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V prvńı části práce podáváme přehled dostupných momentových metod odhadu
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Department: Department of Probability and Mathematical Statistics

Supervisor: RNDr. Michaela Prokešová, Ph.D.
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were proposed in the literature.
We give overview of the state-of-the-art moment estimation methods for statio-
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Introduction

Many fields of science deal with data that are point patterns, such as positions
of trees in a rain forest (Waagepetersen, 2007), maps of disease cases (Diggle
et al., 2007, Beneš et al., 2011) or the locations of point-like defects in industrial
materials (Ohser and Mücklich, 2000). The necessity to analyse such datasets
lead to significant development of the point process theory in the past decades,
see e.g. Diggle (1983), Ripley (1988), Stoyan et al. (1995), Diggle (2003) or Illian
et al. (2008).

Also, spatial point processes play a fundamental role in the random set the-
ory (Stoyan et al., 1995) and image analysis (Serra, 1982). Other areas of ap-
plication of point process models include—but are not limited to—astronomy
(Babu and Feigelson, 1996, Kerscher, 2000), forest fire modelling (Peng et al.,
2005, Møller and Dı́az-Avalos, 2010) and earthquake modelling (Musmeci and
Vere-Jones, 1992, Ogata, 1998). Note that the last four references concerning
earthquake and forest fire modelling in fact deal with space-time point process
models, the time being either discrete or continuous variable.

Parametric point process models enable detailed statistical inference which is
necessary for analysis of real datasets. The preferred model for clustered point
patterns is the Cox point process. Usually, finding maximum likelihood estimates
for Cox point process models is computationally very demanding – to obtain the
estimates it is needed to repetitively evaluate mean values of complicated high-
dimensional integrals which are part of the normalizing constant in the likelihood
as illustrated in Equation (2.2) in Chapter 2. One can of course take advan-
tage of Markov chain Monte Carlo methods or other techniques (Møller and
Waagepetersen, 2004) but this does not reduce the computational complexity of
the estimation procedure.

For wide range of Cox process models, such as stationary Poisson-Neyman-
Scott process (Neyman and Scott, 1958) or stationary shot-noise Cox process
(Møller, 2003), the second-order moment characteristics, such as the pair-correla-
tion function or the K-function (Illian et al., 2008), are available in a closed
form. The same holds also for non-stationary versions of the processes, under the
assumption of so-called second-order intensity reweighted stationarity (SOIRS),
see Baddeley et al. (2000). This enables inference for the parameters determining
the range and strength of clustering.

The estimation methods based on moment properties of the process were first
introduced for stationary spatial Cox point processes and are traditionally called
moment estimation methods in the literature. They provide a faster, simulation-
free alternative to the maximum likelihood estimation. They include minimum
contrast estimation (Diggle, 1983, 2003), composite likelihood method (Guan,
2006) and Palm likelihood method (Tanaka et al., 2008). In Section 2.1 we give
a detailed description of the methods.

For all the above-mentioned moment estimation methods—with the exception
of the minimum contrast estimation based on the pair-correlation function—
consistency and asymptotic normality of the estimators have been proved under
suitable assumptions, see the references given in Section 2.1. However, the theo-
retical expressions for the asymptotic variance of the estimators are too compli-
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cated to be used for direct comparison of the efficiency of the estimators. More-
over, the convergence may be too slow and the bias can be a more important issue
than the variance for certain point processes observed on medium sized windows.
Therefore we decided to assess the empirical performance of the discussed mo-
ment estimation procedures by a simulation study. The study was published in
Dvořák and Prokešová (2012) and the results are presented in Section 2.1.5.

The moment estimation methods for stationary spatial Cox point processes
can be extendend also to SOIRS processes. Brief discussion is provided in Sec-
tion 2.2 with more details given in the paper Prokešová et al. (2014).

The core of this thesis lies in Chapter 3 which concerns estimation for SOIRS
space-time Cox point process models. The temporal coordinate plays a distinct
role and thus the estimation methods from purely spatial case cannot be employed
directly (e.g. using the Euclidean distance to describe differences between space-
time events is not appropriate or natural). Hence, devoted space-time methods
should be used for statistical inference.

The discussion on high computational demands of maximum likelihood es-
timation also applies here for SOIRS space-time Cox point processes and, in
general, higher number of parameters appear in the model and need to be esti-
mated, thus increasing dimensionality of the respective optimization problems.
Hence we restrict our attention to minimum contrast estimation and we inves-
tigate the possibility of using step-wise estimation and dimensionality-reducing
techniques to estimate different parts of the model separately. Namely we focus
on using the projections of the space-time process with a particular non-trivial
structure into the spatial and temporal domain, respectively (see Section 1.4 for
definition of the projection processes). This work is inspired by the paper Møller
and Ghorbani (2012).

In Section 3.1 we propose a step-wise estimation procedure using the projec-
tion processes and minimum contrast estimation, see also Prokešová and Dvořák
(2014). We establish consistency and asymptotic normality of the resulting esti-
mator under so-called increasing window asymptotics (Section 3.1.3). It means
that the asymptotic regime is governed by an increasing sequence of compact ob-
servation windows which grow unboundedly, i.e. the data are observed in always
larger and larger region and longer and longer time interval. We also compare
our proposed method to the original method of Møller and Ghorbani (2012) by
means of a simulation study presented in Section 3.1.5 and conclude that for most
of the models considered in the simulation study our method performs better in
terms of the relative mean squared error.

The method using projection processes suffers from the problem of cluster
overlapping, see the discussion at the end of Section 3.1.5. To remedy this, in
Section 3.2 we propose a refined estimation method. It avoids projection of the
space-time point process to the temporal domain, i.e. the situation where the
most information is lost by the projection and which may sometimes result in
severe overlapping of clusters which were originally distinct in the space-time
domain. The overlapping negatively affects mainly the estimates of parameters
governing the clustering in the temporal domain.

Again, we establish consistency and asymptotic normality of the refined esti-
mator under the increasing window asymptotics and under appropriate assump-
tions on moment properties and mixing properties of the point process in question,
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see Section 3.2.3. These results provide theoretical justification of the estimation
method in the sense that using more information from larger and larger observa-
tion windows increases the precision of the estimates. The asymptotic results also
enable construction of confidence regions and hypotheses testing for the model
parameters in practical applications.

We also illustrate in the simulation study presented in Section 3.2.4 that
the problem of cluster overlapping has been sucessfully overcome by the refined
method and that the precision of estimates of the temporal clustering parame-
ters has improved considerably when compared to the method using projection
processes.

The main contribution of this thesis to the field of statistical inference for point
processes lies in the development of novel estimation methods for non-stationary
space-time shot-noise Cox point process models and in establishing asymptotic
properties of the estimators. This enables construction of confidence regions and
hypotheses testing and makes the proposed methods ready-to-use in practical
situations.

Finally, Chapter 4 discusses briefly several interesting open questions raised
by the work described in this thesis and indicates possible directions of further
research. However, answering such questions lies outside the scope of this thesis.
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1. Background on spatial and
space-time point processes

In this chapter we introduce the basic concepts and notation used in the subse-
quent chapters.

We restrict our attention to point processes in the Euclidean space Rd for some
positive integer d. This is the most common setting in applications, with either
d = 2 or d = 3. When discussing space-time point processes we consider point
processes on the space Rd ×R, i.e. Euclidean space with one distinct coordinate
having the role of time.

For introduction to the theory of point processes on more general spaces (com-
plete separable metric spaces), see e.g. Daley and Vere-Jones (2008).

1.1 General theory

This section gives several standard and fundamental definitions relating to the
point process theory. For more details, the classical textbooks such as Daley and
Vere-Jones (2008), Illian et al. (2008) or Møller and Waagepetersen (2004) can
be consulted.

For ease of exposition we now focus on spatial point processes. The case of
space-time point processes will be discussed later in Section 1.4.

Definition 1.1. Let (Ω,A,P) be an abstract probability space and N the system
of locally finite subsets of Rd, i.e. N =

{
N ⊂ Rd : # (N ∩B) <∞ ∀B ∈ Bd0

}
.

Let N be equipped with the σ-algebra N = σ
{
UB,m : m ∈ N0, B ∈ Bd0

}
where

UB,m = {N ∈ N : # (N ∩B) = m}. Point process X in Rd is a measurable
mapping X : (Ω,A,P) → (N ,N). Sample realization of X is called a point
pattern.

Examples of point patterns with different type of interaction between points
(repulsion, aggregation, no interaction) are shown in Figure 1.1. They illustrate
the diversity of possible point patterns and the underlying point processes.

Our definition has a formally equivalent alternative: X can be viewed as
a locally finite random counting measure satisfying X({y}) ≤ 1 ∀y ∈ Rd. To see
this it is enough to identify a locally finite set A ⊂ Rd with the measure

∑
x∈A δx

where δx is the Dirac measure with atom at point x ∈ Rd.
In the subsequent chapters it will be more convenient to treat point processes

as random locally finite subsets of Rd and their realizations as configurations of
points in Rd. However, we will also take advantage of the convenient notation
corresponding to the measure-theoretic approach. Namely the symbol X(B) will
denote the number of points of X occuring in the set B

Note also that the Definition 1.1 allows only so-called simple point processes,
i.e. no two points may occur at the same location. For more general defini-
tion of a point process as a locally finite random counting measure (admitting
multiplicity of points) see Daley and Vere-Jones (2008).

When observing a point pattern in applications it is not possible to observe
a realization of the process in the whole Rd. Thus, a fundamental role is played
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Figure 1.1: Point patterns illustrating different types of interaction between
points of the process, i.e. repulsion, no interaction and aggregation. Left: the
locations of the centers of 42 biological cells observed under optical microscopy
in a histological section (cells dataset). Middle: simulated realization of a Pois-
son point process, see Example 1.12 below. Right: the locations of 62 seedlings
and saplings of California redwood trees in a square sampling region (redwood
dataset). The two real point patterns are standard datasets available in the
spatstat package for R (Baddeley and Turner, 2005).

by the observation window. It is a compact set W ∈ Bd (with positive Lebesgue
measure) which corresponds to the region of study. The shape, size and position
of the observation window W is (and always must be) an integral part of the
recorded dataset, together with the locations of individual points.

Definition 1.2. A point process X on Rd is called stationary if its distribution
is invariant w.r.t. translations in Rd, i.e. the distribution of the shifted process
X+y = {x+ y : x ∈ X} is the same as the distribution of X itself for all y ∈ Rd.

Stationary point processes are also often called homogeneous in purely spatial
contexts, as noted in Daley and Vere-Jones (2008, Chap. 15.1).

Definition 1.3. A point process X on Rd is called isotropic if its distribution
is invariant w.r.t. rotations around the origin in Rd, i.e. the distribution of the
rotated process OX = {Ox : x ∈ X} is the same as the distribution of X itself
for all rotations O around the origin in Rd.

Definition 1.4. Let X be a point process on Rd. Its kth-order factorial
moment measure αk is defined as

αk(A) = E

( ̸=∑
u1,...,uk∈X

I [(u1, . . . , uk) ∈ A]

)
, A ∈

(
Bd
)k
,

where ̸= denotes that the summation is over k-tuples of distinct points of X and
I is the indicator function.

Note that the measure α1(·) = EX(·) is often called the intensity measure.

Definition 1.5. Consider a point process X on Rd. If its kth-order factorial

moment measure αk has a density w.r.t. the Lebesgue measure on
(
Rd
)k

it is
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denoted λk and called the kth-order product density of X or the kth-order
intensity function of X.

The first-order intensity function λ1 is often called simply the intensity func-
tion and denoted λ. For stationary point processes on Rd the intensity function
is constant. Hence, with a slight abuse of notation common in the point process
literature, one may write λ(x) = λ > 0, x ∈ Rd. The constant λ is usually called
the intensity of the stationary point process X. Its non-parametric estimate is
easily obtained as

λ̂ = X(W )/|W |. (1.1)

For an inhomogeneous point process a non-parametric estimate of the intensity
function λ can be obtained by kernel smoothing, i.e.

λ̂(u) =
∑

x∈X∩W

hb(u− x)

wb,W (x)
, u ∈ W,

where hb is a kernel function with bandwidth b > 0 and the edge correction factors
wb,W are given by

wb,W (x) =

∫
W

hb(u− x) du,

so that
∫
W
λ̂(u) du = X(W ). This implies approximate unbiasedness of the esti-

mate λ̂. Also, if a parametric model for the intensity function λ is available it is
possible to obtain parametric estimates of λ as illustrated in Section 2.2.

The following Campbell theorem (Daley and Vere-Jones, 2008, Sec. 9.5) is
one of the fundamental tools of point process theory and is often used in direct
calculations of certain expectations.

Theorem 1.6. Let X be a point process and assume that its kth-order factori-
al moment measure αk and the kth-order intensity function λk exist. For any
integrable Borel-measurable function h it holds that

E
̸=∑

x1,...,xk∈X

h(x1, . . . , xk) =

∫
Rd

· · ·
∫
Rd

h(u1, . . . , un)αk (du1, . . . , duk)

=

∫
Rd

· · ·
∫
Rd

h(u1, . . . , un)λk(u1, . . . , un) du1 . . . duk.

Definition 1.7. Let X be a point process on Rd. If both λ and λ2 exist we define
the pair-correlation function g (sometimes called simply the g-function) by
the formula

g(x, y) =
λ2(x, y)

λ(x)λ(y)
, x, y ∈ Rd : λ(x) > 0, λ(y) > 0.

If the point process X is stationary with intensity λ > 0 we can write, again
with slight abuse of notation, the pair-correlation function as a function of a single
argument:

g(x, y) =
λ2(x, y)

λ(x)λ(y)
=
λ2(0, y − x)

λ2
= g(y − x), x, y ∈ Rd.

9



Similarly, if the point process X is both stationary and isotropic the pair-
correlation function can be written as a function of a single scalar argument:

g(x, y) = g(∥y − x∥), x, y ∈ Rd.

In the case of stationary isotropic process the pair-correlation function can
be easily plotted. This enables visual assessment of the tendencies of the process
towards clustering or repulsion on different scales. The value g(r) = 1 corresponds
to no interaction at the spatial lag r (cf. the Poisson process in Example 1.12)
while values g(r) > 1 and g(r) < 1 indicate clustering and repulsion at the given
scale, respectively. See Section 2.1 for examples.

Definition 1.8. Let X be a stationary point process on Rd with intensity λ > 0
and A ∈ Bd0 be an arbitrary set with positive Lebesgue measure |A|. The reduced
second-order moment function K or simply the K-function is defined by
the formula

K(r) = E
̸=∑

x,y∈X

I [x ∈ A, ∥x− y∥ ≤ r]

λ2|A|
, r ≥ 0.

Note that the definition does not depend on the choice of A. This can be
easily shown using the Campbell-Mecke theorem (Møller and Waagepetersen,
2004, App. C.2). The K-function is sometimes also called Ripley’s K-function
as it was introduced in the paper by Ripley (1976).

Equivalent alternative definition of the K-function of a stationary process
can be made using the Palm distribution of the process (Daley and Vere-Jones,
2008, Chap. 13). This approach provides a simple interpretation of the values
of K-function: the quantity λK(r) is the mean number of further points within
distance r from the typical point of the process X.

For a stationary process X for which λ2 exists (and thus the pair-correlation
function g is properly defined) there is a simple relationship between K and g:

K(r) =

∫
B(o,r)

g(u) du, r ≥ 0, (1.2)

where B(o, r) is the closed ball with radius r centered in the origin o of Rd. If
the point process X is also isotropic the formula can be further simplified using
spherical coordinates and the values of g can be recovered from the K-function
by differentiation:

K(r) = σd

∫ r

0

sd−1g(s) ds, r ≥ 0, (1.3)

where σd is the surface area of a unit sphere in Rd.
It is possible to extend the definition of the K-function to inhomogeneous

point processes fulfilling a certain property (translation invariance of the pair-
correlation function). The following definition is due to Baddeley et al. (2000).

Definition 1.9. LetX be a point process on Rd with well-defined pair-correlation
function g(x, y), x, y ∈ Rd. If there is a function g′ : Rd → R such that

g(x, y) = g′(y − x), x, y ∈ Rd,
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then X is called second-order intensity reweighted stationary (SOIRS). In
this case, the inhomogeneous K-function is defined as

K(r) =

∫
B(o,r)

g′(u) du, r ≥ 0.

With a slight abuse of notation we usually write simply g(y − x) instead of
g′(y − x), as is common in the literature.

Note that stationary point processes with well-defined pair-correlation func-
tion possess the SOIRS property. Another example of SOIRS point processes are
processes obtained by location-dependent thinning from stationary processes, as
described below in Definition 1.10. However, stationary and thinned processes
are not the only types of processes with the SOIRS property. Baddeley et al.
(2000, Sec. 2.1) give an example of such a process.

The definition of the inhomogeneous K-function makes sense only for SOIRS
processes. If the process in question is stationary (and hence SOIRS), the in-
homogeneous K-function coincides with the original Ripley’s K-function from
Definition 1.8.

The inhomogeneousK-function in fact expresses weighted average of the num-
ber of points in the vicinity of the points of the process. The weights constitute
of reciprocals of the intensity of the process at the respective locations.

The plot of K-function of a particular process can be used to demonstrate
the tendencies towards clustering or repulsion. Values higher than those of the
benchmark Poisson process indicate clustering while lower values indicate repul-
sive interactions between points.

A non-parametric estimate of the K-function for a stationary or SOIRS point
process X observed in a compact observation window W can be obtained by
counting pairs of points in the following way:

K̂(r) =
1

|W |

̸=∑
x,y∈X∩W

I [∥x− y∥ ≤ r]

w(x, y)λ̂(x)λ̂(y)
, r ≥ 0, (1.4)

where λ̂ is an estimate of the intensity function and w(x, y) is an edge correction
factor (for a detailed discussion on different choices of edge correction factors see
Gabriel, 2014).

On the other hand, a non-parametric estimate of the pair-correlation function
of an isotropic stationary or SOIRS point process is obtained by kernel smoothing,
i.e.

ĝ(r) =
1

|W |

̸=∑
x,y∈X∩W

hb(∥x− y∥ − r)

σdrd−1w(x, y)λ̂(x)λ̂(y)
, r ≥ 0, (1.5)

where w(x, y) is an edge correction factor and hb is a kernel function (e.g. the
Epanechnikov kernel) with bandwidth b > 0. The bandwidth needs to be speci-
fied by the user or a data-driven cross-validation procedure for choosing optimal
bandwidth may be employed (Guan, 2007a,b).

Figure 1.2 shows the empirical estimates of the K-function and the pair-
correlation function g for the point patterns from Figure 1.1, i.e. a regular pattern
exhibiting repulsion between points, simulated realization of a Poisson process
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Figure 1.2: Empirical estimates of the K-function (left) and the pair-correlation
function g (right) for the point patterns from Figure 1.1, i.e. a regular pattern
(cells dataset, dashed line), a simulated realization of a Poisson process (no in-
teraction between points, dotted line) and a clustered point pattern (redwood
dataset, dot-dashed line). For comparison, the theoretical value of K and g cor-
responding to a Poisson process is also plotted (solid line).

with no interaction between points and an aggregated point pattern showing
clustering of the points. We assume that the point patterns result from stationary
point processes. For comparison, the theoretical value of the K-function and g-
function corresponding to a Poisson process is also plotted. We recall that values
of K and g above (below) the values for a Poisson process indicate clustering
(repulsion) of the points.

A common way to introduce inhomogeneity to a point process model is so-
called location-dependent thinning of a stationary point process. This procedure
is described in the following definition.

Definition 1.10. Consider a stationary point process X0 on Rd with intensity
λ > 0. Furthermore, let f : Rd → [0, 1] be a function on Rd. Let X be the point
process defined in the following way:

X = {x ∈ X0 : U(x) ≤ f(x)} ,

where U(x) are independent, identically distributed random variables indepen-
dent of X0 with uniform distribution on [0, 1]. Then X is a thinned version of
X0 with retention probabilities f(x). We usually call f the inhomogeneity
function.

Direct consequence of this definition is the following fact. If the kth-order
intensity function λ0,k of the stationary process X0 exists, so does the kth-order
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intensity function λk of the thinned process X and it has the form

λk(u1, . . . , uk) = λ0,k(u1, . . . , uk)
k∏
i=1

f(ui), u1, . . . , uk ∈ Rd.

This in turn means that the pair-correlation functions of X and X0 are the same.
Furthermore, this implies translation invariance of the pair-correlation function
and hence SOIRS property of the thinned process X.

Even though the location-dependent thinning is the most popular type of inho-
mogeneity considered in applications, other types of inhomogeneity are possible,
see e.g. Prokešová (2010).

For stationary point processes the factorial moment measures of order at
least 2 are invariant under diagonal shifts. This is the cornerstone of the fol-
lowing definition.

Definition 1.11. Let X be a stationary point process with intensity λ > 0. The
reduced second-order factorial moment measure αred

2 is uniquely deter-
mined by the disintegration formula∫

Rd

∫
Rd

h(u1, u2)α2 (du1, du2) = λ

∫
Rd

h(u1, u2 + u1)α
red
2 (du2) du1 (1.6)

for any integrable Borel-measurable function h.
We denote λo the density of αred

2 (assuming it exists) and call it the Palm
intensity.

The term Palm intensity arises from the fact that λo is in fact the intensity
function of the Palm distribution P0 of the process X. For details, see Daley and
Vere-Jones (2008, Prop. 13.2.VI).

If the second-order intensity function λ2 of X exists the disintegration formula
(1.6) implies that

λ2(x, y) = λ2(0, y − x) = λ · λo(y − x), x, y ∈ Rd,

providing a simple expression for λo in terms of intensity functions up to second
order.

Similarly, in the SOIRS case we can decompose λ2 in the following way:

λ2(x, y) = λ(x)λ(y)g(y − x) = λ(x)λx(y) = λ(y)λy(x), x, y ∈ Rd,

where λx(·) is the intensity function of the Palm distribution of X conditioned by
the event that a point of X occurs in the location x. For more details on Palm
theory see Daley and Vere-Jones (2008, Sec. 13).

1.2 Models of clustered point patterns

This section introduces classical models suitable for modelling clustered point
patterns. These models will be used in the subsequent chapters.

Example 1.12. (Poisson process, Møller and Waagepetersen (2004, Sec. 3.1))
The Poisson process is a benchmark model which exhibits no interaction between
the points of the process. It is characterized by its intensity function λ (which
needs to be locally integrable) and the following properties:
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• for every B ∈ Bd for which α1(B) =
∫
B
λ(u) du < ∞ it holds that X(B) is

a random variable with Poisson distribution with mean α1(B),

• for every k = 2, 3, . . . and pairwise disjoint sets B1, . . . , Bk ∈ Bd the random
variables X(B1), . . . , X(Bk) are independent.

Stationary Poisson process with intensity λ is often referred to as homogeneous
Poisson process or, mostly in ecological or biological applications, the model of
complete spatial randomness.

The moment properties of the Poisson process are very simple. The most
important for us are the following, which hold both for homogeneous and inho-
mogeneous Poisson process:

λk(u1, . . . , uk) =
k∏
i=1

λ(ui), u1, . . . , uk ∈ Rd,

g(x, y) = 1, x, y ∈ Rd,

K(r) = ωd r
d, r ≥ 0,

where ωd = |B(o, 1)| is the volume of a unit ball in Rd.

Note that the definition of the Poisson process in fact relies only on α1. It
is possible to state the definition without assuming that the intensity function λ
exists but it is not useful for us. In the following chapters we will always assume
that the processes in question have an intensity function.

Independence properties of the Poisson process single it out as a benchmark
process towards which the tendencies for clustering or regularity of other processes
are compared. Values of g- orK-function higher (lower) than those corresponding
to the Poisson process indicate clustering (repulsion) of the points.

Example 1.13. (Cox process, Møller and Waagepetersen (2004, Sec. 5.1))
A natural generalization of the Poisson process (which is characterized by its
intensity function λ and two properties stated in Example 1.12) is so-called Cox
process or doubly-stochastic process for which the intensity function is random.
This model was first introduced by Cox (1955) and for its flexibility it is the
model of choice in most applications for modelling clustering.

Let Λ =
{
Λ(x), x ∈ Rd

}
be a non-negative random field such that x → Λ(x)

is a locally integrable function with probability 1. If the conditional distribution
of point process X given Λ = λ is a Poisson process on Rd with intensity function
λ, then X is said to be a Cox process with the driving field Λ.

We remark here that when observing a single point pattern in practice, it is
impossible to distinguish whether the data are generated by a Cox process (with
random intensity function Λ = λ in this particular case) or simply by Poisson
process (with intensity function λ). This is a problem for choosing the right
model when analyzing an observed point pattern.

For a general Cox point process we can express the kth-order intensity function
λk (if it exists) as the following expectation:

λk(u1, . . . , uk) = E

[
k∏
i=1

Λ(ui), u1, . . . , uk ∈ Rd

]
.
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As a consequence, a Cox point process is stationary if and only if the driving field
Λ is stationary.

For most specific models of Cox point processes the values of the pair-correla-
tion function g are ≥ 1 but Møller and Waagepetersen (2004, Sec. 5.6.2) provide
an example showing that this is not always the case.

Example 1.14. (log-Gaussian Cox process, Møller and Waagepetersen (2004,
Sec. 5.6)) This class of Cox point processes provides broad range of models for
aggregated point patterns. Let Z(x), x ∈ Rd be a Gaussian random field. A Cox
point process driven by the random intensity Λ(x) = exp {Z(x)} , x ∈ Rd is called
a log-Gaussian Cox process. Clusters of points then appear at locations with high
values of Λ.

The model was introduced independently by Coles and Jones (1991) in the
field of astronomy and by Møller et al. (1998) in statistics. It is fully characterized
by the mean and covariance function

m(x) = EZ(x), c(x, y) = Cov(Z(x), Z(y)), x, y ∈ Rd.

The range of possible mean and covariance functions makes this class of models
very flexible and useful in applications, see Chap. 5.6 in Møller andWaagepetersen
(2004) and the references therein.

The intensity function and the pair-correlation function can be expressed as
simple functions of m and c, namely

λ1(x) = exp {m(x) + c(x, x)/2} , g(x, y) = exp {c(x, y)} , x, y ∈ Rd.

This will enable parametric model fitting for log-Gaussian Cox processes in Sec-
tion 2.1.

Example 1.15. (Poisson-Neyman-Scott pr., Møller and Waagepetersen (2004,
Sec. 5.3)) Unlike log-Gaussian Cox process, the definition of Poisson-Neyman-
Scott point process works with individual clusters of points in a specific “mother–
daughter” representation. A model of this type was first presented in Neyman
and Scott (1958).

Consider a stationary Poisson process C on Rd with intensity κ > 0. This
process represents themother points. Each mother point c ∈ C produces a process
Xc of daughter points. Conditional on C, let Xc, c ∈ C, be independent Poisson
processes with intensity functions

λc(x) = ν k(x− c), x ∈ Rd,

where ν > 0 is a parameter and k is a probability density function. This means
that the total number of points Xc(Rd) in cluster Xc has Poisson distribution
with mean ν.

The process X then consists of the daughter points only, i.e. X =
∪
c∈C Xc.

Note that X is stationary and in fact it is a Cox process with the driving field Λ
of the form

Λ(x) =
∑
c∈C

ν k(x− c), x ∈ Rd.
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Such driving field Λ is stationary and locally integrable. It is isotropic if and only
if k is isotropic.

We remark here that the Poisson-Neyman-Scott processes considered here
constitute a special class of more general Neyman-Scott processes (Neyman and
Scott, 1958). In the general case, the daughter points are distributed indepen-
dently around each mother point according to the density k but the distribution
of Xc(Rd) does not need to be Poisson. Hence, in general Neyman-Scott processes
are not Cox point processes.

For a stationary Poisson-Neyman-Scott process X it holds that

λ = κ ν, g(x, y) = 1 + h(y − x)/κ, x, y ∈ Rd,

where h(u) =
∫
k(τ)k(u+ τ) dτ .

Two most common models of this class are so-called modified Thomas pro-
cess (with k being the probability density function of radially symmetric normal
distribution with standard deviation σ > 0, see Thomas, 1949) and Matérn pro-
cess (with k corresponding to the uniform distribution on the ball with radius r
centered at the origin, see Matérn, 1986).

Apart from location-dependent thinning, there are different types of inhomo-
geneity that can be considered for the Neyman-Scott processes, see e.g. Mrkvička
(2014) or Prokešová (2010).

1.3 Shot-noise Cox processes

In the present section we introduce the class of so-called shot-noise Cox processes,
see Møller and Waagepetersen (2004, Sec. 5.4). Since this class of models is
crucial for the subsequent chapters we devote a full section to it, as opposed to
the previous examples.

Following Møller (2003) we generalize the Poisson-Neyman-Scott processes
from Example 1.15 in the following way. Let the driving field Λ be of the form

Λ(x) =
∑

(r,v)∈Φ

r k(x, v), x ∈ Rd,

where Φ is a Poisson process on (0,∞)×Rd with intensity measure U and k is now
a smoothing kernel, i.e. a non-negative function integrable in both coordinates.
Under some basic integrability assumptions Λ(x) is an almost surely locally inte-
grable random field and the corresponding point process X is a well-defined Cox
process, see Møller (2003) or Hellmund et al. (2008).

Note that the Poisson-Neyman-Scott processes in Example 1.15 fit into the
current framework and constitute an important (sub)class of shot-noise Cox pro-
cesses.

The process X driven by the random field Λ(x) is stationary if the kernel k
is function of the difference of its arguments, i.e. k(x, v) = k(v − x), and the
intensity measure U has the following product form:

U(dr, dv) = µV (dr) dv. (1.7)

Here µ > 0 and V (dr) is an arbitrary measure on (0,∞) satisfying the integra-
bility condition

∫∞
0

min(1, r)V (dr) <∞.
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A shot-noise Cox point process can be viewed as a generalized cluster pro-
cess. We can rewrite X as X =

∪
(r,v)∈ΦXv where Xv is the cluster centered at

location v. Conditionally on Φ, the cluster processes Xv are independent Poisson
processes with intensity function r k(·, v), i.e. r corresponds to the weight of the
cluster. Note that even for a compact set A ∈ Bd the number of cluster centers
in A may be infinite almost surely, see Møller (2003) and Hellmund et al. (2008)
for details. This also brings severe complications to simulation of such processes.
However, these can be overcome as described in Møller (2003, App. D).

In the stationary case and under the condition
∫∞
0
r V (dr) <∞, almost surely

only finitely many clusters will have at least one point. If we condition by the
positions of the points only and assume for simplicity that k is a probability
density function, then the shifted cluster processes (Xv− v) are independent and
identically distributed, and the number of points in a cluster has a mixed Poisson
distribution with the mixing distribution governed by the measure V .

Thus, the measure V determines the distribution of the number of points
in a cluster. By choosing an appropriate measure V we can obtain much more
variable number of points in individual clusters than for Poisson-Neyman-Scott
processes in Example 1.15.

Now we give three examples of stationary shot-noise Cox processes. Figure 1.3
shows sample realizations from the given models.

Example 1.16. (Poisson-Neyman-Scott process) If V (dr) = δ1(dr) is the Dirac
measure concentrated in 1 the class of Poisson-Neyman-Scott processes is re-
covered, see Example 1.15. The cluster centers form a stationary Poisson process
on Rd with intensity µ given by the decomposition (1.7). Furthermore, let k(u) =
c k̃(u) where c > 0 and k̃ is a probability density function. Then, the mean number
of points in individual clusters is c =

∫
k(u) du and the points within the cluster

are distributed independently, according to the probability density function k̃,
around the cluster center.

Figure 1.3 (left) shows a sample realization from the Thomas process, i.e. the
Poisson-Neyman-Scott process with k being the probability density function of
a bivariate zero-mean radially symmetric Gaussian distribution, see also Exam-
ple 1.15.

Example 1.17. (Gamma shot-noise Cox process) Let V be defined by V (dr) =
r−1 exp {−θr} dr, where θ > 0 is a parameter. Note that V is not integrable
in the neighbourhood of 0. As a consequence, the corresponding shot-noise Cox
processX is not a cluster process in the classical sense (Illian et al., 2008, Sec. 6.3)
since the number of “clusters” in any compact set is infinite. However, because
the weights of the majority of the clusters are very small, X is still a well-defined
Cox process.

The name gamma shot-noise Cox process refers to the fact that V is the Lévy
measure of a gamma distributed random variable (Hellmund et al., 2008, Sec. 4).

Figure 1.3 (middle) shows a sample realization from this model, where k
is the probability density function of a bivariate zero-mean radially symmetric
Gaussian distribution. Clearly, the variability in cluster weights is higher than
for the Poisson-Neyman-Scott process in Example 1.16.

Since this model is frequently used in the simulation studies in the subse-
quent chapters we give a more detailed figure exemplifying the role of individual
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Figure 1.3: Sample realizations from different stationary planar shot-noise Cox
processes with the same intensity λ and with the same probability density funcion
governing the displacement of points around the cluster centers. Left: Poisson-
Neyman-Scott process, middle: gamma shot-noise Cox process, right: inverse-
Gaussian shot-noise Cox process. For details see Examples 1.16–1.18.

model parameters. We choose k to be the probability density function of a bivari-
ate zero-mean radially symmetric Gaussian distribution with standard deviation
σ > 0. For sample realizations of gamma shot-noise Cox process from models
with different combinations of parameter values see Figure 1.4.

Example 1.18. (Inverse-Gaussian shot-noise Cox process) Let V be defined by
the Lévy measure of the inverse-Gaussian distribution:

V (dr) =
1√
π
r−3/2 exp {−θr} dr,

where θ > 0 is a parameter. Then we obtain even more variable point patterns,
as shown in Figure 1.3 (right).

The moment properties of shot-noise Cox processes are easily available, see
Hellmund et al. (2008, Sec. 4). In particular, for processes satisfying condi-
tion (1.7) we have

λ(x) =µ

∫ ∞

0

rV (dr)

∫
Rd

k(x, v) dv, x ∈ Rd,

g(x, y) =1 +
µ

λ(x)λ(y)

∫ ∞

0

r2V (dr)

∫
Rd

k(x,w)k(y, w) dw, x, y ∈ Rd.
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Figure 1.4: Sample realizations of stationary gamma shot-noise Cox processes
with different combinations of parameter values. It is clearly seen that the smaller
the value of σ the tighter are the clusters. Parameter µ controls the total intensity
of points. Lower values of θ result in heavier clusters with more points on average.
For details, see Example 1.17.

Note that in both equations we have a product of separate integrals for V and k.
This will be important for estimation procedures presented in the subsequent
chapters.

To simplify our notation we will set V1 =
∫∞
0
rV (dr) and V2 =

∫∞
0
r2V (dr).

For the parametric models presented in Examples 1.16–1.18 these integrals are
simple functions of the model parameters, namely V1 = 1, 1/θ, 1/

√
θ and V2 =

1, 1/θ2, 1/(2θ3/2), respectively.
When we apply location-dependent thinning with inhomogeneity function f

to a stationary shot-noise Cox process specified by µ, V and k, we obtain a new
SOIRS shot-noise Cox process with the same µ and V but with a new kernel
k̃(x, y) = f(x)k(y − x). In the subsequent chapters, however, we prefer the
parametrization using the inhomogeneity function f and the homogeneous kernel
k(y − x) as opposed to the inhomogeneous kernel function k̃. The advantage
of this parametrization is that the values of f cancel out in the formula for the
pair-correlation function g and we obtain

g(x, y) = 1 +
V2

µ (V1)2

∫
Rd k(x,w)k(y, w) dw∫

Rd k(x,w) dw
∫
Rd k(y, w) dw

, x, y ∈ Rd.

The specific form of the pair-correlation function, and hence also the K-func-
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tion, enables parameter estimation for shot-noise Cox processes as described in
the following chapters.

1.4 Space-time point processes

As a space-time point process we consider a point process in Rd × R, i.e. the
temporal coordinate is a continuous variable. The Definition 1.1 can be easily
generalized to this scenario. However, space-time models with discrete time may
be considered as well, see e.g. Møller and Dı́az-Avalos (2010).

In this section we introduce the properties and characteristics of space-time
point processes which will be useful in the subsequent chapters. For a more
detailed discussion on space-time point processes see Diggle (2007).

A space-time point process consists of “points” both with spatial and temporal
coordinate. These are sometimes called events to emphasize the difference from
a point in the spatial domain. We will denote a point of the space-time point
process X as (u, t) ∈ X meaning that an event of the process occured at the time
t at the spatial location u.

We stress here that the temporal dynamics of a space-time process consists of
new events occuring at a given location and at a given time. It does not describe
temporal evolution of a system of moving points.

At this moment we emphasize the principal difference between a space-time
point process, i.e. a point process on Rd×R where one coordinate plays a distinct
role, and a spatial point process on Rd+1.

• The temporal coordinate is not interchangeable with the spatial coordinates
and, for example, it is not appropriate to talk about isotropy of a space-
time point process w.r.t. rotations of Rd+1. However, isotropy in the spatial
part is a valid and useful property. For a possible definition of isotropy for
space-time point processes see Definition 1.20 below.

• Using Euclidean distance to describe differences between space-time events
is not appropriate or even natural.

• In applications, the temporal dynamics is often very different from the
behaviour of the process in the spatial domain.

These reasons, among others, indicate that it is not suitable to simply adapt
techniques from the spatial point process theory and that dedicated space-time
approach to statistical inference and model-fitting is required.

When observing a space-time point pattern we consider the space-time obser-
vation window in the product form W × T , where W ∈ Bd is a compact set
with positive Lebesgue measure and T ⊂ R is a time interval or union of time
intervals. It is possible to consider more general space-time observation windows
but this is the most common scenario in applications – a fixed study region in
space observed over some period of time.

Let us stress here that we assume that T has a positive length and the space-
time events are observed with their precise time of occurence. This is the main
difference from another type of data frequently analysed in space-time modelling
– snapshots of the study region in discrete time instances.
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Many of the definitions stated above extend easily to the space-time setting.
For example the definition of a space-time point process, stationarity or factorial
moment measures are obtained simply by considering the space Rd+1 instead of
Rd×R. Unless specified otherwise, we do not introduce a new notation for space-
time processes and their characteristics and we use the notation from the purely
spatial case. It will be always clear from context whether a spatial or a space-time
process is considered at the moment.

For clarity we give the following definition as an example of simple extension
from the purely spatial case.

Definition 1.19. Let X be a point process on Rd×R. Its kth-order factorial
moment measure αk is defined as

αk(A) = E

 ̸=∑
(u1,t1),...,(uk,tk)∈X

I [((u1, t1), . . . , (uk, tk)) ∈ A]

 , A ∈
(
Bd+1

)k
,

where ̸= denotes that the summation is over k-tuples of distinct points of X and
I is the indicator function.

Also, the definitions of the kth-order intensity functions and the pair-corre-
lation function follow in the same way and a version of the Campbell theorem
holds for space-time point processes. On the other hand, isotropy of a space-time
point process is a tricky concept. Gabriel and Diggle (2009) propose the following
definition of isotropy.

Definition 1.20. A space-time point process is second-order intensity reweighted
stationary and isotropic if its intensity function is bounded away from zero and its
pair-correlation function g((u, t), (v, s)) depends only on the differences ∥v − u∥
and |s− t|.

The definition of a space-time K-function is not fully agreed upon in the
literature. We focus now on the inhomogeneous version of the K-function under
the SOIRS assumption as it is used in the subsequent chapters and the stationary
version is covered as a special case.

Gabriel and Diggle (2009) suggest a definition based on a space-time version
of the formula (1.3), namely

KST(r, t) = σd

∫ t

0

∫ r

0

sd−1g(s, τ) ds dτ, r ≥ 0, t ≥ 0.

However, we prefer the definition proposed by Møller and Ghorbani (2012)
which corresponds to the formula (1.2):

K(r, t) =

∫ ∫
I [∥s∥ ≤ r, |τ | ≤ t] g(s, τ) ds dτ (1.8)

= σd

∫ t

−t

∫ r

0

sd−1g(s, τ) ds dτ, r ≥ 0, t ≥ 0. (1.9)

The two definitions differ only by a multiplicative constant 1/2 but the lat-
ter keeps the favourable interpretation in the stationary case: λK(r, t) is the
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expected number of further points within distance r and time lag t from the ori-
gin given that the process X has a point at the origin (Møller and Ghorbani,
2012, Sec. 2.2). Therefore we choose to work with this definition of (inhomo-
geneous) space-time K-function when analyzing stationary or SOIRS space-time
point processes.

Based on the ideas of Møller and Ghorbani (2012) we now define the spatial
and temporal projection process. Assume that a space-time point process X is
observed in an observation window W × T where W ∈ Bd is a compact set with
area |W | > 0 and T is a bounded time interval with positive length or a union of
such intervals.

We further assume that the second-order intensity function λ2 of X exists.
This implies that for any pair of distinct points (u, t) ̸= (v, s) from X (with both
u, v ∈ W or both t, s ∈ T ) we have u ̸= v and t ̸= s almost surely. Thus we
may disregard the multiple points in the observed spatial and temporal projection
processes and define them as

Xs =
{
u ∈ Rd : ∃ t ∈ T such that (u, t) ∈ X

}
,

Xt = {t ∈ R : ∃u ∈ W such that (u, t) ∈ X} .

It follows from the boundedness of W and T that Xs and Xt are properly
defined point processes on Rd and on R, respectively. The crucial point is that
we do not project from the whole Rd × R to Rd, say, but merely from Rd × T to
Rd where T is a bounded set.

Heuristic interpretation of Xs might be as follows. We select those events
from X which occur in the time interval T ; Xs then consists of spatial locations
of such points (we neglect the time coordinate). Similarly for Xt. Figure 1.5
shows an example of a space-time point process together with the corresponding
spatial and temporal projection processes.

The moment characteristics of the projection processes Xs, Xt are fully de-
termined by the characteristics of the space-time process X, as illustrated in the
following proposition.

Proposition 1.21. Let the kth-order intensity function λk of the space-time pro-
cess X exist. Then the kth-order intensity functions λs,k of Xs and λt,k of Xt

exist and are of the form

λs,k(u1, . . . , uk) =

∫
T

. . .

∫
T

λk ((u1, t1), . . . , (uk, tk)) dt1 . . . dtk, u1, . . . , uk ∈ Rd,

λt,k(t1, . . . , tk) =

∫
W

. . .

∫
W

λk ((u1, t1), . . . , (uk, tk)) du1 . . . duk, t1, . . . , tk ∈ R.

Proof. The statement follows easily from the definition of the kth-order intensity
function as the density of the kth-order factorial moment measure, the Campbell
theorem and the Fubini theorem.

As before, we will use the simple notation λs and λt for the first-order in-
tensity function of Xs and Xt, respectively. This concludes the overview of the
background material required for the subsequent chapters.
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Figure 1.5: Example of a sample realization of a space-time point process X (up-
per left) together with the corresponding temporal projection processXt (bottom)
and spatial projection process Xs (right).
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2. Parameter estimation for
spatial Cox point processes

In this chapter we review several state-of-the-art estimation methods for para-
metric models of spatial Cox point processes. The methods are based on second-
order properties of the process, i.e. the second-order intensity function λ2 and
the characteristics derived from it (pair-correlation function, K-function or the
Palm intensity function). As explained in the examples in Sections 1.2 and 1.3
these characteristics are for many Cox process models available in reasonably
tractable form as functions of an unknown (vector) model parameter θ and thus
the optimization of the respective estimation criteria is numerically feasible.

The author’s contribution to the problem of parameter estimation for spatial
Cox point processes lies in the simulation studies comparing the performance of
different estimation methods both in the stationary case, see Section 2.1.5 and
the paper Dvořák and Prokešová (2012), and in the non-stationary setting, see
Prokešová et al. (2014). Results of the latter study are not presented here in
order to maintain reasonable extent of the thesis.

Let x = (x1, . . . , xn) denote a point pattern observed in a compact observation
windowW , i.e. the realization of the processX∩W , where xi, i = 1, . . . , n, denote
locations of the observed points. We assume a parametric model for X and the
vector of unknown parameters will be denoted θ.

Let us first discuss the classical maximum likelihood estimation. To use this
method we will consider the probability density function f(x; θ) of X with respect
to the distribution of stationary unit-rate Poisson process restricted to W , i.e.
with λ(u) = I[u ∈ W ]. The maximum likelihood estimate θ̂ is then obtained as
the value of θ maximizing f(x; θ).

For a Poisson process with intensity function λ(u; θ), u ∈ W, the probability
density function is

f(x; θ) = exp

{
|W | −

∫
W

λ(u; θ) du

} n∏
i=1

λ(xi; θ). (2.1)

As long as a suitable parametrization of λ(·; θ) is available the density f(·; θ) has
a tractable form and the estimate θ̂ can be easily obtained.

For a Cox process driven by random intensity function Λ(u; θ), u ∈ W, the
probability density function is

f(x; θ) = Eθ

[
exp

{
|W | −

∫
W

Λ(u; θ) du

} n∏
i=1

Λ(xi; θ)

]
, (2.2)

where Eθ denotes the expectation w.r.t. the distribution of the process with
parameter θ.

We remark here that asymptotic results for the maximum likelihood estima-
tion were established in Jensen (2005) for certain Cox processes on a real line.
However, we are not aware of any such results for spatial Cox processes.

In order to obtain the maximum likelihood estimate of θ it is needed to repeti-
tively evaluate the expectation including a complicated integral term with re-
spect to possible values of the random conditional intensity function Λ(·; θ). One
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can of course take advantage of MCMC or other techniques and use approxi-
mations of the likelihood function f(x; θ), see e.g. Møller and Waagepetersen
(2004, Chap. 10). Nevertheless, this approach is usually computationally very
demanding and thus faster, simulation-free alternatives were sought.

Three such methods will be described below, both in the context of stationary
and non-stationary Cox point processes. The methods are in fact second-order
moment estimation methods because all of them are based on the second-order
moment characteristics of the process X such as λ2, K, g or λo.

2.1 Stationary case

In the following we will assume that X is a stationary Cox point process charac-
terized by its second-order intensity function λ2(·; θ) or by some other second-
order characteristic. However, we stress here that in general a point process is
not determined by its second-order properties. Baddeley and Silverman (1984)
provide an example of a cell process with rather regular structure but containing
sparse regions of clustered points – the K-function of their process coincides with
the K-function of the Poisson process. Despite clear differences between the
processes that can be easily revealed visually, higher-order functionals are needed
to distinguish the processes from each other.

2.1.1 Minimum contrast estimation

This estimation method was in the context of spatial statistics first introduced
in Diggle (1983, Chap. 5). It can be based either on the K-function (this version
will be denoted MCEK in the fottowing) or the pair-correlation function g (de-
noted MCEg), see e.g. Diggle (2003, Chap. 6). In the version using the g-function
this method requires isotropy of the process X in addition to its stationarity. We
recall that in this case the g-function is a function of a scalar argument.

The vector of parameters θ is estimated by minimizing the discrepancy mea-
sure ∫ r1

r0

[K̂(u)c −K(u; θ)c]2 du or

∫ r1

r0

[ĝ(u)c − g(u; θ)c]2 du (2.3)

between the non-parametric estimate K̂ or ĝ given by Equations (1.4) and (1.5)
and its theoretical value K(·; θ) or g(·; θ), respectively.

The constants c, r0 and r1 are used to control the sampling fluctuations in
the estimates of K and g. In Diggle (2003, Sec. 6.1.1) it is recommended that
for fitting aggregated planar point patterns using the K-function the constant
c = 0.25 is used and that for data on a unit square r1 should not be larger than
0.25. The remaining constant r0 can be set to 0 or a small positive value, e.g. the
minimum observed interpoint distance. For the pair-correlation function g there
is no standard recommendation available.

We remark that it is possible to use a weight function instead of the exponent c
in order to stabilize the variance of the estimate of K or g. For example Guan
(2009) considers the discrepancy measure∫ r1

r0

w(u)[ĝ(u)− g(u; θ)]2 du
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and suggests that a weight function w(u) inversely proportional to the variance
of ĝ(u) is used.

Minimum contrast estimators are popular partly due to the fact that they have
been implemented for quite some time in the spatstat package for R (Baddeley
and Turner, 2005) for three important cluster point process models: Thomas
process, Matérn cluster point process and isotropic log-Gaussian Cox process.

The asymptotic properties of the minimum contrast estimators using the
K-function are discussed in Heinrich (1992), Guan and Sherman (2007) and
Waagepetersen and Guan (2009). In Heinrich (1992) strong consistency and
asymptotic normality was proved for Poisson cluster processes. In Guan and
Sherman (2007) asymptotic normality was shown under a strong mixing assump-
tion which is fulfilled for any point process with finite dependence range, e.g. the
Matérn cluster process, and also for a broad range of log-Gaussian Cox processes
(Guan and Sherman, 2007, Sec. 2.2). Waagepetersen and Guan (2009) extend
the asymptotic results to a two-step estimation procedure for inhomogeneous Cox
processes which uses minimum contrast with the K-function to obtain estimates
of the clustering parameters.

2.1.2 Composite likelihood method

Composite likelihood approach is a general statistical methodology, see Lindsay
(1988). In the context of point processes it is based on adding together individ-
ual log-likelihoods for single points or pairs of points of the process X to form
a composite log-likelihood.

Several versions of composite likelihood have been suggested for estimation of
different types of spatial point processes (Baddeley and Turner, 2000, Guan, 2006,
Møller and Waagepetersen, 2007). Composite likelihood suitable for estimation
of Cox processes was introduced in Guan (2006). It uses the second-order inten-
sity function λ2(·, θ) to obtain the probability density function for two points of
X occurring at locations x and y:

f(x, y; θ) =
λ2(x− y; θ)∫

W

∫
W
λ2(u− v; θ) du dv

, x, y ∈ W.

After adding the individual log-likelihoods the composite log-likelihood is ob-
tained:

logCL(θ) =
∑

x̸=y∈X∩W,||x−y||<R

log
λ2(x− y; θ)∫

W

∫
W
I(||u− v|| < R)λ2(u− v; θ) du dv

.

(2.4)

Here only the pairs of points within distance R > 0 are considered. This is the
only parameter that needs to be chosen a priori by the user, as opposed to the
three parameters that need to be specified for the minimum contrast method.
Disregarding the pairs of points separated by distance larger than R is motivated
by the fact that distant pairs of points are often nearly independent. They do
not carry much information about the parameters but increase variability of the
estimator.
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Numerical maximization of logCL(θ) in the form presented above can be
computationally demanding. This issue can be solved by application of the inner-
region correction for the edge effects. It leads to a simplified formula

logCL(θ) =
∑

x∈X∩(W⊖R),y∈X∩W,0<||x−y||<R

log
λ2(x− y; θ)

λ2|W ⊖R|K(R)
, (2.5)

where W ⊖ R = {w ∈ W : B(w,R) ⊂ W}, i.e. W ⊖ R is the window W eroded
by distance R. Vector θ̂ maximizing logCL(θ) is then taken for the estimate of
θ. Consistency and asymptotic normality of the composite likelihood estimator
are proved in Guan (2006) under suitable mixing assumptions.

The composite likelihood method of Guan (2006) has been recently imple-
mented in the spatstat package for R for several popular Poisson-Neyman-Scott
process models and for the log-Gaussian Cox processes, making it an easy to use,
viable alternative to the minimum contrast estimation.

2.1.3 Palm likelihood method

The Palm likelihood estimator was introduced in Tanaka et al. (2008) and uses
a very “geometrical” approach. It is based on the process of differences among
the points of the observed point process X. Let us start with considering the
processes

Yx = {y − x, x ̸= y ∈ X ∩W}, x ∈ X ∩W.

Each Yx is again a point process (now inhomogeneous) with intensity function
λo(·; θ) – the Palm intensity of the original process X.

Ignoring for the moment the interactions in the process Yx, i.e. approximating
Yx by a Poisson process, the log-likelihood of Yx ∩B(o,R) is the following (up to
a constant – cf. the formula (2.1)):∑

y∈X∩W,0<||x−y||<R

log λo(x− y; θ))−
∫
Rd

I(||u|| < R)λo(u; θ) du.

Here we consider only pairs of points within distance R > 0 following the same
reasoning as in the case of the composite likelihood estimator.

Treating all the Yx, x ∈ X∩W, as independent, identically distributed replica-
tions, we sum the individual log-likelihoods over x ∈ X ∩W and get the so-called
Palm log-likelihood:

logPL(θ) =
∑

x̸=y∈X∩W,||x−y||<R

log λo(x− y; θ)−X(W )

∫
Rd

I(||u|| < R)λo(u; θ) du.

(2.6)

Applying the inner-region correction we get the following expression for the
Palm log-likelihood which is more useful for the estimation in practice:

logPL(θ) =
∑

x∈X∩(W⊖R),y∈X∩W,0<||x−y||<R

log λo(x− y; θ)−X(W ⊖R)λK(R).

(2.7)
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Again, the maximizer of logPL(θ) is taken for the estimate of θ.
An alternative way of arriving at the Palm likelihood goes as follows. Let

Y (R) = {y − x : x ̸= y ∈ X ∩W, ∥y − x∥ < R}

be the point process of differences of points in X observed in W with the mutual
distance smaller than R. Evidently, Y (R) is a point process contained in B(o,R).
The intensity function of this point process can be determined as follows. Let A
be a Borel subset of B(o,R). Then,

E |Y (R) ∩ A| =
∫
W

∫
W

I[y − x ∈ A]λλo(y − x; θ) dx dy =

∫
A

γW (u)λλo(u; θ) du,

where γW (u) = |W ∩ (W + u)| is the set covariance of the window W , see Stoyan
et al. (1995, p. 126) for further details. The point process Y (R) has thus the
intensity function, concentrated on B(o,R), of the form

λR(u) = γW (u)λλo(u; θ), u ∈ B(o,R).

The Palm log-likelihood

logPL(θ) =
∑

x̸=y∈X∩W,(y−x)∈B(o,R)

log (X(W )λo(y − x; θ))

−X(W )

∫
B(o,R)

λo(u; θ) du, (2.8)

is obtained by treating Y (R) as an inhomogeneous Poisson process with intensity
function λR(u), replacing the intensity λ of the original point process X by the
observed intensity X(W )/|W | and approximating γW (u), u ∈ B(o,R), by |W |.
This is a reasonable approximation for R substantially smaller than the size of
the observation window W . Note that both versions of the Palm log-likelihood
given in Equations (2.6) and (2.8) are equivalent. In fact, they are equal up to an
additive constant not depending on θ and differ only in the underlying reasoning.

Note that even though the Palm likelihood estimation was derived by using
the process of differences it is a second-order moment method as well because it is
based on the second-order characteristic λo of the observed point process X. Let
us also remark that its use is not restricted to simple models such as the Thomas
process. If the Palm intensity function λo is in such form that direct maximization
of logPL(θ) is not possible (e.g. for general Neyman-Scott processes), numerical
algorithms are available for finding argmax logPL(θ), see Tanaka et al. (2008,
Section 3).

Strong consistency and asymptotic normality of the Palm likelihood method
are proved in Prokešová and Jensen (2013) under suitable mixing assumptions.
These are fulfilled for a broad range of Poisson-Neyman-Scott processes and log-
Gaussian Cox processes.

Moreover we would like to stress here that since the Palm intensity is defined
as a function of the argument u ∈ Rd and not just its norm ∥u∥, the Palm
likelihood estimation is not restricted to isotropic point processes only. It can
be used for estimation of any suitably parametrized stationary Cox point process
model in Rd (the same holds for the composite likelihood estimation). A worked
out example of an anisotropic Thomas process in R2 can be found in Prokešová
and Jensen (2013).
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Figure 2.1: Sample realizations of stationary Thomas process described in Exam-
ple 2.1. Parameter values ν = 50, κ = 6, σ = 0.02. The observation window W is
the unit square [0, 1]2.

2.1.4 Examples

In this section we give two detailed examples illustrating the use of the moment
estimation methods described above. We focus on planar point process models
used later in the simulation study in Section 2.1.5.

Example 2.1. (Thomas process) First we consider a stationary Poisson-Neyman-
Scott process X in R2 as described in Example 1.15. Three sample realizations
of the Thomas process are shown in Figure 2.1.

We recall the notation: κ > 0 denotes the intensity of the mother points and
ν > 0 is the mean number of points in a cluster. Furthermore, we choose k to
be the probability density function of a bivariate zero-mean radially symmetric
Gaussian distribution with standard deviation σ > 0. The vector of parameters
is thus θ = (κ, ν, σ). In this case the moment characteristics of X are as follows:

λ = κ ν,

g(u) = 1 +
1

4πκσ2
exp

{
−∥u∥2

4σ2

}
, u ∈ R2,

K(r) = πr2 +
1

κ

(
1− exp

{
− r2

4σ2

})
, r ≥ 0,

λo(u) = κ ν +
ν

4πσ2
exp

{
−∥u∥2

4σ2

}
, u ∈ R2.

Note that the pair-correlation function and the K-function do not depend on the
parameter ν. This implies that ν is not identifiable by the minimum contrast
method.

The score equation we get by differentiation of the log Palm likelihood (2.7)
with respect to ν will yield

ν̂ =
N

κK(R)X(W ⊖R)
, (2.9)

where N denotes the number of terms in the sum in (2.7) and the K-function
does not depend on ν.
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Figure 2.2: Sample realizations of stationary log-Gaussian Cox process described
in Example 2.2. Parameter values β = 10, σ2 = 1 and ν chosen so that the
intensity of the point process is 300, the same as for the Thomas process in
Figure 2.1. The observation window W is the unit square [0, 1]2.

For the composite likelihood the score equation we get by differentiation
of (2.5) with respect to ν is identity 2N

ν
= 2N

ν
and the parameter ν is not identi-

fiable. The same applies to the minimum contrast estimation using both the K-
and g-function because none of them depends on ν. Thus the parameter ν must
be estimated using the formula for the intensity function, i.e. λ̂ = κ̂ ν̂. Here we
take λ̂ = X(W )/|W |.

Example 2.2. (log-Gaussian Cox process with exponential covariance function)
Now we consider the log-Gaussian Cox process X in R2 as described in Exam-
ple 1.14. Three sample realizations of the log-Gaussian Cox process are shown in
Figure 2.2.

Let Z(x), x ∈ R2 be a Gaussian random field with constant mean ν and
exponential covariance function c(x, y) = σ2 exp {−β ∥x− y∥} , where σ2 > 0
and β > 0 are parameters. The vector of parameters is thus θ = (ν, β, σ2) in this
case. The moment characteristics of the process X are of the form

λ = exp

{
ν +

σ2

2

}
,

g(u) = exp
{
σ2 exp {−β∥u∥}

}
, u ∈ R2,

K(r) = 2π

∫ r

0

r exp
{
σ2 exp {−βs}

}
ds, r ≥ 0,

λo(u) = exp

{
ν +

σ2

2

}
exp

{
σ2 exp {−β∥u∥}

}
, u ∈ R2.

Again, the pair-correlation function and the K-function do not depend on the
parameter ν. This implies that ν is not identifiable by the minimum contrast
method and the composite likelihood method and has to be calculated from the

estimate of intensity by log
(
X(W )
|W |

)
− σ2

2
.

Also, the K-function does not have a simple analytic form. Despite this it is
possible to use it for minimum contrast estimation taking advantage of numeri-
cal integration in order to obtain values of the theoretical K-function at given
parameter values.
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For the Palm likelihood method we get the estimate

ν̂ = log
N

K(R)X(W ⊖R)
− σ2

2
, (2.10)

where N denotes the number of terms in the sum in (2.7) and the K-function
does not depend on ν.

2.1.5 Simulation study I.

All of the moment estimation procedures reviewed in this chapter besides MCEg
were proved to be consistent and asymptotically normal under suitable mixing
conditions, see the references in the respective sections above. However, the theo-
retical expressions for the asymptotic variance of the estimators are too complicat-
ed to be used for direct comparison of the efficiency of the estimators. Moreover,
the convergence may be too slow and the bias can be a more important issue
than the variance for certain point processes observed on medium sized windows.
Therefore we decided to assess the empirical performance of the discussed mo-
ment estimation procedures by a simulation study. The study was published in
Dvořák and Prokešová (2012) and the results are presented below.

To compare the empirical performance of the estimators we chose two different
types of cluster processes – the Thomas process and the log-Gaussian Cox process
with exponential covariance function, see Examples 2.1 and 2.2.

To assess the performance of the estimators on middle-sized to large point
patterns exhibiting different degree of clustering we chose eight combinations of
parameter values for the Thomas process (κ = 25 or 50, ν = 4 or 6 and σ = 0.02
or 0.04, representing relatively strong and weak clustering, respectively) and for
the log-Gaussian Cox process (β = 10 or 20 representing relatively strong and
weak dependence, respectively, σ2 = 1 and ν calculated so that the intensity of
the process is 100, 150, 200 and 300 as in the case of the Thomas process).

For each process and each combination of parameters we generated 500 in-
dependent realizations and re-estimated the parameters using the three moment
estimation methods (i.e. using formulas (2.3), (2.5) and (2.7)).

Parameter estimation – computational details

Realizations of the Thomas process and the log-Gaussian Cox process, with ap-
propriate parameters, in a unit square window W were simulated using the pack-
age spatstat for R (Baddeley and Turner, 2005).

For simulation of the Thomas process realizations we used the algorithm pre-
sented in Møller (2003, Sec. 4.1) which introduces edge effects and the distribution

of the resulting process X̃ is only an approximation of the (desired) distribution

of X itself. Some point may be missing in X̃ which would occur in X. It is
possible to calculate the mean number of missing points in a single realization
(Møller, 2003). For the combinations of parameters considered in this study it
is always smaller than 4 · 10−4, i.e. negligible compared to the mean number of
points in a single realization.

When simulating realizations of the log-Gaussian Cox process we need to use
a finite representation of the random field Z in the observation window W . We
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chose a regular grid of 25 × 25 points and instead of the Gaussian random field
Z we simulated a Gaussian random vector representing values of Z in the given
lattice points. Then we approximated values of the random field Z in W by the
value in the nearest lattice point. Hence, the distribution of the resulting process
X̃ is only an approximation of the (desired) distribution of X itself. However,
the discretization of the random field values is fine enough for the approximation
to be reasonably accurate and useful for the study.

We used the minimum contrast method (MCE) with both the K-function
(MCEK) and the pair-correlation function g (MCEg). The tuning parameters in
the case of theK-function were chosen according to the recommendation in Diggle
(2003, Section 6.1.1). The same values of parameters were used for the g-function,
i.e. c = 0.25, R = 0.25 and r equal to the minimum interpoint distance observed
in the given realization. The estimation was conducted by the functions provided
by spatstat.

The composite likelihood (CLE) and Palm likelihood (PLE) estimation meth-
ods have only one tuning parameter, R, determining the maximum distance of
pairs of points that will be taken into account. The distance R has to be chosen
carefully so that the variance of the estimators is reduced but not much infor-
mation about the interactions in the point pattern is lost. Since the observation
window W is a unit square we chose the values of R to be 0.1, 0.2 and 0.3,
respectively.

To take into account the interpoint interactions when choosing the value of R
we also consider R = rdata, where rdata corresponds to a range of correlation. It is
determined as the smallest r for which ĝ(r) < 1 holds, where ĝ is a non-parametric
estimate of the pair-correlation function g.

For CLE and PLE we applied the inner-region correction for the edge effects,
see (2.5) and (2.7). It is straightforward and can be used for data observed in
irregular windows. Other edge corrections could be used as well, for example the
torus correction could perform better in the case of a rectangular window but it
is difficult to use in practice for irregularly shaped windows.

The estimation for CLE and PLE was conducted in software Mathematica

7. Maximization of the appropriate log-likelihood functions was performed using
a combination of two methods.

First, derivatives of the log-likelihood function with respect to the unknown
model parameters were calculated and a vector of parameter values was found for
which all the derivatives were equal to zero using a default Newton’s method.

Then, if the numerical method diverged (i.e. the estimate lied out of a gen-
erously long interval containing the true value of the parameter), the parameters
are estimated again by direct maximization of the log-likelihood function using
simulated annealing.

This procedure is motivated by the fact that the estimation using derivatives
is fast but somewhat numerically unstable, while direct maximization is more
computationally demanding but in general less likely to diverge. The combination
of these two methods was a good compromise between the computational time
and numerical stability.

For the minimum contrast methods and the composite likelihood method
the value of the non-identifiable parameter ν was estimated from the observed
intensity of the point process as described in the examples in Section 2.1.4.
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Results

Main results are summarized in Tables 2.1 and 2.2 for the Thomas process and
the log-Gaussian Cox process, respectively. They show results for two variants of
MCE (based on K-function and pair-correlation function) and for CLE and PLE
with different choices of the tuning parameter R. Complete results are available
in Dvořák and Prokešová (2011).

The tables show relative mean biases of the estimators and relative mean
squared errors (MSEs) (by relative we mean divided by the true value of the
estimated parameter or by its square for the MSE). All the statistics were obtained
from the middle 95% of the estimates from 500 replications.

Neglecting the 5% of the most extreme estimates was motivated by the fact
that in certain situations the estimation methods can be numerically unstable.
If such a situation was encountered in practice the estimates would easily be
identified as unrealistic and one would alter the parameters of the underlying
optimization methods or opt for an alternative estimation method. However, due
to the extent of the computations involved, this was not possible in this simulation
study. Note that if all the estimates were used to calculate the statistics these
would be severly distorted by the numerical instability and hence completely
uninformative for a prospective researchers willing to find a method of choice for
their particular dataset.

Thomas process

Parameter σ. Among the three parameters of the Thomas process model
σ is the one estimated with most accuracy by any of the compared methods.
Particularly MCEg and CLE with R = 0.1 give very precise estimates. From the
two MCE methods MCEK is always worse than MCEg. PLE with R = 0.1 (as
well as CLE with R = 0.2) is comparable with MCEK for strong clustering. For
weak clustering PLE is inferior to the other methods.

The reason for this is the strong positive bias (around 25% for R = 0.1) of
PLE in case of weak clustering. PLE generally overestimates the parameter σ
while MCE always underestimates it. CLE with R = 0.1 is virtually unbiased for
strong clustering and positively biased for weak clustering. For strong clustering
CLE with R = 0.1 generally showed the smallest variance followed by MCEg,
PLE and MCEK. For weak clustering variance of CLE and PLE with R = 0.1
becomes larger and MCEg becomes the most stable estimator.

An important observation is the rapid deterioration of the quality of the CLE
and PLE estimates with increasing value of the tuning parameter R. Increase
in the variability of the estimators with growing R is to be expected, since with
the employed inner-region edge correction and with growing R we lose growing
percentage of the data. However, for CLE and R = 0.3 the estimator of σ is
not just bad, it is even numerically unstable, and in case of weak clustering and
higher intensity of the point process the same happens also for R = 0.2.

An explanation for this could be found in the exact form of the score equations
for CLE – the estimating functions as described in Example 2.1 in Section 2.1.4
have a steep step around the correct value of the parameter σ and then become
virtually constant (and nonzero). Thus for a small number of observed pairs of
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points from X and a clustered point pattern (with few distant pairs observed)
the estimating equation can lead to a severe overestimation of the parameter σ.
Therefore it is extremely important when estimating the interaction parameters
for processes with weaker clustering by CLE or PLE to choose the tuning constant
R not too large. Definitely not larger than the range of correlation and reasonably
small with respect to the size of the observation window so that not too much
data is lost by the edge correction.

Parameter κ. For the other interaction parameter κ estimated directly by
all three methods the best estimates are provided by PLE (with R = 0.1, for
weak clustering also with R = 0.2) in the majority of cases. The exception
are processes with low intensity and strong clustering, i.e. with a few number of
tight well defined clusters in the observed point pattern – here MCEg gives better
results. Like with the other parameters the MCEK method is consistently worse
than MCEg and the worst results are generally provided by CLE (with R = 0.1).

Note that the good results of PLE (R = 0.1) are mainly caused by the
comparatively small variability of the estimates because all the PLE estimates
with R = 0.1 have considerable negative bias. The bias becomes lower for R = 0.2
and thus the best estimates for processes with low intensity and weak interac-
tion (i.e. a few loose clusters in the observation window) are obtained by PLE
with R = 0.2. This behaviour is again implied by the exact form of the esti-
mating functions used. Note that for CLE the situation is somewhat similar as
for the parameter σ – CLE with R = 0.1 provides nearly unbiased estimates,
whereas with R = 0.2 we have considerable positive bias and with R = 0.3 the
estimates become useless. Nevertheless the variability of CLE is generally higher
than variability of the other estimators.

When comparing the MCEg and MCEK methods the main factor is also
variability of the estimators - the MCEg method is consistently less variable than
MCEK (the same situation as with the parameter σ).

Parameter ν. The last parameter ν is by all the methods determined by
means of the observed number of points of X and the values of the already
estimated parameters. It is true not just for the MCE and CLE where ν̂ =
X(W )/(|W |κ̂) but also for the PLE method. Namely (2.9) is derived just from
the comparison of the expected and observed number N of pairs of points from
X.

Thus it is natural that the quality of the estimates of ν for MCE and CLE
follows the pattern from estimation of κ with MCEg being better than MCEK
and CLE providing even worse estimates. The PLE estimator uses mean number
of pairs of points from X which could provide more exact estimates than just
X(W ). On the other hand, the formula (2.9) includes both of the parameters κ
and σ and thus can be influenced more by the bad quality of those estimates. The
simulation study shows that in reality for weak clustering PLE (with R = 0.1)
provides the best estimates of ν – again mainly due to low variability of the
estimates since they are negatively biased. For strong clustering the estimates
provided by MCE are better.
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Procedure using rdata. The estimated values of rdata are for strong clus-
tering concentrated around 0.1 as expected, with a fair proportion being smaller
than 0.1 (see Dvořák and Prokešová (2011) for the histograms of rdata). For
CLE the estimates of σ using R = rdata are comparable with those obtained with
R = 0.1; they have only slightly larger bias and variance. The bias is nevertheless
still very small (smaller than for MCE) and the variance is only a bit larger than
for MCEg. Overall, the procedure with rdata for CLE estimation of σ provides
very good estimates – better than for MCEK. Estimates of the other interac-
tion parameter κ by CLE with rdata are worse but comparable with estimates
produced by CLE with R = 0.1.

For PLE the estimates of the interaction parameters with R = rdata are also
worse than for fixed value R = 0.1. By closer inspection of the simulated data
we see that particularly for the parameter κ the cases with rdata < 0.1 produce
significantly biased estimates.

For weak clustering the estimated values of rdata are scattered between 0.1
and 0.2 with a few cases taking the value of 0.25 which was the upper bound for
the estimated range of interaction (since the estimate of g function is not very
stable for values larger than 0.25). For estimation of σ CLE with R = rdata has
significantly larger bias and variance than with R = 0.1 and PLE produces im-
practical estimates. For estimation of κ CLE with R = rdata produces sometimes
better estimates than with R = 0.1 but they are still worse that those produced
by any other method. PLE with R = rdata produces generally worse estimates of
κ than with R = 0.1 but these are typically still better than those produced by
the other methods.

In conclusion we can say that the method using R = rdata is not superior to
the fixed value of the tuning parameter R = 0.1 for CLE and PLE. Partially it
can be explained by the larger variability caused by the changing value of R but
very often also the bias of the estimators is larger than with the fixed value of
R = 0.1. The question of the ideal choice of R for a given point process model and
a given observation window is not a simple one. Even the amount of information
expressed by the mean number of observed pairs of points with distance ≤ R for
a clustered point process X need not be a monotone function of R (see Prokešová
and Jensen (2013, Section 3)). More sophisticated methods of the adaptive choice
of R must be used to produce a considerable improvement in the quality of the
estimates than just a simple choice R = range of interaction.

Overall performance. In conclusion we can say that quality of all the com-
pared estimators improves with higher intensity of the process X and stronger
interactions in the point process (i.e. tighter clusters). Concerning minimum
contrast estimation the version using pair-correlation function always yields bet-
ter estimates than the version using the K-function. When using the CLE and
PLE methods for estimation of the interaction parameters it is important to use
reasonably small values of the tuning parameter R which provide reasonably good
estimates. High values of R lead to numerical instability of the methods and im-
practical estimates – this is especially important for CLE and, to a lesser extent,
also for PLE.

To address the overall performance, the minimum contrast estimation using
the pair-correlation function provides the best estimates of the interaction para-
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MCE CLE PLE
κ ν σ K g .1 .2 .3 rdata .1 .2 .3 rdata

Bias σ̂ 25 4 .02 -.044 -.029 .009 -.034 -.019 .028 .068 .023 .086 .118
.04 -.064 -.067 .077 .208 34.7 .188 .287 .494 1.27 1.22

50 6 .02 -.028 -.027 .001 -.045 -.086 .021 .096 .014 .052 .106
.04 -.044 -.047 .093 25.2 160 .238 .233 .849 3.55 2.41

κ̂ 25 4 .02 .103 .070 -.013 .271 .917 -.097 -.143 .083 .161 -.260
.04 .148 .159 .098 .196 .987 -.087 -.331 -.178 .042 -.107

50 6 .02 .060 .022 .071 .318 .818 .004 -.122 .115 .139 -.157
.04 .109 .102 .064 .405 1.02 .075 -.293 -.133 .024 -.087

ν̂ 25 4 .02 -.074 -.067 .101 -.145 -.303 .386 -.416 -.431 -.375 -.365
.04 -.094 -.117 .098 .022 -.187 .896 -.252 -.272 -.289 -.272

50 6 .02 -.054 -.038 -.057 -.199 -.338 -.002 -.405 -.434 -.344 -.378
.04 -.068 -.076 -.035 -.230 -.260 -.011 -.257 -.274 -.254 -.266

MSE σ̂ 25 4 .02 .035 .014 .016 .032 .094 .023 .031 .045 .135 .051
.04 .050 .034 .061 .317 1·104 .168 .211 .764 6.85 5.47

50 6 .02 .022 .009 .006 .018 .036 .011 .026 .026 .055 .027
.04 .035 .023 .036 2·104 1·105 .332 .077 2.45 32.6 16.8

κ̂ 25 4 .02 .125 .073 .207 .364 3.08 .244 .108 .186 .225 .233
.04 .270 .217 .429 .576 5.67 .321 .170 .085 .192 .186

50 6 .02 .091 .052 .097 .304 1.65 .111 .039 .100 .099 .109
.04 .189 .148 .184 .562 4.48 .268 .093 .039 .145 .150

ν̂ 25 4 .02 .075 .044 .266 .142 .250 1.38 .192 .225 .185 .166
.04 .144 .116 .582 .435 .410 42.0 .076 .112 .159 .133

50 6 .02 .055 .031 .062 .101 .200 .108 .173 .211 .140 .160
.04 .130 .103 .133 .151 .219 .179 .071 .088 .133 .125

Table 2.1: Summary of simulation results – Thomas process.

meters (in the sense of the relative MSE) although for point patterns with strong
clustering when estimating σ CLE (with R = 0.1) yields fully comparable and
sometimes better quality estimates.

For point patterns with weak clustering PLE (with R = 0.2 and R = 0.1)
yields the best estimates of κ. However, this is due to the minimal variability of
the PLE estimator which has a serious negative bias in this case. The second best
(according to MSE) estimator is MCEg which has half-size bias (i.e. acceptable
10%).

Parameter ν is calculated from the intensity (of points or pairs of points) of
X and as such it depends on the quality of the other parameter estimates. The
best values of MSE were achieved for strong clustering by MCEg and for weak
clustering by (again significantly biased) PLE.

Log-Gaussian Cox process

Parameter β. For the log-Gaussian Cox process considered in this study
β is the scale parameter of the covariance function of the Gaussian driving field
and the hardest one to estimate. Unlike in the case of Thomas process for mini-
mum contrast estimation MCEK showed always better performance than MCEg.
Nevertheless for stronger interaction (β = 10) the best results are obtained by
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CLE with R = 0.1 which has both minimum bias and minimum variability. As
in the case of Thomas process it is important also here to have reasonably small
value of the tuning parameter R, i.e. R = 0.1. For larger values of R the CLE
(and also PLE) deteriorates fast and the estimates become useless.

Quality of the estimates of course improves with growing intensity λ; the
growing amount of information seems to be best used by CLE since for high
intensity (λ = 300) CLE (with R = 0.1) outperforms MCEK even in the case of
weak dependence. CLE (with R = 0.1) generally slightly underestimates β but
the absolute value of bias is much smaller than for any other compared estimator
and this holds uniformly for any log-Gaussian Cox process considered in the
study. When the variability of this estimator becomes small enough (thanks to
the sufficient amount of data in the large λ case) it becomes superior to MCE
estimation even in the case of weak dependence.

To understand this results better it is good to note that the case β = 10 which
we call stronger interaction/dependence means that values of g(u)−1 (where g is
the pair-correlation function) are significantly positive for a larger range of values
u than for the case of β = 20. Thus the observed point pattern of X for β = 10
is much more variable and may contain a few clusters (or sometimes none if λ is
low) with large scale and large number of points (such as the one in the lower part
of the right panel in Figure 2.2) whereas for β = 20 the observed point pattern
is more homogeneous with large number of smaller clusters (both in terms of
scale and number of points). The large clusters from X with β = 10 make the
estimation of the functional characteristics K and g less stable than in the case
of β = 20 or the Thomas process, which influences negatively the quality of the
MCE estimation. Obviously the CLE method is less influenced by the occurrence
of these large clusters.

The same fact may explain higher efficiency of MCEK when compared with
MCEg. Even in the case of weaker dependence (β = 20) the clusters observed
in X are highly variable in terms of the number of points and there are always
some with a fairly high number of points. In such a situation the estimate of
the K-function as a cumulative function is more stable than the estimate of the
g-function (which corresponds to the density of K-function).

The performance of PLE is inferior to the other methods and for weak depen-
dence (β = 20) the estimator is unusable. For stronger dependence in the point
pattern the performance for PLE with R = 0.1 is comparable with the MCE
methods, for larger values of R the estimator becomes unusable again.

Parameter σ2. The other interaction parameter σ2 is best estimated by the
MCE methods. The estimates are only slightly biased and the variance is lower
than for the other estimators. Note that the sign of the bias depends on the value
of β – for β = 10 (i.e. point patterns with a few large and heavy clusters) σ2 is
underestimated while for β = 20 it is overestimated by both MCEK and MCEg.
The performance of the two MCE methods is very similar.

Worse but still reasonable results are obtained for PLE with R = 0.1 and
strong dependence in the point pattern. In the case of weak dependence the
PLE method needs higher intensity λ of the point process to provide usable
estimates. The worst results are provided by CLE. Both CLE and PLE have
considerable negative bias (larger for the case of strong dependence) but PLE
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shows consistently lower variability than CLE which makes it superior.
As in the case of estimation of β both PLE and CLE perform reasonably well

only with the tuning parameter R = 0.1, for larger values both the bias and
variability increase to impractical values.

Parameter ν. The intensity parameter ν is the easiest one to estimate and
it is estimated very well by any of the compared methods. Remember that MCE
and CLE estimate ν by the same formula (see Example 2.2 in Section 2.1.4)
which is influenced by the value of the estimated parameter σ2. Thus it follows
from the properties of the estimates of σ2 that the MCE estimates of ν has to
be superior to the CLE estimates and that MCEK and MCEg perform equally
well. Note moreover that the CLE estimates with R = 0.2, 0.3 are still very good
even though the quality of the estimates of σ2 was not good at all. Since ν̂ is
a linear function of σ̂2 the influence of the quality of the estimates of interaction
parameters on the estimate of the intensity parameter ν is much smaller than for
the Thomas process case.

Another interesting observation is that the efficiency of the PLE estimate
which is determined by formula (2.10) is worse than for the other methods and
improves with larger value of the tuning parameter R. The formula (2.10) uses
the number of observed pairs of points with distance smaller than R and provides
negatively biased estimates – the smaller the value of R the larger the bias of the
estimates. Although the PLE estimates of ν are still fairly exact the conclusion
is that the intensity parameter ν is better estimated by the simpler formula using
just the observed number of points of the point process X.

Procedure using rdata. The procedure using R = rdata was even less suc-
cessfull for the log-Gaussian Cox process than for the Thomas process. This could
be explained partially by a more uniform distribution of the estimated values of
rdata over the whole range between 0 and 0.25 (see Dvořák and Prokešová (2011)
for the histograms of rdata). Moreover, when β = 10 we get quite often the
estimate rdata = 0.25 and for such R both CLE and PLE become impractical.

For PLE the use of data dependent R produces impractical estimates of β and
estimates of σ2 with larger variance and for strong interaction also with larger
bias than the procedure with fixed R = 0.1.

For CLE the estimate of the interaction parameter β using R = rdata has in
case of strong dependence generally smaller bias than with fixed R = 0.1 but the
variance is larger and in total the estimate is worse than with fixed R = 0.1. Still
it is superior to MCE. In case of weak dependence the small bias is the same
as with fixed R = 0.1 and in total larger variance makes the estimate inferior
to MCE. The estimate of σ2 by CLE with R = rdata is worse than the other
estimates and for small values of the intensity it is even impractical.

Overall performance. The quality of all the compared estimators improves
with higher intensity of the point process X and in the majority of cases also with
weaker dependence (i.e. larger value of the parameter β). However, there is one
important exception – the CLE with R = 0.1 provides more precise estimates
of β for processes with stronger dependence. In this case CLE is much better
than the other estimation methods. A plausible explanation is that the score
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MCE CLE PLE
λ β K g .1 .2 .3 rdata .1 .2 .3 rdata

Bias β̂ 100 10 .281 .498 -.070 .190 .645 .087 -.221 1.76 2.44 .747
20 .146 .216 .090 .380 .401 .095 .527 1.80 4.41 .359

300 10 .259 .360 -.143 -.036 .258 -.062 -.224 1.51 2.25 .847
20 .140 .180 -.051 .437 .272 .092 .417 .798 .629 .484

σ̂2 100 10 -.065 -.016 -.311 -.559 -.688 .032 -.218 -.467 -.570 -.357
20 .050 .059 -.140 -.357 -.603 .536 -.295 -.269 -.525 -.122

300 10 -.046 -.023 -.241 -.535 -.722 -.509 -.160 -.384 -.484 -.375
20 .043 .072 -.131 -.336 -.668 -.196 -.131 -.212 -.422 -.129

ν̂ 100 10 -.001 -.006 .026 .047 .064 -.018 -.146 -.052 -.016 -.111
20 -.005 -.006 .017 .042 .068 -.067 -.094 -.079 -.005 -.147

300 10 .000 -.003 .019 .041 .061 .037 -.115 -.043 -.013 -.050
20 -.006 -.008 .012 .027 .059 .014 -.086 -.062 -.011 -.082

MSE β̂ 100 10 .538 .825 .112 .756 2.16 .649 .513 7.59 11.0 3.35
20 .309 .357 .428 .983 .798 .576 2.14 8.67 51.5 2.21

300 10 .235 .299 .085 .206 .566 .089 .268 6.12 14.0 3.57
20 .124 .132 .091 .631 .394 .220 1.13 2.10 2.00 1.24

σ̂2 100 10 .146 .151 .380 .548 .774 2.90 .184 .436 .623 .430
20 .196 .198 .476 .561 .756 4.16 .294 .519 .714 .529

300 10 .060 .058 .184 .485 .736 .480 .132 .267 .450 .285
20 .064 .063 .136 .354 .688 .233 .121 .226 .402 .138

ν̂ 100 10 .005 .005 .007 .008 .012 .054 .038 .012 .011 .041
20 .004 .004 .008 .010 .012 .066 .016 .016 .009 .055

300 10 .002 .002 .003 .006 .007 .006 .021 .006 .005 .009
20 .001 .001 .002 .003 .006 .003 .011 .006 .003 .011

Table 2.2: Summary of simulation results – log-Gaussian Cox process, σ2 = 1 in
all cases.

equations of CLE are less influenced by the high variability of the observed point
pattern (caused by the variability of a few large and heavy clusters) than are
the estimates of the functions K and g used for MCE. For point processes with
β = 20 and small enough intensity (λ < 300) the observed clusters in the point
pattern are more homogeneous and the MCEK becomes the best (in the sense of
the relative MSE) estimator of β followed by MCEg.

The parameter σ2 is best estimated by the minimum contrast methods, which
show very similar performance, followed by PLE with R = 0.1. As in the other
cases small value of the tuning parameter R is crucial for estimation of the inter-
action parameters by both PLE and CLE; for larger R = 0.2, 0.3 both the bias
and variability of the PLE and CLE become too large.

Estimators of the intensity parameter ν are very precise for any of the com-
pared methods. The important conclusion from the simulation study is that for
log-Gaussian Cox processes a simple estimate by means of the observed (first
order) intensity of the point process is superior to the more complicated estimate
provided by PLE which uses the observed intensity of pairs of points from X.
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Conclusions and further remarks

A short conclusion of the simulation study is that the minimum contrast method
using the pair-correlation function g provides the best estimates in the majority
of cases (see the next paragraph for an exceptional situation). It seems that the
functional criterion (2.3) is able to get more information from the point pattern
than the composite and Palm likelihood. On the other hand, when it comes to
more complicated models like those considered in Tanaka et al. (2008) where the
pair-correlation function does not have a closed form anymore but is expressed
by means of an integral the maximization of (2.3) may be numerically more
demanding. Then the more feasible Palm or composite likelihood estimation can
be a good alternative.

There is one important situation where the estimators’ performance was diffe-
rent. For the estimation of the interaction range β for log-Gaussian Cox model
the best results were provided by composite likelihood and MCEK was superior
to MCEg. A plausible explanation is that the population of clusters observed in
the log-Gaussian Cox process is much more variable (both in terms of scale and
number of points in the clusters) than the one observed in the Poisson-Neyman-
Scott processes. A small (and highly variable) number of large and heavy clusters
observed in the point pattern makes the estimates of the K-function unstable and
even more so for g. In such a case the simpler estimating equations implied by
CLE are probably more stable and provide better estimates of the interaction
range parameter β.

In biological applications which study e.g. the interactions among members
of a plant community or seed dispersal curves the interaction range can be a pa-
rameter of primary interest. Our results suggest that especially in the case of a
nonhomegenous population of observed clusters composite likelihood should be
the preferred estimation method.

Another interesting issue we observed in the simulation study is a rather
extreme version of the bias-variance trade-off when estimating the number of
clusters (i.e. parameter κ) for Thomas process with weak clustering (i.e. loose
clusters). Observed point patterns are very homogeneous in this case and the
individual clusters are completely unrecognisable. Thus it is understandable that
for κ we got estimates with the worst performance (compared to other parame-
ters) and as the results show the amount of data we used is still not enough to
estimate this parameter safely. The smallest MSE was exhibited by PLE in spite
of the heavy bias it had, followed by only slightly biased MCEg. Thus if one is
not prepared to accept the granted serious bias provided by PLE it is better to
prefer MCEg also for the estimation of κ.

The results we obtained about the better efficiency of the MCEg method in
comparison with the MCEK method for Poisson-Neyman-Scott processes are in
agreement with the results published in Brix (1999) for the so called G-shot-noise
Cox processes. Even though these processes are not distinguishable from the
Poisson-Neyman-Scott processes by just the g- or K-function the MCE method
can be used for the parameter estimation of these models. Brix (1999, Sec. 4.2.1)
states that MCEK can be unstable in some cases and that MCEg should be the
preferred method.

Further we experimented with a simple data-based procedure for the choice of
the tuning parameter R for CLE and PLE methods. The conclusion is that such
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a choice does not improve the quality of the estimates in comparison with the
a priori chosen fixed value R = 0.1. More sophisticated methods of the adaptive
choice of R must be used to produce a considerable improvement in the quality
of the estimates, such as e.g. the cross-validation procedure suggested in Guan
(2006, Sec. 2.4).

2.2 Non-stationary case

For non-stationary spatial point process models the methods of parameter esti-
mation described in the previous section cannot be employed directly. The main
obstacle is the non-constant (first-order) intensity function λ(·) which appears e.g.
in non-parametric estimators of K- and g-function. If λ(·) was known a priori
one could easily adapt the three moment estimation methods also to the non-
stationary case, at least for certain class of models with tractable second-order
moment characteristics.

A solution to this estimation problem was proposed in Waagepetersen (2007)
in the case of inhomogeneous Poisson-Neyman-Scott processes. The suggested
two-step procedure consists of estimation of the inhomogeneity parameters using
Poisson log-likelihood estimating function in the first step and then, conditionally
on the estimated parameter values from the first step, estimation of the clustering
parameters using minimum contrast method on the inhomogeneous K-function,
cf. Section 2.1.1.

We stress here that the described method directly corresponds to minimum
contrast estimation in the stationary case (which is, however, usually not con-
sidered to be a two-step method). In both cases one needs to first estimate
the intensity λ or the intensity function λ(·) and plug-in the estimate into the
non-parametric estimator of the K-function given in Equation (1.4). Finally, the
clustering parameters are estimated using minimum contrast method. The main
difference is that in the stationary case a natural estimator of λ is available, see
Equation (1.1). In the non-stationary case the estimation of λ(·) is more involved.

The two-step estimation method proposed in Waagepetersen (2007) can be
used for inhomogeneous Cox point processes with tractable second-order moment
characteristics. It can be also generalized so that it uses other moment estimation
methods in the second step, specifically one of the three methods described in
the previous section.

In the following we consider a non-stationary spatial Cox point processX with
λ(·; β) and g(·; θ) fulfilling the SOIRS property. Here β and θ are (vectors of)
unknown parameters. We assume that it is possible to separate the inhomogeneity
and interaction parameters so that we avoid overspecification of the model.

Note that such a parametrization may not be the most natural one but it is
often available and simplifies the description of the estimation procedures. As
an example, consider a non-stationary process X obtained by location-dependent
thinning of a stationary Thomas process in R2 with parameters κ, ν and σ, see
Example 1.15. Let f(x; β) be a non-constant function used for the thinning,
properly scaled so that maxx∈W f(x; β) = 1, where W is the observation window.
Suppose that β = (β1, . . . , βp) ∈ Rp is a p-dimensional vector. For this model λ
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and g take on the form

λ(x) = κ ν f(x, β), u ∈ W,

g(x, y) = 1 +
1

4π κσ2
exp

{
−∥x− y∥2

4σ2

}
, x, y ∈ W.

Now we can set β0 = κ ν. Then, the intensity function λ is parametrized by
the inhomogeneity parameter (β0, β1, . . . , βp) and the pair-correlation function is
parametrized by the interaction parameter (κ, σ).

We describe now the first estimation step – estimation of the inhomogeneity
parameters β. Different versions of the second step, i.e. estimation of the inter-
action parameters θ, are described in the corresponding subsections below.

For estimating β, Waagepetersen (2007) suggests to follow the approach of
Schoenberg (2005), i.e. treat the point process X as a Poisson process with the
same intensity function λ(·; β) and maximize the corresponding log-likelihood
function

L1(β) =
∑

x∈X∩W

log λ(x; β)−
∫
W

λ(u; β) du (2.11)

with respect to β. By doing this we disregard any interaction between points and
hence we loose efficiency of the estimator. However, under appropriate assump-
tions it is possible to establish consistency (Schoenberg, 2005) and asymptotic
normality of the estimator (Waagepetersen and Guan, 2009). This estimation
procedure can be also regarded as the first-order composite likelihood method.

It is possible to formulate this estimation procedure in the framework of es-
timating equations (Mukhopadhyay, 2004). The estimate β̂ of β is obtained by
solving the equation

U1(β) =
∑

x∈X∩W

λ(1)(x; β)

λ(x; β)
−
∫
W

λ(1)(u; β) du = 0, (2.12)

where λ(1) denotes the derivative of λ w.r.t. the vector β. Note that U1(β) is the
score function of the Poisson log-likelihood (2.11). By Campbell theorem, U1(β)
is an unbiased estimating equation in the sense that EU1(β

∗) = 0 where β∗ is the
actual value of β governing the distribution of X.

We remark here that Waagepetersen (2007) showed that the estimate of β ob-
tained by solving the Equation (2.12) differs negligibly from the estimate obtained
by a more complicated and computationally much more demanding second-order
estimating equation, corresponding to the score function of the full composite like-
lihood (2.4) in the inhomogeneous case. This justifies the use of the first-order
intensity function for the estimation of β and it appears reasonable to estimate
the interaction parameters θ conditionally on fixed β̂. See also Prokešová et al.
(2014) for this discussion.

An alternative method suitable for estimation of β if λ is of log-linear form
is the variational approach proposed by Coeurjolly and Møller (2014). Strong
consistency and asymptotic normality of their estimator is shown in the paper,
together with a simple and efficient implementation. This makes their approach
a viable alternative to the classical Poisson log-likelihood (2.11).
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2.2.1 Minimum contrast estimation

As stated above, the two-step estimation procedure using minimum contrast esti-
mation on the K-function was first proposed for inhomogeneous SOIRS Poisson-
Neyman-Scott processes in Waagepetersen (2007). The usefulness of the method
was illustrated by application to the rain forest data (a popular dataset avail-
able in spatstat) and a simulation study. However, no asymptotic results for
estimates of the clustering parameters were provided.

Following the idea in the above-mentioned paper Guan (2009) introduced
a two-step estimation method with (weighted) minimum contrast using pair-
correlation function g in the second step, again under SOIRS assumption. A simu-
lation study presented in the paper shows that in certain situations this version
produces more stable estimates than using the K-function in the second step.
The method is also illustrated in an application to the rain forest dataset.

Finally, Waagepetersen and Guan (2009) prove joint asymptotic normality

of the estimates (β̂, θ̂) in the so-called increasing window asymptotics for spa-
tial SOIRS Cox processes under appropriate moment assumptions and specific
mixing conditions. The estimation procedure is formulated in the framework of
estimating equations as follows:

m(β, θ) =

∫ r1

r0

[K̂(u; β)c −K(u; θ)c]2 du,

U2(β, θ) = −|W |∂m(β, θ)

∂θ

= 2c|W |
∫ r1

r0

[K̂(u; β)c −K(u; θ)c]K(u; θ)c−1K(1)(u; θ) du,

where m is the appropriate contrast criterion, W is the observation window,
K̂(·; β) is the non-parametric estimate of the K-function (1.4) given the value of
β and K(1) is the derivative of K(·; θ) with respect to the vector of parameters θ.

Finding the estimates (β̂, θ̂) thus corresponds to solving

U(β, θ) = (U1(β), U2(β, θ)) = 0,

where U1 is given by (2.12). We will use a similar formulation of estimation
procedures in the next chapter.

2.2.2 Composite likelihood method

Different versions of the composite likelihood method for pairs of points were
suggested in the inhomogeneous case by Waagepetersen (2007), Jalilian et al.
(2013) and Prokešová et al. (2014). For example, the log-likelihood function in
Prokešová et al. (2014) takes on the form

logCL(θ) =
∑

x,y∈X∩W,0<∥y−x∥<R

[
log
(
λ(x; β̂)λ(y; β̂)g(y − x; θ)

)
(2.13)

− log

(∫
W

∫
W

λ(u; β̂)λ(v; β̂)g(v − u; θ)I(∥v − u∥ < R) du dv

)]
,

(2.14)
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cf. Equation (2.4). The log-likelihood with a fixed value of β̂ from the first
step is then maximized with respect to the interaction parameters θ. As before,
R > 0 is a tuning parameter. This variant of the two-step maximization is
computationally much less demanding than maximization of the full composite
likelihood with respect to the complete parameter (β, θ) (Prokešová et al., 2014).

Asymptotic properties of the estimator based on (2.13) under the increasing
window asymptotics can be established using the methodology in Prokešová et al.
(2014). For the version of Jalilian et al. (2013) the asymptotic properties are
discussed in the appendix of their paper.

2.2.3 Palm likelihood method

It is not a straightforward task to generalize Palm likelihood method to the
non-stationary case. Prokešová et al. (2014) describe three different approaches
addressing this issue. To give an example, one version of the Palm log-likelihood
takes on the form

logPL(θ) =
∑

x,y∈X∩W,0<∥y−x∥<R

log
(
λ(y; β̂)g(y − x; θ)

)
−

∑
x∈X∩W

∫
B(x,R)

λ(u; β̂)g(u− x; θ) du,

where again R > 0 is a tuning constant. The paper Prokešová et al. (2014)

formulates the conditions under which the joint asymptotic normality of
(
β̂, θ̂
)

holds for different versions of the proposed inhomogeneous Palm likelihood, un-
der the increasing window asymptotics. The author’s contribution to the paper
Prokešová et al. (2014) lies in performing the simulation study which accompanies
the paper (not presented here).

44



3. Parameter estimation for
space-time Cox point processes

As discussed in Section 1.4, space-time point processes in Rd×R should not just
be considered processes in Rd+1. One coordinate plays a distinct role and hence
devoted space-time methods should be used for statistical inference.

The parametric models for spatial point processes presented in Sections 1.2
and 1.3 can be extended to the space-time setting. The discussion on parame-
ter estimation at the beginning of Chapter 2 also applies here. For models with
tractable form of the pair-correlation function (the K-function or the Palm in-
tensity, respectively) the moment estimation methods may be used. Due to low
computational demands they are preferred both for stationary and non-stationary
processes.

In general one may expect space-time models to be parametrized by a higher
number of parameters than purely spatial models considered in Chapter 2. This
may cause trouble with the respective optimization procedures – optimization
over a higher-dimensional parameter space is more computationally demanding
and in some cases requires approximation of higher-dimensional integrals. There-
fore we investigated the possibility to use dimensionality-reducing techniques
(namely, using projection processes introduced in Section 1.4) to estimate differ-
ent parts of the model separately. This, however, requires a particular structure
of the model, as discussed below. Under certain assumptions the second-order
characteristics of the projected processes Xs and Xt have a tractable form and
can be used for step-wise estimation.

We focus here on the non-stationary case as it is more challenging and also
more useful for practical applications. Also, we discuss here only the minimum
contrast estimation – in this case the problems mentioned above are most promi-
nent. The minimum contrast criterion involves higher-dimensional integration
and needs to be optimized with respect to a high-dimensional parameter. Also,
numerical stability of the necessary non-parametric estimates of K or g is an
important issue.

In the following we present two estimation methods for inhomogeneous space-
time shot-noise Cox processes with a particular structure – minimum contrast
estimation using projection processes and also a refined version which remedies
some of the drawbacks of the first method. We remark that inference for other
space-time models with similar second-order structure can be made using the
same methods.

3.1 Method using projection processes

Most of the work presented in this section is also summarized in the recent paper
Prokešová and Dvořák (2014), except for the discussion on asymptotic proper-
ties of the respective estimators. For ease of exposition we focus on space-time
processes on R2 × R which are the most common type of space-time processes
encountered in practice.

Let X0 be a stationary space-time shot-noise Cox process on R2 × R (see
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Section 1.3), observed on a compact observation window W ×T and specified by
the constant µ > 0, the measure V on R+ and the homogeneous kernel function
k(u, t) on R2 × R such that k integrates to 1 (k is a probability density function
on R2 × R). We require this to avoid overparametrization of the model.

We denote λ0,k the k-th order intensity function of X0. Similarly, we denote
λ0,s,k the k-th order intensity function of the spatial projection X0,s of X0, and
λ0,t,k the k-th order intensity function of the temporal projection X0,t of X0.
Throughout this section we assume that λ0,2 exists and is bounded so that the
pair-correlation function of X0 is properly defined.

Let X be the SOIRS process obtained by location-dependent thinning from
X0 using the inhomogeneity function f : R2 × R → [0, 1]. As before, we denote
by λk, λs,k and λt,k the k-th order intensity functions of X and of the projection
processes Xs and Xt, respectively.

Following Gabriel and Diggle (2009) and Møller and Ghorbani (2012) we adopt
a pragmatic assumption about the separability of the first-order intensity func-
tion λ (for a more detailed discussion on this assumption see also Section 4.1.1).
We assume that

f(u, t) = f1(u)f2(t), u ∈ R2, t ∈ R, (3.1)

where f1 : R2 → [0, 1] is the spatial inhomogeneity function and f2 : R → [0, 1] is
the temporal inhomogeneity function. Moreover, we assume

max
u∈R2

f1(u) = 1 = max
t∈R

f2(t),

which implies maxR2×R f(u, t) = 1. Again, this assumption prevents overpara-
metrization of the model.

Further following an example of a structured space-time Poisson cluster pro-
cess in Møller and Ghorbani (2012, Sec. 5) we assume a product structure of the
kernel function k, i.e.

k(u, t) = k1(u)k2(t), u ∈ R2, t ∈ R, (3.2)

where k1 and k2 are probability density functions on R2 and R, respectively.
These assumptions do not imply spatio-temporal separability of the process X

(the second-order intensity function does not have a product structure, as shown
below) but they allow us to introduce a tractable estimation procedure.

In many situations, e.g. for the epidemiological data discussed in the paper by
Møller and Ghorbani (2012), the assumption (3.2) about space-time separability
of the smoothing kernel k can be justified by arguing that temporal dynamics of
the underlying (biological or other) process is not influenced by spatial variation.
Also, in practical applications it may be difficult to decide whether the observed
data arise from a process with separable or non-separable smoothing kernel. The
main obstacle is that usually only a few points of the process occur in individual
clusters. This makes (3.2) a reasonable assumption in many situations.

In the following we take advantage of the notation

K1(v − u) =

∫
R2

k1(u− w)k1(v − w) dw, u, v ∈ R2,

K2(s− t) =

∫
R
k2(t− τ)k2(s− τ) dτ, s, t ∈ R,
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where K1 is the probability density function of a difference of two independent,
identically distributed random variables with density k1, and similarly for K2.

The moment characteristics of X are derived easily from the model assump-
tions and the formulae in Section 1.3. The intensity function is

λ(u, t) = f1(u)f2(t)µV1, (u, t) ∈ R2 × R, (3.3)

and the pair-correlation function is

g((u, t), (v, s)) = 1 +
V2

µ(V1)2
K1(v − u)K2(s− t), (u, t), (v, s) ∈ R2 × R. (3.4)

Obviously neither g nor λ2 has a space-time product structure and our process
X has nontrivial spatio-temporal interactions.

Let us now consider the projection processes Xt and Xs, obtained by project-
ing X from W ×R to R and from R2 × T to R2, respectively. For their intensity
functions λt and λs we get from Proposition 1.21 that

λt(t) = µV1f2(t)

∫
W

f1(w) dw, t ∈ R, λs(u) = µV1f1(u)

∫
T

f2(τ) dτ, u ∈ R2.

(3.5)
From Proposition 1.21 and Equations (3.3)–(3.5) we get for their pair-correlation
functions that

gt(t, s) = 1 + Ct
V2

µ(V1)2
K2(s− t), t, s ∈ R, (3.6)

gs(u, v) = 1 + Cs
V2

µ(V1)2
K1(v − u), u, v ∈ R2, (3.7)

where the constants Ct, Cs are defined by

Ct =
1

(
∫
W
f1(w) dw)2

∫
W

∫
W

f1(u)f1(v)K1(v − u) du dv, (3.8)

Cs =
1

(
∫
T
f2(τ) dτ)d

∫
T

∫
T

f2(s)f2(t)K2(s− t) ds dt. (3.9)

Thus eventhough the process X is non-separable the pair-correlation function of
the temporal projection process depends on the “spatial” part of the model (i.e.
f1 and k1) only through the constant Ct and analogically the pair-correlation
function of the spatial projection process depends on f2 and k2 only through Cs.

Another second-order characteristic used in the sequel is the K-function. For
the projection processes we have

Ks(r) =

∫
∥u∥≤r

gs(u) du, r ≥ 0, Kt(t) =

∫ t

−t
gt(s) ds, t ≥ 0. (3.10)

3.1.1 Model parametrization

Suppose that the underlying Poisson measure Φ has the intensity measure of the
form µV (dr) d(v, s) where µ > 0 is a scalar parameter and the measure V is
parametrized by the (scalar) parameter θ.
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We assume a particular form of the inhomogeneity function f :

f(u, t; βs, βt) = f1(z1(u)β
T
s ) f2(z2(t)β

T
t ), (3.11)

where z1(u) and z2(t) are vectors of spatial and temporal covariates, respectively,
and, with a slight abuse of notation, f1, f2 are positive, strictly increasing func-
tions on R. The vectors βs, βt denote the unknown inhomogeneity parameters.
Note that (3.11) implies (3.1) and thus enables us to work with characteristics of
the projected processes. Also, it allows us to incorporate covariate information
contained in the vectors z1(u) and z2(t).

We remark that the estimation procedure proposed below does not require us
to impose a parametric model on f1 and f2. It is possible to use non-parametric
methods such as kernel smoothing to estimate the first-order intensity function
of X. However, for the discussion of the asymptotic properties of the estimators
we require this parametrization.

We further set β0 = log (µV1). This is motivated by the popular parametriza-
tion used in practice where the intensity function is a log-linear function of the
model parameters. Then the intensity function λ of X is parametrized by the
vector β = (β0, βs, βt). Hence, the intensity functions λs and λt of the projection
processes Xs and Xt, given in Equation (3.5), are also parametrized by the vector
β.

Let the spatial smoothing kernel k1 (and hence K1) be parametrized by a vec-

tor of parameters ψ̃ and similarly the temporal smoothing kernel k2 (and hence

K2) be parametrized by the vector ξ̃. Now we set

ψ0 =Cs
V2

µ (V1)2
,

ξ0 =Ct
V2

µ (V1)2
,

and ψ = (ψ0, ψ̃) and similarly ξ = (ξ0, ξ̃). Henceforth

gs(u;ψ) = 1 + ψ0K1(u; ψ̃), Ks(r;ψ) = πr2 + ψ0

∫
∥u∥<r

K1(u; ψ̃) du,

gt(s; ξ) = 1 + ξ0K2(s; ξ̃), Kt(t; ξ) = 2t+ ξ0

∫
|s|<t

K2(s; ξ̃) ds.

Below we also use the following notation: λ(1) and λ(2) are the first and
second-order derivatives of the intensity function of X w.r.t. the parameter β;
K

(1)
t (t; ξ), K

(2)
t (t; ξ) are the first and second-order derivatives of Kt(t; ξ) w.r.t. ξ;

K
(1)
s (r;ψ), K

(2)
s (r;ψ) are the first and second-order derivatives of Ks(r;ψ) w.r.t.

ψ (assuming that the appropriate derivatives exist).
Finally, we denote by β∗, ψ∗, ξ∗, µ∗, θ∗ the “true” parameter values governing

the distribution of the process X.

3.1.2 Step-wise estimation procedure

In this section we introduce a step-wise estimation procedure for X analogical to
the estimation of spatial SOIRS Cox point processes (Waagepetersen and Guan,
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2009). We assume that the process X is observed in a compact space-time ob-
servation window of the form W × T where W ⊂ R2 and T ⊂ R have a positive
Lebesgue measure (area and length, respectively).

In the estimation procedure we take advantage of the special spatio-temporal
structure of X. In the first step the inhomogeneous intensity function λ is es-
timated (either parametrically or non-parametrically). In the second and third
step, conditionally on the knowledge of λ, the second-order characteristics of X
are estimated from the data and used for minimum contrast estimation in or-
der to estimate the parameters of the temporal and spatial projection process,
respectively. Finally, the parameters of the underlying Poisson measure (i.e. µ
and θ) are estimated from the previous estimates and the total number of points
observed in W × T .

First step – estimating the first-order space-time intensity function

From (3.3) and (3.5) we get for any (u, t) ∈ W × T that

λs(u)λt(t) = λ(u, t) ·
∫
W

∫
T

µV1f1(v)f2(s) ds dv = λ(u, t) · EX(W × T ).

A natural (unbiased) estimator of the mean number of points in X ∩ (W × T ) is
the actual observed number of points in X ∩ (W × T ). Therefore we define the

estimate of the space-time intensity function λ̂ by

λ̂(u, t) =
λ̂s(u)λ̂t(t)

X(W × T )
, (u, t) ∈ W × T, (3.12)

where λ̂s, λ̂t are estimates of the intensity functions of the projection processes.
Thus, the dimensionality of the problem is reduced.

The intensities λs, λt may be estimated either non-parametrically or a model
for the thinning functions f1, f2 may be specified, see (3.11). The non-parametric
estimation of λs is usually implemented by the kernel estimate

λ̂s(u) =
∑
x∈Xs

hb(u− x)/wb,W (x), u ∈ W,

where hb(u) = h(u
b
) b−2 is a kernel with bandwidth b > 0, i.e. h is a fixed

probability density function. The edge correction factors wb,W are defined by

wb,W (x) =

∫
W

hb(u− x) du,

so that
∫
W
λ̂s(u) du = Xs(W ) which implies the approximate unbiasedness of

the estimate λ̂s. An analogical kernel estimate can be used for λ̂t. For fur-
ther information about kernel estimation for point processes see e.g. Møller and
Waagepetersen (2004, Sec 4.3).

From the (non-parametric) estimates of λs and λt we also get the estimates
of the thinning functions f1, f2. Namely, from (3.5), we have

f̂1(u) = λ̂s(u)/
(
max
W

λ̂s(v)
)
, f̂2(t) = λ̂t(t)/

(
max
T

λ̂t(s)
)
,
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if we assume maxu∈W f1(u) = 1 = maxt∈T f2(t).
The product estimation (3.12) makes the non-parametric estimate of the inten-

sity more stable in comparison with a fully space-time kernel estimate. However,
we stress that the accuracy of λ̂, λ̂s, λ̂t is not important just for its own sake but
even more because the inverted values of the intensity functions are used in the
estimates of the inhomogeneous pair-correlation functions and other second-order
characteristics used in the following estimation steps. Therefore it is recommend-
able to use the more stable parametric estimate of λ when possible (see Baddeley
et al. (2000) for the detailed discussion of this issue).

Ignoring for the moment the inter-point interactions, the inhomogeneity pa-
rameter β = (β0, βs, βt) may be estimated by means of the Poisson log-likelihood
score function similar to (2.12). For X the Poisson log-likelihood score function
is given by

U1(β) =
∑

(u,t)∈X∩(W×T )

λ(1)(u, t; β)

λ(u, t; β)
−
∫
W×T

λ(1)(v, s; β) dv ds. (3.13)

The estimate β̂ is obtained as a solution of the vector equation U1(β) = 0.
We remark here that one may try to take advantage of the product estima-

tion (3.12) just as in the non-parametric case and use variants of the Poisson
log-likelihood score function (3.13) separately for (suitably parametrized) inten-
sity functions λs, λt of the projection processes Xs, Xt. However, the resulting
estimating equations corresponding to βs and βt, respectively, exactly match those
obtained from (3.13). Thus, no improvement in precision of the estimates of βs
and βt can be achieved by using the projection processes instead of the space-time
process X itself.

Second step – estimating the clustering parameters of the temporal
projection process

To estimate the parameter ξ we will use minimum contrast estimation for the
projection process Xt. For this purpose we need non-parametric estimates of the
K-function or g-function (or semi-parametric estimates if a parametric model was
imposed on the inhomogeneity function f). In the general setting they are given
by Equations (1.4) and (1.5). However, for the sake of completeness we give here
the formula for non-parametric estimate for the projection process Xt, too:

K̂t(t) =
1

|T |

̸=∑
s,τ∈Xt

I(|s− τ | ≤ t)

w2(s, τ)λ̂t(s)λ̂t(τ)
,

where w2(s, τ) is the temporal edge-correction factor which is equal to 1 if both
ends of the interval with length 2|s − τ | and center s lie within T , and is equal
to 2 otherwise (Møller and Ghorbani, 2012). For further discussion on different
choices of edge-correction factors see Gabriel (2014).

Non-parametric estimate of the pair-correlation function gt can be constructed
analogously, with appropriate edge-correction factor, following Equation (1.5).
The disadvantage of using ĝt is the necessity of choosing a suitable kernel and its
bandwidth b > 0. No tuning constants are necessary for estimation of K.
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For this reason we recommend using the minimum contrast estimation with
theK-function for estimation of the temporal clustering parameters so as to avoid
the need of choosing the kernel and an optimal (or at least sensible) value of the
bandwidth b. Therefore we estimate ξ by minimizing the contrast∫ t1

t0

(K̂t(t)
c2 −Kt(t; ξ)

c2)2 dt, (3.14)

where c2 > 0 is the variance-stabilizing exponent, usually taking on values c2 =
1/2 or 1/4, and 0 ≤ t0 < t1 are fixed constants.

Third step – estimating the clustering parameters of the spatial pro-
jection process

To estimate the parameter ψ we will use minimum contrast estimation for the pro-
jection process Xs. For this purpose we need non-parametric or semi-parametric
estimates of the K-function or g-function (if k1 and hence also gs is isotropic).
We give here the formula for the estimation of the K-function of the projection
process Xs:

K̂s(r) =
1

|W |

̸=∑
x,y∈Xs

I(∥x− y∥ ≤ r)

w1(x, y)λ̂s(x)λ̂s(y)
,

where w1 is an edge-correction factor. In the planar case w1(x, y) can be either

the translation edge-correction factor |W∩Wx−y |
|W | , where Wx−y denotes the set W

shifted by the vector x− y, or the isotropic edge correction factor. For a detailed
discussion on different choices of edge-correction factors see Gabriel (2014).

Non-parametric or semi-parametric estimate of the pair-correlation function gs
can be constructed analogously, with appropriate edge-correction factor, following
Equation (1.5).

The disadvantage of using ĝs is the necessity of choosing appropriate kernel h
and its bandwidth b > 0. No tuning constants are necessary for estimation of K.
This is the reason why minimum contrast estimation using the K-function is
more popular, see e.g. Waagepetersen (2007), Waagepetersen and Guan (2009),
Møller and Ghorbani (2012). However, it was shown (Guan, 2009, Dvořák and
Prokešová, 2012) that for the planar Poisson-Neyman-Scott cluster processes,
both homogeneous and inhomogeneous, the minimum contrast estimation with
the pair-correlation function provides better estimates of the clustering parame-
ters than minimum contrast with K-function. Therefore we suggest to estimate
the spatial clustering parameters by minimizing the contrast∫ r1

r0

(ĝs(u)
c3 − gs(u;ψ)

c3)2 du, (3.15)

where c3 > 0 is the variance-stabilizing exponent. The usual choices are c3 = 1/2
or 1/4. Similarly as before, 0 ≤ r0 < r1 are fixed constants.

Alternatively, the parameter ψ can be estimated by minimizing the contrast∫ r1

r0

(K̂s(u)
c3 −Ks(u;ψ)

c3)2 du.
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This version is useful for studying asymptotic properties of the estimator, see be-
low. We remark here that in general, for estimates obtained by minimum contrast
estimation with the g-function asymptotic results have not been established yet.
This is mainly due to the lack of convergence results for the empirical estimates
of the g-function.

Final step – estimating the parameters of the underlying Poisson mea-
sure

Once the estimates of ψ and ξ have been computed, we can plug them into
formulas (3.8), (3.9) and from ψ0 or ξ0 obtain the estimate of α = V2

µ(V1)2
. Finally,

we calculate θ̂ and µ̂ from α̂ and the equation

X(W × T ) = µV1

∫
W

f̂1(u) du

∫
T

f̂2(t) dt, (3.16)

where X(W × T ) plays role of the estimate of EX(W × T ) =
∫
W×T λ(u, t) du dt.

The actual form of the calculations depends on the precise form of V1 and V2
depending on θ.

Note that we can actually obtain two different estimates of α – one by using ψ̂0

and Ĉs and another by using ξ̂0 and Ĉt. According to the results of the simulation
study in Section 3.1.5 it is preferable to use ψ̂0 and Ĉs since they lead to more
stable and substantially better estimates of µ and θ. A plausible explanation for
this fact is the smaller information loss when projecting X to Xs (i.e. from R2×T
to R2) in comparison with projecting X to Xt. This leads to comparatively better
estimate of ψ0 in comparison with ξ0.

Reformulation of the estimation procedure

To set up the stage for the discussion on the asymptotic properties of the estima-
tors we first formulate the estimation procedure in terms of estimating equations.
We focus here on estimation of β, ξ and ψ. For the parameters µ and θ the cal-
culations depend on the particular form of the measure V (more precisely, on the
form of V1 and V2) and it is complicated to discuss the asymptotics in the general
setting. Also, the inhomogeneity parameter β and the clustering parameters ξ
and ψ are likely to be of main interest in practical applications.

We assume the parametric form of the first-order intensity function (3.11). In

the first step, β̂ is obtained using the Poisson log-likelihood score function (3.13),
i.e. by solving the estimating equation

U1(β) =
∑

(u,t)∈X∩(W×T )

λ(1)(u, t; β)

λ(u, t; β)
−
∫
W×T

λ(1)(v, s; β) dv ds = 0. (3.17)

In the second step we use β̂ to calculate the semi-parametric estimates K̂t(t; β̂)
of Kt(t; ξ). We use the translation edge-correction here (Gabriel, 2014) as it is
convenient for our discussion on the asymptotic properties of the estimators. We
then minimize the discrepancy

m2,β̂(ξ) =

∫ t1

t0

(K̂t(t; β̂)
c2 −Kt(t; ξ)

c2)2 dt. (3.18)
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Assuming differentiability of m2,β̂(·) this corresponds to solving the estimating
equation

U2(β̂, ξ) =− |T |
∂m2,β̂(ξ)

∂ξ

=2c2|T |
∫ t1

t0

[
K̂t(t; β̂)

c2 −Kt(t; ξ)
c2
]
Kt(t; ξ)

c2−1K
(1)
t (t; ξ) dt = 0.

Similarly, in the third step we use β̂ to calculate the semi-parametric estimates
K̂s(r; β̂) of Ks(r;ψ). Again, we use the translation edge-correction method. We
then minimize the discrepancy

m3,β̂(ψ) =

∫ r1

r0

(K̂s(u; β̂)
c3 −Ks(u;ψ)

c3)2 du. (3.19)

Assuming differentiability of m3,β̂(·) this corresponds to solving the estimating
equation

U3(β̂, ψ) =− |W |
∂m3,β̂(ψ)

∂ψ

=2c3|W |
∫ r1

r0

[
K̂s(r; β̂)

c3 −Ks(r;ψ)
c3
]
Ks(r;ψ)

c3−1K(1)
s (r;ψ) dr = 0.

Altogether, the described estimation procedure can be formulated as solving
the vector estimating equation

U(β, ξ, ψ) = (U1(β), U2(β, ξ), U3(β, ψ)) = 0

to obtain the parameter estimates β̂, ξ̂ and ψ̂.

3.1.3 Asymptotic properties

In this section we briefly discuss the asymptotic properties of the estimators
considered above under so-called increasing window asymptotics, i.e. when the
data is available from an increasing sequence of compact observation windows.
For a detailed discussion on the asymptotics see Section 3.2.3. Here we formulate
the consistency and asymptotic normality results but omit the proofs as they
precisely correspond to the proofs detailed in Section 3.2.3.

We consider an increasing sequence of compact observation windowsWn×Tn,
n ≥ 1, such that Wn × Tn ↗ R2 × R. For simplicity we choose

Wn = [an, bn]× [cn, dn], Tn = [en, fn],

where a < 0 < b, c < 0 < d and e < 0 < f are fixed constants. More general
shapes of the observation windows are also possible. However, the important
property of the sequence of observation windows necessary in the proofs is that,
for any h ∈ R2 and k ∈ R,

lim
n→∞

|Wn × Tn|
|(Wn ∩Wn,h)× (Tn ∩ Tn,k)|

= 1,
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where Wn,h denotes the set Wn shifted by the vector h ∈ R2, and similarly for
Tn,k. Also, we require that |∂(Wn×Tn)|/|Wn×Tn| → 0, n→ ∞, where ∂(Wn×Tn)
is the boundary of Wn × Tn.

Let (β̂n, ξ̂n, ψ̂n) be the estimated parameter values calculated from Wn × Tn,
i.e. the solution of the equation

Un(β, ξ, ψ) = (Un,1(β), Un,2(β, ξ), Un,3(β, ψ)) = 0,

where

Un,1(β) =
∑

(u,t)∈X∩(Wn×Tn)

λ(1)(u, t; β)

λ(u, t; β)
−
∫
Wn×Tn

λ(1)(v, s; β) dv ds,

Un,2(β, ξ) =2c2|Tn|
∫ t1

t0

[
K̂t,n(t; β)

c2 −Kt(t; ξ)
c2
]
Kt(t; ξ)

c2−1K
(1)
t (t; ξ) dt,

Un,3(β, ψ) =2c3|Wn|
∫ r1

r0

[
K̂s,n(r; β)

c3 −Ks(r;ψ)
c3
]
Ks(r;ψ)

c3−1K(1)
s (r;ψ) dr,

and K̂t,n and K̂s,n are the semi-parametric estimates of Kt and Ks, calculated
using Xt ∩ Tn and Xs ∩Wn, respectively.

Note that, for all n ≥ 1, we use the same temporal projection process Xt

(projected from the fixed spatial region W ) to define Un,2 and the same spatial
projection process Xs (projected from the fixed time interval T ) to define Un,3.

If we used e.g. Tn to define projection processes X
(n)
s , the resulting asymptotic

regime for Un,3 would be a combination of the increasing window asymptotics and

so-called infill asymptotics, i.e. the intensity function of X
(n)
s (at any location)

would be increasing, unbounded function of n. Moreover, second-order moment
characteristics of X

(n)
s converge to those of a Poisson process and thus in the limit

they provide no information about the clustering parameters. For more detailed
discussion on this issue see Section 3.2.3.

Following Waagepetersen and Guan (2009) we approximate Un,2(β
∗, ξ∗) and

Un,3(β
∗, ψ∗) by

Ũn,2(β
∗, ξ∗) = 2c22|Tn|

∫ t1

t0

[
K̂t,n(t; β

∗)−Kt(t; ξ
∗)
]
Kt(t; ξ

∗)2c2−2K
(1)
t (t; ξ∗) dt,

Ũn,3(β
∗, ψ∗) = 2c23|Wn|

∫ r1

r0

[
K̂s,n(r; β

∗)−Ks(r;ψ
∗)
]
Ks(r;ψ

∗)2c3−2K(1)
s (r;ψ∗) dr.

For Ũn,2, this is based on a Taylor series expansion of the function xc2 , applied

on K̂t,n(t; β)
c2 −Kt(t; ξ)

c2 , and similarly for Ũn,3.
We further define

Σn,11 = |Wn × Tn|−1 Var (Un,1(β
∗)) ,

Σ̃n,22 = |Tn|−1 Var
(
Ũn,2(β

∗, ξ∗)
)
,

Σ̃n,33 = |Wn|−1 Var
(
Ũn,3(β

∗, ψ∗)
)
,
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Jn(β, ξ, ψ) = − ∂

∂(β, ξ, ψ)T
Un(β, ξ, ψ)

= −

 ∂
∂βT Un,1(β)

∂
∂βT Un,2(β, ξ)

∂
∂βT Un,3(β, ψ)

0 ∂
∂ξT

Un,2(β, ξ) 0

0 0 ∂
∂ψT Un,3(β, ψ)


=

Jn,11(β) Jn,12(β, ξ) Jn,13(β, ψ)
0 Jn,22(β, ξ) 0
0 0 Jn,33(β, ψ)


and

In,11 =
1

|Wn × Tn|

∫
Wn×Tn

λ(1)(v, s; β∗)Tλ(1)(v, s; β∗)

λ(v, s; β∗)
dv ds,

In,12 = −2c22

∫ t1

t0

Hn,2(t; β
∗)Kt(t; ξ

∗)2c2−2K
(1)
t (t; ξ∗) dt,

In,13 = −2c23

∫ r1

r0

Hn,3(r; β
∗)Ks(r;ψ

∗)2c3−2K(1)
s (r;ψ∗) dr,

I22 = 2c22

∫ t1

t0

Kt(t; ξ
∗)2c2−2K

(1)
t (t; ξ∗)TK

(1)
t (t; ξ∗) dt,

I33 = 2c23

∫ r1

r0

Ks(r;ψ
∗)2c3−2K(1)

s (r;ψ∗)TK(1)
s (r;ψ∗) dr,

where

Hn,2(t; β
∗) =E

∂

∂βT
K̂t,n(t; β)|β=β∗

=− 2

∫
Tn

∫
Tn

I {|s− τ | < t}
|Tn ∩ Tn,s−τ |

λ
(1)
t (s; β∗)

λt(s; β∗)
gt(s− τ ; ξ∗) ds dτ,

Hn,3(t; β
∗) =E

∂

∂βT
K̂s,n(r; β)|β=β∗

=− 2

∫
Wn

∫
Wn

I {∥u− v∥ < r}
|Wn ∩Wn,u−v|

λ
(1)
s (u; β∗)

λs(u; β∗)
gs(u− v;ψ∗) du dv.

Now we can formulate the consistency theorem, inspired by the paper
Waagepetersen and Guan (2009).

Theorem 3.1. Apart from the model assumptions formulated above, let the fol-
lowing conditions be met:

(A1) the inhomogeneity function f is twice continuously differentiable as a func-
tion of β,

(A2) ∃C1 <∞ such that ∥z1(u)∥ < C1, ∥z2(t)∥ < C1, u ∈ R2, t ∈ R,

(A3) I22 and I33 are positive definite matrices and lim inf ωn,11 > 0, where ωn,11
is the smallest eigenvalue of In,11,

(A4) Σ̃n,22 and Σ̃n,33 converge to positive definite matrices Σ̃22 and Σ̃33, respec-
tively,
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(A5) λ(2)(u, t; β), λ
(1)(u,t;β)
λ(u,t;β)

, λ
(2)(u,t;β)
λ(u,t;β)

are bounded, continuous functions of (u, t, β),

(A6) Kt(t; ξ), K
(1)
t (t; ξ), K

(2)
t (t; ξ) exist and are continuous functions of (t, ξ),

(A7) Ks(r;ψ), K
(1)
s (r;ψ), K

(2)
s (r;ψ) exist and are continuous functions of (r, ψ),

(A8) t0 ≥ 0 for c2 ≥ 2, otherwise t0 > 0; similarly, r0 ≥ 0 for c3 ≥ 2, otherwise
r0 > 0,

(A9) λ0,2 and λ0,3 exist and are bounded and the second-order reduced factorial
cumulant measure of X0 has finite total variation,

(A10) ∃C2 <∞ such that for all s1, s2 ∈ R:∫
R
|λ0,t,4(0, s1, τ, s2 + τ)− λ0,t,2(0, s1)λ0,t,2(0, s2)| dτ < C2,

(A11) ∃C3 <∞ such that for all u1, u2 ∈ R2:∫
R2

|λ0,s,4(0, u1, v, u2 + v)− λ0,s,2(0, u1)λ0,s,2(0, u2)| dv < C3.

Then there is a sequence
{
(β̂n, ξ̂n, ψ̂n)

}
n≥1

for which

Un(β̂n, ξ̂n, ψ̂n) = 0

with probability tending to 1 and the vector

Mn =


|Wn × Tn|1/2(β̂n − β∗)

|Tn|1/2(ξ̂n − ξ∗)

|Wn|1/2(ψ̂n − ψ∗)


is bounded in probability, i.e. ∀ε > 0 ∃δ > 0 : P(∥Mn∥ > δ) ≤ ϵ for n sufficiently
large.

The theorem establishes existence of a consistent sequence {(β̂n, ξ̂n, ψ̂n)}n≥1

such that (β̂n, ξ̂n, ψ̂n) corresponds to a root of the estimating function Un(β, ξ, ψ)
with probability tending to 1 (this also means that the estimating function actu-
ally has at least one root with probability tending to 1). If Un has precisely one

root for each n, we can find the consistent sequence {(β̂n, ξ̂n, ψ̂n)}n≥1 simply by
finding the roots.

We now give a few comments regarding the assumptions of Theorem 3.1.
Condition (A1) is not restrictive and covers the situation most popular in appli-
cations where f is assumed to be a log-linear function of β. The assumption (A2)
of bounded covariates is easily justifiable from a practical point of view.

Concerning condition (A3), I22 is a positive definite matrix if there are distinct
values t0 < τ1 < τ2 < . . . < τq < t1 (where q is the number of elements of the

vector ξ∗) such that the matrix with rows K
(1)
t (τi; ξ

∗) has full rank, see also the
example in Waagepetersen and Guan (2009, Sec. 3.3). It is not possible to discuss
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in full generality the condition on the smallest eigenvalue of In,11 since it depends
on the behaviour of the covariates over the whole R2 × R. The same applies to
the condition (A4) on the limiting behaviour of the matrices Σ̃n,22 and Σ̃n,33.

(A5) in fact adds continuity assumptions on the first-order intensity function
as a function of the vector (u, t, β) and hence continuity assumptions on the
covariates z1(u) and z2(t), respectively, see Equation 3.11.

Conditions (A6) and (A7) depend on the particular form of the smoothing
kernels k1 and k2, respectively. They are satisfied e.g. for Gaussian kernels. In
case of the uniform (Matérn-type) kernels the situation is somewhat complicated
and the dimension plays an important role. Namely, straightforward calculations
show that for a uniform circular kernel k1 in R2 the condition (A7) is fulfilled but
for a uniform kernel k2 in R the assumption (A6) does not hold.

Assumption (A8) is a technical nuisance but in applications it is possible to
use very small positive values of t0 and r0 with no harm. Either a fixed positive
value or perhaps the minimum observed interpoint distance in the given dataset
may be used.

The condition (A9) relates to the stationary (unthinned) version X0 of the
process. It follows from the formulae in Hellmund et al. (2008, Sec. 4) that if the
smoothing kernel k is bounded and

∫∞
0
rkV (dr) < ∞ for some k ∈ N then λ0,k

is bounded and all reduced factorial cumulant measures up to order k have finite
total variation. Hence (A9) is fulfilled if these properties hold for k = 3.

We also remark that a sufficient condition for (A11), formulated in terms of
the second and fourth-order intensity functions of the space-time process X0, is
that there is a constant C̃3 such that for all u1, u2 ∈ R2 and s1, s2, s3 ∈ R the
following holds:∫

R2

|λ0,4((0, 0), (u1, s1), (v, s2), (u2 + v, s3))

− λ0,2((0, 0), (u1, s1))λ0,2((0, 0), (u2, s3 − s2))| dv < C̃3.

Similar sufficient condition can be formulated also for (A10).
We now proceed to the formulation of the asymptotic normality results for

the estimators considered above.
For general σ-algebras F1 and F2 let

α(F1,F2) = sup{|P(A ∩B)− P(A)P(B)|, A ∈ F1, B ∈ F2}

denote the standard strong mixing coefficient (Doukhan, 1994).

First we discuss the properties of the estimator β̂n based on the space-time
process X. For a Borel set A ∈ B(R2×R) denote FX(A) the σ-algebra generated
by X ∩ A.

For h > 0 let Aijk = [ih, (i+1)h)× [jh, (j+1)h)× [kh, (k+1)h), (i, j, k) ∈ Z3,
and

αFp1,p2(m) = sup

{
α(FX(S1),FX(S2)) : S1 =

∪
M1

Aijk, S2 =
∪
M2

Aijk,

|M1| ≤ p1, |M2| ≤ p2, d(M1,M2) ≥ m,M1,M2 ⊂ Z3

}
,
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where |M | is the cardinality of the set M ⊆ Z3 and d(M1,M2) denotes the
minimal distance between M1 and M2 in the grid Z3.

Theorem 3.2. Apart from the model assumptions formulated above and (A1)–
(A11), suppose there exist δ > 0 and ν ∈ N, 0 < δ < ν, such that

(B1) λ0,2+ν((u1, t1), . . . , (u2+ν , t2+ν)) <∞,

(B2) there exist h > 0 and d > 3 · 2+δ
δ

such that αF2,∞(m) = O(m−d),

(B3) the matrix Σn,11 converges to a positive-definite matrix Σ11.

Then

|Wn × Tn|1/2(β̂n − β∗)In,11Σ
−1/2
n,11

d−→ N(0,1),

where
d−→ denotes convergence in distribution and 1 is the identity matrix of

appropriate dimension.

Now we focus on the properties of the estimator ξ̂n based on the temporal
projection process Xt. For a Borel set B ∈ B(R) denote FXt(B) the σ-algebra
generated by Xt ∩B.

For h > 0 let Bi = [ih, (i+ 1)h), i ∈ Z, and

αFt,p1,p2(m) = sup

{
α(FXt(S1 ⊕ t1),FXt(S2 ⊕ t1)) : S1 =

∪
M1

Bi, S2 =
∪
M2

Bi,

|M1| ≤ p1, |M2| ≤ p2, d(M1,M2) ≥ m,M1,M2 ⊂ Z

}
,

where |M | is the cardinality of the setM ⊆ Z and d(M1,M2) denotes the minimal
distance betweenM1 andM2 in the grid Z. Also, Si⊕t1 denotes the set Si dilated
by the distance t1 where t1 is the upper limit used in the minimum contrast
criterion (3.18).

Theorem 3.3. Apart from the model assumptions formulated above and (A1)–
(A11), suppose there exist δ > 0 and ν ∈ N, 0 < δ < ν, such that

(C1) λ0,4+2ν((u1, t1), . . . , (u4+2ν , t4+2ν)) <∞,

(C2) there exist h > 0 and d > 1 · 2+δ
δ

such that αFt,2,∞(m) = O(m−d).

Then

|Tn|1/2(ξ̂n − ξ∗)I22Σ̃
−1/2
n,22

d−→ N(0,1).

Next we discuss the properties of the estimator ψ̂n based on the spatial pro-
jection process Xs. For a Borel set C ∈ B(R2) denote FXs(C) the σ-algebra
generated by Xs ∩ C.
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For h > 0 let Cij = [ih, (i+ 1)h)× [jh, (j + 1)h), (i, j) ∈ Z2, and

αFs,p1,p2(m) = sup

{
α(FXs(S1 ⊕ r1),FXs(S2 ⊕ r1)) : S1 =

∪
M1

Cij, S2 =
∪
M2

Cij,

|M1| ≤ p1, |M2| ≤ p2, d(M1,M2) ≥ m,M1,M2 ⊂ Z2

}
,

where |M | is the cardinality of the set M ⊆ Z2 and d(M1,M2) denotes the
minimal distance between M1 and M2 in the grid Z2. Also, Si ⊕ r1 denotes the
set Si dilated by the distance r1 where r1 is the upper limit used in the minimum
contrast criterion (3.19).

Theorem 3.4. Apart from the model assumptions formulated above and (A1)–
(A11), suppose there exist δ > 0 and ν ∈ N, 0 < δ < ν, such that

(C1) λ0,4+2ν((u1, t1), . . . , (u4+2ν , t4+2ν)) <∞,

(D2) there exist h > 0 and d > 2 · 2+δ
δ

such that αFs,2,∞(m) = O(m−d).

Then

|Wn|1/2(ψ̂n − ψ∗)I33Σ̃
−1/2
n,33

d−→ N(0,1).

We remark that the reason for presenting the asymptotic normality results
as three separate theorems is that due to the different normalization required for
each estimation step we cannot prove joint asymptotic normality for the vector
(β̂n, ξ̂n, ψ̂n) using the current methodology. For details see the discussion at the
end of Section 3.2.3. However, this is not a serious issue if the estimates of
the individual parameters are not highly correlated (for example, for the models
considered in the simulation study in Section 3.1.5 the estimates of the clustering
parameters ξ and ψ are nearly independent – details not presented here).

Also note that the matrices Σn,11, Σ̃n,22 and Σ̃n,33 can be computed as discussed
in Sec. 3.2 and App. B of Waagepetersen and Guan (2009). A plug-in approach
can then be used in practice to estimate these matrices (together with In,11, I22
and I33) in order to construct confidence regions for the estimates.

Now we formulate sufficient conditions for the mixing properties required in
the asymptotic normality theorems above. They are formulated as conditions on
the tail behaviour of the smoothing kernel k. These are in general much easier to
verify than the mixing conditions themselves.

Lemma 3.5. Let X0 be a stationary shot-noise Cox process in R2 ×R with well-
defined first-order moment measure and smoothing kernel k(u, t) = k1(u)k2(t),
u ∈ R2, t ∈ R, satisfying

sup
(u,t)∈[−m

2
,m
2
]3

{∫
R3\[−m,m]3

k1(v − u)k2(s− t) d(v, s)

}
= O(m−d−3). (3.20)

Then X0 satisfies condition (B2).
If k2 satisfies

sup
s∈[−m

2
,m
2
]

{∫
R\[−m,m]

k2(s− τ) dτ

}
= O(m−d−1), (3.21)
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then X0,t satisfies condition (C2).
Also, if k1 satisfies

sup
u∈[−m

2
,m
2
]2

{∫
R2\[−m,m]2

k1(v − u) dv

}
= O(m−d−2), (3.22)

then X0,s satisfies condition (D2).

Proof. The proofs of the three parts of the statement follow the same arguments.
Hence, we give proof only for the last part concerning X0,s.

Recall that r1 is the upper limit in the minimum contrast criterion (3.19).
For a given h > 0 we define n = mh − h

2
− r1 for m ∈ N large enough so that

n > h
2
+ r1. We consider the sets E1 = C0,0 ⊕ r1 − (h/2, h/2), E2 = R2 \ [−n, n]2,

E3 = [−n/2, n/2]2. In this way the sets E1 and E2 are disjoint and the values of
random variables Z0,0 and Zi,j (for (i, j) being at distance at least m from (0, 0))
depend on points occuring in disjoint sets. Here Zi,j are values of a random
field Z, defined on the integer lattice Z2 and used in the proof of asymptotic
normality. For details, see the proof of Theorem 3.11.

Using the cluster representation of X0 we define two independent space-time
processes X1 and X2 as follows:

X1 =
∪

(r,v,s)∈Φ,v∈E3,s∈R

Xv,s, X2 = X \X1,

where Xv,s denotes the process of daughter points corresponding to the parent
point at location (v, s) ∈ R2 ×R. Let X1,s and X2,s denote the spatial projection
processes corresponding to X1 and X2, respectively, i.e.

X1,s =
{
u ∈ R2 : ∃ t ∈ T such that (u, t) ∈ X1

}
,

X2,s =
{
u ∈ R2 : ∃ t ∈ T such that (u, t) ∈ X2

}
.

Following the standard arguments like those in Waagepetersen and Guan
(2009, App. E) we get

α(FXs(E1),FXs(E2)) ≤ 5E |X1,s ∩ E2|+ 5E |X2,s ∩ E1|
=5E |X1 ∩ (E2 × T )|+ 5E |X2 ∩ (E1 × T )|

=5µV1|T |

(∫
E3

∫
E2

k1(u− v) du dv +

∫
R2\E3

∫
E1

k1(u− v) du dv

)

≤ const ·

(
n2 sup

v∈[−n/2,n/2]2

∫
R2\[−n,n]2

k1(u− v) du

+ (h+ 2r1)
2 sup
v∈E1

∫
R2\[−n/2,n/2]2

k1(u− v) du

)
.

As long as m is large enough so that E1 ⊂ [−n/4, n/4]2 we get from (3.22) that
both terms on the right-hand side are O(m−d). This implies (D2) for αFs,1,∞(m).

To check the required property for αFs,2,∞(m) we now need to consider the sets
E1 = (C0,0 ∪ Ci,j) ⊕ r1 − (h/2, h/2) for some (i, j) ∈ Z2, E2 = (R2 \ [−n, n]2) \
([−n, n]2 + (ih, jh)) and E3 = [−n/2, n/2]2 ∪ ([−n/2, n/2]2 + (ih, jh)). We define
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the processes X1 and X2 as before, but now using the new definition of E3.
Similarly as before and using stationarity of X0 we get

α(FXs(E1),FXs(E2)) ≤ const ·

(
n2 sup

v∈[−n/2,n/2]2

∫
R2\[−n,n]2

k1(u− v) du

+ (h+ 2r1)
2 sup
v∈(C0,0⊕r1−(h/2,h/2))

∫
R2\[−n/2,n/2]2

k1(u− v) du

)
.

Again, for m large enough so that (C0,0 ⊕ r1 − (h/2, h/2)) ⊂ [−n/4, n/4]2 we get
from (3.22) that both terms on the right-hand side are O(m−d). This implies
(D2) for αFs,2,∞(m) and finishes the proof.

Clearly, the inhomogeneous process X obtained by location-dependent thin-
ning from the stationary shot-noise Cox process X0 inherits the mixing properties
ofX0. This is because the dependence between any two regions cannot increase by
the location-dependent thinning which treats every point of the process indepen-
dently from the others. Hence, the condition (3.20) ensures that (B2) is fulfilled
also for the inhomogeneous process X, and similarly for the latter conditions and
the assumptions (C2) and (D2), respectively.

We remark here that in the paper Waagepetersen and Guan (2009) the mix-
ing condition used in their Theorem 1 (for a point process Y defined on R2) is
much stronger than our assumption (D2). Their assumption is formulated for the
mixing coefficient αYa,∞ of the point process Y rather than for the corresponding
random field:

αYp1,p2(m) = sup

{
α(FY (A),FY (B)) : |A| ≤ p1, |B| ≤ p2, d(A,B) ≥ m

}
,

where FY (A) denotes the σ-algebra generated by Y ∩ A, d(A,B) denotes the
Hausdorff distance between A and B and the supremum is taken over all Borel
subsets A,B of R2. The assumption used in Waagepetersen and Guan (2009) can
be formulated in our notation as follows:

(d2) there is a constant a > 8r21 such that αYa,∞(m) = O(m−d) for some d > 2· 2+δ
δ
.

When we take Y = X0,s the condition (d2) implies our assumption (D2).
However, it is unnecessarily strong and no simple conditions are available for
Poisson-Neyman-Scott processes or shot-noise Cox processes which would secure
fulfillment of (d2). The condition (3.22) is incorrectly claimed in Waagepetersen
and Guan (2009, App. E) to imply (d2). On the other hand, we have seen above
that it is sufficient for our assumption (D2).

Recall now the notation used in the proof of Lemma 3.5. The error in
Waagepetersen and Guan (2009, App. E) was in considering E1 = [−h, h]2 for
some h > 0 and further assuming that any Borel set A with fixed volume a fits
into such E1. However, for αYa,∞(m) to be of order O(m−d) a universal set E1

would be needed which would cover all Borel sets of volume ≤ a. Obviously, this
is not possible as the set A may be arbitrarily “thin” and so for any fixed square
E1 there will always be a set A which is not covered by E1. Therefore, the tail
condition (3.22) can only assure (D2) for the mixing coefficient of the random
field and not (d2) for the mixing coefficient of the point process.
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3.1.4 Comparison to a previously published method

In the paper of Møller and Ghorbani (2012) a method for estimation of the para-
meters of an inhomogeneous space-time shot-noise Cox process has been proposed
to analyze a particular data example. However, properties of the procedure have
not been investigated further. The method can be easily generalized from the
original context (essentially the Poisson cluster process as described here in Exam-
ple 1.15) to our more general setting of shot-noise Cox processes and used to
estimate the parameters of the model considered above. In particular, we adopt
the same assumptions on separability of the inhomogeneity function f and of the
kernel function k.

The approach of Møller and Ghorbani (2012) is based on specifically reweigh-
ted versions of the pair-correlation function. Functions g1 and g2 are defined
as

g1(u) =
1

|T |2

∫
T

∫
T

g(u, s− t) ds dt, g2(t) =
1

|W |2

∫
W

∫
W

g(u− v, t) du dv,

(3.23)

where u ∈ R2, t ∈ R, and g is the pair-correlation function (3.4). These are
not equivalent to the pair-correlation functions gs, gt but they resemble them by
having the property∫ ∫

h1(u, v)g1(u− v) du dv =
1

|T |2
E

̸=∑
(u,s),(v,t)∈X:s,t∈T

h1(u, v)

λ(u, s)λ(v, t)

for any non-negative Borel function h1 defined on R2 × R2, and∫ ∫
h2(s, t)g2(s− t) ds dt =

1

|W |2
E

̸=∑
(u,s),(v,t)∈X:u,v∈W

h2(s, t)

λ(u, s)λ(v, t)

for any non-negative Borel function h2 defined on R × R. The crutial difference
is in the reweighting by the values of λ(u, t) as opposed to λs(u) or λt(t), c.f. for
example gs which has a similar property∫ ∫

h1(u, v)gs(u− v) du dv =
1

|T |2
E

̸=∑
u,v∈Xs

h1(u, v)

λs(u)λs(v)

and accordingly for gt and λt.
Note that the inhomogeneity function f(u, t) does not appear neither in the

formula (3.4) nor in (3.23). This results in somewhat simpler form of g1, g2 for our
model compared to gs, gt which depend on the complicated constants Cs, Ct. On
the other hand, this makes the estimation of g1, g2 technically more complicated as
these cannot be estimated directly from the projection processes Xs, Xt. Values
of the space-time intensity function λ(u, t) in the points of the process X are
needed to estimate g1, g2 rather than the intensity functions of the projection
processes used to estimate gs, gt.

In the same way as in (3.10), functions resembling aK-function can be defined
as

KMG
1 (r) =

∫
∥u∥≤r

g1(u) du, KMG
2 (t) =

∫ t

−t
g2(s) ds. (3.24)
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3.1.5 Simulation study II.

To assess the performance of the estimation procedure introduced in Section 3.1.2
we apply it to realizations of inhomogeneous space-time gamma shot-noise Cox
process (see Example 1.17) with parameters µ and θ, observed on the unit cube
W ×T = [0, 1]2× [0, 1]. We choose the kernel function k(u, t) to be the product of
a spatial Gaussian kernel function k1 with standard deviation σ > 0 (probability
density function of a zero-mean bivariate radially symmetric normal distribution)
and a uniform temporal kernel function k2 on a bounded interval [0, t∗], i.e.

k2(t) =
1

t∗
I(0 ≤ t ≤ t∗), t ∈ R. (3.25)

The uniform temporal kernel was chosen because it has only a single parameter
which considerably affects the shape of the pair-correlation function g and the
K-function of the temporal projection process Xt. On the other hand, this choice
violates the assumption (A6) of Theorem 3.1 and hence the asymptotic results
from the Section 3.1.3 cannot be used for this model. An alternative choice might
be a one-sided triangular kernel on interval [0, t∗]. We consider the two-parametric
truncated exponential kernel used in Møller and Ghorbani (2012, Sec. 5.3), i.e.

k2(t) =
α

1− exp{−αt∗}
exp{−αt}I(0 ≤ t ≤ t∗), t ∈ R, α > 0, (3.26)

to be unreasonably complicated for datasets which include only a few points
in a cluster on average (recall that we observe only a realization of the point
process in question and not the underlying driving field Λ itself, i.e. only very
limited information about the shape of the kernel is available). While the range
parameter t∗ influences the shape of the K- or g-function of Xt for all the three
kernels in a similar way and can be identified from their non-parametric or semi-
parametric estimates (see Figure 3.1 for a detailed example with the uniform
kernel), the shape parameter α of the truncated exponential kernel has only very
small influence on the shape of the K- or g-function, as illustrated in Figure 3.2.

At first we generate realizations of a homogeneous version of the process (with
the intensity µ

θ
) and then apply the location dependent thinning as described in

Section 1.1. We use the inhomogeneity function f((u1, u2), t) proportional to
exp{β1u1 + β2u2 + β3t}, properly scaled to fulfill the condition maxW×T f = 1.
Here u1 and u2 are the spatial coordinates and t is the temporal coordinate of
the point (event) ((u1, u2), t). The intensity function of the thinned process is
therefore µ

θ
f((u1, u2), t).

The correspondence to the model parametrization stated above is the follow-
ing: βs = (β1, β2), βt = β3, ψ̃ = σ, ξ̃ = t∗, ψ0 =

Cs

µ
and ξ0 =

Ct

µ
.

In the first estimation step we use the Poisson log-likelihood score func-
tion (3.13) to estimate the parameters β1, β2 and β3 from the space-time pro-
cess X.

The clustering parameters σ and t∗ are estimated in the next steps by the
minimum contrast estimation. Parameter σ of the spatial kernel k1, together with
ψ0, is estimated using the pair-correlation function by minimizing the contrast
(3.15) with the value r0 chosen to be the minimal observed interpoint distance
in Xs (which is a standard choice in similar situations in the literature) and
r1 = 4σ. The value of 4σ corresponds to the practical range of interaction of the
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Figure 3.1: Graphs of theoretical characteristics of the gamma shot-noise Cox
process considered in Section 3.1.5, i.e. using uniform temporal smoothing kernel
(3.25). The corresponding parameter values are µ = 50, β1 = 0.5, β2 = −1, σ =
0.02. For details on model parametrization, see text. Note that other model
parameters – θ and β3 – do not affect gt or Kt in the case of gamma shot-noise
Cox process, see Equations (3.6), (3.8) and Section 1.3. The curves correspond to
the choice t∗ = 0.010 (solid line), t∗ = 0.015 (dashed line), t∗ = 0.20 (dot-dashed
line). Also, the curves corresponding to Poisson process are shown for comparison
(dotted line).

considered point processes since for |u| > 4σ we get from (3.7) that g(u) ∼ 1.
Using larger values of r1 would result in no further gain of information, only in
larger variability of the estimates caused by higher variability of ĝ(u) for values
with |u| > 4σ.

The variance stabilizing exponent c3 = 1/2 was chosen based on the results of
a smaller pilot study in which different versions of this estimator were examined.
This choice resulted in lower mean squared errors than the exponent c3 = 1/4.

Minimization of a slightly modified version of the contrast (3.14), i.e.∫ t1

t0

((K̂t(t)− 2t)1/4 − (Kt(t)− 2t)1/4)2 dt, (3.27)

is used to estimate the temporal clustering parameter t∗ together with ξ0. Note
that 2t is the value of the K-function for the (temporal) Poisson process and
thus we are using the contrast for the deviance between the K-function of the
clustered model and the benchmark value of 2t for the model of complete spatial
randomness. According to a smaller pilot study this contrast resulted in better
quality estimates compared to using (3.14).

For Xt the range of interaction is equal to t∗ – see (3.6). Thus the bounds
of the integration interval are chosen to be t0 = 0.05t∗ and t1 = 0.95t∗. This
choice is preferable to t0 = 0 and t1 = t∗ since it results in more stable estimates.
The results of the pilot study also implied the choice of the variance stabilizing
exponent c2 = 1/4, even though the corresponding estimator with c2 = 1/2
performed almost equally well.

At this point it is possible to compute estimates of Cs and Ct as these are
functions of the previously estimated parameters. Then, these values can be used
together with the estimates of ψ0 and ξ0 to estimate α = V2

µ(V1)2
in two different
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Figure 3.2: Graphs of theoretical characteristics of the gamma shot-noise Cox
process using truncated exponential temporal smoothing kernel (3.26). The cor-
responding parameter values are µ = 50, β1 = 0.5, β2 = −1, σ = 0.02, t∗ = 0.015.
For details on model parametrization, see text. Note that other model parameters
– θ and β3 – do not affect gt or Kt in the case of gamma shot-noise Cox process,
see Equations (3.6), (3.8) and Section 1.3. The curves correspond to the choice
α = 120 (solid line), α = 60 (dashed line), α = 30 (dot-dashed line). Also, the
curves corresponding to Poisson process are shown for comparison (dotted line).

ways. For the gamma shot-noise Cox process considered in this study α has
a particularly simple form: α = 1/µ.

Finally, estimates of the remaining parameters µ and θ are calculated using
Equation (3.16) and the estimate of α based on either ψ̂0 or ξ̂0. Hence µ̂ = 1/α̂
and

θ̂ =
µ̂
∫
W
f̂1(u) du

∫
T
f̂2(t) dt

X(W × T )
.

In the study it turned out that estimates of µ and θ based on the value of ψ̂0

are more stable in the sense of mean squared error. The estimates of Cs and Ct
are rather robust w.r.t. the estimated values of t̂∗ and σ̂, respectively, and the
factor most influencing the precision of α̂ is the precision of ψ̂0 and ξ̂0 themselves.
The value of ψ0 estimated from the spatial projection process Xs using (3.15)

proved to be more precise than its temporal counterpart ξ̂0. Thus, the estimates
of µ and θ based on the value of ψ̂0 are reported in the results of the study rather
than those based on ξ̂0 obtained from (3.27).

To study properties of the estimators under different cluster size distributions
we chose the values of µ and θ to be 50, 75 or 100 and 1/20, 1/30 or 1/40,
respectively. Different degree of clustering is obtained by taking the values of σ
either 0.01 or 0.02 and the values of t∗ 0.015 or 0.030. For the inhomogeneity
function we use the parameter values β1 = 0.5, β2 = −1 and β3 = 0.7. These
choices result in the mean number of points EX(W × T ) ranging from approx.
350 to 1430, depending on the particular combination of parameters.

For each combination of parameters we generated 500 independent realiza-
tions from our model and re-estimated the parameters. For simulations we used
the algorithm presented in Møller (2003, Sec. 4.1) for which edge effects and
truncation occur and may cause some points to be missing in the simulated (ap-
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true values rel. bias rel. MSE

µ θ t∗ σ µ̂ θ̂ t̂∗ σ̂ µ̂ θ̂ t̂∗ σ̂

50 1/20 0.015 0.01 0.169 0.104 -0.028 0.099 0.097 0.247 0.022 0.089
0.02 0.181 0.192 -0.033 -0.047 0.116 0.326 0.022 0.010

0.030 0.01 0.180 0.110 -0.047 0.094 0.103 0.285 0.036 0.080
0.02 0.155 0.215 -0.062 -0.042 0.100 0.365 0.042 0.011

50 1/40 0.015 0.01 0.150 0.119 -0.032 0.127 0.080 0.265 0.012 0.094
0.02 0.144 0.170 -0.031 -0.047 0.087 0.275 0.014 0.007

0.030 0.01 0.131 0.152 -0.062 0.103 0.065 0.281 0.028 0.079
0.02 0.154 0.159 -0.055 -0.042 0.094 0.281 0.025 0.007

100 1/20 0.015 0.01 0.089 0.107 -0.028 0.016 0.041 0.151 0.019 0.039
0.02 0.121 0.154 -0.035 -0.041 0.071 0.210 0.018 0.013

0.030 0.01 0.065 0.089 -0.063 0.023 0.038 0.147 0.038 0.042
0.02 0.138 0.205 -0.067 -0.052 0.078 0.240 0.038 0.013

100 1/40 0.015 0.01 0.081 0.087 -0.031 0.017 0.032 0.144 0.013 0.032
0.02 0.089 0.117 -0.024 -0.031 0.057 0.164 0.012 0.010

0.030 0.01 0.070 0.105 -0.046 0.036 0.029 0.128 0.029 0.040
0.02 0.124 0.126 -0.054 -0.041 0.060 0.154 0.027 0.010

Table 3.1: Relative biases and relative mean squared errors of the estimates of the
inhomogeneous space-time gamma shot-noise Cox process. Estimates obtained
using projection processes.

proximating) process X̃ compared to the (true) process X itself. For details see
Møller (2003). However, we have calculated the mean number of missing points
in one realization for the models considered in this study. We conclude that the
mean number of points missing due to edge effects and truncation is less than
0.052 for all combinations of parameter values. Hence, the error caused by ap-
proximating X by X̃ is negligible when compared to the mean number of points
in a single realization.

All the computations were performed in R, with the use of auxiliary functions
provided in the package spatstat, see Baddeley and Turner (2005).

Results

Table 3.1 shows relative mean biases of the estimators and relative mean squared
errors (MSEs). By relative we mean divided by the true value of the correspond-
ing parameter or by its square for the MSE. Note that only the results for the
extreme combinations of parameters µ and θ are reported since the performance
of the estimators showed consistent behaviour within the above described range
of parameter values.

The characteristics were obtained from the middle 95 % of the estimates from
500 replications. Neglecting the 5 % of the most extreme estimates was motivated
by the fact that in certain situations the estimation methods can be numerically
unstable. If such a situation was encountered in practice the estimates would be
easily identified as unrealistic and one would alter the parameters of the minimum
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contrast procedure or the underlying optimization method. However, due to the
extent of the computations involved, this was not possible in this simulation
study.

Table 3.1 indicates that all the estimators perform fairly well. It shows that
the precision of µ̂, in terms of the relative mean squared error, improves with the
increasing mean number of points of X (implied by higher values of µ/θ) and so
does its relative bias in most of the cases.

The estimates of θ depend linearily on µ̂ but their precision is negatively
influenced by their dependence on the actual number of points in X ∩ (W × T ).
This results in higher variability of the estimates and, accordingly, higher rel.
MSE of θ̂. The positive bias of µ̂ naturally leads to the positive bias of θ̂.

Parameter t∗ is the only parameter systematically underestimated in the si-
mulation study. Moreover, it is apparent that the parameter t∗ is better estimated
on the smaller scale, i.e. when the true value of the parameter is t∗ = 0.015. The
obvious explanation is the problem of overlapping of spatially disjoint clusters
from the original process X in the projected process Xt. When t∗ is too large
many disjoint clusters from X appear to be one large cluster in Xt and the
efficiency of the estimator decreases. Also, the estimates are slightly less variable
for the combinations of parameters with lower θ, i.e. when the realizations are
dominated by few separated clusters with high number of points, as opposed to
the situations with less variable cluster size distribution corresponding to the
higher values of θ. Cluster overlapping plays more important role in the latter
case.

The estimates of σ exhibit lower rel. MSE for σ = 0.02 than for 0.01. More-
over, small positive bias is observed for σ = 0.01 and small negative bias for
σ = 0.02.

As a conclusion, the clustering parameters σ and t∗ are estimated fairly well
by the proposed method using projection processes. The parameters µ and θ
describing the distribution of the cluster sizes are more difficult to estimate.
Nevertheless, they can still be reasonably estimated by the proposed method.

Results – alternative method

For the combinations of parameters reported in detail in Table 3.1 we performed
the estimation using the alternative method of Møller and Ghorbani (2012) de-
scribed in Section 3.1.4. The same realizations of the process X as above were
used. Thus, the results are directly comparable.

Based on the results of a pilot study we chose to estimate the spatial clustering
parameters by minimizing (3.15) with gs replaced by KMG

1 , q = 1/4, r1 = 4σ and
r0 equal to the minimum observed interpoint distance in X. We use KMG

1 for the
estimation rather than g1 because K

MG
1 was used in the original paper by Møller

and Ghorbani (2012). As in the previous section the modified contrast (3.15) is
minimized w.r.t. the parameters σ and ψ′

0 which is a function of µ, t∗, V1, V2 and
|T |.

Similarly, based on the results of a pilot study, we chose to estimate the
temporal clustering parameters by minimizing (3.27) with Kt replaced by K2

and t0 = 0.05t∗, t1 = 0.95t∗. This choices resulted in the lowest values of the
mean squared error among all considered alternatives. Again, the modified con-
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true values rel. bias rel. MSE

µ θ t∗ σ µ̂ θ̂ t̂∗ σ̂ µ̂ θ̂ t̂∗ σ̂

50 1/20 0.015 0.01 0.078 0.012 -0.019 -0.002 0.066 0.237 0.029 0.007
0.02 0.122 0.083 -0.023 -0.001 0.134 0.346 0.029 0.012

0.030 0.01 0.093 0.049 -0.014 0.005 0.067 0.254 0.060 0.006
0.02 0.109 0.108 -0.031 -0.005 0.120 0.369 0.055 0.013

50 1/40 0.015 0.01 0.085 0.078 -0.024 -0.005 0.055 0.245 0.015 0.002
0.02 0.096 0.064 -0.024 0.020 0.110 0.308 0.017 0.184

0.030 0.01 0.090 0.084 -0.043 -0.004 0.053 0.273 0.035 0.003
0.02 0.111 0.046 -0.023 0.014 0.118 0.311 0.035 0.183

100 1/20 0.015 0.01 0.055 0.023 -0.021 0.159 0.054 0.179 0.025 1.66
0.02 0.082 0.045 -0.017 0.086 0.100 0.251 0.023 0.957

0.030 0.01 0.036 -0.001 -0.037 0.114 0.049 0.185 0.056 1.12
0.02 0.098 0.102 -0.047 0.155 0.119 0.288 0.050 2.03

100 1/40 0.015 0.01 0.054 0.023 -0.022 0.081 0.043 0.184 0.016 0.741
0.02 0.093 0.048 -0.026 0.036 0.085 0.216 0.016 0.458

0.030 0.01 0.053 0.039 -0.021 0.019 0.035 0.172 0.038 0.110
0.02 0.113 0.045 -0.031 0.030 0.087 0.202 0.032 0.499

Table 3.2: Relative biases and relative mean squared errors of the estimates of the
inhomogeneous space-time gamma shot-noise Cox process. Estimates obtained
using the method of Møller and Ghorbani (2012).

trast (3.27) is minimized w.r.t. the parameters t∗ and ξ′0 which is a function of
µ, σ, V1, V2 and |W |.

Now it is possible to estimate α = V2
µ(V1)2

using either ψ̂′
0 or ξ̂

′
0 and estimate the

remaining parameters µ and θ as in Section 3.1.5. Again, estimates of µ and θ
based on ψ̂′

0 were more stable than those based on ξ̂′0 due to the better precision

of ψ̂′
0. Thus, only the characteristics of the estimates based on ψ̂′

0 are reported
here.

Table 3.2 summarizes the estimated characteristics of the alternative estima-
tors, again calculated from the middle 95 % of the estimates from 500 replications.
The behaviour of µ̂, θ̂ and t∗ in this case follows the same trends as described for
the corresponding estimators in the simulation study in Section 3.1.5. But there
is one striking difference – very strong dependence of the quality of the estimate
of σ on the total intensity of the point pattern. Namely for µ = 100 the estimate
of σ performs badly, its variability is much larger than for the method using pro-
jection processes. For µ = 50 the estimate of σ performes well, especially for the
tight clusters (i.e. true σ = 0.01) σ̂ is very efficient.

The case µ = 50 and σ = 0.01 is the only case when the alternative method
performes better than the method using projection processes for the estimation
of σ and consequently (recall that ψ′

0 is used to obtain µ̂ and θ̂) also for the
estimation of µ and θ.

Concerning the estimates t̂∗ from Table 3.2, they are also negatively biased.
Their bias is somewhat smaller than for the estimates using projection processes.
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However, according to the rel. MSE, our method using projection processes pro-
vides better estimates of t∗ uniformly for all combinations of the true parameter
values.

In conclusion we can say that using the reweighted versions of the spatial
and temporal pair-correlation functions seem to increase the variability of the
estimates of the corresponding K-functions used for the estimation and conse-
quently also the MSE of the parameter estimates. The only exception is the case
with smaller number of very tight clusters in Xs (i.e. µ = 50 and σ = 0.01).

Problem of information loss

By using only the projection processes for estimation the amount of information
we get from the data is reduced. We loose efficiency because of the overlapping in
the projection process of originally distinct clusters. Specifically, pairs of points
which in the space-time could be far apart may get very close in one or the
other projection process and we get extra noise when investigating the clustering
features of the projection processes.

This problem gets more prominent with higher number of relatively loose
clusters and with larger dimension reduction, that is, when using the temporal
projection process Xt. We have seen this phenomenon in the estimation of the
constant α – using ψ̂0 resulting from minimum contrast estimation forXs provided
better quality estimates than using ξ̂0 resulting from minimum contrast estima-
tion for Xt. Also, increasing the intensity results in more pronounced cluster
overlapping, both for the space-time process X and for the projection processes.

On the other hand, for models with tight clusters or for models in which
the realizations are dominated by a small number of clusters with high number
of points the cluster overlapping is a less serious issue. Also, when constructing
the spatial projection process Xs we disregard only the temporal coordinate (one-
dimensional information) and hence the cluster overlapping is less prominent than
for Xt, or may not occur at all.

If the overlapping in the projection processes is too strong the parameter
estimates resulting from the suggested procedure will not be good (particularly
the estimates of the parameters of the temporal kernel function) and a different
method must be used. Such a method is described in the following section.

3.2 Refined method

This section presents unpublished work of the author and his supervisor. The
estimator proposed below remedies the main flaw of the method using projection
processes, i.e. the projection to the temporal domain is avoided and hence cluster
overlapping is not a serious issue anymore. The method is based on estimation of
the space-time K-function K(R, t) with a fixed spatial range R > 0 as a function
of a single argument and using it in a minimum contrast method to estimate the
parameters of the temporal part of the model. In this way, only spatially close
pairs of points, likely to belong to the same cluster, are counted when estimating
K(R, t) non-parametricaly (recall that when estimating the K-function Kt of
the temporal projection process Xt all observed pairs of points within specified
temporal lag are counted, no matter what their spatial distance is).
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With the aim to discuss asymptotic properties of the proposed estimator we
recall the basic groundwork and introduce the necessary notation. For ease of
exposition we focus on space-time processes in R2×R, i.e. the most common type
of space-time point processes considered in practice. In the following we quickly
recall the considered model and notation (most of which was already used in
Section 3.1).

Let X0 be a stationary shot-noise Cox point process on R2 × R driven by
a random field

Λ(u, t) =
∑

(v,s,r)∈Φ

r k(v − u, t− s), (u, t) ∈ R2 × R,

where Φ is a Poisson measure on R2 ×R×R+ with intensity measure U and k is
a probability kernel, i.e.

∫
R2×R k(w, τ) dw dτ = 1.

To ensure stationarity of X0 we assume that U(d(r, v, s)) = µV (dr) d(v, s),
where µ > 0 is a constant and V (dr) is an arbitrary measure on R+ satisfying
the integrability assumption

∫
R+ min(1, r)V (dr) <∞, cf. also formula (1.7).

We recall the notation V1 =
∫
R+ r V (dr) and V2 =

∫
R+ r

2 V (dr). Then the
intensity λ0 and the pair-correlation function g0((u, t), (v, s)) = g0(v−u, s− t) of
the stationary process X0 are (see the formulae in Section 1.3)

λ0 = µV1,

g0(v − u, s− t) = 1 +
V2

µ (V1)2

∫
R2×R

∫
R2×R

k(w − u, τ − t)k(w − v, τ − s) dw dτ.

We further denote λ0,k the k-th order intensity function of X0 and similarly we
denote λ0,s,k the k-th order intensity function of the spatial projection X0,s of X0.
Throughout this section we assume that λ0,2 exists and is bounded so that the
pair-correlation function of X0 is properly defined.

Now let X be the inhomogeneous space-time shot-noise Cox point process ob-
tained from X0 by location-dependent thinning using an inhomogeneity function
f(u, t), scaled such that

max
(u,t)∈R2×R

f(u, t) = 1. (3.28)

Hence, X has the SOIRS property (see Definition 1.9) and the intensity function λ
and the pair-correlation function g of X are

λ(u, t) = µV1 f(u, t),

g(v − u, s− t) = 1 +
V2

µ (V1)2

∫
R2×R

k(w − u, τ − t)k(w − v, τ − s) dw dτ.

As before, we denote by λs,k the k-th order intensity function of the spatial
projection Xs of X.

Space-time separability of the inhomogeneity function is required so that the
moment characteristics of the projection process Xs have a tractable form, see
Section 3.1. The assumption takes on the form

f(u, t) = f1(u)f2(t), u ∈ R2, t ∈ R. (3.29)
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In connection with Equation (3.28) this means that

max
u∈R2

f1(u) = 1, max
t∈R

f2(t) = 1.

Moreover, we require the space-time separability of the smoothing kernel, i.e.

k(w, τ) = k1(w)k2(τ) u ∈ R2, t ∈ R, (3.30)

which ensures the special structure of the second-order moment characteristics of
the process X. In the following we also take advantage of the notation

K1(v − u) =

∫
R2

k1(u− w)k1(v − w) dw,

K2(s− t) =

∫
R
k2(t− τ)k2(s− τ) dτ.

The pair-correlation function g of X takes on the form

g(v − u, s− t) = 1 +
V2

µ (V1)2
K1(v − u)K2(s− t).

and the space-time K-function with the fixed spatial range R > 0 is

K(R, t) = 2πR2t+
V2

µ (V1)2

∫
∥u∥<R

K1(u) du

∫
|s|<t

K2(s) ds.

The K-function of the spatial projection process Xs can be written as

Ks(r) = πr2 + Cs
V2

µ (V1)2

∫
∥u∥<r

K1(u) du,

where Cs is defined in (3.9).

3.2.1 Model parametrization

Suppose that the underlying Poisson measure Φ has the intensity measure of the
form µV (dr) d(v, s), where µ > 0 is a scalar parameter and the measure V is
parametrized by the (scalar) parameter θ.

We assume a particular form of the inhomogeneity function f , see also the
assumption (3.29):

f(u, t; βs, βt) = f1(z1(u)β
T
s ) f2(z2(t)β

T
t ), (3.31)

where z1(u) and z2(t) are vectors of spatial and temporal covariates, respective-
ly, and, with a slight abuse of notation, f1, f2 are positive, strictly increasing
functions. The vectors βs, βt denote the unknown inhomogeneity parameters.

We further set β0 = log (µV1). Then the intensity function λ of X is para-
metrized by the vector β = (β0, βs, βt).

Let the spatial smoothing kernel k1 (and hence K1) be parametrized by a vec-

tor of parameters ψ̃ and similarly the temporal smoothing kernel k2 (and hence

K2) be parametrized by the vector ξ̃. Now we set

ψ0 =Cs
V2

µ (V1)2
,

ξ0 =
V2

µ (V1)2

∫
∥u∥<R

K1(u; ψ̃) du,
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and ψ = (ψ0, ψ̃) and similarly ξ = (ξ0, ξ̃). Henceforth

Ks(r;ψ) =πr
2 + ψ0

∫
∥u∥<r

K1(u; ψ̃) du,

K(R, t; ξ) =2πR2t+ ξ0

∫
|s|<t

K2(s; ξ̃) ds.

In the following we prefer writing simply K(t; ξ) instead of K(R, t; ξ) as this can
cause no confusion to the reader.

Below we also use the following notation: λ(1) and λ(2) are the first and
second-order derivatives of the intensity function of X w.r.t. the parameter β;
K(1)(t; ξ), K(2)(t; ξ) are the first and second-order derivatives of K(t; ξ) w.r.t. ξ;

K
(1)
s (r;ψ), K

(2)
s (r;ψ) are the first and second-order derivatives ofKs(r;ψ) w.r.t. ψ

(assuming that the appropriate derivatives exist).
Finally, we denote by β∗, ξ∗, ψ∗, µ∗ and θ∗ the “true” parameter values govern-

ing the distribution of the process X.

3.2.2 Step-wise estimation procedure

Assume that the data available is observed in a compact space-time observation
window of the form W × T .

The parameter estimates β̂, ξ̂ and ψ̂ are obtained by solving the estimating
equation

U(β, ξ, ψ) = (U1(β), U2(β, ξ), U3(β, ψ)) = 0,

where the estimating functions U1, U2 and U3 are defined in the following para-
graphs.

The parameters µ and θ of the underlying Poisson measure are estimated from
the previously estimated values of β̂0, ξ̂0 and ψ̂0 and the total number of points
in the observation window, see Section 3.1.2.

First step We estimate the parameter β of the intensity function λ of X in
the same way as in Section 3.1, i.e. by means of the Poisson likelihood score
estimating function (Waagepetersen and Guan, 2009). The estimate β̂ is thus
obtained by solving the estimating equation

U1(β) =
∑

(u,t)∈X∩(W×T )

λ(1)(u, t; β)

λ(u, t; β)
−
∫
W×T

λ(1)(v, s; β) dv ds = 0. (3.32)

We remark here that the estimating equation is the same as in the method using
projection processes, see Equation (3.17).

Note that in order to obtain the formula above it is necessary to change the
order of integration and differentiation. However, here and in what follows it is
always possible under the assumptions of the theorems below (in the second and
third step and also in the proofs below). We omit this remark hereafter.

We also remark here that as far as estimation of βs and βt is concerned, it does
not matter whether they are estimated together using (3.32) or separately using
estimating functions corresponding to the Poisson likelihood for the projected
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processes Xs and Xt. The respective estimating functions are identical. However,
estimation of β0 is slightly more complicated when using the projection processes.
The following equation can be utilized in that case:

λ(u, τ ; β) =
λs(u; β)λt(τ ; β)∫

W×T λ(u
′, τ ′; β) dv′ dτ ′

,

where the denominator is estimated by X(W × T ). This, together with the

estimates β̂s and β̂t obtained from the projected processes, allows estimation
of β0.

Second step Conditionally on β = β̂, we estimate the parameter ξ of K, the
K-function of the space-time process X, by minimizing the discrepancy

m2,β(ξ) =

∫ t1

t0

[
K̂(t; β)c2 −K(t; ξ)c2

]2
dt, (3.33)

where 0 ≤ t0 < t1 and c2 are given constants and K̂(·; β) is the empirical estimate
of K (unbiased due to the edge-correction factor):

K̂(t; β) =

̸=∑
(u,s),(v,τ)∈X∩(W×T )

I {∥u− v∥ < R} I {|s− τ | < t}
λ(u, s; β)λ(v, τ ; β)|W ∩Wu−v| |T ∩ Ts−τ |

,

where Wu−v denotes the set W shifted by the vector u − v and similarly for
Ts−τ . We choose here the translation edge-correction because it is convenient for
the discussion on the asymptotic properties below. Note that also other edge-
correction factors can be used (Gabriel, 2014).

The estimate ξ̂ is thus obtained by solving the estimating equation U2(β̂, ξ) = 0,
where

U2(β, ξ) =− |W × T |∂m2,β(ξ)

∂ξ

=2c2|W × T |
∫ t1

t0

[
K̂(t; β)c2 −K(t; ξ)c2

]
K(t; ξ)c2−1K(1)(t; ξ) dt,

assuming that K is a differentiable function of ξ.

Third step Conditionally on β = β̂, we estimate the parameter ψ of Ks, the
K-function of the spatial projection process, by minimizing the discrepancy

m3,β(ψ) =

∫ r1

r0

[
K̂s(r; β)

c3 −Ks(r;ψ)
c3
]2

dr, (3.34)

where 0 ≤ r0 < r1 and c3 are given constants and K̂s(·; β) is the empirical estimate
of Ks (unbiased due to the translation edge-correction factor):

K̂s(r; β) =

̸=∑
u,v∈Xs∩W

I {∥u− v∥ < r}
λs(u; β)λs(v; β)|W ∩Wu−v|

.
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The estimate ψ̂ is thus obtained by solving the estimating equation U3(β̂, ψ) = 0,
where

U3(β, ψ) =− |W |∂m3,β(ψ)

∂ψ

=2c3|W |
∫ r1

r0

[
K̂s(r; β)

c3 −Ks(r;ψ)
c3
]
Ks(r;ψ)

c3−1K(1)
s (r;ψ) dr,

assuming that Ks is a differentiable function of ψ.

3.2.3 Asymptotic properties

The approach used in the following is inspired by the paper Waagepetersen and
Guan (2009).

When discussing asymptotic properties of the estimators proposed above, we
consider in the following the increasing window asymptotics. Namely, we consider
an increasing sequence of compact observation windowsWn×Tn, n ≥ 1, such that
Wn × Tn ↗ R2 × R. A particular example might be

Wn = [an, bn]× [cn, dn], Tn = [en, fn],

where a < 0 < b, c < 0 < d and e < 0 < f are fixed constants. The important
property of the sequence of observation windows necessary in the following is
that, for any h ∈ R2 and k ∈ R,

lim
n→∞

|Wn × Tn|
|(Wn ∩Wn,h)× (Tn ∩ Tn,k)|

= 1,

where Wn,h denotes the set Wn shifted by the vector h ∈ R2, and similarly for
Tn,k.

Let (β̂n, ξ̂n, ψ̂n) be the estimated parameter values calculated from Wn × Tn,
i.e. the solution of the equation Un(β, ξ, ψ) = (Un,1(β), Un,2(β, ξ), Un,3(β, ψ)) = 0,
where

Un,1(β) =
∑

(u,t)∈X∩(Wn×Tn)

λ(1)(u, t; β)

λ(u, t; β)
−
∫
Wn×Tn

λ(1)(v, s; β) dv ds,

Un,2(β, ξ) =2c2|Wn × Tn|
∫ t1

t0

[
K̂n(t; β)

c2 −K(t; ξ)c2
]
K(t; ξ)c2−1K(1)(t; ξ) dt,

Un,3(β, ψ) =2c3|Wn|
∫ r1

r0

[
K̂s,n(r; β)

c3 −Ks(r;ψ)
c3
]
Ks(r;ψ)

c3−1K(1)
s (r;ψ) dr,

where K̂n and K̂s,n are the semi-parametric estimates of K and Ks, calculated
using X ∩ (Wn × Tn) and Xs ∩Wn, respectively.

Note that we use the same spatial projection process Xs (projected from the
fixed time interval T ) to define Un,3 for all n ≥ 1. If we used Tn to define projection

processes X
(n)
s , the resulting asymptotic regime for Un,3 would be a combination

of the increasing window asymptotics and the infill asymptotics, i.e. the intensity
function of X

(n)
s (at any location) would be increasing, unbounded function of n.

Also, the constant C
(n)
s → 0 as Tn ↗ R (at least for f2 bounded away from 0,

which will be assured in the following by the assumption of bounded covariates),
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see Equation (3.9). Hence the pair-correlation function ofX
(n)
s is constant 1 in the

limit and the influence of the parameter ψ is lost – X
(n)
s cannot be distinguished

(in the limit) from the Poisson process using second-order moment properties
only. As a result, if we want to use the spatial projection process for estimation
of ψ we need to fix the time interval T used for the projection.

Different normalization of Un,2 and Un,3 makes the formulas in the following
somewhat complicated but it is needed to keep variances of the respective terms
controlled.

Following Waagepetersen and Guan (2009) we approximate Un,2(β
∗, ξ∗) and

Un,3(β
∗, ψ∗) by

Ũn,2(β
∗, ξ∗) = 2c22|Wn × Tn|

∫ t1

t0

[
K̂n(t; β

∗)−K(t; ξ∗)
]
K(t; ξ∗)2c2−2K(1)(t; ξ∗) dt,

Ũn,3(β
∗, ψ∗) = 2c23|Wn|

∫ r1

r0

[
K̂s,n(r; β

∗)−Ks(r;ψ
∗)
]
Ks(r;ψ

∗)2c3−2K(1)
s (r;ψ∗) dr.

For Ũn,2 this is simply a Taylor series expansion of
[
K̂n(t; β)

c2 −K(t; ξ)c2
]
. To

see this, consider the Taylor expansion of the function h(x) = xc2 , i.e.

h(a)− h(b) = h(1)(u)(a− b),

where h(1) is the derivative of h and u lies between a and b. Now we rearrange
the terms as follows:

h(a)− h(b) = h(1)(b)(a− b) + (a− b)
(
h(1)(u)− h(1)(b)

)
,

and approximate h(a)− h(b) ≈ h(1)(b)(a− b). Finally, we take a = K̂n(t; β
∗) and

b = K(t; ξ∗). We will show later that

|Wn × Tn|−1/2
(
Un,2(β

∗, ξ∗)− Ũn,2(β
∗, ξ∗)

)
→ 0

in probability as n → ∞ and hence the error of approximation is negligible in
the respective calculations. The situation is similar for Ũn,3 (details omitted).

From the mathematical point of view Ũn,2(β
∗, ξ∗) is easier to handle than

Un,2(β
∗, ξ∗) since we avoid the exponent c2 for K̂n(t; β

∗) (Waagepetersen and

Guan, 2009), and similarly for Ũn,3(β
∗, ψ∗).

Before we formulate the first theorem we further define

Σ̃n = |Wn × Tn|−1 Var
(
Un,1(β

∗), Ũn,2(β
∗, ξ∗)

)
=

(
Σ̃n,11 Σ̃n,12

Σ̃T
n,12 Σ̃n,22

)
,

Σ̃n,33 = |Wn|−1 Var
(
Ũn,3(β

∗, ψ∗)
)
,

Jn(β, ξ, ψ) = − ∂

∂(β, ξ, ψ)T
Un(β, ξ, ψ)

= −

 ∂
∂βT Un,1(β)

∂
∂βT Un,2(β, ξ)

∂
∂βT Un,3(β, ψ)

0 ∂
∂ξT

Un,2(β, ξ) 0

0 0 ∂
∂ψT Un,3(β, ψ)


=

Jn,11(β) Jn,12(β, ξ) Jn,13(β, ψ)
0 Jn,22(β, ξ) 0
0 0 Jn,33(β, ψ)


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and

In =

(
In,11 In,12
0 I22

)
,

In,11 =
1

|Wn × Tn|

∫
Wn×Tn

λ(1)(v, s; β∗)Tλ(1)(v, s; β∗)

λ(v, s; β∗)
dv ds,

In,12 = −2c22

∫ t1

t0

Hn,2(t; β
∗)K(t; ξ∗)2c2−2K(1)(t; ξ∗) dt,

In,13 = −2c23

∫ r1

r0

Hn,3(r; β
∗)Ks(r;ψ

∗)2c3−2K(1)
s (r;ψ∗) dr,

I22 = 2c22

∫ t1

t0

K(t; ξ∗)2c2−2K(1)(t; ξ∗)TK(1)(t; ξ∗) dt,

I33 = 2c23

∫ r1

r0

Ks(r;ψ
∗)2c3−2K(1)

s (r;ψ∗)TK(1)
s (r;ψ∗) dr,

where

Hn,2(t; β
∗) =E

∂

∂βT
K̂n(t; β)|β=β∗

=− 2

∫
Wn×Tn

∫
Wn×Tn

I {∥u− v∥ < R} I {|s− τ | < t}
|Wn ∩Wn,u−v| · |Tn ∩ Tn,s−τ |

·

· λ
(1)(u, s; β∗)

λ(u, s; β∗)
g(u− v, s− τ ; ξ∗, ψ∗) du ds dv dτ,

Hn,3(r; β
∗) =E

∂

∂βT
K̂s,n(r; β)|β=β∗

=− 2

∫
Wn

∫
Wn

I {∥u− v∥ < r}
|Wn ∩Wn,u−v|

λ
(1)
s (u; β∗)

λs(u; β∗)
gs(u− v;ψ∗) du dv.

Consistency theorem

We can now formulate the consistency theorem, inspired by Waagepetersen and
Guan (2009). Note that the numbering of the respective assumptions follows the
numbering used in Section 3.1.3. Also, (A6’) denotes an altered version of the
assumption (A6) from Section 3.1.3 and the assumption (A12) replaces (A10)
from Section 3.1.3.

Theorem 3.6. Apart from the model assumptions formulated above, let the fol-
lowing conditions be met:

(A1) the inhomogeneity function f is twice continuously differentiable as a func-
tion of β,

(A2) ∃C1 <∞ such that ∥z1(u)∥ < C1, ∥z2(t)∥ < C1, u ∈ R2, t ∈ R,

(A3) I22 and I33 are positive definite matrices and lim inf ωn,11 > 0, where ωn,11
is the smallest eigenvalue of In,11,

(A4) Σ̃n,22 and Σ̃n,33 converge to positive definite matrices Σ̃22 and Σ̃33, respec-
tively,
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(A5) λ(2)(u, t; β), λ
(1)(u,t;β)
λ(u,t;β)

, λ
(2)(u,t;β)
λ(u,t;β)

are bounded, continuous functions of (u, t, β),

(A6’) K(t; ξ), K(1)(t; ξ), K(2)(t; ξ) exist and are continuous functions of (t, ξ),

(A7) Ks(r;ψ), K
(1)
s (r;ψ), K

(2)
s (r;ψ) exist and are continuous functions of (r, ψ),

(A8) t0 ≥ 0 for c2 ≥ 2, otherwise t0 > 0; similarly, r0 ≥ 0 for c3 ≥ 2, otherwise
r0 > 0,

(A9) λ0,2 and λ0,3 exist and are bounded and the second-order reduced factorial
cumulant measure of X0 has finite total variation,

(A11) ∃C3 <∞ such that for all u1, u2 ∈ R2:∫
R2

|λ0,s,4(0, u1, v, u2 + v)− λ0,s,2(0, u1)λ0,s,2(0, u2)| dv < C3,

(A12) ∃C4 <∞ such that for all (u1, t1), (u2, t2) ∈ R2 × R:∫
R2×R

|λ0,4((0, 0), (u1, t1), (v, s), (u2 + v, t2 + s))

− λ0,2((0, 0), (u1, t1))λ0,2((0, 0), (u2, t2))| d(v, s) < C4.

Then there is a sequence
{
(β̂n, ξ̂n, ψ̂n)

}
n≥1

for which

Un(β̂n, ξ̂n, ψ̂n) = 0

with probability tending to 1 and the vector

Ln =


|Wn × Tn|1/2(β̂n − β∗)

|Wn × Tn|1/2(ξ̂n − ξ∗)

|Wn|1/2(ψ̂n − ψ∗)


is bounded in probability, i.e. ∀ε > 0 ∃δ > 0 : P(∥Ln∥ > δ) ≤ ϵ for n sufficiently
large.

The theorem establishes existence of a consistent sequence {(β̂n, ξ̂n, ψ̂n)}n≥1

such that (β̂n, ξ̂n, ψ̂n) corresponds to a root of the estimating function Un(β, ξ, ψ)
with probability tending to 1 (this also means that the estimating function actu-
ally has at least one root with probability tending to 1). If Un has precisely one

root for each n, we can find the consistent sequence {(β̂n, ξ̂n, ψ̂n)}n≥1 simply by
finding the roots.

For a discussion on the assumtions of the theorem see Section 3.1.3.
The proof of the theorem is based on the general asymptotic result presented

in Waagepetersen and Guan (2009, App. C) and attributed to unpublished lecture
notes by Professor Jens L. Jensen, Aarhus University, Denmark. We give here the
statement of the result in the following lemma. For the proof see Waagepetersen
and Guan (2009, App. C).

Consider a parametrized family of probability measures Pθ, θ ∈ Rp, and a se-
quence of estimating functions un : Rp → Rp, n ≥ 1. The distribution of
{un(θ)}n≥1 is governed by P = Pθ∗ , where θ∗ denotes the “true” parameter value.

For a matrix A = (aij), ∥A∥M = maxij |aij| and we let Jn(θ) = −∂un(θ)/∂θT .
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Lemma 3.7. Assume that there is a sequence of invertible symmetric matrices Vn
such that

(a) ∥V −1
n ∥M → 0,

(b) there exists l > 0 such that P(ln < l) → 0 where

ln = inf
∥ϕ∥=1

{
ϕV −1

n Jn(θ
∗)V −1

n ϕT
}
,

(c) for any d > 0,

sup
∥(θ−θ∗)Vn∥≤d

[
∥V −1

n {Jn(θ)− Jn(θ
∗)}V −1

n ∥M
]
= γnd → 0

in probability under P = Pθ∗,

(d) the sequence un(θ
∗)V −1

n is bounded in probability, i.e. for each ε > 0 there
exists d such that P (∥un(θ∗)V −1

n ∥ > d) ≤ ε for n sufficiently large.

Then for each ε > 0 there exists d > 0 such that

P
(
∃θ̃n : un(θ̃n) = 0 and ∥(θ̃n − θ∗)Vn∥ < d

)
> 1− ε

whenever n is sufficiently large.

Proof of Theorem 3.6

To prove Theorem 3.6 we apply Lemma 3.7 sequentially as follows. First, we
apply it to un = Un,1 with Vn = |Wn × Tn|1/2 · 1, where 1 is the identity matrix

of appropriate dimension. It follows that there is a sequence {β̂n}n≥1 such that

|Wn×Tn|1/2∥β̂n−β∗∥ is bounded in probability and Un,1(β̂n) = 0 with probability

tending to 1. This also implies β̂n → 0 in probability as n→ ∞.
Next, we use Lemma 3.7 on un(·) = Un,2(β̂n, ·) with Vn = (|Wn×Tn|Σ̃n,22)

1/2 to

show that there is a sequence {ξ̂n}n≥1 such that Un,2(β̂n, ξ̂n) = 0 with probability

tending to 1 and |Wn × Tn|1/2∥ξ̂n − ξ∗∥ is bounded in probability (recall that by

assumption (A4) Σ̃
1/2
n,22 converges to a positive definite matrix Σ̃

1/2
22 and hence it

does not influence the boundedness in probability of |Wn×Tn|1/2∥ξ̂n− ξ∗∥Σ̃1/2
n,22).

The difficult part in using this lemma is to show boundedness in probability of
|Wn×Tn|−1/2Un,2(β̂n, ξ

∗)Σ̃
−1/2
n,22 in condition (d). To do this we use a Taylor series

expansion

|Wn × Tn|−1/2Un,2(β̂n, ξ
∗)Σ̃

−1/2
n,22 =|Wn × Tn|−1/2Un,2(β

∗, ξ∗)Σ̃
−1/2
n,22 (3.35)

− |Wn × Tn|−1/2(β̂n − β∗)Jn,12(β̃, ξ
∗)Σ̃

−1/2
n,22 ,

where ∥β̃ − β∗∥ ≤ ∥β̂n − β∗∥. In this way we can show boundedness in proba-
bility of the two terms on the right-hand side which are easier to handle than
|Wn × Tn|−1/2Un,2(β̂n, ξ

∗)Σ̃
−1/2
n,22 . In the first term on the right-hand side only the

true parameter values appear and in the second term, the behaviour of |Wn ×
Tn|1/2(β̂n − β∗) is controlled thanks to the result obtained above.
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Finally, we use Lemma 3.7 in a similar way on un(·) = Un,3(β̂n, ·) with Vn =

(|Wn|Σ̃n,33)
1/2 to show that there is a sequence {ψ̂n}n≥1 such that |Wn|1/2∥ψ̂n−ψ∗∥

is bounded in probability and Un,3(β̂n, ψ̂n) = 0 with probability tending to 1. To
verify the condition (d) of the lemma we use a Taylor series expansion

|Wn|−1/2Un,3(β̂n, ψ
∗)Σ̃

−1/2
n,33 =|Wn|−1/2Un,3(β

∗, ψ∗)Σ̃
−1/2
n,33

− |Wn|−1/2(β̂n − β∗)Jn,13(β̃, ψ
∗)Σ̃

−1/2
n,33 ,

where ∥β̃ − β∗∥ ≤ ∥β̂n − β∗∥. In this way we can show boundedness in proba-
bility of the two terms on the right-hand side which are easier to handle than
|Wn|−1/2Un,3(β̂n, ψ

∗)Σ̃
−1/2
n,33 .

Hence, the statement of the Theorem 3.6 is obtained once we verify the con-
ditions of Lemma 3.7 for the three cases described above.

First step, i.e. |Wn × Tn|1/2(β̂n − β∗). Recall that un(·) = Un,1(·),
Vn = |Wn × Tn|1/2 · 1.

Condition (a) of Lemma 3.7 follows easily from the fact that |Wn × Tn| → ∞
as n→ ∞.

To verify condition (b) first note that |Wn×Tn|−1Jn,11(β
∗) is a real symmetric

matrix (and hence all its eigenvalues are real) and

ln = inf
∥ϕ∥=1

{
ϕ
Jn,11(β

∗)

|Wn × Tn|
ϕT
}

is equal to the smallest eigenvalue of |Wn × Tn|−1Jn,11(β
∗) (Hager, 2001). Since

the eigenvalues of a matrix are in fact roots of a certain polynomial, Motzkin
(1947, Sec. 2) gives uniform continuity of the mapping g : A 7→ inf∥ϕ∥=1{ϕAϕT},
i.e. g(A) is the smallest eigenvalue of the matrix A.

We show in Lemma 3.10 that |Wn × Tn|−1Jn,11(β
∗) − In,11 converges to 0 in

probability as n → ∞. Taking advantage of the uniform continuity of the map-
ping g it is easy to show that also g(|Wn × Tn|−1Jn,11(β

∗)) − g(In,11) converges
to 0 in probability as n→ ∞, i.e. the difference of the smallest eigenvalues of the
respective matrices converges to 0 in probability. This and the assumption (A3)
verifies condition (b) where we take l = 1/2 · lim inf ωn,11 > 0.

Regarding condition (c), it is sufficient to show that

γijnd = sup
∥(θ−θ∗)|Wn×Tn|1/2∥≤d

|J ijn,11(θ)− J ijn,11(θ
∗)|

|Wn × Tn|

converges in probability to 0 as n → ∞, where J ijn,11 is the (i, j)-th element of
the matrix Jn,11. Using the boundedness and continuity assumptions in (A5) and
(A9) (in fact uniform continuity assumptions as the supremum in definition of
γijnd is taken over a compact set) one can show that the first two moments of γijnd
can be made arbitrarily close to 0 by choosing n large enough. This implies the
required convergence in probability.

Using Campbell theorem and assumptions (A2) and (A9) it is easy to show
for each element of the vector |Wn × Tn|−1/2Un,1(β

∗) that its mean is 0 and its
variance is bounded from above by the same constant for all n. This implies that
|Wn × Tn|−1/2Un,1(β

∗) is bounded in probability and hence the condition (d) is
verified.
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Second step, i.e. |Wn × Tn|1/2(ξ̂n − ξ∗). Recall that un(·) = Un,2(β̂n, ·), Vn =

(|Wn × Tn|Σ̃n,22)
1/2.

Condition (a) of Lemma 3.7 follows easily from the fact that |Wn × Tn| → ∞,

n → ∞, and Σ̃n,22 → Σ̃22 as n → ∞ by assumption (A4). It also secures

invertibility of Σ̃n,22, at least for n large enough.
Regarding condition (b), we show in Lemma 3.10 that

|Wn × Tn|−1Jn,22(β̂n, ξ
∗)− I22 → 0

in probability as n→ ∞, and thus

|Wn × Tn|−1Σ̃
−1/2
n,22 Jn,22(β̂n, ξ

∗)Σ̃
−1/2
n,22 − Σ̃

−1/2
n,22 I22Σ̃

−1/2
n,22 → 0

in probability as n→ ∞.
By assumption (A3) I22 is a positive definite matrix and hence all its eigen-

values are positive. This implies that lim inf of the smallest eigenvalue of the
matrix Σ̃

−1/2
n,22 I22Σ̃

−1/2
n,22 is positive. Now it is possible to use the same argument as

in the first step to check condition (b).
To verify condition (c) we need to check that for any d > 0, γnd → 0 in

probability as n→ ∞, where

γnd = sup∥∥∥(ξ−ξ∗)|Wn×Tn|1/2Σ̃1/2
n,22

∥∥∥≤d
∥∥∥∥∥Σ̃

−1/2
n,22 (Jn,22(β̂n, ξ)− Jn,22(β̂n, ξ

∗))Σ̃
−1/2
n,22

|Wn × Tn|

∥∥∥∥∥
M

.

By assumption (A4) Σ̃n,22 converges to a (deterministic) positive definite matrix
and thus it is sufficient to verify the convergence in probability for

γ̃nd′ = sup
∥(ξ−ξ∗)|Wn×Tn|1/2∥≤d′

∥∥∥∥∥Jn,22(β̂n, ξ)− Jn,22(β̂n, ξ
∗)

|Wn × Tn|

∥∥∥∥∥
M

(note that it is possible for each d > 0 to find d′ such that

{ξ : ∥(ξ − ξ∗)|Wn × Tn|1/2Σ̃1/2
n,22∥ ≤ d} ⊆

{
ξ :
∥∥(ξ − ξ∗)|Wn × Tn|1/2

∥∥ ≤ d′
}

for n sufficiently large and check that γ̃nd′ → 0 in probability as n → ∞). As in
the first step, we verify the convergence for each element of γ̃nd′ separately. Using
the continuity assumptions in (A6’) the difference in γ̃nd′ can be made arbitrarily
small by choosing n large enough and thus the required convergence is obtained
and condition (c) is verified.

In view of Equation (3.35) it is sufficient for the condition (d) to be fulfilled
that the following quantities are bounded in probability (recall that the term

|Wn × Tn|1/2(β̂n − β∗) is bounded in probability from the first step):

|Wn × Tn|−1/2Un,2(β
∗, ξ∗)Σ̃

−1/2
n,22 ,

|Wn × Tn|−1Jn,12(β̃, ξ
∗)Σ̃

−1/2
n,22 ,

where ∥β̃−β∗∥ ≤ ∥β̂n−β∗∥. Regarding the first term, consider the approximation

Un,2(β
∗, ξ∗) = Ũn,2(β

∗, ξ∗) + Vn,2(β
∗, ξ∗), (3.36)
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where Ũn,2 is defined at the beginning of Section 3.2.3. We argue below that
Vn,2(β

∗, ξ∗) converges to 0 in probability and hence the approximation is justified.

By Campbell theorem (and Fubini theorem) |Wn × Tn|−1/2Ũn,2(β
∗, ξ∗)Σ̃

−1/2
n,22 has

mean 0 and its variance is an identity matrix (recall the definition of Σ̃n,22). It

follows that Ũn,2(β
∗, ξ∗) and hence also Un,2(β

∗, ξ∗) is bounded in probability.
Regarding the second term, it can be checked that it is bounded in probability

by using Lemmas 3.8 and 3.9, assumptions (A1), (A2), (A4), (A6’) and (A8)
and the Cauchy-Schwarz inequality and Fubini theorem in appropriate places.

It remains to verify that Vn,2(β
∗, ξ∗) converges to 0 in probability but this can

be checked using the same methods and assumptions. Combining these results
we get condition (d) for the second step.

Third step, i.e. |Wn|1/2(ψ̂n − ψ∗). Recall that un(·) = Un,3(β̂n, ·), Vn =

(|Wn|Σ̃n,33)
1/2.

For verifying conditions (a)–(d) of Lemma 3.7 the same arguments can be
used as in the second step. The only difference is that |Wn| appears instead of
|Wn × Tn| and Ks instead of K. Thus, the details are omitted here. We only
remark that e.g. boundedness of λs,k follows from boundedness of λk (or λ0,k,
respectively) by Proposition 1.21. �

Technical lemmas

The following lemmas are needed for the proof of Theorem 3.6. The first one is
a version of Lemma 1 in Waagepetersen and Guan (2009, App. C).

Lemma 3.8. Under assumptions (A2), (A9) and (A12) the variance of

̸=∑
(u,t),(v,s)∈X∩(Wn×Tn)

I(∥u− v∥ ≤ r)I(|s− t| ≤ τ)h((u, t), (v, s))

|Wn × Tn|λ(u, t; β∗)λ(v, s; β∗)

is O(|Wn × Tn|−1) for any bounded function h((u, t), (v, s)) symmetric in its ar-
guments and for any r ≥ 0 and τ ≥ 0.

For the spatial projection process Xs a similar result holds, namely under
assumptions (A2), (A9) and (A11) the variance of

̸=∑
u,v∈Xs∩Wn

I(∥u− v∥ ≤ r)h(u, v)

|Wn|λs(u; β∗)λs(v; β∗)

is O(|Wn|−1) for any bounded function h(u, v) symmetric in its arguments and
for any r ≥ 0.

Proof. The two parts of this lemma can be proved using the same arguments.
For the sake of more concise formulas we focus here on the second part (spatial
projection process).

Let ϕ(u, v) = I(∥u − v∥ ≤ r)h(u, v)/{λs(u; β∗)λs(v; β
∗)}. Assumption (A2)

ensures that λs is bounded from below by some positive constant and hence ϕ is

81



bounded from above. Also, ϕ is a symmetric function. By Campbell theorem,
the variance of the sum above is equal to

|Wn|−2

∫
W 4

n

ϕ(u, v)ϕ(w, z)[λs,4(u, v, w, z)− λs,2(u, v)λs,2(w, z)] du dv dw dz

+ 4|Wn|−2

∫
W 3

n

ϕ(u, v)ϕ(v, w)λs,3(u, v, w) du dv dw

+ 2|Wn|−2

∫
W 2

n

ϕ(u, v)2λs,2(u, v) du dv.

It then follows by direct calculation that each of the three terms is O(|Wn|−1).
We show this for the last term. By (A2) and (A9) there exists M <∞ such that
λs,2(u, v) < M and ϕ(u, v) < M for any u, v ∈ R2. It follows that∣∣∣∣∫

W 2
n

ϕ(u, v)2λs,2(u, v) du dv

∣∣∣∣ ≤M

∫
Wn

(∫
Wn

|ϕ(u, v)|2 du
)

dv

≤M3|B(o, r)| · |Wn|

since the expression for ϕ(u, v) includes I(∥u− v∥ ≤ r) and hence∫
Wn

|ϕ(u, v)|2 du ≤M2|B(v, r)| =M2|B(o, r)|.

Thus, the last term of the variance is indeed O(|Wn|−1).

The second lemma is a generalized version of Lemma 2 in Waagepetersen and
Guan (2009, App. C).

Lemma 3.9. Consider sequence {β̆n}n≥1 such that β̆n → β∗ in probability as
n→ ∞. Under the assumptions of Theorem 3.6, for any c ∈ R,

sup
t∈[t0,t1]

|K̂n(t; β̆n)
c −K(t; ξ∗)c|

is oP (1) for any 0 < t0 < t1 <∞. If c ≥ 0 we may take t0 = 0. Similar statement
holds also for

sup
r∈[r0,r1]

|K̂s,n(r; β̆n)
c −Ks(r;ψ

∗)c|.

Proof. The condition t0 > 0 if c < 0 is imposed to avoid division by 0 since
K(0; ξ∗) = 0.

Due to (A1), (A2) and the product structure (3.31) the intensity function λ
is bounded and continuous as a function of β. Thus it is possible to show the
convergence

K̂n(t; β̆n)− K̂n(t; β
∗) → 0

in probability as n→ ∞ for any t ≥ 0. By Lemma 3.8 we get K̂n(t; β
∗) → K(t; ξ∗)

in probability for any t ≥ 0 and hence also

K̂n(t; β̆n) → K(t; ξ∗)
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in probability as n → ∞ for any t ≥ 0. Using monotonicity of K̂n(t; β̆n)
c and

K(t; ξ∗)c as functions of t, the result follows by arguments similar to those in the
proof of the Glivenko-Cantelli theorem, see e.g. van der Vaart (1998, p. 266).

The same type of argument can be used to prove the second part of the
lemma.

The last lemma summarizes some convergence properties needed for the proof.

Lemma 3.10. Under the conditions of Theorem 3.6, the following holds:

(a) |Wn × Tn|−1Jn,11(β
∗)− In,11 → 0 in probability as n→ ∞.

(b) |Wn × Tn|−1Jn,22(β̂n, ξ
∗)− I22 → 0 in probability as n→ ∞,

|Wn × Tn|−1Jn,22(β
∗, ξ∗)− I22 → 0 in probability as n→ ∞.

(c) |Wn|−1Jn,33(β̂n, ψ
∗)− I33 → 0 in probability as n→ ∞,

|Wn|−1Jn,33(β
∗, ψ∗)− I33 → 0 in probability as n→ ∞.

(d) |Wn × Tn|−1Jn,12(β
∗, ξ∗)− In,12 → 0 in probability as n→ ∞.

Proof. (a) By Campbell theorem, |Wn × Tn|−1Jn,11(β
∗)− In,11 has mean 0. Us-

ing assumptions (A2) and (A9) one can show that the variance of each
element of the matrix in question is O(|Wn × Tn|−1). This implies the
required convergence in probability.

(b) Note that |Wn × Tn|−1Jn,22(β̂n, ξ
∗) = I22 − Vn, where

Vn =2c2

∫ r1

r0

[
K̂n(t; β̂n)

c2 −K(t; ξ∗)c2
]
·

·
[
(c2 − 1)K(t; ξ∗)c2−2K(1)(t; ξ∗)TK(1)(t; ξ∗) +K(t; ξ∗)c2−1K(2)(t; ξ∗)

]
dt.

It is now sufficient to show that Vn → 0 in probability. Denote sn(c) =

supt∈[t0,t1] |K̂n(t; β̂n)
c − K(t; ξ∗)c|. Then we can write (using any matrix

norm)

∥Vn∥ ≤ 2c2sn(c2)

∫ t1

t0

∥(c2 − 1)K(t; ξ∗)c2−2K(1)(t; ξ∗)TK(1)(t; ξ∗)

+K(t; ξ∗)c2−1K(2)(t; ξ∗)∥ dt
≤ const. · (t1 − t0)sn(c2),

since the integrand can be bounded from above by assumptions (A2), (A6’)
and (A8). By Lemma 3.9, sn(c2) → 0 in probability and thus ∥Vn∥ → 0 in
probability as n → ∞. This concludes the proof of the first part. Second
part of the statement follows similarly.

(c) The proof of the first part follows precisely the arguments in (b), starting

with |Wn|−1Jn,33(β̂n, ψ
∗) = I33 − Vn, where Vn is the remainder term, and

finishing with the use of Lemma 3.9. Second part of the statement follows
similarly.

(d) The statement follows by similar arguments as above, using Lemmas 3.8
and 3.9.
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Asymptotic normality theorems

In the following we establish asymptotic normality for the sequences {(β̂n, ξ̂n)}n≥1

and {ψ̂n}n≥1 from Theorem 3.6, under appropriate assumptions. We separate the
statement into two parts because of the different normalization given by |Wn×Tn|
and |Wn|, respectively.

For a Borel set A ∈ B(R2 × R) denote FX(A) the σ-algebra generated by
X ∩ A. For h > 0 let Aijk = [ih, (i + 1)h) × [jh, (j + 1)h) × [kh, (k + 1)h),
(i, j, k) ∈ Z3, and

αFp1,p2(m) = sup

{
α(FX(S1 ⊕max(R, t1)),FX(S2 ⊕max(R, t1))) : S1 =

∪
M1

Aijk,

S2 =
∪
M2

Aijk, |M1| ≤ p1, |M2| ≤ p2, d(M1,M2) ≥ m,M1,M2 ⊂ Z3

}
,

where |M | is the cardinality of the setM ⊆ Z3 and d(M1,M2) denotes the minimal
distance between M1 and M2 in the grid Z3. Also, Si ⊕ max(R, t1) denotes the
set Si dilated by the distance max(R, t1) where t1 is the upper limit used in the
minimum contrast criterion (3.34) and R is the fixed spatial range.

We remark that the numbering of the respective assumptions considered in
the following corresponds to the numbering used in Section 3.1.3, with (B3’)
denoting an altered version of the assumption (B3) from Section 3.1.3.

Theorem 3.11. Apart from the model assumptions formulated above and the
assumptions of the Theorem 3.6, suppose there exist δ > 0 and ν ∈ N, 0 < δ < ν,
such that

(C1) λ0,4+2ν((u1, t1), . . . , (u4+2ν , t4+2ν)) <∞,

(B2) there exist h > 0 and d > 3 · 2+δ
δ

such that αF2,∞(m) = O(m−d),

(B3’) the matrix Σ̃n converges to a positive-definite matrix Σ̃.

Then

|Wn × Tn|1/2
{
(β̂n, ξ̂n)− (β∗, ξ∗)

}
InΣ̃

−1/2
n

d−→ N(0,1).

Proof. Consider the following Taylor series expansion:

(Un,1(β
∗), Un,2(β

∗, ξ∗)) =
(
Un,1(β̂n), Un,2(β̂n, ξ̂n)

)
+
{
(β̂n, ξ̂n)− (β∗, ξ∗)

}
Jn(β̃n, ξ̃n), (3.37)

where (β̃n, ξ̃n) is between (β̂n, ξ̂n) and (β∗, ξ∗). Now we multiply both sides of the

equation by |Wn × Tn|−1/2Σ̃
−1/2
n and get

|Wn × Tn|−1/2 (Un,1(β
∗), Un,2(β

∗, ξ∗)) Σ̃−1/2
n =

=|Wn × Tn|−1/2
(
Un,1(β̂n), Un,2(β̂n, ξ̂n)

)
Σ̃−1/2
n

+ |Wn × Tn|1/2
{
(β̂n, ξ̂n)− (β∗, ξ∗)

} Jn(β̃n, ξ̃n)
|Wn × Tn|

Σ̃−1/2
n .
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By Theorem 3.6,
(
Un,1(β̂n), Un,2(β̂n, ξ̂n)

)
= 0 with probability tending to 1. Also,

Jn(β̃n, ξ̃n)

|Wn × Tn|
− Jn(β

∗, ξ∗)

|Wn × Tn|
→ 0

in probability as n→ ∞ by continuity arguments similar to those used for check-
ing condition (c) of Lemma 3.7 in the proof of Theorem 3.6 (see above). Finally,
by Lemma 3.10 we have

Jn(β
∗, ξ∗)

|Wn × Tn|
− In → 0

in probability. Hence it is sufficient to check asymptotic normality for

|Wn × Tn|−1/2 (Un,1(β
∗), Un,2(β

∗, ξ∗)) Σ̃−1/2
n .

In view of the approximation (3.36) we can see that its limiting distribution is
the same as limiting distribution of

|Wn × Tn|−1/2(Un,1(β
∗), Ũn,2(β

∗, ξ∗))Σ̃−1/2
n

and hence we can focus on the latter one.
Let h > 0 be as in assumption (B2) and define

Aijk = [ih, (i+ 1)h)× [jh, (j + 1)h)× [kh, (k + 1)h), (i, j, k) ∈ Z3.

Setting

Xijk =
∑

(u,t)∈X∩Aijk

λ(1)(u, t; β∗)

λ(u, t; β∗)
−
∫
Aijk

λ(1)(v, s; β∗) dv ds, (i, j, k) ∈ Z3,

we can easily show that

|Wn × Tn|−1/2Un,1(β
∗) = |Wn × Tn|−1/2

∑
(i,j,k)∈Z3:Aijk⊆(Wn×Tn)

Xijk + oP (1).

The remainder term corresponds to those Aijk which hit the boundary ofWn×Tn.
The size of the boundary grows at a slower rate than the volume of Wn× Tn due
to our assumption on the rectangular shape of the observation window. This
is the key ingredient for showing that the remainder term is in fact oP (1), i.e.
converges to 0 in probability.

Similarly, in Ũn,2(β
∗, ξ∗) we may replace K̂n(τ ; β

∗) by

1

|Wn × Tn|
∑

(u,t)∈X∩(Wn×Tn)

∑
(v,s)∈X

I(0 < ∥u− v∥ ≤ R)I(0 < |t− s| ≤ τ)

λ(u, t; β∗)λ((v, s; β∗)

and denote

Yijk =2c22
∑

(u,t)∈X∩Aijk

∫ t1

t0

∑
(v,s)∈X

I(0 < ∥u− v∥ ≤ R)I(0 < |t− s| ≤ τ)

λ(u, t; β∗)λ((v, s; β∗)
·

·K(τ ; ξ∗)2c2−2K(1)(τ ; ξ∗) dτ − 2c22h
3

∫ t1

t0

K(τ ; ξ∗)2c2−1K(1)(τ ; ξ∗) dτ.
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Then, it can be shown that

|Wn × Tn|−1/2Ũn,2(β
∗, ξ∗) = |Wn × Tn|−1/2

∑
(i,j,k)∈Z3:Aijk⊆(Wn×Tn)

Yijk + oP (1).

We aim at using the Cramér-Wold theorem (Cramér and Wold, 1936) to show

asymptotic normality of |Wn × Tn|−1/2
(
Un,1(β

∗), Ũn,2(β
∗, ξ∗)

)
Σ̃

−1/2
n . To do this,

we take two arbitrary non-zero vectors x and y of appropriate dimensions and set

Zijk = Xijkx
T + Yijky

T ,

σ2
n = |Wn × Tn|−1 Var

 ∑
(i,j,k)∈Z3:Aijk⊆Wn×Tn

Zijk

 = (x, y)Σ̃n(x, y)
T + o(1).

In this way we have constructed a random field {Zijk} defined on the integer
lattice Z3.

We will show that

(σ2
n|Wn × Tn|)−1/2

∑
(i,j,k)∈Z3:Aijk⊆(Wn×Tn)

Zijk

is asymptotically standard normal. Together with (B3’) this implies that

|Wn × Tn|−1/2
∑

(i,j,k)∈Z3:Aijk⊆(Wn×Tn)

Zijk

converges in distribution to a normally distributed random variable with mean
0 and variance (x, y)Σ̃(x, y)T . Assumption (B3’) and the Cramér-Wold theo-

rem then imply that |Wn × Tn|−1/2(Un,1(β
∗), Ũn,2(β

∗, ξ∗))Σ̃
−1/2
n is asymptotically

standard normal.
To show that (σ2

n|Wn × Tn|)−1/2
∑

(i,j,k)∈Z3:Aijk⊆(Wn×Tn) Zijk is asymptotically
standard normal we use a classical central limit theorem for random fields on
a lattice (Guyon, 1995, Thm. 3.3.1), with the additional assumption of uniform
integrability, see also the discussion in Karácsony (2006). Namely, the following
conditions must be met for some δ > 0:

(a) lim inf σ2
n > 0,

(b) |Zijk|2+δ are uniformly integrable,

(c)
∑∞

m=1m
2αF2,∞(m)δ/(2+δ) <∞.

Note that the mixing coefficient αF2,∞ defined above is the appropriate one
to be used for this central limit theorem for random fields on a lattice since it
takes into account the prescribed number of blocks Aijk, not their volume. This
precisely corresponds to the framework of a random field on a lattice.

Condition (a) above is fulfilled by assumption (B3’) and condition (b) follows
from the moment assumption (C1). Finally, the mixing condition (c) is implied
by (B2). This concludes the proof.
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Now we focus on the properties of the estimator ψ̂n based on the spatial
projection process Xs. For a Borel set B ∈ B(R2) denote FXs(B) the σ-algebra
generated by Xs ∩B.

For h > 0 let Bij = [ih, (i+ 1)h)× [jh, (j + 1)h), (i, j) ∈ Z2, and

αFs,p1,p2(m) = sup

{
α(FXs(S1 ⊕ r1),FXs(S2 ⊕ r1)) : S1 =

∪
M1

Bij, S2 =
∪
M2

Bij,

|M1| ≤ p1, |M2| ≤ p2, d(M1,M2) ≥ m,M1,M2 ⊂ Z2

}
,

where d(M1,M2) denotes the minimal distance betweenM1 andM2 in the grid Z2.
Also, Si ⊕ r1 denotes the set Si dilated by the distance r1 where r1 is the upper
limit used in the minimum contrast criterion (3.33).

Theorem 3.12. Apart from the model assumptions formulated above and the
assumptions of the Theorem 3.6, suppose there exist δ > 0 and ν ∈ N, 0 < δ < ν,
such that

(C1) λ0,4+2ν((u1, t1), . . . , (u4+2ν , t4+2ν)) <∞,

(D2) there exist h > 0 and d > 2 · 2+δ
δ

such that αFs,2,∞(m) = O(m−d).

Then

|Wn|1/2(ψ̂n − ψ∗)I33Σ̃
−1/2
n,33

d−→ N(0,1).

Proof. The proof of this theorem follows closely the arguments in the proof of
Theorem 3.11. However, there are two important differences. The first one lies in
the mixing condition needed for the use of Theorem 3.3.1 in Guyon (1995). The
assumption (D2) substitutes assumption (B2) – note that different rate is now
required for the mixing coefficient αFs,2,∞(m).

The second important difference lies in the Taylor series expansion at the
beginning of the proof, see Equation (3.37). A slightly more delicate approach is
necessary in this case. Consider the Taylor series expansion

(Un,1(β
∗), Un,3(β

∗, ψ∗)) =(Un,1(β̂n), Un,3(β̂n, ψ̂n))

+
{
(β̂n, ψ̂n)− (β∗, ψ∗)

}(Jn,11(β̃n) Jn,13(β̃n, ψ̃n)

0 Jn,33(β̃n, ψ̃n)

)
,

where (β̃n, ψ̃n) is between (β̂n, ψ̂n) and (β∗, ψ∗). We now focus on the second part
of the vector equation:

Un,3(β
∗, ψ∗) = Un,3(β̂n, ψ̂n) + (β̂n − β∗)Jn,13(β̃n, ψ̃n) + (ψ̂n − ψ∗)Jn,33(β̃n, ψ̃n).

We multiply both sides of the equation (from the right) by |Wn|−1/2Σ̃
−1/2
n,33 and

discuss each term separately.
On the left-hand side, the term |Wn|−1/2Un,3(β

∗, ψ∗)Σ̃
−1/2
n,33 depends only on the

true parameter values and it can be shown that it has asymptotically a standard
normal distribution, using the same techniques as in the proof of Theorem 3.11.
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Moving to the right-hand side, |Wn|−1/2Un,3(β̂n, ψ̂n)Σ̃
−1/2
n,33 equals 0 with proba-

bility tending to 1 by Theorem 3.6. We rewrite the remaining terms as follows:

|Wn|−1/2(β̂n − β∗)Jn,13(β̃n, ψ̃n)Σ̃
−1/2
n,33 = |Wn|1/2(β̂n − β∗)

Jn,13(β̃n, ψ̃n)

|Wn|
Σ̃

−1/2
n,33 ,

|Wn|−1/2(ψ̂n − ψ∗)Jn,33(β̃n, ψ̃n)Σ̃
−1/2
n,33 = |Wn|1/2(ψ̂n − ψ∗)

Jn,33(β̃n, ψ̃n)

|Wn|
Σ̃

−1/2
n,33 .

Under the assumptions of the theorem one can show that

• |Wn|1/2(β̂n − β∗) converges to 0 in probability, since |Wn × Tn|1/2(β̂n − β∗)
is bounded in probability by Theorem 3.6;

• |Wn|−1Jn,13(β̃n, ψ̃n)− In,13 converges to 0 in probability, using similar con-
tinuity arguments as in the proof of Theorem 3.6;

• the elements of the matrix In,13 are bounded.

Also, by assumption (A4), Σ̃n,33 converges to a positive definite matrix Σ̃33. We

conclude that the whole term |Wn|1/2(β̂n − β∗)Jn,13(β̃n,ψ̃n)

|Wn| Σ̃
−1/2
n,33 converges to 0 in

probability as n→ ∞. Hence, this term does not affect the limiting distribution
of |Wn|1/2(ψ̂n − ψ∗).

To finish the proof it remains to show that |Wn|−1Jn,33(β̃n, ψ̃n)−I33 converges
to 0 in probability. This can be done following the arguments in the proof of
Theorem 3.11.

The reason for splitting the asymptotic normality results into two theorems is
that the current methodology cannot be employed directly to show joint asymp-
totic normality for the vector

Ln =


|Wn × Tn|1/2(β̂n − β∗)

|Wn × Tn|1/2(ξ̂n − ξ∗)

|Wn|1/2(ψ̂n − ψ∗)

 .

To see this, we could approximate as above

|Wn|−1/2Ũn,3(β
∗, ψ∗) = |Wn|−1/2

∑
(i,j,k)∈Z3:Aijk⊆(Wn×Tn)

Y ′
ijk + oP (1)

for suitably defined Y ′
ijk. Note that it is not appropriate to use such an approxi-

mation for |Wn × Tn|−1/2Ũn,3(β
∗, ψ∗) as it converges to 0 in probability.

As a next step, we could define

Z ′
ijk = Xijkx

T + Yijky
T + Y ′

ijky
′T ,

σ2
n = |Wn × Tn|−1 Var

 ∑
(i,j,k)∈Z3:Aijk⊆Wn×Tn

Z ′
ijk

 ,
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and study the limiting distribution of

(σ2
n|Wn × Tn|)−1/2

∑
(i,j,k)∈Z3:Aijk⊆(Wn×Tn)

Z ′
ijk.

With this normalization the part of the sum corresponding to Y ′
ijky

T converges
to 0 in probability. Using the Cramér-Wold theorem (Cramér and Wold, 1936)
we would get singular asymptotic variance matrix for the whole vector Ln which
is not a satisfactory result.

The other option is to define a triangular array of random fields

Z ′
n,ijk = Xijkx

T + Yijky
T + |Tn|1/2Y ′

ijky
′T

and use the central limit theorem of Karácsony (2006). However, in this case
the required uniform integrability condition for Z ′

n,ijk does not hold. Hence,
the current methodology cannot be employed directly to show joint asymptotic
normality for the vector Ln.

Also note that the matrices Σ̃n and Σ̃n,33 can be computed as discussed in
Sec. 3.2 and App. B of Waagepetersen and Guan (2009). A plug-in approach can
then be used in practice to estimate these matrices (together with In and I33) in
order to construct confidence regions for the estimates.

3.2.4 Simulation study III.

Design of the simulation study

To provide a comparison of the performance of the refined estimation method
and the method using projection processes on finite observation windows, we
performed a simulation study using the same model as in Section 3.1.5. Thus,
the process X0 is a stationary gamma shot-noise Cox point process determined
by the parameters of the underlying Poisson measure µ > 0 and θ > 0 and
the smoothing kernel k is the product of a bivariate Gaussian kernel k1 with
standard deviation σ > 0 in the spatial part and a uniform temporal kernel on
the interval [0, t∗] for t∗ > 0. Both k1 and k2 are assumed to be scaled so that they
integrate to 1 over their respective domains. The inhomogeneous version X of the
process X0 is obtained by location dependent thinning using the inhomogeneity
function f which is a log-linear function of the coordinates, see Section 3.1.5. The
observation window is W × T = [0, 1]2 × [0, 1].

We used the same combinations of parameter values as in the simulation
study in Section 3.1.5 – in fact, the same realizations were used. To inspect
the performance of the refined method in the case with even more severe cluster
overlapping in the temporal projection process, we consider also t∗ = 0.045 in
addition to t∗ = 0.015 and t∗ = 0.030 used in the previous study. For the
combinations of parameter values with t∗ = 0.045 we generated new realizations
and re-estimated the parameters using both the refined method and the method
using projection processes to provide fair comparison.

To maintain reasonable extent of the simulation study, we consider only the
combinations of parameter values with σ = 0.02. The refined method estimates
σ precisely in the same way as the method using projection processes (cluster
overlapping is not that serious issue in the spatial projection process compared
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to the temporal projection) and the previous study did not indicate situations
where the precision of estimates of the other model parameters would depend on
the value of σ. The higher value σ = 0.02 resulted in almost all situations in
lower precision of estimates of the other model parameters than σ = 0.01. Hence,
σ = 0.02 (implying not very tight clusters) is the more interesting case for the
comparison.

The inhomogeneity parameters β are estimated using the Poisson likelihood
estimating equation (3.32). The parameters of the spatial and temporal smooth-
ing kernels k1 and k2 are estimated by minimizing the contrasts (3.34) and (3.33),
respectively. Finally, estimates of the parameters µ and θ of the underlying Pois-
son measure Φ are obtained from the previous estimates and the formula for the
total intensity of points in the observation window.

For each combination of parameter values 500 independent realizations were
used. All the computations were performed in R, with the use of auxiliary func-
tions provided in the package spatstat, see Baddeley and Turner (2005).

Choice of tuning constants

In order to fully specify the estimation methods several tuning constants must
be chosen. For estimation of the inhomogeneity parameters and the parameter σ
of the spatial smoothing kernel k1 we choose precisely the same values as in the
simulation study in Section 3.1.5.

For estimation of the parameter t∗ of the temporal smoothing kernel k2 we
use the minimum contrast criterion (3.33) with the following choices of tuning
constants:

• we choose the fixed spatial range R = 4σ which corresponds to the practical
range of correlation of the (spatial) Gaussian kernel. Based on a smaller
pilot study, this choice provides more precise estimates of µ and θ than R =
3σ (possible interpretation is that whole clusters are taken into account and
this provides relevant information about the total intensity of points and
variability of the cluster weights). However, for t∗ it is possible to achieve
a slight improvement in the precision for most combinations of parameter
values by choosing R = 3σ (possible interpretation – spatially smaller,
central part of the clusters play the key role in this case; this provides
enough information about t∗ and results in lower variability of K̂(t));

• the variance stabilizing exponent c2 is set to be 1/4. Based on a pilot study,
the alternative choice c2 = 1/2 results in slight improvement in the estimates
precision in most situations but in certain cases (µ = 100, θ = 1/20) it yields
much worse estimates than c2 = 1/4. Hence, we aim for robustness of the
estimation method by selecting the smaller value;

• t0 = 0.05t∗, the same value as in the study in Section 3.1.5. This resulted
in better precision of estimates in the pilot study than the alternatives;

• we choose the value t1 to be 1.10t∗. We inspected the following choices in
the pilot study: 0.95t∗, 1.00t∗, 1.05t∗, 1.10t∗. The results indicated that the
precision of estimates of t∗ is better for higher values of t0. The influence
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true values rel. bias rel. MSE

µ θ t∗ µ̂ θ̂ t̂∗ µ̂ θ̂ t̂∗

50 1/20 0.015 0.095 0.157 -0.0005 0.064 0.367 0.0057
0.030 0.085 0.188 0.0023 0.064 0.395 0.0063
0.045 0.108 0.219 0.0047 0.063 0.368 0.0064

1/40 0.015 0.079 0.162 0.0013 0.050 0.335 0.0016
0.030 0.085 0.146 0.0042 0.058 0.359 0.0023
0.045 0.113 0.243 -0.0070 0.065 0.452 0.0028

100 1/20 0.015 0.045 0.120 0.0001 0.035 0.220 0.0024
0.030 0.058 0.155 -0.0024 0.032 0.225 0.0029
0.045 0.060 0.146 -0.0021 0.037 0.196 0.0034

1/40 0.015 0.032 0.090 0.0005 0.031 0.159 0.0010
0.030 0.052 0.081 0.0103 0.029 0.155 0.0318
0.045 0.029 0.094 0.0206 0.029 0.173 0.0494

Table 3.3: Relative biases and relative mean squared errors of the estimates for the
inhomogeneous space-time gamma shot-noise Cox process. Estimates obtained
using the refined method. Characteristics estimated from all 500 realizations.

of the choice of t0 on the precision of estimates of other parameters is
negligible.

Results

Table 3.3 shows relative mean biases of the estimators and relative mean squared
errors (MSEs) (by relative we mean divided by the true value of the estimated
parameter or by its square for the MSE). The characteristics were obtained us-
ing all the estimates from 500 replications, as opposed to the study reported in
Section 3.1.5 where only the middle 95 % of the estimates were used due to low-
er numerical stability of the optimization precedures. In the present study the
convergence of the numerical optimization methods was not an issue.

Note that only the results for the extreme combinations of parameters µ and θ
are reported since the performance of the estimators showed consistent behaviour
within the above-described range of parameter values. We also omit the estimator
of σ as it is precisely the same as reported in Section 3.1.5.

The overall performance of the estimator has improved compared to the
method using projection processes. The most notable change is that t̂∗ is now
essentially unbiased, i.e. the negative bias occuring for the previous method has
been removed. Only two combinations of parameter values exhibit a relative bias
larger than 1 % (µ = 100, θ = 1/40 and t∗ = 0.030 and 0.045, respectively).
This is caused by numerical divergence of the estimator for 2 and 4 realizations,
respectively (note that the characteristics in Table 3.3 are estimated from all 500
realizations). Also, huge improvement has been achieved in terms of the relative
MSE of t̂∗.

Regarding t̂∗, very precise estimates are obtained even for combinations of pa-
rameter values with t∗ = 0.045, i.e. much wider temporal smoothing kernel than
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the ones considered in the simulation study in Section 3.1.5. Both relative bias
and relative MSE are reasonably small. This is also true for µ̂ and θ̂. Hence, the
issue of possible cluster overlapping if the estimation using projection processes
was used is successfully remedied.

The estimators of µ and θ exhibit a positive bias which is lower for models
with higher value of µ and also for models with lower θ if µ = 100. The same
holds true for the relative MSEs of µ̂ and θ̂.

The precision of µ̂ and θ̂ does not depend on the value of t∗ in most situations
(no apparent trend). On the other hand, it improves considerably with increasing
intensity of the process, i.e. with increasing value of µ and 1/θ.

Compared to the previous method using projection processes, the refined
method provides estimates of µ and θ with smaller relative bias. Also, relative
MSE of µ̂ is considerably reduced. On the other hand, relative MSE of θ̂ cannot
be compared to the method using projection processes in a straightforward way
– the characteristics were estimated using 95 % and 100 % of realizations, respec-
tively, and thus higher values of relative MSE shown for the refined method do
not imply that it is inferior to the previous method.

To provide fair comparison, we also show the corresponding table of relative
biases and relative MSEs estimated from the middle 95 % of the estimates, as
was the case in Section 3.1.5, see Table 3.4. In order to stress the improvement
when using the refined method, we also show the table corresponding to the
method using projection processes (it is extracted from Table 3.1 with added
lines corresponding to t∗ = 0.045).

Table 3.4 indicates that the bias of t̂∗ has been removed by the refined method.
The positive bias of µ̂ and θ̂ occurs for both methods but it is reduced approxi-
mately by one half (or even more in some cases) for the refined method. Also,
when comparing the refined method to the method using projection processes,
the relative MSE of t̂∗ is reduced approximately by a factor of 10, relative MSE
of µ̂ by one half and of θ̂ by one quarter or one third, depending on a particular
combination of parameter values.

To conclude, the refined method constitutes a significant improvement com-
pared to the method using projection processes. The parameter t∗ of the temporal
smoothing kernel is estimated very precisely while µ̂ and θ̂ still exhibit positive
bias, also resulting in higher relative MSEs for the considered models. Especial-
ly the parameter θ of the underlying Poisson measure is difficult to estimate –
probably due to the fact that it expresses itself mainly in the distribution of clus-
ter weights and not in the spatio-temporal arrangement of points of the process
in question.
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true values rel. bias (95 %) rel. MSE (95 %)

µ θ t∗ µ̂ θ̂ t̂∗ µ̂ θ̂ t̂∗

50 1/20 0.015 0.070 0.070 0.0003 0.048 0.201 0.0038
0.030 0.063 0.108 -0.0005 0.048 0.258 0.0038
0.045 0.082 0.144 -0.0011 0.046 0.236 0.0041

1/40 0.015 0.062 0.087 -0.0006 0.038 0.213 0.0011
0.030 0.063 0.064 0.0010 0.042 0.212 0.0016
0.045 0.092 0.152 -0.0054 0.046 0.268 0.0019

100 1/20 0.015 0.041 0.058 -0.0008 0.026 0.138 0.0018
0.030 0.044 0.094 -0.0020 0.025 0.144 0.0021
0.045 0.048 0.096 -0.0036 0.026 0.130 0.0024

1/40 0.015 0.030 0.048 -0.0004 0.021 0.111 0.0007
0.030 0.040 0.031 -0.0032 0.021 0.104 0.0009
0.045 0.028 0.039 -0.0033 0.020 0.112 0.0012

true values rel. bias (95 %) rel. MSE (95 %)

µ θ t∗ µ̂ θ̂ t̂∗ µ̂ θ̂ t̂∗

50 1/20 0.015 0.181 0.192 -0.0327 0.116 0.326 0.0217
0.030 0.155 0.215 -0.0623 0.100 0.365 0.0423
0.045 0.187 0.253 -0.0936 0.115 0.332 0.0674

1/40 0.015 0.144 0.170 -0.0305 0.087 0.275 0.0139
0.030 0.154 0.159 -0.0555 0.094 0.281 0.0254
0.045 0.171 0.239 -0.0806 0.102 0.344 0.0411

100 1/20 0.015 0.121 0.154 -0.0350 0.071 0.210 0.0178
0.030 0.138 0.205 -0.0673 0.078 0.240 0.0380
0.045 0.133 0.185 -0.0909 0.076 0.188 0.0615

1/40 0.015 0.089 0.117 -0.0235 0.057 0.164 0.0124
0.030 0.124 0.126 -0.0540 0.060 0.154 0.0272
0.045 0.102 0.127 -0.0771 0.051 0.152 0.0419

Table 3.4: Relative biases and relative mean squared errors of the estimates for the
inhomogeneous space-time gamma shot-noise Cox process. Estimates obtained
using the refined method (top part) and the method using projection processes
(bottom part). Characteristics estimated from the middle 95 % of estimates.
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4. Directions of future research

The topic of statistical inference for spatial and space-time point processes is
still lively and evolving and the research in this field is far from being finished.
The results presented in this thesis contribute to the field but at the same time
raise a number of follow-up questions and interesting topics which call for further
inquiry. This chapter provides a brief discussion on a few such topics and possible
directions of future research.

4.1 Separability assumptions for space-time

processes

The estimation procedures for space-time shot-noise Cox processes presented in
Chapter 3 take advantage of the particular model structure, see Equations (3.1)
and (3.2). These separability assumptions enable us to work with the first-
and second-order moment properties of the projection processes Xt and Xs in
a tractable form.

The assumption (3.2) of space-time separability of the smoothing kernel k
can sometimes be justified in practice, see the discussion in Section 3.1. Also, in
applications it may be difficult to decide whether the observed data arise from
a process with separable or non-separable smoothing kernel. The main obstacle
is that usually only a few points of the process occur in individual clusters.

On the other hand, the assumption (3.1) of space-time separability of the
inhomogeneity function f used for location dependent thinning is mostly technical
and can be considered a nuisance. However, without this assumption the form of
the first- and second-order moment characteristics of the projection processes Xt

and Xs would be very complicated and could not be used for parameter inference.

4.1.1 First-order separability

While the assumption (3.1) of separability of the inhomogeneity function f , i.e.

f(u, t) = f1(u)f2(t), u ∈ R2, t ∈ R,

enables us to use the projection processes for statistical inference, there is a way
how it could be eliminated. The key idea was already presented in Section 3.2
when describing the refined estimation method which avoids projection to the
temporal domain. Hence, the refined method does not rely at all on the temporal
projection process Xt.

We propose to extend this idea also to the spatial part of the model. To
avoid projection to the spatial domain, i.e. instead of using the spatial projec-
tion process Xs, we suggest to estimate the values of the space-time K-function
K(r, T̃ ) with a fixed temporal lag T̃ > 0 as a function of a single (spatial) argu-

ment. The non-parametric or semi-parametric estimate of K(r, T̃ ) can be used
for minimum contrast estimation in order to estimate parameters of the spatial
smoothing kernel.
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The main advantage of this approach is that we do not need to work with mo-
ment characteristics of the projected processes Xt and Xs and hence we can drop
the first-order separability assumption (3.1) for the inhomogeneity function f .

For defining the estimation procedure, we allow for a general (non-negative)
function f such that maxW×T f = 1. Assume now a parametric model for the
shot-noise Cox process X similar to those used in Sections 3.1 and 3.2 but with

ψ0 =
V2

µ (V1)2

∫
|s|<T̃

K2(s; ξ̃) ds.

The third step of the refined method described in Section 3.2 is now replaced by
minimizing the discrepancy

m3,β(ψ) =

∫ r1

r0

[
K̂T̃ (r; β)

c3 −KT̃ (r;ψ)
c3
]2

dr,

conditionally on β = β̂, where

K̂T̃ (r; β) =

̸=∑
(u,s),(v,τ)∈X∩(W×T )

I {∥u− v∥ < r} I{|s− τ | < T̃}
λ(u, s; β)λ(v, τ ; β)|W ∩Wu−v| |T ∩ Ts−τ |

is the empirical estimate of KT̃ (r) = K(r, T̃ ) (omitting now the dependence on
the model parameters to avoid confusion).

To study asymptotic properties of the estimator under the increasing-window
asymptotics we can formulate the estimation procedure in the framework of es-
timating equations just as we did in Sections 3.1 and 3.2. Assume now that the
inhomogeneity function f is of the form

f(z(u, t)β̃ T ), u ∈ R2, t ∈ R,

where z(u, t) is the vector of space-time covariates, β̃ is the vector of unknown
inhomogeneity parameters and f is positive, strictly increasing, twice continuous-
ly differentiable function. Setting again β0 = log(µV1), the first-order intensity

function of the process X is parametrized by the vector β = (β0, β̃).
We hypothesise that with such parametrization it is possible to prove con-

sistency and asymptotic normality results for the proposed estimator similar to
those presented in Sections 3.1 and 3.2, under appropriate assumptions. However,
it still remains to construct the proofs in detail.

Another advantage of the proposed approach is that the asymptotic normality
results can be formulated in a single theorem because in the three estimation steps
the same normalization by |Wn × Tn| is used. In this way, certain clumsiness
of formulation of the asymptotic normality theorems presented in the previous
chapter is eliminated.

4.1.2 Separability of the smoothing kernel

The estimation procedures described in Chapter 3 depend strongly on the as-
sumption (3.2) of separability of the space-time smoothing kernel k, i.e.

k(u, t) = k1(u)k2(t), u ∈ R2, t ∈ R,
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where k1 and k2 are probability density functions on R2 and R, respectively.
The important consequence is the special structure (3.4) of the space-time pair-
correlation function and hence also the space-time K-function:

K(r, t) = 2πr2t+
V2

µ (V1)2

∫
|u|<r

K1(u) du

∫
|s|<t

K2(s) ds, r ≥ 0, t ≥ 0. (4.1)

This enables us to separate the parameters of the spatial kernel k1 and the tem-
poral kernel k2 and estimate them sequentially. Without this assumption both
the method using projection processes and the refined method cannot be used.

In practical applications one should check the separability assumption (3.2)
before using the estimation methods presented in Chapter 3. To do this, Møller
and Ghorbani (2012) proposed a functional summary statistic F (r, t), r, t > 0,
which is constant if (3.2) is fulfilled. It is defined as

F (r, t) =
K(r, t)− 2πr2t

(KMG
1 (r)− πr2)(KMG

2 (t)− 2t)
, r, t > 0,

where KMG
1 and KMG

2 are defined in (3.24). Non-parametric or semi-parametric
estimates of KMG

1 and KMG
2 can be obtained in a straightforward way (Møller

and Ghorbani, 2012, Sec. 4.1) and hence the empirical estimate of F is obtained
as

F̂ (r, t) =
K̂(r, t)− 2πr2t

(K̂MG
1 (r)− πr2)(K̂MG

2 (t)− 2t)
, r, t > 0. (4.2)

If the estimated surface F̂ (r, t) is approximately constant, we may consider the
separability condition (3.2) fulfilled.

This method for checking (3.2) is based on visual assessment of the surface

F̂ (r, t) or, if a parametric model has been fitted to the data, plotting of appro-
priate envelopes from simulated realizations from the fitted model. The latter,
however, is in fact a model validation procedure (relying on a specified paramet-
ric form of the smoothing kernel etc.) rather than procedure for checking the
assumption (3.2) alone.

For this reason we focus now on visual assessment of the surface F̂ (r, t). From
the author’s point of view the summary statistic F defined above is not suited for
visual assessment due to high variability of its empirical estimate F̂ – the terms
in the denominator of (4.2) increase substantially the variability of F̂ .

To remedy this, we propose to perform visual assessment of sections of the
surface K̂(r, t) in order to avoid division by empirical estimates of the respective
summary statistics as was the case in (4.2). The idea is based on the observation
that, for distinct values 0 < t1 < . . . < tn, the functions

F ′
1(r) = K(r, t1)− 2πr2t1, r ≥ 0,

...

F ′
n(r) = K(r, tn)− 2πr2tn, r ≥ 0,

are the same (up to a multiplicative constant) if the separability assumption
(3.2) is fulfilled. This is a direct consequence of the structure (4.1). In or-
der to eliminate the multiplicative constants we propose to specify an interval
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[R0, R1], 0 ≤ R0 < R1 <∞, and define

F1(r) =
F ′
1(r)∫ R1

R0
F ′
1(s) ds

, r ∈ [R0, R1],

...

Fn(r) =
F ′
n(r)∫ R1

R0
F ′
n(s) ds

, r ∈ [R0, R1].

Under the assumption (3.2), the functions F1, . . . , Fn are all equal. By pluging
in the empirical estimates of K(r, t) we may easily obtain estimates of F1, . . . , Fn
and visually assess if they are the same. If not, the assumption (3.2) should be
dropped. Naturally, the variability of the estimated values can make the decision
very difficult.

Also, we can do the same for the perpendicular sections of the surface K(r, t),
i.e. specify the values 0 < r1 < . . . < rm and define functions Gi(t) based on the
values of K(ri, t), i = 1, . . . ,m. This can provide complementary information.

However, based on a preliminary analysis, the variability of the estimates can
still be high and it may be difficult to decide whether the plotted curves F̂i(r)

(or Ĝi(t)) are the same. To simplify the decision-making process we recommend

using interactive sequential plotting of the functions F̂i(r) (or Ĝi(t)), i.e. plotting
the functions one-by-one with the possibility to step backwards and forwards, to
see if there is an apparent trend in the values. Such a functionality is provided
e.g. by the command Manipulate in the Mathematica software.

In an attempt to justify this approach we have inspected the theoretical curves
Fi(r) and Gi(t) for a particular ambit process model for which the separability as-
sumption (3.2) is violated. The differences in the curves were visible but relatively
small in scale and we observed that one could not reliably detect the differences
if empirical estimates were used instead of the theoretical values. However, it re-
mains a question of further investigation whether for other models the proposed
approach can sucessfully detect violations of the separability assumption (3.2).

4.2 Other moment estimation methods for

space-time processes

We hypothesise that for inhomogeneous space-time shot-noise Cox point process
models considered in Chapter 3, i.e. models fulfilling the separability assumptions
(3.1) and (3.2), it is possible to develop step-wise estimation procedures based
on projection processes Xt and Xs similar to the one described in Section 3.1
but using composite likelihood or Palm likelihood approach instead of minimum
contrast estimation.

The first- and second-order moment characteristics of such processes are avail-
able in a closed form, assuming a suitable parametric form of the smoothing ker-
nel, see Equations (3.5), (3.6) and (3.7). Hence, it is likely that the composite
likelihood or the Palm likelihood method can be employed for the projection pro-
cesses Xt and Xs and that the asymptotic properties of the resulting estimators
can be established using the methodology described briefly in Section 3.1 and in
detail in Section 3.2.

97



It is possible that for certain space-time point process models such estimators
would prove to be more efficient on finite observation windows than the minimum
contrast estimator. We observed this in the spatial setting in the paper Dvořák
and Prokešová (2012). However, investigation of such estimators still remains
a question of further research.

4.3 Asymptotics for minimum contrast estima-

tion with the g-function

As discussed in Section 2.1.1, paramater estimation for certain classes of Cox
point process models is possible using minimum contrast estimation with either
theK-function or the pair-correlation function g (for isotropic processes for which
g is a function of a scalar argument). For this, one needs empirical estimates of
K or g. While K can be estimated in a straightforward way by counting pairs of
points within certain distance and with proper weights, empirical estimation of
g is usually performed by kernel smoothing.

The need to specify the smoothing kernel and its bandwidth is the reason
why the minimum contrast estimation based on the K-function (denoted here
MCEK) has seen much more use than the version based on the pair-correlation
function g (denoted here MCEg). However, it has been shown by simulation
studies that in many situations using MCEg results in better precision and lower
bias of the estimates than using MCEK, see Dvořák and Prokešová (2012) and
Guan (2009). Also, cross-validation procedures have been developed for choosing
optimal bandwidth of the smoothing kernel, see Guan (2007a,b). This makes
MCEg a viable alternative to MCEK.

Asymptotic properties (consistency, asymptotic normality) of the estimates
obtained by MCEK have been studied and established under the increasing win-
dow asymptotics in different settings and for different classes of Cox point process-
es in Heinrich (1992), Guan and Sherman (2007) and Waagepetersen and Guan
(2009), and also in the previous chapter of this thesis. These results provide
theoretical justification of the estimation method in the sense that using more
information from larger and larger observation windows increases the precision
of the estimates.

For estimates obtained by MCEg such asymptotic results have not been es-
tablished yet, mainly due to the lack of convergence results for the empirical
estimates of the pair-correlation function. This has been remedied by the recent
paper Heinrich and Klein (2014) which formulates conditions under which consis-
tency and asymptotic normality of the empirical estimates of the pair-correlation
function hold.

The method of parameter estimation by MCEg can be reformulated to the
framework of estimating equations (Mukhopadhyay, 2004). Hence, it is possi-
ble to establish consistency of the estimates by the methodology of estimating
equations, using e.g. results of Crowder (1986). In the field of spatial statistics
these results were used e.g. in the work of Guan (2006) or Prokešová and Jensen
(2013).

Asymptotic normality of the estimates can be established under α-mixing as-
sumption (Doukhan, 1994) using an appropriate central limit theorem for random
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fields. The first formulation of such a theorem is due to Bolthausen (1982). It was
later extended to non-stationary random fields in Guyon (1995) and to triangular
arrays of non-stationary random fields in Karácsony (2006). These results were
used in the context of parameter estimation for point processes in the work of
Waagepetersen and Guan (2009) and Coeurjolly and Møller (2014).

Combining the results from the three above-mentioned areas (convergence
of the empirical estimates of the pair-correlation function, estimating equations
methodology and central limit theorems for random fields) it is likely that asymp-
totic properties for the MCEg estimator can be established under suitable con-
ditions. This would provide theoretical justification of MCEg as a method for
estimation of clustering parameters and set the basis for construction of confi-
dence regions and statistical tests of parameter hypotheses.

4.4 Model validation for shot-noise Cox

processes

After fitting a parametric model to the observed point pattern—either spatial or
space-time—a goodness-of-fit analysis should naturally follow in order to reveal
possible inadequacy of the model. We discuss here solely the inhomogeneous
scenario as the methods can be easily applied in the stationary case.

According to the discussion in Jalilian and Vahidi-Asl (2011, Sec. 1), model
validation for planar Cox processes is currently performed by a comparison be-
tween a tractable second-order characteristic (such as theK-function) of the fitted
model and its empirical estimate (Waagepetersen, 2007). In addition to the vi-
sual comparison, simulation-based tests can be performed based on maximum or
integral deviation measures or envelopes, see e.g. Myllymäki et al. (2013) and
the references therein.

However, one should not be using the same characteristic both for model fit-
ting and validation as this may result in incorrect conclusions. Since the moment
methods commonly used for estimation for Cox processes are based on second-
order properties of the processes in question (see Chapter 2) plots of e.g. the
pair-correlation function or the K-function cannot be used for validation of the
fitted model.

Also, different Cox processes can have the same second-order properties as il-
lustrated in Møller and Waagepetersen (2004, Ex. 5.7). Thus higher-order charac-
teristics should be considered for checking the goodness-of-fit.

One possible approach was introduced in Jalilian and Vahidi-Asl (2011) who
proposed a residual analysis based on Laplace functionals. We remark that the
Laplace functional is defined for all point processes and uniquely characterizes the
distribution of the process, see Daley and Vere-Jones (2008, Sec. 9.4). However,
not all point processes have the Laplace functional in a tractable form.

The residual analysis described in Jalilian and Vahidi-Asl (2011) was origi-
nally developed for inhomogeneous Poisson-Neyman-Scott processes but can be
extended to shot-noise Cox processes and any point process with tractable Laplace
functional (Jalilian and Vahidi-Asl, 2011). The method uses Q-Q plots and the
so-called four-panel diagnostic plots corresponding to those introduced in Bad-
deley et al. (2005). The advantage is that these plots can reveal (Jalilian and
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Vahidi-Asl, 2011, Sec. 4.3):

• inadequacy of the model in describing spatial trend of data,

• covariates which must be included in the model,

• outliers in the data,

• overall disagreement, including spatial trend and clustering features,
between data and the fitted model.

On the other hand, the method requires choosing type (scale) of the residuals
and also choosing an appropriate collection of sets to be used in the analysis (the
problem is that the residual set function is not additive (Jalilian and Vahidi-Asl,
2011, Sec. 4.2). Moreover, the diagnostic relies mostly on visual examination of
the plots and simulation-based approach must be used in order to obtain envelopes
for the Q-Q plots (for possible testing).

In order to streamline the model validation we propose to use a functional
statistic based on Minkowski functionals (Schneider, 1993, Sec. 4.2) to perform
global envelope testing (Myllymäki et al., 2013). The approach is based on the
ideas presented in Parker et al. (2013).

Let X be a planar point process observed in a compact set W . For a given
value r > 0 we center a disc with radius r on each point and analyze the topology
of the set (the union of the discs)

Z(r) =
∪

x∈X∩W

B(x, r).

We calculate the Minkowski functionals of Z(r), i.e. the area A(r) of Z(r),
together with its perimeter P (r) and its Euler-Poincaré characteristic χ(r), see
Parker et al. (2013). For each radius r the Minkowski functionals A(r), P (r), χ(r)
depend on the locations of all observed points simultaneously and hence they
incorporate information about interactions of all orders.

For the analysis we specify an interval [r0, r1], 0 ≤ r0 < r1 <∞, and calculate
A(r), P (r) and χ(r) for all values of r in [r0, r1], hence obtaining the tree functional
statistics. Now we concatenate them together and use this aggregate functional
statistic for simulation-based goodness-of-fit testing. For this purpose e.g. the
methods presented in Myllymäki et al. (2013) can be used.

Based on the simulation study described in Parker et al. (2013) we expect
the Euler-Poincaré characteristic χ(r) to be the most informative of the three
Minkowski functionals and the most capable of distinguishing between different
Cox process models. This is motivated by the fact that χ(r) can vary more freely
with increasing r than A(r) or P (r). Consequently, it may be beneficial to base
the analysis solely on χ(r).

Note that the procedure outlined above can indicate disparities between the
fitted model and the observed data but it provides no insight into the cause of
poor fit. While the residuals of Jalilian and Vahidi-Asl (2011) can be viewed as
a diagnostic tool, our procedure can be used only for model validation. However,
it provides means of formal hypothesis testing and is much more straightforward
than the residual analysis since only the values of r0 and r1 need to be specified.

To conclude with, we remark that adjusting the model validation procedures
to space-time setting also remains a question of further research.
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Conclusion

In the present thesis we have considered the problem of statistical inference for
parametric spatial and space-time Cox point process models, both stationary and
those fulfilling the SOIRS property (second-order intensity reweighted stationa-
rity). We focused on moment estimation methods, i.e. we avoided the computa-
tionally demanding maximum likelihood estimation and Bayesian inference.

We have reviewed the state-of-the-art moment estimation methods for the
stationary spatial Cox point processes, i.e. the minimum constrast estimation
and the composite likelihood and Palm likelihood approaches, see Chapter 2. We
compared the performance of these estimation methods for particular stationary
shot-noise and log-Gaussian Cox process models by means of a simulation study
and conclude that there is no uniformly best estimator and it depends on the
particular model and the parameter of main interest which estimation method
should be used. We also briefly discuss two-step estimation procedures for inho-
mogeneous SOIRS Cox processes.

The core of the thesis lies in Chapter 3 where we proposed a step-wise esti-
mation procedure for inhomogeneous space-time shot-noise Cox processes with
a particular non-trivial structure. The method takes advantage of the projections
of the space-time process into the spatial and temporal domain, respectively, in
order to reduce dimensionality of the problem and estimate different parts of the
model separately. We have established consistency and asymptotic normality of
the resulting estimator under the increasing window asymptotics and compared
its performance to a previously published estimation method in a simulation
study. The results indicated that at least for the models considered in the si-
mulation study our method using projection processes produces better precision
estimates than the previous method.

To remedy the issue of cluster overlapping in the projections—a particular
drawback of the method using projection processes—we proposed a refined esti-
mation method which avoids projection to the temporal domain where the prob-
lem of information loss is the most prominent. We have established consistency
and asymptotic normality also for the refined method, again under the increasing
window asymptotics. The main challenge in showing the asymptotic properties—
both for the refined method and for the method using projection processes—was
in the different normalization needed for different estimation steps.

We have also shown in a simulation study that the refined method does not
suffer from the problem of cluster overlapping (at least when the clusters are
reasonably tight in the spatial domain and the number of observed points is not
extremely high) and hence it genuinely remedies the drawback of the method
using projection processes. When comparing performance of the refined method
to the method using projection processes, the negative bias of the estimates of the
temporal clustering parameter has been removed and the relative mean squared
error has been considerably reduced. Hence, substantial improvement in precision
of the estimates is achieved when using the refined method.

In the final chapter we discussed several interesting open questions raised by
the work described in this thesis and we indicated possible directions of further
research. However, answering such questions lies outside the scope of this thesis.
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In conclusion, the main contribution of this thesis lies in the two estimation
methods proposed for inhomogeneous space-time shot-noise Cox processes. We
have studied both the asymptotic properties of the estimators (which lay ground
for construction of confidence regions and hypotheses testing) and their empirical
performance for point patterns observed on middle-sized windows (which provides
the prospective users a better insight and hints on choosing the necessary tuning
constants). This makes the proposed methods ready-to-use in practical situations.
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in B. Finkenstädt, L. Held and V. Isham, eds, ‘Statistical methods for spatio-
temporal systems’, Chapman and Hall/CRC, Boca Raton.
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Prokešová, M., Dvořák, J. and Jensen, E. B. V. (2014), ‘Two-step estimation
procedures for inhomogeneous shot-noise Cox processes’. Submitted.
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