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Abstract 

Introduction: The epigenetic modifications can significantly affect and alter the gene activity 

by regulating their expression, having direct impact on various processes in human body. 

Epigenetic processes are involved in ethiopathogenesis of many diseases. From this point of 

view, MHC genes are very important as they were linked to many autoimmune disorders, for 

example type 1 diabetes mellitus. In general autoimmune diseases appear to be connected to 

certain MHC class II genes. 

Aims: The aim of this thesis is to determine the relationship between expression levels and 

histone modifications present in the promoter area of MHC class II gene, DQA1. Moreover, 

we also analyze and compare the DQA1 gene mRNA expression depending on the QAP 

promoter allele. 

Methods: We isolated both nucleic acids (DNA and RNA) and leukocytes from peripheral 

blood samples collected from voluntary donors. DNA was utilized for genotypization of 

individuals. RNA was subjected to reverse transcription and the quantitative PCR was 

performed in order to determine the level of expression. Leukocytes were used for chromatin 

immunoprecipitation, which was evaluated using quantitative PCR. 

Results: The expression level of QAP allele 3.1 was found to be higher than for the rest of the 

alleles Allele 4.1A showed, on the other hand, expression significantly lower.  Histone 

modifications were measured for DQA1 alleles *01, *02, *03 and *05. No statistically 

significant relationship between allelic expression and histone modifications present was 

found. 

 

Keywords: MHC class II, DQA1, epigenetics, histone modification, RNA expression, 

genotypization 
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Abstrakt 

Úvod: Epigenetické modifikace mohou mít významný vliv na na aktivitu genů regulací jejich 

exprese, čímž mohou přímo ovlivnit mnohé procesy v lidském těle. Epigenetické procesy se 

také podílejí na etiopatogenezi mnoha chorob. Z tohoto úhlu pohledu se MHC geny jeví jako 

zvláště důležité, protože jsou spojeny s mnoha autoimunitními poruchami, například 

s diabetes mellitus prvního typu. Autoimunitní choroby se obecně zdají být úzce propojeny 

s určitými MHC geny II. třídy. 

Cíle: Cílem této práce je určit vztah mezi úrovní exprese a přítomností histonových 

modifikací v promotorovém úseku MHC genu II. třídy DQA1. Dále analyzujeme a 

srovnáváme exprese mRNA genu DQA1 v závislosti na přítomné QAP alele promotoru. 

Metody: Ze vzorků periferní krve od dobrovolných dárců jsme izolovali nukleové kyseliny 

(DNA i RNA) a leukocyty. DNA byla nadále využita pro genotypizaci jedinců. RNA byla 

podrobena reverzní transkripci a následně kvantitativní PCR za účelem vyhodnocení úrovně 

exprese. Leukocyty byly použity pro chromatinovou imunoprecipitaci, která byla 

vyhodnocena pomocí kvantitativní PCR. 

Výsledky: Úroveň exprese QAP alely 3.1 byla zvýšená oproti ostatním alelám. Alela 4.1A se 

naopak exprimovala na významně nižší úrovni. Histonové modifikace byly zjištěny pro 

DQA1 alely *01, *02, *03 a *05. Mezi expresí a přítomnými histonovými modifikacemi však 

nebyl nalezen žádný statisticky významný vztah 

 

Klíčová slova: MHC II. třídy, epigenetika, histonové modifikace, RNA exprese, genotypizace 
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1. Introduction 

The epigenetics, as the way to alter the activity and functionability of genes without 

changing the actual genetic code and with the possibility to pass these alterations to the 

progeny, can be counted amongst newer fields of interest, as it was named and defined for 

the first time only several decades ago. Soon it became clear that epigenetic mechanisms, 

including for example DNA methylation or histone modification, can have a significant 

impact on our lives.  

It is known for some time now that autoimmune diseases are often influenced by the 

environment we live in as much as by our genetic predisposition, it was however not clear 

how can these factors interact in autoimmune disease outbreak, or how can one prevent the 

other from starting it on its own. This mystery has only begun to unravel in recent years, 

pointing at epigenetic mechanisms as possible answer. These mechanisms were shown to be 

influenced by external factors while having significant influence on basic biological 

processes. 

From genes known to affect autoimmune disorders, MHC genes are especially significant. 

Being the key to specific antigen recognition and thus being crucial for adaptive immunity 

mechanisms, any changes can have a great influence on our capability to deal with potential 

threats, both external and internal. Our research group is studying MHC class II genes DRB1, 

DQA1 and DQB1, their polymorphisms, epigenetic regulation and possible connection to 

type 1 diabetes mellitus. 

The purpose of this thesis is to study the activity of allelic variants of the DQA1 gene in 

healthy subjects. For this purpose, blood samples were collected from volunteers and 

further processed.  That includes the genotypization from isolated DNA to identify DRB1, 

DQA1 and DQB1 alleles carried. In order to determine their relative activity two main 

analyses have been performed. First, gene expression of DQA1 alleles was determined at the 

level of mRNA quantification. Second, isolated leukocytes were subjected to the chromatin 

immunoprecipitation to study the histone modifications in promoter DQA1 region. Last but 

not least, comparison of obtained data with the results of mRNA expression level 

measurements was investigated. 
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2. Literature review 

2.1. Epigenetics 

The term „epigenetics“ describes the study of changes in phenotype or gene expression that 

are not based on DNA sequence and can be heritable. The term itself was first used by C. H. 

Waddington (2012), geneticist and embryologist who performed significant studies on the 

development of Drosophila wings. Epigenetic regulation of the genome is important for 

maintaining its stability and proper development and differentiation of the cell. This 

regulation can be influenced by external factors, as well as aging processes. Various cellular 

mechanisms are currently included in the category of epigenetic processes, including crucial 

events connected to organism development, such as gene imprinting or X chromosome 

inactivation (Payer, Lee, & Namekawa, 2011). 

2.1.1. DNA methylation 

It is important to notice that while DNA methylation is fundamental for vertebrates, 

significantly lower amounts of methylated DNA were found in insect (Bird et al., 1995). Many 

bacteria, on the other hand, possess unique DNA adenine methylase, capable of adding 

methyl group on adenine in specific GATC sequence (van Steensel & Henikoff, 2000). It is, 

therefore, clear that described epigenetic mechanisms are not universally applicable. The 

most basic mechanism of epigenetic regulation, DNA methylation is accomplished by 

transferring the methyl group from S-adenosyl methionin to cytosine, leading to the creation 

of 5-methylcytosine. This process is specific for CpG sequence. The percentage of 

methylated CpGs in DNA strand varies depending on the type of tissue (Ehrlich et al., 1982). 

Methylation itself is performed by proteins called DNA methyltransferases (Dnmt). Some of 

them – Dnmt3a and Dnmt3b - are active during embryogenesis and cell differentiation, 

performing de novo methylation which is crucial for embryonic development. They have, 

however, no impact on the maintenance of already methylated patterns (Okano, Bell, Haber, 

& Li, 1999). That is dependent on another type of DNA methylases, namely Dnmt1, with its 

activity being connected to DNA replication. (Pic.1) Once there, Dnmt1 is able to recognize 

methylation of CpG sites on parent strand and subsequently catalyses the methylation of 

corresponding CpG sites on newly replicated strand (Leonhardt, Page, Weier, & Bestor, 

1992).  
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Pic.1 - The mechanisms on the DNA methylation heritability. DNA methyltransferase 1 (not shown) only adds 
methyl group to cytosine in CG pair, where corresponding CG pair on opposing strand is already methylated 
(http://www.web-books.com/MoBio/Free/Ch7F2.htm) 

 

In 5‘ region of many genes, often in promoters, there are specific groups of unmethylated 

CpGs, called „CpG islands“. They are defined as a regions longer than 500 base pairs with 

more than 55% CG content, also CpG to GpC ration must be higher than 0,6 (Takai & Jones, 

2003). The methylation of these islands does not always correlate with the activity of the 

given promoter and are often unmethylated in genes that show increased levels of lysine 4 

dimethylation of histone H3, suggesting a relationship between CpG island methylation and 

this specific chromatin posttranscriptional modification (Weber et al., 2007). 

DNA methylation is an important mechanism for the regulation of the transcription, having 

significant influence on the activity of the gene expression. Certain transcription factors are 

unable to bind to DNA strand in case it is methylated (Comb & Goodman, 1990). Another 
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type of transcription regulation is performed by methylation dependent binding proteins – 

MDBPs – which are possibly linked to gene silencing (both specific and chromosome-wide) 

and heterochromatin formation. Unlike the aforementioned example, these factors interact 

primarily with methylated DNA. They have a typical methyl-CpG binding domain, allowing 

them to interact specifically with the methylated DNA strand (Nan, Meehan, & Bird, 1993), 

and a transcriptional repression domain. They appear to be of primary significance for the 

transcription regulation, compared to direct suppression of transcription factor binding by 

methylation (Nan, Campoy, & Bird, 1997). 

2.1.2. The chromatin structure and post-translational modifications of histones 

Chromatin is a structure common to all eukaryotes that provides a scaffold for basic 

processes like DNA replication and transcription. Two forms of chromatin are generally 

described. Firstly, heterochromatin, condensed form which can be found in abundance 

during mitosis and meiosis and mostly lacks DNA regulating activity. Secondly, euchromatin, 

decondensed form providing suitable environment for DNA regulation. There are notable 

differences in euchromatin/heterochromatin ratio between differentiated somatic cells and 

pluripotent stem cells, with more chromatin in decondensed form present in stem cells. This 

correlates with significantly higher levels of transcription, both in coding and non-coding 

regions (Gaspar-Maia, Alajem, Meshorer, & Ramalho-Santos, 2011). The basic unit of 

chromatin is a nucleosome. Each nucleosome represents 147 base pairs long sequence of 

DNA strand, wrapped in two turns around the complex of eight core histone proteins – 

dimers of H2A, H2B, H3 and H4. There are also H1 histones present, known also as „linkers“. 

Their function is to bind at entry and exit sites and lock the DNA on the octamer, allowing 

the creation of higher order structures (Eickbush & Moudrianakis, 1978). Each of the core 

histones contains N-terminal „tail“, flexible structure extending outside the histone-DNA 

complex, which is a significant target area for post-transcriptional modifications and due to 

its binding capabilities it can also potentially modify higher order structure of the 

nucleosome. The post-transcriptional modifications and remodeling of chromatin structure 

itself can appear simultaneously, cooperating towards common goal. One notable example 

of such a situation would be DNA double-strand break repair process (Gospodinov & Herceg, 

2013).  
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Post-translational modifications are one of the most important epigenetic mechanisms and 

play an important part in activating or silencing specific genes, affecting many vital 

processes, for example the cellular differentiation (Clark & Felsenfeld, 1971) or genome 

stability maintenance (Peters et al., 2001). Most significant post-transcriptional 

modifications found mostly on histone tails include acetylation, methylation, 

phosphorylation and ubiquitination; there are several more that appear less frequently, 

these include sumoylation, citrullination and ADP-ribosylation. These modifications are 

thought to appear in certain combinations, creating the so-called „histone code“ (Strahl & 

Allis, 2000).  

There is no general rule which could be applied universally to decode the histone code; 

certain modifications on certain amino acids are however connected with certain levels of 

transcription. It was thought initially that methylation of lysine residues causes repression of 

transcription, it was later determined though that in reality it is not that simple. Studies have 

shown that it also depends not only on the position of given lysine, but also on the number 

of methyl groups present. Good example is lysine 4 on histone H3. Lysine methylation in this 

particular case can result in three states: mono-, di- and trimethylation. While dimethylated 

lysine 4 was found in both transcriptionally active and inactive euchromatic regions, 

trimethyl residue was present exclusively in active sites. Therefore, trimethylated lysine 4 

appears to be connected to the active state of gene expression contrary to general rule 

(Santos-Rosa et al., 2002). It was also shown that different types of methylation can be 

connected to different sites of chromatin (Rice et al., 2003). Methylation itself is performed 

by a family of proteins called histone methyltransferases. It is worth noting that histone 

methyltransferases can be further divided to two groups depending on whether they 

transfer methyl groups to lysine or arginine, as arginine is the second amino acid capable of 

being methylated (Clarke, 2013). 

Histone acetylation is another type of post-translational modification which plays a crucial 

role in regulating gene expression and is, similarly to methylation, catalyzed by specific 

proteins, histone acetyltransferases. Similarly, histone deacetylases are proteins capable of 

removing acetyl groups from histones. Acetylation can occur at lysines on N-terminal histone 

tails, which leads to neutralization of its otherwise positive polarity of histone proteins and 

the increase of hydrophobicity (Kuo & Allis, 1998). That results in the weakening of its bond 
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to negatively charged DNA strand and leads to increased accessibility for transcription 

factors.  However, unlike methylation, histone acetylation plays yet another important role, 

as studies suggest it participates directly in nucleosome assembly during replication.  During 

that process, H3/H4 tetramer binds to the DNA, followed by the formation of H2A/H2B 

dimers. Histone subunit H4 is commonly acetylated on its N-terminal domain and frequently 

interacts with other subunits, mainly H2A. Acetylation can influence these interactions, 

having possibly impact on the final structure of assembled chromatin (Lee, Wei, & Lee, 

2011).  

2.1.3. The relationship between DNA methylation and chromatin structure  

There is a distinct relationship between the methylation of CpG islands in promoter regions 

and chromatin configuration. When the islands are not methylated, usually the chromatin 

structure supports active transcription as well. That includes significantly heightened levels 

of acetylation on histones H3 and H4 and reduced amount of histone H1. Also, nucleosome-

free regions can be found (Tazi & Bird, 1990).  

2.1.4. RNA interference 

RNA interference is a process of gene expression inhibition using specific complementary 

small RNA molecules. Several types of RNA are recognized to have the ability to participate 

in this process, for example siRNA (small interfering RNA) or miRNA (microRNA). In recent 

years, a relationship was found between RNA interference and chromatin formation. 

Double-stranded RNA containing promoter sequence has been shown to be capable of 

initiating de novo methylation of plant promoters and causing transcriptional silencing of the 

gene (Mette, Aufsatz, van der Winden, Matzke, & Matzke, 2000). Similarly, experiments 

performed on mice suggested a link between piRNA (Piwi-interacting RNA) and transposon 

methylation in germ cells (Aravin et al., 2008). RNA interference is clearly tied to 

heterochromatin formation as well, since several studies have shown its connection to the 

methylation of lysine 9 on histone H3 (Pal-Bhadra et al., 2004; Volpe et al., 2002). 
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2.2. Major histocompatibility complex 

The major histocompatibility complex (MHC) is a group of highly polymorphic genes, 

significant for the correct function of immune system. It encodes a large group of cell surface 

molecules present in all vertebrates. The main function of these molecules is to present 

peptides to T-lymphocytes and by this way to cause their activation or tolerance status. 

Several classes of MHC can be distinguished.  

MHC class I glycoproteins can be found on all nucleus-containing cells, their function is to 

present peptides of cytosolic origin (both its own and foreign peptides) on the cell surface. 

MHC class I - peptide complexes are recognized by CD8 positive („cytotoxic“) T-lymphocytes, 

which in turn are able to trigger apoptotic pathway. This is a significant process for the 

effective defense against intracellular pathogens such as viruses. The MHC class I structure 

consists of α chain containing three extracellular domains, and also transmembrane and 

intracellular parts, and β2 microglobulin subunit. The chain of β2 microglobulin is encoded 

by its own special gene.  

MHC class II glycoproteins are under normal conditions found only on specialized antigen-

presenting cells (APC), including dendritic cells, macrophages and B-lymphocytes. These cells 

can process the proteins of extracellular origin and present their fragments on the cell 

surface. Other cell types, such as fibroblasts or vascular endothelial cells, are able to express 

MHC class II proteins under cytokine stimulation. MHC class II - peptide complexes are 

recognized by CD4 positive („helper“) T-lymphocytes, which in turn leads to T-lymphocytes 

activation and B-lymphocytes maturation connected with antibody production. The MHC 

class II structure consists of α and β chains, each of them being composed of two 

extracellular domains, plus transmembrane and intracellular parts.  

Apart from these transmembrane molecules, MHC class III soluble glycoproteins were also 

described. This group includes secreted proteins with non-antigen-specific immunological 

functions, such as several components of the complement system (C2, C4) or certain 

cytokines, tumor necrosis factors and heat shock proteins (TNF-α, HSP70) (Cameron, 

Tabarias, Pulendran, Robinson, & Dawkins, 1990). Some authors further differentiate 

between MHC class III and class IV glycoproteins (Gruen & Weissman, 2001). When studying 

humans, MHC molecules are designated as the human leukocyte antigens (HLA).   
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2.2.1. MHC class I structure 

The MHC class I molecule is constituted by two polypeptide chains, α and β. Main α chain is 

polymorphic and is comprised of three domains, α1, α2 and α3. The gene for α chain is 

encoded by MHC region, whereas the gene for β chain – β2 microglobulin – is located 

separately, on chromosome 15. Both chains are connected via noncovalent interaction of β2 

microglobulin and the α3 domain, which possesses relatively conserved structure compared 

to other two domains (Lopez de Castro, Barbosa, Krangel, Biro, & Strominger, 1985). The 

groove for presented peptide is located between α1 and α2 domains. Peptides are bound to 

MHC molecule in endoplasmic reticulum, after being cleaved by proteasome to the length of 

8-9 amino acids. The groove has a limited space in MHC class I molecules and, being closed 

at both ends, cannot therefore bind longer peptides. It is worth noting that only by binding 

peptide in its groove reaches the MHC class I molecule its full stability. While awaiting the 

peptide in endoplasmic reticulum, it is stabilized by interactions with chaperone proteins, 

such as calreticulin or tapasin (dedicated chaperone protein, connecting peptide 

translocation into endoplasmic reticulum with the directing towards MHC class I molecule)  

(Neefjes, Jongsma, Paul, & Bakke, 2011). 

2.2.2. MHC class II structure 

The structure on MHC class II molecule is also that of a heterodimer, containing α and β 

chains that are however, unlike HMC class I chains, both encoded by MHC genes. Each chain 

is comprised of two domains, α1 and α2 (β1 and β2, respectively). Both chains are, similarly 

to MHC class I chains, connected via noncovalent interactions. The binding groove is created 

by α1 and β1 domains and it is not closed on its ends, allowing larger peptide fragment to 

interact and subsequently be presented. The usual length of presented peptide can 

therefore vary and usually is up to 20 amino acids (McFarland & Beeson, 2002). During 

proteosynthesis in endoplasmic reticulum, the peptide-binding groove is blocked by a 

trimeric polypeptide called invariant chain (also Ii). This stabilizes the molecule and also 

prevents it from binding any other peptide from its surroundings (that being a role of MHC 

class I molecules) (Roche & Cresswell, 1990). It also contains a targeting motif, directing MHC 

class II/Ii complex towards Golgi apparatus and further, to endosomes (Bakke & 

Dobberstein, 1990). Here, the invariant chain undergoes proteolysis facilitated by 

cathepsins, only leaving behind a small fragment called class II-associated Ii peptide (CLIP). 
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This fragment continues to block the binding groove until it is released by HLA-DM protein 

and replaced by its final ligand (Sloan et al., 1995). 

2.2.3. The polymorphism of MHC region 

Studies of human genome showed that MHC region, with length of approximately 4 Mbps, is 

located on chromosome 6. (Pic.2) Typical for this region is high gene density and high 

polymorphism.  Distinct loci can be further distinguished. MHC class I region encodes A, B 

and C transmembrane glycoprotein single chains; MHC class II region encodes DP, DQ and 

DR transmembrane glycoprotein double chains and also contains DM and DO loci, whose 

products help facilitate the binding of peptides to MHC class II in endosomes (Majumder & 

Boss, 2011). MHC glycoproteins are unique, as they are significantly more polymorphic than 

any other human protein. This diversity is positively supported by evolutionary selection 

mechanisms. The advantage of increased rate of heterozygosity is the increased ability of 

antigen recognition and presentation, allowing the organism to react more effectively to the 

constant evolution of pathogens (Kim & Polychronakos, 2005). 

 

Pic.2 - MHC region on chromosome 6. Each class II molecule consists of α and β chains, encoded by their 
respective genes. Class I β chain is created by microglobulin molecule, encoded elsewhere, on chromosome 15. 
(Kim & Polychronakos, 2005) 
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MHC polymorphism can be linked to several autoimmune disorders, increasing or lowering 

the chance of their manifestation (Cruz-Tapias et al., 2012). Examples of MHC-influenced 

diseases, that were linked to specific MHC haplotypes more than 40 years ago, include 

myasthenia gravis, typical symptom of which is the dysfunction of acetylcholine receptors on 

neuromuscular junctions (Pirskanen, Tiilikainen, & Hokkanen, 1972), systemic lupus 

erythematosus (Dostal, Ivanyi, Macurova, Hana, & Strejcek, 1977) or rheumatoid arthritis 

(Stastny, 1978), and lately type 1 diabetes (Rotter, 1981)). Usually, affinity to autoimmune 

diseases is connected to certain alleles of DQ and DR genes of MHC class II region. It is, 

however, problematic to assign specific contribution and importance to any given gene due 

to significant effect of linkage disequilibrium – a preferential association of neighboring 

alleles, correlating with their common descendant from single ancestral chromosome, that 

are often inherited as a block (Reich et al., 2001). Therefore, entire haplotypes (groups of 

neighboring alleles) are taken into consideration when trying to map the influence on 

diseases (Kim & Polychronakos, 2005). 

2.2.4. The role of MHC polymorphism in autoimmune disorders 

As mentioned above, certain variants of MHC alleles can support the development of several 

autoimmune disorders. There are more factors playing a role, for example gender (as 

women has been shown to be more prone to suffer from many autoimmune diseases 

(Shoenfeld, Tincani, & Gershwin, 2012), but the genetic background is among the most 

prominent. From this point of view, MHC genes are especially important. MHC class II 

haplotypes DQ2.5 (alleles DQA1*0501 - DQB1*0201) and DQ8 (alleles DQA1*0301/02 - 

DQB1*0302) play a significant role as a screening marker when celiac disease and type 1 

diabetes are concerned, having a strong predictive value towards the disease manifestation 

in the individual carrying this genetic heritage (Rotter, 1981)van Beek et al., 2013). The 

involvement of both class I and class II MHC genes was further discovered, as positive 

associations were found not only with DR3 (alleles DRB1*0301 – DQA1*0501 – DQB1*0201), 

but also B8 haplotypes (allele B*0801) (Vieira et al., 1993). The other haplotype like 

DQB1*0302 – DRB1*04 were also found to be correlated in newer findings (Fekih-Mrissa, 

Klai, Zaouali, Gritli, & Mrissa, 2013). Studies have, however, shown that the influence of 

MHC haplotype can vary depending on other factors, such as age or ethnicity (Sylvia, 

Samuel, Luis, & Zuzet, 2013). 
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It is, however, not as simple as pointing out specific alleles as “problematic”. As many allelic 

variants can increase the risk of developing an autoimmune disorder, there are other alleles 

that can lower the risk as well. For example, DR1 haplotype (alleles DRB1*0101 – 

DQA1*0101 – DQB1*0501) has been shown to correlate with lower occurrence of 

aforementioned myasthenia gravis (Vieira et al., 1993). Similarly, recent study conducted in 

Japan discovered that DRB1*1302 allele is associated negatively with rheumatoid arthritis, 

providing “protective” effect for its carrier (Oka et al., 2014). 

2.2.5. The relationship between MHC alleles and type 1 diabetes 

Type 1 diabetes, also known as insulin-dependent or juvenile diabetes, is a disorder that is 

caused by autoimmune destruction of pancreatic β cells, located in the islets of Langerhans, 

which are responsible for insulin production. The antibodies against β cells circulating in the 

body are detectable (Cerna et al., 2007). It is also accompanied by T- and B-lymphocytic 

infiltration (Novota, Cejkova, Cerna, & Andel, 2004). This inevitably leads to the increase of 

glucose levels in blood and, when not treated properly, can progress to severe 

complications, such as retinopathy or renal failure. It is one of the most common chronic 

diseases among children and young adults (Schranz & Lernmark, 1998). The incidence of 

type 1 diabetes among children seems to have risen significantly during second half of 20th 

century, generally following linear-increase pattern ever since, varying population from 

population (Gale, 2002). The susceptibility to this disease is influenced by both 

environmental and genetic factors. Type 1 diabetes was shown to be a polygenic disorder, 

influenced both by HLA class I/II genes (Demaine, Hibberd, Mangles, & Millward, 1995) and 

other loci (Davies et al., 1994). Especially influential seem to be HLA class II genes DQA1, 

DQB1 and DRB1. Most risky are haplotypes DR3 (DRB1*0301 – DQA1*0501 – DQB1*0201) 

and DR4 (DRB1*0401/05 – DQA1*0301 – DQB1*0302) (Pugliese & Eisenbarth, 2004). 

2.3. The epigenetics of autoimmune disorders 

Although the role of epigenetic mechanisms is crucial in the expressivity of genes and the 

amount of evidence of its importance in disease (especially cancer) is growing, this area of 

research has been quite neglected until recently, with almost no data being systematically 

collected at the genome level. The current approach is more focused on DNA sequence 

variants, disregarding possible influence on disease progressiveness that epigenetic 

variations can possess (Bjornsson, Fallin, & Feinberg, 2004). Yet, the inactivation of tumor 
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suppressor genes caused by the hypermethylation of CpG islands in promoter regions has 

been firmly established and such epigenetic modification has been found in many tumor 

types - first such discovery was made more than a hundred years ago (Esteller, 2002). There 

are also other diseases where epigenetic mechanisms play smaller or larger role. Among 

those we can count for example imprinting disorders as Prader-Willi and Angelman 

syndromes, or Beckwith-Wiedemann syndrome (Ballestar, Esteller, & Richardson, 2006).  

Autoimmune diseases can be also influenced by epigenetic regulation - epigenetic 

mechanisms are generally considered to be the link between genetic and environmental 

factors. Autoimmune rheumatic diseases like systemic lupus erythematosus or rheumatic 

arthritis have been shown to be connected to significant DNA methylation pattern 

alterations; tissue specificity is also important, as opposed to genetic analysis (Ballestar, 

2011). Study performed on monozygotic twins revealed general decrease of 5-

methylcytosine present in patients with systemic lupus erythematosus; there were 

methylation alterations found in CpG-rich regions of the ribosomal DNA, affecting 18S and 

28S genes (Javierre et al., 2010). Histone modifications are naturally just as significant. 

Experiments on models for systemic lupus erythematosus using histone deacetylase 

inhibitors suggested that several disease-associated genes have their expression affected 

due to histone deacetylation (Reilly et al., 2004). Similarly, significant increase in histone 

acetylation has been found in synovial tissue of patients with rheumatoid arthritis, caused by 

lowered activity of histone deacetylases (Huber et al., 2007). 

Studies on monozygotic twins proved to be invaluable in epigenetic research, allowing 

scientists to compare two individuals with identical genetic background. The epigenetic 

changes are increasing with age and cause the siblings to be more and more genetically 

different. This is suspected to play a role in the development of many diseases; therefore 

there are studies that are trying to use this to uncover more about the factor influencing 

certain conditions. For example, recent study of psoriasis on monozygotic twins showed 

differences in gene expression correlated with DNA methylation to be connected with the 

disease (Gervin et al., 2012).  

Monozygotic twins were also used in study researching type 1 diabetes, which examined 

over a hundred different CpG sites for methylation. Results indeed showed significant 
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differences in methylation status. Among genes included (and affected) was also HLA-DQB1 

(Rakyan et al., 2011). Miao et al. (2012) examined post-translational modifications of histone 

proteins in genes linked to type 1 diabetes, including HLA-DQB1 and HLA-DRB1, in 

monocytes and discovered variations, between patients and controls, in acetylation of Lysine 

9 on H3 histone along the upstream promoter regions of these two genes. This suggests that 

the regulation of these genes could be dependent on the acetylation status of histone 3, 

which in turn could be influenced by type 1 diabetes. In earlier study the same scientist 

analyzed the status of dimethylation on Lysine 9 on H3 histone in lymphocytes between 

patients and controls and revealed statistical significance of histone dimethylation in 

promoter region of CTLA4, another important gene connected to type 1 diabetes (Miao et 

al., 2008). In conclusion, research results show solid link between type 1 diabetes and 

epigenetic modifications and it is apparent that epigenetic studies are crucial for full 

understanding of etiology and pathogenesis of not only this, but also other autoimmune 

disorders. 
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3. The aims of the thesis 

This master’s thesis is a part of a larger ongoing research conducted in the Department of 

General Biology and Genetics on Third Faculty of Medicine, Charles University. This research 

focuses on the influence the epigenetic regulation of MHC class II genes has on type 1 

diabetes mellitus, working with both healthy subjects and diabetics.  The basic hypothesis of 

this paper is that the epigenetic modifications have a significant impact on the MHC class II 

genes expression and therefore increase the allelic variability, given by DNA sequence. Main 

aims pursued in this thesis are: 

 Genotypization of MHC class II genes performed on DNA isolated from peripheral 

blood of healthy volunteers 

 The analysis of DQA1 gene mRNA expression and comparison between QAP 

haplotypes 

 The analysis of the relationship between DQA1 expression levels and histone 

modifications present in the promoter area of DQA1 gene 
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4. Material  

4.1. Chemicals 

Distilled water   

RNAse-free water (Sigma Aldrich) 

Ethanol 96% (Penta) 

 

DNA Isolation 

 

RCLB (Red Cell Lysis Buffer):  

  320 mM sacharose (Sigma Aldrich)  

  1% (v/v) Triton X-100 (Sigma Aldrich)  

  12 mM Tris-HCl pH=7,5 (Sigma Aldrich)  

  5 mM MgCl2 (SERVA)  

 

WCLB (White Cell Lysis Buffer):  

  120 mM EDTA pH=8  

  375 mM NaCl (SERVA)  

 

Proteinase K from Tritirachium album 30 units/mg (Sigma Aldrich)  

10% SDS (Sigma Aldrich)  

6M NaCl (SERVA)  

100% ethanol (Sigma Aldrich) 

dH2O  

RNA Isolation 

QIAamp® RNA Blood Mini Kit (QIAGEN) 

  Buffer EL 

  Buffer RLT  

  Buffer RW1 

  Buffer RPE 
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Reverse transcription 

High Capacity  cDNA Reverse Transcription Kit (Applied Biosystems) 

  10X RT Buffer 

  10X RT Random primers 

  25X dNTP mix (100 mM) 

  MultiScribe reverse transcriptase (50 U/µL) 

HLA Genotypization 

  Olerup SSP™ DR low resolution (GenoVision)   

  Olerup SSP™ DQ low resolution (GenoVision)  

  Olerup SSP™DQB1*02 (GenoVision)  

  Olerup SSP™DQB1*03 (GenoVision) 

  Olerup SSP™ DQB1*04 (GenoVision)  

  Olerup SSP™ DQB1*05 (GenoVision)  

  Olerup SSP™ DQB1*06 (GenoVision)  

  Olerup SSP® DQA1 (GenoVision)  

Taq DNA polymerase (recombinant) 5U/μl 500U (Fermentas) 

Agarose gel electrophoresis 

TBE buffer:  

  890 mM Tris base (Roth)  

  890 mM boric acid (Amresco)  

  20 mM EDTA pH=8 (FNKV pharmacy)  

  dH2O  

Agarose (Invitrogen)  

GelRed Nucleic Acid Stain  (Biotium)  

Bromophenol Blue Loading Solution (Promega)  

100bp DNA Ladder (Central European Biosystems) 

Isolation of blood cells 
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RBC Lysis Buffer 

  NH4Cl (Sigma Aldrich) 

  NaHCO3 (Lachema) 

  Disodium EDTA (Sigma Aldrich) 

  dH2O  

 

Buffer B 

  PBS pH 7.4 (Gibco) 

  0,1% (w) BSA (Sigma Aldrich) 

 

Buffer E 

  PBS pH 7.4 (Gibco) 

  0,1% (w) BSA (Sigma Aldrich) 

  2 mM EDTA 

 

Dynabeads CD14 (Invitrogen) 

Dynabeads CD19 pan B (Invitrogen) 

 

Chromatin Immunoprecipitation 

Chromatin Immunoprecipitation (ChIP) Assay Kit (Millipore) 

 ChIP Dilution Buffer 

 Low Salt Immune Complex Wash Buffer 

 High Salt Immune Complex Wash Buffer 

 LiCl Immune Complex Wash Buffer 

 TE Buffer 

 Phenylmethanesulfonyl fluoride  

 Protein A Agarose/Salmon Sperm DNA 

 Pepstatin A 

 Aprotinin from bovine lung 

5M NaCl 

 

Quantitative PCR 
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Gene Expression Master Mix (Applied Biosystems) 

Primers and probes (IDT) 

4.2. Antibodies 

Anti-trimethyl-Histone H3(Lys9), clone 6F12-H4 (mouse monoclonal) (Millipore) 

Anti-acetyl-Histone H3 (rabbit polyclonal) (Millipore) 

Anti-Histone H3, CT, pan, clone A3S (rabbit monoclonal) (Millipore) 

Normal Rabbit IgG (Millipore) 

 

4.3. Primer and probe sequences 

RNA Expression - Primers and probe for quantitative PCR 

Several primer sequences were taken from the paper of Fernandez et al.(2003) , the rest was 

designed de novo.  

DQA1*01: 

Forward GAAGGAGACTGCCTGGCG 

Reverse CATGATGTTCAAGTTGTGTTTTGC 

DQA1*02: 

Forward TTACGGTCCCTCTTGCCAGTT 

Reverse TTGCGGGTCAAATCTAAGTCTGT 

DQA1*03: 

Forward GGTCCCTCTGGGCAGTACAG 

Reverse CAAATTGCGGGTCAAATCTTCT 

DQA1*04: 

Forward GTACACCCATGAATTTGATGGAGAC 

Reverse CAGGATGTTCAAGTTGTGTTTTGTC 

DQA1*05: 

Forward GATGAGCAGTTCTACGTGGACCT 

Reverse GTAGAGTTGGAGCGTTTAATCAGAC 

DQA1 Total (for all alleles): 

Forward TACAGCTCAGAACAGCAACTGC 

Reverse CCCACAATGTCTTCACCTCCA 

DRA1: 
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Forward GGACAAAGCCAACCTGGAAA 

Reverse AGGACGTTGGGCTCTCTCAG 

Probes: 

DQA1*01 CCTGCGGGTCAAAACCTCCAAATTTG 

DQA1*02,*03 CCACATAGAACTCCTCGTCTCCATCAAATTCAT 

DQA1*04,*05 ACTGTCTGGTGTTTGCCTGTTCTCAGACAA 

DRA1 CAACTATACTCCGATCACCAATGTACCTCCAGAG 

 

Chromatin Immunoprecipitation - Primers and probe for quantitative PCR 

Primer and probe sequences were designed de novo. 

DQA1*01: 

Forward CCCATCCCTCTTGCGACTG 

Reverse GGACTTGAGGAATTGTTCTATGAATAA 

DQA1*02: 

Forward AAAAGAAAAATTCCCATCCCTT 

Reverse GGACTTGAGGAACTGTTCTATGAAGAG 

DQA1*03: 

Forward ACCCATCCCTCTTGCGAA 

Reverse GACTTGAGGAATTGTTCTATGAACAG 

DQA1*04: 

Forward CCCATCCCTCTTGCGACTA 

Reverse CACTCAGAGTGGACTTGAGGAAATA 

DQA1*05: 

Forward ATGCCCATCCCTCTTGCC 

Reverse AGAGTGGACTTGAGGAAATGTACTG 

DQA1 Total (for all alleles): 

Forward AAATGCCCATCCCTCTTGC 

Reverse CTCTACTCAGAGTGGACTTGAGGAA 

Probe: 

CAGACATGCACACACCAGAGAAGATTCCAAT 
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4.4. Instruments 

Single-channel pipettes (HTL) 

Microwave oven EMS2840 (Electrolux)  

Weighing scales Compact 600 (Bosch) 

Autoclave DE-23 (Systec) 

Centrifuge Z 300 (Hermle) 

Centrifuge MPW-51 (Mechanika Precyzyjna) 

Centrifuge Mikro 200 (Hettich) 

C1000™ Thermal Cycler (Bio-Rad) 

Labcycler Gradient (SensoQuest) 

Weighing scales Precisa Model 40SM-200A (Precisa) 

Biological Safety Cabinet Class II - EuroFlow Series (Clean Air Techniek B.V.) 

Vibrating shaker TK3S (Kartell) 

KODAK  Gel Logic 1500 Imaging System (Carestream) 

Power supply CS-300V (Sigma Aldrich) 

Owl™ A1 Large Gel System (Thermoscientific) 

MultiSUB Horizontal Gel System (Cleaver Scientific) 

Biological Thermostat BT 120M (Laboratorní Přístroje Praha) 

Premium U410 Upright Freezer (New Brunswick) 

Upright Freezer (Whirpool) 

Refrigerator (Liebherr) 

 

4.5. Software 

Vector NTI AdvanceTM 11 

KODAK Molecular Imaging Software Standard Edition v5.0.1.27 

SPSS v16.0 

7500 Software v2.0.6 
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5. Methods 

5.1. Subject 

The subject of this study was composed of 39 voluntary blood donors, including students 

and employees of Third Faculty of Medicine and Faculty of Science of Charles University, and 

also family members of type 1 diabetes patients. Gender ration was 14 males to 25 females 

(35,9 %: 64,1%). Age range was 9 to 66 years, average age was 35 years.  The age of two 

donors is unknown. Blood was sampled together with past histories after getting acquainted 

approval. 

5.2. Isolation of nucleic acids 

5.2.1. Isolation of DNA from human blood 

Red Cell Lysis Buffer (RCLB): 54,77 g saccharose, 5 ml Triton X-100, 6 ml 1M Tris-HCl pH=7,5, 

2,5 ml 1M MgCl2.6H2O, dH2O to 500 ml 

White Cell Lysis Buffer (WCLB): 120 ml 0,5M EDTA, 37,5 ml 5M NaCl, dH2O to 500 ml 

All centrifugation steps were performed at 18 000 g 

1) Transfer 0,5 ml of blood sample to 1,5 ml tube and add 1 ml RCLB and centrifuge for 6 

mins 

2) Remove the supernatant and wash the pellet with 1 ml of dH2O, centrifuge for 2 mins; 

repeat washing step once more  

3) Add 235 ul dH2O, 80 ul WCLB, 40 ul 10% SDS and 15 ul Protease K to the pellet and 

resuspend; incubate at 55°C for 30 mins under rolling  

4) Cool the sample to room temperature and add 120 ul of 6M NaCl, mix intensively and 

centrifuge for 6 mins  

5) Transfer the supernatant to the new tube and cetrifuge again for 3 mins  

6) Transfer the supernatant to the new tube again and add 1 ml of 96% ethanol cooled to -

20°C; precipitate the DNA by gentle shaking of the tube and incubate on ice for 20 mins  

7) Centrifuge for 3 mins and remove the supernatant  
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8) Add 1 ml of 70% ethanol and mix for 3 mins; centrifuge for 3 mins and remove the 

supernatant; let the pellet dry  

9) Dissolve the DNA in 100 ul of dH2O and store at -20°C 

5.2.2. Isolation  of RNA from human blood 

Isolation was performed from full human blood using the QIAamp® RNA Blood Mini Kit 

(QIAGEN). β-mercaptoethanol was added to RLT Buffer and 96-100% ethanol was added to 

BPE Buffer prior to the isolation. 

1) Lyse the erythrocytes by adding 5 volumes of EL Buffer to 1 volume of blood sample. 

Incubate on ice for 15 mins, vortex briefly each 5 minutes 

2) Spin at 400 g for 10 minutes at 4°C; remove supernatant carefully 

3) Add 2 volumes of EL Buffer and resuspend the pellet; spin again and remove supernatant 

4) Resuspend the pellet with 600 ul of RLT Buffer 

5) Transfer the sample to QIAshredder column, centrifuge at 18 000 g for 2 minutes at 4°C 

6) Discard the column and add 600 ul 70% ethanol to the filtrate 

7) Transfer the sample to QIAamp column; spin at 12 000 g for 15 seconds and discard the 

collection tube 

8) Wash the column with 700 ul of RW1 Buffer and repeat the spinning; discard the 

collection tube 

9) Add 500 ul BPE Buffer and centrifuge at 12 000 g for 15 seconds 

10) Add another 500 ul of RPE Buffer and centrifuge at 18 000 g for 3 minutes; discard the 

collection tube 

11) Centrifuge again at 18 000 g for 1 minute 

12) Place the column in clean 1,5 ml tube and add 30 ul RNAse-free water on the membrane; 

spin at 12 000 g for 1 minute 

13) Store isolated RNA at -80°C 
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Tab. 5.1 - The composition of PCR reaction mix 

Tab 5.2 - The thermocycler protocol used for genotypization 

5.2.3. Determination of the concentration and purity of isolated nucleic acids 

The quality and quantity of isolated DNA was ascertained with the help of 

spectrophotometer. Measurement was performed at wavelenght λ=260 nm, using the 

A260/A280 and A260/A240 ratios to determine protein and RNA contamination. 

 

5.3. HLA Genotypization 

5.3.1. PCR 

HLA genotypization of isolated DNA was performed with the help of Olerup HLA SSP kits – 

Olerup SSP DQA1 and Olerup SSP DR low resolution. The reaction mix was prepared for 

every sample according to the table 5.1 . 10 ul of the mix was added to each well and the kit 

was subjected to PCR according to the table 5.2. Afterwards, samples were subjected 2% 

agarose gel electrophoresis and assessed using the official Olerup interpretation worksheets. 

 

Reagent Volume  

dH2O  4,92 μl  

PCR Mix  3 μl  

DNA (c=30 ng/ul) 2 μl  

Taq polymerase 0,08 μl  

 

 

Step Temperature Duration Number of cycle repetitions 

Initial denaturation 94 °C 120 s   

Denaturation 94°C 10 s 10 

Annealing and elongation 65°C 60 s 10 

Denaturation 94°C 10 s 20 

Annealing  61°C 50 s 20 

Elongation 72°C 30 s 20 
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5.3.2. Agarose gel electrophoresis 

The horizontal agarose gel electrophoresis in TBE buffer was used to separate and visualize 

the products of PCR. Samples were loaded into 2% agarose gel containing GelRed 

intercalation reagent for the purpose of visualization and separated using the electrical 

current. The voltage was constant, 5V/cm of gel. UV transluminator MUVB 20 (UltraLum, 

USA) was used for evaluation. 

 

5.4. White cells isolation 

5.4.1. Isolation of leukocytes from human blood 

RBC Lysis Buffer (10x concentration): 8,02 g NH4Cl, 0,84 g NaHCO3, 0,37 g EDTA, dH2O to 

100 ml 

1) Transfer 3 ml of the blood sample to 50ml tube and add cold RBC Lysis Buffer to full 

capacity; invert the tube for approximately 10 minutes, until the liquid has clear red color 

2) Spin at 250 g for 15 mins at 4°C, with the cetrifuge set at slow braking; remove the 

supernatant and resuspend the pellet with 10 ml of cold PBS 

3) Repeat the cetrifugation as described above and resuspend the pellet with 3 ml of cold 

PBS 

Next step is crosslinking. From this point forward, the procedure is the same for both 

CD14/CD19 and leukocyte samples. 

Cells were counted from 15 ul of the respective samples using the hemocytometer. 

 

5.4.2. CD 14 and CD 19 cells isolation from human blood 

Buffer B: 0,5 g BSA, PBS to 500 ml 

Buffer E: 0,5 g BSA, 2 ml 0,5M EDTA, PBS to 500 ml 

10x Tris-Gly: 0,47 g glycin, 50 ul 1M Tris-Cl (pH 8), dH2O to 5 ml 
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10x Tris-Gly with protease inhibitors:  930 ul 10x Tris-Gly, 10 ul aprotinin, 10 ul pepstatin, 50 

ul DMSF 

SDS Lysis Buffer: 10 ml 10% SDS, 0,37 g EDTA disodium salt dihydrate (M = 372,2 g/mol), 5 ml 

1M Tris( pH 8.1), dH2O to 100 ml 

 

A) Washing of the beads 

1) Resuspend the beads in its vial and move the required amount (18 ul / 1 ml of blood) to 

new tubes  

2) Add the same amount of Buffer B (for CD14 cells) or E (for CD19 cells) and mix - if the 

amount is lower than 1 ml, add 1 ml instead  

3) Place the tubes on magnet for 1 min; carefully remove the supernatant  

4) Resuspend with Buffer B/E, with the amount equal to the original amount of the beads; 

store on ice 

 

Following steps should be performed on ice unless mentioned otherwise; all centrifugation 

steps occur at 4°C temperature 

B) Removal of free CD14 

1) Make note of the original volume of the blood sample, transfer it to 50ml tube and dilute 

it with double the amountof Buffer E 

2) Centrifuge at 500 g for 10 mins with slow braking on; remove the upper layer of blood 

plasma carefully in order not to disturb the white cell layer beneath  

3) Resuspend with Buffer E to the original volume of the blood sample 
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C) Isolation of CD14 cells 

1) Add the CD14 beads washed in Buffer B in required amount (18 ul / 1 ml of blood); 

incubate at 4°C for 30 mins under rolling  

2) Place on magnet for 3 mins; carefully transfer the supernatant to the new tube marked as 

„CD19“ and place it on magnet again to check whether beads stayed in the original tube, 

without disturbing the bead pellet on the wall 

3) Wash the beads with Buffer B (in approximately the same amount like the original blood 

sample), place on magnet for 3 mins and remove the supernatant  

4) Repeat washing 2-3 more times until the supernatant is clear 

5) Resuspend the beads in 3 ml of PBS 

 

D) Isolation of CD19 cells 

1) Add the CD19 beads to the tube marked as „CD19“, containing the supernatant from the 

step ahead; incubate at 4°C for 20 mins under rolling 

2) Place on magnet for 3 mins; remove the supernatant 

3) Wash the beads with Buffer E (in approximately the same amount like the original blood 

sample), place on magnet for 3 mins and remove the supernatant 

4) Repeat washing 2-3 more times until the supernatant is clear 

5) Resuspend the beads in 3 ml of PBS 

 

5.5. RNA Expression analysis 

5.5.1. Reverse transcription 

In order to obtain cDNA necessary for expression analysis, High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems) was used according to manufacturers instructions. All 

steps were performed on ice. The reaction mix for each reaction was prepared according to 
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Tab. 5.3 - The composition of reverse transcription reaction mix 

 

Tab 5.4 - The thermocycler protocol used for reverse transcription 

 

table 5.3, 200 ng RNA was added. To reach total sample volume of 20 ul, dH2O was added in 

necessary quantity. Samples were  loaded into thermocycler and subjected to program 

described in table 5.4 below. After the completion of the program, samples were stored at -

20°C. 

 

Reagent Volume  

dH2O  4,2 μl  

10x RT Buffer 2 μl 

25x dNTP mix 0,8 μl  

10x RT Random primers 2 μl  

MultiScribe reverse transcriptase 1 μl  

 

Step Temperature Duration 

Hybridization 25 °C 10 min 

Reverse transcription 37°C 120 min 

Enzyme inactivation 85°C 5 min 

 

5.5.2. Quantitative PCR 

To observe the gene product increase in the real time, quantitative PCR was performed. All 

steps were performed on ice. Before adding, cDNA was diluted 10 times, to the final 

concentration 30 ng/ul. Reaction mix was prepared according to table 5.5. 7,5 ul of reaction 

mix was transfered to each well of the plate, all reactions were prepared in triplets. 5 ul of 

diluted cDNA was added to each well. The plate was centrifuged briefly at 2000 g, then it 

was subjected to quantitative PCR program according to the table 5.6.  

 

 

 

 



36 

 

Tab. 5.5 - The composition of quantitative PCR reaction mix 

 

Tab 5.6 - The thermocycler protocol used for quantitative PCR 

 

 

Reagent Volume  

Gene Expression Master 

Mix 

6,25 μl  

Forward primer (10 uM) 0,375 μl  

Reverse primer (10 uM) 0,375 μl  

Probe (5 uM) 0,5 μl  

 

Step Temperature Duration Number of cycle repetitions 

UNG activation 50 °C 2 mins   

Polymerase activation 95°C 10 mins  

Denaturation 95°C 15 s 40 

Hybridization and elongation 60°C 60 s 40 

 

5.6. Histone modification analysis 

5.6.1. Crosslinking 

1) Add 81 ul of 37% formaldehyde to the sample and mix gently; incubate at room 

temperature for 10 mins 

2) Add 333 ul of 10x Tris-Gly with protease inhibitors to stop the process, mix and incubate 

on ice for 3 mins 

3) Centrifuge at 250 g for 5 mins; remove the supernatant 

4) Wash with 3 ml PBS, followed by centrifugation at 250 g for 5 mins; repeat the washing 

one more time 

5) Resuspend the pellet with SDS Lysis Buffer (48 ul / 1 million cells); divide to aliquotes of 

300 ul as a preparation for later sonication 

6)Incubate on ice for 10 mins, then freeze at -80°C 
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5.6.2. Sonication 

Samples were processed using Bioruptor, with cycles set for 30 seconds sonication and 30 

seconds pause, with constant temperature 4°C. CD14/CD19 cells were subjected to 50 

cycles, leukocytes to 5 cycles. 

 

5.6.3. Chromatin Immunoprecipitation 

Elution Buffer: 300 ul 0,1M NaHCO3, 300 ul 10% SDS, 2,4 ml dH2O 

1) Centrifuge sample at 13 000 rpm for 10 mins at 4°C and transfer the supernatant to the 

new tube 

2) Dilute the supernatant with ChIP Dilution Buffer with protease inhibitors tenfold 

3) Pre-clear the sample by addind Salmon Sperm DNA/Protein A Agarose-50% Slurry to the 

sample (75 ul per 2 ml of sample) and incubate for 1 h at 4°C with rotation  

4) Centrifuge at 2000 g for 1 min and transfer the supernatant to the new tube  

5) Divide the supernatant to differently marked tubes according to table 5.7  

6) Add the primary antibodies and incubate overnight at 4°C with rotation 

7) Add 60 ul of Salmon Sperm DNA/Protein A Agarose Slurry and incubate for 1 h at 4°C with 

rotation 

8) Centrifuge at 500 g for 1 min and carefully remove the supernatant  

9) Wash the sample successively with Low Salt Immune Complex Wash Buffer, High Salt 

Immune Complex Wash Buffer, LiCl Immune Complex Wash Buffer and two times with TE 

Buffer, each time by adding 0,7 ml of respective buffer to the sample, 5 min incubation (at 

4°C for first two buffers, at room temperature later) and centrifugation at 500 g for 1 min 

10) After last washing step remove the supernatant and add 65 ul of fresh Elution Buffer 

11) Incubate at room temperature for 15 mins, mix every 3 minutes 

12) Centrifuge at 500 g for 1 min and transfer 50 ul of supernatant to the new tube 
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Tab. 5.7 - The sample setup for chromatin immunoprecipitation; each of the samples in the table below is prepared in triplicate. 

Input samples are immediately frozen at -80°C and are only subjected to decrosslinking and purification, from step 15 onwards. 

 

13) Add 65 ul of Elution Buffer to the pellet and incubate at 65°C for 15 mins, mix every 5 

minutes 

14) Centrifuge at maximum speed and transfer 50 ul of supernatant to the tube holding the 

previously transfered 50 ul of supernatant 

15) Reverse the crosslink by adding 5 ul of 5M NaCl and incubating overnight at 65°C 

 

 

Anti-histone H3  Anti-acetyl-histone H3 Anti-trimethyl-histone H3 Background (IgG) Input 

1 ml 1 ml 1 ml 1 ml 100μl 

 

5.6.4. Purification 

Samples were purified by MinElute PCR Purification Kit (QIAGEN) according to 

manufacturer’s protocol. All centrifugation steps were performed at 17 900 g at room 

temperature. 96% ethanol was added to Buffer PE before use. 

1) Add 5 volumes of Buffer PB to 1 volume of sample and mix 

2) Transfer the sample to MinElute column and spin for 1 minute; discard flow-through 

3) Add 750 ul Buffer PE to the column and spin for 1 minute; discard the flow-through 

4) Centrifuge once more for 1 minute to remove residual ethanol 

5) Discard the collection tube and place the column in a clean 1,5 ml tube 

6) Elute DNA by adding 10 ul dH2O; let the column stand for 1 minute, then centrifuge for 1 

minute 

7) Discard the column and store eluted DNA at -20°C 
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Tab. 5.8 - The composition of quantitative PCR reaction mix 

 

Tab 5.9 - The thermocycler protocol used for quantitative PCR 

 

5.6.5. Quantitative PCR 

In order to evaluate the results of chromatin immunoprecipitation, quantitative PCR was 

performed, using purified samples. The process is very much similar to the process used 

when measuring RNA expression. The amplification mix was prepared according to table 5.8. 

7,5 ul of the amplification mix was transfered to each well on the plate, 5 ul of DNA sample 

was then added. The plate was centrifuged briefly at 2000 g before initiating the program 

according to the table 5.9.  

 

Reagent Volume  

Gene Expression Master Mix 6,25 μl  

Forward primer (10 uM) 0,375 μl  

Reverse primer (10 uM) 0,375 μl  

Probe (5 uM) 0,5 μl  

 

 

Step Temperature Duration Number of cycle repetitions 

UNG activation 50 °C 2 mins   

Polymerase activation 95°C 10 mins  

Denaturation 95°C 15 s 40 

Hybridization and elongation 60°C 60 s 40 

 

5.7. Statistical methodology 

The results were statistically evaluated with the help of SPSS statistical software, version 16. 

RNA expression levels were compared using the nonparametrical Mann-Whitney test with 

95% confidence interval (p < 0,05). The differences between alleles were evaluated using the 

Wilcoxon signed-rank test. The correlations were performed using both Pearson and 

Spearman correlation. 
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6. Results  

6.1. HLA Genotypization 

The participants of the study were subjected to genotypization of their HLA class II genes 

DRB1, DQA1 and DQB1. The example of experimental genotypization result can be reviewed 

on figure 6.1. The frequencies of individual haplotypes are shown in table 6.1. The DRB1*11 

– DQA1*0505 – DQB1*0301 haplotype was found to be the most common (19,48%), 

followed by DRB1*01 – DQA1*0101 – DQB1*0501 and DRB1*07 – DQA1*0201 – DQB1*0202 

haplotypes (both 15,58%).  The complete list of blood donors and their genotypes can be 

seen in table 6.2. One homozygotic donor was registered, with haplotype DRB1*15 – 

DQA1*0102 – DQB1*0602. 

 

 

 

 

 

 

 

Fig 6.1 – The example of genotypization result. The picture shows the final agarose gel picture for specific DQB1*03 

allele, DQB1*0301 specifically. Sample comes from subject number 24. Upper band line presents the positive control, 

individual bands in lower area of the gel present specific products, whose combination allows us to determine concrete 

genotype, according to official evaluation worksheet provided by manufacturer. 
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DRB1 DQA1 DQB1 
number of 
carriers 

frequency 
(%) 

11 0505 0301 15 19,48 
01 0101 0501 12 15,58 
07 0201 0202 12 15,58 
15 0102 0602 8 10,39 
13 0103 0603 5 6,49 
03 0501 0201 5 6,49 
16 0102 0502 4 5,19 

08 0401 0402 3 3,90 
13 0505 0301 3 3,90 
04 0301 0302 2 2,60 
13 0102 0604 1 1,30 
01 0505 0301 1 1,30 
04 0301 0305 1 1,30 
04 0302 0301 1 1,30 
07 0201 0303 1 1,30 
09 0301 0303 1 1,30 
12 0505 0301 1 1,30 

13 0102 0603 1 1,30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab 6.1 - The haplotypes found in subject group in order according to their frequency 
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Subject nr. DRB1 DQA1 DQB1  Sample nr. DRB1 DQA1 DQB1 

1 08 0401 0402  21 01 0101 0501 

  11 0505 0301    16 0102 0502 

2 07 0201 0202  22 04 0301 0302 

  15 0102 0602    07 0201 0202 

3 07 0201 0202  23 01 0101 0501 

  12 0505 0301    11 0505 0301 

4 11 0505 0301  24 16 0102 0502 

  13 0102 0604    11 0505 0301 

5 11 0505 0301  25 01 0101 0501 

  13 0103 0603    07 0201 0202 

6 01 0101 0501  26 07 0201 0202 

  01 0505 0301    08 0401 0402 

7 07 0201 0202  27 15 0102 0602 

  11 0505 0301    15 0102 0602 

8 01 0101 0501  28 13 0505 0301 

  15 0102 0602    15 0102 0602 

9 01 0101 0501  29 13 0505 0301 

  11 0505 0301    15 0102 0602 

10 11 0505 0301  30 09 0301 0303 

  13 0102 0603    15 0102 0602 

11 08 0401 0402  31 04 0302 0301 

  11 0505 0301    07 0201 0303 

12 04 0301 0305  32 11 0505 0301 

  07 0201 0202    15 0102 0602 

13 16 0102 0502  33 07 0201 0202 

  13 0103 0603    01 0101 0501 

14 03 0501 0201  34 07 0201 0202 

  13 0103 0603    03 0501 0201 

15 01 0101 0501  35 03 0501 0201 

  03 0501 0201    13 0505 0301 

16 07 0201 0202  36 15 0102 0602 

  11 0505 0301    11 0505 0301 

17 01 0101 0501  37 13 0103 0603 

  11 0505 0301    01 0101 0501 

18 11 0505 0301  38 07 0201 0202 

  07 0201 0202    13 0103 0603 

19 01 0101 0501  39 03 0501 0201 

  11 0505 0301    01 0101 0501 

20 16 0102 0502      

  04 0301 0302      

 

Tab 6.2 - The list of the subjects who donated blood, with their individual genotypization results 
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Tab 6.3 - Known QAP alleles and the associated haplotypes as determined by bisulfite sequencing study (Čepek, 2012) 

6.2. QAP - DQA1 mRNA expression analysis 

The expression of DQA1 mRNA was measured relatively, by comparison to the expression 

levels of HLA DRA1. The subjects with non-standard haplotypes were omitted from the 

experiment due to uncertainty about their QAP alleles. In total, cDNA from 23 individuals 

was tested for expression levels. Table 6.3 shows QAP alleles with a known association to 

HLA haplotypes. These associations were determined by bisulfite sequencing, performed as 

a part of another study done earlier in our laboratory (Čepek, 2012). QAP allele 1.3b was not 

present in this subject group and was omitted from further calculations. 

 

DRB1 DQA1 DQB1 QAP 

01 0101 0501 1.1 
16 0102 0502 1.2K 
15 0102 0602 1.2L 
13 0103 0603 1.3a 
14 0104 0503 1.3b 
13 0102 0604,0609 1.4 

07 0201 0202,0303 2.1 
04 03 03,0202 3.1 
11,12 0505 0301 4.1A 
03 0501 0201 4.1B 

08 0401 0402 4.2 

 

Results were calculated using the Mann-Whitney test. This nonparametrical test was chosen 

due to being better suited for our data set with low number of individuals and non-normal 

distribution. Figure 6.2 shows the relative mRNA expression levels for individual QAP alleles 

(in relation to the DRA1 gene expression levels, which are considered to be a baseline).  
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Fig 6.2 – Calculated mRNA expression levels of individual QAP alleles, using DRA1 gene expression as baseline 

 

 

As seen from the graph, several alleles (marked by star) show significant differences in 

relative expression level compared to others. This is especially true for QAP allele 4.1A, 

where the relative expression level is significantly lower (with p-value < 0,05) compared to 

the most of the other alleles. Alleles 3.1 and 4.2 have also shown differences in relative 

expression levels that are statistically significant, the relative expression of allele 3.1 being 

considerably higher than most. Calculated p-values for individual allelic comparisons are 

listed in table 6.4, with significant values highlighted. 
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Tab 6.5 – Results of correlation between age and DQA1 expression for each QAP allele; alleles 1.2K, 1.4 and 4.1B had only two 

subjects, therefore correlation could not be calculated; values with statistical significance (p < 0,05) are highlighted with darker 

background 

 

 

  1.1 1.2K 1.2L 1.3a 1.4 2.1 3.1 4.1A 4.1B 4.2 

1.1   0.165 0.386 0.077 0.355 0.394 0.034 0.317 0.999 0.289 

1.2K     0.355 0.767 0.439 0.096 0.564 0.025 0.439 0.083 

1.2L       0.289 0.999 0.831 0.034 0.230 0.643 0.724 

1.3a         0.083 0.071 0.275 0.008 0.564 0.050 

1.4           0.317 0.083 0.025 0.999 0.083 

2.1             0.020 0.036 0.999 0.999 

3.1               0.008 0.083 0.050 

4.1A                 0.297 0.038 

4.1B                   0.999 

4.2                     

 

As a last step before moving on to the chromatin immunoprecipitation, we attempted to 
find correlation between the expression levels of QAP haplotypes and age of subjects. We 
used both Pearson and Spearman correlation.  Spearman correlation showed significant 
relationship between age and mRNA expression levels for QAP alleles 1.2L, 2.1 and 3.1. 
Pearson correlation resulted in the same findings, plus also QAP allele 4.1A. Spearman 
correlation is however better suited for our dataset, as it is nonparametrical and more 
adequate for small number of values, such as in this case, and we decided to use it for 
evaluation. Based on calculated correlation coefficients, we established relationship 
between age and expression levels for QAP haplotypes 1.2L, 2.1 and 3.1 at statistical 
significance level p<0,05. 

 

 

QAP 
allele 

N 

Pearson correlation Spearman correlation 

correlation 
coefficient 

significance 
correlation 
coefficient 

significance 

1.1 4 0,462 0,538 0,800 0,200 
1.2K 2 - - - - 
1.2L 4 0,968 0,032 0,949 0,050 
1.3a 3 0,834 0,372 0,500 0,667 
1.4 2 - - - - 
2.1 6 0,954 0,003 0,943 0,005 
3.1 3 0,997 0,049 0,999 0,001 
4.1A 15 0,532 0,041 0,455 0,088 
4.1B 2 - - - - 
4.2 3 0,684 0,521 0,500 0,667 

 

Tab 6.4 - Calculated p values for differences between individual QAP alleles; values with statistical significance (p < 0,05) 

are highlighed with darker background 
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Tab 6.6 – Basic descriptive statistics for histone modifications expressed as the percentage of input; only one sample with allele 

*02 was measured, therefore no standard deviation can be calculated. Legend: 3M – anti-trimethyl-histone H3, A – anti-acetyl-

histone H3, H3 – anti-histone H3, BG - background 

6.3. Chromatin immunoprecipitation 

As we designed primers for quantitative PCR de novo, it was necessary first to control their 

specificity. The example of specificity check is shown in figure 6.3.  

 

For chromatin immunoprecipitation, seven leukocyte samples in total have been analyzed, 
from donors with DQA1 alleles DQA1*01, *02, *03 and *05. These donors were specifically 
selected from the group of subjects with measured mRNA expression levels. All samples 
were treated with anti-trimethyl-histone H3 and anti-acetyl-histone H3, for alleles DQA1*01 
and *05 the anti-histone H3 antibody was also used. Table 6.6 shows the mean, median and 
standard deviation values for each allele and antibody, along with their nonspecific 
background values; these values represent the percentage of input (base sample without 
any antibodies).  

 

 

  *01 / 3M *01 / A *01 / H3 *01 / BG *02 / 3M *02 / A *02 / BG 
Mean 0,139 0,236 0,045 0,174 0,511 0,471 0,114 

Median 0,083 0,142 0,046 0,087 0,511 0,471 0,114 

Std. 
Deviation 

0,145 0,248 0,030 0,258       

  *03 / 3M *03 / A *03 / BG *05 / 3M *05 / A *05 / H3 *05 / BG 
Mean 0,403 0,364 0,544 0,070 0,181 0,064 0,110 

Median 0,403 0,364 0,544 0,079 0,103 0,075 0,092 

Std. 
Deviation 

0,422 0,351 0,451 0,031 0,119 0,026 0,070 

 

Fig 6.3 - The result of „total“ primers verification. Samples (in dublets) come from homozygotic subjects with alleles 

DQA1*01, *02, *03, heterozygous *04/*05 and homozygous  *05 (no DQA1*04 homozygote was available in our dataset). All 

bands reach the required lenght (slightly over 100bp); sample in first well evaporated during PCR process.   

On the right side of the marker there are identical samples (without homozygous *05 sample) in the same order treated with 

their respective specific primers. This was intended as concentration check, no negative controls are thus included in this case 
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Tab 6.7 – Significance values for the differences between alleles DQA1*01 and *05 for each specific antibody 

Figures 6.4A-D show median values for each allele and antibody as comparison to 

background. It is clearly visible that background values are very high, comparable to specific 

antibodies. This indicates that only low amount of histone modifications is present at the 

amplified area of DQA1 promoter region.  

 

 

 

 

In order to determine whether there are significant differences between DQA1 alleles *01 
and *05, Wilcoxon signed-rank test was used to compare them. Alleles *02 and *03 could 
not be calculated due to low number of samples analyzed. Results can be reviewed in table 
6.7. No statistically significant difference was found for either of the histone modification 
variants. 

 

 
 

*05 / 3M - *01 / 
3M 

*05 / A - *01 
/ A 

*01 / H3 - *05 
/ H3 

Significance 0,500 0,225 0,109 

A B 

D C 

Fig 6.4 - Boxplot showing amount of specific antibody measured, expressed as percentage of input (base sample), for alleles 

DQA1*01 (A), *02 (B), *03 (C) and *05 (D) 
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Tab 6.8 – Significance values for differences in trimethylation and acetylation between selected QAP alleles 

Next, we tried to find out whether there are significant differences in acetylation and 

trimethylation levels between QAP alleles. Mann-Whitney test was used to compare QAP 

alleles 1.1, 1.2K and 1.2L, as those had enough data for statistics. Calculated statistical 

significances are presented in table 6.8, no significant differences were found. 

 

01-3M 1.1 1.2K 1.2L   01-A 1.1 1.2K 1.2L 

1.1   0.667 0.333   1.1   0.667 0.999 

1.2K     0.667   1.2K     0.667 

1.2L         1.2L       

 

Finally, we looked for possible correlation between histone modification status and mRNA 

expression levels for DQA1 alleles *01 and *05. Alleles *02 and *03 could not be calculated 

due to low number of samples. Both Pearson and Spearman correlations were used, the 

results are presented in table 6.9. The Spearman correlation has not shown any values on a 

significance level that would prove the relationship between allelic expression and the 

modification of its histones. The Pearson correlation coefficient demonstrates the 

relationship on significance level of 0,05 for both trimethylation and acetylation at allele 

DQA1*01. As in previous case (QAP:age correlation), Spearman correlation is more 

appropriate, not only because of small dataset, but also because it is resistant to extreme 

values, which are present in several groups (see figure 6.2A). Therefore, we decided to use 

the Spearman correlation results to evaluate the significance of the relationships between 

mRNA expression and histone modifications of DQA1 alleles. As a result, no relationship 

between histone modification and DQA1 allele can be labeled as statistically significant at 

the significance level p<0,05. 
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Tab 6.9 – Pearson and Spearman correlations of the mRNA expression and histone modifications for DQA1 alleles 
 

*01 / 3M 

  Pearson Correlation ,887  Spearman Correlation -,029 

  Significance ,018  Significance  ,957 

  N 6  N 6 

*01 / A 

  Pearson Correlation ,825  Spearman Correlation ,314 

  Significance ,043  Significance ,544 

  N 6  N 6 

*01 / H3 

  Pearson Correlation -,628  Spearman Correlation -,500 
  Significance ,568  Significance ,667 

  N 3  N 3 

*03 / 3M 

  Pearson Correlation 1,000  Spearman Correlation 1,000 
  Significance -   Significance -  

  N 2  N 2 

*03 / A 

  Pearson Correlation 1,000  Spearman Correlation 1,000 
  Significance -   Significance -  

  N 2  N 2 

*05 / 3M 

  Pearson Correlation -,322  Spearman Correlation -,300 
  Significance ,597  Significance ,624 

  N 5  N 5 

*05 / A 

  Pearson Correlation -,412  Spearman Correlation ,100 
  Significance ,491  Significance ,873 

  N 5  N 5 

*05 / H3 

  Pearson Correlation -,308  Spearman Correlation -,500 

  Significance ,801  Significance ,667 

  N 3  N 3 
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7. Discussion 

MHC class II genes play an important role in the antigen response and their correct 

regulation is thus vital for organism’s health and survival. The regulation sites in the 5‘-

untranslated region are hosting various epigenetic modifications, which may have a great 

influence and can undergo significant changes during life. Epigenetic mechanisms like DNA 

methylation or histone modifications can also have an impact on the risk that certain alleles 

carry for certain autoimmune diseases, such as type 1 diabetes (Rakyan et al., 2011). This 

paper is a continuation of previous work done in our research group, both on healthy 

controls and patients suffering from type 1 diabetes. This project focuses on MHC class II 

gene DQA1 of healthy donors and its expression on mRNA level. We also attempted to 

reveal more details about histone modifications present in the promoter region and possible 

connection to specific DQA1 alleles.  

The results of genotypization show the haplotypes DRB1*11 – DQA1*0505 – DQB1*0301 

and DRB1*01 – DQA1*0101 – DQB1*0501 to be among the most common haplotypes in our 

dataset. Klitz et al. (2003) have performed a comprehensive genotypization study and found 

the haplotypes DRB1*15 – DQA1*0102 – DQB1*0602 and DRB1*03 – DQA1*0501 – 

DQB1*0201 to be the most common. These haplotypes were found among our samples as 

well, albeit in lower frequencies. His research was, however, perfomed on European 

American population sample, it is thus possible these differences in haplotype frequencies 

are caused by the variability between populations.  

The mRNA expression analysis of DQA1 gene yielded results that were evaluated considering 

QAP promoter allele present. These QAP alleles were not identified by sequencing, rather by 

known associations with certain MHC haplotypes. Due to strong linkage disequilibrium 

existing in MHC class II gene regions it was possible to assign QAP alleles with reasonable 

certainty. Several blood donors from our group possessed non-typical hyplotypes. These 

were removed from the dataset for further study, as we could not reliably establish their 

QAP allele without sequencing study.  Our results show signicantly increased expression 

levels for QAP allele 3.1, while the expression level of allele 4.1A is, on the contrary, 

significantly lower than most. These results are in agreement with the study published five 

years ago, where expression levels of DQA1*0301 allele were among the highest measured. 

DQA1*02 was, on the other hand, described to have generally lower activity (Britten, 
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Mijovic, Barnett, & Kelly, 2009). Our results suggest lower activity of QAP 2.1 haplotype as 

well, the difference is not statistically significant, though. QAP promoter allele 4.1A, which 

precedes DQA1*0505 gene, shows low level of mRNA expression, with the statistical 

significance compared to most QAP alleles. The study comparing expression levels of DQA1 

gene in type 1 diabetes patients and healthy controls reached the similar result, noting that 

DQA1*05 allele has generally low expression, while DQA1*03 allele has the highest (Donner 

et al., 2002).  

The QAP allele can obviously significantly affect the expression of DQA1 gene, however the 

activity of the promoter itself may be modified by epigenetic regulation mechanisms. DNA 

methylation, for instance, which can not only cause silencing by itself, but can also support 

changes in local chromatin structure. The matter is complicated further by the fact that 

histone modifications can also have an indirect influence, affecting the activity of MHC class 

II-specific transcription factors CIITA and RFX instead (Masternak, Peyraud, Krawczyk, Barras, 

& Reith, 2003). Experiments on tumour cells has shown that inhibiting histone deacetylases 

and thus increasing the levels of acetylation on histones leads to higher expression of MHC 

class II DR genes (Chou, Khan, Magner, & Tomasi, 2005; Magner et al., 2000). Based on that, 

we would expect QAP alleles with higher levels of mRNA expression (notably 3.1) to possess 

histones with higher rate of acetylation. We have, however, not been able to observe any 

significant relationship between histone modifications present and expression levels. There 

were no large differences found between different modifications. Background values were, 

on the other hand, quite high. This leads us to conclusion that there is a possibility there 

were only very low amounts of histone proteins binded on the amplified sequence. That, 

coupled with the fact that only small number of subjects was included, means that no 

generally applicable conclusions can be made. It is difficult to compare our data with known 

results, as only a small number of researchers are studying an influence of histone 

modifications on the promoter region of different MHC class II DQA1 alleles. 
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8. Conclusions 

This thesis is a part of larger research with the aim of uncovering the full extent of the 

influence the epigenetic regulation of MHC class II genes has on autoimmune diseases and 

type 1 diabetes mellitus in particular.   In this study, we established DRB1 – DQA1 – DQB1 

genotypes for 39 healthy blood donors. Then we proceeded to measure mRNA expression 

levels for specific QAP promoter alleles and to determine the presence of histone 

modifications in the promoter region of DQA1 gene. Statistical significance was found for 

allele 3.1, its expression levels being noticeably high, which is in accordance with previous 

studies showing the DQA1*03 allele to be the most actively expressed DQA1 allele. QAP 

alleles 4.1A and 4.2 have also shown significant differences, especially the expression levels 

measured for allele 4.1A were lower than most. We have also discovered the correlation 

between expression levels and age of subject for alleles 1.2L, 2.1 and 3.1. The study of 

histone modifications has not brought forth any significant results, the relationship between 

histone status and DQA1 expression thus remains unclear. Neither were we able to 

determine any differences between specific QAP alleles with certainty.  

Gaining deeper knowledge about epigenetic regulation of MHC class II genes on chromatin 

level will provide valuable insight into the origin, mechanisms and prevention of 

autoimmune diseases. As this work can be considered a pilot study and was only performed 

on low number of individuals, further research involving larger number of subjects will be 

required to obtain statistically significant data. Also, type 1 diabetes patients should be 

involved, in order to observe the differences in chromatin status. There is little doubt the 

epigenetic mechanisms play an important role in autoimmune disorders and full 

comprehension could grant us the ability to predict and, with timely intervention, potentially 

prevent many cases of currently incurable illnesses. 
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