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ABSTRACT 

Bone thinning – osteoporosis – is an increasing problem of human health 

worldwide. Johnell and Kanis estimated that in 2000 more than 9.0 million of 

osteoporotic fractures occurred – this means about 3 fractures from 

osteoporosis every second [1]. Because the decrease in bone mineral density 

(BMD) is associated with age and with the aging of the world population, the 

issue of bone health and especially osteoporosis is expected to emerge in its 

urgency. Discovery of osteoprotegerin (OPG) / receptor activator of nuclear 

factor kappa-B (RANK) / RANK-ligand (RANKL) pathway in late 90’ gave 

scientists a fruitful target for future investigations about bone metabolism and 

revealed interesting interconnections with cardiovascular diseases, immunity 

and cancer survival and targeting.  

This study had one experimental and two theoretical goals: The 

experimental and primary goal was to identify transcription factors and DNA 

binding sites in -662 to -438 region upstream of RANKL transcription start site 

that control expression. As for theoretical goals, the aim was to identify current 

approach to the treatment of osteoporosis and to list the known associations of 

the OPG/RANKL pathway to various clinical conditions.  

pGl3-F3 plasmid construct with RANKL regulatory region, which had 

most significant decrease of RANKL expression when compared to other pGl3 

constructs in transfected human osteosarcoma (HOS) cells CRL-1543™ 

(Mlakar – unpublished data), was used. Scanning for transcription factors with 

Noris Medical Library revealed two binding places (A, B) in pGl3-F3. The effect 

of mutations on RANKL expression was measured with Dual Luciferase Assay 

after transfection of the plasmid to HOS cells. In order to identify transcription 

factor binding to mutated sites, electrophoretic mobility shift assay (EMSA) was 

carried out using GATA1, Lyf and C/EBPβ antibodies. 

Mutation in places A (-512) and B (-502) resulted in 43.38% and 19.06% 

restoration of RANKL promoter activity respectively, when comparing F2 and 

F3. The results show that both sites are binding the transcription repressors. 

EMSA showed binding of C/EBPβ but not GATA to site B and excluded the 

binding of Lyf to A site. Interestingly, competitive oligomers of site B were able 

to reduce the shift of the whole complex while the competitive oligomers to A 

resulted in reduction of only upper most shift. In order to control for specificity of 

binding site competitive oligomers with mutation were used. The results showed 

that the competitive oligomers were unable to bind biotinilated oligomers even 

though it was in 200-fold excess. 

The research showed that mutation at place A is able to partially restore 

the expression of reporter gene indicating the functionality of the investigated 

site. No significant difference was observed when mutating site B, suggesting 
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that the site is not important for RANKL expression. However, when performing 

EMSA to identify the transcription repressors, B site played a crucial role in 

forming the whole complex. The result indicated a sequential mechanism of 

complex formation where protein is able to bind site A only when site B is 

already occupied by partner protein, possibly forming hetero or homodimer of 

C/EBPβ or C/EBP protein. The results obtained with functional study of pGl3-F3 

region and EMSA are therefore conflicting. This might be due to insufficient 

mutation B site of F3 region. It was shown that GATA1 and Lyf probably do not 

play any role in the binding of the two sites as no supershift or disappearance of 

shift was noted. To resolve the dilemma we suggest antibodies against C/EBP 

should be used to confirm its binding and larger mutation in site B to be 

inserted. 
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ABSTRAKT 

Osteoporóza, nebo také řídnutí kostí, je celosvětovým problémem v 

lidském zdraví, které neustále nabývá na významu. Johnell a Kanis ve své 

studii odhadli, že v roce 2000 došlo k více jak 9 miliónům osteoporotických 

zlomenin, což ve výsledku znamená 3 zlomeniny způsobené osteoporózou 

každou vteřinu [1]. Vzhledem k provázanosti kostní hustoty (BMD) s věkem a 

stárnutí světové populace je možné očekávat nárůst významu tématu kostního 

zdraví a osteoporózy zvláště. Objev osy osteoprotegerin (OPG) / receptor 

activator of nuclear factor kappa-B (RANK) / RANK-ligand (RANKL) v pozdních 

90. letech vložil vědcům do rukou významný cíl budoucího zkoumání kostního 

metabolismu a odhalil zajímavá propojení s kardiovaskulárními chorobami, 

imunitním systémem, přežívání rakovinových buněk a kostnímu cílení metastáz. 

Tato práce v sobě nesla jeden experimentální a dva teoretické cíle. 

Experimentálním a také primárním cílem bylo identifikovat transkripční faktory a 

vazebná místa v oblasti -662 až -438 od promotorové oblasti genu RANKL 

ovlivňujících jeho expresi. V teoretické části byla provedena identifikace 

léčivých látek v současnosti používaných k léčbě osteoporórozy a seznámení s 

potenciálním vztahem této osy k různým zdravotním stavům. 

K identifikaci vazebných míst byl použit plasmidový konstrukt pGl3-F3 s 

vloženou sekvencí promotoru genu pro RANKL, který po transfekci do buněk 

lidského osteosarcomu (HOS) řady CRL-1543™ vykazoval nejvýznamnější 

pokles exprese RANKLu v porovnání s jinými konstrukty pGl3. (Mlakar- 

nepublikovaná data). Noris Medical Library odhalila dvě potenciální vazebná 

místa v tomto plasmidu (A, B). Efekt mutací těchto vazebných mist byl měřen 

pomocí metody Dual Lucifersase Assay a k identifikaci transkripčních faktorů, 

vázajících se na mutovaná místa byla provedena gelová zpomalovací analýza 

(EMSA) za pomocí protilátek proti faktorům GATA1,Lyf a C/EBPβ. 

Při porovnání konstruktů řady F2 a F3 vedla mutace místa A (-512) a 

B (-502) vedla k 43.38% obnovení exprese RANKL a v druhém případě 19.06% 

obnovení. Výsledky ukazují, že na obou místech dochází k vazbě represoru 

exprese. EMSA potvrdila vazbu C/EBPβ, ale nikoliv GATA1 k místu B a u místa 

A vyloučila vazbu Lyf. Zajímavý byl výsledek použití kompetitivních oligomerů 

místa B, kdy došlo ke snížení signálu celého komplexu, zatímco u kompetitorů 

místa A bylo pozorováno snížení intenzity pouze signálu horního. Kompetitivní 

oligomery nesoucí mutaci použité pro kontrolu specificity vazby nebyly schopny 

navázat biotinilované oligomery ani při 200 násobném přebytku.  

Studie prokázala, že mutace místa A je schopna částečně obnovit 

expresi RANKLu. Efekt místa B nedosáhl hranice statistické významnosti. O to 

významnější se zdají výsledky EMSA, kdy místo B hrálo zásadní roli pro 

zformování celého komplexu, neboť výsledky poukazují na sekvenční 
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mechanismus jeho vzniku, kdy místo A může být vázáno teprve tehdy, když 

místo B je již obsazené. Pravděpodobně zde dochází ke vzniku homo nebo 

heterodimeru C/EBPβ. Byly tak pozorované konfliktní výsledky mezi funkčním 

testem a gelovou zpomalovací analýzou. Důvodem tohoto jevu může být 

případná nedostatečná síla mutace místa B. Dále byl vyloučen vliv faktorů 

GATA1 a Lyf na vazbu těchto dvou míst. Pro budoucí směrování a 

přezkoumání výsledků bylo navrženo použití protilátek C/EBP a vložení větší 

mutace do místa B. 
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1 INTRODUCTION 

Osteoporosis, the condition defined by thinning of bone mass and 

sometimes referred as “silent epidemic”, is a widespread disease with 

increasing incidence. It has been estimated that osteoporosis causes more than 

8.9 million fractures annually – that makes on average one osteoporotic fracture 

every 3 seconds [1]. Osteoporosis affects annually about 10 million Americans 

older than 50 years [2]. This status makes a huge impact both on individual and 

economic conditions raising a number of disabilities and hospitalizations [3]. 

61% of osteoporotic fractures occur in women, but even despite their majority in 

prevalence, men show higher rates of fracture related mortality [4–6]. Generally 

most frequent fractures caused by or related with osteoporosis are located on 

forearm, humerus, hip and spine and that altogether generates higher disability 

than caused by cancer (not considering lung cancer). The impacts of this 

disability are comparable with other chronic diseases, for example rheumatoid 

arthritis, asthma and high blood pressure related heart disease [1]. Prevalence 

of osteoporosis increases with higher age and on a basis of population aging 

and present huge gaps in sufficient diagnosis and treatment deserve our 

awareness. 

With increasing knowledge we do not attribute bone just a sole role of 

structural pillar of the body. In addition, its hematopoietic role in forming new 

differentiated cells is stressed out and it has a part in maintaining the balance of 

important ions such as calcium and phosphate. Bone metabolism and turnover 

is a complex state consisted of several cell types and regulations; however, the 

main actors of this action are just three cell types called osteoclasts, osteoblasts 

and osteocytes. Osteoclasts are multinuclear cells responsible for bone 

degradation, whereas osteoblasts form the new bone matrix and after that turn 

to be osteocytes. The ratio of osteoclast/osteoblast activity is the key element of 

whether the bone is well formed or not, leading either to osteoporosis, 

osteopetrosis or osteomalatia. 

Since its discovery in late-mid 90’ we are able to ascribe the ratio of bone 

formation and resorption to the balance of regulating proteins osteoprotegerin 

(OPG) and receptor activator of NK-κB ligand (RANKL). With this initial 

knowledge, the scientists started to uncover wide net of regulation and 

engagement of OPG/RANKL/RANK pathway. Based on its essential role, 

OPG/RANKL/RANK pathway seems to be promising for understanding the 

mechanism of some antiosteoporotic drugs - and what is more appreciated - 

potential target of developing new ones. Newly introduced selective RANKL 

antibody (demosumab) seems to be a good member of drug arsenal in 

osteoporosis treatment and other agents interfering the OPG/RANKL/RANK 

pathway are under investigation. 
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2 THESIS GOALS 

 

1) theoretical part 

a) to review the role of OPG/RANKL/RANK pathway in bone metabolism 

and its regulations 

b) to review the drugs currently in use for treatment of osteoporosis as well 

as recently researched new drugs undergoing the Phase I and II trials 

c) to review other clinical conditions associated with  OPG/RANKL/RANK 

 

2) practical part 

a) to identify transcription factors and DNA binding sites in -662 to -438 

region upstream of RANKL gene that was shown to be involved in its 

expression. In order to identify the binding sites and transcriptional 

factors functional testing using site specific mutagenesis, luciferase 

reporter assays and electrophoretic mobility shift assay were used. 

We believe that our approach in connecting the overview and detailed 

insight is helpful. Especially, since there is still huge absence of knowledge on 

molecular/genetic level of the regulation of this important pathway. On the other 

hand broader view is necessary for possible implementing of the findings 

themselves. 
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3 THEORETICAL PART 

3.1 Bone turnover 

Over the past two decades, a different approach to the role of bone 

tissue has been emerging. Not surprisingly, discovery of OPG/RANKL/RANK 

regulation axis in the mid 90’s has supported this need and founded the new 

importance of the discipline called osteoimmunology. 

In addition to its structural role bone has several other functions namely 

serving with bone marrow as reservoir of new cells creation and as a container 

of calcium and phosphorus for maintaining a homeostasis in the body. 

Bone tissue itself does consist – beside extracellular matrix - of just 

limited types of cells: osteoblast, osteocytes and osteoclasts. Whereas the first 

two serve as bone creators, counter effect of osteocytes is bone resorption. For 

a long period of time there have been questions on how these two aspects are 

maintained. OPG/RANKL/RANK axis with its explanation has showed an 

interesting interconnection not only with creating and destroying but with other 

events in the body as well. 

Formation of new bone shows these linked sides themselves while 

occurring in four stages: osteoclast activation, bone resorption, followed with 

osteoclast inhibition and osteoblast activation, which ends with bone formation. 

Osteoclastogenesis is the first needed step in this cycle. 

Mature osteoclasts are multinucleated cells capable of bone resorption, 

when activated. They are derived from granulocyte-macrophage progenitor 

(GMP) cells in myeloid lineage which forms common progenitor of osteoclasts 

macrophages and dendritic cells [7]. When challenged with M-CFU and RANKL, 

these cells turn into osteoclast precursors, which target their migration to bone 

tissue and fuse into final mature osteoclasts. Activated osteoclasts form a 

lacuna in the bone tissue, which can be used for new bone formation by 

osteoblasts [8]. 

Osteoblasts are originated by mesenchymal stem cells (MSC) in 

presence of number of transcription factors, namely, Ihh, FGF18, Cbfa1/Runx2 

pathway, osterix (Osx), activating transcription factor 4 (ATF4) and bone 

morphogenic proteins [9]. They attach themselves after following the endothelial 

cells and form bone matter. When finishing their life cycle, osteoblasts can 

either go through apoptosis, turn into osteocytes or lining cells of the bone 

surface.  

Disturbed balance in bone metabolism leads to two opposite clinical 

conditions: osteopetrosis on the side of increased formation and osteoporosis 

as a result of increased bone resorption. Both of these conditions have a major 
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Table 1: Summary of OPG/RANKL/RANK names and abbreviations 

OPG osteoprotegerin 
TNF receptor superfamily member 11B (TNFRSF11B) 
osteoclastogenesis inhibitory factor (OCIF)  
TNF receptor-like molecule 1 (TR-1)  
follicular dendritic receptor 1 (FDCR-1) 

RANK receptor activator of NK-κB 
osteoclast differentiation factor receptor (ODFR) 
osteoclast differentiation and activation receptor (ODAR) 
receptor superfamily member 11A (TNFRSF11A) 
TNF-related activation induced cytokine receptor (TRANCE-R) 

RANKL RANK ligand 
osteoclast differentiation factor (ODF) 
TNF ligand superfamily member 11 (TNFSF11) 
TNF-related activation induced cytokine (TRANCE) 
osteoprotegerin ligand (OPGL) 
stromal osteoclast-forming activity (SOFA) 

 

impact on the quality of life of the affected people. However, evidence tells that 

during the aging process balance is moved towards the osteoporosis. With 

general aging of the global population maintaining of the bone balance and its 

regulation gets higher and higher importance. 

3.2 Osteoprotegerin 

First identified factor in this pathway was osteoprotegerin (OPG, OCIF), 

which was described by two independent research teams during 1997. Mice 

over-expressing the new tumor necrosis factor (TNF) receptor related 

molecules for screening by researchers at Amgen Inc. (USA) have developed 

severe osteopetrosis due their lack of osteoclasts in the bones [10]. The protein 

was then named osteoprotegerin in the meaning that it protects bones. In the 

same time, research team at Snow Brand milk Products Co. (Japan) identified 

the identical molecule (herein called Osteoclastogenesis inhibitory factor 

(OCIF)) by purifying a factor that inhibited osteoclastogenesis from human 

embryonic fibroblasts [11]. Overview of OPG/RANKL/RANK is listed in table 1. 

With OPG/OCIF, as a probe, both teams quickly identified its binding 

partner named OPG ligand (OPGL) or osteoclast differentiation factor 

(ODF) [12,13]. This protein turned to be identical with already known factor 

called receptor activator of nuclear κB (RANKL) or TNF-related activation 

induced cytokine (TRANCE) which was reported in the previous year [14,15]. 

Third important member in this sequence was identified soon, because its role 

had been already known. It was transmembraneous receptor RANK founded in 

human bone marrow myeloid dendritic cell cDNA library. 
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Osteoprotegerin occurs in numerous tissues in the body including heart, 

kidney, liver, spleen, thymus, prostate, ovary, osteoblasts themselves and bone 

marrow [12,16]. Interestingly, B cells may be responsible for 64% of total bone 

marrow OPG production and B cell-deficient mice are consistently 

osteoporotic [17]. Its wide spread has raised the interest in other potential roles 

of this protein, which are going to be further discussed. OPG serves as soluble 

decoy receptor in order to prevent RANKL from binding RANK, thus preventing 

osteoclast maturation and changing their lifespan. 

OPG is a member of tumor necrosis factor superfamily (TNFRSD11B) 

with huge effect on osteoclast differentiation, attachment to bone [18–21], 

activation [20], and survival by binding its partner RANKL [10,18,22–24]. OPG 

decreases number of osteoclast cells and even artificially added OPG increases 

rate of osteoclast apoptosis [21]. It is synthesized as a 401 amino acid peptide 

and cleaved to circulate as 380 amino acid factor [10,11]. OPG exists in vivo 

either as a homodimer cross-linked via C-terminal cysteines or as a C-terminal 

truncated monomomer. Both isoforms showed similar specific activities in the 

osteoclastic inhibition, although in other study dimer OPG appeared to have 

1000 times higher affinity than monomer lacking the death domain [25,26]. 

Existence of two isoforms raises a question about specificity of serum 

screenings, that can be an explanation for some conflicting results.  

OPG expression is influenced by the numerous factors (enlisted in 

table 2), however exact way of their action remains to be discovered. RANKL-

OPG interaction is mostly appearing here - most of the factors that induce 

RANK are regulating OPG expression too [27]. OPG is increased by 1α,25-

dihydroxyvitamin D3, IL-1α, TNF-α, IL-6, IL-11, IL-17, calcium and by estrogen, 

TGF-β or bone morphogenetic protein (BMP)-2, and decreased by continuous 

administration of PTH, by glucocorticoids, prostaglandin E2, insulin-like growth 

factor 1 or immunosuppressants [28]. 

Discovery of Wnt/β-catenin signaling influence on OPG expression is a 

mark of pathway crosstalk [29]. This pathway is responsible for regulating the 

osteoblastic bone formation. Other pathway, Jagged1/Notch1, negatively 

regulates osteoclast formation both directly in osteoclasts precursors and 

indirectly by affecting the OPG/RANKL expression ratio [30]. 

On their OPG-deficient mice models Bucay and coworkers showed that 

not only these mice developed early onset osteoporosis but suffered from 

increased arterial calcification in consent with observational studies on 

men [31–34]. These atherosclerotic plaques consisted of the same mineral as 

the bone matrix does – hydroxyapatite – and contain bone matrix proteins such 

as collagen type I, matrix GLA protein, osteocalcin, osteonectin and bone 

morphogenetic protein type 2 [35]. 
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Table 2: Factors regulating OPG and RANKL expression. 

▲-increase of expression; ▼ – decrease of expression; ? effect unknown/not measured;  

BMP – bone morphogenetic protein; IL – interleukin; PTH – parathormone; TGF - transforming growth 

factor; TNF - tumor necrosis factor 

Factor OPG RANKL 
1,25 dihydroxyvitamin D3 [36–38] ▲ ▲ 
17β-Estradiol [39–46] 
* shortly [41] 

▲ ? 
▲* 

BMP-2 [37] ▲ ? 
Calcium [12] ▲ ▲ 
Immunosuppressant [47] ▼ ▲ 
Glucocorticoids [48–50] ▼ ▲ 
Fulvestrant (ICI 182, 780) [39] ▼ ? 
IL-1β [51] ▲ ▲ 
IL-6 [52,53] ▼ ▲ 
Prostaglandin E2 [37,53,54] ▼ ▲ 
PTH [55,56] ▼ ▲ 
TGF-β [57] ▲ ▼ 
TNF-α [51] ▲ ▲ 
Vasoactive intestinal peptide [58] ▲ ▼ 
Insulin like peptide [59,60] ▲  
Adapted and extended based on review written by 
Rogers and Eastel, 2005 [61] 

 

Part of the overspread of OPG might be explained by the existence of its 

other roles in the body. For example, OPG has been reported to bind and inhibit 

Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) [62]. This 

regulatory pathway with role of neoplastic defense has raised a lot of interest 

recently and shows other interconnection of bone immunology. In vitro study of 

400 invasive breast tumor samples has shown that in contrast to non-carcinoma 

breast tissue, 40 % of these cell lines (MDA-MB436 and MDA-MB231) express 

OPG with significant correlation between decrease of tumor OPG expression 

and its severity grade when comparing estrogen receptor negative tumors to 

estrogen receptor positive ones [63]. These cell lines then showed increased 

resistance to TRAIL-induced apoptosis. It should be mentioned that this 

characteristic have also the majority of normal (non-tumorous) cell types which 

are resistant to the apoptotic effect of TRAIL [64,65]. 

The progression of cancer depends on the establishment of a tumor 

blood supply and therefore tumor angiogenesis has been identified as a major 

target for new anticancer agent. Research conducted by Cross and coworkers 

showed that 59 % of malignant tumor (n = 512) demonstrated endothelial OPG 

expression in contrast to its absence at normal tissue and benign tumors 

(n = 178) [66]. In breast cancer tissues OPG expression stimulated endothelial 

cell survival during trophic withdrawal and stimulated the formation of cord-like 

structures that are needed for angiogenesis. A strong statistical significance 

(p = 0.0004) between endothelial cells OPG expression and tumor grade, 
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followed by a strong negative correlation (p < 0.0005) between endothelial cell 

OPG expression and ER expression, was found. However, Reid and coworkers 

have questioned VEGF angiogenesis mechanism in OPG expression in vitro 

HuDMEC and T47D breast cancer cell line because cell-to-cell contact was 

required for proper effect whereas VEGF, bFGF and TGF-β had no effect on 

HuDMEC OPG levels. Neutralization of VEGF receptor VEGFR2 had no effect 

on OPG-mediated endothelial cell tube formation, whilst significantly inhibiting 

that of VEGF [67]. 

Other aspect of the OPG immunological role was shown by Yun and 

coworkers, who identified OPG as a DC-derived receptor-1 in dendritic cells by 

creating OPG-deficient mice model and observing their B-cells ex vivo [68,69]. 

B-cells revealed exactly converse phenotypes to those of rankl-/- mice [70,71]. In 

their findings OPG regulated early B cell development by testing ex vivo, where 

opg-/- B cells had 1.7-2 fold increase in IL-7 responsiveness compared with 

opg+/+. Absence of OPG resulted in enhanced stimulatory capacity of dendritic 

cells and to defects of isotype class switch during the primary immune 

response. Increase of immunological activity in absence of OPG can propose its 

similar role of a brake as was showed in bone resorption. 

Clinical studies have challenged OPG serum levels and their clinical 

results in postmenopausal women, but their transferability and generalizability is 

questionable for men or women prior their menopause. In the cohort of 252 men 

aged 19-85 years, OPG serum levels had strong positive correlation with age 

(R = 0.41; p = 0.0001), free testosterone index (R = 0.20; p < 0.002) and free 

estradiol index (R = 0.15; p < 0.03) after adjustment for age and body weight. In 

contrast, no correlation with biochemical markers of bone formation, 

25-hydroxyvitamin D3 or BMD was found. Despite its conflicting results of OPG 

serum levels on BMD, this study was the first that showed importance of 

estrogen and testosterone for bone homeostasis in men after adjustment for 

age and body weight [72]. 

Study on 59 elderly men (mean age 68 yr) who were made acutely 

hypogonadal by GnRH agonist and aromatase inhibitor and studied under the 

replacement of estrogen and testosterone, one or second separately and 

without replacement, described the role of these hormones. Estrogen alone 

resulted in mean 18.6% (SEM ± 7.9%) increase of serum OPG levels (p < 0.05), 

whereas testosterone alone tended to decrease OPG levels (by 10.0% ± 8.5%; 

p < 0.05) compared to sole estrogen. Two-factor ANOVA  observed a highly 

significant testosterone effect (p < 0.006) on decreasing serum OPG levels [45]. 

3.3 RANKL 

RANKL is a 317-amino acid TNF family member, type II homotrimeric 

transmembrane protein [73] that is essential for osteoclasts differentiation [13], 
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stimulating fusion [22] of pre-osteoclasts, their attachment [21] to bone, 

activation [13,20,23] and survival [13,23]. RANKL is to be found in osteoblasts, 

activated T cells, lymph nodes, thymus, mammary glands and lungs and in low 

levels in some other tissues as spleen and bone marrow [16,74,75]. 

Despite RANKL-RANK is not the only needed factor, mice having 

knockout mutation of one of these genes had developed a similar phenotype 

conditions – osteopetrosis caused by almost total lack of active 

osteoclasts [10,76]. In addition to that, these mice did not develop lymph nodes 

(except spleen and Peyer’s patches) and failed to develop proper mammary 

glands. Moreover, RANKL blocking caused in these mice problems with early T 

and B cell differentiation [70]. 

Prior the discovery of RANKL it has been already known that 

development of healthy osteoclasts depends on various factors such as M-CSF, 

IL-1 and TNF-α. Additionally, essential requirement for cell-to-cell contact 

between bone marrow and stromal cells suggested that some other factors 

were necessary [77,78]. This membrane bound factor was discovered in 

osteoblasts and named as osteoclast differentiation factor (ODF, RANKL) [12]. 

RANKL and M-CSF is demanded for this maturation caused by specific genes 

activation that distinguishes osteoclast lineage, including genes for tartrate-

resistant acid phosphatase (TRACP), cathepsin K (CATK), calcitonin receptor 

and the β3-integrin. RANKL can activate mature osteoclast in dose-dependent 

manner in vitro and its over-expressing shows increased bone resorption in 

vivo.  

RANKL is upregulated by a wide array of signals, such as 

1α,25-dihydroxyvitamin D3, parathyroid hormone, glucocorticoids, prostaglandin 

E2, IL-1α, TNF-α, IL-6, IL-11, IL-17, calcium or immunosuppressant 

(cyclosporine A), and it is downregulated by TGF-β [28]. Overview of the factors 

regulating the RANKL expression is in the table 2. 

3.4 RANK 

RANK is 613 amino acids long type I homotrimeric transmembrane 

protein, member of tumor necrosis factor receptor superfamily (TNFRSF 11A), 

expressed on a surface of osteoclasts, monocytic and dendritic cells [14,16]. In 

contrast RANKL and OPG, RANK is expressed in fewer tissues since its 

presence has been reported in mammary glands and in some cancers, most 

notably breast and prostate – cancer lines with high bone metastasis 

activity [79]. 

RANK is the longest member of TNFR with four full cysteine-rich 

domains (CRDs). RANK binds to RANKL with high affinity needed for osteoclast 

formation [80]. After being stimulated by RANKL, RANK first downstream 

partner is a member of the TRAF family on cytoplasmic binding site of RANK. 
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Although RANK has an ability to bind TRAF2,-5 and -6, only TRAF6 appears to 

be linked essentially with osteoclast lineage. Only TRAF6 knockout mice 

develop osteopetrosis and thus TRAF6 is a key initiator of osteoclast specific 

genes stimulated by RAKL. Interestingly, two TRAF6 knockout mice 

osteopetrotic models differ in their phenotype from unknown reason, one having 

normal number of osteoclasts that lack activity, whereas second has no 

osteoclasts [81,82]. Moreover, signaling via the IL-1 receptor, which also utilizes 

TRAF6, rescues the osteoclasts activation defects observed in absence of 

RANK/TRAF6 interaction [83]. TRAF6 also provides a functional connection 

between RANK signaling and the activation of c-Src kinase, Akt/protein kinase 

B, and phosphatidylinositol 3-kinase [84]. 

At least seven distinct signaling cascades mediated by protein kinases 

are induced during ostoclastogenesis and activation – inhibitor of NF-κB 

kinases (IKK)/NFκB, c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1), 

c-myc and calcineurin/NFATc1, p38, extracellular signal-regulated kinase 

(ERK), and Src pathways [85]. The completion of osteoclasts differentiation by 

RANKL needs essential expression of NF-κB, c-Fos and NFATc1 [86–88]. TNF, 

which induces c-Fos expression in OCPs [87,89], is able to subsequently 

induce osteoclast formation in rankl-/- and rank-/- mice in vitro [90–92], although 

this ability has been questioned by conflicting results [7]. C-Fos or NFATc1 can 

substitute for NF-κB and when they are over-expressed IL-1 can induce 

osteoclast formation directly from them too [89]. 

Rank-/- mice were characterized by profound osteopetrosis resulting from 

an apparent block in osteoclast differentiation [71,76]. RANK expression was 

not required for the commitment, differentiation and functional maturation of 

macrophages and dendritic cells from their myeloid precursors but provided a 

necessary and specific signal for the differentiation of myeloid-derived 

osteoclast. rank-/- mice also exhibited a marked deficiency of B cells in the 

spleen, retained mucosal-associated lymphoid tissues including Peyer’s 

patches but completely lacked all other peripheral lymph nodes [71]. Although 

rank was initially identified as a gene expressed in myeloid-derived DCs, 

expression of this receptor is not critical for the differentiation and function of 

cells of the myeloid compartment including macrophages and DCs. The 

phenotypic features of rank-/- mice are similar to those observed with the rankl-/- 

(opgl-/-) mice [70], with the notable exception that thymic differentiation is intact 

in rank−/− mice but is defective in rankl-/- mice [71]. 
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3.5 Clinical role of OPG and RANKL levels in bone metabolism 

Clinical assessment of OPG/RANKL correlations with various conditions 

is challenged by non-existence of standardized assays, proteins stability, 

existence of different isoforms and lastly difference of circulating concentration 

and bone microenvironment. Therefore, any conflicting results could be 

attributed to these methodological difficulties. 

Mice aging models with three age stratas (6-week-young, 6-month-adult, 

and 24-month-old) of whole bone and osteoblast like cells culture were used to 

compare bone loss and OPG and RANKL levels. 20% bone loss occurred in 

young/adult and 52% loss in adult/old groups when these stratas were 

compared. RANKL mRNA levels were reported to be 2.1× (adult) and 4.4× 

higher (old) compared to the young mice and during the tracking RANKL/OPG 

ratio increased 6-fold. Interestingly, researchers described converse relations 

between serum and mRNA levels of OPG in the age groups, where serum OPG 

levels were increasing within the groups and mRNA decreasing. This 

redistribution might suggest some mechanism of response to the enhanced 

age-related bone resorption [93]. 

Cao and co-workers have observed increased response of osteoclast 

formation with age using the stromal/osteoblastic cells as an inductor of 

osteoclastogenesis. The study has confirmed the age-related increase of 

RANKL and M-CSF expression of these cultures and observed the higher 

response of the older donors to the dose-dependent osteoclast formation 

increase caused by exogenous RANKL and M-CSF. The ratio of RANKL/OPG 

increased with age (p < 0.05; one-way ANOVA) and positively correlated 

(p < 0.05) with the increase in the ability of stromal/osteoblastic cells to induce 

osteoclastogenesis [94]. 

Studies in humans have drawn the consensus that OPG increases with 

age in both men and women and this increase was observed regardless the 

osteoporotic conditions or full health. Both negative and positive associations 

between serum OPG and bone turnover have been described [72,95–97]. Later 

larger studies of men and women reported strong positive association between 

serum OPG and age but not with serum OPG and bone density [95,98]. 

However, evidences suggest that RANKL/OPG ratio more often correlates with 

various clinical aspects closer than OPG or RANKL serum concentrations 

separately. However, serum OPG and serum RANKL may not reflect the activity 

of these cytokines in the bone microenvironment. Although RANKL is 

expressed in a soluble form, its majority is cell bound and thus not detectable in 

the circulation. Increased demands for assessments from the local environment 

might be the result of the study on 40 male osteoarthritic patients, where serum 

RANKL was negatively related to RANKL mRNA in bone (R = -0.7; p = 0.007). 

In this study, serum OPG and RANKL mRNA were positively related to age, 

whereas serum RANKL levels were related inversely. Researchers revealed 
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significant positive relationships between bone turnover and RANKL/OPG 

mRNA ratio and eroded surface/bone surface ratio and osteoid surface/bone 

surface ratio. However the direction of the relationship between serum RANKL 

levels and the other parameters was in each case the inverse of that for RANKL 

mRNA. Confusingly, relationship between RANKL mRNA and serum RANKL 

was not observed in women [99]. 

Original approach with dual-color flow cytometry isolated RANKL-

expressing cells from the bone marrow showed the correlation of bone 

resorption markers and increased expression of RANKL in bone marrow in 

postmenopausal women. The bone marrow RANKL expression related 

negatively with estradiol levels. Appeal for the local measuring of the RANKL is 

summoned by the fact that no changes in the serum RANKL were detected in 

contrast to the significant changes in the bone marrow microenvironment [42]. 

RANKL/OPG ratio is decreased by estrogens and increased by 

glucocorticoids and parathyroid hormone, parathyroid-related protein (PTHrP) 

and prostagrandins. Administration of conventional doses of hormone 

replacement therapy prevents menopausal bone loss by reducing bone turnover 

and inhibiting osteoclast activity [100]. Research groups repeatedly described a 

complex role of estradiol and testosterone in maintaining the bone density. 

Interconnected effects of these hormones are materialized by various ways, for 

example by regulation of TGF-β, increase of expression of the 

1,25-dihydroxyvitamin D3 receptors and growth hormones and many others by 

estrogen. Husheem and coworkers observed that whereas testosterone has 

both direct and indirect inhibitory effects on human osteoclast formation and 

bone resorption; estrogen effects through osteoblastic cells, lacking the direct 

influence [101]. Bord and coworkers have described that estrogen 

administration elevated OPG mRNA for the whole measured period but 

surprisingly caused RANKL increase too in 24h, which decreased at 48h [41]. 

Other steroid - dehydoepiandrosterone (DHEA) helps to maintain BMD by 

promoting osteoblastic proliferation through mitogen-activated protein kinase 

(MAPK) [102] and increasing OPG/RANKL ratio in osteoblasts [103]. 

Cross-sectional study on 517 healthy women and 491 men brought a 

useful comparison between sexes in one place. It observed declination of 

women BMD after age 50, whereas men remained stable until age 70. 

However, after controlling for age, BMI and other confounding variables, OPG 

showed only a borderline positive correlation with BMD in men. Multivariable 

models revealed positive association of OPG on osteocalcin (OC)/tartrate-

resistant acid phosphatase 5b (TRACP-5b) and OC/serum C-terminal cross-

linked telopeptides of type I collagen (CTX) in women and OC/TRACP-5b in 

men [95]. 
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Browner and colleagues found no association between OPG levels and 

risk of subsequent fractures on the sample of 490 elderly white women (65yr+). 

Age adjusted post-hoc analysis revealed significant association of OPG levels 

with hip fractures (OR = 1.3; CI = 1.0-1.7; p = 0.03) but not with wrist fractures 

(age adjusted OR = 1.0; CI = 0.7-1.4; p = 0.98). In addition to that, no significant 

correlation between serum OPG level and BMD was reported [104]. 

In contrast, a small study on 80 Korean males (42-70 yr) observed a 

significant negative correlation between the serum OPG levels and lumbar BMD 

(R = –0.259; p < 0.05). This study reported several correlations between serum 

OPG and RANKL/OPG ratio: for example with serum osteocalcin levels 

(R = -0.254; p < 0.05; R = 0.264; p < 0.05); serum estradiol levels negatively 

correlated with serum OPG (R = -0.319; p < 0.01) and positively with 

RANKL/OPG ratio (R = -0.374; p < 0.001). On the contrary, serum total 

testosterone and insulin-like growth factor I (IGF-I) were not correlating with 

neither OPG nor RANKL/OPG [105]. 

STRAMBO, the cross-sectional study of 1149 men (20-87 yr) revealed 

that the highest quartile OPG serum levels were associated with lower BMD at 

distal radius and distal tibia (8.2%; p < 0.001 and 3.7%; p < 0.05) and observed 

higher levels of bone resorption markers (11.8-13.1%; p < 0.01-0.001) after 

adjustment for the confounders in comparison with the three lower quartiles 

combined. The researchers postulated that increased OPG levels might reflect 

higher cortical bone turnover or be an adaptive reaction to the bone loss [106]. 

Study on pre- and postmenopausal Chinese women (n = 504) showed 

negative correlation of serum IGF-I with OPG and OPG/RANKL ratio, but 

positive with RANKL. It has to be mentioned, that IGF-I correlation on BMD 

disappeared after adjustment for age [60]. 

Screenings for single-nucleotide polymorphisms (SNPs) in RANKL, 

RANK and OPG and their influence on bone turnover and BMD were conducted 

on large sample of 2653 European men (40-70 yr). Genetic influence on bone 

turnover and BMD was revealed on numerous SNPs including rs2073618 in 

OPG associated with lower lumbar spine BMD and rs9594759 near RANKL 

associated with higher BMD [107]. 589 men were subjected to other genotyping 

study with similar results (4 RANKL SNPs, 3 RANK SNPs, 7 OPG SNPs 

associated with BMD measured by quantitative computed tomography (QCT)), 

however some of the SNPs significance disappeared after adjustment for 

age [108]. 
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3.6 Current approach to treatment of osteoporosis 

3.6.1 Definition and diagnosis 

Osteoporosis was defined at the 1993 consensus conference as 

“a systemic skeletal disease characterized by low bone mass and micro-

architectural deterioration of bone tissue with a resultant increase in fragility and 

risk of fracture” [109]. Risk for the development of osteoporosis is increased by 

numerous factors including age, family history, female gender, age at 

menopause and prior fragility fracture. Smoking, high alcohol intake, low 

calcium diet, low body weight, recurrent falls, sedentary lifestyle, low sex 

hormone levels, malabsorption and use of some drugs, most importantly 

glucocorticoids should be named as the modifiable risk factors leading to bone 

thinning [110]. An approach of measuring so called T-score is commonly used 

for interpretation of BMD results. T-score is the number of standard deviations 

above or below the mean BMD for normal young adults as to be seen in the 

table 3 [111,112]. Additional indicator used is Z-score that represents the 

number of standard deviations from the average BMD of the same age, sex and 

ethnicity groups. Because dual-energy X-ray absorptiometry (DXA) used for 

diagnosis of osteoporosis and BMD measurement is a very expensive method, 

population screening is made by various algorithms, such as FRAX® (Fracture 

Risk Assessment), QFractureScores® and Garvan Institute fracture calculator. 

For a more comprehensive overview we are suggesting to read the clinical 

guidelines such as those by the Council of the Osteoporosis Society of 

Canada [113] or Royal Australian College of General Practitioners [110]. 

 

Table 3: Interpretation of the T-score in BMD 

Interpretation T-score 
Normal BMD + 2.5 to -1.0 
Osteopenia - 1.0 to -2.5 
Osteoporosis ≤ -2.5 

 

  



~25~ 

3.6.2 Treatment of osteoporosis 

The treatment arsenal for curing or mitigating the osteoporosis is still 

challenged by the chronic characteristic of the condition. Unfortunately, many 

available treatments have a limited duration of safe administration in humans. 

Anabolic agents, such as teriparatide and synthetic parathyroid hormone, are 

given for a maximum of two years and long-term use of bisphosphonates has 

raised concerns about rare, but serious adverse events — osteonecrosis of the 

jaw, atypical fractures, and esophageal cancer. This led to the advice of a drug 

holiday after 5-10 years bisphosphonate course [114]. An ideal remedy should 

possess numerous qualities [115], such as:  

 antifracture efficacy at various skeletal sites, including spine, non-

vertebral sites, and hip 

 high skeletal and extra-skeletal safety margin 

 mode of administration and interval compatible with long term 

patient adherence 

 compatibility with concomitant treatment 

 affordable cost 

Table 4: Milestones of osteoporosis treatment 

Milestones of osteoporosis treatment – year of first approval by the 
FDA (or EMA for strontium ranelate). Adapted from Osteoporosis – a 
current view of pharmacological prevention and treatment [116]. 
Hormone replacement Therapy 1986 
Calcitonin 1991 
Oral bisphosphonates 1995 
Raloxifene 1999 
Teriparatide 2002 
Strontium ranelate 2004 (EMA) 
i.v. Bisphosphonates 2006/7 
Denosumab 2010 
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3.6.3 Vitamin D and Calcium 

Proper intake of vitamin D and calcium is the fundamental part of 

osteoporosis prevention and treatment because their deficiency leads to 

secondary hyperparathyroidism, osteomalacia and osteoporosis. Majority of 

clinical guidelines and also clinical trials of osteoporosis treatment operate with 

recommended daily doses of 1000-1200 mg of calcium and 800 IU of vitamin D. 

Some studies also observed that the protective effect of hip fracture prevention 

of vitamin D supplementation is apparent in the arm of elderly institutionalized 

patients with vitamin D deficiency but not in the non-institutionalized 

postmenopausal women [117]. Even though these supplements are generally 

considered safe, meta-analysis or RCT have noticed increase risk of 

cardiovascular events, especially myocardial infarction and stroke associated 

with calcium supplement without (RR = 1.27;CI = 1.01-1.59; p = 0.038) [118] or 

with (RR = 1.24; CI = 1.07-1.45; p = 0.004) [119] vitamin D and thus awareness 

should be risen not to support the automatic prescription of calcium and vitamin 

D supplements [120–122]. 

3.6.4 Bisphosphonates (BP) 

Bisphosphonates, mainly risedronate and alendronate, serve as golden 

standard for the treatment of postmenopausal and glucocorticoid induced 

osteoporosis. BP treatment, used as a standard care in patients with advanced 

breast cancer and metastatic bone disease, reduces the skeletal-related events 

and improves the quality of life. Other actively used members of this group are: 

ibandronate, zoledronate, pamidronate, clodronate and etidronate. BPs operate 

with the complex mode of action - inhibition of the osteoclastogenesis and block 

of osteoclast activity through their inhibitory effect on several enzymes in the 

mevalonate pathway, mainly farnesyl pyrophosphate synthase 

(FPPS) [113,123,124]. The rank order of FPPS inhibition is: zolendronate > 

risedronate > ibandronate > alendronate > pamidronate [125]. New evidence 

adds that some BP can also stimulate osteoblast proliferation, differentiation 

and bone formation, as well as inhibit osteoblast apoptosis [105,126–130].  

The clinical pharmacology of BPs is characterized by their poor oral 

bioavailability, which tends to be < 1%. Furthermore, the skeletal distribution of 

BPs is not constant — being highest in the spine and lower in the femoral shaft, 

and varies too among the bone types being higher in trabecular than in cortical 

bone [131]. First effect of increased BMD can be seen in 6 months from the 

start of the treatment [132]. N-containing BPs are excreted unmetabolized in the 

urine within 48 hours whereas non-N-BPs are metabolized intracellularly. 

Because of widespread preference to use the N-containing BPs, renal function 

is an important consideration to set the BP treatment [133]. However, after the 

initial rapid clearance, the elimination might take up to 12 years during which 

bone turnover can still remain below baseline even after the 

discontinuation [134]. The treatment duration is recently widely debated due the 
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long retention time of BPs and probable accumulation of impaired bone quality 

leads to lower healing of microfractures and occurrence of unusual 

fractures [135]. Suggested drug holiday after 5-10 years of treatment might 

reduce the risk of the potential serious adverse effects.  

The most common adverse effects take place on the gastrointestinal tract 

and include dysphagia, esophagitis, regurgitation and gastric ulcers. These 

events cause main percentage of the drug discontinuation (up to 20% of 

subjects), especially when the low BMD is yet without noticeable 

symptoms [136]. The rare, but serious jaw osteonecrosis raised the doubts 

about the BP safety profile. This condition was reported mostly in the oncology 

population with high doses of monthly zolendronic acid or pamindronate in 

combination with the chemotherapy and was more frequent in patients with poor 

dental hygiene. Another serious issue to be monitored in the future is the 

potentially increased incidence of esophageal cancer in patients with oral 

bisphosphosponates [137]. 

3.6.5 Strontium ranelate 

Strontium ranelate increased bone formation in vitro, enhancing pre-

osteoblastic cell replication and osteoblastic differentiation and decreasing 

abilities of osteoblasts to induce osteoclastogenesis via the calcium-sensing 

receptor (CaR) and an increase in the OPG/RANKL ratio [138–143]. Strontium 

ranelate significantly reduces the risk of vertebral and hip fractures in 

postmenopausal women [144–146]. 

The study on 5091 postmenopausal osteoporotic women observed a 

rapid reduction of hip fracture risk (RR = 0.57; CI = 0.33-0.97) and described 

significant reduction of vertebral fracture risk (RR = 0.76; CI = 0.65-0.88) and 

nonvertrebral fracture (RR = 0.84; CI = 0.73-0.99). 53% women (n = 2714) 

completed the study up to 5 years and in this extension of an initial 3-years 

study the risk of new vertebral fractures was reduced by 59% relative to 

placebo [147]. 

After 5 years, the safety profile of strontium ranelate remained 

unchanged compared with the 3-year findings and the incidence of adverse 

effects and serious adverse effects was similar between the ranelate and 

control group — more patients in the strontium ranelate group reported 

nausea (7.8% versus 4.8%), diarrhea (7.2% versus 5.45%), headache (3.6% 

versus 2.7%), dermatitis (2.3% versus 2.0%) and eczema (2.0% versus 

1.5%) [148]. 

Update: European Medicines Agency recommended in April 2013 to 

restrict the use of strontium ranelate due to the emerging risk of heart attack. 

(RR = 1.60; CI = 1.07-2.38). The EMA Committee for Medicinal Products for 
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Human Use requested additional information to finally decide if strontium 

ranelate should no longer be indicated in osteoporosis treatment [149,150]. 

3.6.6 Selective estrogen receptor modulators (SERMs) 

Selective estrogen receptor modulators (SERMs) are chemically diverse 

compounds that lack the steroid structure of estrogens, but interact with 

estrogen receptors (ER) as agonists or antagonists depending on the target 

tissue. Although being originally designed for the prevention and treatment of 

breast cancer (tamoxifen, toremifine, raloxifene), observed effect on bone mass 

conservation promised the new indications of some members of this 

group [151]. As a result, raloxifene became first SERM with indication both for 

reduction of breast cancer and for the treatment and prevention of osteoporosis 

in postmenopausal women and two new SERMs, bazedoxifene and 

lasofoxifene, have been recently licensed. 

According to a meta-analysis of seven clinical studies, raloxifene in dose 

of 60 mg or 120/150 mg daily reduced the risk for vertebral fracture by 40% and 

49% respectively [152]. However, risk of nonvertebral fracture was not affected. 

Raloxifene had a significantly lower risk of endometrial hyperplasia, 

thromboembolic events and cataract while being similarly effective in reducing 

the risk of invasive breast cancer as tamoxifen in a 5-year study of 

postmenopausal women [153]. 

Bazedoxifene in doses of 10, 20 and 40 mg was proven to be similarly 

effective in keeping the BMD compared to raloxifene 60 mg in the preventive 

2-year trial on healthy postmenopausal women with low or normal BMD 

(n = 1583) [154]. Other phase III clinical study between 20 mg (n = 1886) and 

40 mg (n = 1872) of bazedoxifene, 60 mg raloxifene (n = 1849) compared to 

placebo (n = 1885) observed reduction of vertebral fracture incidence by 42%, 

37% and 42% respectively, but the incidence of nonvertebral fractures was not 

significantly different from placebo [155]. 

Phase III PEARL trial, conducted on 8556 osteoporotic postmenopausal 

women described the reduction of vertebral and nonvertebral fracture incidence 

(HR = 0.58 and HR = 0.76 respectively compared to placebo) after 5 years in 

0.5 mg group of lasofoxifene, the third-generation SERM with improved oral 

bioavailability. Moreover, daily administration of 0.5 mg lasofoxifene was 

associated with significant reduction of ER-positive breast cancer (HR=0.17), 

coronary heath disease events (HR = 0.68) and stroke (HR = 0.64) [156,157]. 

Most common adverse effects of modern SERMs are hot flushes and leg 

cramps when compared to placebo. Serious concerns are raised by the 

significant increase of deep vein thrombosis associated with SERMs treatment. 

The risk of deep vein thrombosis was significantly increased after 3 years of 

bazedoxifene treatment (RR = 8; CI = 1.01-64.25) and lasofoxifene (HR = 2.67; 
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CI = 1.55-4.58 for 40 mg and HR = 2.06; CI = 1.17-3.60 for 20 mg). Insignificant 

increase of pulmonary embolism was observed in the continuous studies of 

basedoxifene [158,159]. Both described that new SERMs also appeared to 

have positive endometrial safety with no observed increase in the incidence of 

endometrial hyperplasia or endometrial cancer. 

3.6.7 Denosumab 

Denosumab (AMG 162) is a fully human monoclonal antibody IgG2 which 

binds to and inactivates RANKL, similarly to the action of OPG. Denosumab 

binds to RANKL with high specificity and affinity (Kd approx. 10-12 M) and it is 

more potent and acts longer than natural OPG, initially tested OPG-Fc or 

RANK-Fc [74,85,160–163]. In contrast to other mentioned molecules, 

denosumab seems to have no affinity to the other members of the TNF family, 

especially TRAIL, TNF-α, TNF-β and CD40L. The treatment is characterized by 

its reversibility after the discontinuation within 12 months [104,164]. In addition, 

denosumab seems to be the safest treatment option in patient with impaired 

renal function [165]. Moreover, its pharmacokinetics is not notably affected by 

body weight [166,167]. 

A single subcutaneous dose results in a dose-dependent, rapid (within 

12 hours), profound (up to 84%), and sustained (up to 6 months) decrease in 

bone resorption markers (N-telopeptide and C-telopeptide of type 1 collagen) 

and decrease in bone formation markers, which imposes a decrease of bone 

turnover [74,162,168]. Decreases are maximal at three months (70%-90% for 

resorption and 55%-75% for formation markers) [169]. Data from the 

FREEDOM trial showed significant increases in BMD at the lumbar spine, hip 

and distal radius [170]. These increases were significantly greater in 

comparison with alendronate [168] and at least similar when compared 

indirectly with those achieved with other BPs [171]. In a recent meta-analysis, 

denosumab was associated with OR of 0.33, 050 and 0.74 for vertebral, hip, 

and nonvertebral fractures respectively when compared with placebo [172]. 

Denosumab has been studied in patients with breast cancer, prostate 

cancer and multiple myeloma where it decreased turnover markers and reduced 

the skeletal-related events risk [173–176]. When compared to pamidronate in 

the study conducted by Body and colleagues a 45.3% decrease of NTX levels 

from the baseline in the pamidronate group and 64.1% (1.0 mg/kg denosumab) 

and 66.8% (3.0 mg/kg denosumab) was observed in a patient with breast 

cancer. In the multiple myeloma group, decreases of 35.0% in the pamidronate 

group vs. denosumab -40.1% and -33.2.% respectively, were observed [160]. 

Denosumab is also the first antiresorbing agent that has been proven to 

halt bone erosion in rheumatoid arthritis [177]. The 180 mg denosumab group of 

study conducted on 227 patients showed lower MRI erosion score compared to 

placebo after 6 months [178]. 
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Meta-analysis of randomized, placebo-controlled trials showed 

association with a borderline increased risk of serious infections (RR = 1.25; 

CI = 1.00-1.54) [179]. Other common adverse effect was small but significantly 

higher risk of eczema described in the FREEDOM trial [170]. In FREEDOM trial, 

no atypical fractures caused by the suppression of the bone turnover were 

reported for the first 5 years and those two reported cases (0.09%) in the 

extension originated from the crossover group — this issue still remains to be a 

major concern of the safety profile though [180]. Some studies also described 

appearance of non-neutralizing, anti-denosumab antibodies during the 

treatment [163]. 

3.6.8 Hormone replacement therapy (HRT) 

Menopause is the conditions characterized by the hormonal changes in 

women around the age of 50 associated with the fall of estrogens. This is 

usually followed by other changes in the body that are dependent on estrogens. 

HRT in the form of sole conjugated estrogen or combined with progesterone is 

currently used for improving the quality of life and managing the menopausal 

symptoms.  

After two studies being discontinued [181,182] on the basis of increased 

cardiovascular risks and after evidences of increased risk of breast cancer 

associated with a long-term use of estrogen-progesterone [183], HRT is no 

longer the recommended treatment for osteoporosis itself even though the 

protective role on BMD has been clearly evidenced. [184,185] 

3.6.9 Selective tissue estrogenic activity regulators (STEARs) 

Search for the alternative to the use of HRT has led to development of 

selective tissue estrogenic activity regulators (STEARs) of which the only 

member in use is tibolone. Metabolites of tibolone have the estrogenic effects 

on bone and vaginal tissue, progestogenic effect on endometrium and act as 

androgen in the brain and liver. Similarly to the HRT, tibolone treatment was 

associated with the lower risk of vertebral (HR = 0.55; CI = 0.41–0.74) and non-

vertebral fractures (HR = 0.74; CI = 0.58–0.93) compared to placebo in 

osteoporotic women (n = 4568; 60-85 yr) [186]. 

When compared to placebo, tibolone treatment was associated with the 

significant increase of vaginal bleeding and discharge, breast discomfort and 

vaginal infection. The main safety concern is the cardiovascular risk and the 

effect of tibolone on breast and endometrial tissue. Tibolone has been 

associated with increased risk of stroke even when compared with HRT which 

led for example to discontinuation of the LIFT study (reported RR = 1.58; 

CI = 1.06-2.37; p = 0.03 for tibolone versus HRT) [187]. Despite reducing the 

risk of breast and colon cancer, tibolone has been associated with an increase 

recurrence in breast cancer survivors [188]. It should be noted that long-term 
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evidences of safety are currently missing and risk benefit ratio gets decreased 

with the longer-term use of tibolone which leaves this therapeutic option as a 

second-line indication. 

3.6.10 Parathyroid hormone and teriparatide 

Teriparatide is a recombinant N-terminal fragment of 1-34 amino acids of 

the human parathyroid hormone (PTH) with effect of PTH on bone formation. 

Teriparatide stimulates the release of calcium and phosphate from the bone, 

reabsorption of calcium from the glomerular filtrate and loss of phosphate to 

urine and stimulates the renal synthesis of 1α,25-dihydroxyvitamin D3 and its 

absorption of calcium and phosphate from the GIT. Teriparatide proved higher 

BMD increase in comparison with alendronate in postmenopausal osteoporotic 

women [189,190]. However, rat models revealed increased risk of 

osteosarcoma and bone abnormalities and despite no reports in the clinical 

trials, teriparatide treatment is limited to 24 months in the USA and 18 months in 

Europe and Australia for safety reasons [191–194]. 

3.6.11 Calcitonin 

Calcitonin is a hormone that at pharmacologic dose levels inhibits 

osteoclast activity. Recombinant salmon calcitonin became the standard 

chemical form of the drug for the treatment purpose. Although originally 

administered by injection due to associated adverse effect has been established 

other route of administration in a form of nasal spray. Efficacy of nasal calcitonin 

has been challenged in various RCTs of wide range of statistical power and 

quality, yet only the PROOF study had the sufficient power to prove the 

reduction of vertebral fractures by 33-36% in postmenopausal women 

(n = 1255) after 5 years of follow-up [195–208]. European Medicines Agency 

has recommended to limit the long-term use of calcitonin in 2012 based on the 

evidence of increased risk of cancer associated with the treatment. The risk was 

higher when the nasal route was used. Therefore, calcitonin is now indicated 

only intravenously in short-term treatments of acute bone loss, Paget’s disease 

or cancer induced hypercalcaemia. 
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3.6.12 Drugs in development 

Cathepsin K inhibitors – ONO-5334, Odacanatib (ODN) 

Several different substances that block essential osteocyte enzyme 

cathepsin K responsible for the degradation of collagen I and II have been 

designed and tested but many of them were discontinued before phase III trials 

(for example L-006235, Balicatib). Results of Phase II study on ONO-5334 (Ono 

Pharmaceutical Company, Ltd, Japan) have been published in 2011. 

295 postmenopausal women in OCEAN Phase II study have been assigned, 

showing that 300 mg monthly ONO-5334 treatment increased lumbar spine, 

femoral total hip and femoral neck BMD compared to alendronate, but in 

contrast to it, ONO-5334 did not suppress bone formation markers at any 

dose. [209] 

Odacanatib (ODN, Merc and Co, Inc, USA) is currently undergoing 

Phase III clinical trials. ODN shows unique compartment-specific effect on 

trabecular versus cortical bone formation and in contrast to other antiresorbtive 

treatment, it maintains the viability of osteoclasts and discontinuation of the 

administration reverses the effects of treatment. Phase II trial measured the 

dosing effects on postmenopausal women with low BMD (T-scores -2.0 to -3.5) 

and observed that 5 years of ODN (10-50 mg) treatment resulted in increase of 

spine and hip BMD (mean lumbar spine BMD in 50 mg ODN group for whole 

5 years was 11.9% compared to the -0.4% from the baseline) [210]. 

Osteoprotegerin-like peptidomimetics 

Cheng and coworkers have developed osteoprotegerin-like exocyclic 

peptidomimetcs, which have been shown to inhibit osteoclast formation in vitro 

and prevent the bone loss in ovariectomized mice. The most potent, OP3-4, 

binds to both RANK and RANKL and although it is not large enough to prevent 

RANKL associating completely it interferes with the strength of interaction of 

these proteins required for the downstream activation [211]. 

Anti-sclerostin antibodies 

Two monoclonal antibodies (AMG 785 and AMG 167; Amgen Co., USA) 

against human sclerostin, the factor inhibiting the Wnt signaling, are currently 

undergoing the preclinical trials. Sclerostin was the protein over-expressed 

during the mechanical unloading in mice models and caused the decrease of 

BMD, which was possible to block with the use of sclerostin 

antibodies [212,213]. AMG 785 has already completed the Phase II trial, 

however the results are pending. In its Phase I it successfully prevented the 

bone-loss and reduced the bone resorption markers [116,214]. 
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3.7 Other roles of OPG/RANKL/RANK axis 

Additionally to their key role in bone metabolism, the members of 

OPG/RANKL/RANK pathway have been associated with various non-skeletal 

functions. This may underline interconnection of the bone metabolism into the 

other events occurring in the body. The overview of these conditions could be 

seen in the table 5. 

Table 5: Non-skeletal events associated with the OPG/RANKL/RANK pathway 

Non-skeletal events associated with the OPG/RANKL/RANK pathway 
Cardiovascular: 
- coronary atherosclerosis [34,215–225] 
- heart failure [226] 
- high blood pressure [227] 
- angina [228] 
- carotid stenosis [229] 
- ischemic cardiomyopathy [230] 
- left ventricular ischemia [227] 
- left ventricular overload [226] 
- peripheral artery disease [231] 
Diabetes mellitus [104,232–237] 
Renal osteodystrophy, renal failure [238–240] 
Primary biliary cirrhosis [241] 
Mammary glands development and pregnancy [79,242–245] 
T and B lymphocytes differentiation [68–71,76] 
Bone related events in cancer, cancer cell survival [63]  
Thermoregulation, fever inflammatory response [246] 

 

3.7.1 Cardiovascular conditions 

Many conducted studies have described the association between bone 

pathologies and atherosclerosis which has been supported by findings in vitro 

and on animal models [34,215–222]. Whether the members of 

OPG/RANKL/RANK pathway may serve as biomarkers, mediators, adapting 

mechanisms or causes themselves in the observed cardiovascular conditions 

has to be further elucidated. Study on low density lipoprotein receptor knocked 

out (ldlr-/-) mice which were fed with atherogenic diet and administered with 

recombinant OPG has described that the concentration of OPG did not increase 

with progression of atherosclerosis and thus OPG might be involved in onset of 

calcification itself but not with its severity [221]. This explanation might be 

supported by the findings that intravenous administration of OPG to opg-/- mice 

is unable to reverse the ongoing vascular calcification [220]. 

For more comprehend review on studies associating OPG serum 

concentration with various cardiovascular conditions we suggest to read 

Campenhout and Golledge and review made by Kiechl and 

coworkers [247,248]. In conclusion: raised serum OPG has been shown to 

correlate with the severity of heart failure [226], high blood pressure [227], 



~34~ 

coronary atherosclerosis [223–225] and marks of atherosclerosis instability 

such as carotid stenosis [229], angina [228], ischemic cardiomyopathy [230], left 

ventricular ischemia [227] and overload. [226] 

For the illustration of the elevated risks we mention the study on 490 

elder (65 yr+) women conducted by Browner and colleagues, where the highest 

quintile of OPG serum levels was associated with 4.4 times increase of 

cardiovascular mortality (OR = 4.4; CI = 1.5-13; p = 0.007) and 3 times increase 

of all-cause mortality (OR = 3.0; CI = 1.5-6.2; p = 0.02) compared to those with 

lowest quintile. Age-adjusted all-cause mortality OR has been increasing by 

1.4 (CI = 1.2-1.8; p = 0.001) per SD (0.11 ng/ml) increase in serum OPG [104]. 

In contrast to RANKL and RANK, which are measurable only in impaired 

vessels, expression of OPG can be observed even in healthy vessels of mice 

and human. This is based on the fact that OPG is produced by the smooth 

muscle and endothelial cells [28,220,229,249]. RANKL has been found to 

significantly increase expression of VEGFs - especially VEGF-C - and this 

factor promotes the bone resorptive activity of osteoclasts through Src 

signaling [250]. It should be noted that other member of the VEGF family — 

VEGF-A — is able to substitute for M-CSF to support RANKL-induced 

osteoclastic bone resorption [251]. 

OPG expression has been found to be induced by inflammation markers. 

This is in coherence with postulated inflammation character of atherosclerosis 

[27,252–256] and OPG level has been found to be decreased by the 

administration of anti-inflammatory agents [47,257,258]. Statins — the wide-

spread drugs used in cardiovascular indications — have been reported to inhibit 

calcification in aortic valve myofibroblasts and decrease TNF-induced OPG 

expression but paradoxically to stimulate bone cell calcification both in vitro and 

clinical retrospective studies [259–264]. 

3.7.2 Diabetes mellitus 

Diabetes mellitus is a condition strongly connected to various vascular 

difficulties based on the endothelial dysfunction. Serum OPG has been found to 

be elevated with early onset of type 2 and type 1 diabetes [235–237]. Predictive 

role of decreased OPG on improved flow-mediated dilatation of the brachial 

artery (FMAD) has been shown on type 1 and type 2 diabetic patients [232–

234]. In study of 490 elderly women the OPG serum levels have been reported 

to be 30% higher in women with diabetes (without type distinction) compared to 

non-diabetic [104]. However, it seems that increased serum OPG is more likely 

tied to endothelial damage than diabetic disease itself [237]. 

3.7.3 Immunity system 

Back in 1997, RANKL-RANK interaction was originally described on 

RANKL augmentation of the ability of dendritic cells to stimulate naïve T-cell 
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proliferation in a mixed lymphocyte reaction [15]. Although RANK was initially 

identified as a gene expressed in myeloid-derived DCs, expression of this 

receptor is not critical for the differentiation and function of cells of the myeloid 

compartment including macrophages and DCs. In addition to osteopetrosis, 

RANKL and RANK mice models expressed defects in early differentiation of T 

and B lymphocytes and lacked peripheral lymph nodes. Both models revealed 

similar phenotypes with the main distinction in the thymic differentiation which is 

defective only in the rankl-/- mice [70,71,76]. 

OPG seems to regulate early B lymphocyte development, as was 

observed by Yun and coworkers ex vivo. Opg-/-B cells had 1.7-2 fold increase in 

IL-7 responsiveness compared with opg+/+. Absence of OPG resulted in 

enhanced stimulatory capacity of dendritic cells and to isotype class switch 

defects during the primary immune response. Increase of immunological activity 

in absence of OPG can propose its similar role of a brake as was showed in 

bone resorption [68,69]. 

3.7.4 Mammary glands development and pregnancy 

Both rankl-/- and rank-/- mice had failed to develop healthy mammary 

gland during pregnancy and lactation in contrast to the OPG transgenic mice 

that did not show any failure of lactation. Serum OPG increases rapidly during 

the gestation period with a sharp decline after delivery in mice and human [242–

244]. In contrast to constitutional RANK expression in normal mammary gland, 

RANKL expression is elevated during pregnancy by the effect of sex hormones, 

leading to higher proliferation [79]. Moreover, OPG might be playing the role of 

protective factor of the fetal membrane against TRAIL-induced apoptosis [245]. 

As described in the next sub-chapter, these factors play an important role in the 

breast carcinoma. 

3.7.5 Cancer – breast, prostate 

Bone metastases are a frequent complication of many cancers that result 

in severe coping and pain and occur approximately in 75% patient with 

advanced breast or prostate cancer. Observations tell that metastases might be 

more responsible for the cancer mortality than primary tumors themselves [265–

269]. Evidences of RANK expression in some cancer types made more 

understandable the frequency of bone homing because RANKL-RANK 

interaction was proved to cause concentration-dependent cell migration in three 

different human breast cancer lines (MDA-MB-231, MCF-7, Hs578T) and two 

RANK-expressing prostate cancer cell lines. This migration was possible to be 

blocked by OPG [270]. 

Various breast tumors are reported to actively secrete OPG as it inhibits 

TRAIL-induced apoptosis and thus increases the cell survival. OPG secretion 

was found to be negatively correlated with increasing tumor grade in large 
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cohort of human breast tumors sample (n = 400). Addition of RANKL in excess 

was able to restore the TRAIL-induced apoptosis in vitro [63]. 

Mice model of melanoma metastasis with in vivo RANKL neutralization 

by OPG has resulted in complete protection from paralysis and significant 

reduction in tumor bone spreading in contrast to other organs [271]. However, in 

vitro OPG was able to inhibit only RANKL-RANK based migration but not that 

caused by different chemokines, such as 6Ckine and Stromal cell-derived factor 

(SDF) 1α. In C57BL/6 mice with injected B16F10 melanoma cancer OPG was 

able to reduce the presence of melanoma cells in bones, but not in other organs 

such as ovaries, adrenal glands, brain. It also preserved vertebrates from 

metastasis and saved mice from developing paralysis. In addition to that, OPG-

treated animals had increased length of survival compared to untreated 

ones [270]. 
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4 EXPERIMENTAL PART 

As listed above, namely OPG and RANKL are deeply interconnected with 

various pathways of body. Understanding their regulation can reveal a brighter 

image about the real place of these proteins in those regulatory ways. Despite 

its importance in the research works of the last two decades, there is still a lot to 

elucidate in the OPG/RANKL/RANK pathway.  

Our experimental aim was to identify transcription factors and DNA 

binding sites in -662 to -438 region that control RANLK expression. For 

confirmation of these patterns, functional tests with site directed mutagenesis 

and electrophoretic mobility shift assay were conducted with further details on 

the following pages. 

4.1 Principles of used methods 

4.1.1 Dual Luciferase Assay (DLA) 

For the purpose of functional test of constructed plasmids Dual-

Luciferase® Reporter (DLR™) Assay System by Promega Co. (USA) was used 

in order to conduct functional tests on constructed plasmids. It is the upgrade of 

commonly used gene expression reporter system that additionally to the 

fluorescent gene for firefly (Photinus pyralis) luciferase utilizes inner standard of 

second luciferase enzyme, Renilla (occurring in Renilla reniformis). This second 

enzyme allows mitigation of the variability caused by different efficiency of 

transfection, cell concentrations and viability and differences in volumes of 

working solutions. These deviations are mitigated by utilizing the results as ratio 

of fluorescent activity of luciferase and Renilla (luc/ren).  

Reporter plasmids bearing either one or both mutations are transfected 

to the desired eukaryotic cells. Cells are then lized and the lizate is the solution 

for DLA. The fluorescent reactions are measured sequentially after being 

stimulated with their specific and distinguished substrates. After measuring 

luciferase, the reaction is terminated and second reaction with Renilla is 

simultaneously initiated by Stop & Glo® solution. The fluorescent reaction with 

used enzymes shows linear range of outcome and is suitable for quantifying of 

the expression. Both firefly and Renilla luciferases have similar kinetics and 

high sensitivity (≤ 10 femtogram) and similar time profile. For more details, read 

technical manual of Dual-Luciferase® Reporter Assay System by Promega Co. 

4.1.2 Electrophoretic Mobility Shift Assay (EMSA) 

EMSA is the method used for identifying affinity of proteins to the nucleic 

acids oligomers. Main principle of identification is based on a fact that bigger 

complexes of protein-nucleic acid move slower in the electric field of 

electrophoresis in contrast to free non-bound nucleic acid and results in “shift” 
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Figure 1: Comparison of length of the promotor region in 
pGl3 plasmid constructs with RANKL 

 

 

of the migration distance. After the electrophoresis in the agarose or 

polyacrylamide the reaction is transferred by blotting technique for further 

labeling and visualization. Fluorophores or biotin are recently more commonly 

used to visualize the shifts. This approach switched the former use 

radioisotopes although later might be preferred in some cases. We used biotin-

labelled DNA sequences which were visualized by Streptavidin-Horseradish 

Peroxidase Conjugate. 

4.2 Screening and bioinformatics 

Our team has previously produced four screening versions of RANKL 

with different length of promoter region. These plasmid constructs were 

attached to the backbone of vector pGl3 and transfected to the CRL-1543™ 

human osteosarcoma cell lines. Their relative activities were measured by Dual-

Luciferase Assay in the same conditions as described in this research. 

The difference in RANKL expression of these construct was observed in 

the aggregated repeated results illustrated in the graph 1 below. Decrease of 

RANKL expression of average 34.67% in pGl3-F3 compared to pGl3-F2 

construct which was followed by the increase in activity in pGl3-F4 (5.62%) was 

chosen for further investigations.  
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Graph 1: Aggregated data from screening of RANKL expression (Mlakar-unpublished data) 

Relative expression after transfecting to human osteosarcoma (HOS) cells and measured by Dual 

Luciferase Assay (DLA); F1 – pGl3-F1; F2 – pGl3-F2; F3 – pGl3-F3; F4 – pGl3-F4 

 

Sequence of pGl3-F3 was analyzed by Noris Medical Library of 

transcription factors (TF Search tool) and revealed two potential regulation 

sites, named A and B as in figure 2.  

Figure 2: Potential binding sequences of pGl3-F3 as revealed by Noris Medical Library 

 

These places, situated -512bp (place A) and -502bp (place B), served as 

the target for mutagenesis, leading to prevention of potential transcription factor 

binding and therefore to increased luciferase expression measured by the DLA.  

Mutated primers with their technical specification which were used for 

plasmid constructions are listed in the appendix. The description of the process 

is described in the following chapter. 

 GGGATTTGGG AAGGGGATTG TGAAATTTTCG entry score 

                 --------------> C/EBPb 96.2 

      ---------> Lyf-1 94.8 

               ----------> GATA-1 91.8 

               ----------> GATA-2 88.9 

     ------------> Ik-2 88.6 

           --------> MZF1 87.0 

    -------------> C/EBP 86.2 

                    <-------------- C/EBPa 85.7 

                ---------> GATA-3 85.6 

-512 A -502 B 



~40~ 

4.3 Plasmid construction 

Plasmids: Previously generated plasmids pGl3-F1,2,3,4 from Vid Mlakar 

were used as a backbone for mutant strand synthesis. Gene for Ampicillin 

resistance was used for the positive selection of mutants and gene for 

Luciferase to conduct the Dual Luciferase assay (DLA). Both genes are carried 

on the pGl3 plasmid. 

Primers obtained from Sigma-Aldrich Co. list of specifications to be seen 

in appendix. Primers Lyf-mut-F and Lyf-mut-R were used to create plasmid 

construct pGl3-F3-A and GATA2-mut-F and GATA-mut-R to create new 

plasmid construct pGl3-F3-B. In addition to that, different primers were used to 

conduct EMSA as to be seen in the EMSA protocol.  

Primers were diluted to 100 µM using ultra-pure H2O and incubated for 

10 minutes at 56°C; after that they were stored at -20°C. 

4.3.1 Mutant Strand Synthesis Reaction 

Materials: 

 HotStar HiFidelity Polymerase Kit (QIAGEN, #202602) – kit 

included HiFidelity DNA Polymerase, 5X HotStar HiFidelity PCR 

Buffer (with dNTPs), 5X Q-Solution, 25 mm MgSO4 and RNase-

Free Water 

 C1000™ Thermal Cycler (Bio-Rad, USA) and standard equipment 

for PCR – Sterile 0.2-ml thin-walled PCR tubes, tips, pipettes 

 Ultra-pure H2O 

Procedure of the reaction was based on Site-Directed Mutagenesis 

protocol adapted from a combination of Stratagene’s QuickChange® 

Site-Directed Mutagenesis Kit (#200518) and Wang, W. Malcolm, 

B.A [272]. 

1. To each labeled 0.2-ml PCR tubes PCR components shown in the 

table 6 were added. PCR tubes were placed into the C1000™ 

Thermal Cycler (Bio-Rad, USA) and polymerization reaction was 

conducted with parameters shown in table7. 

Table 6: PCR components of Mutant strand 
synthesis reaction 1 

uH2O 36.6 µl 
5X Buffer 10.0 µl 
Primer 0.4 µl 
HiFi polymerase 2.0 µl 
Plasmid 1.0 µl 
Total volume: 50.0 µl 

 

Table 7: Mutant strand synthesis reaction 1 
parameters 

Program 
block 

Temperature Time 

I. 95°C 5 min 
II. 10× 

94°C 30 sec 
55°C 1 min 
68°C 12 min 
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2. Immediately after the reaction was finished, 25 µl of each paired 

PCR tubes were mixed (Lyf1-mut-F and Lyf1-mut-R together, 

GATA2-mut-F and GATA2-mut-R together) into new 0.2-ml PCR 

tube. 0.75 µl of fresh HiFi polymerase was added and placed into 

the thermocycler to conduct Mutant strand synthesis reaction 2. 

Table 8: Mutant strand synthesis reaction 2 
parameters 

Program 
block 

Temperature Time 

I. 95°C 5 min 
II. 18× 

94°C 30 sec 
55°C 1 min 
68°C 12 min 

III. Hold at 12°C 

4.3.2 Digestion of non-mutant template DNA 

Materials: 

 10X Buffer #4 (500 mM potassium acetate, 200 mM tris-acetate, 

100 mM magnesium acetate, 10 mM dithiothreitol, pH 7.9 at 25°C) 

 DpnI restriction enzyme (200 units/µl) 

Procedure: based again on Site-Directed Mutagenesis protocol listed 

above. 

1. In to the new 0.2-ml PCR tubes were added 2 µl of 10X Buffer #4 

and 1 µl and 17 µl of product from Mutant strand synthesis 2.  

2. PCR tubes were incubated for at least 6 hour at 37°C in 

Thermocycler. Long term storage of the product has been 

conducted at -20°C. 

4.3.3 Transfection of plasmids to competent cells 

DH5α competent cells and procedure following TransformAid Bacterial 

Transformation Kit protocol (#K2710, #K2711, Thermo Fisher Scientific, USA) 

were used for transfection of plasmids. Centrifugations were conducted in the 

Eppendorf miniSpin table-top centrifuge at room temperature (10000× g), all 

other procedures were performed on ice unless stated otherwise. 

1. LB plate was seeded with a single DH5α colony and incubated 

overnight at 37°C. 

2. Culture tubes with 3.0 ml of C-medium (included in the kit) were 

prepared before the transformation and pre warmed for 37°C for at 

least 20 minutes. Pre-warmed LB Amp+ agar plates were put in 

the 37°C incubator at least 20 minutes before plating. 
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3. T-solution was prepared from combining of 250 µl of thawed T-

solution (A) and 250 µl of thawed T-solution (B) (both included in 

the kit) and kept on ice. 

4. Freshly streaked bacterial culture was transferred to 3.0 ml of pre-

warmed C-medium by an inoculating loop. The cells were gently 

mixed and incubated at 37°C for 2 hours in a horizontal shaker. 

5. Cells were centrifuged for 1 minute and the supernatant was 

discarded. 

6. Cells were resuspended in 300 µl of T-solution and incubated on 

ice for 5 minutes. 

7. The solution was centrifuged for 1 minutes and supernatant was 

discarded. 

8. Cells were resuspended in 120 µl of T-solution and incubated on 

ice for 5 minutes. 

9. Up to 5 µl of vector DNA solution (10-100 ng of pGl3-F3-A and 

pGl3-F3-B respectively) was placed into new microcentrifuge 

tubes and chilled on ice for 2 minutes 

10. 50 µl of prepared cells was added to each vector tube, mixed and 

incubated on ice for 5 minutes. 

11. After incubation the cells were plated immediately on separated 

pre-warmed LB Amp+ plates and incubated overnight at 37°C. 

4.3.4 Miniprep plasmid isolation 

QIAprep® Spin Miniprep Kit procedure protocol (#27104, #27106, 

Qiagen Co., Germany) was used for plasmid isolation according to 

manufacturer’s recommendations. 

Materials included in the kit 

 Buffer P1 was mixed with provided RNase A solution and stored at 

4°C; Buffer P2, Buffer N3, Buffer PB, Buffer PE mixed with ethanol 

(96-100%), Buffer EB (10 mM Tris Cl, pH 8.5) 

Other materials 

 LB broad 

 Environmental Shaker-Incubator ES 20 (Biosan, Latvia) 

 Table top microcentrigfuge (Eppendorf miniSpin) 

 Bacteria containing plasmids of interest were obtained from 

previous reaction. One colony of each strain was put into the 3 ml 

of selective LB broad into 50 ml flask. Selective environment was 

established by adding 3 µl of Ampicillin to the LB broad. Culture 

was left to grow at 37°C with shaking 250 rpm in Environmental 

Shaker for at least 6 hours. 
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Procedure as described in the protocol: 

1. Bacterial overnight cultures in 5 ml of LB Amp+ medium were 

pelleted by centrifugation at > 8000 rpm for 3 minutes at room 

temperature. 

2. The pellets were respuspended in 250 µl of Buffer P1 and 

transferred to a microcentrifuge tubes. 

3. 250 µl of Buffer P2 was added to each tube and mixed thoroughly 

by inverting the tubes 4-6 times until the solutions became clear. 

4. 350 µl of Buffer N3 was added to each tube and mixed 

immediately and thoroughly by inverting 4-6 times. 

5. The tubes were centrifuged for 10 minutes at 13 000 rpm. 

6. The supernatant was applied to the QIAprep spin column by 

pipetting and centrifuged for 60 sec. 

7. The flow-through was discarded and 500 µl of Buffer PB was 

added on QIAprep spin columns and centrifuged for 60 seconds. 

8. The flow-through was discarded and 750 µl of Buffer PE was 

applied on QIAprep spin columns and centrifuged for 60 seconds. 

After the centrifugation and discard of flow-through, the 

centrifugation was repeated once again to remove the residual 

wash buffer. 

9. The QIAprep columns were placed in a clean 1.5 ml 

microcentrifuge tubes, 50 µl of Buffer EB was applied for 1 minute 

and centrifuged for 1 additional minute. 

Purity and concentration of isolated plasmids was measured by 

Nanodrop® ND-1000 spectrophotometry (Thermo Fisher Scientific, USA) at 

260 µm, using Buffer EB as a blank standard. Values are listed in the table 9. 

Table 9: Densitometry parameters of isolated plasmids via QIAprep® Spin Miniprep Kit measured 
with Nanodrop® ND-1000 spectrophotometry 

 pGl3-F3-A pGl3-F3-B 

ng/µl 31 264 
260/280 nm 1.76 1.84 
260/230 nm 2.37 1.87 
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4.3.5 Verification of sequence 

Sequence was verified using GenomeLab™ GeXP Genetic Analysis 

System by GenomeLab™ Dye Terminator Cycle Sequencing (DTCS) Quick 

Start Kit (P/N 608120, Beckman Coulter, Inc., USA) and by Macrogen Inc (The 

Netherlands). 

Materials needed for DTCS and provided by the Beckman Coulter Kit: 

 DTCS Quick Start Master Mix; M13 -47 Sequencing Primer 

(1.6 pmol/µl); Glycogen (20 mg/ml); Mineral Oil (Sigma Cat #M 

5904); Sample Loading Solution 

The Kit was stored at -20°C. 

Other materials: 

 Molecular Biology Grade sterile uH2O, 98% ethanol, 70% ethanol 

 3 M Na-acetate pH 5.2 (Sigma Cat # 7899) 

 100 mM Na2-EDTA pH 8.0 

 Sterile tubes – 0.5 ml microtubes, 0.2 ml thin wall PCR tubes, 

C1000™ Thermal Cycler (Bio-Rad, USA) 

 GenomeLab™ GeXP Genetic Analysis System with GenomeLab 

System software (Ver. 10.2.3) (Beckman Coulter, Inc.; USA) 

Procedure: 

1. Sequencing reaction was prepared in a 0.2 ml PCR tube in the 

order listed in the table below. The volume of DNA template was 

calculated based on the template size and densitometry 

concentration to result in 50fmol. The mix was ran in the cycler 

with parameters described in the table. 

Table 10: Composition of Dye Terminator Cycle 
Sequencing reaction 

uH2O ad 10 µl 
DNA Template 165 ng  
M13 -47 Sequencing 
primer 

0.63 µl 

DTCS Quick Start 
Master Mix 

4.0 µl 

TOTAL 10.0 µl 

Table 11: Parameters of Dye Terminator Cycle 
Sequencing reaction 

Program 
block 

Temperature Time 

I. 96°C 20 sec. 
II. 35× 

50°C 20 sec. 
60°C 4 min. 

III. Hold at 4°C 
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DNA Precipitation 

2. Stop Solution/Glycogen mixture was prepared by mixing 1 µl of 

3 M Na-acetate (pH 5.2), 1 µl of of 100 mM Na2-EDTA (pH 8.0) 

and 0.5 µl of 20 mg/ml glycogen per sequencing reaction. 

2.5 µl Stop Solution/Glycogen mixture was added to the new 

sterile microcentrifuge tube. 

3. The sequencing reaction was transferred to the tubes containing 

Stop Solution/Glycogen and mixed thoroughly. 

4. 60 µl of cold 95% ethanol (-20°C) was added, mixed thoroughly 

and immediately centrifuged at 14 000 rpm, 4°C for 15 minutes. 

The supernatant was carefully removed with a micropipette.  

5. 200 µl of cold 70% ethanol (-20°C) was added to the tubes and 

centrifuged immediately at 14 000 rpm, 4°C for 2 minutes. 

The supernatant was carefully removed and 200 µl of cold 

70% ethanol was added with the whole step repeated once again. 

6. The supernatant was removed carefully and the tubes were left 

opened until dry (approx. 15 minutes). 

7. The samples were resuspended in 40 µl of the Sample Loading 

Solution, transferred to the sample plate, overlaid with one drop of 

light mineral oil and sequenced with LFR-a method in 

GenomeLab™ GeXP Genetic Analysis System. Data analysis was 

conducted with GenomeLab System (Ver. 10.2.3). 

 

Note: Final sequence confirmation was ordered from Macrogen Inc. (The Netherlands). 
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4.3.6 Midiprep isolation of plasmids 

QIA® Midi Kit protocol (Qiagen Co., Germany) was used according to 

manufacturer’s recommendations 

Materials not included in the kit:  

 Bacterial cultures – one selected colony per each confirmed 

sequence of the demanded plasmid (pGl3-F1, pGl3-F2, pGl3-F3, 

pGl3-F4, pGl3-F3-A, pGl3-F3-B, pRl-TK) was put into the 25 ml LB 

medium with selective force of 25 µl of Ampicillin and left to grow 

overnight at the 37°C with shaking approx. 300 rpm in the 

Environmental Shaker-Incubator ES20. 

 LB Amp+ medium; Isopropanol; 70% ethanol; TE buffer, pH 8.0 

Procedure: 

1. A single colony for each previously described bacterial culture 

from a freshly streaked selective plate was inoculated in 25 ml LB 

Amp+ medium (25 µl of Ampicillin) and incubated overnight (for 8-

12h) at 37°C with shaking (300 rpm). 

2. The bacterial cells were harvested by centrifugation at 6000× g for 

15 minutes at 4°C in the Eppendorf Centrifuge 5804 R. 

3. The pellet was vigorously resuspended in 4 ml of Buffer P1 with 

vortexing and pipetting up and down (included in the kit, before 

use of the Buffer P1 the RNase A was added into the Buffer with 

LyseBlue reagent). 

4. 4 ml of Buffer P2 was added into the test tube and the sealed tube 

was sealed 4-6 times and incubated at room temperature for 

5 minutes. 

5. Immediately after the incubation, 4 ml of Buffer P3 was added and 

mixed by inverting 4-6 times and incubated on ice for 15 minutes. 

6. The mixture was centrifuged at 20 000× g for 45 minutes at 4°C in 

the Eppendorf Centrifuge 5804 R and the supernatant containing 

plasmid DNA was removed. 

7. The supernatant was centrifuged again at 20 000× g for 

25 minutes at 4°C and removed to be applied in the step 9. 

8. During the centrifugation in step 7, QIAGEN-tip 100 were 

equilibrated in a fume hood by applying 4 ml of Buffer QBT and let 

to be emptied by gravity flow. 

9. Supernatant with the plasmid DNA was applied to the QIAGEN-tip 

and let to be drained by gravity flow. 

10. The QIAGEN-tip was washed two times with 10 ml of Buffer QC. 

11. The DNA was eluted by applying 5 ml of Buffer QF and collected 

to 15 ml tube. 
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12. DNA was precipitated by adding 3.5 ml of room-temperature 

isopropanol, mixed and centrifuged immediately at > 15 000× g for 

30 minutes at 4°C, the supernatant was decanted. 

13. The pellet was washed with 2 ml of room-temperature 

70% ethanol and centrifuged at > 15 000× g for 10 minutes, the 

supernatant was carefully decanted. 

14. The pellet was air-dried for 10 minutes and redisolved in 100 µl of 

TE buffer, pH 8.0. 

The following table shows concentration and purity of plasmids isolated 

by Midi-prep isolation and measured with Nanodrop® ND-1000 

spectrophotometry (Thermo Fisher Scientific, USA), which were further used for 

the test of function. 

Table 12: Parameters of isolated plasmids measured with Nanodrop® ND-1000  spectrophotometry 

 F1 F2 F3 F4 pGl3-F3-A pGl3-F3-B pRl-TK 

ng/µl 1363.5 1481.6 1797.1 1841.6 1535.4 1539.7 937.0 
260/280 nm 1.91 1.91 1.90 1.90 1.90 1.91 1.89 
260/230 nm 2.38 2.36 2.37 2.36 2.36 2.39 2.36 
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4.4 Testing of Function 

4.4.1 HOS Cell Lines - maintaining 

Human osteosarcoma lines (ATCC® CRL-1543™) were maintained 

during the whole experiment in Dulbecco’s modified Eagle’s medium (full 

DMEM, Gibco®, Invitrogen) with added L-Glutamine (Sigma-Aldrich, #G7513), 

Fetal Bovine Serum (Gibco®, Invitrogen, #10270) and Antibiotic Antimycotic 

Solution(Sigma-Aldrich, #A5955). Cell lines were incubated in 37°C 5% CO2 

incubator and splitted when the growing plate was full grown with 

0.05% Trypsin-EDTA (1X) (Gibco®, Invitrogen, #25300). Cell concentration was 

counted using Invitrogen Countess® Automated Cell Counter. 

All operations with the cell lines were conducted in the biohazard fume 

hood. HOS cells were kept under 20th passage, for their treatment was used full 

DMEM no older than 14 days. 

4.4.2 Transfection 

According X-tremeGENE HP DNA Transfection Reagent 

(#06366236001) from Roche Diagnostics GmbH (Germany):  

In experiments, 3 to 5 

separate repetitions per plasmid line 

were conducted. To create the 

transfective liposome, X-tremeGENE 

from Roche was used containing two 

plasmids: pRl-TK with gene for 

Renilla as a control of transfection 

efficacy and measured plasmid 

constructs from pGl3 family. In 

addition to that wildtype plasmid of 

RANKL was used to set a 

fluorescence backline. All volumes 

and procedure are described in 

figure 3 and table 13. 

 

Notes: X-tremeGENE reagent was stored at -20°C and prior to use it 

was put at the room temperature and shortly vortexed. X-tremeGENE was used 

in order to minimize its contact with the walls of standard Eppendorf test tubes 

and well plates and no siliconized material was used. 

Figure 3: Scheme of the HOS cells 
transfection 

pX – measured plasmid;  

pTK  – pRl-TK – plasmid with gene for Renilla 

color;  

DMEM - Dulbecco’s modified Eagle’s medium 
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4.4.3 Dual-Luciferase Assay (DLA) 

DLA was conducted following the Dual-Luciferase® Reporter Assay 

System (DLR™, #E1910) by Promega Co. (USA) with all included reagents. For 

the luminometry was used BioTek Synergy™ H4 Multi-Mode Microplate Reader 

with Gen5 Data Analytic Software (Bio-Tek, USA). 

Materials: 

 Luciferase Assay Buffer II 

 Luciferase Assay Substrate 

 Stop & Glo® Buffer 

 Stop & Glo® Substrate, 50X 

 Pasive Lysis Buffer, 5X 

 Other laboratory material: 1.5 ml microcentrifuge tubes, 

luminometer 96 well-plate, micropipettes and tips, phosphate 

buffered saline (PBS) 

Procedure: 

1. After 48 hours of HOS cells incubation, the medium was removed 

and each well was washed with 200 µl of phosphate buffered 

saline (PBS) shortly and the PBS was removed. 

2. 100 µl of Passive Lysis Buffer, 1X (PLB) created from the 5X 

concentrate by diluting in dH2O was poured to each culture well. 

(Recommended volumes for other sizes of multiwall plates are 

listed in the DLR™ technical protocol). The well plate was put on a 

rocking platform for 15 minutes. 

Table 13: Setting of the HOS cell transfection 

Component Ammount / well 

Cells 35 000 cells 

DMEM  Up to 50 µl 

pRl-TK 50 ng 

pX 450 ng 

X-gene 1,5 µl 

15 min of incubation 

Add 50 µl to each well 

48 hours 37°C, 5% CO2 
incubation 

Dual-Luciferase Assay 
DMEM - Dulbecco’s modified Eagle’s medium 

PX  - investigated plasmids: pGl3-F1, pGl3-F2, pGl3-

F3, pGl3-F4, pGl3-F3-A, pGl3-F3-B, and basic 

pGl3 
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3. It has been noted that these extracts might be used even after 

short time storage in 4°C with or without previous precipitation of 

the cell remnants by centrifugation and transferring the 

supernatant to the new tubes. Our approach did not find any major 

difference in results when varying this process.  

4. Luciferase Assay Reagent II (LAR II) was prepared by 

resuspending the provided lyophilized Luciferase Assay Substrate 

in 10 ml of the supplied Luciferase Assay Buffer II and aliquoted 

by 1 ml in separated tubes. Prepared LAR II was stored at -70°C. 

Prior the use LAR II was thawed, vortexed and left at room 

temperature. 

5. Stop & Glo® Reagent was prepared by diluting the 50X Stop & 

Glo® Substrate with 50 volumes of Stop & Glo® Buffer in a glass 

tube (100 µl of reagent per assay), the reagent was thawed, 

vortexed and left at room temperature just before use. 

6. 20 µl of HOS extract of the laboratory temperature was placed to 

the luminometer multiplates and 100 µl of LAR II was added and 

fluorescence was measured in Synergy™ H4 Hybrid Multi-Mode 

Microplate Reader for 5 seconds with whole emission, top optic, 

endpoint procedure. 

 

Notes: Because fluorescent activity of used enzymes might tend 

to decrease with the time, no batch was conducted and samples 

were measured in pairs at maximum. Sensitivity of the procedure 

was adjusted in order to keep both Luc and Ren activities in the 

middle values preventing the out-of-range overflow error. 

 

7. 100 µl of Stop & Glo® Reagent was added into the solution and 

Renilla fluorescence was measured for 5 seconds.  

8. Step 6 was repeated with next HOS extract or pair of extracts 

respectively (see the note in this step). 

 

3 to 5 duplications were conducted in one experiment for each measured 

plasmid. In total 5 repetitions of entire experiments were conducted. Aggregated 

data in a form of measured Luc/Ren ratios are to be seen in the results section. 
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4.5 EMSA 

Electrophoretic mobility shift assay (EMSA) was conducted according the 

LightShift® Chemiluminescent EMSA Kit from Thermo Fisher Scientific #20148 

(USA). Nuclear and cytoplasmic Extractions were obtained through NE-PER® 

Nuclear and Cytoplasmic Extraction Reagents protocol from the same 

company. 

Non-isotopic labeled EMSA method was used in the study. The biotin-

labeled DNA was incubated with a nuclear extract of descending 

concentrations, competing oligomers and antibodies against suspected binding 

factors in combinations listed in the table 14. 

Materials (as stated in the kit description): 

LightShift EMSA Optimization and Control Kit (20148X) 

 10X Binding Buffer 1 ml, 100 mM Tris, 500 mM KCl, 10 mM DTT; 

pH 7.5, stored at -20°C 

 Biotin labeled DNA (10 fmol/µl): EMSA-TNF-F4 and EMSA-TNF-

R4; manufactured by Sigma Co. (for the specification see 

appendix) 

 Unlabeled competitive oligomers (2 pmol/µl); ordered from Sigma 

Co. for the specification see appendix. Competitive oligomers 

were used in this setting:  

A-com  = EMSA-TNF-F4-mut1 andEMSA-TNF-R4-mut1, 

B-com  = EMSA-TNF-F4-mut2 andEMSA-TNF-R4-mut2  

B-com-mut  = GATA2-mut-F 

 Monoclonal antibodies: antiLyf, antiGATA1, antic/EBPβ; stored 

at -20°C 

 Poly (dI dC) 125 µl, 1 µg/µl in 10 mM Tris, 1 mM EDTA; pH 7.5, 

stored at -20°C 

 50% Glycerol, 500 µl, stored at -20°C 

 1% NP-40, 500 µl, stored at -20°C 

 1 M KCl, 1 ml, stored at -20°C 

 100 mM MgCl2, 500 µl, stored at -20°C 

 200 mM EDTA pH 8.0, 500 µl, stored at -20°C 

 5X Loading buffer, 1 ml, stored at -20°C 

 

Chemiluminescent Nucleic Acid Detection Module (89880) 

 Stabilized Streptavidin-Horseradish Peroxidase Conjugate, stored 

at 4°C 

 Chemiluminescent Substrate – Luminol/Enhancer Solution, Stable 

Peroxide Solution, both stored at 4°C 

 Blocking Buffer, stored at 4°C 

 4X Wash Buffer, stored at 4°C 
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 Substrate Equilibration Buffer, stored at 4°C 

Other materials 

 5X TBE (450 mM Tris, 450 mM boric acid, 10 mM EDTA, pH 8.3) 

 Chemiluminiscent imaging system Syngene G:Box 

 UV transilluminator (312 nm) 

 Electrophoresis apparatus, Bio-Rad PowerPac™ Basic Power 

Supply 

 Electroblotter, blotting paper, circulating water bath, plastic forceps 

and scalpel 

 Polyacrylamide gel in 0.5X TBE 

4.5.1 Binding reaction 

In order to clearly identify the interaction with our targeted oligomers 

several reactions were conducted during the calibration of the test settings. 

Each of these reactions had the same calibrating columns N°1-5 where the 

specificity of the reaction was measured with further columns varying in the 

exact setting and configuration by adding competitive oligomers with mutation 

and antibodies against factors Lyf, GATA1 and C/EBPβ. Exact experimental 

settings were added in the section illustrating the results (Section 5). One of the 

experimental settings is listed below in this chapter for explanatory reasons 

(Table 14). 

Table 14: General setting of the EMSA reaction 

 1 2 3 4 5 

dH2O 12 µl 12 µl 9 µl 9 µl 9 µl 

Bufer 2 µl 2 µl 2 µl 2 µl 2 µl 

Poly(dIdC) 1 µl 1 µl 1 µl 1 µl 1 µl 

MgCl2 1 µl 1 µl 1 µl 1 µl 1 µl 

glycerol 2 µl 2 µl 2 µl 2 µl 2 µl 

Competitive oligomers
1 

(2 pmol/µl) 
--- --- --- --- --- 

Antibodies
2 --- --- --- --- --- 

Nuclear extract --- --- 3 µl 
(raw) 

3 µl 
(2:1) 

3 µl 
(4:1) 

Biotin-labeled DNA* 
(10 fmol/µl) 

2 µl 
(ss) 

2 µl 2 µl 2 µl 2 µl 

Total volume 20 µl 20 µl 20 µl 20 µl 20 µl 

                                            
1
Competitive oligomers were used in some columns (depended on exact setting) to 

prevent the potential factor from binding the biotin labeled DNA and resulting on either 
diminishing or moving the observed band. Competitive oligomers were used in concentration 
2 pmol/µl thus 200-fold surplusing the biotin-labeled DNA. 

2
 Monoclonal antibodies antiGATA, antiLyf and antiC/EBPβ were used (depending on 

exact setting) from the similar reason as competitive oligomers – this time targeted on the 
suspected transcription factor.  
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* ss stands for single stranded, otherwise double stranded DNA was used. 

Notes:  

1. Do not vortex the DNA, the nuclear extract or the test tubes with 

prepared mix.  

2. All components should be thawed without any unnecessary 

periods before use. 

3. After loading the binding reactions, incubate these samples for 

20 minutes at room temperature and then add the labeled 

oligomers. 

4. After loading the labeled oligomers, incubate for at least 

20 minutes before adding 5 µl of Loading buffer and loading on 

gel. 

4.5.2 Electrophoresis 

Previously prepared 6% 0.5X TBE gel was used for the electrophoresis 

of the samples.  

1. In order to prevent any leaking from the electrophoresis chamber, 

the gel was pre-run during the completion of the binding reaction 

for 30-50 minutes at 100 V. 

2. 20 µl of the each sample was previously mixed with 5 µl of 

Loading Buffer and loaded into its separated well on 

polyacrylamide gel. 

3. The electrophoresis was run at 100 V for approx. 60 minutes – 

until the visible sample reached ¾ of the gel length. 

4.5.3 Electrophoretic Transfer and Detection 

1. Nylon membrane was soaked in the 0.5X TBE for at least 

10 minutes. 

2. The gel was sandwiched with a nylon membrane and blotting 

paper in a clean electrophoretic transfer unit in cooled 0.5X TBE in 

circulating water bath with ice. 

3. The content of the gel was transferred on membrane at 380 mA 

(~100 V) for 30 minutes. 

4. When the transfer was complete, the membrane was placed on a 

dry paper towel with the bromophenol blue side up for a minute. 

5. The cross-link reaction was made via UV transilluminator (312 nm) 

for 10 minutes. After being linked it was immediately put into the 

Blocking Buffer in the step 7. 

6. Blocking Buffer and the 4X Wash Buffer was pre-warmed to 37-

50°C and all particulates were dissolved. All the following steps 

were conducted in plastic weigh boats on an orbital shaker. 
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7. Cross-linked membrane was put into the 20 ml of Blocking Buffer 

and incubated for 15 minutes with gentle shaking. 

8. Conjugate/blocking buffer was prepared 2 minutes before the end 

of step 7 by adding 66.7 µl of Stabilized Streptavidin-Horseradish 

Peroxidase Conjugate to 20 ml Blocking Buffer (1:300 dilution). 

9. The membrane was put into the conjugate/blocking solution and 

incubated for 15 minutes with gentle shaking. 

10. Five containers with 20 ml of 1X wash solution were prepared 

before the end of step 9 by diluting 4X Wash Buffer in ultrapure 

water. 

11. The membrane was briefly transferred and rinsed with first 20 ml 

of 1X wash solution. The membrane was then four times washed 

in each 20 ml of 1X wash solution for 5 minutes with gentle 

shaking. 

12. Membrane was transferred to 30 ml of Substrate Equilibration 

Buffer and incubated for 5 minutes with gentle shaking. 

13. Membrane was removed from the Substrate Equilibration Buffer 

and blotted by the edge on paper towel. 

14. Membrane was transferred on the plastic wrap facing down with 

the cross-linked side to the Substrate Working Solution created 

immediately before use by adding 500 µl of Luminol/Enhancer 

Solution and 500 µl of Stable Peroxide Solution. The membrane 

was incubated for 50 minutes without shaking. 

15. Membrane was removed from the Working Solution and blotted 

briefly on a paper towel, wrapped in a plastic and put into the CCD 

camera chamber. 

Visualization of the biotin end-labeled DNA was conducted in 

chemiluminescent chamber of Syngene G:Box with the scheme and results to 

be seen in the Results section. 
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5 RESULTS 

5.1 Dual Luciferase Assay 

Each functional experiment was conducted in 5 repetitions and started 

from the origin 5 times in order to ensure the desired evidence strength. Data 

from the Gen5 Data Analytic Software (Bio-Tek, USA) were aggregated and 

analyzed by IBM SPSS Statistics (IBM Co., USA). Collected plasmid DLA 

results are described in the table 15 and table 16, the relative expression of 

plasmids based on the results is figured in the graph 2 (expression of pGl3-F1 

was set as 100%). 

Table 15: Descriptive analysis of plasmids measured with Dual Luciferase Assay 

Plasmid Group Mean SD N° 

B
a

s
ic

 p
G

l3
 1 0.125 0.013 4 

2 0.189 0.012 5 

3 0.389 0.004 2 

4 0.199 0.014 3 

5 0.192 0.009 3 

Total 0.200 0.078 17 

p
G

l3
-F

1
 

1 7.274 0.636 4 

2 7.090 0.481 4 

3 10.804 1.265 5 

4 9.166 0.498 5 

5 9.564 0.400 5 

Total 8.918 1.571 23 

p
G

l3
-F

2
 

1 5.176 0.544 4 

2 4.580 0.747 5 

3 7.517 0.511 5 

4 6.889 0.471 5 

5 7.502 0.566 5 

Total 6.381 1.357 24 

p
G

l3
-F

3
 

1 3.284 0.458 4 

2 3.987 0.226 5 

3 5.930 0.628 5 

4 5.282 0.340 5 

5 4.969 0.175 5 

Total 4.749 1.002 24 

Plasmid Group Mean SD N° 

p
G

l3
-F

4
 

1 3.563 0.161 4 

2 4.142 0.233 5 

3 7.325 0.888 5 

4 5.809 0.558 5 

5 6.061 0.642 5 

Total 5.456 1.463 24 

p
G

l3
-F

3
-A

 1 3.853 0.463 4 

2 4.434 0.256 5 

3 7.459 0.887 5 

4 5.797 0.394 5 

5 5.655 0.340 5 

Total 5.506 1.342 24 

p
G

l3
-F

3
-B

 1 4.647 0.425 4 

2 3.835 0.264 5 

3 6.863 0.668 5 

4 4.479 0.062 5 

5 5.393 0.094 5 

Total 5.060 1.129 24 
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Table 16: Post-hoc comparison of plasmids measured with Dual Luciferase Assay 

Bonferroni multiple comparison 

(I) Plasmid (J) Plasmid 
Mean Difference (I-J) 

*significant at 0.05 level 

Std. 
Error 

Sig. 95% Confidence Interval 
b

a
s

ic
 p

G
l3

 pGl3-F1 -8.7189
*
 0.165 0 -9.232 -8.206 

pGl3-F2 -6.1816
*
 0.164 0 -6.690 -5.673 

pGl3-F3 -4.5494
*
 0.164 0 -5.058 -4.041 

pGl3-F4 -5.2562
*
 0.164 0 -5.764 -4.748 

pGl3-F3-A -5.3060
*
 0.164 0 -5.814 -4.798 

pGl3-F3-B -4.8603
*
 0.164 0 -5.369 -4.352 

p
G

l3
-F

1
 

basic pGl3 8.7189
*
 0.165 0 8.206 9.232 

pGl3-F2 2.5373
*
 0.151 0 2.069 3.005 

pGl3-F3 4.1695
*
 0.151 0 3.702 4.637 

pGl3-F4 3.4627
*
 0.151 0 2.995 3.931 

pGl3-F3-A 3.4129
*
 0.151 0 2.945 3.881 

pGl3-F3-B 3.8585
*
 0.151 0 3.391 4.326 

p
G

l3
-F

2
 

basic pGl3 6.1816
*
 0.164 0 5.673 6.690 

pGl3-F1 -2.5373
*
 0.151 0 -3.005 -2.069 

pGl3-F3 1.6322
*
 0.149 0 1.169 2.095 

pGl3-F4 0.9254
*
 0.149 0 0.463 1.388 

pGl3-F3-A 0.8756
*
 0.149 0 0.413 1.339 

pGl3-F3-B 1.3213
*
 0.149 0 0.858 1.784 

p
G

l3
-F

3
 

basic pGl3 4.5494
*
 0.164 0 4.041 5.058 

pGl3-F1 -4.1695
*
 0.151 0 -4.637 -3.702 

pGl3-F2 -1.6322
*
 0.149 0 -2.095 -1.169 

pGl3-F4 -0.7067
*
 0.149 0 -1.170 -0.244 

pGl3-F3-A -0.7566
*
 0.149 0 -1.219 -0.294 

pGl3-F3-B -0.3109 0.149 0.824 -0.774 0.152 

p
G

l3
-F

4
 

basic pGl3 5.2562
*
 0.164 0 4.748 5.764 

pGl3-F1 -3.4627
*
 0.151 0 -3.931 -2.995 

pGl3-F2 -0.9254
*
 0.149 0 -1.388 -0.463 

pGl3-F3 0.7067
*
 0.149 0 0.244 1.170 

pGl3-F3-A -0.0498 0.149 1 -0.513 0.413 

pGl3-F3-B 0.3958 0.149 0.190 -0.067 0.859 

p
G

l3
-F

3
-A

 

basic pGl3 5.3060
*
 0.164 0 4.798 5.814 

pGl3-F1 -3.4129
*
 0.151 0 -3.881 -2.945 

pGl3-F2 -0.8756
*
 0.149 0 -1.339 -0.413 

pGl3-F3 0.7566
*
 0.149 0 0.294 1.219 

pGl3-F4 0.0498
*
 0.149 1 -0.413 0.513 

pGl3-F3-B 0.4456
*
 0.149 0.071 -0.017 0.909 

p
G

l3
-F

3
-B

 

basic pGl3 4.8603
*
 0.164 0 4.352 5.369 

pGl3-F1 -3.8585
*
 0.151 0 -4.326 -3.391 

pGl3-F2 -1.3213
*
 0.149 0 -1.784 -0.858 

pGl3-F3 0.3109
*
 0.149 0.824 -0.152 0.774 

pGl3-F4 -0.3958
*
 0.149 0.190 -0.859 0.067 

pGl3-F3-A -0.4456
*
 0.149 0.071 -0.909 0.017 
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After inserting the mutation both places have partially restored luciferase 

expression and therefore we can hypothesize presence of suppressing factor 

sequence located on this place. The restoration of the fall observed between 

plasmids pGl3-F2 and pGl3-F3, inserted mutation at places A (-512) and B 

(-502) resulted in 43.38% and 19.06% of RANKL restoration respectively from 

the pGl3-F3 backline. Bonferroni multiple comparison post-hoc test was used 

on the aggregated results and supported the significance of mutation A but not 

B when compared to pGl3-F3 (table16). 

In addition to the previous screening measures, fall of expression was 

observed between pGl3-F1 and pGl3-F2, which might be the potent future 

target of the expression modulators sequences. 

Graph 2: Aggregated relative expression of RANKL plasmid constructs when compared to pGl3-F1 

Visualization of relative expression of plasmid constructs transfected to human osteosarcoma 

(HOS) cells and measured with Dual Luciferase Assay (DLA) 
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5.2 EMSA 

Two representative pictures of electrophoretic mobility shift assay 

obtained with the procedure 3.5 are shown on the following pages (Figure 4: 

EMSA 01 and Figure 5: EMSA 02). 

In the column 3 of both figures we clearly distinguished two bands with 

our postulated regulating factors originating from the nuclear factor to be bond 

on the biotinilated DNA. Diluting the extract (columns 4 and 5) resulted in the 

bands weakening supporting the specificity of interaction. 

Further on, results were collected for the competitive oligomers with the 

most interesting result of interaction with the B-com (Figure 4, column 8; Figure 

5, column 7). This competitive sequence was potent enough to bind our 

hypothesized factor and even more – complete disappearance of both bands 

when being mixed with B-com sequence was observed in every experiment. In 

contrast to B-com, competitive sequence A-com (Figure 4, column 7; Figure 5 

column 6) caused only the mild weakening and smearing of the upper shift. The 

third of the used competitors, B-com-mut, was used to decide whether the 

mutation used in the functional test was strong enough to prevent the sequence 

from binding the transcription factor. The weak mutation (see the Appendix with 

primer specification) would cause the factor to bind to the unlabeled competitive 

sequence in excess and thus to disappearance of the band(s). No such 

phenomena were observed in the columns with B-com-mut (Figure 4, column 9; 

Figure 5, column 8), therefore it seems that used mutation is strong enough not 

to bind the transcription factor on its sequence. 

Monoclonal antibodies against factors were selected by the screening 

from Noris Medical Library TF Search. The observed binding reaction was 

unaffected by the antibodies antiGATA (Figure 4, column 10; Figure 5, column 

9) and antiLyf (Figure 4, column 11; Figure 5, column 10). Positive result was 

seen when the antibodies against the factor C/EBPβ were used (Figure 4, 

column 6; Figure 5, column 11) where the supershift was described as the 

outcome. This supershift is commonly observed when the creation of the big 

complex occurs, slowing its migration through the gel. 
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Figure 4: Electrophoretic mobility shift assay 1 

Labeled DNA: bitin labeled sequence for EMSA-TNF-F4 and EMSA-TNF-R4 (10 fmol/µl); 

Competitive oligo.: unlabeled oligomers (2 pmol/µl); A-com  = EMSA-TNF-F4-mut1 andEMSA-TNF-

R4-mut1; B-com  = EMSA-TNF-F4-mut2 andEMSA-TNF-R4-mut2; B-com-mut  = GATA2-mut-F 
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Figure 5: Electrophoretic mobility shift assay 2 

Labeled DNA: bitin labeled sequence for EMSA-TNF-F4 and EMSA-TNF-R4 (10 fmol/µl); 

Competitive oligo.: unlabeled oligomers (2 pmol/µl); A-com  = EMSA-TNF-F4-mut1 andEMSA-TNF-

R4-mut1; B-com  = EMSA-TNF-F4-mut2 andEMSA-TNF-R4-mut2; B-com-mut  = GATA2-mut-F 
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6 DISCUSSION 

The research showed that two sequences that are able to bind the 

regulating factors lie on the distinguishing sequence of pGl3-F3. Mutation of 

place A (-512) partially restore the expression of the RANKL in the functional 

test on CRL-1543™. Choosing the difference of expression between pGl3-F2 

and pGl3-F3 as a main comparative scale, mutation of place A resulted in 

43.38% and 19.06% restoration of RANKL expression respectively. Functional 

test was in other aspects yielding the similar data as previous unpublished 

screenings. In general the decrease of the expression between pGl3-F1 and 

pGl3-F2 was noticeable. That might be the other fruitful place to focus further 

investigation on.  

The insignificance of functional test of place B mutation was surprising, 

especially in contrast to the results of EMSA. Place B in our observations 

played the crucial role and when being mutated, the bands of both places A and 

B diminished completely. Based on the proximity of the places it is almost 

certain that the binding factors interact and therefore place B seems to be 

irreplaceable factor for forming the whole complex. These observations are in 

contrast to the results of functional test, where mutating the B places did not 

achieve the level of significance. It is worth noting that different oligomers were 

used as the primer of the place B functional mutation (GATA2-mut-F and 

GATA2-mut-R) and place B competitive oligomer (EMSA-TNF-F4-mut1 and 

EMSA-TNF-R4-mut1). However, even though place B functional test plasmid 

carried a shorter mutation, its inability to bind the regulating factor was 

confirmed during the EMSA test. Yet the suitability of the mutation should be 

investigated in the future. 

The results of antibodies against GATA1 and Lyf have ruled out the role 

of these named factors when the EMSA was conducted because this was not 

followed by any visible shift or disappearance of bands. Only the antibodies 

against C/EBPβ revealed the interaction of this factor with the biotinilated DNA.  

On the ground of the conducted experiments it is highly expectable that 

C/EBPβ is truly interacting with the -662 to -438 region of RANKL and regulating 

the expression of this gene. To our knowledge, this work is the first to prove that 

C/EBPβ has suppressing effects on RANKL expression in CRL-1543™ cells of 

human osteosarcoma. Kwok-Shing and coworkers described recently that 

expression of RANKL is upregulated by C/EBP-β over-expression on their 

model of Giant cell tumor of bone reporting the binding sequences on the 

similar region as was used in this work [273]. However, the conflict between 

these two researches might be explained by the existence of isoforms 

described in the following paragraph. Secondly, C/EBPβ suppressing or 

promoting effect might depend on the partner bound on the observed second 

regulatory place with our postulated sequencing complex formation. Whether 
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the second partner is the second C/EBPβ, other member of the C/EBP family or 

some other transcription factor and whether this factor is able to switch the 

mode of action needs to be uncovered. 

C/EBP is the group of six transcription factors (α, β, γ, δ, ε, and ζ) 

characterized with the C-terminal basic-leucine zipper domain. Despite C/EBPβ 

is an intronless gene, it exists in two isoforms (Liver-enriched inhibitory protein 

(LIP) and (LAP) Liver-enriched activating protein) distinguished by the 

truncation of the N-end. This fact might be the key to the observed function of 

C/EBPβ contrasting to the researches published so far. Balance between LIP 

and LAP is influenced by the factor called mammalian target of rapamycin 

(mTOR). In 2009 Smink and colleagues have reported that the use of 

rapamycin has increased the LAP isoform and with the linked effect through 

thranscription factor MafB inhibited osteoclasts differentiation [274]. 

Beside the reported effects on osteoclastogenesis C/EBPβ was observed 

to regulate mesenchymal cell differentiation which includes osteoblasts [275–

277]. C/EBPβ also seems to regulate the expression of IL-6, the factor 

increasing RANKL and decreasing OPG [278–281]. Lee and coworkers have 

observed the role or ERK1/2-C/EBPβ pathway in the inflammatory response of 

osteoprogenitor cells to the phagocytosis of wear particles [282]. 

As it should be sensed from our work, the OPG/RANKL/RANK pathway 

is a very potent target of many interesting researches linked not only with the 

bone metabolism but also to cardiovascular diseases, cancer and other clinical 

conditions. It is an example of the axis both very specific and interlinked no 

matter how contrarily it might sound. In the theoretical part we tried to 

summarize the role of these factors and also give a comprehensive list of 

current treatment of bone diseases related to the OPG/RANKL/RANK pathway. 

As our contribution, we experimentally proved the new regulatory places A 

(-512) and B (-502) in the the -662 to -438 region of RANKL, excluded two 

transcription factors (Lyf, GATA) from the interaction with this sequence and 

proved one (C/EBPβ) to bind serve as suppressor of the RANKL expression. In 

addition to that we observed the possible sequential mechanism of this 

regulation. We are more than aware that there is still a lot to be explained in the 

role of this pathway but we are at the same time (simultaneously) excited from 

seeing the first clinical results of this research in a form of the denosumab. 

Many other opportunities for the primary research application surely lie ahead. 
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8.2 Technical datasheet of primers and oligomers 

Oligo 
name 

Len Pur Scale MW Tm° µg/OD OD µg nmol 
Epsilon 

1/(mMcm) 
Dimer 2ndry GC % 

µl for 
100µ

M 

Sequence (5‘-3‘) – mutation underlined 

Lyf1-
mut-F 

30 HPLC 0.025 9433 71.3 29.8 11.0 328.3 34.8 316 No None 36.6% 348 
AGAAATAGGGATTTTTGAAGGGGATTG
TGA 

Lyf1-
mut-R 

30 HPLC 0.025 8984 71.3 32.7 11.5 377.0 41.9 274 No None 36.6% 419 
TCACAATCCCCTTCAAAAATCCCTATTT
CT 

GATA2-
mut-F 

30 HPLC 0.025 9354 77.3 30.7 12.1 371.8 39.7 304.4 No 
Very 
Weak 

43.3% 397 
ATTTGGGAAGGGGACCGTGAAATTTTC
GAA 

GATA2-
mut-R 

30 HPLC 0.025 9056 77.3 32.7 4.5 147.4 16.2 276.6 No 
Very 
Weak 

43.3% 162 
TTCGAAAATTTCACGGTCCCCTTCCCA
AAT 

EMSA-
TNF-F4 

39 DDST 0.05 12696 78.8 31.1 10.4 324.0 25.5 407.5 Yes Weak 38.4% 255 

Btn-
AGAAATAGGGATTTGGGAAGGGGATT
GTGAAATTTTCGA 

EMSA-
TNF-R4 

39 DDST 0.05 12158 78.8 34.1 11.2 382.7 31.4 355.8 No Weak 38.4% 314 

Btn-
TCGAAAATTTCACAATCCCCTTCCCAAA
TCCCTATTTCT 

EMSA-
TNF-
F4-

mut1 

39 DDST 0.025 12150 84.4 30.8 5.4 166.4 13.7 394.1 Yes 
Moderat

e 
48.7% 137 

AGAAATAGGGATTTGGGAAGGGCCCC
GCGAAATTTTCGA 

EMSA-
TNF-
R4-

mut1 

39 DDST 0.025 11833 84.4 33.6 10.5 352.9 29.8 352 No 
Moderat

e 
48.7% 298 

TCGAAAATTTCGCGGGGCCCTTCCCAA
ATCCCTATTTCT 

EMSA-
TNF-
F4-

mut2 

39 DDST 0.025 12184 74.6 30.2 104 314.9 25.8 402.3 Yes Weak 30.7% 258 
AGAAATAGGGATTTTTTAAGGGGATTG
TGAAATTTTCGA 

EMSA-
TNF-
R4-

mut2 

39 DDST 0.025 11793 74.6 31.8 11.3 359.3 30.4 370.8 No Weak 30.7% 304 
TCGAAAATTTCACAATCCCCTTAAAAAA
TCCCTATTTCT 

 


