
ment statement updates the variable and all its aliases with new values while
the alias statement un-aliases the variable from all its original aliases while
keeping their values unaffected. However, the alias statement respects the
aliases at previous levels the same way as the assignment statement. In other
words, the expressions for obtaining indices to be updated for the assignment
and the alias statements treat differently only the last level.

Example 9: In the case of the alias statement at line 15 in Fig. [4.1], both
variables [r(GEN')|[arr][2][1] and [r(GEN')][alias][1] will be updated, since
([rf(GEN")][arr][2] is a may-alias of [r(GEN')][alias]). In the case of the
alias statement at line 16, only the variable corresponding to [r(IN)][arr][2]
will be updated—the variable r(IN)|[arr] has no alias.

Performing Update

Tab. defines how the collected variables are updated by the assignment
and alias statements. Expressions (29)—(31) describe the data that is removed
from the variables. Both the alias and assignment statements remove all the
values and indices of all updated variables that were present in these variables
before the update including the data added in collecting phase (29)—(30). The
alias statement also removes aliasing data (31).

Expressions (32)—(35) describe the data that is added to the variables. In
the case of a strong update (32), both the statements add just the data that
results from merging variables obtained by the read accesses of the right-
hand-side access path (RHSAP). In the case of a weak update, the original
variable is merged too, so the original data is preserved (33). Technically, the
update is described as first merging the data to a temporary fresh variable
and then copying it from this variable to the variable being updated (34)—
(35). The difference between the assignment and the alias statements is that
while the former one does not copy the alias data at the first level (34), the
latter one does (35). Note that for the other levels, the alias data are copied
also in the case of the assignment statement (20-b).

Example 10: As an example, see the update at line 20 in Fig [4.1] The
must set is empty, the may set consists of variables [|[arr]|[1], [|[arr][2],

17

CHAPTER 4. HEAP ANALYSIS

| # |Expression |
Assignment / Alias: LHSAP = RHSAP/LHSAP = &RHSAP
(29) |Vvemustumayumust umay volues(KILL,v) = values(INj,v)

(30) |Yvemustumayumust umay ndexOf KILL,v)= indezOf(IN},,v)

(31) | Yyemust aliases(KILL,v) = aliases(INj},, v)

(32) | Vo, emustumuse st¢ = {(IN,v),v € Vars(IN, RHSAP)}
(33)
(34)

Vocemayumay ST¢ = {(IN,v),v € Vars(IN,RHSAP)} U{(IN',v)}

vthmustUmay deepcopyassign((GENl7 v = fTeSh(GEN,))7 (GEN7 Ut))/\
mergeVars((GEN',v), src)

(35) |V emustumay deepcopy((GEN', v = fresh(GEN')), (GEN, v))A

mergeVars((GEN',v), src)

Table 4.7: Definition of updates for assignment and alias statement and new
object expression.

[[arr][e], [Jarr2][1], [[[arr2][2], [][arr2][3], and [][arr2][e]. Consider the up-
date of variable [|[arr][1]. Because the update is weak, new data results from
merging the result of read access of RHSAP, which is [|[arr2], with the vari-
able that is updated, which is [][arr][1]. Consequently, after the update, the
variable [|arr][l] contains indices [|[arr][1][1], [J[arr][L][2], and [][arr][1][3].
E.g., index [|[arr][1][1] contains the data merged from indices [][arr] [1][1]
and [][arr2][1].

Example 11: Now consider the update at line 17. The must set consists
of [] [arr2], the may set is empty. The read-access of the RHSAP results
in reading [|[arr]. Because the update is strong, [|[arr] is the only variable
that is merged and thus it is only deep-copied. Note that in the case of the
assignment statement, the alias data is copied for all the levels except for
the first one. Thus, because of the alias statement at line 16, [|[arr2][2] is a
must-alias of [|[alias3] and [][arr][2] and due to the alias statement at line
4, e.g., [|larr2][e] is a may-alias of [|[alias] and [][arr2][e]. Consequently, the
statement at line 18 strongly updates not only [][arr2][2], but also [|[arr][2]
and [][alias3]. Similarly, the statement at line 19 strongly updates [][arr2][3]
and weakly updates [|[arr|[e] and [][alias]. Thus, the subsequent read access
using access path [|[arr][3] would read also value 9.

4.2. FORMALIZATION

1.2.6 Merge

Tab. defines the merge operation. Expression (36) defines the operation
mergeStates, which is used in the first data-flow equation to define the I N
state of a node. It merges the root variables of the OUT states of all prede-
cessors of the node to the root variable in the IN state. Note that if the node
has only one predecessor, the merge actually corresponds to a deep copy.

Expression (37) defines how variables in given states are merged into the
resulting state. Note that this operation is used also when an update is
performed (34)—(35). In (37-a), for each variable being merged and a state
in which it is defined, the access paths of all sub-indices of the variable are
collected. The empty access path [|, which corresponds to the variables being
merged, is added to these access paths (37-a).

Example 12: For merging at the join point at line 13 in Fig. and
for the symbol-table variable of the first branch, the following access paths
are collected: [[alias], [|[alias][2], [[[alias][3], [Jlarr], [[larr][e], [][t], [t][2],

(larr][1); Olarr][12], Jlarr][3]; (larr)2], Dlarr][2][3].

Sub-expression (37-b) further extends the set of access paths. After the
extension, it contains an access path for each variable that will be defined
in the resulting state. For each access path that contains the value e (corre-
sponding to the unknown field) at a certain level it adds the access paths that
are created from this access path by replacing the value e with all the values
that are in the input access paths at this level. Note that this adds new
access paths to the resulting set only if there were performed corresponding
statically-known write accesses from different variables being merged. This
is analogous to copying indices of the unknown field when there is a write
access with a given value for the first time and a new variable is thus de-
fined. While write-accesses to unknown fields in preceding program points
could also create sub-indices of a newly defined variable, in the case of merge
there could be write-accesses to unknown fields that could create sub-indices
of variables created elsewhere. Both these operations are thus necessary to
preserve the invariant that if there could be a write-access to an index using
a statically known value at a given level, all the data that could be possibly
written to this index are stored there.

Example 13: When the merge at line 13 in Fig. is performed, the set
of access paths is extended with [][arr|[2][2], which then causes the corre-
sponding variable in the resulting state to be created. The reason is that

19

CHAPTER 4. HEAP ANALYSIS

’ # \ Expression

(36)

mergeStates(OUT € P(X)) = {IN,mergeVars((IN,r(IN)),
{(0,7(0)),0 € OUT})}

(37)

(38

~—

mergeVars(Re X x Var,M € P(X x Var)) :

APs =0,)em (accessPaths(z, vy, [])) U {{[]}A (a)

ResAPs = extend(APs)A (b)

Vaperesaps(merge AP(R, M, AP)) (c)
mergeAP(R = (xp € Z,vp € Var),M € P(X x Var), AP) :

resVar = createVar(R, AP)A a)

mergedV ars = Uaronnyen $(@nr, Var(@a, v, AP)) A (b)

(
values(o,resVar) = U(mm,vm)EmergedVaTs{Ualuesundef(IM? vm) IA (€)
aliaseSpmusi(T g, resVar)
= ﬂ(mm,vm)EmergedVars{aliasesmUSt (ZL’m, Um)}/\ (d)
aliasesyay (TR, resVar) (e)
= U(mmwm)Emergede{almsesmust(zm, Um) U aliasesmay (Tm, Um) }—
aliasespusi(T R, resVar)A
indices(x g, resVar) (f)

= U(wnuvm)emerged‘/ars
{createVar((x g, resVar),|[|[n]), n € indicesNames(Ty,, vpm)}

(39) |accessPaths(x € ¥,vg € Var, AP)
= U((i,iname),UR)emdezOf(x)(
{APliname]} U accessPaths(x,i, APliname]))
(40) | extend(APs)
= APsU
Ulelevels(APs)/\(APEAPs/\level(AP)>l){newAP(AP’l7valueS(APS>l))}
(41) [newAP([J[v1]...[vn], 1 € Int,V € P(Val))
={]] [U1]~-~[Un]7vi:l,...,n/\i;ﬁl(ui =u) Ay € V} fo=e
= @ lf (9 75 []
(42) |level([][v1].-[vn]) =n
(43)|levels(APs) ={l,l =level(AP) N AP € APs}
(44) |value([][v1]..[vn], 1 € Int) =y,
(45) |values(APs) = {v,v = value(AP) N AP € APs}
(46) |indicesNames(x,var) = {n, JipeverIneva((iv,n),var) € indexOf(x)}

Table 4.8: Definition of merge.

50

4.2. FORMALIZATION

while in the else branch [|[ar7][2] is not defined, there is a write access to
the unknown field at line 11 that could create a sub-index of this variable.
The read access using [|[arr][2][2] will follow [][arr][e] in the second level and
will finally [][arr][e][2], which contains values 6 and undefined. In the then
branch, [|[arr][2] is created and it will be thus added to resulting state of the
merge. The read access follows this variable at the second level. Thus, to ac-
cess value 6 with access path [|[arr][2][2], there must be a variable [|[arr][2][2]
which contains this value in the resulting state. This is analogous to copy-
ing data from the unknown field to a variable that is statically stated for
the first time when the update is performed, e.g., a new variable [|[arr][1][2]
containing values 6 and undefined is created during the update at line 12.

Sub-expression (37-c¢) merges variables corresponding to an access path in
the merged states to the variable which corresponds to this access path in
the resulting state. First the variable in the resulting state using the access
path and the output variable is created (38-a). Then, the corresponding
variables in merged states are obtained (38-b). Finally, the data of these
variables are merged to the resulting variable (38-c)—(38-f). Note that while
in the case of (38-a), the access path is used to create the variable which
directly corresponds to the access path, in the case of (38-b) the access path
is used to get variables in merged states by the read access (15). That is, in
the case of (38-b), the variables can be accessible by unknown fields even at
levels where the access path contains a static value. Note that both (38-a)
and (38-f) contain the expression create Var, however, resulting variables are
created only once—if expression createVar is used the second time with the
same arguments, it returns the existing variable.

Example 14: As an example, see the merge corresponding to the join point
at line 13 in Fig. For the access path [|[arr][1][3], variable [|[arr][1][3]
is be created in the resulting state. The merged variable in the first branch
is [J[arr][1][3], however, for the second branch, the data corresponding to
this access path is located in [][arr][1][e]. For the access path [|[arr][2][2], a
variable is created in the resulting state, the merged variables are undefVar
in the first branch and [][arr][e][2] in the second branch.

CHAPTER 4. HEAP ANALYSIS

4.2.7 Termination and Soundness

Termination: The values in our model are represented either by constants
present in the program or values x, undefined, and e. Thus the number of
values is finite. From this it follows that the number of defined indices in a
single dimension of arrays is finite. However, due to the presence of loops and
recursion, the infinite number of dimension may be generated. To ensure the
termination, the number of dimensions must be limited. This can be done
either explicitly [34] or implicitly by using, e.g., allocation-site abstraction [I,
9] for creating new dimensions of arrays. Then, the total number of indices
is finite and alias and indexOf relations are finite as well. The transfer
functions defined in Tab. Tab. [4.7] and Tab. are monotonic so the
fixpoint computation terminates.

Our heap analysis is implemented as a part of a static analyzer with the
support of operators such as +. Thus, potentially an infinite number of values
can be generated in the program due to presence of loops and recursion. To
ensure termination of fixpoint computation in this case, it is necessary to
limit the size of value sets of each variable by a constant—larger value sets
would be represented either by value * or by a finite abstract domain.

Soundness: We use the following soundness argument:

If a value can be written to a given variable (index) by a write-
access at the node n; of CFG, it is read from this variable by
a read access in node ny of CFG that follows n; if and only if
there is a path from n; to ny in CFG where the variable is not
strongly-updated by different value. Moreover, if there is a path
from the initial node to a given node such that a variable was
not strongly-updated, the set of the variable values returned by
a read access always includes the undefined value.

Note that a value can be written to a given index also if the write access is
statically unknown at any level. Also note that there can be an arbitrary
number of join points between n; and ns. We do not provide the proof of
the argument; however, its validity follows from definitions of read accesses,
write accesses, and merge.

4.3 Summary of Chapter 4

In this chapter, we described dynamic accesses to associative arrays and
prototype objects, which are common in dynamic languages, but make it hard

52

4.3. SUMMARY OF CHAPTER 4

to apply static analysis. In particular, we described the semantics of non-
decomposable multidimensional updates to associative arrays and prototype
objects. This semantics creates new array indices and object properties that
are accessed during the update if they do not exist and initializes them with
empty arrays and objects when also further dimensions are updated.

As a solution to this problem, we proposed heap analysis modeling dy-
namic accesses. Since prototype objects can be modeled using associative
arrays, we described the analysis in terms of associative arrays.

We defined how read and write data accesses are performed and how anal-
ysis states are joined. To resolve data accesses and compute the shape of the
heap precisely, the heap analysis tracks also values of variables and array in-
dices. Similar to [48] 30, 28], we model updates of statically unknown indices
by employing special index called unknown field. The main contribution we
made was that unlike existing techniques, we took into account the seman-
tics non-decomposable multidimensional updates to associative arrays. We
model such updates soundly and precisely even if statically-unknown data
from the input are used to specify targets of the updates.

Our technique has two important limitations. First, we assume expres-
sions that contain just index-access (property-access) operators and simple
abstract domain for tracking values, which is defined together with heap
analysis. To the contrary to this, in dynamic languages, values of many
primitive types can be used and expressions can involve other operators and
implicit conversions. This requires complex abstract value domain and com-
plex transfer functions for this domain. Combining such value analysis with
heap analysis ad hoc is complex and error-prone.

Second, we assume that the control-flow graph (CFG) of the application
is given as an input of the analysis. While this assumption is realistic for
static languages, for dynamic languages with (dynamic) method calls and
dynamic includes, CFG must be computed during the analysis.

To overcome these limitations, Chapter [] presents a static analysis frame-
work for dynamic languages. The framework builds CFG during the analysis.
To gain all necessary information, it uses value analysis tracking values of
all PHP primitive types, modeling dynamic type system, native operators,
native functions, and implicit conversions. Importantly, the framework de-
fines the interplay between heap and value analysis and thus allows defining
these analyses independently of each other. As the interplay is generic, it not
only simplifies definitions of these particular analyses, but allows independent
definition of additional heap and value analyses (e.g., taint analysis).

(:,l
(OS]

CHAPTER 4. HEAP ANALYSIS

54

Framework to Static Analysis of
Dynamic Languages

To analyze programs precisely and soundly, the static analysis (e.g., taint
analysis) needs to resolve method calls, include statements, and accesses to
data structures. Since in dynamic languages, targets of method calls and
include statements can depend on information about values (and types) of
expressions, value analysis tracking values of all primitive data types present
in the language needs to be performed. Moreover, due to frequent use of
dynamic data structures such as associative arrays and objects, value analysis
needs to be combined with heap analysis. The dependence is also the other
way around—since array indices and object properties can be accessed with
arbitrary expressions, the heap analysis needs value analysis to evaluate these
expressions. This makes any end-user static analysis overly complex.

In this chapter we present modular static analysis framework for lan-
guages with dynamic features. The framework automatically resolves dy-
namic features and makes it possible to define static analyses without taking
these features explicitly into account.

In particular, the contributions we made are the following:

e We present the architecture of the framework and how dynamic features
are automatically resolved.

e We define value analysis tracking values of all primitive data types of
PHP. Its main contribution is the design of a lattice structure that fits
with the purpose of providing enough information for automatically
resolving dynamic constructs.

e We define the interplay between a value analysis and a heap analysis
that models associative arrays and (prototype) objects. The interplay
allows defining both analyses independently and it also allows combin-
ing different value and heap analyses. Here the main challenge is to
take dynamic index and property accesses into account—indices and

ot
(@2

[25]

[25]

CHAPTER 5. FRAMEWORK TO STATIC ANALYSIS OF DYNAMIC
LANGUAGES

Lattice L true

Top T Bool

Initial value init(v) true if v € $_.SESSIONU ..
false otherwise

Transfer function TF(LHS = RHS) wvar =\, cpygr if var € LHS
var = var otherwise

TF(n) var = var if n is not assignment
Join operator U(z,y) Tz Vy

Table 5.1: Propagation of tainted data.

properties are created when they are accessed for the first time and ac-
cesses can be made with arbitrary expressions, yielding even statically
unknown values.

5.1 Motivation

As a motivational example, consider static taint analysis, which is often used
for security analysis of web applications. It can be used for detection of
security problems, e.g., SQL injection and cross-site scripting attacks. Static
taint analysis can be described as follows. The program point that reads
user-input, session ids, cookies, or any other data that can be manipulated
by a potential attacker is called source, while a program point that prints out
data, queries a database, etc. is referred to as sink. Data at a given program
point are tainted if they can pass from a source to this program point. A
tainted data are sanitized if they are processed by a sanitization routine
(e.g., htmlspecialchars in PHP) to remove potential malicious parts of it.
Program is vulnerable if it contains a sink that uses data that are tainted
and not sanitized.

Static taint analysis can be performed by computing the propagation of
tainted data and then checking whether tainted data can reach a sink. The
propagation of tainted data computed by forward data-flow analysis is shown
in Tab. . The analysis is specified by giving the lattice of data-flow facts,
the initial values of variables, the transfer function, and the join operator.

Consider now the code in Fig. The code contains two vulnerabili-
ties. At lines (25) and (26) the method show of Templl can be called, its
parameter $msg can be tainted and the parameter goes to the sink. Taint
analysis defined using our framework uses just the information in Tab

IFor simplicity we omit the specification of sanitization.

5.2. OVERVIEW AND ARCHITECTURE

and can still detect both vulnerabilities. This is possible only because the
framework automatically resolves control flow and accesses to built-in data
structures. That is, the framework computes that the variable $t can point
to objects of types Templl and Templ2 and that the variable $mode can
contain values show and log. Based on this information, it automatically
resolves calls at lines (25) and (26). Moreover, as the framework automat-
ically reads the data from and updates the data to associative arrays and
objects, at line (24), the tainted data are automatically propagated to index
$users[’admin’] [’addr’] defined at line (11). Consequently, the access of
this index at line (26) reads tainted data.

5.2 Overview and Architecture

The architecture of the framework is shown in Fig. The analysis is split
into two phases. In the first phase, the framework computes control flow of
the analyzed program together with the shape of the heap and information
about values of variables, array indices and object properties and evaluates
expressions used for accessing data. The control flow is captured in the
intermediate representation (IR), while the other information is stored in
the data representation. IR defines the order of instructions’ execution and
has function calls, method calls, includes, and exceptions already resolved.
In the second phase, end-user analyses of the constructed IR are performed.

Static Analysis Framework

First phase First phase
<<uses>> . .
framework N\ implementation
<<us§s>> rd
<<implements>>
Data representation
i AST - heap domain) Heap domain
PHP IR - value domain <<implements>> implementation
; parser : - declaration domain
/1 <<implements>>
<<uses>>

End-user analysis / End-user analysis

<<uses>> . .
framework implementation

Output

Figure 5.1: Architecture of the framework.

ot

[25]

CHAPTER 5. FRAMEWORK TO STATIC ANALYSIS OF DYNAMIC
LANGUAGES

Data representation stores analysis states—data of heap, value, and decla-
ration analysis—and allows accessing analysis states. In particular, it allows
reading values from data structures, writing values to data structures, and
modifying shape of data structures. Next, it performs join and widening of
analysis states and defines their partial order. Importantly, data representa-
tion defines the interplay of heap, value, and declaration analyses allowing
each analysis to define these operations independently of other analyses.

The implementation of the first phase must provide information neces-
sary for computing control flow of the program and accessing data. That
is, it must define value analysis that tracks values of PHP primitive types,
evaluates value expressions modeling native operators, native functions, and
implicit conversions. Next, the implementation must define declaration anal-
ysis handling declarations of functions, classes, and constants. Finally, the
implementation of the first phase must compute targets of throw statements,
include statements, function and method calls, and it must define context
sensitivity.

The implementations of end-user analyses define additional value analy-
ses. In contrast to value analysis for the first phase, which must track values
of PHP primitive types, end-user value analyses can be specified using an
arbitrary value domain. This is possible because (1) control flow is already
computed, (2) the shape of the heap is computed and dynamic data accesses
are resolved (i.e., value expressions specifying data accesses are evaluated).
That is, all information that data representation needs to discover which
variables, array indices, and object properties are accessed is available. (3)
Data representation combines heap, value, and declaration analyses automat-
ically. That is, to perform operations with analysis states, it uses standard
operations of combined analyses.

5.5 Intermediate Representation

The intermediate representation (IR) of our analysis is a graph, in which
each node contains an instruction. There are two types of nodes in the
graph—uwalue nodes and non-value nodes. Value nodes compute and store
representation of values while non-value nodes perform other actions. The
graph has two types of edges. Flow edges represent potential control flow
between instructions of the program—they define ordering in that program
instructions can be executed. Value edges connect nodes that use values with
nodes that represent these values.

Each node has associated an analysis state stored in data representation.
The state is modified by transfer function defined for the node and the re-

58

5.3. INTERMEDIATE REPRESENTATION

sulting state is propagated to successor nodes connected with flow edges. If
a node has more predecessors the states of predecessors are joined.

Note that transfer functions for most of the value nodes are defined as
identity—they do not modify the analysis state. That is, most of the value
nodes just compute the values (e.g., evaluate expressions) or compute infor-
mation that specify data access to values (e.g., compute possible names of
variables that they represent). This information is stored in data representa-
tion, but it is not part of the analysis state and thus it is not propagated to
successor nodes. Instead, nodes that use these values (e.g. operator nodes)
are connected with value nodes (e.g. operands) using value edges. If an
operand value is needed when evaluating the operator, the value edge is used
to get the value from the operand.

Example 1: As an example, consider intermediate representation corre-
sponding to the statement $$a=b($c). The statement assigns the value com-
puted by function b to a variable with name given by the value of variable $a.
The resulting intermediate representation is depicted in Fig. [5.2] Note that
the node corresponding to the assignment instruction is connected using a
value edge with the source of the assignment (the node containing the value
computed by the function b) and with the target of the assignment (the node
representing the assigned variable—$). Next, the latter node is connected
using a value edge with the node representing possible names of the assigned
variable (the node $a).

The nodes can be of different types. In the following, we denote value
nodes by adding superscript V. Next, nodes are connected with the value
nodes that are their arguments using value edges:

variable” [n"]: represents a variable—stores the information necessary for
accessing the variable in data representation. NV is the value node
that represents a name of the variable. Note that reading n" yields an
arbitrary value from the abstract string domain and can thus represent
more concrete string values—names. Consequently, the variable node
can represent more concrete variables.
property-use" [0¥, f¥], index-use”[a",i"]: property-use" stores the infor-
mation for accessing a property of given object. OV is the value node
storing a representation of the object and fV is the value node storing
the name of the property. Again, reading o' and fV yields abstract
values and the property-use" node can get representation of more prop-
erties. The index-use" is similar and it is used for accessing arrays.

59

CHAPTER 5. FRAMEWORK TO STATIC ANALYSIS OF DYNAMIC
LANGUAGES

assign”[IV',rV]: represents the assignment of the right operand r" to the
left operand [Y and stores the information for accessing this value.

While the parameter [V is a value node whose type can be variable,

property-use, and item-use, the parameter 7" is an arbitrary value
node.
alias”[1V, rV]: represents the alias statement. The alias statement is similar

to the assignment statement. However, besides performing the assign-
ment, the alias statement creates explicit alias between its parameters
and both parameters of the alias statement must be variable, object
property, or array index.

Vie,of v

expression" [e, o , ..., 0) |: represents the expression e with operands o7 , ...,

oY . Tt stores the representation of the result.

assume/c]: represents assumption implied, e.g., by if and while statements.
It indicates whether the condition c¢ is feasible. If the condition is
unfeasible, the flow is not propagated to the descendant nodes.

constant-declaration[d]: represents declaration of a constant.
function-declaration[d]: represents declaration of a function.
class-declaration[d]: represents declaration of a class.

call”[n", 0", a], construct”[n",a]: represents a call of a function whose
name is specified using the value node n" on an object specified using
the value node 0" with arguments specified using a list of value nodes
a. The construct” nodes are similar to call’ nodes and are used for
new expressions. Note that reading n, 0¥, and elements of a yields
abstract values that can represent more concrete values. That is, e.g.,
the function to be called in a single call point can be determined by an
expression that can yield more concrete values and thus more functions
can be called in a single call point.

return[e’]: represents a return from a function. The value node €' repre-
sents the value of a return expression.

include[p"]: represents the inclusion of the script given by the path specified
by the value node p¥'. Again, path can represent more concrete values.

eval[c']: evaluates a code specified by value node c"".

native-method[]: represents execution of native method or native function.

60

5.4. BUILDING IR

extension|[f, a]: follows call”, construct”, include, and eval” nodes. During
the analysis, the control flow of these nodes is extended using a single
extension node for each function, method, and constructor that may
be called, script that may be included, and code that may evaluated.
Extension node is followed by an initial node of the graph that cor-
responds, e.g., to the body of the function. Parameter f is a node
that is extended and parameter a is a list of value nodes representing
parameters of a call. These parameters are used to initialize function
and constructor calls—for example to bind actual parameters to formal
parameters.

extension-sink[n]: represents a join point of all the extensions of the node
n.

try-scope-start|c| and try-scope-end[c] represent the start and the end of the
try block. C represents catch blocks associated with the try block.

throw[vV]: represents the throw statement. V is a node representing the
value to be thrown.

catch[v"]: represents catch block. It has a node representing the first node
of the catch block as a flow child. V is a node representing the value
to be thrown.

5.4 Building IR

To determine control flow of the analyzed application, the information from
value analysis is needed. Thus, the IR is built gradually during the analysis.

Initially, IR for the entry script of the application is built. This IR con-
tains caller nodes—the nodes corresponding to function, method, and con-
structor calls, script inclusions, and eval statements. Since at this point,
the information needed to compute control flow from these nodes is not yet
available, the control flow from these nodes is set to be empty.

The control flow of caller nodes is extended during the static analysis.
When processing a caller node, the analysis framework provides the first
phase implementation all information computed by the analysis so far rele-
vant to determine the control flow. Using this information, the first phase
implementation finds appropriate function and method definitions and scripts
to be included, and it computes IRs representing their control flow. The first
phase implementation can build new IRs or use existing IRs, which are then

61

CHAPTER 5. FRAMEWORK TO STATIC ANALYSIS OF DYNAMIC
LANGUAGES

i

Figure 5.2: Intermediate representation of the statement $$a=b($c). Solid
edges are flow edges, dashed edges are value edges.

shared between multiple caller nodes. This way, the first phase implementa-
tion can control context sensitivity.

Finally, the control flow of the caller nodes is extended with these IRs.
IRs are not connected to caller nodes directly—extension node is inserted be-
tween each caller node and the entry node of the connected IR and extension-sink
node is inserted between each final node of the IR and the node following the
call. While extension node binds actual parameters to formal parameters for
function, method, and constructor calls, extension-sink joins states of final
nodes of all the IRs that extend the corresponding caller node.

Example 2: Fig. 5.3}A shows IR when it is initially built and the caller
node is not extended. Fig. [5.3}B shows the intermediate representation after
extending the caller node during the analysis. In this case, the caller is
extended with more IRs—this can happen, e.g., if a method is called on an
object that can be of more possible types. Fig. [5.3}C shows the case when a
single IR is shared by multiple callers.

5.5. ANALYSIS DOMAIN

5.5 Analysis Domain

The states of our abstract domain have a form of State = H x V' x F' where
H is a state of the heap analysis, V' is a state of the value analysis, and F'is
a state of the declaration analysis. The heap analysis tracks the shape of the
heap and approximates concrete locations with heap identifiers (HId) while
the value analysis tracks values on heap identifiers. While the heap analysis
and value analysis need to interplay, the declaration analysis is independent
on both.

5.5.1 Declaration Analysis

Declaration analysis is necessary, because in PHP and other dynamic lan-
guages, the names of functions, classes, and constants are bound to concrete
definitions during runtime. The analysis thus needs to track these definitions.
A state of a declaration analysis F' is a set of class, function, and constant
declarations and lattice operators of the analysis are (F, C, U, N).

Example 3: Consider the following PHP code:
1 if ($_GETI[1]1) A

2 class A {

3 public $a = 1;

4 function f($p) { return $p + 1;}
5 %

6} else {

7 class A {

8 public $a = -1;

9 function f($p) { return $p - 1;%
10 }

11}

12 $x = new AQ);

13 $y = $a->f($x->a);

Since the condition at line (1) is statically unknown, the declaration anal-
ysis computes that both declarations of the class A can be used at line (12).
Consequently, the call at line (13) has two possible callees resulting in two
possible results.

CHAPTER 5. FRAMEWORK TO STATIC ANALYSIS OF DYNAMIC
LANGUAGES

5.5.2 Heap Analysis

In PHP and other dynamic languages, variables as well as array indices and
object properties need not be declared and can be accessed with arbitrary
expressions, which can yield even statically unknown values. If a specified
variable, index, or object property exists, it is overwritten; if not, it is created.
Note that when a variable, index, or property is created, there could be
statically unknown assignments that could update it and this new variable,
index, or property should be initialized with corresponding values.

To be able to capture this semantics, heap analysis approximates arrays,
objects, array indices, object fields, and even Variableﬂ with heap identifiers
and it can manage these heap identifiers. In particular it can materialize
identifiers from existing identifiers (i.e., create new identifiers that are ini-
tialized using existing identifiers) both during assignment and join operation.
These changes are propagated to value analysis.

To enable materialization of heap identifiers that have not been certainly
updated by any statically-unknown assignment, the value component always
contains the heap identifier 77 representing undefined value. Such identifiers
are materialized from this heap identifier.

Example 4: Fig.[5.4/shows the heap and value component of the state after
the update at line 23 in Fig. [I.I] We use adopted heap analysis developed
in Section 4 and set domain as a value domain. Note that the value domain
tracks values just over these heap identifiers that can contain values. Other
heap identifiers are present only in the heap domain.

The heap component of the state contains an array Root representing
a symbol table. The array contains three heap identifiers (id, users, and
?), which represent program variables ($id and $users) and statically un-
known variables. For the heap identifier id, the value analysis tracks the
value AnyString, while the heap identifier users is present only in the heap
domain and points to an array. The heap identifier users—-admin represents
the index admin of the array, while the heap identifier users-? represents
statically unknown indices of the array. Both heap identifiers point to arrays
representing next dimensions. Finally, heap identifiers users-admin-addr,
users-admin-name, users-admin-?, users-7-name, and users-?-7 repre-
sent indices of these arrays. Since these heap identifiers store values, they
are tracked by the value analysis.

2Variables are treated as indices of associative array representing symbol table.

64

5.5. ANALYSIS DOMAIN

Heap identifiers are accessed using the function read € AE +— P(HId)
provided by the heap component. The function returns a set of heap iden-
tifiers identified by given access expression. Access expression is obtained
from nodes of type variable”, property-use”, and index-use'. In case of
variable”, access expression is the set of values, in case of property-use’,
and index-use’, it is a sequence of sets of values. Every set from the se-
quence contains values that can be used to access corresponding dimension
of an array or corresponding object in object reference chain. That is, access
expressions can represent multi-dimensional updates. This is necessary to

model semantics of updates that does not allow decomposing them.

Example 5: Consider reading an index $users[10] [’name’] from the
state depicted in Fig. The access expression for the index is {users}
{10}{'name'}. The function read returns the heap identifier users-?-name.
This heap identifier is then used to read values UndefString and AnyString,
which correspond to undefined value and statically-unknown value.

Similarly, when reading an index $users[$ GET[1]] [’name’], access ex-
pression is {users}{x}{'name’}, the function read returns heap identifiers
users-7-name and users-admin-name, and the subsequent call to the value
domain returns values UndefString, AnyString, and ’addr’.

We assume that the heap analysis is provided with lattice operators (H, Cj,
,Un, Mp). The operator Cj, specifies the partial order, L, is join operator, and
My, is meet operator. The semantics of heap analysis is given by a transfer
function [e], € H — H.

Moreover, we assume that the heap analysis provides a function joinToVa-
lue € H x H — P(HId x HId) x P(HId x HId) that for each joined state
returns pairs of heap identifiers, where the first identifier in each pair is
the identifier that is materialized from the second identifier in the pair (i.e.,
the first identifier should be inserted to the joined state and it should be
initialized with values of the first identifier).

Finally, we assume that the heap analysis provides a function assignToVa-
lue € H x APE — P(HId x HId) x P(HId) x P(HId) that returns the
heap identifiers that are materialized by the assignment statement, the heap
identifiers that certainly must be updated, and the heap identifiers that may
be updated.

CHAPTER 5. FRAMEWORK TO STATIC ANALYSIS OF DYNAMIC
LANGUAGES

5.5.3 Value Analysis

The states of the value analysis have a form of V = V; x V5 where V] is a
state of the value analysis in the first phase and V5 is a state of the value
analysis in the second phase (end-user analysis).

Second phase. Value domain for the second phase tracks information over
heap identifiers and it is provided with lattice operators (H,C,,, ,,,M,,),
transfer function [e],, € V5 — V5, and widening operator V,,. It can be fully
specified by the user of the framework.

First phase. In the first phase, the value analysis tracks values of PHP
primitive types over heap identifiers:

Vi = HId — Value;
Value; = Undef x Null x Bool x Num x String

Since PHP has dynamic type system—variables, array indices, and object
properties do not have declared types, and they can store values of different
types depending on context—, Value; can store values of all primitive types.

For numeric component Num, we use interval domain. Other components
are described by the following lattices:

undef null Ar/lyBc\)ol
Undef = | Null = | Bool =true false

AnyString

71N

String = {"str 17, ”str 27}
7N
{’7Str 177} {”Str 277} . {77 Str n”}

\/

uE

String component is represented by a lattice of sets that contain strings.
The size of sets is limited by a constant, thus the lattice is finite.

66

5.6. LATTICE ORDER AND MEET

Example 6: The abstract value (L, L, AnyBool, L, 1) represents a con-
crete value that is of type boolean, the abstract value (undef, L, |, true,
{"fo0”, "bar”}) represents a concrete values that is either undefined, the
boolean true, the string "foo", or the string "bar".

For all components of Value; except of Num, we define widening operator
V to be equal to the join operator L.

5.0 Lattice Order and Meet

The lattice order Cgiate and meet operator Msiage for the analysis state are
defined component wise:

(h1,v1, f1) Cetate (ho,v2, f2) <= h1 Tp hao Avy Ty 02 A f1 C fy
(h1,v1, f1) Ntate (h2, v2, f2) = (ha M b, v1 Ty va, f1 0 fo)

5.(Join and Widening

The join of two facts is defined as the set of all facts that are implied in-
dependently by both. The join and widening of two states (hy, vy, f1) and
(hg, va, f2) is defined as follows:

(h1,v1, f1) Ustate (ha, v2, f2) = (ha Up he, vy Uy vh, f1 U fo)
(h1,v1) Vstate (ha, v2) = (h1 Up ha, v]V,vy, f1 U f2)
(n1,ng) = joinToValue(hy, hy)

v=] [t=s(w)

(t,s)eny

b= || It=sl(v)

(¢,8)ENs

Declaration and heap parts of input states are joined independently on
other parts. To perform the join of value parts, the heap component provides
the value component information about heap identifiers that are material-
ized in each joined state. This information is provided via the function
joinToValue. For each joined state, the function returns a set of pairs (¢, s)
where ¢ is the heap identifier that is materialized from the heap identifier

67

CHAPTER 5. FRAMEWORK TO STATIC ANALYSIS OF DYNAMIC
LANGUAGES

s. That is, the heap identifier ¢ should be added to the value component of
the state and initialized with values of the heap identifier s, which is already
present in the value component. Note that s contains values of statically
unknown assignments that could update the new identifier .

After the information from the function joinToValue is provided, both
value parts are updated with new identifiers using assignment transfer func-
tion for the value domain. Finally, the updated value parts are joined using
the join operator for the value domain.

Example 7: Fig.[5.5shows joining value and heap components of two states
(v1, h1) and (v, he). For brevity we omit declaration components. Again, we
use adopted heap domain from Section [4| for heap component and set domain
for value component.

For the first state to be joined, heap identifiers arr-1-3, arr-1-7, and
arr-7-7 are materialized from the heap identifier ?? representing undefined
heap identifier. That is, there were no statically-unknown assignments that
could update these identifiers. These identifiers are thus added to the value
component and initialized with UndefString. For the second state, heap
identifiers arr-1-7, arr-1-2, and arr-1-3 are added to the value compo-
nent. Note that since there was statically-unknown assignment that could
update the latter identifier, this identifier is materialized from the identifier
arr-7-3. It is thus initialized with values UndefString and second.

Note, that the resulting value components v} and v, have the same set of
heap identifiers. Finally, the join is performed component-wise.

5.8 Transfer Functions

For each kind of node in the intermediate representation, a transfer function
maps an abstract state before the node to an abstract state after the node.

We describe the transfer function for the node assign'[IY,r"], where
both parameters [V and r" are nodes of type variable”, property-use’, or
index-use”. Each of these nodes makes allows getting access expression,
which provides information necessary for accessing the value represented by
the node. The access expression for the parameter [V is [Y.AE, the access
expression for the node ¥ is V. AE.

The transfer function for updating the state (h,v) with assign"[l,r"] is

defined as:

68

5.8. TRANSFER FUNCTIONS

[assign" [1, 7]]state(hs v, f) = ([l.AE = 7. AE],(h), 2", f)
(1, Lnusts lmay) = assignToValue(h, [.AE)

o' = || [t =s](v)

(t,s)€n

" = || [t = s].(v") L |] o' Ut = s]o(v")

tElmust,s€read(h,r.AE) tE€lmay,s€read(h,r. AE)

The transfer function for the heap part of the state is defined by the heap
domain itself, and it is not influenced by the value domain.

To perform the transfer function for the value part of the state, the heap
domain provides the value domain necessary information via the function
assignToValue. This information consists of: (1) n—a set of pairs of heap
identifiers representing heap identifiers that are defined by the assignment
and their initial values, (2) heap identifiers that are certainly targets of the
assignment, and (3) heap identifiers that may be targets of the assignment.
The same way as in case of creating new heap identifiers during the join, each
heap identifier ¢ that is defined by the assignment is materialized from the
heap identifier s that already was in the state before the assignment. The
identifier s contains values from statically unknown assignments that could
update the new identifier ¢.

After the information from the function assignToValue is provided, the
value component is updated using its transfer function for the assignment.
First, new heap identifiers are defined, second the heap identifiers represent-
ing targets of the assignments are updated. Note that the heap identifiers
that only may be targets of the assignment are weakly updated. That is,
since it is not certain whether these identifiers are updated by the assign-
ment, after the assignment, they either can have the original values, or the
new values. This effect can be approximated by Av.v U [t = s],(v).

Example 8: Fig. illustrates the transition function for the assignment
at line 24 in Fig First, the access expressions for the source and the tar-
get of the assignment are obtained from the corresponding IR nodes. For the
source of the assignment, the access expression is { GET }{addr}, for the tar-
get of the assignment, the access expression is {users}{AnyString}{addr}.
Note that in the latter case, the value for the second dimension of the access
is specified by the variable $id.

69

CHAPTER 5. FRAMEWORK TO STATIC ANALYSIS OF DYNAMIC
LANGUAGES

Second, the access expressions are used to update the heap component
of the state. During the update, the heap component materializes the heap
identifier users-7-addr. This change is propagated to value component
via the function assignToValue. Note that since there have not been any
statically unknown assignments that could update this heap identifier, it is
materialized from the identifier ?? representing undefined values. That is
the identifier users-7-addr is added to the value component and initialized
with UndefString.

Finally, the function assignToValue specifies that identifiers users-7-ad-
dr and users-admin-addr are weakly updated. Since the target of the as-
signment is not statically known, there are no heap identifiers to be strongly
updated.

The definition of the transfer function for the node alias' is analogous
to the definition of the transfer function for assign’. Again, the transfer
function for the heap part is not influenced by the value part and the heap
part provides value part information of the same form.

5.9 Summary Heap Identifiers

Value analyses are designed to track information on local variables, while we
use value analyses to track information on heap identifiers that can represent
many concrete heap locations—summary identifiers. Consider, e.g., heap
identifiers representing targets of statically unknown assignments and heap
identifiers representing a single allocation-site in that many concrete heap
locations can be allocated. While value analysis can treat heap identifiers
that represent a single heap location exactly the same way as local variables,
for summary heap identifiers, it must take into account that they represent
more heap locations.

First, summary heap identifiers must be always weakly updated. In our
framework, heap analysis has to take this into account in function assignTo-
Value, which defines identifiers that are weakly and strongly updated by the
assignment. This is enough for non-relational value domains—these value
domains can otherwise treat summary heap identifiers the same way as local
variables.

However, in case of relational value domains, it is additionally necessary
to treat differently assignments from summary heap identifiers. Consider the
code:

5 $a = $users[$_GETI[1]1];

70

5.10. SUMMARY OF CHAPTER 5

6 $b = $users[$_GET[2]];
7 if ($a '= $b) {...%}

Our heap analysis represents both $users[$ _GET[1]] and $users[$ _GET
[2]] by the same summary heap identifier users-?. Our technique would
thus abstract the semantics of assignment at line (1) as [a = users—?], and
the semantics of assignment at line (2) as [b = users—7],. If v was relational
domain the analysis would relate both identifiers a and b with the summary
identifier users-7? and incorrectly infer that the if branch can never be
reached. This problem was studied by Gopan [21] et. al., who showed that it
is wrong to correlate summarized objects with non-summarized objects and
proposed the way how existing relational domains can be extended to deal
with this problem.

In our framework, the value domain in the first phase is non-relational
and all value domains for end-user analyses that we implemented so far were
also non-relational. To use relational value analyses, these analyses need to
be extended to summary dimensions and the framework has to specify which
heap identifiers are summary.

5. 10 Summary of Chapter 5

Dynamic languages are challenging for static analysis: features such as dy-
namic type system, dynamic method calls, and dynamic includes imply that
the control flow must be computed together with value analysis. Moreover,
since data structures such as associative arrays and objects are frequently
used, to gain sound and precise results, value analysis must be combined
with heap analysis. This is, however, fundamentally complicated by ubiqui-
tous use of dynamic index and property accesses. To define even simple but
sound and precise static analysis (e.g., taint analysis), all these challenges
need to be addressed. This makes a huge barrier preventing static analysis
to be more used in the context of dynamic languages.

To solve this problem, we introduced a framework for static analysis of
dynamic languages. The framework splits the analysis into two phases. While
in the first phase, the framework computes control flow and information for
accessing data structures, in the second phase, information from the first
phase is used for end-user analyses.

The control flow is captured in the intermediate representation (IR). Since
the control flow is not known before the analysis, the framework builds IR
during the analysis. To provide the framework values necessary for com-
puting control flow and values for resolving dynamic index and property

71

CHAPTER 5. FRAMEWORK TO STATIC ANALYSIS OF DYNAMIC
LANGUAGES

accesses, we defined a lattice structure for a first-phase value analysis. The
lattice structure provides information about values of PHP primitive types
that a heap identifier (i.e, a variable, an array index, and an object prop-
erty) can store at a program point. Because of dynamic type system, a heap
identifier can store values of more types at a single program point.

In order to allow heap and value analyses to be defined independently
and to allow automatic combining of various heap analyses with arbitrary
value analyses, we defined the interplay of value and heap analyses. To
take into account dynamic index and property accesses, the heap analysis
can materialize heap identifiers both during the join and assignment and the
framework automatically propagates these changes to the value analysis. The
interplay supports non-relational value analyses; however, it can be extended
to also support relational value analyses.

Since end-user analyses use control flow computed in the first phase and
the interplay allows value analyses to automatically access variables, array
indices, and object properties, value end-user analyses can be defined without
taking dynamic dynamic features explicitly into account.

~I
(\]

5.10. SUMMARY OF CHAPTER 5

Before call

Before call

v

Caller node

v

After call

Caller node

N

extension

extension

~

extension-sink

1
1
1
1
1
1
1
1
1
1
:
1
[IR1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

After call

1
1
1
1
1
1
1
1
1
1
1
1
1

IR2 !
1
1
1
1
1
1
1
1
1
1
1
1
1

B

A

Before call Before call
Caller node Caller node
extension extension

extension-sink

extension-sink

After call

After call

Figure 5.3: Building IR. Initial IR—the control flow of the caller node has
not yet been extended (A). IR after processing the caller node during static
analysis. The control flow of the caller node is extended with two IRs—IR 1

and IR 2 (B). Single IR shared between multiple caller nodes (C).

-~
wo

CHAPTER 5. FRAMEWORK TO STATIC ANALYSIS OF DYNAMIC
LANGUAGES

Value Heap

i i Root
id {AnyString}

? {UndefString}

Users-admin-addr {admin}

Users-admin-? {UndefString} @ Hsers
Users-?-name {UndefString, AnyString} M I_?J
Users-?-? {UndefString}

?? {UndefString} users-?

Figure 5.4: The heap and string part of the value component of the state
after the update at line 23 in Fig. [L.1]

5.10. SUMMARY OF CHAPTER 5

A
if ($_GET[1]) Sarr[1]1[2] = ‘first‘; // (vy,hy)
else $Sarr([$ GET[1]][3] = ‘second‘; // (v hy)
B U1 hy L) h;
arr-1-2 {first} arr ? arr-?-3 {UndefString, arr 2
second}
arr arr arr-?
? ?
[
— .
arr-1
C joinToValue joinToValue
[arr =1 =3 =27], (v;) [arr—1-2=77], (vp)
[arr —=1-7=77], (v1) [arr —1 -3 = arr—?-3], (v,)
[arr—?—-7=77], (v1) [arr —1=-72=77], (vy)
17’1 'UIZ
arr-1-2 {first} arr-?-3 {UndefString, second}
arr-1-3 {UndefString, second}
D U .
Join

VU, v, hy Up hy

arr-?-3 {UndefString, second}
v

arr-1-2 {UndefString, first}

arr-1-3 {UndefString, second} arr
N
arr-1 arr-?

Figure 5.5: Joining value and heap components of two states (vq, ;) and
(vg, hy). The corresponding code (A), value and heap components of joined
states (B), adding new heap identifiers to value components of joined states
(C), result of the join (D). For the sake of space, the heap identifiers that
have just value UndefString are not depicted in value components.

CHAPTER 5. FRAMEWORK TO STATIC ANALYSIS OF DYNAMIC
LANGUAGES

A
[susersisid)(‘adar’) = s GET[‘addr'] |

B v h

id {AnyString} Root E

addr
_GET-? {AnyString}
id
users-admin-addr {admin} l_l users
sers
users-?-name {UndefString, AnyString} E | admin I m
_GET
GET
C assignToValue \ -
[users—? —addr =77],, (v)
, users-?
v
)

id {AnyString}

_GET-? {AnyString}

users-admin-addr {admin} [{usersH{AnyString}{'addr’} =

users-?-name {UndefString, AnyString} {GET} addr'}], (h)
D assignToValue

[users—? —addr = GET-?], (v") U, v’
[users — admin — addr = GET-?],(v") U, V'

vl’

id {AnyString} Root :
addr

_GET-? {AnyString}

users-admin-addr {admin, AnyValue} users

A

users-?

Figure 5.6: Transfer function for the assignment. The code of the assignment
(A). The value and the heap component (v, h) of the state before the assign-
ment (B). Adding the new identifier users-7-addr to the value component
of the state (C). The value component v” and the heap component of the
state after the assignment (D). For the sake of space, the heap identifiers
that have just value UndefString are not depicted in value components.

. . users
users-admin-? {UndefString, AnyValue}

i

users-?-name {UndefString, AnyString}

Implementation

As a proof-of-the-concept of our research, we created analysis framework
for PHP applications [25] and we uses the framework to implement a tool
for analysis of PHP applications integrated to Eclipse IDE. Both the frame-
work and the tool are parts of WEVERCA (WEDb VERIifiCAtion for PHP)
project and are available at http://d3s.mff.cuni.cz/projects/formal_
methods/weverca/.

0.1 Analysis Framework

The architecture of the framework is depicted in Fig. To parse PHP
sources and get abstract syntax tree (AST), the framework uses PHALAN-
GER [42], [6]. The rest of the framework is divided into two parts—AST-level
analysis framework and static analysis framework.

AST-level framework traverses AST and provides API for implementing
code metrics and AST-level checks.

Static analysis framework provides API for implementing static analy-
ses. The architecture of static analysis framework follows the architecture
described in Chapter f] We implemented the following components:

e Data Representation stores analysis states (data of value, declara-
tion, and heap analyses), performs join and widening of analysis states,
compares the states, and provides API for manipulating and read-
ing the states. Data representation also provides API allowing both
first-phase and end-user analyses implementations define type of data
tracked by the value analysis, define partial order on this data, and
define join and widening operators applied to this data.

WEVERCA contains two implementations of heap analysis. The first
implementation follows the semantics described in Chapter [4] support-
ing associative arrays as well as objects and accesses to these structures
using even statically unknown values. The second implementation of

http://d3s.mff.cuni.cz/projects/formal_methods/weverca/
http://d3s.mff.cuni.cz/projects/formal_methods/weverca/

CHAPTER 6. IMPLEMENTATION

Metrics
implementation
AST-level Framework
AST-level checks
Outputj implementation
AST
Phalanger Static Analysis Framework
parser - -
First phase First phase
<<uses>> . .
framework implementation
AST <<impl>>
<<uses>> -) Heap domain
Heap domain < <<impl>> . X
i implementation
Data Declaration /
representation domain <<impl>>

IR T
<<uses>> Value domain
<<impl>>
. \ .
End-user analysis End-user analysis
<<uses>>

framework implementation

Output

'

Figure 6.1: Architecture of WEVERCA framework. Impl stands for imple-
ments.

heap analysis is designed with focus on scalability and does not pre-
cisely model accesses with statically unknown values and provides less
precise modeling of explicit aliases.

First-phase framework uses information provided by first-phase im-
plementation and data representation to build intermediate representa-
tion (IR), controls evaluation of expressions, resolving dynamic accesses
to data structures, and handling declarations. Next, it defines API for
first-phase implementation. First-phase implementation must define
value and declaration analyses providing first-phase framework infor-
mation for computing control flow and accessing data structures and
provide first-phase framework specification of context-sensitivity.

First-phase implementation. WEVERCA contains default imple-
mentation of declaration analysis tracking declarations of constants,
functions, and classes and value analysis, which tracks values of all
PHP primitive types, precisely models native operators, native func-
tions, and implicit conversions. Default implementation of the first
phase also specifies full context sensitivity.

End-user analysis framework provides API allowing end-user anal-
ysis to perform actions at each IR node being processed during anal-

6.2. ECLIPSE-BASED TOOL

ysis. Note that while first-phase analysis must track values necessary
for computing control flow and accesses to data structures, end-user
analyses use control flow and accesses to data structures computed in
the first phase.

Thus, to implement end-user analysis, it is just necessary to (1) spec-
ify values stored by the analysis, define partial order on these values,
specify join and widening operators applied on these values and (2) use
API provided by end-user analysis framework to specify how values are
manipulated at IR nodes—to read and write values, use API provided
by data representation.

e Implemented end-user Analyses. WEVERCA contains implemen-
tation of taint analysis. In addition to information whether data are
tainted, it tracks information necessary for computing all the potential
sequences of assignments from the source of sensitive data to the sink.
Next, since the routines for sanitization data differ depending on the
sink and source (e.g., there are different routines for sanitization data
for usage in SQL commands and sanitization data for sending it to the
browser), it also distinguishes between various taint flags .

0.2 Eclipse-based Tool

Using the framework, we created a tool for analysis of PHP applications.
The tool is implemented as a set of plug-ins for Eclipse IDE, which allows
analyzing PHP applications in a convenient way. It provides functionality
based on both AST-level analyses and static analyses.

6.2.1 AST-level Functionality

The tool uses AST-level analyses to provide the following functionality:

e Code metrics. The tool allows displaying the following code metrics:

Number of lines
— Number of sources

— Maximum inheritance depth

Maximal depth of method overriding

Class coupling

79

CHAPTER 6. IMPLEMENTATION

Functions coupling

e Suspicious constructs. The tool allows to display warnings about
potentially dangerous constructs and functions:

Database functions.

Session functions. Read or write data that preserve across sub-
sequent requests.

Autoload. Use of function __autoload or spl_autoload regis-
ter. These functions allow to load a type that has not been yet
declared.

Magic methods. Methods that are called automatically when
some operation with the enclosing object is performed (e.g., when
a property of the object is read or written).

Class presence.
Explicit aliasing.

Nested function declaration. Functions and classes declared
inside functions and methods. Locally declared function or class
becomes global after the first call of enclosing function or method,
however it cannot be redeclared. Since calling the function or
method that declares another function or class more than once
results in runtime error, we consider nested function declaration
a bad practice.

Use of super global variable. Represent, e.g., an application
input ($_GET, $_POST, $_REQUEST), session data ($_SESSION), and
files uploaded to the current script ($_FILES).

Dynamic dereference. Specifying name of a variable using
value of another variable, e.g., $$a is a variable whose name is
given by the value of the variable $a.

Dynamic call. Specifying name of the function or the method
to be called using value of variable.

Dynamic include. Specifying the file to be included using an
expression.

Eval. Evaluating dynamically-generated code.

Passing by reference at call site. In PHP, parameter of a
function or method can be specified to be passed by reference
(i.e., the function can change its value) either at the callee site

6.2. ECLIPSE-BASED TOOL

(i.e., when declaring a function) or at the call site (i.e., when
calling a function). The latter way is deprecated, as the function
should specify its contract.

6.2.2 Static Analysis Functionality
The tool uses static analysis to gather information providing:
e Unreachable code.

e Abstract call stack for each program line representing all concrete
call stacks for the program line that can happen at runtime.

e Shape of the heap and values of variables, array indices, and
object properties for each program line and context.

e Warnings for semantic problems. For each semantic problem, the
tool shows abstract call stack allowing to identify what is the cause
of the problem. The errors that the tool detects are of the following
categories:

— Security errors. The tool uses taint analysis to identify security
vulnerabilities detecting problems that allow cross-site scripting,
SQL injection, and file include manipulation attacks.

— Call errors. Errors that can occur during calls of functions, calls
of methods, and file inclusions. These errors include calling func-
tion that is not declared, including file that does not exist, wrong
number of arguments, calling inaccessible method, and wrong type
of arguments for calls to native functions.

— Call resolving errors. Errors indicating that the analyzer was
not able to resolve a call or a file inclusion. These include an error
indicating that the analyzer cannot compute names of functions
to be called and that it cannot compute paths to files that should
be included.

— Array, object, and class accesses errors, e.g., accessing non-
existing property, accessing inaccessible field, cannot use the oper-
ator -> on non-object, class constant does not exist, cannot access
parent class, and cannot index string with negative numbers.

— Class and interface declaration errors, e.g., cannot re-declare
class, cannot override function, and cannot redeclare interface
method.

81

CHAPTER 6. IMPLEMENTATION

— Other errors, e.g., division by zero, converting object to integer
by arithmetic operation, and cannot instantiate abstract class.

e Taint flows for security errors, the tool allows visualizing flows of sen-
sitive data from sources of sensitive information to critical commands.
For each flow, the tool displays all assignments of sensitive data.

82

6.2. ECLIPSE-BASED TOOL

| Tasks & | Static Analysis Overview & Static Analysis Wamnings 2 k| Variables o w = B
Description Resource/Taint Flow Line Priority
4 & Security warmning: Unchecked value goes into | /PHP_project/PHP_files/file2.php 28 high

*» Possible taint flow:
» Possible taint flow:
4 G Called from:
& Called from:

- {/PHP_project/PHP_files/indexphp) -> Line 5-> Line 8 -> ..
- (/PHP_project/PHP_files/file2.php) -> Line 10 -> Line 11 -...
J/PHP_project/PHP files/file2.php 24
/PHP_project/PHP_files/index.php 12

Figure 6.2: The screenshot from our Eclipse-based tool showing information
about a security warning discovered by taint analysis. This includes abstract
call stack and information about involved sink together with possible flows

of tainted data to the sink.

Position
file2.php
-= Line 28
index.php

4 -=Line 11

4 ->Line 10
-= Line 4

-> Line 5

& Taint Flow 2 =0

Preview

echo $x;

$d = $h.5c

$b = %a;

$a = §_POST[a";
$c = $_POST['cT;

Figure 6.3: The screenshot from our Eclipse-based tool showing visualization
of a flow of tainted data from two sources (lines 4 and 5) to the sink (line
28). Tainted variables are shown in red.

CHAPTER 6. IMPLEMENTATION

[£/ Problems i Tasks E Console [Static Analysis O Variables 22 = O
o
type filter text
4 < Global variables ~
> @ $7
> @ § POST
> @ $_GET
» % $_SERVER
> % $_COOKIE
» % $_SESSION
> % $_FILES
> % §_REQUEST
» % SGLOBALS
> % $_ENV
> @ Sphp_errormsg
» % Sargc
> @ Sargv
4 % %a
= AnyValue
- Taint
& HTML dirty
& Sal dirty
& File path dirty
> @ Sclass
4 % Sb
®= AnyFloatValue
4 % G
®="1" Type: Int32
> @ $x
- 4 Arrays v

Figure 6.4: The screenshot from our Eclipse-based tool showing visualization
of a shape of the heap and values of variables, array indices, and object
properties computed by the analysis for a particular program point.

84

Experimental Results

This chapter presents experimental evaluation of our techniques using the
proof-of-the-concept implementation WEVERCA described in the previous
chapter. In particular, we present an evaluation of the scalability of the heap
analysis presented in Chapter [4on synthetic PHP codes and two case studies
conducted on real PHP codes.

(.1 Scalability of Heap Analysis

The novelty of heap analysis described in Chapter[]is that it soundly and pre-
cisely models the semantics of non-decomposable multidimensional updates
to associative arrays-like data structures even if statically-unknown data from
the input are used to specify targets of such updates. Other analyses, such
as [31], [60], 57, 30 [48] are more limited, e.g., they model the semantics in
that the updates can be decomposed. The fundamental question we want to
answer therefore is thus how our analysis scales.

To evaluate our heap analysis we used the code CODE n that was gener-
ated from the code fragment at lines (2)—(19) in Fig. [4.1| replicated 2" times
with all the variables except for the variable $any with the prefix unique for
each replica. This code contains non-trivial dynamic read and write accesses
to multiple levels of associative arrays; the number of variables in this code
grows exponentially with n. However, the number of variables that are af-
fected by the merge operation at each join point is constant. That is, each
branch being merged modifies only constant number of variables. Since we
want to also know how the merge operation of non-trivial states scales with
respect to the number of variables affected by the merge operation, in addi-
tion to CODE_n, we generated the code mCODE n. The code mCODE n (Fig
is defined using CODE n in a way that both branches merged by the top-level
merge operation modify all variables defined in CODE_n and all the variables
are thus affected by the merge operation.

Tab. shows the results of analysis of mCODE n and CODE_n for different
values of n. The table shows the number of nodes of generated CFG, the

8 f-}

[26]

CHAPTER 7. EXPERIMENTAL RESULTS

$any = $_GET[’user_input’];
if ($any) { CODE_n }
else { CODE_n 7}

Figure 7.1: The code mCode n used for the evaluation.

n|CFG nodes Variables Analysis T1me (s)
(mCODE_n/CODE n) (mCODE_n/CODE n)

1(235 / 117 107 0.4/0.3

21463 / 231 211 1.3 /0.7

31919 / 459 419 49 /2.5

411831 / 915 835 22.8 / 10.3

Table 7.1: Number of nodes in control-flow graph, number of variables, and
analysis times for generated codes.

number of variables defined in the analysis state of the program end point,
and the running time of the analysis. From the results it follows that when
the number of variables is small, the analysis is fast. Note that our test-
ing codes are created so that complex data accesses are performed for all
n—computation time of both write and read accesses depends only on the
complexity of data access and does not depend on the number of variables
in the state. That is, the results show that the only factor that impacts the
analysis time significantly is the number of variables.

Tab. shows the scalability of the merge operation with respect to
number of variables affected by the merge. The results show that the depen-
dence between the number of variables and merge time is about linear. Bad
scalability of the heap analysis for large number of variables is caused by the

\n|Variables| Merge time (ms)]|
1107 3
21211 6
31419 12
41835 27

Table 7.2: The scalability of the merge operation with respect to the number
of variables affected by merging. For each n, the top-level merge operation in
mCode n was measured—all the variables defined in the mCode n are affected
by the merge operation.

86

7.2. CASE STUDIES

fact that in our current implementation there is no sharing of data between
the states. That is, all data stored in a state of a CFG node are copied
to states of its successor nodes. Note that CFG nodes usually modify only
small portion of analysis state and copying of unmodified data is superfluous.
For large number of variables, such superfluous copying of data takes most
analysis time and causes that the analysis does not scale for large number of
variables.

We believe that by optimizing the implementation, the scalability of the
analysis with respect to number of variables can be highly improved and our

analysis can scale up to thousands of variables and tens of thousands nodes
of CFG.

(.2 Case Studies

We used the tool presented in Section implemented as a part of the
WEVERCA project, to analyze two PHP applications with a total of over
16,000 lines of PHP code. We analyzed these applications also with P1xy [31]
and PHANTM [33], the state-of-the-art tools for security analysis and error
discovery in PHP applications, and compared the results.

7.2.1 Benchmark Application

Benchmark application comprises of a fragment of myBloggie weblog system[]
The application contains known set of 13 problems, which allows us to assess
error coverage and false positive rate for each analysis tool.

Tab.[7.1|shows the summary of results. WEVERCA outperforms the other
tools both in error coverage and number of false positives. Since WEVERCA
is much more precise than compared tools, we believe that slightly longer
analysis time is a good pay off.

Identified Problems

WEVERCA discovered all problems in the benchmark application. We now
describe a selection of them.

1) Misplaced sanitization. For sanitizing user input, myBlogie frequent-
ly uses function intval, which converts its parameter to integer. WEVERCA

Thttp://mybloggie.mywebland.com/

87

[25]

[25]

CHAPTER 7. EXPERIMENTAL RESULTS

’ \ WeVerca \ Pixy \ Phantm ‘

Warnings (#) 16 16 43
Error coverage (%) 100 69 23
False positive rate (%) 23 44 93
Time (s) 2.2 0.6 2.5

Table 7.3: Analysis of the benchmark application comprising of 648 lines of
code.

found one case where this function misplaced—it is called after the assign-
ment instead of before the assignment:

intval($comment_id = $_GET[’comment_2d°’]) ;

$sql = "... WHERE comment_id=§comment_<d ...";

$result = mysql query("... WHERE comment_id=
$comment_zd ...");

2) Missing initialization. In several places, a variable can be uninitialized
and it is sent to the browser or used in database query. The simplified version
of the corresponding code is:

if (isset ($_SERVER[’HTTP_HOST’]1)) {

$myUrl = "http://".$_SERVER[’HTTP_HOST’].$pathweb;
}
elseif (isset ($_SERVER([’SERVER_NAME’]1)) {

$myUrl = ’http://’.$_SERVER[’SRV_NAME’].$pathweb;
}
echo $myURL;

If neither $_SERVER[’HTTP_HOST’] nor $_SERVER[’HTTP_NAME’] is set,
the variable $myURL, which is sent to the browser, remains uninitialized.

False Alarms

WEVERCA reported 3 false alarms. We now describe causes of these false
alarms.

1) Modeling of function date. The first false alarm reported by WEV-
ERCA is caused by imprecise modeling of built-in function date. The simpli-
fied version of the corresponding code is:

$lang[’Januvary’] = ‘Januvary’;
$lang[’February’]l = ’February’;

88

7.2. CASE STUDIES

$lang[’December’] = ’December’;

$month=gmdate(’n’, time());

$year = intval($_GET[’year’1);

$monthIndx = date(’F’, mktime(0, 0, 0, $month, 1,
$year)) ;

echo $lang[$monthIndx];

WEVERCA only models the return value of the function data by its type
and deduced that the function can return any string value. However, while
the first argument of the function is "F", the function returns only strings
corresponding to English names of months. The value returned by this func-
tion is used to access the index of an array id$lang, which is initialized with
indices corresponding to English names of months, WEVERCA incorrectly
reports that an undefined index of the array can be accessed. Note that this
false-alarm can be resolved just by modeling the built-in function data more
precisely.

2) Path-insensitivity. Two remaining false alarms are caused by path-
insensitivity of the analysis. The simplified version of the corresponding
code is:

$post_id = $_GET[’post_<d’];

if ($mode == "wiewid") A{
$post_id = intval($post_id);

+

if ($mode == "wiewid") {
$query = "... post_id="$post_id’ ...";
$result = mysql_query($query);

}

The sanitization and sink commands are guarded by the same condition;
however, there is a joint point between these conditions that discards the
effect of sanitization from the perspective of path-insensitive analysis.

To filter out these false alarms, one can either use the technique of path-
sensitive validation of alarms proposed in our paper [24] or some technique of
path-sensitive static analysis [61], 12} 3], [46] 11} 49, 13]. The former technique
is more efficient than the latter techniques and can be implemented quite
easily using our framework. In general, it allows filtering less false positives;
however, we believe, it could filter out most of false positives due to path-
insensitivity in real-world web applications.

89

[25]

[25]

[25]

[25]

CHAPTER 7. EXPERIMENTAL RESULTS

7.2.2 Email Client

For the second case study, we used a NOCC webmail client?] Tab. shows
summary of results for WEVERCA analyser. To assess false positive rate, we
inspected all reported warnings and determine whether the warning is a false
alarm. Since we do not know the set of all security problems in NOCC, we
were not able to assess error coverage.

We do not show results for P1Xy and PHANTM. As PIXY supports only
version 4 of PHP and NOCC uses object-oriented features introduced in
version 5, PIxXY is not able to analyze NOCC. PHANTM was able to analyze
NOCC in two minutes and it reported 406 warnings. However, since PHANTM
does not provide call context of reported problems, inspecting these warn-
ings in application of NOCC size is laborious if not impossible. Moreover,
high false-positive rate of 93% even in the benchmark application makes the
output of PHANTM in larger applications almost uselesﬂ.

Warnings (#) 54
False positive rate (%) | 76
Time (s) 238

Table 7.4: Analysis results for WEVERCA for NOCC email client comprising
of 15605 lines of code.

Identified Problems

Out of 54 alarms, 13 alarms correspond to real problems. We now describe
a selection of them:

1) Sending tainted value to the browser. WEVERCA reported one
case where a value that can be influenced by the input is sent to the browser
without being sanitized. The simplified version of the corresponding code is:

$domainnum = $_REQUEST[’domainnum’];

$_SESSION[’nocc_domainnum’] = $domainnum;

print (’<div><input type="hidden" name="
saved_domainnum'" wvalue="’.$_SESSION["’
nocc_domatnnum’]. " /></div>’);

2http:/ /nocc.sourceforge.net/
3 PHANTM allows invoking static analysis from a particular runtime state [34]. This
greatly reduces false positive rate. However, the application is analyzed only partially.

90

7.2. CASE STUDIES

The value from the request ($_REQUEST[’domainnum’]) is propagated to
the index $ SESSION[’nocc_domainnum’] and then sent to the browser. Note
that as this flaw allows performing cross site scripting attacks, it is very dan-
gerous. In this case, the attacker can manipulate the request (e.g., by sending
a victim a link that represents manipulated request) to $ REQUEST[’domain-
num’] contain a malicious JavaScript. If the victim clicks on the link, the
JavaScript in $ REQUEST[’domainnum’] is sent to the victim’s browser and
is executed there.

2) Opening file specified by tainted value. WEVERCA reported two
cases where values that can be influenced by the input are used to specify
the file to be opened. The simplified version of the corresponding code is:

$_SESSION[’nocc_user’] = $_REQUEST[’user’];
$server = $_REQUEST[’server’];

$user_key = $_SESSION[’nocc_user’] . ‘@’
$_SESSION[’nocc_domain’];

$filename = $conf->prefs_dir . ’/’ . $user_key
‘. filter’;

$file = fopen($filename, ’7°);

Values from the user input ($ REQUEST[’user’] and $ REQUEST[’ser-
ver’]) are propagated to indices $_SESSION[’nocc_user’] and $_SESS-
ION[’nocc_domain’]. Finally, $user_key is used to create $filename, which
is used to specify the file to be opened. Note that by manipulating $ REQUE-
ST[’user’] and $ REQUEST[’server’] any file with character ’@’ in its
name of or its path and extension filter located in arbitrary directory in
the server can be opened.

3) Calling a function with undeclared argument. WEVERCA de-
tected one case where a function was called with an argument that is not
declared. The simplified version of the corresponding code is:

function save_session() {

}

save_session($argument);

The function save_session has no argument declared. Since in PHP, the
function to be called is given only by its name (PHP does not support func-
tion overloading), PHP calls the correct function and ignores the argument.
However, we believe that such calling a function with superfluous argument
is a bad practice.

91

CHAPTER 7. EXPERIMENTAL RESULTS

4) Superfluous implicit conversions. WEVERCA detected several cases
of superfluous implicit conversions. For example, it detected that built-in
function set_magic_quotes runtime is used with integer argument instead
of boolean. The triggered implicit conversion of integer to boolean results
in correct result; however, we believe that implicit conversions should be
avoided when possible.

False Alarms

WEVERCA reported 41 false alarms. While the number of false alarms is
high, they have relatively small number of causes. We now describe all these
causes of reported false alarms.

1) Imprecisely modeled built-in functions. WEVERCA reported 21
false alarms due to imprecise modeling of return value of built-in func-
tions. As an example, here is the simplified version of the code correspond-
ing to false positive due to imprecise modeling of the function imap mi-
me_header_decode:

$source = imap_mime_header_decode($header) ;
for ($j = 0; $j < count($source); $j++) {
$element_charset = ($sourcel[$jl->charset == ~

default’) 7 detect_charset($sourcel[$jl->text)
$source[$jl->charset;

}

While the function imap mime header decode returns array of objects
with fields text and charset, WEVERCA models the return value just by
AnyArray. Accessing AnyArray yields AnyValue and finally, accessing fields
text and charset on AnyValue causes reporting a false alarm.

2) Widening of arrays. WEVERCA reported 10 false alarms due to
widening of arrays. To guarantee the termination of the analysis, the cur-
rent implementation of heap analysis use widening of arrays and objects. If
the the number of indices of some array infinitely grows, the array is re-
placed with AnyArray. Since adding or removing indices to AnyArray has no
effect—it results again in AnyArray, the computation eventually converges.
However, this widening is neither precise nor sound—as the content of the
array is lost, it can lead both to false alarms and also to missed errors. The
simplified version of the corresponding code is:

$structure = imap_fetchstructure($conn, $msgnum) ;
$num_parts count ($structure ->parts) ;

7.2. CASE STUDIES

$parts = array();
for ($i = 0; $i < $num_parts; $i++) {

$part[$i] = new NOCC_MailPart($structure, $i);
}

foreach ($parts as $mailPart) {
$mailPart->getPartStructure () ;
}

Since the built-in function imap_fetchstructure is modeled just by ty-
pes, it returns AnyObject. Accessing a field of AnyObject returns undefined
and AnyValue. In the former case, WEVERCA reports a false alarm that
possibly undefined object property is accessed. Next, the variable $parts
is initialized with an empty array. In the for cycle, the array is filled with
instances of NOCC_MailPart until the array is widened to AnyArray. Next,
accessing the indices of the array in the foreach cycle yields AnyValue and
finally a false alarm reporting that the method getPartStructure is not
defined is reported. Note that in this example, due to widening of the array,
the method getPartStructure is not analysed and the analysis can also
miss errors.

To solve this problem, we want to employ widening that soundly overap-
proximates values stored in the array to be widened.

3) Unmodeled assumption of built-in function. WEVERCA reported
6 false alarms that unsanitized value from user input can be sent to the
browser. In all these cases, the input was correctly sanitized by testing
whether the input value is equal to the name of some key in given array. The
simplified version of the corresponding code is:

$themeName = $_REQUEST[’theme’];
if (array_key_exists($themeName, $this->_themes))
$_SESSION[’nocc_theme’] = $theme_name;

else
$_SESSION[’nocc_theme’] = ’standard’;

echo ’<img src="themes/’ . $_SESSION[’nocc_theme’]
’/img/new.png" alt="" />7;

In the if branch a value from the input is assigned to the variable
$_SESSION[’nocc_theme’]. However, the condition of the branch implies
that the input value is equal to the name of some key in the array $this->
_themes containing all valid themes. In the else branch, the variable $_SESS-
I0ON[’nocc_theme’] is assigned a constant value. That is, the value in the
variable $ SESSION[’nocc_theme’] is valid in all cases and it can be safely

CHAPTER 7. EXPERIMENTAL RESULTS

sent to the browser.

WEVERCA does not model assuming the effects of the function array _ke-
y_exists and it is thus not able to deduce that the input is sanitized in the
if branch.

4) Path-insensitivity. WEVERCA reported two false alarms that a single
file can be incorrectly included more than once due to path-insensitivity when
modeling the function require_once. In PHP, this function checks whether
a specified script has been already included and if not, it includes (interprets)
the script. It can be thus modeled as:

if ('included($file)) require($file);

The included script may contain arbitrary code, but in most cases, it contains
just declarations of functions, classes, and constants. In PHP, functions,
classes, and constants are declared at runtime, but attempts to redeclare
these result in runtime error. When trying to find these errors, the analyzer
reported many false alarmg due to path-insensitivity in the following cases:

$input = $_GET[’input’];
if ($input)

require_once (’nocc_matladdress.php’);
require_once (’nocc_mailaddress.php’);

Joint point of the if statement discards the information that the script
’nocc_mailaddress.php’ was certainly included and WEVERCA includes
the script twice.

The same way as in the case of false alarms due to path-insensitivity in the
benchmark application, these false alarms can be detected by the technique
of path-sensitive validation of alarms proposed in [24].

5) Imprecise modeling of read accesses to abstract strings. WEV-
ERCA reported an access to possibly uninitialized string offset. The simplified
version of the corresponding code is:

for ($i=0; $i<strlen($string); $i++) {
$string[$i] = $stringl[$il]~ $key;
}

The variable $i ranges over initialized offsets of the variable $string.
However, the content of the variable $string is not statically known and

4In order to not overload user with too many false alarms, we switched off individual
alarms reporting attempts to redeclare constants, functions, and classes. Instead, we just
report that a script can be included more than once using require_once.

94

7.3. SUMMARY OF CHAPTER 7

WEVERCA abstracts it using AnyString abstract value. Since WEVERCA
models the result of call to function strlen on AnyString using AnyInteger
abstract value, it reports an access to possibly uninitialized string offset.
That is, the false alarm is caused by imprecise modeling the correlation be-
tween the length of the string being argument of the function strlen and
the result of the function.

6) Imprecise modeling of assumptions. In one case, WEVERCA re-
ported sending possibly uninitialized data to the browser due to imprecise
modeling of assumptions. When processing assumptions, WEVERCA refines
only data stored in variables. That is, data stored in array indices and object
properties are not refined. The simplified version of the corresponding code
is:

if ('isset ($_SESSION[’nocc_theme’])) {
$_SESSION[’nocc_theme’] = ’standard’;

T

echo $_SESSION[’nocc_theme’];

While the assumption of the if branch implies that the index $_SESSION[’no
cc_theme’] is undefined, the assumption of the else branch implies that
the index is defined. However, in former case, the index is defined by the
assignment. That is, the index must be defined after the join of the if
statement. However, since the data are stored in array index, WEVERCA is
not able to infer that the index cannot be undefined in the else branch and
reports the false alarm.

| d
/

(.5 Summary of Chapter 7

To summarize the results, the evaluation performed on synthetic PHP code
shows that the heap analysis implemented as a part of our framework scales
well even when complex data accesses are involved. Merging analysis states
is fast even for analysis states with complex structures. Moreover, merging
analysis states scales almost linearly with number of variables modified in
merged branches. The scalability of the current implementation is limited
by the fact that it does not share any data between the states. For future
work, we want to eliminate this limitation by employing data sharing.

We showed that WEVERCA can scale even for real applications. We used
WEVERCA to conduct two case studies analyzing over 16,000 lines of PHP
code.

95

CHAPTER 7. EXPERIMENTAL RESULTS

The results for the first case study (benchmark application) are impres-
sive. WEVERCA outperforms state-of-the-art tools in both error coverage
and false positive rate while achieving good analysis time.

For the second case study (NOCC email client), WEVERCA found one
previously unknown security flaw, which allows the attacker to perform cross
site scripting attacks and two less serious security flaws. Moreover, WEV -
ERCA found 10 problematic code fragments that we consider a bad practice.
While WEVERCA reported 41 false alarms, these false alarms were caused by
relatively few limitations of the tool. These are imprecise modeling of built-in
functions, imprecise (and unsound) widening of arrays, path-insensitivity, im-
precise modeling of read accesses to abstract strings, and imprecise modeling
of assumptions. In our future work, we want to eliminate these limitations.

96

Conclusion and Future Work

Looking back at the goals from Section (3] i.e.:

e G1 Design heap analysis for dynamic languages.

o G2 Generically define interplay of heap and value analyses for dynamic
languages.

e G3 Design framework for static analysis of dynamic languages.

the contribution of this thesis can be summarized as follows:

Fulfilling the goal G1 We created heap analysis modeling associative
arrays and prototype objects and backed it with full formalization. Since
prototype objects can be modeled using associative arrays, we described the
analysis in terms of associative arrays.

The analysis tackles the following challenges in static analysis of asso-
ciative arrays: (1) Indices are not declared—if an updated index exists, it
is overwritten, otherwise it is created. (2) Indices can be accessed using
arbitrary expressions, which can yield even statically unknown values. Con-
sequently, the set of indices employed for an array is not evident from the
code. (3) Specifically for multidimensional arrays, updates cannot be de-
composed. The reason is that updates create indices if they do not exist and
initialize them with empty arrays if also further dimensions are updated; on
contrary, read accesses do not.

Since existing heap analyses for dynamic languages address just challenges
(1) and (2), the main contribution of our heap analysis is that we address all
of them.

We solved the problem of updates to statically unknown array indices by
employing special index called unknown field, which is contained in each array
and stores information from such updates. To represent multidimensional
arrays, all indices (including unknown fields) can contain a set of values and
also can point to another associative array—the next dimension.

97

CHAPTER 8. CONCLUSION AND FUTURE WORK

To take into account the semantics of non-decomposable multidimensional
updates, an update is represented using a list of expressions, where each
expression specifies an access to one dimension of the array. The update
starts in the first level. Then, at each level indices corresponding to values of
an expression that belongs to the current level, are followed. If the expression
yields a statically unknown value, all indices (including the unknown field)
are followed. If the expression yields values for which there do not exist
corresponding indices in the array, these indices are created and all data that
could be assigned to new indices using previous statically unknown updates
are copied to these indices. Then, the traversal continues using also new
indices.

Finally, we defined how multidimensional associative arrays with un-
known fields are joined. Here, the challenge was to determine the set of
indices of the resulting array—due to the unknown fields and semantics of
accesses to associative arrays, the resulting array may contain indices that
are not present in any array being merged. After the set of indices of the
resulting array is determined, indices in the input arrays can be merged pair-
wise.

While we focused on soundness and precision of the analysis, we showed
that prototype implementation of the analysis scales to real-world programs.

Fulfilling the goals G2 and G3 We introduced the framework for static
analysis of dynamic languages that allows defining end-user static analy-
ses independently of dynamic features. This is possible because: (1) The
framework defines how heap and value analyses interplay. This allows value
analysis to automatically access variables, array indices, and object proper-
ties. (2) The framework coordinates resolving dynamic features. It defines
which information must value analysis provide for resolving dynamic features
(i.e., to compute control flow and resolve dynamic data accesses), and it al-
lows user to define how these features are resolved. Since our implementation
of the framework provides default implementation of the value analysis and
provides default definitions of resolving dynamic features, these features can
be resolved fully automatically. (3) Finally, the framework allows defining
additional value analyses tracking arbitrary values.

The interplay of heap and value analyses is possible because the heap
analysis tracks the shape of the heap and approximates concrete locations
with heap identifiers while the value analysis tracks values on heap identi-
fiers. The fundamental challenge when defining the interplay was to take into
account that array indices and object properties can be added at runtime by
dynamic updates—targets of these updates can be even statically unknown.

98

8.1. OPEN ISSUES AND FUTURE WORK

To be able to capture this semantics, heap analysis can materialize heap
identifiers both during the assignment and join operation. These changes are
propagated to value analysis. The propagation is done automatically by the
framework using assignment transfer function for the value analysis. As a
result, various heap analyses can be combined with arbitrary (non-relational)
value analyses and these analyses can be defined independently. Finally, we
also showed how the interplay can be extended to also support relational
value analyses.

The control flow is captured in the intermediate representation and since
it is not known before the analysis, the framework builds intermediate repre-
sentation during the analysis. To provide the framework values necessary for
computing control flow and values for resolving dynamic index and property
accesses, we defined a lattice structure for the first-phase value analysis. The
lattice structure provides information about values of PHP primitive types
that a heap identifier (i.e., variable, array index, and object property) can
store at a program point. Because of dynamic type system, a heap identifier
can store values of more types at a single program point.

As a proof-of-the-concept, we designed WEVERCA, a static analysis fra-
mework for PHP applications. To enable sound and precise computing of
control-flow graph and resolving accesses to associative arrays and objects,
we implemented heap analysis described in Chapter 4| and also value analy-
sis modeling PHP primitive types, type conversions, native operators, and
library functions. Moreover, we used the framework to implement additional
value analysis—taint analysis for detection of security problems. We also
used the framework to create a tool for PHP code analysis integrated to
Eclipse IDE.

3.1 Open Issues and Future Work

As a future work, we plan to improve the scalability and precision of the
analysis framework, and we plan to use the framework to define new analyses.
In particular, we want to:

Enhance scalability. We carried out case studies on real, but rather small
programs. We were not able to analyze large programs because of lim-
ited scalability of the implementation of our static analysis framework.
However, there are several opportunities for improving the scalability.

First, the implementation still stays on a prototype level and can be
optimized. For example, the representation of abstract states employs

99

CHAPTER 8. CONCLUSION AND FUTURE WORK

almost no sharing, we implemented only full context-sensitivity, and
we model most library functions just using type information.

Second, our analysis is global—it analyses the whole program. This lim-
its the scalability especially when libraries and frameworks are used. In
some cases, the application contains parts that are unsuitable to ana-
lyze with the same abstractions as the rest of the application, e.g., parts
of a content management system that perform numerical calculations.
In these cases, it would be useful to analyze these parts separately using
different abstractions and then compose the analyses of these parts to
get the information on the whole program [10]. In some cases, it could
be useful to analyze shared functions once, create summaries of these
functions, and then reuse these summaries [57, 14]. Other possibility is
to explicitly model individual functions (e.g., using pre- and post- con-
ditions) or whole parts of the applications (e.g., frameworks) [16, [47].
Next, combining static analysis with dynamic analysis would allow ana-
lyzing programs for specific inputs thus enabling to analyze even larger
programs, but sacrificing soundness.

Eliminate known causes of false alarms. When conducting the case
studies, we discovered several limitations of the current implementation
of our static analysis framework causing false alarms to be reported.
The most important limitations are imprecise modeling of some built-in
functions, imprecise modeling of assumptions, and imprecise widening
of arrays and objects. In our future work, we want to eliminate these
limitations.

Enhance precision. In further case studies, we want to investigate if
there is a need for even higher precision. For example, to prove more
program properties, we could extend our framework to support rela-
tional abstract domains. While our framework now supports only non-
relational domains, as discussed in Section [5.9] extending it to relational
domains is straightforward. Next, string component of our value anal-
ysis abstract state could be replaced with more precise representation,
e.g., string automaton [59]. Another possibility to gain more precise
results is path-sensitive validation of analysis warnings [24].

Create more lightweight heap analysis. When designing our heap
analysis, we focused on soundness and precision. However, for some
applications such as code navigation and bug finding, unsound but
fast heap analysis would be more usable. For these applications, more
lightweight and scalable heap analysis should be created.

100

8.1. OPEN ISSUES AND FUTURE WORK

Make the analysis incremental. When using static analysis during the
development, the analysis results should be updated frequently to re-
veal errors as soon as possible. Since in this case, the portion of appli-
cation that was modified since the last time the program was analyzed
is usually be small, making the analysis incremental can significantly
shorten the analysis time [511 22| [37].

Use the framework to build programming tools. Finally, we want to
use our framework to define more value analyses and use these analy-
ses to build tools, e.g., for error detection, code refactoring, and code
optimization.

CHAPTER 8. CONCLUSION AND FUTURE WORK

102

References

1]

2]

Lars Ole Andersen. Program Analysis and Specialization for the C Pro-
gramming Language. PhD thesis, DIKU, University of Copenhagen,
1994.

Gogul Balakrishnan and Thomas Reps. Recency-abstraction for heap-
allocated storage. In SAS’06: Proceedings of the 13th International Con-
ference on Static Analysis, Lecture Notes in Computer Science, pages
221-239, Berlin, Heidelberg, 2006. Springer-Verlag.

Gogul Balakrishnan, Sriram Sankaranarayanan, Franjo Ivancic, Ou Wei,
and Aarti Gupta. Slr: Path-sensitive analysis through infeasible-path
detection and syntactic language refinement. In SAS’08: Proceedings of
the 15th International Conference on Static Analysis, Lecture Notes in
Computer Science, pages 238-254. Springer-Verlag, Berlin, Heidelberg,
2008.

Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic, En-
gin Kirda, Christopher Kruegel, and Giovanni Vigna. Saner: Composing
static and dynamic analysis to validate sanitization in web applications.
In SP ’08: Proceedings of the 2008 IEEE Symposium on Security and
Privacy, pages 387-401, Washington, DC, USA, 2008. IEEE Computer
Society.

Constantinos Bartzis and Tevfik Bultan. Widening arithmetic automata.
In CAV ’04: 16th International Conference on Computer Aided Ver-
ification, Lecture Notes in Computer Science, pages 321-333, Berlin,
Heidelberg, 2004. Springer-Verlag.

Jan Benda, Tomas Matousek, and Ladislav Prosek. Phalanger: Compil-
ing and running php applications on the microsoft.net platform, 2006.

Paul Biggar and David Gregg. Static analysis of dynamic scripting
languages. http://paulbiggar.com/research/wip-optimizer.pdf,
2009.

Bor-Yuh Evan Chang and K. Rustan M. Leino. Abstract interpretation
with alien expressions and heap structures. In VMCAI'05: Proceedings

103

http://paulbiggar.com/research/wip-optimizer.pdf

REFERENCES

[10]

[11]

[13]

[14]

[15]

[16]

of the 6th International Conference on Verification, Model Checking,
and Abstract Interpretation, Lecture Notes in Computer Science, pages
147-163, Berlin, Heidelberg, 2005. Springer-Verlag.

David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of
pointers and structures. In PLDI ’90: Proceedings of the ACM SIG-
PLAN 1990 Conference on Programming Language Design and Imple-
mentation, pages 296-310, New York, NY, USA, 1990. ACM.

Patrick Cousot and Radhia Cousot. Modular static program analysis.
In CC °02: Proceedings of the 11th International Conference on Com-
piler Construction, Lecture Notes in Computer Science, pages 159-178,
London, UK, UK, 2002. Springer-Verlag.

Manuvir Das, Sorin Lerner, and Mark Seigle. Esp: Path-sensitive pro-
gram verification in polynomial time. In PLDI ’02: Proceedings of the
ACM SIGPLAN 2002 Conference on Programming Language Design
and Implementation, pages 57—68, New York, NY, USA, 2002. ACM.

Dinakar Dhurjati, Manuvir Das, and Yue Yang. Path-sensitive dataflow
analysis with iterative refinement. In SAS’06: Proceedings of the 13th
International Conference on Static Analysis, Lecture Notes in Computer
Science, pages 425-442. Springer-Verlag, Berlin, Heidelberg, 2006.

Isil Dillig, Thomas Dillig, and Alex Aiken. Sound, complete and scal-
able path-sensitive analysis. In PLDI ’08: Proceedings of the 2008 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 270-280, New York, NY, USA, 2008. ACM.

Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. Precise and
compact modular procedure summaries for heap manipulating pro-
grams. In PLDI ’11: Proceedings of the 32Nd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages
567-577, New York, NY, USA, 2011. ACM.

Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. Blended analysis
for performance understanding of framework-based applications. In I5-
STA ’07: Proceedings of the 2007 International Symposium on Software
Testing and Analysis, pages 118-128, New York, NY, USA, 2007. ACM.

Manuel Fahndrich and Francesco Logozzo. Static contract checking with
abstract interpretation. In FoVeOOS ’10: Proceedings of the 2010 Inter-
national Conference on Formal Verification of Object-oriented Software,

104

REFERENCES

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Lecture Notes in Computer Science, pages 10-30, Berlin, Heidelberg,
2011. Springer-Verlag.

Asger Feldthaus, Todd Millstein, Anders Mpgller, Max Schafer, and
Frank Tip. Tool-supported refactoring for javascript. In OOPSLA ’11:
Proceedings of the 2011 ACM International Conference on Object Ori-

ented Programming Systems Languages and Applications, pages 119
138, New York, NY, USA, 2011. ACM.

Asger Feldthaus and Anders Mgller. Semi-automatic rename refactor-
ing for javascript. In OOPSLA ’13: Proceedings of the 2013 ACM SIG-
PLAN International Conference on Object Oriented Programming Sys-
tems Languages E#38; Applications, pages 323-338, New York, NY,
USA, 2013. ACM.

Pietro Ferrara. Generic combination of heap and value analyses in ab-
stract interpretation. In VMCAI’05: Proceedings of the 6th Interna-
tional Conference on Verification, Model Checking, and Abstract Inter-
pretation, Lecture Notes in Computer Science, pages 302-321, Berlin,
Heidelberg, 2014. Springer-Verlag.

Zhoulai Fu. Modularly combining numeric abstract domains with points-
to analysis, and a scalable static numeric analyzer for java. In VMCAT
‘05: Proceedings of the 6th International Conference on Verification,
Model Checking, and Abstract Interpretation, Lecture Notes in Com-
puter Science, pages 282-301, Berlin, Heidelberg, 2014. Springer-Verlag.

Denis Gopan, Frank DiMaio, Nurit Dor, Thomas W. Reps, and Shmuel
Sagiv. Numeric domains with summarized dimensions. In TACAS ’04:
Proceedings of the 10th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, Lecture Notes in
Computer Science, pages 512-529, Berlin, Heidelberg, 2004. Springer-
Verlag.

Salvatore Guarnieri and Benjamin Livshits. Gulfstream: Staged static
analysis for streaming javascript applications. In WebApps’10: Proceed-
ings of the 2010 USENIX Conference on Web Application Development,
pages 6-6, Berkeley, CA, USA, 2010. USENIX Association.

David Hauzar and Jan Kofron. Hunting bugs inside web applications.

Technical report, Department of Informatics, Karlsruhe Institute of
Technology (presented in FoVeOOS ’11), 2011.

REFERENCES

[24]

[25]

[26]

28]

[29]

David Hauzar and Jan Kofron. On security analysis of php web applica-
tions. In COMPSACW ’12: Proceedings of the 2012 IEEE 36th Annual
Computer Software and Applications Conference Workshops, pages 577—
582, Washington, DC, USA, 2012. IEEE Computer Society.

David Hauzar and Jan Kofron. WEVERCA: Web verification for php.
In SEFM ’14: Proceedings of the 12th International Conference on Soft-
ware Engineering and Formal Methods, Lecture Notes in Computer Sci-
ence, Berlin, Heidelberg, 2014. Springer-Verlag.

David Hauzar, Jan Kofron, and Pavel Bastecky. Data-flow analysis of
programs with associative arrays. In ESSS ’14: Proceedings of the 3rd
International Workshop on Engineering Safety and Security Systems,
Electronic Proceedings in Theoretical Computer Science, pages 56-70.
Open Publishing Association, 2014.

Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-
Tsai Lee, and Sy-Yen Kuo. Securing web application code by static
analysis and runtime protection. In WWW °04: Proceedings of the 13th
International Conference on World Wide Web, pages 40-52, New York,
NY, USA, 2004. ACM.

Dongseok Jang and Kwang-Moo Choe. Points-to analysis for javascript.
In SAC ’09: Proceedings of the 2009 ACM Symposium on Applied Com-
puting, pages 1930-1937, New York, NY, USA, 2009. ACM.

Simon Holm Jensen, Peter A. Jonsson, and Anders Moller. Remedying
the eval that men do. In ISSTA 2012: Proceedings of the 2012 Interna-
tional Symposium on Software Testing and Analysis, pages 3444, New
York, NY, USA, 2012. ACM.

Simon Holm Jensen, Anders Mgller, and Peter Thiemann. Type anal-
ysis for JavaScript. In SAS’09: Proceedings of the 16th International
Static Analysis Symposium, volume 5673 of Lecture Notes in Computer
Science, Berlin, Heidelberg, August 2009. Springer-Verlag.

Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A static
analysis tool for detecting web application vulnerabilities (short paper).
In SP ’06: Proceedings of the 2006 IEEE Symposium on Security and
Privacy, pages 258-263, Washington, DC, USA, 2006. IEEE Computer
Society.

REFERENCES

32]

[33]

[34]

[35]

[38]

[39]

[40]

Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Static analysis
for detecting taint-style vulnerabilities in web applications. J. Comput.
Secur., 18(5):861-907, September 2010.

Etienne Kneuss, Philippe Suter, and Viktor Kuncak. Fse ’10: Phantm:
Php analyzer for type mismatch. In Proceedings of the Eighteenth ACM

SIGSOFT International Symposium on Foundations of Software Engi-
neering, pages 373-374, New York, NY, USA, 2010. ACM.

Etienne Kneuss, Philippe Suter, and Viktor Kuncak. Runtime instru-
mentation for precise flow-sensitive type analysis. In RV’10: Proceedings
of the First International Conference on Runtime Verification, Lecture
Notes in Computer Science, pages 300-314, Berlin, Heidelberg, 2010.
Springer-Verlag.

Ondrej Lhotdk and Kwok-Chiang Andrew Chung. Points-to analysis
with efficient strong updates. In POPL ’11: Proceedings of the 38th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 3-16, New York, NY, USA, 2011. ACM.

Benjamin Livshits and Stephen Chong. Towards fully automatic place-
ment of security sanitizers and declassifiers. In POPL ’13: Proceedings
of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 385-398, New York, NY, USA, 2013.
ACM.

Yi Lu, Lei Shang, Xinwei Xie, and Jingling Xue. An incremental points-
to analysis with cfl-reachability. In CC’13: Proceedings of the 22nd
International Conference on Compiler Construction, Lecture Notes in
Computer Science, pages 61-81, Berlin, Heidelberg, 2013. Springer-
Verlag.

Bill McCloskey, Thomas Reps, and Mooly Sagiv. Statically inferring
complex heap, array, and numeric invariants. In SAS’10: Proceedings
of the 17th International Conference on Static Analysis, Lecture Notes
in Computer Science, pages 71-99, Berlin, Heidelberg, 2010. Springer-
Verlag.

Yasuhiko Minamide. Static approximation of dynamically generated web
pages. In WWW °05: Proceedings of the 14th International Conference
on World Wide Web, pages 432-441, New York, NY, USA, 2005. ACM.

Antoine Miné. Field-sensitive value analysis of embedded ¢ programs
with union types and pointer arithmetics. In LCTES ’06: Proceedings

107

REFERENCES

[44]

[48]

of the 2006 ACM SIGPLAN/SIGBED Conference on Language, Com-
pilers, and Tool Support for Embedded Systems, pages 5463, New York,
NY, USA, 2006. ACM.

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of
Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1999.

PHALANGER. http://phalanger.codeplex.com/, 2014. [Online; ac-
cessed 23-June-2014].

Max Schafer, Manu Sridharan, Julian Dolby, and Frank Tip. Dynamic
determinacy analysis. In PLDI ’13: Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, pages 165-174, New York, NY, USA, 2013. ACM.

Viliam Simko, David Hauzar, Tomas Bures, Petr Hnetynka, and Fran-
tisek Plasil. Verifying temporal properties of use-cases in natural lan-
guage. In FACS ’11: Proceedings of the 8th International Symposium
on Formal Aspects of Component Software, Lecture Notes in Computer
Science, pages 350-367, Berlin, Heidelberg, 2011. Springer-Verlag.

Viliam Simko, David Hauzar, Tomas Bures, Petr Hnetynka, and Fran-
tisek Plasil. Formal verification of annotated textual use-cases. In Com-
puter Journal (submitted), 2014 (current status: minor revision).

Gregor Snelting, Torsten Robschink, and Jens Krinke. Efficient path
conditions in dependence graphs for software safety analysis. ACM
Trans. Softw. Eng. Methodol., 15(4):410-457, October 2006.

Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer
Tripp, and Ryan Berg. F4f: Taint analysis of framework-based web
applications. In OOPSLA ’11: Proceedings of the 2011 ACM Interna-
tional Conference on Object Oriented Programming Systems Languages
and Applications, pages 1053-1068, New York, NY, USA, 2011. ACM.

Manu Sridharan, Julian Dolby, Satish Chandra, Max Schafer, and
Frank Tip. Correlation tracking for points-to analysis of javascript. In
ECOOP’12: Proceedings of the 26th Furopean Conference on Object-
Oriented Programming, Lecture Notes in Computer Science, pages 435—
458, Berlin, Heidelberg, 2012. Springer-Verlag.

Mana Taghdiri, Gregor Snelting, and Carsten Sinz. Information flow
analysis via path condition refinement. In FAST’10: Proceedings of the

http://phalanger.codeplex.com/

REFERENCES

[50]

[51]

[52]

[53]

[54]

[55]

[57]

[58]

7th International Conference on Formal Aspects of Security and Trust,
Lecture Notes in Computer Science, pages 65-79, Berlin, Heidelberg,
2011. Springer-Verlag.

Laurence Tratt. Dynamically typed languages. Advances in Computers,
77:149-184, July 2009.

Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Sal-
vatore Guarnieri. Fase’13: Andromeda: Accurate and scalable secu-
rity analysis of web applications. In Proceedings of the 16th Interna-
tional Conference on Fundamental Approaches to Software Engineering,
Lecture Notes in Computer Science, pages 210-225, Berlin, Heidelberg,
2013. Springer-Verlag.

Arnaud Venet. Towards the integration of symbolic and numerical static
analysis. In VSTTE: Proceedings of Verified Software: Theories, Tools,
Experiments, Lecture Notes in Computer Science, pages 227-236, Berlin,
Heidelberg, 2005. Springer-Verlag.

W3Techs. http://w3techs.com/, 2009. [Onlne; accessed 1-December-
2009.

Gary Wassermann and Zhendong Su. Sound and precise analysis of web
applications for injection vulnerabilities. In PLDI °07: Proceedings of
the 2007 ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 32-41, New York, NY, USA, 2007. ACM.

Gary Wassermann and Zhendong Su. Static detection of cross-site script-
ing vulnerabilities. In ICSE ’08: Proceedings of the 30th International
Conference on Software Engineering, pages 171-180, New York, NY,
USA, 2008. ACM.

Shiyi Wei and Barbara (. Ryder. Practical blended taint analysis for
javascript. In ISSTA 2013: Proceedings of the 2013 International Sym-

posium on Software Testing and Analysis, pages 336-346, New York,
NY, USA, 2013. ACM.

Yichen Xie and Alex Aiken. Static detection of security vulnerabilities
in scripting languages. In USENIX-55°06: Proceedings of the 15th Con-
ference on USENIX Security Symposium - Volume 15, Berkeley, CA,
USA, 2006. USENIX Association.

Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Stranger: An automata-
based string analysis tool for php. In TACAS’10: Proceedings of the 16th

109

http://w3techs.com/

REFERENCES

[61]

International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, Lecture Notes in Computer Science, pages
154-157, Berlin, Heidelberg, 2010. Springer-Verlag.

Fang Yu, Tevfik Bultan, Marco Cova, and Oscar H. Ibarra. Symbolic
string verification: An automata-based approach. In SPIN ’08: Proceed-
wngs of the 15th International Workshop on Model Checking Software,
Lecture Notes in Computer Science, pages 306-324, Berlin, Heidelberg,
2008. Springer-Verlag.

Haiping Zhao, ITain Proctor, Minghui Yang, Xin Qi, Mark Williams,
Qi Gao, Guilherme Ottoni, Andrew Paroski, Scott MacVicar, Jason
Evans, and Stephen Tu. The hiphop compiler for php. In OOPSLA ’12:
Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, pages 575-586, New
York, NY, USA, 2012. ACM.

Yunhui Zheng and Xiangyu Zhang. Path sensitive static analysis of web
applications for remote code execution vulnerability detection. In ICSE
"13: Proceedings of the 2013 International Conference on Software Engi-
neering, Lecture Notes in Computer Science, pages 652-661, Piscataway,
NJ, USA, 2013. IEEE Press.

110

	Introduction
	Running Example
	Problem Statement
	Research Goal and Objective
	Contributions and Publications
	Structure of the Thesis
	Note on Conventions

	State of the Art
	Static Analysis of Dynamic Languages
	Static Security Analysis
	Type Analysis
	Heap Analysis
	Reducing Dynamic Information
	Code Optimization

	Combining Heap and Value Analyses

	Goals Revisited
	Heap Analysis
	Motivation and Overview
	Variables, Arrays, and Objects
	Dynamic Accesses
	Explicit Aliasing
	Comparison to other languages
	Overview of the Approach

	Formalization
	Analysis State Space
	Data-flow equations
	Access Paths
	Read Accesses
	Write Accesses
	Merge
	Termination and Soundness

	Summary of Chapter 4

	Framework to Static Analysis of Dynamic Languages
	Motivation
	Overview and Architecture
	Intermediate Representation
	Building IR
	Analysis Domain
	Declaration Analysis
	Heap Analysis
	Value Analysis

	Lattice Order and Meet
	Join and Widening
	Transfer Functions
	Summary Heap Identifiers
	Summary of Chapter 5

	Implementation
	Analysis Framework
	Eclipse-based Tool
	AST-level Functionality
	Static Analysis Functionality

	Experimental Results
	Scalability of Heap Analysis
	Case Studies
	Benchmark Application
	Email Client

	Summary of Chapter 7

	Conclusion and Future Work
	Open Issues and Future Work

	References

