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ABSTRACT 

The myelodysplastic syndrome (MDS) is a group of hematopoietic clonal disorders 

resulting in the inefficient production of myeloid lineage blood cells, with the 

prevalence of patients older than 65 years. One of the possible treatment options for 

MDS is 5-azacytidine and 5-aza-2‘-deoxycytidine therapy. These compounds have 

been shown to cause the induction of cell-cycle arrest, cell differentiation and/or 

apoptosis. The in vitro experiments with 5-aza-2‘-deoxycytidine indicated that this 

compound causes the premature cellular senescence, a state of the irreversible cell-

cycle arrest. We have asked, whether 5-azacytidine, as a molecule with similar 

structure, is capable of causing the same effect. This treatment strategy could be 

beneficial in case that the negative pro-inflammatory effect of senescent cells on 

their surroundings can be nullified.  In this thesis we have shown that 5-azacytidine 

induces DNA damage response, which is described as a fundamental event for the 

onset of the cell senescence. We tested 5-azacytidine treated HeLa cells for several 

markers of the cell senescence – the increase of the β-galactosidase activity, the PML 

and PML nuclear bodies and the formation of persistent DNA damage signaling 

lesions – albeit all these markers were positive, it was the very low increase in 

values that lead us to the conclusion that 5-azacytidine does not cause the onset of 

senescence in HeLa cell line under the conditions comparable to the standard 

treatment protocol that has been used for the MDS patients. However, according to 

our results, 5-azacytidine does induce the increase in the secretion of  interleukin 

IL6 and TGFβ. These results, if further confirmed on additional cell lines and in vivo, 

could provide valuable help for therapy modification. 

 

Key words: 5-azacytidine, Myelodysplastic syndromes, Cytokines, Cellular 

Senescence, DNA damage response 
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ABSTRAKT 

Myelodysplastický syndrom (MDS) představuje skupinu klonálních poruch 

krvetvorby krevních buněk myeloidní řady postihující především pacienty starší 65 

let. Jednu z možností léčby MDS představuje terapie pomocí chemoterapeutik 5-

azacytidine a 5-aza-2'-deoxycytidine. Tyto látky jsou schopny vyvolat zástavu 

buněčného cyklu, buněčné diferenciace a/nebo apoptózy. In vitro experimenty 

naznačují, že 5-aza-2'-deoxycytidine způsobuje předčasnou buněčnou senescenci 

projevující se ireverzibilní zástavou buněčného cyklu, což nastolilo otázku, zda je 

tohoto efektu schopen i 5-azacytidine, strukturně blízká molekula. Za předpokladu 

absence pro-zánětlivého efektu senescentních buněk na okolní prostředí by tato 

léčebná strategie mohla být přínosná. V této práci jsme dokázali, že 5-azacytidine 

vyvolává odpověď na DNA poškození, která je popsaná jako zásadní pro vznik 

senescence. Detekovali jsme některé znaky senescence – zvýšení β-galactosidázové 

aktivity, nárůst PML a PML jaderných tělísek a vznik dlouhodobých lézí 

signalizujících DNA poškození –  změny jejich hladiny však byly nízké, což nás vedlo 

k závěru, že 5-azacytidine nevyvolává senescenci u HeLa linie při použití 

standardního léčebného protokolu pro pacienty s MDS. Prokazatelně však podněcuje 

sekreci interleukinů IL6 a TGFβ. Výsledky, pokud se potvrdí na dalších buněčných 

liniích a v in vivo experimentech, mohou výrazně napomoci při následné modifikaci 

této terapie.  

 

 

Klíčová slova:  5-azacytidin, Myelodysplastický syndrom, Cytokiny, Buněčná 

senescence, Odpověď na poškození DNA 
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1. INTRODUCTION 

Myelodysplastic syndromes (MDS) are a group of blood disseases originating 

from abberrant differentiation of myeloid lineage of blood cells. MDS affects mostly 

people of advanced age and thereby belongs among age-associated dieseases (MA et 

al. 2007). With the population growing older in general, the incidence rate of MDS 

increases and it is becoming of pressing need to re-evaluate therapeutic strategies in 

light of the new discoveries. 

Currently, the only cure for MDS is the bone marrow transplantation, an invasive 

method not suitable for most of MDS patients because of its high demands on their 

physical condition. Among other therapeutic approaches in MDS treatment belongs 

the demethylation therapy. In MDS, there is frequent occurence of transcriptional 

silencing of genes involved in the cell cycle regulation via hypermethylation of their 

promoter regions. 5-azacytidine and 5-aza-2'-deoxycytidine are inhibitors of DNA 

methyltransferases (in case of 5-azacytidine of RNA methyltransferases as well), 

which allows for re-expression of the genes silenced by abberant hypermethylation. 

However, the exact mechanism of 5-azacytidine therapeutic action remains to be 

elucidated. 

The 5-aza-2'-deoxycytidine has been shown to induce therapy-induced 

senescence (TIS), a state of permanent cell-cycle arrest associated with specific 

phenotype of cell (SCHNEKENBURGER et al. 2011, VENTURELLI et al. 2013, 

GRANDJENETTE 2014). This thesis aims to explore the possibility of 5-azacytidine 

inducing the same effect, given its similarity to 5-aza-2'-deoxycytidine. It is crucial to 

investigate the 5-azacytidine-mediated secretory phenotype  into more depth and in 

exact context of 5-azacytidine treatment - to provide an insight into possibility of 

employing TIS in MDS treatment.   

The experimental part of this thesis investigates whether 5-azacytidine induces 

the senescence, with the emphasis on the presence of senescence-associated 

secretory phenotype.   
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2.  LITERATURE REVIEW  

2.1.  Myelodysplastic syndromes 

 Myelodysplastic syndromes (MDS) are a wide collection of blood diseases 

grouped together based on the clinical outcome – deficiency in one or more cell 

types derived from the Common Myeloid Precursor Cell (see Fig. 1 for cell types 

likely affected in MDS). Hofmann and Koeffler defined MDS as “a clonal abnormality 

of the hematopoietic stem cell characterized by defective maturation and in 

advanced stages of uncontrolled proliferation” (reviewed in GREENBERG et al. 

2006). MDS is associated with advanced age – the median age of MDS patients 

diagnosed between years 2001 and 2003 in USA was 76 years, while 86 % of them 

were 60 years old or above. MDS significantly prevails among men. Studies of 

population in Netherlands and Germany in the same period as mentioned above 

showed results corresponding to the statistical data obtained in the USA (MA et al. 

2007, NEUKIRCHEN et al. 2011, DINMOHAMED et al. 2014).  In the USA, the annual 

age-adjusted incidence rate of MDS is about 3.4 newly diagnosed patients per 

100,000 habitants. In the Czech republic, up to 100 patients are newly diagnosed 

with MDS every year (MA et al. 2007, JONÁŠOVÁ & KAČMÁŘOVÁ 2012). 

 

Fig. 1. Differentiation of myeloid 
lineage of blood cells. 

This scheme represents differentiation 
of myeloid lineage of blood cell types 
derived from the Human 
Multipotential Progenitor Cells (CFU-
GEMM) which originates by 
differentiation of the Common Myeloid 
Progenitor Cell (not shown in the Fig. 
1). Hematopoietic Stem Cell (HSC) 
replicates by asymmetric cell division 
in which one daughter cell remains 
multipotential HSC and the other one 
differentiates into Hematopoietic 
Progenitor Cell (HPC) and then further 
into Common Myeloid Progenitor Cell 
(CMP) or Common Lymphoid  
Progenitor Cell (CLP). Granulocytes 
and monocytes share a common 
precursor - Colony Forming Unit-
Granulocyte/Macrophage (CFU-GM) 
(modified from NIENHUIS 2008). 

 

 



Page | 14  
 

 

The clinical manifestation of MDS in patients differs according to the type of 

cytopenia  (deficiency in blood cells) and severity of the disease. The cytopenia of 

MDS patients might be either anemia (deficiency in erythrocytes), leukocytopenia 

(deficiency in leukocytes) or thrombocytopenia (deficiency in thrombocytes).  

Patients might experience symptoms associated with anemia; such as fatigue, 

pallor (unusual paleness), shortness of breath, cardiovascular difficulties, etc. 

Deficiency in platelets may result in easy bruising, epistaxis (nosebleeds), petechiae 

(red spots from bleeding beneath skin) but also gastrointestinal bleeding, etc. 

Patients with the deficient production of white blood cells are also sensitive to the 

infections.  

There are several types of MDS fitting different classification systems based on 

manifestation of the disease; for example French-American-British system and WHO 

Prognostic Scoring System introduced by World Health Organization or by expected 

prognosis, i. e. International Prognostic Scoring System. The survival rates vary 

greatly with types of MDS and risk for AML development; their median ranges from 

several years to months (GREENBERG et al 1997). 

 

Subtype Blood Bone marrow 

Refractory cytopenia with 
unilineage dysplasia (RCUD) 

Single or bicytopenia 
Dysplasia in ≥ 10% of one cell line, 
< 5% blasts 

Refractory anemia with 
ringed sideroblast (RARS) 

Anemia, no blasts 

≥ 15% of erythroid precursors with ring 
sideroblasts, 
erythroid dysplasia only, 
<5% blasts 

Refractory cytopenia with 
multilineage dysplasia 
(RCMD) 

Cytopenia(s), 
< 1 x 109/L monocytes 

Dysplasia in ≥ 10% of cells ≥ 2 
hematopoietic lineages, 
±15% ring sideroblasts, 
 <5% blasts 

Refractory anemia with 
excess blasts-1 (RAEB-1) 

Cytopenia(s), 
≤2% - 4% blasts, 
< 1 x 109/L monocytes 

Unilineage or multilineage dysplasia, 
No Auer rods, 
5% - 9% blasts, 

Refractory anemia with 
excess blasts-2 (RAEB-2) 

Cytopenia(s), 
≤5% - 19% blasts, 
< 1x 109/L monocytes 

Unilineage or multilineage dysplasia, 
No Auer rods, 
±10% - 19% blasts 

Myelodysplastic syndrome, 
unclassified (MDS-U) 

Cytopenias 
Unilineage dysplasia or no dysplasia, but 
characteristic MDS cytogenetics, 
<5% blasts 

MDS associated with isolated 
del(5q) 

Anemia, 
platelets normal or 
increased 

Unilineage erythroid dysplasia, isolated 
del(5q)  
<5% blasts 

 
Table 1. WHO classification system for de novo MDS (updated 2008). 

Classification od MDS patients into subtypes based on blood and bone marrow findings according to 

WHO Prognostic Scoring System (modified from SWERDLOW et al. 2008).  
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MDS was first characterized as a stage preceding acute myeloid leukemia (AML) 

and thus was labeled as the pre-leukemic phase (BLOCK et al. 1953). Indeed, about 

third of the patients develop acute myeloid leukemia in time, but the term 

“preleukemic phase” is nowadays considered to be inaccurate. The line between 

MDS and AML was set to by FAB system to be 20% of blasts in bone marrow and 

30% of blasts by WHO system of classification.  In MDS, the cells fail to reach the 

terminal differentiation step in bone marrow and preferentially undergo apoptosis, 

whereas in AML are cells more resistant to apoptosis and un-differentiated blasts 

are more likely to be released into the bloodstream (ALBITAR et al. 2002).  

The afflicted clonal cells may derive from aneuploidy, the most common 

chromosome aberration is the deletion of 5q chromosome arm.  This aneuploidy is 

present among more than 10% of patients and has its own class in the scoring 

systems (SOLE et al. 2001). Besides, the loss of 7 chromosome or 8 chromosome 

trisomy is of frequent occurrence in the aberrant cells (JOHNSON et al. 1996, MA et 

al. 2010). Chromosomal translocations may lead to the promotion of MDS clone as 

well (WLODARSKA et al. 1995).  

Frequently, MDS patients have altered gene expression due to mutations, 

deletions or aberrant methylation of gene promoters. The most frequent alterations 

are in genes coding for p15Ink4B (p15), Neuroblastoma RAS Viral Oncogene Homolog 

(N-RAS; oncogene), Ectopic Viral Integration site 1 (EVI-1; oncogene), Interferon 

Regulatory Factor 1 (IRF-1; tumor suppressor), p53 (tumor suppressor) and others. 

Over-expression of N-RAS, EVI-1 and decreased expression of p15, IRF-1 or p53 are 

associated with the increased risk of development into AML (PAQUETTE et al. 1993, 

SUGIMOTO et al. 1993, QUESNEL et al. 1998, XU et al. 1999, WILLMAN et al. 1993). 

Secondary MDS is a specific, therapy-related type of MDS, which may arise after 

previously administered high-dose chemotherapy followed by autologous 

hematopoietic cell transplantation. Patients with secondary MDS have worse 

prognosis and are classified as a higher risk types. Moreover, the people exposed to 

toxic chemicals, such as benzene or tobacco smoke, have a higher risk of developing 

MDS (CIOC et al. 2007, ZIPURSKI et al. 1993, LV et al. 2011). 
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2.1.1.  Therapy of MDS 

As of today, the only cure for MDS is the bone marrow transplantation (BMT), all 

other approaches in MDS treatment serve for tempering the disease symptoms and 

slowing down progression of the disease. BMT is a method used preferably on 

younger patients diagnosed with high-risk MDS and is not typically considered first-

line treatment for low-risk MDS types. As it was addressed above, the vast majority 

of patients is of advanced age and because of the age-related co-morbidities, they are 

not suitable for this type of risky intervention. However, several novel studies 

indicate that the age should not be the deciding factor for the eligibility for BMT and 

each case should be considered on the individual basis. With the increase of older 

patients, there are novel protocols with reduced-intensity conditioning prior to BMT 

treatment emerging (McCLUNE et al. 2010, SORROR et al. 2011). 

The supportive therapy for both low and high-risk MDS patients consists of red 

blood cells or platelet transfusion, possibly combined with the chelation therapy to 

protect the patient from iron overload (excess accumulation of iron can arise from 

the numerous red blood cells transfusions). Pharmaceutically produced forms of 

growth factors, such as G-CSF, GM-CSF, erythropoietin, IL-3 and IL11, may be 

employed in treating the symptoms of insufficient erythropoiesis (MUSTO et al. 

2001, TSIMBERIDOU et al. 2005).  

Depending on MDS type and its progress, the patients might be presented with an 

option of drug therapy. One of the treatment strategies is the immunosuppressive 

therapy based on the observation that in some MDS patients, autologous T cells 

inhibit erythropoiesis and possibly have also negative impact on the  granulopoiesis. 

For these purposes is employed the use anti-thymocyte globulin, either alone or in 

combination with cyclosporine, which is primary being used for the treatment of 

autoimmune diseases such as Reynaud’s syndrome, rheumatoid arthritis and 

aplastic anemia. This powerful combination is used for abolishing T-cells-mediated 

cytotoxity towards normal progenitors of blood cells (reviewed in BARRETT & 

SLOAND 2009; PASSWEG et al. 2010). 

Yet another drug used in MDS therapy is lenalidomide. This drug is derived from 

thalidomide and has a wide spectrum of anti-tumorigenic effects. It supports NK 

cells and T lymphocytes-driven immune response to transformed cells and 



Page | 17  
 

 

suppresses the inflammatory environment. Lenalidomide inhibits angiogenesis, 

induces cell-cycle arrest via p21Waf1 (p21) expression and initiates apoptosis 

(possibly through increased sensitivity to Fas ligand). Moreover, Lenalidomide is 

especially effective in the treatment of MDS patients with 5q chromosome arm 

deletion and is also used in low-risk MDS types (reviewed in KOTLA et al. 2009). 

Finally, MDS can be also treated by hypomethylating agents, Vidaza® and 

Decitabine® (trade marks for 5-azacytidine and 5-aza-2'-deoxycytidine, 

respectively). The chemical structure of these compounds is very similar with the 

only difference being in hydroxyl group at nucleoside sugar backbone (Vidaza® 

contains ribose and Decitabine® contains deoxyribose). Vidaza® is used as the first-

line hypomethylating agent because it prolongs the time until the transformation 

into AML and increases the  overall survival of treated patients (XIE et al. 2014).  

2.2.   5-azacytidine 

5-azacytidine is a ribonucleoside analog of cytidine, which contains additional 

nitrogen heteroatom in the pyrimidine ring, instead of carbon at fifth position (see 

Figure 1). Unlike the other structurally very similar analog, 5-aza-2'-deoxycytidine, 

5-azacytidine is able to be incorporated into both nucleic acids.  

In L1210 cell line (derived from mouse lymphatic leukemia), 10 - 20% of 5-

azacytidine diphosphate is reduced to its deoxyribonucleotide form by 

ribonucleotide reductase. The reduction rate of 5-azacytidine correlates with 10 to 

20% of 5-azacytidine being incorporated into DNA (LI et al. 1970). It is noteworthy 

to mention that 5-azacytidine is not being phosphorylated by the same kinase as 

cytidine is, i.e. by deoxycitidine kinase, but probably by uridine kinase (LI et al. 

1970).  

5-azacytidine was synthesized for the first time by Pískala and Šorm in 

Czechoslovakia more than 50 years ago and it was firstly used as a cancerostatics. In 

2004, 5-azacytidine became the first drug for treatment of MDS that was approved 

by U. S. Food and Drug Administration (under trademark Vidaza®) (PISKALA & 

SORM 1964). 5-azacytidine is rather unstable and temperature-sensitive substance 

in both alkaline and acidic solutions. In neutral aqueous solutions at 37°C, it appears 

to have a half-time of degradation about 7 hours (ISRAILI et al. 1976).  
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2.2.1.  The role of 5-azacytidine in DNA and histone 

methyltransferases inhibition 

5-azacytidine inhibits methylation of cytosine at its fifth carbon in DNA; it is the 

only base being physiologically methylated in DNA of mammals. This methylation is 

being executed by DNA methyltransferases (DNMT) and has a crucial role in 

mammalian development and overall regulation of the transcription. Altered DNA 

methylation pattern is generally associated with the cell transformation. In MDS, 

there has been evidence of many genes inhibiting cellular growth being silenced by 

the hypermethylation in promoter region and these changes were associated with 

worse prognosis in the patients. Genes like CDKN2B (gene coding CDK inhibitor 

p15), CTNNA1 (gene coding Cadherine-Associated Protein Alpha 1), DAPK1 (gene 

coding Death-Associated Protein Kinase 1) and SOCS1 (gene coding Suppressor Of 

Cytokine Signaling 1) are frequently down-regulated in early MDS patients, but are 

more likely to be hypermethylated in high-risk MDS. The changes in the expression 

of these genes are also associated with progression to AML (YE et al. 2009,  WU et al. 

2006, QIAN et al. 2010, CHRISTIANSEN et al. 2003).  

5-azacytidine treatment has an effect on transcription pattern of more than a 

thousand genes. The majority of them is however not being altered in transcription 

via promoter demethylation - 5-azacytidine affects mainly the transcription of genes 

within active chromatin domains. Still, since these genes belong to the specific 

ontological families, it is probable that significant number of them is regulated by 5-

azacytidine-dependent changes in their upstream regulator sequences (KOMASHKO 

& FARNHAM  2010). 5-azacytidine also affects transcription of miRNAs (YANG et al. 

2012). 

Fig. 2. Chemical structure of 
cytidine and 5-azacytidine. 
Chemical structure of cytidine (A) and  
5-azacytidine (B). The only difference 
between both compounds is the 
addition of nitrogen heteroatom into 
pyrimidine ring instead of carbon at 
position 5. 

A B 
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 The mechanism of 5-azacytidine-dependent depletion of DNA 

methyltransferases is following: Sixth carbon atom of 5-azacytosine (5-azacytidine 

base) is very reactive and forms the covalent bond with methylation site of DNMT. 

These adducts are very stable and can last for several days. The complex  between 5-

azacytosine and DNMT may exist in two forms depending on the presence of S-

adenosylmethionin (SAM), i.e. DNA methyltransferase bound to methylated 5-

azacytosine (in presence of SAM) or bound to protonated 5-azacytosine (in absence 

of SAM) (SANTI et al. 1984, GABBARA & BHAGWAT 1995).  

 

Also, since several histone methyltransferases (for example EZH2 or G9a) are 

associated with the complexes of DNA methyltranferases, it would be expected that 

the histone methyltransferases might be inhibited in their function as well. There 

was a difference observed in status of H3K9 and H3K27 trimethylation between 5-

azacytidine treated and untreated HEK 293 cells. While the promoters exhibiting the 

above mentioned histone modifications lost histone methylation in general after 5-

azacytidine treatment, other promoters have gained histone methylation, although  

in the disorganized manner – some genes known for H3K9 methylation were 

methylated on lysine 27 and vice versa (KOMASHKO & FARNHAM 2010). 

Fig. 3 Mechanism of formation of covalent adduct between 5-azacytosine andDNA 
methyltransferase. 

5-azacytosine is bound to methylation site of DNA methyltransferases (DNMT) at its sixth carbon. 
This complex is very stable at 37°C and needs high temperature to be dissagregated. In the absence 
of S-adnosylmethionin (SAM), 5-azacytosine is protonated whereby in the presence of  
S-adenosylmethionin (SAM), 5-azacytosine is methylated. In vivo, the former option is more likely to 
occure (adopted from GABBARA & BHAGWAT 1995). 
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Correspondingly, with overall loss of histone methylation, 5-azacytidine induces 

acetylation on histone 4 (YANG et al. 2010). 

2.2.2.  The role of 5-azacytidine in RNA methyltransferases 

inhibition 

5-azacytidine also affects the proper function of RNA by depletion of RNA 

methyltransferases and subsequent demethylation of RNA - RNA modifications plays 

an important role in its secondary and tertiary structure and stability. 5-azacytidine 

alters secondary and tertiary structure of pre-ribosomal 45S rRNA and possibly 

even inhibits 45S rRNA synthesis via DNA demethylation. Demethylation of rDNA 

CpG sites (genes coding rRNA) inhibits synthesis of rRNA and processing of rRNA 

precursor (reviewed in MOSS 2011). Moreover, the formation of polyribosomes is 

affected by 5-azacytidine as well – it decouples ribosomes in the chain. Also, after 5-

azacytidine distribution, there is a decrease in cytoplasmic 18S and 28S rRNAs 

(REUVENI & ROSENTHAL 1979). tRNA methylation is also affected by 5-azacytidine 

since it inhibits activity of tRNA cytosine-5-methyltransferase and causes delay in 

the increase in other tRNA methyltransferases (LU & RANDERATH 1979, 1980). The 

lack of m5C methylation can, in context, induce rapid tRNA degradation and 

hypomethylated tRNA from 5-azacytidine treated cells significantly down-regulates 

the protein synthesis (MOMPARLER et al. 1976, ALEXANDROV et al. 2006).  

2.2.3. The role of 5-azacytidine in DNA damage induction 

DNA damage induced by 5-azacytidine may emerge in several ways. The covalent 

bond between 5-azacytosine and DNMT1 forms an adduct preventing passage of the 

replication machinery and leads to the collapse of the replication fork that 

subsequently results in the formation of double strand breaks (DSBs). The 

reparation of DSB is mediated by homologous recombination (HR) and when 

unrepaired, the covalent bond between 5-azacytosine and DNMT1 may last for three 

or more days. Subsequently, when the cell cannot use HR, non-homologous end 

joining (NHEJ) takes its place and fuse both ends non-specifically which may 

generate chromosomal rearrangements (JÜTTERMANN et al. 1994, ORTA et al. 

2013). In mice and embryonic stem cells, 5-azacytosine-DNMT1 adducts formation, 
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rather than DNA demethylation, is the cause of 5-azacytidine cytotoxicity 

(JÜTTERMANN et al. 1994). Mouse embryonic fibroblasts with DNMT1-inhibiting 

siRNA showed significant decrease in amount of DSBs and chromosomal 

rearrangements in comparison to non-coding siRNA (MASLOV et al. 2012).  

The DNMT1-independent process of 5-azacytidine DNA damaging action consists 

of introducing point mutations into DNA by interaction of 5-azacytidine ring with 

cytosine or by the deamination to 5-azauridine. Due to 5-azacytidine instability in 

the physiological conditions, it can decay when already incorporated DNA and create 

a basic site paired with adenosine (ZIELINSKI & SPRINZL 1984). There is another 

aspect of 5-azacytidine role in DNA damage induction.  

5-azacytidine forms adducts with Activation-induced deaminase (AID), a protein 

involved in the somatic hypermutation and class switch recombination in 

lymphocytes, and prevents it from introducing mutations into DNA of lymphocytes 

(TSAI et al. 2014). 

2.3.  Cellular senescence  

As was previously presented, 5-azacytidine is potent cancerostatics which 

inhibits the cell cycle progression. One of the possible responses to the cell-cycle 

arrest in mitogen stimulated cells is the development of senescence.  

Cellular senescence was discovered by Hayflick and Moorhead during the search 

for the mechanisms of live virus vaccines production. They have distinguished cell 

strains from cell lines by the use of eleven markers, among them limitation of the  

cell multiplication, which was limited in cell strains, and comparison of cell 

morphology to the corresponding primary tissue. They have noticed an arrest in the 

proliferation of the cells that were beyond certain number of doublings. The 

“passage potential“ of fibroblasts derived from different tissues was around 50 

population doublings, independently on continuity of the cultivation (HAYFLICK & 

MOOREHEAD 1961). Such phenomenon was observed in many cell strains derived 

for example from T-lymphocytes, mesenchymal stem cells, etc., and also in vivo; and 

was named the replicative senescence (ESTRADA et al. 2013, SPAULDING et al. 

1999, HARRISON et al, 1973). The maximum of population doublings is therefore 

often termed “Hayflick limit”.  
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Senescence can evolve prior to the exhaustion of replicative potential as well. 

When the cell acquires unrepairable damage or experiences severe stress that might 

lead to such, one of its possible fates may lie in entering of the senescence. This way, 

the senescent cell prevents the propagation of the aberration on the next 

generations and maintains the integrity of the organism. For this reason, senescence 

is often described as a barrier against the tumorigenesis (reviewed in CAMPISI 

2013). Indeed, in vivo, it has been noticed that senescent cells are present in pre-

neoplastic lesions and they diminish with the tumor progression (BARTKOVA et al. 

2006). Also, the senescence participates in wound healing, where it supports the full 

recovery of the tissue and suppresses the development of fibrotic scar (KANG et al. 

2011).   

However, the role of senescence in organism is complex and not entirely anti-

tumorigenic. Due to specific, pro-inflammatory senescence-associated phenotype 

(SASP), senescent cells can ʽspread’ senescent phenotype on other surrounding cells 

in paracrine manner. This phenomenon is called secondary or “bystander 

senescence” (HUBACKOVA et al. 2010). 

 If senescent cells are not efficiently cleared from the organism, their 

accumulation might lead to the disrupted function of the respective body organs and 

tissues. Their increase in numbers is associated with the neurodegenerative 

diseases and other age-related pathologies, such as osteoarthritis or cardiovascular 

diseases (reviewed in VASTO et al.  2006 , reviewed in CAMPISI 2013). Further, 

senescence has been described to support the tumorigenic growth. The 

inflammation induced by SASP is known to strengthen the transformation and 

invasivity of cancer cells. Also defective mitochondria of senescent cells produce 

ROS and may result in DNA damage in by-standing cells (GOSSELINK et al. 2009, 

reviewed in CAMPISI 2005, 2013). Nonetheless, cleared senescent cells must be 

compensated for, otherwise the body organ dysfunction or damage may occur 

(KRIZHANOVSKY et al. 2008). 

 The role of senescence in the organism is complex and based on context, it might 

be both beneficial (tumor suppression) and deleterious (tumor growth support, age 

related diseases). Novel therapeutic strategies employing therapy-induced 

senescence in cancer therapy emerge and they show promise of overcoming drug-

resistance and entailing less severe side effects associated with therapy (reviewed in 
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NARDELLA et al. 2011). Further, the senescent cells attract cells of the immune 

system, namely monocytes, macrophages, Th1 lymphocytes and NK-cells by which 

they are cleared and may aid in the elimination of tumor cells as well (KANG et al. 

2011). Nonetheless, as it has been mentioned, there are negative aspects to 

senescence. In order to prevent their occurrence, the efficient strategies to eliminate 

senescent cells must be developed. For example, Weiland and his colleagues 

introduced rather specific method of targeting viral replication in the tumor and 

senescent cells (WEILAND et al. 2013, reviewed in NARDELLA et al. 2011). Also, the 

existence of senescence lacking pro-inflammatory secretome observed after the 

ectopic induction of p16 and p21 indicates that the investigation of senescence for 

the anti-tumor therapeutic strategies might be of a great benefit (COPPÉ et al. 2008). 

The premature senescence may be induced by countless stimuli, internal (ROS 

production, mutagenesis, collapse of replication fork, oncogene activation) or by 

external (genotoxic drugs, bacterial toxins, or physical stress like ionizing and UV 

radiation) resulting in the oxidative stress, DNA damage or telomere dysfunction 

(reviewed in RODIER & CAMPISI 2011). The determining factor in the onset of the 

senescence may be the extent of the damage since lower doses of cytotoxic insults 

seem to invoke senescence rather than apoptosis. However, the outcome is very 

context-dependent (HAN et al. 2002, TSAI et al. 2009).  

  

Fig. 4 Internal (pink) and external (blue) stimuli leading to senescence.  

If the cell exprerience an irreparable damage resulting in severe stress, it will cease proliferation 
and may undergo apoptosis or initiate permanent cell-cycle arrest with developing typical 
senescent phenotype. The origin of stress may arise inside or outside of the cell and may be of 
both physiological or artificial nature (modified from DAVALOS et al. 2010). 

Internal stimuli External stimuli 
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2.3.1.   Hallmarks of the cellular senescence 

There are several causes leading to senescence and they typically result in the 

specific cell phenotype. Note however, there is no specific marker common to all 

types of senescence or cell type. The senescent phenotype is therefore characterized 

as a combination of markers discussed below. The senescent cells do not necessarily 

express all of the associated markers and these markers are not specific only to the  

senescence. Since the cellular senescence is of a growing interest, new hallmarks of 

senescence are emerging in time.  

2.3.1.1.  Permanent arrest in cell-cycle 

Hallmark common to all senescent cells is a permanent arrest in the cell-cycle. 

While there have been some documented cases of the escape from the senescence, 

some external interventions have been needed (BEAUSÉJOUR et al. 2003, 

ROBERSON et al. 2005). 

The cell cycle is an ordered sequence of independent but tightly coordinated 

events, which enables cells to duplicate. the correct progression trough the cell cycle 

is monitored by various checkpoints and is driven by cyclin-dependent kinases 

(CDK) and its corresponding cyclins fluctuating during the cell cycle. The activity of 

CDK kinases is regulated by their respective cyclins and dephosphorylation at 

threonine 14 and tyrosine 15 on CDK 1 and 2 and tyrosine 17 on CDK4 (TERADA et 

al. 1995, SEBASTIAN et al. 1993).  

The activated cyclin-CDK complex phosphorylates its downstream substrates and 

through them orchestrates the passage through another phase of the cell cycle.  The 

mechanisms, how to arrest the cell cycle then include the inhibition of the activating 

dephosphorylation of CDKs or the association of cyclin-CDK complex with the CDK 

inhibitors of INK4 and Cip/Kip protein family (HALL et al. 1995, WOHLSCHLEGEL et 

al. 2001). The cell cycle checkpoint preserving the genome integrity is induced in the 

presence of DNA damage and may arrest the proliferating cell in G1, S and G2 

phases. DSBs and SSBs signalizing trough Ataxia telangiectasia mutated kinase 

(ATM) and Ataxia telangiectasia and Rad3-related protein kinase (ATR) activate 

Checkpoint kinases 1 and 2 (Chk1, Chk2), which inhibit Cdc25 phosphatase 
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(activator of CDKs) and in p53-dependent manner increase the expression of p21 

(FALCK et al. 2005, SHREERAM et al. 2008). 

The mechanism of the DNA damage response pathway involving ATM is 

following: MRN complex, composed of Mre11, Rad50 and Nbs1, detects the DSBs 

and binds to the exposed DNA. MRN complex then attracts the inactive ATM-Tip60 

complex and initiates the autophosphorylation of ATM at S367, 1893, S1981 and 

possibly at other residues (BAKKENIST & KASTAN 2003, KOZLOV et al. 2006, FALCK 

et al. 2005, SUN et al. 2007). ATM dissociates into the active monomers and 

phosphorylates histone H2A at S139 in the area of DSBs, 53BP1 at S1219, BRCA1 at 

S1152 and many more other proteins (LEE et al. 2009, BURMA et al. 2001, CORTEZ 

et al. 1999). γH2AX phosphorylation creates the positive feed-back loop for ATM 

because CK2-dependently phosphorylated MDC1 bound to MRN complex recognizes 

H2AX and binds ATM (STUCKI et al. 2005, SPYCHER at al. 2008). It allows ATM to 

spread the phosphorylation on other histone H2A in the proximity and in turn, to 

attract MDC1 with MRN complex and ATM kinase. ATM activates Chk2 via the 

phosphorylation at T68 (AHN et al. 2000).  

ATR signalization is activated via formation of SSBs. RPA binds single strand DNA 

and RPA attracts ATRIP in complex with ATR. The complex 9-1-1 consisting of Rad 9, 

Hus 1 and Rad 1 recruits TopBP1 to the site of SSB which potentiates activity of ATR 

and enables the activation of Chk1 via the phosphorylation on serine 317 and 345  

(WOLD 1997, ZOU & ELLEDGE 2003, DELACROIX et al. 2007, WANG et al. 2006, 

ZHAO et al. 2001).  

The pivotal role in the induction and maintaining of the senescent cell-cycle 

arrest is played by CDK inhibitors. They are represented by two families, INK4 and 

Cip/Kip family of CDK inhibitors. Among INK4 protein family, there are p15INK4B, 

16INK4A, p18INK4C and p19INK4D CDK inhibitors and they inhibit CDK4 and CDK6. 

Kip/Cip family consists of p21Waf1/Cip1, p27Kip1 and p57Kip2 and they are able to inhibit 

CDK1 and CDK2 (reviewed in DONOVAN & SLINGERLAND 2000). 



Page | 26  
 

 

The expression of p21 is indispensable in the induction of senescence (ROMANOV 

et al. 2012). The cell responds to the senescence-inducing stimuli by activating p53 

which is transcription factor of p21. p21 creates the necessary self-sustaining 

positive feed-back loop through the ROS production (ROS attack DNA and positively 

stimulate p53 to enhance p21) (PASSOS et al. 2010). Other than inhibiting CDK 

kinases, p21 acts as an inhibitor of wide variety of proteins and complexes so it has 

an active role for example in inhibition of DNA synthesis and its repair and in 

avoidance of apoptosis (reviewed in ROMANOV et al. 2012)  

Another CDK inhibitors involved in senescence are p15 and p16 which prevent 

the formation of cycD1-CDK4/6 complex and thereby prevent phosphorylation of 

Rb, the release of E2F transcription factor and the initiation of the proliferation 

(HALL et al. 1995). Furthermore, p16 is partially responsible for ROS production in 

the senescence which is important component in the establishment and 

maintenance of the senescence (PASSOS et al. 2010). p15 is upregulated by TGFβ 

Fig. 5 ATM and ATR signalization.  

DSBs activate ATM kinase which phosphorylates p53 and Chk2. SSBs activate Chk1 via ATR. Both 

Chk1 and Chk2 helps to stabilize tetramer of TSp53 in two ways: by phosphorylation at S15, S20, 

S35, T18 within C-terminus of TSp53 and by phosphorylation and subsequent degradation of 

Mdm2 and MdmX (reviewed in MEULMEESTER et al. 2005). Furthermore, Chk1 and Chk2 

phosphorylates Cdc25A on S123 and thus prevents activating dephosphorylation of CDK2 and 

CDK1 and subsequent DNA synthesis or M phase entry (FALCK et al. 2005, SHREERAM et al. 

2008). p53 acts mainly as a transcription factor and initiates expression of p21 which inhibits CDK 

kinases and arrest cell cycle. 
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Fig. 6 Regulation of cell proliferation.  

Cyclin-dependent kinases in complexes with their respective cyclins regulates progression through 

cell cycle. Complexes cyclinD1-CDK4/6 and cyclinE-CDK2 phosphorylate Rb tumor suppressor and 

initiate S phase. CyclinA-CDK2 drives cell through S phase and Cdc2 associated with cyclin A or 

cyclin B regulates progression of the cell through M phase. INK4 family inhibits activity of CDK4/6 

kinases and CDK1 and CDK2 may be inhibited by Kip family of CDK inhibitors (reviewed in 

DONOVAN  & SLINGERLAND 2000). 

signalization trough Nox4-dependent ROS production (FUXE et al. 2000, SENTURK 

et al. 2010). Moreover, Ras oncogene activation can promote p16-regulated 

senescence by transcription of Ets1 and Ets2 (OHTANI et al. 2001).  

2.3.1.2. Promyelocytic leukaemia nuclear bodies  

Another feature accompanying senescence is the increase in Promyelocytic 

leukaemia nuclear bodies (PML NBs). PML is a tumor suppressor protein which is 

associated with several DNA damage signaling proteins and and it is able to activate 

Rb and p53 tumor suppressor pathways (FERBEYRE et al. 2000, reviewed in 

DELLAIRE & BAZZETT-JONES 2004). Elevated PML NBs were found in all types of 

senescence and strikingly, only PML isoform IV is able to induce the senescence 

(FERBEYRE et al. 2000, JANDEROVA-ROSSMEISLOVA et al. 2007, BISCHOF et al. 

2002). PML NBs are induced by Jak/STAT signaling pathway, which is activated by 

IL6 or IFNγ, cytokines present in secretome of the senescent cells (HUBACKOVA et 

al. 2010, KUILMAN et al. 2008). Since IFNγ participates in the reaction to the viral 

infection, PML protects cells against  tumorigenesis with origin in viral oncogene 

activation (REGAD et al. 2001, FERBEYRE et al. 2000, HUBACKOVA et al. 2010, 

BISCHOF et al. 2000). 
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2.3.1.3. Senescent morphology and SA-beta-galactosidase activity 

The morphology of senescent cell is distinct for its increase in size, flatness and 

frequent occurrence of multiple nuclei in comparison to non-senescent cell 

(reviewed in CAMPISI 2013). The shape of senescent cells is a result of the 

overexpression of vimentin, a cytoskeletal protein. While the proliferating cells 

show network of rather shorter filaments around nuclei, the senescent cells form 

thick, long fibers across the whole cell (NISHIO et al. 2001).  

Further, the increase in lysosomes in numbers and size was observed in the 

senescent cells. This is linked to another marker of senescence -  increased activity 

of  ß-galactosidase (measured at suboptimal conditions of pH 6.0) (DIMRI et al. 

1995, KURZ et al. 2000, LEE et al. 2006). ß-galactosidase is an enzyme catalyzing 

cleavage of β-glycosidic bond in galactosides and is localized in autophagosomes and 

lysosomes of both regular and senescent cells. Its increase in the activity reflects the 

increased lysosomal mass and amount of the enzyme (LEE et al. 2006, KURZ et al. 

2000). The exact reason for the lysosomal increase is to be elucidated, but it has 

been proposed that the oxidative stress associated with the senescence results in the 

oxidative-modification of macromolecules and the formation of lipofuscin,  an 

undegradable material. The aggravated function of lysosomes with accumulated 

lipofuscin would, according to authors, lead to the lower mitochondrial recycling 

and further oxidative damage (reviewed in TERMAN & BRUNK 2002). 

PD 32 PD 51 

Fig. 7 S-A β-galactosidase activity detected by S-A-β-Gal. 

HFFF2 cell strain (derived from human fibroblasts) at PD 32 (young)  and PD 51 (senescent). 

The senescent cell shows increaze in size and nuclei, flatness and high S-A β-galactodidase 

activity represented by blue staining; magnification x1000 (adopted from GORGOULIS et al. 

2005) 
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2.3.1.4.  Senescence-associated secretory phenotype 

Tumor growth, infection, tissue injury and other damaging events are known to 

induce inflammation. The immune system reacts to such harmful stimuli by 

attracting cells of the immune system, mainly macrophages, neutrophils or mast 

cells to the site of damage and these leukocytes communicate among themselves and  

other cells present in the site of inflammation by myriad of mediators, among them 

histamine and serotonin, eicosanoids, chemokines and pro-inflammatory cytokines. 

While destroying the cause of the immune response, this environment is favorable 

for the transformed growth and was described as the cancer hallmark (reviewed in 

ASHLEY at al. 2012 and GRIVENNIKOV et al. 2010). The first line of the protection 

against the inflammation-mediated tumorigenesis is the initiation of the cell cycle 

arrest and the senescence via pro-inflammatory cytokines, mainly IL1 and TGF-β. 

IL1 and TGFβ-dependent induction of the senescence is mediated via the ROS 

production and via the subsequent DNA damage (HUBACKOVA et al. 2012,reviewed 

in MULTHOFF et al. 2012).  

Both TGFβ/SMAD and IL1/NF-κB signalization pathways increase Nox4 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, en enzyme 

producing ROS - the key mediators in the DNA damage induction and the onset of 

the senescence (HUBACKOVA et al. 2012). In turn, the ROS production activates the 

p38/MAPK kinase that positively regulates NF-κB-dependent transcription and 

further, NF-κB is positively regulated by ATM, a kinase activated in response to DNA 

damage, as well (GOETTSCH et al.2009, reviewed in MORGAN & LIU 2010). NF-κB 

signaling pathway is responsible for the expression of many cytokines, besides IL1 

and TGFβ also TNFα and IFNγ, which were described to induce senescence in the 

surrounding cells in paracrine manner as well (reviewed in MULTHOFF et al. 2012). 

NF-κB initiates the expression of IL6 as well. IL6 activates Jak/STAT pathway and 

upregulates itself in the autocrine manner. Moreover, IL6-dependent STAT3 is a 

transcription factor of IL8. Both IL6 and IL8 are required for the development of the 

senescence and for its maintenance (KUILMAN et al. 2008, ACOSTA et al. 2008). IL6 

and IL8 signalization is later on downregulated by miRNA 146a/b induced probably 

by the IL1 signalization (BHAUMIK et al. 2009). Nonetheless, it is important to note 

that IL1, IL6, TNFα, TGFβ and IFNγ produced by the cell to spread the senescence 
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are pro-inflammatory cytokines with the ability to support the transformed growth 

(ACOSTA et al. 2008, MIKULA-PIETRASIK et al. 2013, KUILMAN et al. 2008, 

BRAUMULLER et al. 2013., HUBACKOVA et al. 2012) Fig. 9 shows various 

detrimental effects of SASP. 

  

Fig. 8 Induction of senescence-associated secretory phenotype. 

NF-κB transcription factors are in inactive form localized in cytoplasm, bound to inhibitor of κB 

(IκB).  Activating stimuli activates regulatory subunit of Inhibitor of IκB kinase (IKK), IKKγ/NEMO, 

which forms complex with IKKα and IKKβ and phosphorlylates IκB. Phosphorylated IκB is 

degraded and released NF-κB translocate to nucleus where it acts as transcription factor. Further, 

NF-κB partcipates in expression of IL6 via Jak/STAT pathway (adopted from YU et al. 2009) .  
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2.3.1.5. Persistent DNA damage response 

Persistent DNA damage response is of frequent occurrence in the senescent cells 

and its constitutive signaling has a role in the development and maintenance of the 

senescent phenotype. Unlike the transient foci, senescence-associated chronic DNA 

damage (also termed DNA-SCARS - DNA Segments with Chromatin Alterations 

Reinforcing Senescence) are associated with PML NBs with the lack of DNA repair 

proteins, like RPA or RAD51. These DNA SCARS, detected by 53BP1 and γH2AX, 

contain the activated forms of p53 (phosphorylated at serine 15) and Chk2 

(phosphorylated at threonine 68), and their formation is both p53 and Rb-

independent. DNA-SCARS formation is accelerated during the deficiency in DNA 

repair mechanisms (RODIER et al. 2011). 

 

 

  

Fig. 9 Schematic visualisation of complex SASP signaling network. 

IL1, TNF ad IL6 are involved in complex, selfpotentiating signaling network not only 

enhancing senescence development but supporting transformed growth as well via 

many pathways (adopted from MULTHOFF et al. 2012). 
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3.  AIMS OF THESIS 

Since 5-aza-2‘-deoxycytidine is able to induce senescence, we have asked, whether 

5-azacytidine, as a molecule with similar structure, is capable of such effect as well. 

Given it is, our aim is to investigate secretory phenotype of cell with 5-azacytidine-

induced senescence in order to contribute to deeper understanding of effect this  

compound has on cells and their environment. Such knowledge could lead to 

improvement of 5-azacytidine facilitated therapy of MDS patients. Our aims in 

particular were:   

1. To verify 5-azacytidine possesses cytotoxic effects and induces DNA damage 

response 

2. To investigate whether 5-azacytidine induces irreparable DNA damage  

3. To investigate whether 5-azacytidine induces senescence 

4. To investigate whether 5-azacytidine induces DDR-activated senescence-

associated secretory phenotype  
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4.  MATERIAL AND METHODS 

4.1.  List of used chemicals and other material 

Chemicals etc. Manufacturer, Country 

10 mM dNTPs (deoxynucleotide triphosphates) Fermentas International Inc., USA 
2-Buthanol Penta, CR 
5-Azacytidine (≥98% HPLC) Sigma-Aldrich, USA 
Acetic acid (99%) Penta, CR 

Acrylamide / Bis 30% 
Serva Electrophoresis GmbH, 
Germany 

APS (ammonium persulfate, 98%) Sigma-Aldrich, USA 
Aqua pro injection B. Braun, Germany 
BrdU (Bromo-2′-deoxyuridine; 99%) Sigma-Aldrich, USA 
Trisodium citrate dihydrate Sigma-Aldrich, USA 
DAPI, 4',6-diamidino-2-phenylindole Sigma-Aldrich, USA 
Dithiothreitol Sigma-Aldrich, USA 
DMEM  (Dulbecco’s Modified Eagle’s Medium) IMG ASCR, v.v.i.; CR 
DMSO (Dimethyl sulphoxide) Sigma-Aldrich, USA 
Double-distilled sterile H2O IMG ASCR, v.v.i.; CR 
EDTA (Ethylenediaminetetraacetic acid) solution 
in PBS 

IMG ASCR, v.v.i.; CR 

Ethanol 96% Penta, CR 
Fetal Bovine Serum Life Technologies, USA 
Glutaraldehyde grade I, ultra-pure for el. 
microscopy 25% 

Sigma-Aldrich, USA 

Glycerol (99%) Sigma-Aldrich, USA 
Hoechst 33258 (Bis-benzimide) Sigma-Aldrich, USA 
K3Fe(CN6) (potassium ferricyanide) Sigma-Aldrich, USA 
K4Fe(CN6) x 3 H2O (potassium 
hexacyanoferrate trihydrate) 

Sigma-Aldrich, USA 

Medical X-ray film Blue AGFA HealthCare, Belgium 
Methanol Penta, CR 
MgCl2 (magnesium chloride anhydrous) Fluka, Switzerland 
MUG (4-methylumbelliferyl-beta-D-
galactopyranoside 

Sigma-Aldrich, USA 

Na2HPO4 (Sodium phosphate anhydrous) Sigma-Aldrich, USA 
NaCl (Sodium chloride, 99%) Erba Lachema s.r.o., CR 
Nonfat dry milk Novako, CR 
PageRuler prestained protein ladder # 26616 Fermentas 
PBS (Phosphate buffered saline) IMG ASCR, v.v.i.; CR 
Ponceau S Fluka, Switzerland 
RNase Inhibitor Fermentas International Inc., USA 
SDS (sodium dodecyl sulfate) Serva Electrophoresis GmbH, 

Germany 
SYBR Select Master mix Life technologies, USA 
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TaqMan reverse transcription reagent Life technologies, USA 
TEMED (N,N,N’,N’-etramethylethylendiamine) Fluka, Switzerland 
  
Trypsin/EDTA (Ethylenediaminetetraacetic acid) IMG ASCR, v.v.i.; CR 
Tween20  Sigma-Aldrich, USA 
X-gal (5-Bromo-4-Chloro-3-Indolyl beta-D-
galactopyranoside, 98%) 

Sigma-Aldrich, USA 

β-mercaptoethanol (2-Mercaptoethanol) Sigma-Aldrich, USA 
NaN3(sodium azide) Koch-Light Laboratories Ldt. 
Pure Nitrocellulose Blotting Membrane  Pall Corporation, USA 
Penicillin-Streptomycin solution 100x Sigma-Aldrich, USA 
Triton X-100 (polyethylene glycol 
tertoctylphenyl ether) 

Fluka, Switzerland 

Mowiol 4-88 Sigma-Aldrich, USA 
Tris (Trishydroxymethylaminomethane, 99.9%) Serva Electrophoresis GmbH, 

Germany 
Benzamidine (N-[4-[(6,7-Dimethoxy-4-
quinazolinyl)amino]phenyl]benzamide 

Sigma-Aldrich, USA 

Para-formaldehyde 4% (m/v) pH 7.2 BDH, UK 
10x TGS buffer (192mM glycine, 25 mM Tris, 
0.1% (w/v) SDS, pH 8.3) 

Bio Rad, USA 

10x TG buffer (192mM glycine, 25 mM Tris, pH 
8.3) 

Bio Rad, USA 

Bromophenol Blue Lachema, CR 
Agarose Serva Electrophoresis GmbH, 

Germany 

4.2. List of used kits and pre-designed systems 

Pre-designed system, Country 

ECL Western Blotting System, Amersham, USA 

BCA Protein Assay, Thermo Scientific, USA 

Human Common Cytokines RT PCR assay, Quiagen, USA 
Click-iT EdU Alexa Fluor 488 Imaging Kit, Life technologies, USA 
Basic Kit Human Flow, eBioscience, USA 
Rneasy Micro Kit, Quiagen, USA 
Annexin V: FITC Apoptosis Dection Kit I, BD Pharmingen, Germany 

High Capacity cDNA Reverse Transcription kit, Life technologies / Applied 
Biosystems, USA 
The Human Common Cytokines RT² Profiler™ PCR Array, Qiagen, USA 
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4.3.    List of used primary antibodies 

 

4.4. List of used secondary  antibodies 

Conjugation Epitope Host Manufacturer 
Catalog 
number 

Working 
dilution 

Cy3 568 Mouse Donkey Jackson 
Immunosearch 

715-165-150 
300 - 400x 

Alexa Fluor 488  Rabbit Donkey Invitrogen  A21206 1,000x  
IgG-HRP  Rabbit Goat Bio-Rad 170-6515 10, 000x  
IgG-HRP  Mouse Goat Bio-Rad 170-6516 10,000x 
IgG-HRP  Goat Rabbit Santa Cruz sc-2922 10,000x  

   

4.5. dd 

  

Epitope 
Catalog 
number 

Sensitivity Standards 

IL1β BMS8224FF 4.2 pg/ml 20 000-27 pg/ml 
IL6 BMS8213FF 1.2 pg/ml 20 000-27 pg/ml 

IFNγ BMS8228FF 1.6 pg/ml 20 000-27 pg/ml 
TNFα BMS8223FF 3.2 pg/ml 20 000-27 pg/ml 

TGFβ1 BMS8249FF 10 pg/ml    10 000-13.7 pg/ml 

 

Epitope Host Manufacturer 
Catalog         
number 

Working 
dilution 
for IF  

Working 
dilution for 
WB 

53BP1 Rb/poly Santa Cruz sc-22760 500x - X- 

GAPDH M/mono GeneTEX GTX30666 - X- 2000x 

Chk2 M/mono Millipore 05-649 - X- 1000x 

Chk2pThr68 Rb/poly Cell Signaling #2661 - X- 1000x 

p15 Rb/poly Santa Cruz sc-612 - X- 1000x 

p16 Rb/poly Santa Cruz sc-759 - X- - X- 

p21 M/mono Santa Cruz sc-56335 - X- 500x 

p53 M/mono Santa Cruz sc-126 - X- - X- 

p53pSer15 Rb/poly Cell Signaling #9284 - X- - X- 

PML M/mono Santa Cruz sc-966 100x 1000x 

Rb M/mono BD Pharmingen 554136 - X- 1000x 

Smad2 G/poly Cell Signaling sc-966 - X- 1000x 

Smad2pS465/467 Rb/poly Santa Cruz #9284 - X- 1000x 

Stat3 M/mono Santa Cruz sc-482 - X- 1000x 

Stat3pY705 Rb/poly Cell Signaling #9138    - X- 1000x 

γ-H2AX(pSer139) M/mono Millipore  05-636    500x - X- 

4.5.     List of used beads recognizing cytokines 
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 UV Transilluminator East Port, Prague, Czech Republic 

4.6. List of used primers for RT-qPCR 

Epitope Forward primers Reversed primers 

IL1B 
CCACAGACCTTCCAGGAGAATG GTGCAGTTCAGTGATCGTACAGG 

IL6 
AGCCCTGAGAAAGGAGACATGTA TCTGCCAGTGCCTCTTTGC 

IL8 
TTGGCAGCCTTCCTGATTTC TCTTTAGCACTCCTTGGCAAAAC 

TNFA 
GGTGCCTATGTCTCAGCCTCTT GCCATAGAACTGATGAGAGGGAG 

TGFB 
TACCTGAACCCGTGTTGCTCTC TACCTGAACCCGTGTTGCTCTC 

IFNG 
AGGTCATTCAGATGTAGCGGATAAT TTCTGTCACTCTCCTCTTTCCAATT 

ACTB 
CCAACCGCGAGAAGATGA CCAACCGCGAGAAGATGA 

 
 
 
 
Manufacturer, Country 

7300 Real-Time PCR System, Life Technologies / Applied Biosystems, USA 
Analytical weights AE 240, Mettler, USA 
BD LSRII FACS Flow Cytometer, BD, USA 
Modulus™ Microplate Multimode reader, Turner BioSystems, USA 
Mini PROTEAN® 3 Cell wet tank system, Bio Rad, USA 
BioSafety Cabinet Bio-II-A Telstar, Spain 
Bürker counting chamber, Laboroptik, Germany 
Centrifuge 5415R, Eppendorf, Germany 
Centrifuge 5424 Eppendorf, Germany 
Centrifuge NF400 Nüve Inc.,Turkey 
CO2 Incubator FORMA Series II Water Jacket, Thermo Fisher Scientific Inc., USA 
Countess® Automated Cell Counter, Life Technologies / Invitrogen, USA 
Microplate photometer Multiskan® EX, Thermo Fisher Scientific Inc., Waltham, USA 
Microscope DMIL, Leica Microsystems GmbH, Germany 
Microscope Eclipse T100, Nikon Instruments Europe B.V, The Netherlands 
Minicentrifuge Z 100,  Hermle LaborTechnik GmbH, Germany 
MJ Mini personal thermal cycler, BioRad, USA 

NanoDrop® ND-1000 Spectrophotometer, Thermo Fisher Scientific Inc., USA 
PIPETMANs Neo® Set, Gilson Inc., Middleton, USA 
SDS-PAGE Apparatus Mini-PROTEAN Tetra Cell, Bio Rad, USA 
Sonicator SONIPREP MSE 150 AL.BRA. Srl, Italy 
The LightCycler® 480 System, Roche Diagnostics GmbH, Germany 
Thermomixer comfort Eppendorf, Germany 
Vortex Lab dancer VWR, Germany 
Water bath BM402, Nüve Inc., Turkey 

4.7.         List of used equipment 
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4.8. Cell cultivation 

HeLa cell line (derived from human cervical cancer, obtained from prof. Jiri Bartek) 

was grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% 

fetal bovine serum (FBS) and antibiotic component consisting of Penicillin (100 

U/ml) and Streptomycin (100 ng/ml). Cells were kept at 37 °C under 5% CO2 

atmosphere. Further manipulation with cells was in accordance with the 

mammalian cell culture protocol (FRESHNEY 2005). 

4.9. Thawing cells 

Cells in cryovials, previously stored in liquid nitrogen, were during their transfer 

and manipulation on dry ice and then were rapidly thawed in water bath tempered 

to 37°C. Cells were resuspended in DMEM and centrifuged at 100x g for 5 minutes. 

Supernatant containing cryopreservation medium (90% [v/v] FBS and 10% [v/v] 

DMSO) was removed and cells were resuspended in fresh DMEM. Cells were 

cryopreserved in concentration of approximately 2x 106 cells per 1 ml of 

cryopreserving medium and were subsequently planted into culturing flask in 

concentration of approximately 8x 104 cells per 1 cm2. 

4.10. Counting cells 

Bürker counting chamber was used for estimating cell counts, accordingly to the 

mammalian cell culture protocol (FRESHNEY 2005). For assessment of cytokines in 

medium by Bead-based Immunoassay, cells were counted by Countess® Automated 

Cell Counter accordingly to the manufacturer instructions. 

4.11. Treating cells 

Cells were seeded in concentrations of approximately 3.4x104 cells per 1 cm2 and 

rested overnight. They were given fresh medium along with respective doses of 

10mM 5-azacytidine, 10mM BrdU or DMSO. In order to preserve cytokine signaling 

of cells, only half of medium from 5-azacytidine treated and mock treated cells was 

replaced by fresh medium every 24 hours during experiment. Cells treated by BrdU 
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were given fresh medium every 48 hours, along with treatment. Otherwise, cells 

were manipulated accordingly to the mamalian cell culture protocol (FRESHNEY 

2005). 

4.12. BCA assay 

For even loading of protein samples for Western blot and Quantitative assay of  

SA-ß-galactosidase activity in mammalian cell extracts, protein concentration was 

measured by BCA assay accordingly to the manufacturer protocol. Microplate 

photometer Multiskan® EX was used for evaluation of protein concentration. 

4.13.  SDS-Polyacrylamide Gel Electrophoresis and Western blotting 

Cells were washed with PBS thoroughly and all of remaining PBS was removed. Cells 

were harvested in 1x Sample buffer (250 mM Tris-HCl, 40% [v/v] Glycerol, 8% 

[w/v] SDS, pH 6.8) and lysate was sonicated two to three times at 3 microns for 15 

seconds with 15 s pause. Lysates were stored at -20°C. SDS-PAGE was prepared. 

Assembled glass cassettes were partially filled with gel of desired Acrylamide-Bis 

concentration (components listed in Table 2) and layered with butanol. After 

polymerization, butanol layer was removed and the rest of cassette was filled with 

stacking gel (Table 3) with its height doubling the height of used combs, then the gel 

polymerized. Bio-Rad Mini-PROTEAN Tetra Cell apparatus was used to run samples, 

along with 1x TGS buffer (192mM glycine, 25 mM Tris, 0.1% [w/v] SDS, pH 8.3) as a 

running buffer. Loaded samples were diluted to the same exact concentration 

keeping between 25–40 ng of total protein per sample and had added 1M 

dithiothreitol in amount of one tenth of final sample. Samples were boiled at 96.5 °C 

for three minutes and centrifuged at maximum speed for 30 s to accumulate 

condensed water. Samples were run at constant current 50 mA. Proteins were 

transferred on Pure Nitrocellulose Blotting Membrane from Pall Corporation by Mini 

PROTEAN® 3 Cell wet tank system from Bio-Rad. 1x TG blotting buffer (192mM 

glycine, 25 mM Tris, pH 8.3) with addition of 20% [v/v] of methanol was used. 

Transfer was carried out under constant voltage of 100 V for 90 minutes. To verify 

quality of transfer, proteins on membrane were stained by 0.1% [w/v] Ponceau S 

with 5% [v/v] acetic acid. When Ponceau S staining was removed by PBS with 
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addition of 0.1% [v/v] Tween 20(PBS+T), membranes were blocked by 5% [w/v] 

non-fat dry milk dissolved in PBS+T for 45 minutes at room temperature. After 

PBS+T wash, membranes were incubated with corresponding antibody in 3% [w/v] 

non-fat dry milk dissolved in PBS+T with addition of 0,01% [v/v] sodium azide for  

8 – 15 hours. Membranes were washed in PBS+T and incubated with corresponding 

secondary antibody conjugated with polymers of horseradish peroxidase in 3% 

[w/v] non-fat dry milk dissolved in PBS+T for 45 minutes. After PBS+T wash, 

substrate for the horseradish peroxidase was added in ECL mix prepared of 

solutions ECL 1 and ECL 2 (1:1) from Amersham or in need of higher sensitivity, 

SuperSignal West Femto Chemiluminescent Substrate was used. X-ray films were 

developed in hand with developer and stabilizer solutions.  

 

Components 8%* 10%* 12%* Stacking** 

ddH2O 2.4 ml 2.1 ml 1.75 ml 1.2 ml 

Acrylamide / Bis 30% 1.3 ml 1.7 ml 2.0 ml 0.3 ml 

Buffer 1.3 ml 1.25 ml 1.25 ml 0.5 ml 

APS 10% 35 µl 35 µl 35 µl 16 µl 

TEMED 8 µl 8 µl 8 µl 4 µl 

4.14. Direct Fluorescence 

Cells planted on coverslips were  in the same medium cultivated with the 1 µM EdU 

nucleotide analog for six hours and then were fixed by 4% para-formaldehyde 

during 15 minutes of its actuation. They were either washed in PBS and 

permeabilized by 0.1% Triton X or firstly stored in cold in solution of PBS and 0.01% 

sodium azide and then permeabilized by 0.1% Triton X. The background signal was 

decreased by wash in 10% FBS diluted in PBS which lasted 30 minutes. Cells on 

coverslips were incubated with Click-iT® reaction mix according to the 

manufacturer protocol (for 30 minutes in dark). The reaction mix contained Click-

Tab. 2 Components for 0.1x6x8cm SDS-PAGE gels of various percentages. 

*Buffer 1 (1.5 mM Tris, 0.4% SDS, pH 8.8) 

**Buffer 2 (0.5 mM Tris, 0.4% SDS, pH 6.8) 
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iT® Alexa Fluor® azide that bound to incorporated EdU based on click reaction 

between an azide and an alkyne. The bond is covalent and catalyzed by copper. Cells 

were washed in PBS and then mounted by Mowiol-4-88 with supplemented by DAPI 

(0.1 µg/ml) . The microscopic slides were stored in dark and cold. For the estimation 

of EdU incorporation, only cell exhibiting diffusive pattern of EdU incorporation 

were taken into account in order to eliminate error of including cells only repairing 

their DNA lesions. Mounted cells were analyzed by Microscope Leica DMIL. 

4.15. Indirect Immunofluorescence 

Cells planted on coverslips were, after wash in PBS, fixed by 4% para-formaldehyde 

for 15 minutes. Subsequently, they were either stored in cold, covered by PBS with 

addition of 0.01% [v/v] sodium azide, and later permeabilized by 0.1% Triton X or 

permeabilized immediately. No surface proteins were visualized so permeabilization 

was a step occurring in each procedure. To reduce unspecifity of primary antibodies, 

cells were incubated in 10% [v/v] FBS for 30 minutes. After PBS wash, fixed cells 

were incubated with primary antibodies under humid conditions. Unbounded 

primary antibody was washed out by PBS+T and PBS and primary antibodies were 

labeled with according secondary antibodies with fluorescent dye for 60 minutes in 

dark under humid conditions. Cells were washed with PBS+T, PBS and then 

mounted on clean microscope slide by Mowiol-488 with DAPI. The microscopic 

slides were stored in dark and cold. Mounted cells were analyzed by Microscope 

Leica DMIL. 

4.16.  S-A β-galactosidase assay 

This cytochemical method is based on visualizing B-galactosidase activity by 

hydrolysis of chromogenic substrate in suboptimal conditions of pH 6.0. B-

galactosidase hydrolyzes glycosidic linkage between galactose and 5-bromo-4-

chloro-3-hydroxyindole. 5-bromo-4-chloro-3-hydroxyindoles dimerizes by 

oxidation and thus form blue precipitate of 4-chloro-3-brom-indigo. Cells planted on 

coverslips were washed in PBS and fixed by 0.25% glutaraldehyde diluted in PBS for 

11 minutes. In this state, they were stored in cold and dark, overlaid by PBS with 

addition of 0.01% [v/v] sodium azide. Later, they were washed in PBS with addition 
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of 1mM magnesium chloride adjusted to pH 6.0. Reaction mix (Table 4) was added 

and fixed cells were incubated with this mix at 37°C for the time needed for positive 

controls to stain heavily while mock treated controls remaining unstained, 

approximately 2 days. Fixed cells were washed in PBS and mounted on clean 

microscope slide by Mowiol-488 with DABCO. The microscopic slides were stored in 

dark and cold. Mounted cells were analyzed by Microscope Leica DMIL. 

 

4.17.  Quantitative assay of Senescence-associated 

ß-galactosidase activity in mammalian cell extracts 

This method operates on similar principle as SA- ß -galactosidase assay. It uses pH 

6.0 to create suboptimal conditions for ß-galactosidase activity and the substrate, 4-

methylumbelliferyl-beta-D-galactopyranoside (MUG), becomes fluorescent after 

hydrolysis. Cells were washed in PBS and after removal of remaining PBS, they were 

harvested in 1x Lysis buffer M (40 mM Na2HPO4, 40 mM Trisodium citrate 

dehydrate, 0.5 mM Benzamidine, pH 6.0) with volume depending on density of cells . 

Lysates were stored at -20°C. Lysates obtained by Lysis solution  M were measured 

for protein concentration by BCA assay (chapter 1.2). Lysates were diluted to 

concentration 0.55 ng per µl and 90 µl of lysate with matching amount of 2x 

Reaction buffer (40 mM citric acid, 40mM Na2HPO4, 300 mM NaCl, 10 mM β-

mercaptoethanol, 4 mM MgCl2) were mixed in Eppendorf tube and incubated at 

37°C.  Samples were taken in time points 0 hours, 1 hour, 2 hours and 3 hours and 

400 µl of 400mM sodium carbonate stop buffer was immediately added before 

cooling samples down to 4°C in dark. Collected samples from 4 timepoints were 

divided into 96-well plate by 205 µl per well in duplicate and had fluorescence 

measured by UV light at wavelength 360 nm for excitation and 465 nm for emission 

by Modulus™ Microplate Multimode reader. β-galactosidase activity per 1 µg of 

cellular lysate corresponded to measured absorbance. 

Composition of 10 ml of reaction mix [µl] 

PBS + 1 mM MgCl2, pH 6.0 9.3 

{0.12 mM K3Fe(CN)6 + 0.12 mM K4Fe(CN)6 x 3 H2O} in PBS  0.5 

X-gal 0.25 

Table 4. Constitution of reaction mix for S-A β-galactodise assay. 
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4.18.  RNA isolation, reverse transcription and quantitative PCR 

Cells were harvested by Rneasy Micro Kit according to manufacturer instructions. 

The volume of samples was doubled by 70% ethanol of room temperature and 

resuspended samples were transferred to columns in centrifuge tubes. Samples 

were centrifuged at 10 000 rpm for 15 s. Samples were washed by 700 µl of RW1 

buffer and 500 µl of RPE buffer with centrifugation at 10 000 rpm for 15 s after both 

steps. Samples were rewashed by 500 µl RPE buffer and centrifugation at 10 000 

rpm for 2 minutes. Columns were transferred to clean tubes and centrifuged at 14 

500 rpm for 90 s. Columns were transferred to elution tubes and RNA was eluted by 

25 µl of RNase-free water and centrifugation at 10 000 rpm for 1 minute and then 

re-eluted by the supernatant and centrifugation at 10 000 rpm for 1 minute. The 

contrations of samples and their purity were (ratio of absorbance measuread at 280 

and 260 nm and at 260 and 230 nm) measured on Nanodropells were harvested by 

Rneasy Micro Kit according to manufacturer instructions and isolated by Rneasy 

Micro Kit accordingly to manufacturer instructions. The contrations of samples and 

their purity were (ratio of absorbance measuread at 280 and 260 nm and at 260 and 

230 nm) measured on Nanodrop® ND-1000 Spectrophotometer. The iIsolated RNA 

was diluted by RNase-free water to concentration 100 ng per µl. The reaction mix 

was prepared according to Table 5 and was run on MJ Mini personal thermal cycler. 

The program is described in Table 6. The product of reverse transcription was 

diluted four times by RNase-free water and the reaction mix for quantitative PCR 

was prepared (see Table 7). The reaction was analyzed by 7300 Real-Time PCR 

System and quantified by ddCt method for qRT-PCR data analysis (ZHANG et al. 

2014).  

Futher, cDNA prepared according to the protocol was used for Common Cytokines 

RT2 Profiler PCR array in accordance to the manufacturer instructions. The reaction 

was analyed by 7300 Real-Time PCR System  and the data were quantified by ddCt 

method.  
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Composition of one reaction  [µl] 

RNase-free water 2.25 

2x Master mix 6.25 

Primers (2.5 µM) 1.5 

cDNA template 2.5 

 

4.19.  Fluorescence-activated Cell Sorting  

MMedium with non-adhering cells was collected into a tube and cells were washed 

 with PBS and removed from the surface of dish by thin layer of 0.25% [w/v] 

Trypsin dissolved in EDTA (T/E). In the meantime, medium containing unattached 

cells was centrifuged at 375x g for 3 minutes. Cells removed from dish by T/E were 

resuspended in PBS and transferred to the tube with previously non-adherent cells. 

Two fractions of cells were mixed by resuspending and centrifuged at 375x g at for 3 

minutes. Cells were washed with 300 µl of 1x Annexin V binding buffer and then 

incubated with Annexin V-FITC diluted in Annexin V binding buffer (1 µL of Annexin 

V-FITC per 100 µl of Annexin binding buffer) for 20 minutes. Finally, Hoechst 33258 

was added to detect dead or necrotic cells (in final concentration of 2 µg/ml). Data 

were measured by BD LSRII FACS Flow Cytometer and quantified by FlowJo 

software. 

Composition of one reaction  [µl] 

10x RT Buffer 2 

RNase-free H2O 11.2 

25x dNTP mix (100mM) 0.8 

10x RT Random Primers 2 

RNase Inhibitor 1 

Reverse Transcriptase MultiScribe 1 

RNA at conc. 100 ng / µl 2 

Step Temperature Duration 

Step 1 25 °C 10 min 

Step2 37°C 120 min 

Step 3 85°C 5 min 

Step 4 4°C forever 

Table 5 Components for one RT-PCR reaction. 

 

 

Table 6 Program for RT-PCR. 

 

 

Table 7 Components for one qPCR reaction. 
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4.20.  Bead-based assay 

Beads-based assay is based principles of ELISA. There are several types of beads of 

different emission spectrum and size. Beads are coated in specific antibody against 

the cytokine of interest and another specific biotinylated antibody recognizing the 

same cytokine of interest, but different epitope, is added. Secondary streptavidin-

linked antibody with conjugated phycoerythrin is added. Beads with bound cytokine 

of interest and corresponding antibodies are recognized by FACS for type of bead 

and magnitude of signal for secondary antibody. The last day of treatment, cells 

were cultivated in half of previously used volume of medium to enhance 

concentration of cytokines of interest in medium. The medium was centrifuged at 

3000x g for 3 minutes to remove non-adherent fraction of culture and remaining 

adherent cells were removed from culture dish by 0.25% [w/v] T/E, resuspended in 

1 ml of fresh medium and counted by Countess® Automated Cell Counter (see 

chapter 1.7). Assay was carried out correspondingly to the manufacturer 

instructions. Amount and type of beads were measured by BD LSRII FACS Flow 

Cytometer and quantified by FlowJo software. Data were calculated to pg of cytokine 

in 1 ml of media secreted by 105 cells. 

4.21. DNA electrophoresis.  

For horizontal electrophoresis, 3% [w/v] agarose gel disolved in TAE (Tris-acetate-

EDTA; pH 8.0) buffer was used. Samples mixed with 1x Loading dye were separated 

on gel by constant voltage 100 V. DNA vizualized by ethidium bromide was detected 

by UV transilluminator. 
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5. RESULTS 

5.1 5-azacytidine induces morphologic changes in HeLa cells. 

According to pharmacokinetic study of 5-azacytidine (MARCUCCI et 

al. 2005), achievable 5-azacytidine plasma concentration in patients is 3-11 µM 

(standard protocol of 5-azacytidine administration to patients in a dose of 75 mg/m2 

IV infusion administered daily over 10 minutes for the duration of 7 days). To 

elucidate the effects of 5-azacytidine in administration relevant to the clinical use, 

concentrations of 0.0, 0.125, 0.25, 0.5, 1, 2, 4 and 10 µM dissolved in DMSO were 

tested. We used the same clinical protocol and the HeLa cells were treated every 24 

hours with appropriate concentration of 5-azacytidine for 7 days and in further 

experiments as well. Although concentrations lower than 2 µM did not have 

significant effect on proliferation and morphology of treated HeLa cells (see Fig. 10), 

higher concentrations (2 and 4 µM) of 5-azacytidine induced morphological changes 

in cells – cells became rounded and with enlarged nuclei. Strikingly, a partial to 

complete loss of adherence in large fraction of cells was observed. While 0 – 1 µM 5-

azacytidine treated cells proliferated during the experiment, 2 and 4 µM 5-

azacytidine treated cells ceased the proliferation at third day of experiment (as can 

be seen in Fig. 1, the lower density of 2 and 4 µM cultures indicated affected 

proliferation). 10 µM 5-azacytidine treatment was cytotoxic. To follow the impact of 

5-azacytidine on selected parameters of cell physiology in surviving cells, 

concentration 2 and 4 treatment was chosen for further experiments. Nucleotide 

analog with pyrimidine base, Bromodeoxyuridine (BrdU) was chosen as a sort of 

control as BrdU induces DNA damage response and onset of senescence 

(MASTERSON et al. 2007, MICGISHITA et al. 1999).  

Fig. 10 Effect of 5-azacytidine on morphology of HeLa cells.  
HeLa cells were treated 7 days with 1 µM or 2 µM, respectively. HeLa cells treated with 0.04% DMSO 
were used as a control. Bar 50 µM.  

 

2 µM 5-AzaC 0 µM 5-AzaC 1 µM AzaC 
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Based on previous experiments with BrdU treatment of HeLa cells, 100 µM BrdU was 

used (NOVAKOVA et al. 2010). 

5.2  5-azacytidine induces cell death.  

Non-adherent blebbing cells were observed after 2 and 4 µM 5-azacytidine 

treatment. To assess the number of apoptotic cells, the levels of Annexin V (probe 

detecting phosphatidylserine) (VERMES et al. 1995) and Hoechst 33258 (fluorescent 

DNA-specific dye staining especially apoptotic cells) (WOO 1995) were measured by 

FACS. The percentage of apoptotic cells in 2 and 4 µM 5-azacytidine treated cultures 

were 48.50% (±7.8) and 52.50% (±0.7), respectively (see Fig. 11) (determined as  

Annexin positive and Hoechst positive cells). Mock treatment as well as BrdU 

treatment resulted in mild apoptosis (3.00% (±1.3) and 4.35% (±1.4) of apoptotic 

cells, respectively). Approximately 15-fold increase of apoptotic cells in 5-

azacytidine-treated cells compared to mock treated controls shows that 5-

azacytidine is cytotoxic and induces apoptosis in HeLa cells.  

 

5.3.  5-azacytidine induces DNA damage response in Hela cells. 

To test whether 5-azacytidine can induce DNA damage and activate DNA damage 

response, immunofluorescence staining of γH2AX (WARD et al. 2001, BURMA et al. 

2001) and 53BP1 (CANMAN et al. 1998) and activation of Chk2 (AHN et al. 2000) 

and p53/p21 (NELSON & KASTAN 1994) and p16/Rb (ROBLES & ADAMI 1998) 

pathways by immunoblotting was used in 5-azacytidine treated HeLa cells. All of 5-

 

Fig. 11 Percentage of Annexin V and 
Hoechst 33258 positive cells 

HeLa cells were treated 7 days with 2 µM or 
4 µM, respectively. HeLa cells treated with 
0.04% DMSO were used as a control. HeLa 
cells treated with 100 µm BrdU were used 
as a positive control of senescence. 
Apoptotic cells were determined as an 
Annexin+ Hoechst+ fraction detected by 
FACS. T test, p ≥ 0.10; two independent 
experiments. 

 

 Ctrl   BrdU  4 µM  2 µM 
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azacytidine treated cells and approximately one fifth of cells in positive control 

showed 53BP1 and γH2AX positive foci (see Fig. 12) in comparison with mock 

treated cells, where no significant DNA damage foci were detected.  One or two 

53BP1 nuclear bodies observed in control cells represent G1 phase-associated 

structures resulting from incomplete DNA synthesis in S phase, also called Opt 

bodies (LUKAS et al. 2010). It should be noted that after 5-azacytidine treatment, 

part of 53BP1 signal was localized outside of nucleus while no cytoplasmic 53BP1 

localization was observed in BrdU treated cells. 53BP1 is solely a nuclear protein and 

its localization outside nucleus indicates possible aberration in its transport to 

nucleus after mitosis (MOUDRY et al. 2012). 

  

100 µM BrdU 4 µM 5-AzaC 2 µM 5-AzaC 0 µM 5-AzaC 

γH2AX 

Merge 

53BP1 

DAPI 

Fig. 12 Presence of γH2AX and 53BP1 foci after 5-azacytidine treatment in HeLa cells. 

Immunofluorescent detection of γH2AX and 53BP1 in HeLa cells with 2 µM or 4 µM, respectively. 
HeLa cells treated with 0.04% DMSO were used as a control. HeLa cells treated with 100 µM BrdU 
was used as a positive control. Bar 25 µM. 
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Furthermore, we observed that  5-azacytidine induces activation of p53 

(phosphorylated on serine 15) and Chk2 (phosphorylated on threonine 68) (see 

Fig.13). Phosphorylation of p53 was more expressed in 4 µM 5-azacytidine 

treatment while Chk2 phosphorylation was stimulated with the same intensity after 

both doses of  

5-azacytidine. Total levels of p53 and Chk2 after 5-azacytidine treatment did not 

significantly change. p53 and Chk2 activation imply induction of cell-cycle 

checkpoints. Increased level of p21 protein responds to activation of p53 in  

5-azacytidine treated cells. Fig. 13 shows that 5-azacytidine induced level of p15, but 

not p16 protein. Rb protein level and phosphorylation remained unchanged after 

5-azacytidine treatment which corresponds with p16 level. Taken together, these 

results indicate that 5-azacytidine possibly induces DNA damage and activates DNA 

damage response and cell-cycle checkpoints. Enhanced levels of CDK inhibitors p15 

and p21 could lead to cell cycle arrest. 
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Fig. 13 Immunoblot detection of  DNA damage response activation and cell-cycle arrest in 
 5-azacytidine treated HeLa cells. 

Immunoblotting detection of total p53 and Chk2, serine 15 phosphorylated p53, threonine 68 
phosphorylated Chk2, p16INK4A, p15INK4B and Rb in HeLa cells treated with 5-azacytidine for 7 
days. 100 µM BrdU was used as a positive control. GAPDH was used as a loading control.  
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5.4  5-azacytidine induces cell-cycle arrest. 

To evaluate an effect of 5-azacytidine on cell proliferation, incorporation of EdU -  a 

thymidine analog - was used (CHEHREHASA et al. 2009). Cells were treated 

according to previous treatment regime. During the experiment, coverslips with cells 

were collected at day 2, 4 and 7, incubated with 1 µM EdU for 6 hours and together 

stained for EdU by fluorescence. The ratio of EdU positive vs. EdU negative cells was 

estimated. Fig. 14, shows decrease of EdU incorporation in cells treated with 5-

azacytidine which indicates that cell proliferation was slowed down during 

treatment. As EdU and BrdU are analogues competing for the identical site in DNA, 

incorporation in BrdU treated cells was not assessed to avoid false results. These 

data are in agreement with previous results and conclude that 5-azacytidine inhibits 

proliferation of HeLa cells and possibly induces cell-cycle arrest via checkpoint 

activation.   

5.5 There is a fraction of  S-A ß-galactosidase positive cells after 5-

azacytidine treatment. 

Since we observed the expression of CDK inhibitors in 5-azacytidine treated cells, we 

tried to determine whether cells respond to their presence by induction of 

senescence. One of senescence hallmarks, increased activity of ß-galactosidase, was 

determined by S-A ß-galactosidase assay (DIMRI et al. 1995) and Quantitative assay 

of S-A ß-galactosidase activity (GARY & KINDELL 2005) in HeLa cells treated 5-

Fig. 14 Percentage of 
EdU positive cells at 
day 2, 4 and 7 of 5-
azacytidine 
treatment.  

Statistical analysis of 
EdU incorporation in 
HeLa cells treated with  
5-azacytidine as 
indicated. T test, p ≥ 
0.10; two independent 
experiments. 
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azacytidine. Cells treated with 100 µM BrdU were used as a positive control. As you 

can see on Fig. 6, 4 µM and 2 µM 5-azacytidine treated cells were not uniform in 

positivity for S-A ß-galactosidase staining and intensity of signal in comparison with 

BrdU treated cells. Only small fraction of cells showed weak activity of this enzyme. 

The mock treated cells were negative for S-A ß-galactosidase activity (see Fig. 15). 

The quantitative assay confirmed that there was no significant difference in 

activation of  S-A ß-galactosidase activity between control cells and cells treated with 

either 2 µM or 4 µM 5-azacytidine (see Fig. 16). In conclusion, despite morphological 

changes, activation of DNA damage and cell cycle arrest 5-azacytidine did not 

increase S-A  

ß-galactosidase activity in HeLa cells. 

 

Fig. 15 Senescence-associated ß-galactosidase staining in HeLa cells after 5-azacytidine 
treatment.  
Detection of senescence-associated ß-galactosidase activity in HeLa cells treated with 2 and 4 µM 5-
azacytidine for 7 days. Cells treated with DMSO were used as a control (mock). 100 µM BrdU was 
used as a positive control. Bar 50 µM.  
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5.6 5-azacytidine induces PML expression. 

As was discussed above, senescent phenotype is characterized as a combination of 

several markers. Another senescence marker, PML and PML NBs increase, was 

therefore investigated by immunoblotting and immunofluorescence (HUBACKOVA et 

al. 2010). 2 and 4 µM 5-azacytidine induced mild increase in numbers and intensity 

of PML bodies (see Fig. 18) which correspond to increase of PML protein level 

detected by immunoblot (see Fig.  17). Increased level of PML isoforms, localized 

between 55 and 130 kDa (with unspecific band at 85 kDa, marked with asterisk), is 

shown on right side (shorter exposition). Increased modification of PML protein 

(corresponding with formation of PML NBs) was observed after long exposition and 

is localized in area of up to 130 kDa. 100 µM BrdU was used as a positive control. 

Taken together, while 5-azacytidine induces PML level and PML NBs, the increase is 

not strong enough to indicate senescence in 5-azacytidine treated cells. 
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Fig. 16 Quantification of SA-ß-
galactosidase activity in 5-
azacytidine treated HeLa 
cells.  

Quantitative assay of S-A β-
galactosidase activity in HeLa 
cells treated 7 days with 2 µM 
and 4 µM 5-azacytidine, 
respectively. 100 µM BrdU was 
used as a positive control. The 
values represent average of two 
independent experiments and 
are shown as activity of β-
galactosidase in 1 µg of sample. 
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5.7 5-azacytidine induces expression of Senescence-associated 

secretory phenotype 

Since senescence is often linked with changes in secretory phenotype of senescent 

cells termed Senescence-Associated Secretory Phenotype, we were interested to 

know whether 5-azacytidine induces expression and secretion of SASP in HeLa cells. 

We first analyzed the transcription of common cytokines and cytokines-related 

genes by pre-designed Human Common Cytokines PCR Array (the data from Human 

Common Cytokines PCR Array were obtained by Sona Hubackova and are presented 

here with her kind consent).  . Genes with transcriptions higher or lesser than 2-fold 

Fig. 17 Detection of PML 
protein level in  
5-azacytidine treated cells.  

Immunoblotting detection of 
PML in HeLa cells treated 
with 2 µM or 4 µM 5-
azacytidine for 7 days. HeLa 
cells treated with 100 µM 
BrdU was used as a positive 
control. GAPDH was used for 
loading control.  

 

Fig. 18 Presence of PML NBs in HeLa cells treated with 5-azacytidine.  

Immunofluorescence detection of PML in HeLa cells treated 2 µM and 4 µM 5-azacytidine for  24 hours 
for 7 days. Hela cells treated with 100 µM BrdU was used as a positive control; bar 25 µm. 
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compared to mock treated cells can be seen in Fig. 20. From 84 genes, 19 genes were 

elevated higher than 2-fold. Among these, there were genes supporting 

hematopoiesis (IL1A, IL11, IL20, CSF1, CSF2) and majority of these genes are 

involved in inflammatory or in T cell-mediated immune response. Genes with 

transcription lower than 2-fold after 5-azacytidine treatment in comparison with 

mock treated controls encoded in mostly forms of antiviral IFNα and γ and Bone 

Morphogenetic Proteins. The most prominent among 5-azacytidine regulated genes 

were the TGFβ and TNF superfamilies.  We focused on IL1β, IL6, IL8, TNFα, TGFβ 

and IGNγ since they have been described to induce and enhance senescence and 

SASP production (ACOSTA et al. 2008, MIKULA-PIETRASIK et al. 2013, KUILMAN et 

al. 2008, BRAUMULLER et al. 2013) and also induce secondary, “bystander” 

senescence (HUBACKOVA et al. 2012). Increased transcription of  IL1β, IL6, IL8 and 

TNFα was detected in HeLa cells treated with 5-azacytidine and verified on 

independent, validated primers (see Fig. 19, 20). Since TNFA transcript isolated from 

mock treated cells could not be quantitatively analyzed by qRT-PCR for its low yield , 

RT-quantitative PCR products corresponding to TNF transcript region were 

separated and detected on agarose gel. On Fig. X you can see that PCR amplicon 

corresponding to TNFA region from 5-azacytidine treated and BrdU treated cells was 

elevated, while the amplification of this region from mock treated cells cDNA did not 

result in any detectable product.  TGFB1 did not express significant change in 

transcription after 5-azacytidine treatment but it is known to be regulated on 

protein level (SHI et al. 2011). Since IFNG was observed to be downregulated after 5-

azacytidine using Human Common Cytokines PCR Array, the verification of this gene 

expression by independent, validated primers showed no transcription of this gene 

in both control and 5-azacytidine treated samples. To evaluate whether these 

transcripts were translated and secreted, FACS-Bead Cytokine Assay was used. 

Increased production of IL6 after 2 µM and 4 µM 5-azacytidine treatment (see Fig. 

21) correlates with its increased transcription as well as increased production of 

TGFβ into medium was detected (see Fig. 22). To prove biological activity of these 

cytokines, activation of their downstream targets was measured. Phosphorylation of 

both STAT3 on tyrosine 705 (activated by IL6 (SCHURINGA et al. 2000) and SMAD2 

on serine 465/467 (activated by TGFβ, (MORI et al. 2004) was detected (see Fig. 23). 

Discrepancy between levels of TGFβ in medium and subsequent SMAD2 activation in 
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cells treated with BrdU could be explained by oscillation of SMAD7, an SMAD2/3 

inhibitor, which is upregulated by SMAD2 activation and thereby downregulates 

SMAD2 activity in loop. It is possible that the samples were harvested in time of high 

SMAD7 activity and low SMAD2 activity, both representing activation of TGFβ/SMAD 

pathway (ZHAO et al. 2000). IL1, TNFα and IFNγ were not detected in cellular 

supernatant , even though transcripts of IL1 and TNFA were strongly increased by 5-

azacytidine treatment because protein levels of these cytokines were under 

detection limit of this method.  

 

 

  

Fig. 19 (above) 5-azacytidine–
dependent regulation of 
transcriptional levels of IL8, 
IL1B and TGFB1 in relative 
amounts correlated to actin. 

HeLa cells were mock treated or 

treated with 2 µMb and 4 µM 5-

azacytidine every 24 hours for 7 

days. 100 µM BrdU was used as 

a positive control. 
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Fig. 20 5-azacytidine–dependent regulation of  

TNFA transcriptional levels  

HeLa cells were mock treated or treated with 2 µM 

and 4 µM 5-azacytidine every 24 hours for 7 days. 

100 µM BrdU was used as a positive control. 
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cytokines-related genes (higher than 2-fold) detected by Human Common Cytokines PCR Array 
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HeLa cells were mock treated or treated with 4 µM 5-azacytidine every 24 hours for 7 days. 
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5.8 5-azacytidine induced 53BP1 and γH2AX foci are transient. 

To address question whether 53BP1 and γH2AX DNA damage foci developed during 

2 and 4 µM 5-azacytidine treatment are persistent, cells were subsequently after 

termination of 7 days long 5-azacytidine treatment, cultivated in treatment free 

medium for another 7 days and stained for 53BP1 and γH2AX. In positive control 

cells treated with BrdU for 7 days and then cultivated for 7 days without treatment, 

53BP1 and γH2AX foci remained unchanged in comparison with sample treated 7 

days with BrdU which indicate persistent DNA damage in these cells (see Fig. 24). 

 Sample 
pg/ml/  

105 cells 

0 µM 5-AzaC 41.7 

100 µM BrdU 351.3 

4 µM 5-AzaC > 20,000 

2 µM 5-AzaC > 20,000 

GAPDH

H 

SMAD2pS465/467 

SMAD2 
 STAT

3 STAT3pY705 

GAPDH

H 

100 µM BrdU 

2 µM 5-AzaC 
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Fig. 24 Activation of Jak/STAT and TGFβ/SMAD pathways in 5-azacytidine treated HeLa cells. 
Immunoblotting detection of total STAT3 and SMAD2, phosphorylation of STAT3 on tyrosine 705 and 

phosphorylation of SMAD2 on serine 465/467 in HeLa cells treated with 5-azacytidine for 7 days. 100 

µM BrdU was used as a positive control. GAPDH was used as a loading control. 

 

Fig. 22 Levels of IL6 secreted 
after 5-azacytidine treatment 
in HeLa cells.  

Amount of IL6 in medium of  
HeLa cells treated with 2 µM 5-
azacytidine for 7 days. 100 µM 
BrdU was used as a positive 
control. Mean of two 
independent experiments. 
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Fig. 23 Levels of TGFβ secreted after 5-azacytidine 
treatment in HeLa cells.  

Amount of TGFβ in medium of  HeLa cells treated with 2 µM 5-
azacytidine for 7 days. 100 µM BrdU was used as a positive 
control.  Two independent experiments. 
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Cultures previously treatedwith 2 and 4 µM 5-azacytidine and then cultivated for 7 

more days without treatment were heterogeneous in nuclei size and positivity for 

53BP1 and γH2AX foci. Mock treated cells were negative for significant DNA damage 

since no 53BP1 and γH2AX foci were detected. This observation indicates that 5-

azacytidine induced DNA damage response is not persistent 

  

5.9 5-azacytidine induced cell-cycle arrest is not permanent.  

Following the termination of 7 days long 2 and 4 µM 5-azacytidine treatment, cells 

regained their ability to proliferate, which was assessed by EdU incorporation of 

cells collected at the last day of 5-azacytidine treatment (day 7) and second and 

fourth day of cultivation in treatment free medium (day 9 and 11) (see Fig. 24). EdU 

incorporation protocol was identical to the previous one (cultivation with 1 µM EdU 

Fig. 25 Presence of γH2AX and 53BP1 foci in HeLa cells 7 days after termination of 5-
azacytidine  treatment. 

Immunofluorescence detection of  γH2AX and 53BP1 in HeLa cells treated 7 days with 2 µM and 
4 µM 5-azacytidine and then cultivated 7 days in medium without treatment. HeLa cells treated 
100 µM BrdU in the same regime were used as a positive control. Bar 25 µm. 
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for 6 hours) and cells were stained for EdU together with cells collected at day 2 and 

4 of 5-azacytidine treatment.  After termination of 5-azacytidine treatment, cells 

formed colonies of various sizes with few cells appearing to have senescent-like 

morphology, mostly located on colony borders or independently outside the 

colonies. To investigate whether they are senescent, cells were tested for S-A ß-

galactosidase activity by S-A ß-galactosidase assay (see Fig. 25). Cells presenting 

senescent-like morphology were mostly positive for SA-ß-galactosidase activity, 

unlike the rest of surrounding colonies. Cells treated with 100 µM BrdU were used as 

a positive control. Results show that only fraction of cells possibly became senescent 

after 5-azacytidine treatment, the rest were likely in 5-azacytidine induced transient 

cell-cycle arrest. 
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Fig. 26 Percentage of EdU positive 
cells after termination of 5-
azacytidine treatment.  

Statistical analysis of EdU 
incorporation in HeLa cells treated 
with 5-azacytidine for 7 days as 
indicated and followingly in 
treatment free medium for 2 (day 
9) and 4 (day 11) days. 

T test, p ≥ 0.10; two independent 
experiments. 
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Fig. 27 Senescence-associated ß-galactosidase staining in HeLa cells 7 days after 
termination of 5-azacytidine  treatment. 
S-A β-galactosidase detection in HeLa cells treated 7 days with 2 µM and 4µM 5-azacytidine 
and then cultivated 7 days in medium without treatment. HeLa cells treated with 100 µM BrdU 
in the same regimewere used as a positive control. Bar 50 µM. 

 

 5.10  5-azacytidine induced PML NBs are transient. 

To determine whether levels of PML NBs induced by 2 µM and 4 µM 5-azacytidine 

remain stable, 5-azacytidine was removed and cells were cultivated for next 7 days 

in treatment free medium. Level of PML NBs were detected by immunofluorescence. 

After incubation without treatment, in cells previously treated with 2 µM or 4 µM 5-

azacytidine, the level of PML NBs decreased to the control level (see Fig. 26) 
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cultivated in TF medium for 7 days. PML NBs were stained by immunofluorescence. 

PML NBs numbers and intensity of previously 5-azacytidine treated cells returned to 

normal in large fraction of cells. Note, BrdU treated cells maintained approximate 

amount of PML bodies but they had reduced intensity in majority of cells. 

 

 

 

 

 

 

 

 

 

 

Fig. 28 Presence of PML NBs in HeLa cells 7 days after termination of 5-azacytidine  
treatment. 

Immunofluorescence detection of PML NBs in HeLa cells treated 7 days with 2uM and 4uM 5-

azacytidine and then cultivated 7 days in medium without treatment. HeLa cells treated with 100uM 

BrdU in the same regime were used as a positive control. Bar 50m 
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6. DISCUSSION 

5-azacytidine is a cancerostatics approved of by U. S. Food and Drug 

Administration as an official drug for treatment of Myelodysplastic syndomes (MDS). 

MDS are a group of clonal diseases of myeloid lineage blood cells diagnosed in up to 

one hundred people in the Czech republic every year and affect mostly people older 

than 65 years (MA et al. 2007). 

5-azacytidine is structuraly very similar to 2′-deoxy-5-azacytidine, which 

incorporates strictly to DNA and like 5-azacytidine, inhibits DNA methyltransferases 

and subsequently DNA methylation. In vitro, it has been described 2′-deoxy-5-

azacytidine induces cellular  senescence (SCHNEKENBURGER et al. 2011, 

VENTURELLI et al. 2013, GRANDJENETTE 2014). Given the similarity of 5-

azacytidine structure to 2′-deoxy-5-azacytidine and its ability to incorporate into 

DNA as well (while having high preference for RNA), our hypothesis was that 5-

azacytidine may induce senescence as well. In that case, it would be crucial to 

characterize phenotyp of 5-azacytidine mediated senescence, along with its 

secretoryp henotype, for the possibility of employing TIS in MDS treatment 

(reviewed in NARDELLA et al. 2011).   

In accordance with previously published data, 5-azacytidine proved to be 

cytotoxic since its 2 and 4 µM treatment with duration of 7 days resulted in high 

level of apoptosis (see Fig. 11) (MURAKAMI et al. 1995, KIZILTEPE et a. 2007). 

Induction of apoptosis in majority of cells may be initiated by DNA damage response 

observed in culture (see Fig. 12,13) or by inhibition of protein synthesis which was 

described as an effect of 5-azacytidine treatment (REICHAN & PENMAN 1973). The 

work of Maslov et al. showed that demethylation of gene promotors is likely not the 

primary cause of apoptosis since inhibition of DNMT1 translation by siRNA resulted 

in decrease in both γH2AX induction and apoptosis (MASLOV et al. 2012). Murakami 

et al. state that mechanism of cytotoxic 5-azacytidine effect is dependent on used 

concentration and cell type of treated cells (MURAKAMI et al. 1995). 

We showed presence of γH2AX and 53BP1 positive foci in 7 days long 5-

azacytidine treated HeLa cells which were visible in all of cells. Together, with 

activation of Chk2 and p53/p21 patways (phosphorylated on threonine 68 and 

serine 15, respectively) (see Fig. 13), results strongly imply that 5-azacytidine 
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treatment induces DNA damage response of which all of mentioned proteins are 

participants (WARD et al. 2001, BURMA et al. 2001, CANMAN et al. 1998, AHN et al. 

2000, NELSON & KASTAN 1994). While 5-azacytidine treatment resulted in high 

level of apoptosis (see Fig. 11), it is not likely that DNA damage is solely a 

consequence of apoptotic DNA fragmentation. Percentage of apoptotic cells in 5-

azacytidine culture treated for 7 days by 5-azacytidine of 2 and 4 µM doses were 

approximately 48.50% (±7.8) and 52.50% (±0.7), respectively, which suggests a 

significant fraction of cells was not apoptotic in time of harvest. 5-azacytidine ability 

to induce DNA damage was documented before. Orta et al. proposed 5-azacytosin 

incorporated into DNA covalently binds DNMT1 and such adducts  prevents 

processing of replication machinery and thereby cause collaps of relication fork 

(ORTA et al. 2013). Validity of the claim is supported by work of Kiziltepe et al. 

which shows DNA damage response is mediated predominantly via ATR pathway 

inducing Chk2 activating phosphorylation. DNA damage response appeared before 

caspase-3 activation (marker of apoptosis) (KIZILTEPE et al. 2007). While Chk2 is 

mostly regulated by ATM, it hase been reported before that ATR can activate Chk2 

(WANG et al. 2006). Moreover, Hollenbach et al. proved association between 

depletion of DNMT1 and γH2AX signalization (HOLLENBACH et al. 2010) which is 

supported by mentioned work of Maslov et al. which. showed significant decrease in 

γH2AX after inhibition of DNMT1 expression by siRNA. Further, the persistance of 

γH2AX and 53BP1 positive foci  for 7 days after termination of 5-azacytidine 

treatment in fraction of cells is in accordance with hypothesis that replication stress 

is at least party responsible for 5-azacytidine induced DNA damage. Jüttermann et al. 

state that 2′-deoxy-5-azacytidine-induced DNA lesions with origin in 2′-deoxy-5-

azacytidine-DNMT1 adducts last unrepaired for 3 and more days (JUTTERMANN et 

al. 2007). In conclussion, 7 days long daily treatment of 2 and 4 µM 5-azacytidine 

induces DNA damage response, possibly via replicative stress, and results in 

activation of cell-cycle checkpoints. 

As senescence was introduced previously, it is a permanent arrest in cell cycle 

accompanied by specific changes in phenotype of cell. There is no definite marker 

for detection of senescent cells. Cells are tested for presence of senescence 

hallmarks which are associated with development of senescence, however cell does 

not need to express all of senescence hallmarks to be qualified as senescent. Such 
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markers are spread morphology with enlarged nuclei, SA-β-galactosidase activity, 

expression of CDK inhibitors and cell cycle arrest, presence of DNA-SCARS and SASP 

etc. We tested cells for proliferation rate, presence of CDK inhibitors, SA-β-

galactosidase activity, PML increase and SASP. 

Assesment of the DNA synthesis extent revealed that 5-azacytidine 

downregulates S phase entry and possibly proliferation in HeLa cells, however only 

on short term basis. 4 µM 5-azacytidine treatment was more effective in decreasing 

EdU incorporation than 2 µM 5-azacytidine, as can be seen in Fig. 14, and while 

decrease in EdU incorporation appeared at day 2 of treatment, the full effect of EdU 

incorporation was detected at day 4 and lasted until last day of treatment. This trend 

was apparent at both doses of 5-azacytidine. After termination of 7 days long 

treatment, cells were cultivated in medium without treatment. Second day after 

termination of treatment, cells slowly regained their ability to incorporate EdU and 

the incorporation rate rose further. These data are in concordance with the fact, that 

after termination of treatment, cells formed growing colonies (see Fig. 27). The 

method reflects overall growth of culture but it is possible that several cells were 

arrested in long-termed cell cycle. DNA damage response persisting in fraction of 

cells 7 days after termination of treatment; presence of cells with senescent-like 

phenotype and their ability to stain for SA-β-galactosidase activity after 5-

azacytidine treatment and increased PML NBs permits such reasoning.  

It is a question whether cell cycle arrest arised from DNA damage response, DNA 

hypomethylation or different stimuli. Weller et al. present arrest of proliferation of 

5-azacytidine treated cells in second and third cell cycle which corresponds with our 

findings (WELLER et al.1993), It is possible that TGFβ is responsible for the 

induction of cell cycle arrest by expression of p15 and p21 (DATTO et al., RICH et al. 

1999). The cell cycle arrest was more effective in 4 µM 5-azacytidine treatment than 

in 2 µM which corresponds with  higher p53 activation and p21 level in 4 µM 5-

azacytidine treated cells compared to 2 µM 5-azacytidine (see Fig. 14). Moreover, 

Venturelli et al. showed that 5-azacytidine treated cells seem to arrest preferentialy 

in G0/G1 phase of cell cycle while 2′-deoxy-5-azacytidine in G2/M phase 

(VENTURELLI et al. 2013). This would imply that cell cycle arrest is induced trough 

both drugs by different mechanism and cell cycle arrest in 5-azacytidine cells may be 

dependent more on inhibitors of CycD1-CDK4/6 activity rather than on DNA damage 
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response. Nonethless, kinetics of cell cycle arrest and dose-dependent effect on 

cellular proliferation offers possibility of both factors playing a role in cell cycle 

arrest. More experiments would be needed to decide on mechanism of proliferation 

inhibition. 

Only fraction of cells after 7 days long daily 5-azacytidine treatment was positive 

for SA-β-galactosidase and the intensity of staining was lower than in BrdU treated 

controls. While S-A β-galactosidase assay showed fraction of cells positive for S-A β-

galactosidase activity (see Fig. 15), Quantitative assay of S-A ß-galactosidase activity 

in mammalian cell extracts showed higher activity of SA-β-galactosidase in mock 

treated controls (Fig 16). The difference between  SA-β-galactosidase activity per 1 

µg of lysates of 5-azacytidine treated and mock treated cell was relatively low . Gary 

et al. (2007) observed  fully senescent cells show more than 3-fold increase in β-

galactosidase activity in comparison to nonsenescent controls, which was not the 

case in our experiment . Furthermore, mock treated HeLa cells, while having the 

density of about 60% when harvested, had higher density in comparison to 5-

azacytidine treated cells. It has been observed that higher density of cells increases 

SA-β-galactosidase positivity, however obtaining density of mock treated HeLa cells 

that would correspond to the density of 5-azacytidine treated cells would lead to a 

stress in the culture and deviation in data obtained from mock-treated control. In 

the 7th day of cultivation in medium without treatment, subsequently to the 

termination of 7 days long 5-azacytidine treatment, a small fraction of cells, usually 

outside the colonies or at its border, was significantly stained for SA-β-galactosidase. 

It is therefore possible that 5-azacytidine treatment induces senescence in minor 

fraction of cells (see Fig. 25).  The induction in S-A β-galactosidase could result from 

active TGFβ-signaling pathway which was showed  by activating phosphorylation of 

SMAD2 (see Fig. 23). Untergasser et al. showed that treatment with TGFβ induced S-

A β-galactosidase activity in prostate basal cells while the cells did not develop 

senescence (UNTERGASSER et al. 2003).   

Increase in PML NBs and overall PML level after 7 days long 5-azacytidine 

treatment was not as strong as in BrdU treated controls and after termination of 

treatment, it diminished in large fraction of cells (see Fig. 17, 18, 26). The increase of 

PML might be connected to elevated levels of IL-6 since IL-6-activated Jak/STAT 

pathway is its regulator (see Fig. 22). It is noteworthy that the level of PML increase 
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was in 5-azacytidine treated cells lower than in BrdU treated cells while the 

activating phosphorylation of STAT3 (phosphorylated on tyrosine 705) was 

approximately of the same level as in BrdU treated cells (see Fig. 23). It has been 

observed that cytoplasmic PML (cPML) is induced by TGFβ signalization and, in turn, 

cPML potentiates TGFβ signalization (see Fig. 17) (LIN et al. 2004). It is possible that 

abundant PML level in BrdU cells was partly result of TGFβ signalization – TGFβ 

secretion  was higher in BrdU treated cells. Furthermore, while IFNγ was not 

detected at either mRNA or protein level in 5-azacytidine treated cells or controls, it 

is possible that BrdU treated cells secreted higher amount of IFNγ which would 

potentiate PML NBs expression (ref). This option is also suggested by mRNA array 

which shows 9-fold decrease of IFNG mRNA level after 5-azacytidine treatment. 

Altogether with the fact that BrdU-mediated senescence was described to induce 

IFNγ transcription it is plausible that IFNγ is elevated in BrdU treated cells (ref). In 

addition to that, we show that numbers of 5-azacytidine induced PML NBs were not 

stable over the time and their amount and intensity was heterogenous. The intensity 

of PML NBs was reduced after termination of BrdU treatment as well, however the 

numbers of PML NBs remained approximately the same (see Fig. 28).  

SASP is one of senescence hallmarks and its presence affects not only the fate of 

the individual cell but also modulates responses of its environment. SASP is 

described to be regulated via NF-κB signalization and may be induced and 

potentiated by variety of cytokines and antigens, among them are all  cytokines we 

studied, i.e. IL-1β, IL-6, IL-8, TNFα, TGFβ and IFNγ (ACOSTA et al. 2008, MIKULA-

PIETRASIK et al. 2013, KUILMAN et al. 2008, BRAUMULLER et al. 2013, 

HUBACKOVA et al. 2012). We investigated 5-azacytidine-dependent regulation of 

pro-inflammatory cytokines expressed in SASP, known for their immunomodulation 

abilities and possibility of aggravating patient’s response to the therapy. IL-1, TNFα, 

TGFβ and IFNγ regulates IL-6 and IL-8 expression via NF-κB-dependent 

transcription and, through several pathways, NF-κB activation is positively 

autoregulated (reviewed in MULTHOFF et al. 2012). IL-6 and IL-8 regulate 

expression of senescence phenotype, such as PML induction, ROS elevation and DNA 

damage response. Both IL-6 and IL-8, senescence effectors, were elevated on 

transcriptional level (see Fig. 19) and the increase of IL-6 was above detection limit 

of Beads based assay (see Fig. 20). Furthermore, the activation of Jak/STAT 
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pathway, detected by activating phosphorylation of STAT3 (pY705) (see Fig. 23), 

implies that IL-6 is able to induce signalization through this pathway in 5-

azacytidine treated cells.  Protein levels of IL-8 after 5-azacytidine treatment were 

not possible to be evaluated due to technical difficulties, however induction of IL-8 

by 5-azacytidine was documented by Ventureli at al.  Notably, they also observed 

decrease of IL-1 antagonist which may enhance IL-1 signalization. (VENTURELLI et 

al. 2013). Conversely, a study done on MM cell line (derived from human multiple 

myeloma) states that IL-6 level and NF-κB signalization decreased after 5-

azacytidine treatment but authors propose that the decrease in IL-6 and NF-κB 

activation is rather an effect of protein synthesis inhibition than any DNA-dependent 

effect of 5-azacytidine due to the kinetics of effect. It is possible that 5-azacytidine 

effect on IL-6 level is dependent on cell-type (KIZILTEPE at al. 2007). 

5-azacytidine also induced the secretion of TGFβ (Fig, 22). The induction of TGFB 

transcript was not significantly elevated after 5-azacytidine, it is however known 

that TGFβ is regulated on protein level (SHI et al. 2011). Moreover, it is probable 

that TGFβ signalization pathway is activated in 5-azacytidine treated cells since 

SMAD2 was phosphorylated on its activation site (S465/467) (see Fig. 23). There is 

discrepancy in secretion of TGFβ and activation of TGFβ signaling pathway in BrdU 

treated cells. The level of TGFβ is elevated while S465/467 phosphorylation is not 

present in BrdU cells and the p15 phosporylation, which has been described to be 

regulated by TGFβ, is not increased either (RICH et al. 1999). However this was the 

case in two out of three independent experiment. One time, we observed p15 

upregulation and SMAD2 activating phosphorylation in BrdU treated cells. There is 

negative loop (trough SMAD7 activation) in TGFβ signalization and it is possible the 

cells were harvested in the moment of high SMAD7 activation and low SMAD2 

activation (ZHAO et al. 2000). 

Transcriptional IL1B and TNFA levels were elevated in 7 days long daily 5-

azacytidine treated HeLa cells (see Fig. 19, 20) but its protein level was under 

detection limit of FACS-Beads Assay and thus could not be measured. IFNγ was not 

detected on transcriptional level upon either dose of 5-azacytidine 7 days long 

treatment. 

Taken together, minor elevation in PML compared to BrdU treated cells, low 

intensity of staining for SA-β-galactosidase, transient effect on cell cycle and no 



Page | 67  
 

 

senescent morphology in majority of cells indicate that 7 days long daily 5-

azacytidine treatment of doses 2 and 4 µM does not induce senescence in HeLa cells. 

These results are supported by work of Venturelli et al., which was published during 

the work on this thesis in 2013. Authors have claimed that 5-azacytidine does not 

induce senescence in HepG2 and HepB3 cells (VENTURELLI et al. 2013).  

Our conclussion is that 5-azacytidine is not capable of inducing senescence in 

HeLa cells treated by in vivo obtainable doses but it is possible that 5-azacytidine 

treatment may induce an epithelial-to-mesenchymal transition (EMT) in HeLa cells. 

5-azacytidine elevated IL-6, TGFβ and possibly IL-8 and it has been described that 

these cytokines are able to initiate EMT (VENTURELLI et al. 2008). TGFβ  regulates  

IL-6 and IL-8 which in turn upregulates SNAI1, SNAI2, TWIST1, etc. – effectors of 

EMT (YR et al. 2013, SULLIVAN et al. 2009). Moreover, it has been proposed that 

induction of EMT via Twist1/2 inhibits the onset of senescence  and it was proved 

that 5-azacytidine induces anoikis in epithelial MCF-7 cell-line which is in corelation 

with our observations obtained by life-cell imaging (data not presented here) 

(ANSIEAU et al. 2008). While majority of unattached cells underwent anoikis (data 

from life-cell imaging), our unpublished work shows a fraction of cells survives the 

loss of attachement and subsequently gain the ability to re-adhere and to continue in 

proliferation. Furthermore, we noticed change in morphology in HeLa cells after 5-

azacytidine treatment – cells are large and rounded (see Fig. 5). It is possible that 

this change is the result of upregulation of vimentin, intermediate filament protein 

considered to be a marker for EMT, which was described to be upregulated by IL-6 

(SULLIVAN et al. 2009). 

It has been proposed that Snai1 and Snai2 play important role in HSC and HPC 

survival and self-renewal which could be beneficial in MDS since one of symptoms is 

known to be high apoptosis in bone marrow. However, the role of these 

transcription factors might be more complex. Mice overexpressing Snai1 or Snai2 

did not express any visible abnormalities, however mice of 2 separates transgenic 

lines overexpressing Snai1 started to develop various cancers of both epithelial and 

mesenchymal origin, that of the mesenchymal origin being acute leukaemia and 

lymphomas. Similarly, significant number of mice overexpressing Snai2 died of 

cardiac problems (20%), the majority of survivors developed acute leukemia in later 

time (B-cell acute leukemia – 60% - and acute myeloid leukemia – 40%). Down-
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regulation of both Snai1 and Snai2 did not slow down cancer progression in Snai1/2 

overexpressing mice. While 5-azacytidine induces DNA damage response in several 

cell lines, it has been observed that doses of 5-azacytidine comparable to plasma 

concentration of MDS patientsʼ after 5-azacytidine treatment do not induce DNA 

damage in HSC and HPC (VENTURELLI et al. 2013). 

Considering these observations, it is possible that 5-azacytidine-dependent 

increase of Snai1 or Snai2 would result in protection of HSC and HPS, however 

patients could later develop AML or other malignant cancers. However, it is unlikely 

that 5-azacytidine effect on Snai1 and 2 expression is the sole mechanism of its 

action (PEREZ-MANCERA et al., 2005 a,b). Furthermore, IL6, has been decribed to be 

a prognostic factor for increased risk of MDS transmission into AML but also to be 

beneficial in small doses (GORDON et al. 1995, PARDANI et al. 2012). Bachegowda et 

al.  

The exact therapeutic effect of 5-azacytidine remains to be elucidated. Our 

findings need to be further investigated on MDS-derived cell lines, so far they 

however imply that the action of 5-azacytidine might be beneficial and deleterious at 

the same time.  The therapeutic strategy therefore needs to be reconsidered in the 

light of new findings obtained from MDS-derived cell-lines.  Due to EMT induction, 

the possibillity of 5-azacytidine treatment of epithelial solid tumors needs to be 

explored further. 
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7. CONCLUSSION 

1. We observed that 7 days long 5-azacytidine treatment of doses 

comparable to patients᾿ plasma concentration induces apoptosis in HeLa 

cell line. 

2. We detected γH2AX and 53BP1 positive foci in HeLa cells, along with 

activation of Chk2 and p53/p21 pathways,  after 5-azacytidine treatment 

of doses corresponding to MDS patients᾿ administration protocol and 

thereby we conclude 5-azacytidine induces DNA damage response and 

activation of cell-cycle checkpoints. 

3. We verified that 5-azacydine inhibited proliferation of Hela cells in doses 

relevant to MDS patients᾿ treatment protocol. 

4. We analyzed 5-azacytidine effect on markers of cellular senescence, i.e. 

activation of  DNA damage response and its persistence, induction of cell-

cycle arrest, increase of S-A β-galactosidase activity, increase of PML and 

PML NBs and presence of senescence-associated secretory phenotype. 

Albeit we showed mild expression of mentioned markers of senescence, 

the low increase in values of these markers imply that 5-azacytidine does 

not induce senescence in HeLa cell line with drug concentration and 

treatment protocol.  

5. We showed 5-azacytidine induces secretion of pro-inflammatory cytokines 

IL6 and TGFβ which are frequently present in secretory phenotype of 

senescent cells however we failed to detect IL1β and TNFα on protein level 

while their transcription was elevated after 5-azacytidine treatment. 
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