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Abstract: Microarray data of gene expressions consist of thousands of genes and just
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and contain systematic errors. Hence the magnitude of thesedata does not afford us to
estimate their correlation structure. In many statisticalproblems with microarray da-
ta, we have to test some thousands of hypotheses simultaneously. Due to dependence
between genes,p-values of these hypotheses are dependent as well. In this work, we
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test and interesting behavior of Hotelling’s test for dependent components of observa-
tions. In the end of this work, we proposed test for testing independence of genes.
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Preface

DNA microarrays are part of promising class of biotechnologies that allow the mea-
sure of expression levels of thousands of genes simultaneously. These expressions can
be utilized for example to find changes between different biological statements. An
important question in microarray experiment is the identification of genes which are
associated with a response (e.g. dose of a drug, time, treatment/control) and covariates
(e.g. survival time, clinical outcome) of interest. This leads to the problem of multiple
hypotheses testing. That is a testing of null hypothesis foreach gene simultaneously.

Another approach to the microarray data, but not consideredin this work, can be
for example clustering. The primary goal of clustering is grouping genes with similar
expression patterns (e.g. separating cancerous from noncancerous genes). Similar ex-
pression patterns can offer insights into various biological processes (D’haeseleer et al.
(2000)).

Probably the first paper using microarray experiment was presented by Shena in his
paperSchena et al.(1995). Since then, there has been a growing number of publication
and some successes about this topic. For example in 1999, there was shown that patients
with leukemia can be accurately classified into two known subgroups with using just
gene expressions (Golub et al.(1999)). Another success turn up in 2001 (Sorlie(2001))
when researchers identified five patterns of gene expressionlevels in breast cancer and
showed that they correspond to different types of disease with different prognosis. In
paperZembutsu et al.(2002), they use microarrays with more than 23,000 featuresto
predict the response to anti-cancer drugs in terms of efficacy and toxicity on a group of
patients. In 2003, there were identified 158 genes associated with pancreatic cancer that
were differentially expressed with comparison to people with a healthy pancreas. An-
other success was reached inPetty et al.(2006). There was discovered a gene that has
highly different expression between cancer patients who respond to thechemotherapy
treatment and patients who did not respond to the chemotherapy treatment.
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Problems

This work concerns the use of microarrays in a comparative experiment which is de-
sired to compare gene expressions between two datasets. In this issue, one would like to
identify which of several thousands of candidate genes havehad their expression levels
changed, that is identify which genes are differentially expressed.

There are at least two main problems that make the work with gene expression data
complicated. The first one is the number of genes. We often have several thousands of
genes. Consider that we test all hypotheses at significance level α = 0.05. Then we
reject about 5% of true hypotheses from several thousands. In result, we determine sev-
eral hundreds of non-differentially expressed genes as differentially expressed. Detailed
investigation of genes costs a lot of time and money. Therefore, we cannot afford so
many type I error (false positive) hypotheses. For the cost of power, this problem can be
partially solved by using proper multiple testing procedure (chapter 3) and/or grouping
some genes together (chapter 6).

The second problem is that gene expressions are highly correlated between genes.
Klebanov and Yakovlev(2007) studied various microarray data sets. They found out
that the average of correlation coefficients between genes ranged from 0.84 to 0.97.
Because we usually have only a few tens of observations, we cannot estimate the co-
variance structure of gene expression data. Hopefully, there exists some normalizations,
which make gene expression data almost uncorrelated and they can help us to handle
this problem (chapter 5).

State of arts

This work consists of 8 separate chapters. Each chapter deals with different problems
of microarray experiment or connected problems. Therefore, the results of each chapter
do not directly depend on the results of the other chapters. Hence, every chapter can
be read just with basic knowledge of this problem and withoutknowledge of the other
chapters.

Chapter 1 serves as a brief introduction to genetics, microarray experiments and
describes the process of obtaining and preprocessing of microarray data. There have
been a lot of papers dealing with these problems in detail, e.q. Yakovlev et al.(2013)
or Göhlmann and Talloen(2009). Because this chapter just summarize some known
things, it is based on citations and there is no our own contributions.

Chapter 2 concerns the choice of test for finding differentially expressed genes be-
tween two states of observations (e.g. healthy/ill, two kinds of some disease). Usually,
thet-test or tests based ont-statistic are used (seeDudoit et al.(2003)). In paperZinger
et al. (1989), there was considered another test, calledN-test, for this problem. More-
over, two-sample Kolmogorov-Smirnov test is reasonable test for this problem as well.
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In Gordon and Klebanov(2010), they proved that forn = m there existsα ∈ (0,1)
such that two-sample Kolmogorov-Smirnov test is unbiased at levelα against two-sided
alternativeF , G. In this work, we extended this theorem for one-sided alternatives
A1 : F ≤ G or A2 : F ≥ G. We discovered that for eachn , m there existsα ∈ (0,1)
such that this test is unbiased against one-sided alternative. When we considered two-
sided alternative again, we discovered that forn , m there existsα ∈ (0,1) and the
distributionFα such that this test is biased against this alternative distribution Fα. Fur-
thermore, we discovered that this test need not to be unbiased against this alternative
for another choice ofα∗ , α. These results for two-sample Kolmogorov-Smirnov test
were published inBubeliny(2013a). At the end of chapter 3, we compared the power
of t-test, N-test and two-sample Kolmogorov-Smirnov test and found outthat N-test
serves as a good alternative fort-test in case of violence of normality.

Chapter 3 deals with the properties ofp-values of tests about gene expressions. It
is well known that gene expressions are highly correlated between genes, seeKlebanov
and Yakovlev(2007). Therefore,p-values of tests about gene expressions are depen-
dent as well. However, we have seen no papers concerning the behavior ofp-values.
Therefore, we showed how histogram of suchp-values can look like and how can be
changed their structure in case of using some normalizationsuch a proportion of gene
expressions. Results of this chapter were published inBubeliny(2008).

While working with gene expression data we often need to test alot of hypotheses
simultaneously. If we used classical approach with significance levelα = 5% we would
expect to reject about 5% of all true hypotheses. It means toomuch hypotheses with
type I error. In case of some thousands of genes this number isunacceptable. Therefore,
chapter 4 deals with multiple testing procedures that eliminate this problem. The most
known procedure is Bonferroni procedureBonferroni(1936). This procedure controls
FWER (family wise error rate), that is the probability of commit at least one type I er-
ror. Moreover, this procedure controls expected number of type I errors at predefined
levelα. But this procedure is generally considered as to be too conservative. Therefore,
different approach was proposed byBenjamini and Hochberg(1995). They derived
procedure that controls FDR (false discovery rate) - expected proportion of type I er-
rors among rejected hypotheses. Another approach, called empirical Bayes approach,
closely related to FDR was proposed inEfron (2003). An overview of different multiple
testing procedures can be found for example inDudoit and van der Laan(2008). In
our work, we performed an extensive simulation study to compare some of these proce-
dures. Our study showed that it is the principle of multiple testing procedures and not
the principle of Bonferroni procedure that makes this procedure to be considered too
conservative. Therefore, Bonferroni procedure should not be underestimated.

It was mentioned before, that gene expressions are highly correlated between genes.
Moreover, there are many sources of systematic variations in microarray experiments
that affect measure of gene expressions. Therefore, microarray data are normalized
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Yang et al.(2002). But do these normalizations help in deciding processof finding dif-
ferentially expressed genes? In chapter 5, we performed simulation study to find how
some normalizations affect testing null hypotheses. We discovered that common used
procedures like quantile normalization and global normalizations result in finding too
many false positives (hypotheses with type I error). Therefore, we proposed normal-
ization based onδ-sequence (seeKlebanov and Yakovlev(2007)). We showed that our
normalization finds reasonable number of false positives and detects more true positives
(invalid null hypotheses) than we would test without normalizing. Partial results of this
chapter were published asBubeliny(2013b).

Gene expression data consists of some thousands of genes andtherefore we are ex-
pected to test some thousands of hypotheses simultaneously. To decrease this number,
we can group some genes into gene sets and test the equality ofdistributions of these
sets (e.g.Barry et al. (2008)). In that case, we are dealing with two-sample multidi-
mensional problem. The most popular tests for this problem are Hotellings test, N-test
and tests derived from marginalt-statistics. Our pre-study of Hotelling’s test for genes
sets showed strange behavior of this test. Therefore, in chapter 6 we looked at this test
from theoretical point of view and found some interesting results. We discovered that
this test does not need to reach the best power in case that allmarginal distributions are
shifted. In case of strong dependence of components of sample vectors, better power
is achieved in case of one marginal shift between samples than in case of all marginal
distributions are equally shifted. Moreover, for highly dependent components the best
power is achieved when about half of marginal distributionsare equally shifted. These
results about Hotelling’s test were published inBubeliny(2011). At the end of this
chapter, we compared the power of this test withN-test and two tests based on marginal
t-statistics. These results confirmed different behavior of Hotelling’s test with compari-
son with another considered tests.

Type of dependence between genes can be very helpful. For example, consider that
there exists a gene which influences group of genes such that if this gene is differential-
ly expressed the whole group of genes will be differentially expressed. Then we could
investigate just this gene in detail instead of the group of genes. InKlebanov et al.
(2006), they defined a type of dependence between genes called type A dependence. In
Lim et al. (2010), they defined another type of dependence between genes called hid-
den regulator dependence (HRD). They numerically demonstrated that HRD is easily
mistaken for type A dependence. In this work, we defined test for testing independence
between genes. By using this test, we discovered that there exist a lot of pairs of genes
with type A dependence. On the other hand, our results showedthat there is just small
proportion of these pairs of genes with hidden regulator dependence. Therefore, type A
dependence is more frequent among pairs of genes than HRD.

Finally, our results are summarized in chapter 8.
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Chapter 1

Introduction

Statistician working with gene expression data should knowhow these data were gained
and how these data were preprocessed before they get to his/her hand. Because the be-
ginning of these data roots in deoxyribonucleic acid (DNA) that contains the organisms
complete hereditary information, we start this chapter with biological introduction into
human genome. Thereafter, we describe how these data are preprocessed until they get
into the statistician hand. Furthermore, we briefly describe basic approaches of analyz-
ing microarray data and how these data can be represented. More detailed introduction
to the microarray data analysis can be found for example inYakovlev et al.(2013) or
Göhlmann and Talloen(2009). At the end of this chapter, we describe HYPERDIP and
TEL data for childhood leukemia that we use through this work.

1.1 Human Genome

A eukaryote is an organism (e.g. human being, animals, plants . . .) whose cells contain
a nucleus and other structures enclosed within membranes. Most eukaryotic organisms
have billions of individual cells. Almost all of these cellscontain the entire genome
for that organism. This genome carries complete hereditaryinformation in the form of
deoxyribonucleic acid (DNA).

The human genome consists of 23 pairs of chromosomes. Each chromosome is
made of chains of DNA. DNA consists of molecules that are wrapped around each
other in a structure known as a double helix. Genes are essentially segments of the
DNA structure. In other words a gene is a section of DNA. In humans, there are about
27,000 of genes. The information contained in the gene is transcribed into a messenger
ribonucleic acid (mRNA). Then this mRNA molecule leaves the nucleus of the cell and
it is transcribed into a protein (translation process). This process is known as gene
expression.
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1.2 DNA Microarrays

DNA microarrays (also commonly known as DNA chip or biochip)are small solid sup-
ports (for example microscope slides, silicon chips). The idea behind microarrays is
measuring the amount of the different types of mRNA molecules in a cell and thus indi-
rectly measure the expression levels of the genes. Each DNA microarray spot contains
a specific DNA sequences, known as probes (also reporters or oligos). These probes are
complementary to the specific mRNA molecules that correspondto the specific targeting
genes. These mRNA molecules, which have been previously labeled with fluorescent
dye, should hybridize with those probes. The amount of hybridization is then measured
by the amount of fluorescence. It is usually done by scanner and the results are subse-
quently analyzed by computer. A spot with brighter fluorescence means that the gene
represented by this spot has higher expression level.

Two kind of DNA microarrays are used nowadays: oligonucleotide arrays and cD-
NA arrays.

The most commonly used DNA microarray is oligonucleotide array called GeneChip
manufactured by Affymetrix (http://www.affymetrix.com). Each array contains hun-
dreds of thousands of probe spots and each of these spots contains millions of copies of
an individual 25 base long DNA oligonucleotide.

In cDNA microarrays, each spot corresponds entirely to a specific gene. The probes
are generally hundreds of bases long and measure complementary DNA (cDNA). The
expression level is then given by the measure of how much cDNAhybridize to its cor-
responding spot. Moreover, two separate samples are hybridized to the same array at
the one time. One of these samples is a control sample and the second is a sample of
interest (e.g. cancer tissue) and they are labeled with different dye. Expression level
of a given gene is then measured by the difference in intensity level. Scanner which
reads cDNA microarrays produces a TIFF image. These images are processed by image
analysis software.

1.3 Data preprocessing

The goal of preprocessing microarray data is to remove undesired sources of variations.
The raw microarray data of different probes are noisy. InHolloway et al.(2006), there
was shown that suitable preprocessing step is crucial to obtain reliable data.

The whole preprocessing procedure begins when probe intensities are stored in the
image of scanned microarrays where each pixel of image can have some discrete level
of gray. After image acquisition, each probe is identified bythe grip placed on the top of
scanned image and is represented by a set of pixels. From thisset of pixels the overall
probe intensity is calculated. A typical first preprocessing step is background correction
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that aims to remove non-biological contributions to the intensities such as background
patterns across arrays, unspecific binding of the transcript, etc. In Affymetrix software,
the square microarray image is divided into 16 squares. For each particular square, the
background intensity is declared to be the second percentile of all probe intensities in
this square. The value that is subtracted from a given probeset is weighted average of
16 background intensities where weights depend on the distance of probeset from con-
sidered squares.

Then usually follows the base 2 logarithmic transformationof probeset intensities.
This is done due to the fact that log2-transformation makes the microarray intensity dis-
tribution more symmetric (see e.g.Chen et al.(2007)). The second reason is that the
intensity variations usually increase with intensities. Furthermore, a biological side ef-
fect of log2-transformation is that this transformation converts multiplicative effects into
additive effects.

The following preprocessing step is normalization that makes different samples of
an experiment comparable among themselves. The main goal ofnormalization is to
remove systematic differences between chips. If an experiment is done perfectly, there
is no need of normalization (there are no systematic variations). Different normaliza-
tions involve various assumptions on data properties. Therefore, we should use them
carefully. The most known normalizations are quantile normalization and global nor-
malization. The wider summary of different normalizations and their comparison can
be found for example inYang et al.(2002).

Microarray technology can measure the whole genome at once.But not all genes
are expected to be expressed. Furthermore, there exist somegenes that cannot or have to
be differentially expressed (for maintenance cell). Therefore, to reduce dimensionality,
some genes can be omitted.

1.4 Data analysis

Gene expression data are useful only if one can extract meaningful information from
them. Appropriate analysis can discover unknown properties of genes. On the other
hand, inferior analysis can lead to wrong results and mislead the researchers. Depend-
ing on the goal of the analysis, various statistical methodsshould be chosen. There are
numerous technics that concern about microarray data analysis.

1.4.1 Classification

There are two important approaches of classification of microarray data. The first one
is the discrimination between different known cell patterns, e.g. between tumor and
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normal tissue. The second one is the identification of unknown cell types or conditions,
e.g. new subclass of existing subclass of tumors. In the statistical literature, they are
known as discrimination (supervised) and clustering (unsupervised) methods. Cluster-
ing methods are more appropriate if cell classes are not known in advance. On the other
hand, discriminant methods are preferred if the classes areknown.

1.4.2 Discrimination methods

Suppose, that we haven multivariate (consist of some genes) samplesX1, . . . ,Xn of
gene expression data. Suppose that there exist K classes of cell profiles. The goal of
discriminant analysis is to defineK disjoint subsetAk, k = 1, . . . ,K of sample space
such that forXi ∈ Ak the predicted class isk. These subsets are built from observations
which are known to belong to one of the considered class. The most known discrimina-
tion methods are for example Fisher linear discriminant analysis, maximum likelihood
discriminant analysis, nearest neighbor and classification trees. Detailed description of
these methods can be found for example inDudoit et al.(2002), where these methods
were moreover compared.

Clustering methods

Clustering method is a technique by which genes or samples aregrouped based on
pairwise similarities between genes/samples. For these methods, there are two impor-
tant choices to be done. The first one is the distance measure (similarity) between two
elements. The most known distance measures are for example Euclidian distance, Man-
hattan distance and Pearson correlation coefficient. The second one (called linkage)
defines how similar elements need to be in order to be assignedinto the same cluster.
The examples of linkages are for example nearest neighbor, furthest neighbor and aver-
age linkage. Clustering methods are divided into two categories: hierarchical methods
and partitioning methods. Hierarchical methods build successive cluster using previous
clusters. Partitioning methods are based on minimization of heterogeneity of clusters.
Detailed description of clustering methods can be found forexample inQuackenbush
(2001) orGöhlmann and Talloen(2009).

1.4.3 Finding differentially expressed genes

The common goal of microarray study is to identify differentially expressed genes under
specific conditions. It is done by testing equality of distribution of gene expressions.
Detection of differentially expressed genes depends on the design of experiment, on
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the choice of testing statistics and the predefined significant level. There can be two
experimental conditions or many. If we consider two experimental condition we dealing
with two-sample problem. Reasonable tests for such conditions can be for examplet-
test. If we consider more than two experimental conditions then the reasonable test can
be for example analysis of variance. Detail description of tests to identify differentially
expressed genes can be found for example inCui and Churchill(2003). The choice
of significant level depends on the type I error rate (e.q. family wise error rate, false
discovery rate etc.) and on the multiple testing procedure (e.q Bonferroni procedure,
Benjamini-Yekutieli procedure etc.). Detailed summary of multiple testing procedures
and various type I error rates can be found for example inDudoit and van der Laan
(2008).

1.5 Microarray data

Microarray experiment, which produces gene expressions ofm distinct genes, can be
represented by random vectorX = (x1, . . . , xm)′ with mutually dependent components.
Consider that we haven samples (slides) ofX. Therefore, we can represent microarray
data formgenes fromn slides bymx n matrix X = {X1| . . . |Xn} = {xi, j}m,ni, j=1, wherexi, j is
the gene expression level fori-th gene fromj-th slide.

1.6 HYPERDIP and TEL data

During this work, we use HYPERDIP and TEL data for childhood leukemia. We
do not try to study these data. We just use them to verify our simulated results on
real data. These data are free to obtain from St. Jude Chilren’s research hospital
(http://www.stjude.org). They were observed on children’s patientof this hospital.
These data were proceed by Affymetrix microarray. Both datasets consist of non-
normalized data and have 7084 genes. For HYPERDIP data, therewere obtained 88
slides and for TEL data 79 slides. More details about processing of these data can be
found in supplementary information ofYoeh et al.(2002) where these data were ana-
lyzed. The data, which we use, can be found in the supplement of this work.

In the following chapters, we would like to uset-test or Hotelling’s test for these da-
ta. It was previously mentioned that log2 transformation of gene expression data is ex-
pected to have approximately normal distribution. Therefore, we should verify whether
log2 transformation of HYPERDIP and TEL data have the normal distribution. To do
this, we just verify whether each gene expression level has normal distribution. We test
normality according to one-sample Kolmogorov-Smirnov test and Shapiro-Wilk test.
Histograms ofp-values of these tests for both HYPERDIP and TEL data are in figure
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1.1. Because we are testing 7084 hypotheses we cannot use significance levelα = 5%.
In case of using it we are expected to reject about 0.05 x 7084= 354.2 true hypotheses.
Instead of it, according to Bonferonni procedure (see Section 4.2 for more details), we
should use significance levelα∗ = 0.05/7084. Number of rejected hypotheses according
to significance levelα andα∗ are in table 1.1. Although we reject some hypotheses by
Shapiro-Wilk test (one for HYPERDIP data and five for TEL data,respectively), their
proportion among all genes is too small. Therefore, we can say, that log2 transformation
of these data are approximately normal distributed.
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Figure 1.1:p-values of one-sample Kolmogorov-Smirnov test and Shapiro-Wilk test for
normality of genes from HYPERDIP and TEL data.
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# of rejected hypothesesHYPERDIP TEL
α α∗ α α∗

KS-test 1 0 3 0
SW-test 96 1 245 5

Table 1.1: Number of rejected hypotheses of normality by one-sample Kolmogorov-
Smirnov test and Shapiro-Wilk test at significance levelα = 0.05 andα∗ = 0.05/7084
for HYPERDIP and TEL data.
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Chapter 2

Tests for gene expression data

By working with microarray data, we often need to test the hypothesis of equality of
mean value of two samples or equality of distributions of twosamples. The common
used test for such problem ist-test. An alternative to this test (especially if we are inter-
ested in equality of distributions or there is a violation ofnormality) can be for example
N-test or two-sample Kolmogorov-Smirnov test. At the beginning of this chapter, we
describeN-test that was derived inZinger et al.(1989). In what follows, we discuss
the biasedness of one-sample Kolmogorov-Smirnov test thatcan be used e.g. to verify
some assumptions. Moreover, we show some interesting properties about biasedness of
two-sample Kolmogorov-Smirnov test that were published inBubeliny(2013a). At the
end of this chapter, we compare the power oft-test,N-test and two-sample Kolmogorov-
Smirnov test.

2.1 N-test

Let µ andν be two probability measures defined on the Euclidean spaceRd. For testing
the hypothesisH : µ = ν, Zinger et al.(1989) derive the distribution free test, called
N-test.

Let L(x, y) be a strictly negative definite kernel, this is
∑s

i, j=1 L(xi , xj)hihj ≤ 0 for any
x1, . . . , xs andh1, . . . ,hs,

∑s
i=1 hi = 0 with equality if and only if allhi = 0. Define

N(µ, ν) = 2
∫

Rd

∫

Rd
L(x, y)dµ(x)dν(y)

−
∫

Rd

∫

Rd
L(x, y)dµ(x)dµ(y) −

∫

Rd

∫

Rd
L(x, y)dν(x)dν(y),

then
√

N(µ, ν) is a metric in the space of all probability measures onRd.
Suppose, thatx = (x1, . . . , xn1)

′ and y = (y1, . . . , yn2)
′ are two independentd-
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dimensional vector samples, consisting ofn1 and n2 observations, fromµ and ν, re-
spectively. Then, the empirical counterpart ofN(µ, ν) is given by

N̂(x, y) =
1

n1n2

n1∑

i=1

n2∑

j=1

2L(xi , y j) −
1

n2
1

n1∑

i=1

n1∑

j=1

L(xi , x j) −
1

n2
2

n2∑

i=1

n2∑

j=1

L(yi , y j).

As a strictly negative definite kernelL we will use Euclidian distance that is defined by

L(xi , y j) =
√∑d

l=1(xil − yjl )2 for eachi = 1, . . . ,n1 and j = 1, . . . ,n2. For this kernel,

N(µ, ν) = 0 if and only if µ = ν. The higherN̂(x, y) the stronger evidence to reject
hypothesisH: µ = ν.

Exact distribution of statisticN(. , .) is not known, therefore we will estimate the
p-value ofN-test by permutations according to the following algorithm.

Algorithm 2.1.

1. ComputeN̂(x, y).

2. Letz be a pooled sample of d-dimensional samplesx andy. In other words,z can
be rewritten asz = (z1, . . . , zn1+n2)

′ = (x1, . . . , xn1, y1, . . . , yn2)
′ = (x, y)′.

3. Permutate d-dimensional vectors, the components ofz, to gain new samplez(i) =

(z(i)
1 ,z(i)

2 )′ (with sample sizes of n1 and n2) and computêN(z(i)
1 , z

(i)
2 ).

4. Repeat step3 K-times.

5. Estimated p-value of N-test is given by

p̂ =
1
K

K∑

i=1

I[N̂(x,y)≤N̂(z(i)
1 ,z

(i)
2 )] ,

where I[.] is the indicator function.

The disadvantage ofN-test is that it is too time consumable. Due to the large number
of genes, we cannot perform too many permutations. It limitsthe choice ofK. For gene
expression data it can be set just to some thousands. Therefore, thep-values estimated
by this test can be inaccurate (especially for lowp-values).

The simplest and the most common case is whenx1, . . . , xn1 andy1, . . . , yn2 are two
independent samples having one-dimensional distributions with the distribution func-
tionsF andG, respectively. We would like to test the hypothesisH : F = G against the
alternativeA : F , G. ThenL(x, y) = |x − y| andN-test statistic for this hypothesis is
given by

N̂(x, y) =
1

n1n2

n1∑

i=1

n2∑

j=1

|xi − yj | −
1

n2
1

n1∑

i=1

n1∑

j=1

|xi − xj | −
1

n2
2

n2∑

i=1

n2∑

j=1

|yi − yj |.
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To find out if this test hold the significance levelα = 0.05 we performed simple sim-
ulation. We simulated data from normal, log-normal and uniform distribution and from
5000 repetitions we estimated the significance level of thistest for different number of
observations as proportion of rejections among all repetitions. Estimates ofp-values
of N-test were based on 1000 permutations. In table 2.1, there are estimates of levelα
in case of equal number of observations (n1 = n2 = 10,15,20,30,50,75,100) in both
samples. In table 2.2, there are results of simulation for nonequal number of observa-
tions (n1 = 10,15,20,30,50,75,100 andn2 = 12,25,60,95). We can see that in all
simulated cases, the estimates ofα are near 0.05. Therefore, we can say thatN-test hold
significance levelα.

n1 = n2 10 15 20 30 50 75 100
normal 0.049 0.053 0.049 0.047 0.050 0.054 0.049

log-normal 0.053 0.050 0.053 0.049 0.052 0.057 0.054
uniform 0.055 0.055 0.046 0.050 0.050 0.050 0.047

Table 2.1: Estimate of significance levelα = 5% of N-test for normal, log-normal and
uniform distributed samples with sample sizesn1 = n2 = 10,15,20,30,50,75,100.

2.2 One-sample and two-sample Kolmogorov-Smirnov
test

One-sample and two-sample Kolmogorov-Smirnov test are distance-based tests. Con-
sider that we have a samplex1, . . . , xn from the distribution with unknown distribution
functionF. Let F̂n(x) denotes its empirical distribution function. Based on thissample,
one would like to test the hypothesisH1 : F = F0 against the alternativeA1 : F , F0,
whereF0 is fixed distribution function. Then one-sample Kolmogorov-Smirnov test is
based on statistic

Dn = d(F̂n(x), F0(x)) = sup
x
|F̂n(x) − F0(x)|.

The hypothesisH1 is rejected at levelα if and only if Dn is greater than critical value
δα,n of this test.

Consider now that we have another sample (independent with the first) y1, . . . , ym

from the distribution having unknown distribution function G. We would like to test
the hypothesisH2 : F = G against the alternativeA2 : F , G. Then two-sample
Kolmogorov-Smirnov test is based on statistic

Dn,m = d(F̂n(x), Ĝm(x)) = sup
x
|F̂n(x) − Ĝm(x)|.
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n1 10 15 20 30 50 75 100
n2 normal
12 0.046 0.053 0.051 0.046 0.045 0.049 0.052
25 0.051 0.050 0.043 0.052 0.049 0.050 0.046
60 0.045 0.049 0.052 0.050 0.047 0.047 0.049
95 0.051 0.053 0.053 0.055 0.049 0.050 0.046
n2 log-normal
12 0.049 0.043 0.045 0.051 0.044 0.052 0.054
25 0.049 0.048 0.052 0.048 0.052 0.050 0.050
60 0.051 0.056 0.050 0.054 0.053 0.055 0.051
95 0.053 0.050 0.053 0.053 0.047 0.047 0.047
n2 uniform
12 0.052 0.051 0.051 0.053 0.051 0.049 0.055
25 0.052 0.049 0.057 0.051 0.052 0.051 0.051
60 0.058 0.053 0.048 0.048 0.047 0.050 0.052
95 0.053 0.046 0.058 0.054 0.047 0.049 0.054

Table 2.2: Estimate of significance levelα = 5% of N-test for normal, log-normal
and uniform distributed samples with sample sizesn1 = 10,15,20,30,50,75,100 and
n2 = 12,25,60,95.

The hypothesisH2 is rejected at levelα if and only if Dn,m is greater than its predefined
critical valueδα,n,m.

Computation ofp-values of both versions of Kolmogorov-Smirnov test can be found
for example inHajek et al.(1999).

It should be kept in mind that both Kolmogorov-Smirnov testsdo not depend on any
monotonic transformation of samples. In other words, if we transform both samples (by
the same monotonic transformation) to samples with the distribution functionsF′ and
G′, respectively then

sup
x
|F̂n(x) − F0(x)| = sup

x
|F̂′n(x) − F′0(x)|

and
sup

x
|F̂n(x) − Ĝm(x)| = sup

x
|F̂′n(x) − Ĝ′m(x)|,

whereF′0 is the transformed distribution function ofF0.

2.2.1 Biasedness of one-sample Kolmogorov-Smirnov test

Although one-sample tests have only few direct applications for gene expression data,
they are often used to verify various assumptions. Therefore, we consider one-sample
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Kolmogorov-Smirnov test here (specially its biasedness).
Recall that a test is said to be unbiased at levelα if

1. it has significance levelα

2. for all alternative distributions the power of this test is greater or equal toα.

The test is said to be unbiased if it is unbiased at all levelsα ∈ (0,1). Finally, the test
is said to be biased if it is not unbiased. Specially, the testis biased at levelα against
alternativeG if it is an levelα test andP(reject H|G) < α. The distributionG is said
to be the most biased distribution of test for hypothesisH at significance levelα if G
minimizes the probability of rejection hypothesisH at levelα among all distributions,
that isPα(rejectH|G) ≤ Pα(rejectH|G′) ∀G′.

Each continuous distribution can be transformed to uniform(0,1) distribution. Be-
cause one-sample Kolmogorov-Smirnov test does not depend on any monotonic trans-
formation we can assume, without loss of generality, that wehave independent sam-
ple X = (x1, . . . , xn)′ from distribution with continuous distribution functionF with
suppF ⊆ [0,1]. Now we would like to test the hypothesisH : F = F0 against the
alternativeA : F , F0, whereF0 is the the (0,1) uniform distribution (for simplicity we
will write just uniform distribution) given by

F0(x) =



0 if x < 0
x if 0 ≤ x ≤ 1
1 if x > 1

. (2.1)

Now let δ andβ be such constants that 0< δ ≤ δα,n andβ > 1 and defineδ∗ by
δ∗ = δβ−1

β
. In paperMassey(1950), Massey found out that one-sample Kolmogorov-

Smirnov test is biased against two sided alternative with distribution function defined
by

G(x) =



0 if x < δ∗

βx− δ(β − 1) if δ∗ ≤ x < δ
x if δ ≤ x < 1− δ
βx− (β − 1)(1− δ) if 1 − δ ≤ x < 1− δ∗
1 if x ≥ 1− δ∗

. (2.2)

Confidence set for empirical distribution function of one-sample Kolmogorov-Smirnov
test is given by a closed ballB(F0; δα,n) of radiusδα,n > 0 centered atF0 in the metric of
all distribution functions with the Kolmogorov distance. In figure 2.1, there are plotted
distribution functions ofF0 (left one) andG (right one) forδ = 0.2 andβ = 2 together
with confidence sets withδα,n = 0.2 for one-sample Kolmogorov-Smirnov test. The
biasedness of Kolmogorov-Smirnov test against alternative distributionG is now evident
from the following theorem ofGordon and Klebanov(2010).
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Figure 2.1: Distribution functions of uniform and alternative distribution (solid line) and
their confidence intervals (dashed line) of one-sample Kolmogorov-Smirnov test with
δα,n = 0.2.

Theorem 2.2.1.Suppose that for some0 < α < 1 there exists a continuous distribution
function Fa such that

B(Fa; δα,n) ⊂ B(F0; δα,n) (2.3)

and for difference of sets B(F0; δα,n) and B(Fa; δα,n) holds

PFa(F̂na ∈ B(F0; δα,n)/B(Fa; δα,n)) > 0, (2.4)

where F̂na is empirical distribution function of Fa. Then one-sample Kolmogorov-
Smirnov test is biased against the alternative Fa.

Proof. Let x1, . . . , xn be independent identically distributed variables from thedistribu-
tion Fa with empirical distribution function̂Fna. Then

PFa(F̂na ∈ B(Fa; δα,n)) ≥ 1− α.

From (2.3) and (2.4) we have

PFa(F̂na ∈ B(F0; δα,n)) > 1− α.

That is
P(rejectH|A is true)= PFa(d(F̂na; F0) > δα,n) < α.

�

From this theorem, it is obvious that distribution functions given by (2.2) are not
the only ones that make this test biased. For testing equality with uniform distribution,
one-sample Kolmogorov-Smirnov test is biased at levelα to all distributions with con-
tinuous distributions functions (sayFa) lower thanF0 for x ≤ δα,n and greater thanF0

for x ≥ 1− δα,n with restriction toPFa(F̂na ∈ B(F; δα)/B(Fa; δα)) > 0.
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2.2.2 Simulations of alternative distributions

In this chapter, we will need to simulate data from an alternative distributionG. It can
be directly done from sampleX having uniform distribution byY = G−1(X), whereG−1

is the inversion function ofG. More precisely, for the distribution function given by
(2.2), this is

Y(x) = G−1(x) =



x+(β−1)δ
β

if x < δ
x if δ ≤ x < 1− δ
x+(β−1)(1−δ)

β
if 1 − δ ≥ x

. (2.5)

To find out how strong the biasedness of one-sample Kolmogorov-Smirnov test is we
performed simple simulation. We set the number of observationsn to ben = 50,100 and
parameterβ to beβ = 2,5,10,50,1000. Forn = 50 we setδ to be 0.1,0.15,0.187 and for
n = 100 to be 0.08,0.11,0.135. Each simulation was repeated 100000 times. For each
setting we simulated random samplesX = (x1, . . . , xn)′ from the uniform distribution
and from these samples (for better comparison) we calculated samplesY = (y1, . . . , yn)′

according to (2.5). For each sampleX andY, we performed one-sample Kolmogorov-
Smirnov test and estimated how many times it rejected the hypothesisH at levelα = 5%.
In table 2.3, there are showed the differences between estimates of levelα for sampleX
and the estimates of power for sampleY. For example, forn = 50,δ = 0.187 andβ = 2
the estimate of levelα is equal to 0.05039, the estimate of power for sampleY is equal
to 0.04962. Therefore, the difference is equal to 0.00077. All differences of estimates
in our simulation are nonnegative and they are larger with increasingδ. It confirms that
the one-sample Kolmogorov-Smirnov test is not unbiased.

If sampleX is transformed to sampleY according to (2.5), it does not necessarily

n = 50 n = 100
δ = 0.1 δ = 0.15 δ = 0.187 δ = 0.08 δ = 0.11 δ = 0.135

β = 2 0.00004 0.00024 0.000770.00000 0.00002 0.00005
β = 5 0.00004 0.00028 0.000730.00001 0.00004 0.00009
β = 10 0.00002 0.00033 0.000870.00000 0.00002 0.00015
β = 50 0.00003 0.00022 0.001000.00000 0.00003 0.00011
β = 1000 0.00005 0.00035 0.000970.00000 0.00004 0.00017

Table 2.3: Table of difference between estimates of levelα for sampleX having uniform
distribution and estimate of power for sampleY having distribution function (2.2) by
one-sample Kolmogorov-Smirnov test at levelα = 0.05.

mean thatp-value of one-sample Kolmogorov-Smirnov test is changed. Figure 2.2 il-
lustratesp-values for 2000 simulation (top row) and there is 1063 (53.15%) from these
p-values that were changed between samplesX andY. We can see thatp-values for
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samples from alternative distribution are upper bounded bysome constant (in this case
about 0.75) and the majority of changedp-values are greater than another constant (in
this case about 0.5). The upper bound ofp-values for alternative samples is due to
empirical distribution function of alternative distribution that is ever equal to zero in
δ∗, because the minimum ofY is never less thanδ∗. That isĜn(δ∗) = 0. Therefore,
Dn = supx |Ĝn(x) − F0(x)| ≥ δ∗.

2.2.3 Modifications of one-sample Kolmogorov-Smirnov test

Consider, that there is a real threat that the testing distribution is the distribution given
by (2.2). Now we know that one-sample Kolmogorov-Smirnov test can lead to wrong
decisions. However, what can we do? In the rest of this subsection, we propose three
modifications of this test that could help. In these modifications we use one-sample
Kolmogorov-Smirnov test together with another tests. According to Union-intersection
principle developed byRoy(1957) we can write the main hypothesisH as an intersec-
tion of partial hypothesesHτ, whereτ is some set of hypotheses, that isH =

⋂
τ Hτ. On

the other hand, we reject hypothesisH if we reject at least one partial hypothesis. On
the grounds of holding significance level of hypothesisH and according to Bonferroni
inequality, for partial hypothesesHτ we use significance levelα∗ = α/|τ|, where|τ| is
number of partial hypotheses.

First modification

We know that the minimum of sample from the distributionG is never lower thanδ∗.
Now consider, that we have sampleX = (x1, . . . , xn) from the uniform distribution. The
minimum of sampleX is greater than or equal toδ∗ with probability given by

P(minX ≥ δ∗) = P(∀xi ≥ δ∗) =
n∏

i=1

P(xi ≥ δ∗) = (1− δ∗)n,

which for a reasonablen and δ∗ is too small. Moreover, the same idea can be ap-
plied to the maximum of the sample. It leads us to the first modification of one-sample
Kolmogorov-Smirnov test.

In this modification, we use the minimum and the maximum of thesampleX. There-
fore, we need to know the critical values of these statistics. Let δmin andδmax be the
critical values for these statistics at levelα∗. For the minimum ofX we have

P(minX < δmin) = 1− P(minX ≥ δmin) = 1− (1− δmin)
n = α∗,

thereforeδmin = 1 − (1 − α∗)1/n. The computation for maximum is analogous and we
haveδnmax = (1 − α∗)1/n. Because we are going to use three tests in one test, we set
α∗ = α/3. The test of modification one is summarized by the followingalgorithm.
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Algorithm 2.2.

1. Compute p-value (denoted by pks) of one-sample Kolmogorov-Smirnov test for the
sample X.

2. Compute the minimum and the maximum of the sample X.

3. The hypothesis H is rejected if and only if:

( minX < 1− (1− α∗)1/n) or ( maxX > (1− α∗)1/n) or (pks < α
∗)

.

Second modification

Distribution functions of the uniform and the alternative distributionG are different from
0 toδ and from 1− δ to 1. Therefore, we can use one-sample Kolmogorov-Smirnov test
for small values and large values ofX separately. Moreover, we omit the values from
the ”middle” of X.

If δ in distributionG given by (2.2) is less than or equal to critical value of one-
sample Kolmogorov-Smirnov testδα,n then the one-sample Kolmogorov-Smirnov test
is biased against this alternative. Hence, as a sampleX1 we take normalized values ofX
which are lower thanδα,n, that is

X1 = {xi/δα,n; xi < δα,n, i = 1, . . . ,n}. (2.6)

Alternatively, we create a sample of ”large” values of X fromnormalized values ofX
which are larger than 1− δα,n, that is

X2 = {(1− xi)/δα,n; xi > 1− δα,n, i = 1, . . . ,n}. (2.7)

Such defined samplesX1 andX2 are independent and if the hypothesis is true then both
of these samples have the uniform distribution. Therefore,on each of these samples
we can use one-sample Kolmogorov-Smirnov test separately.It leads us to the second
modification of one-sample Kolmogorov-Smirnov test, whichis given by the following
algorithm.

Algorithm 2.3.

1. Compute p-value (denoted by pks) of one-sample Kolmogorov-Smirnov test for the
sample X.

2. Compute p-values (denoted by pmin and pmax) of one-sample Kolmogorov-Smirnov test
for the samples X1 and X2 given by (2.6) and (2.7), respectively.

3. The hypothesis H is rejected if and only if at least of one ofthree considered tests is
rejected at levelα/3, that is pks < α/3 or pmin < α/3 or pmax< α/3.
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Note that sampleX1 or X2 can be empty with positive probability and therefore one-
sample Kolmogorov-Smirnov test cannot be computed. If the hypothesisH is true, then
this probability is equal to (1− δα,n)n which is too small (i.e for n=50 andα=0.05 it
is equal to approximately 2.3x10−5). Therefore, we setp-value of empty sample to be
zero.

Third modification

The third modification is similar to the second modification.The only difference is
that in this modification, samplesX1 and X2 are joined together and there is created
just one sampleX3. If the hypothesisH is true,X1 and X2 are independent and they
both have uniform distribution and thereforeX3 as well. Hence, we can apply one-
sample Kolmogorov-Smirnov test on sampleX3. The third modification of one-sample
Kolmogorov-Smirnov test is summarized by the following algorithm.

Algorithm 2.4.

1. Compute p-value (denoted by pks) of one-sample Kolmogorov-Smirnov test for the
sample X.

2. Compute p-values (denoted by pmix) for the sample X3.

3. The hypothesis H is rejected if and only if at least one of twoconsidered tests is
rejected at levelα/2, that is pks < α/2 or pmix < α/2.

Again, if the sampleX3 is empty, we setpmix = 0.

2.2.4 Power of modified one-sample Kolmogorov-Smirnov tests

Previously, we proposed three modifications of one-sample Kolmogorov-Smirnov that
should improve this test against the alternativeG. In this section, we performed simu-
lation study, in which we verified if these tests hold nominallevelα = 0.05 of the main
hypothesisH and we compared their power.

In order to verify if our three tests hold nominal levelα, we simulated random sam-
ples from uniform distribution. We set the number of observationsn to be 50,100 and
1000. We performed 10000 repetitions and as the estimate of levelα we took the pro-
portion of rejected hypotheses between these 10000 simulations. From table 2.4, we
can see that all three modifications hold nominal levelα.

The power of our three modifications is still questionable. Therefore, we performed
simulation to compare the power of these modifications. We considered number of ob-
servationsn = 50 and 100, we set parameterβ = 2,5,10,50. The last parameter we did
need to set wasδ. For each setting ofn andβ we set fifty different equidistant values of
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K-S test Mod 1 Mod 2 Mod 3
n = 50 0.0494 0.0473 0.0490 0.0482
n = 100 0.0486 0.0449 0.0479 0.0511
n = 1000 0.0475 0.0479 0.0450 0.0480

Table 2.4: Estimate of levelα = 0.05 of one-sample Kolmogorov-Smirnov test and its
three modifications.

δ. Each simulation was repeated 5000 times.
Figure 2.3 shows the results of our simulation. It can be seen, that each of our modi-

fications improves one-sample Kolmogorov-Smirnov test against the alternativeG. For
n = 50 and eachβ the best power has the modification three. Forn = 100 andβ = 2, the
first modification has the highest power, for largerβ the third modification has similar
power to the first one.

Let consider another alternative distribution. We assume that alternative distribution
function increases polynomial between 0 andδ and between 1− δ and 1. For simplicity,
for x from 0 toδ we will considerm-degree polynomialP1 with a0 = . . . = am−1 = 0 and
am = β1, where constantβ1 is such that polynomialP1 satisfiesP1(0) = 0 andP1(δ) = δ.
For x from 1− δ to 1 we considerm-degree polynomialP2 with a1 = . . . = am−1 = 0
anda0 = γ andam = β2, where constantsγ andβ2 are such thatP2(1− δ) = 1− δ and
P2(1) = 1. It leads to the alternative distribution function given by

Gm(x) =



0 if x < 0
β1xm if 0 ≤ x < δ
x if δ ≤ x < 1− δ
β2xm+ γ if 1 − δ ≤ x ≤ 1
1 if x > 1

. (2.8)

At first, we performed simulation study in order to confirm that one-sample Kol-
mogorov-Smirnov test is biased against the alternativeGm. We setn = 50,100, m =
2,5,10,50,1000, three different values ofδ and we performed 100000 simulation. In
table 2.5, there are differences between estimates of levelα = 5% for sample having uni-
form distribution and the estimate of power for sample having distribution functionGm

created from these uniformly distributed samples. Each of these differences is nonneg-
ative. That acknowledges that one-sample Kolmogorov-Smirnov test is biased against
the alternativeGm.

Now we compare the power of our modifications for the alternative Gm. We con-
sidered number of observationsn = 50 and 100, we set the degree of polynomials
m = 2,5,10,50. For parameterδ we took fifty different equidistant values ofδ. Each
simulation was repeated 5000 times.
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n = 50 n = 100
δ = 0.1 δ = 0.15 δ = 0.187 δ = 0.08 δ = 0.11 δ = 0.135

m= 2 0.00009 0.00029 0.000710.00000 0.00003 0.00005
m= 5 0.00003 0.00037 0.000880.00001 0.00005 0.00017
m= 10 0.00007 0.00023 0.000820.00000 0.00004 0.00017
m= 50 0.00002 0.00029 0.000740.00001 0.00002 0.00015

m= 1000 0.00001 0.00034 0.000930.00000 0.00004 0.00015

Table 2.5: Table of difference between estimates of levelα for sample having the uni-
form distribution and estimates of power for samples havingthe distribution given by
(2.8) by one-sample Kolmogorov-Smirnov test at levelα = 0.05.

The results of this simulation for modified tests are in figure2.4. Forn = 50 the
third modification has the highest power. Forn = 100 it is hard to say if modification
one or modification three is the best. It depends onm andδ because lines of power are
crossed for these two modifications.

2.2.5 Some notes on biasedness of two-sample Kolmogorov-Smirnov
test

Consider, thatx1, . . . , xn andy1, . . . , ym are two independent identically distributed sam-
ples having distributions with continuous distribution functionsF andG, respectively.
We would like to test the hypothesisH : F = G against the alternativeA : F , G. Then
two-sample Kolmogorov-Smirnov test is based on statistic

Dn,m = sup
x
|F̂n(x) − Ĝm(x)|,

whereF̂n(x) andĜm(x) are the empirical distribution functions ofF andG. The hypoth-
esisH is rejected for large values ofDn,m.

At first, we should realize that statisticDn,m of two-sample Kolmogorov-Smirnov
test has discrete distribution. Therefore,p-values for this test have a discrete distribu-
tion as well. For example, consider the casen = m = 50. Then the test statisticDn,m

can take just 50 different values 1/n,2/n, . . . ,1. For statisticDn,m = 0.26 thep-value is
equal to 0.0678 and for the next valueDn,m = 0.28 thep-value is equal to 0.0392. Test-
ing at levelα = 0.05 could be a bit confusing because the power of this test is constant
for each valueα ∈ [0.0392,0.0678). There exists a distributionG such that power of
two-sample Kolmogorov-Smirnov test at levelα = 0.05 is equal to 0.045. Such a distri-
bution does not meet requirements of definition of unbiasedness forα = 0.05 though the
power of this test is higher than exact level of this test equal to 0.0392. To precise the
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idea of unbiasedness for tests with discrete test statisticwe will consider just discrete
values of significance levelα.

It should be kept in mind that the two-sample Kolmogorov-Smirnov test does not
depend on any monotonic transformation of samples. If we transform both samples (by
the same monotonic transformation) to samples with distribution functionsF′ andG′,
respectively then supx |F̂n(x)− Ĝm(x)| = supx |F̂′n(x)− Ĝ′m(x)|. Therefore, without loss of
generality, we assume thatF is the uniform distribution given by

F(x) =



0 if x < 0
x if 0 ≤ x ≤ 1
1 if x > 1

. (2.9)

In Gordon and Klebanov(2010), there was proved that forn = m there existsα ∈
(0,1) such that two-sample Kolmogorov-Smirnov test is unbiased at levelα against
two-sided alternativeF , G. If we consider just one-sided alternativesA1 : F ≤ G or
A2 : F ≥ G we can extend this finding ton , m.

Theorem 2.2.2.Let x1, . . . , xn and y1, . . . , ym be independent samples from distribution
F and G. Then for arbitrary n,m ∈ N, there existsα ∈ (0,1) such that two-sample
Kolmogorov-Smirnov test of hypothesis H: F = G against one-sided alternative A1 :
F ≤ G or A2 : F ≥ G is unbiased at levelα.

Proof. Without loss of generality, we assume that the first samplex1, . . . , xn is from the
uniform distribution.
Firstly, we consider only the alternativeA1 : F ≤ G. For this alternative, the Kolmogorov-
Smirnov statistic is given by

D∗n,m = sup
x∈(0,1)

(F̂n(x) − Ĝm(x)),

whereF̂n andĜm are the empirical distribution functions ofF andG. The hypothesisH
is rejected for small values ofD∗n,m. Considerα such small, that we reject the hypothesis
H for Dn,m equals to minus one. It occurs if and only if the samplesx1, . . . , xn and
y1, . . . , ym satisfy

max(y1, . . . , ym) < min(x1, . . . , xn). (2.10)

The probability of this event is given by

n
∫ 1

0
(1− x)n−1Gm(x)dx. (2.11)

Moreover,G(x) must be monotone andG(x) ≥ x because we consider alternativeA1 :
F ≤ G. Therefore, the function (1− x)n−1Gm(x) of integral (2.11) attains its minimum
for G(x) = x. This integral represents probability of rejection of hypothesis at level
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α if alternativeG is true and it is minimized forF = x = G(x). Hence, two-sample
Kolmogorov-Smirnov test is unbiased at levelα.

The proof for the alternativeA2 : F ≥ G is similar. We takeα such small, that we
reject hypothesis if and only ifDn,m = 1. The inequality (2.10) change to

max(x1, . . . , xn) < min(y1, . . . , ym)

and probability of this event is then given by

n
∫ 1

0
xn−1(1−G(x))mdx (2.12)

For alternativeA2 we haveG(x) ≤ x. Hence, integral (2.12) is minimized forG(x) = x.
It proves the theorem. �

The result of this theorem does not mean that two-sample Kolmogorov-Smirnov test
is unbiased against one-sided alternative. It only says that there exists small levelα for
which this test is unbiased. In the following theorem we showthat forn , m two-sided
Kolmogorov-Smirnov test is not unbiased against two-sidedalternative.

Theorem 2.2.3.Let x1, . . . , xn be i.i.d from uniform distribution with distribution func-
tion F and y1, . . . , ym be i.i.d. from distribution having distribution function G. If n , m
then there existsα ∈ (0,1) such that two-sample Kolmogorov-Smirnov test of hypothesis
H : F = G is biased against alternative with the distribution function

G(x) =
( x

1−x)
n−1
m−1

1+ ( x
1−x)

n−1
m−1

. (2.13)

Proof. Considerα such small, that we reject the hypothesisH if and only if

Dn,m = sup
x
|F̂n(x) − Ĝm(x)| = 1.

That is, the samplesx1, . . . , xn andy1, . . . , ym have to satisfy

max(y1, . . . , ym) < min(x1, . . . , xn) or max(x1, . . . , xn) < min(y1, . . . , ym). (2.14)

The probability of this event is given by

n
∫ 1

0
((1− x)n−1Gm(x) + xn−1(1−G(x))m) dx.

SubstituteG(x) by y and let the derivative (according toy) of function

(1− x)n−1ym+ xn−1(1− y)m,
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be equal to zero. It leads us to the equation

(
y

1− y
)m−1
= (

x
1− y

)n−1
.

Therefore, the probability of event (2.14) is not minimizedfor F(x) = G(x) = x but for

G(x) =
( x

1−x)
n−1
m−1

1+ ( x
1−x)

n−1
m−1

.

�

Some examples of distribution functions given by (2.13) arein figure 2.5. Although
we found out that two-sample Kolmogorov-Smirnov test is biased against alternative
(2.13) we showed it just for very smallα. Let denote this smallest levelα by α1. Then
α1 can be directly computed by

α1 = n
∫ 1

0
((1− x)n−1xm+ xn−1(1− x)m) dx= 2nm

Γ(n)Γ(m)
Γ(n+m+ 1)

, (2.15)

whereΓ(.) denotes Euler gamma function. For example ifn = 10 andm= 11 thenα1 is
equal to 5.67x10−6.

All previous results are considered for Kolmogorov-Smirnov statistic Dn,m = 1.
Let us consider the second highest value of this statistic. For n > m it is equal to
1− 1/n and forn < m it is equal to 1− 1/m, respectively. We denote byα2 the signif-
icance levelα such that we reject two-sample Kolmogorov-Smirnov test if and only if
Dn,m ≥ max(1− 1/n,1− 1/m).

Firstly, assume thatn > m ≥ 2 and consider thatDn,m = 1− 1/n. This can occur if
and only if these samples are such that

x(1) < . . . < x(n−1) < y(1) < x(n)

or
x(1) < y(m) < x(2), . . . < x(n).

Together with the case whenDn,m = 1, that isx(n) < y(1) or y(m) < x(1), we have thatDn,m

is greater or equal to 1− 1/n if and only if x(n−1) < y(1) or y(m) < x(2). It leads us to the
probability of rejecting the hypothesis at levelα2

P(Dn,m ≥ 1− 1/n) = P(∀ j yj > x(n−1)) + P(∀ j yj < x(2))

= n(n− 1)
∫ 1

0
(xn−2(1− x)(1−G(x))m

+x(1− x)n−2Gm(x)) dx. (2.16)
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As in the proof of the previous theorem letG(x) = y and let the derivative (according to
y) of the integrand of (2.16) equal to zero. It leads to solve the equation

(
y

1− y
)m−1
= (

x
1− x

)n−3
.

The solutiony as a function ofx is given by

y = G(x) =
( x

1−x)
n−3
m−1

1+ ( x
1−x)

n−3
m−1

. (2.17)

Now assume that 2≤ n < m and considerDn,m = 1− 1/m. This can be true if and
only if

y(1) < . . . < y(m−1) < x(1) < y(m)

or
y(1) < x(n) < y(2), . . . < y(m).

Therefore, the probability of eventDn,m ≥ 1− 1/m is equal to

P(Dn,m ≥ 1− 1/m) = P(Dn,m = 1− 1/m) + P(Dn,m = 1)

= nm
∫ 1

0
((1− x)n−1Gm−1(x)(1−G(x))

+xn−1(1−G(x))m−1G(x)) dx

+n
∫ 1

0
((1− x)n−1Gm(x) + xn−1(1−G(x))m) dx. (2.18)

As before letG(x) = y and let the derivative of the integrand of (2.18) according to y be
equal to zero, leading to the equation

(
y

1− y
)m−3
= (

x
1− x

)n−1
.

Therefore, the distribution function of the most biased distribution of two-sample Kolmo-
gorov-Smirnov test at levelα2 is given by

y = G(x) =
( x

1−x)
n−1
m−3

1+ ( x
1−x)

n−1
m−3

. (2.19)

Remark 2.2.4. If n = 3 and m= 2 or n = 2 and m= 3 then the most biased distribution
of two-sample Kolmogorov-Smirnov test is discrete distribution given by probabilities
P(y = 0) = P(y = 1) = 1

2 or P(y = 1
2) = 1, respectively.
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ConsiderG(x) = x then levelαn,m = α2 is given (according to (2.16) and (2.18)) by

α2 = 2nmk
Γ(n)Γ(m)
Γ(n+m+ 1)

= kα1, (2.20)

wherek = min(n+ 1,m+ 1). The distribution functions (2.17) and (2.19) areS-shaped
(see figure 2.5). Although these distribution functions arenot identical and not equal
to (2.13), some interesting results can be found. If|n − m| = 2 then (2.17) and (2.19)
change toG(x) = x. It means that the distribution which minimizes (2.16) and (2.18) is
uniform distribution. It leads us to the following theorem.

Theorem 2.2.5.Letαn,m be given by (2.20). If n = m+ 2 or n = m− 2 then two-sample
Kolmogorov-Smirnov test is unbiased at levelαn,m. However, if n, m and|n−m| , 2
then Kolmogorov-Smirnov test is biased at levelαn,m.

Proof. Because ofαn,m = α2, the distribution functions of the most biased distribution
of this test at levelα2 are given by (2.17) and (2.19). For|n − m| = 2 they change
to G(x) = x = F(x). It means that the uniform distribution minimize the probability
of rejection hypothesisF = G against alternativeF , G at levelα2 if and only if
|n−m| = 2. �

Remark 2.2.6. If |n − m| = 1 then two-sample Kolmogorov-Smirnov test is not biased
against the distribution functions (2.17) and (2.19) at level α1.

Let denote byAα the set of distributions for which two-sample Kolmogorov-Smirnov
test is biased at levelα, it is

Aα = {G : P(rejectH at levelα|alternativeG is true)< α}.

For different levels 0< α < α∗, one would expect that there is some subset relation
betweenAα andAα∗ . However, it is not generally true. According to the theorem2.2.5
there existGα such thatGα ∈ Aα andGα < Aα∗ . On the other hand, from remark 2.2.6
we have that there existsG∗α such thatG∗α < Aα andG∗α ∈ Aα∗ . Therefore, in generalAα
is not subset ofAα∗ and vice versa.

Previous result can be quite simply generalized toα3 (the third smallestα) in case of
n > 2mor 2n < m. Adding the probability of the evenDn,m = 1−2/mor Dn,m = 1−2/n
to the (2.16) or (2.18) leads us to the most biased distributions at levelα3 given by

G3(x) =
( x

1−x)
n−5
m−1

1+ ( x
1−x)

n−5
m−1

if n > 2m (2.21)

or

G3(x) =
( x

1−x)
n−1
m−5

1+ ( x
1−x)

n−1
m−5

if m> 2n. (2.22)
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In this case,α3 is given by

α3 = 2k2nm
Γ(n)Γ(m)
Γ(n+m+ 1)

= k2α1,

where

k2 =
min((m+ 2)(m+ 1), (n+ 2)(n+ 1))

2
.

If n = m+ 4 or m = n+ 4 thenG3(x) = x. Together with conditionn > 2m or m > 2n
we have that forn = 6,m = 2 or n = 2,m = 6 the two-sample Kolmogorov-Smirnov
test is unbiased at levelα3 = 3/7 and forn = 7,m = 3 or n = 3,m = 7 the two-sample
Kolmogorov-Smirnov test is unbiased at levelα3 = 1/6.

Computing the power of two-sample Kolmogorov-Smirnov test for another relation
of n andmat levelα3 is not such simple due to the fact that it has to be solved by double
integration. Therefore, in such cases, finding the most biased distribution is much more
complicated and it is not considered here.

Theα’s considered so far are too small in case we have some tens of observations in
each sample. Therefore, we performed the following simulation to look if two-sample
Kolmogorov-Smirnov test is biased against the distribution (2.13) at levelα ≈ 0.05.
We set the number of observationsn for the first sample ben = 10,20,50,100 and
the number of observationsm for the second sample bem = 11,15,21,51,101. As
a distribution of the first sample, we consider uniform distribution and for the second
sample, we consider two distributions: the uniform distribution and distribution given
by (2.13). We performed 10000 repetitions and computed the difference between the
estimate of power if the second sample is from alternative distribution and the estimated
levelα if the second sample is from uniform distribution. The results of this simulation
are in table 2.6. We can see that for all consideredn andm the estimate of difference is
greater than 0. It means that two-sample Kolmogorov-Smirnov test is not biased against
alternative (2.13) at levelα ≈ 0.05 for the chosen parametersn andm.

α = 5% m=11 m=15 m=21 m=51 m=101
n = 10 0.0034 0.0144 0.0320 0.4153 0.7290
n = 20 0.0291 0.0087 0.0016 0.2784 0.9170
n = 50 0.4071 0.3403 0.2715 0.0001 0.5291
n = 100 0.9070 0.9189 0.9190 0.4557 0.0001

Table 2.6: Difference between estimate of power for alternativeG given by (2.13) and
estimate of levelα of two-sample Kolmogorov-Smirnov test.
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2.3 Comparison of power ofN-test,t-test and two-sample
Kolmogorov-Smirnov test

One of the goals of microarray experiment is to find differently expressed genes between
two different groups of patients or two stages of some disease. This is closely related
with two-sample test of hypothesis of equality of distributions of gene expression levels
between these two groups. Therefore,N-test and two-sample Kolmogorov-Smirnov test
seem to be useful in such situation. On the other hand, many biologists are interested in
change of mean value of gene expression instead of difference in distribution. Moreover,
log2 expressions are considered to have approximately normal distribution, therefore,t-
test seems to be useful as well.

One can be interested in which test is the best. Therefore, weperformed simulation
to compare the power ofN-test, t-test and two-sample Kolmogorov-Smirnov test for
some specific alternatives. We set the number of observations in each sample to be
n1 = n2 = 10,20,50,100. We compared samples fromN(0,1) andN(µ,1); logN(0,1)
and logN(µ,1); U(0,1) andU(0,1) + µ; N(0,1) andN(0, σ2). In each comparison we
considered 10 equidistant valuesµ andσ which differ from case to case.

Results of these simulations are in figure 2.6. We can see thatN-test has better
power than two-sample Kolmogorov-Smirnov test in all simulated cases. If there is a
change only in mean value thent-test performs slightly better thanN-test. But if there
is a change in variance (log-normal and normal with change invariance cases) thenN-
test has far better power thant-test. Therefore,N-test seems to be better thant-test for
samples with different covariance structure. On the other hand,N-test is much more
time-consuming thant-test. This fact should be likewise considered in choosing the test
we are going to use.
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Figure 2.2: p-values of one-sample Kolmogorov-Smirnov test of sample-size n = 50
for uniform and alternative distribution withδ = 0.187 andβ = 2. In the top row, there
are all p-values for 2000 simulations. In the bottom row, there are 1063 p-values that
changed between samplesX andY for these 2000 simulations.
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Figure 2.3: Estimate of power of our three modifications for sample having distribution
functionG given by (2.2) with sample sizen = 50,100.
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Figure 2.4: Estimate of power of our three modifications for sample having distribution
functionGm given by (2.8) with sample sizen = 50,100 .
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Figure 2.5: Plot of distribution functionG given by (2.13) forn = 50 andm =

20,55,100
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Figure 2.6: Comparison of power ofN-test (black), t-test (red) and two-sample
Kolmogorov-Smirnov test (green) for samples with sample sizes n1 = n2 =

10,20,50,100 having distributionsN(0,1) andN(µ,1) (normal case); logN(0,1) and
logN(µ,1) (log-normal case);U(0,1) and U(0,1) + µ (uniform case);N(0,1) and
N(0, σ2) (variance case).

34



Chapter 3

Dependence ofp-values of gene
expression data

Gene expressions are highly correlated between genes. Therefore, marginal tests about
genes are dependent as well as theirp-values. In this chapter, we show how histograms
of such p-values look like and how simple normalization such as proportion of gene
expressions can change the structure ofp-values. To do this we useN-test on HYPER-
DIP and TEL data. At the beginning, we consider the case when all hypotheses are true.
Hence we use HYPERDIP and TEL data separately and we divide each of them into two
halves. Thereafter, we consider cases when some hypothesescan be false. Hence we
considerp-values ofN-test between genes of HYPERDIP and TEL data. We show that
this normalization has large impact onp-values. Results of this chapter were published
in Bubeliny(2008).

3.1 All hypotheses are true

Firstly, we consider only HYPERDIP data. We divide these datainto two halves and
construct two samples for each gene consisted of 44 slides (we use up to 44 slides for
the first sample and the remaining 44 for the second sample). For each gene, these
samples are from the same distribution with distribution functionGH

i , i = 1, . . . ,7084.
To emphasize the equality of distributions of these two samples for each genei (that
is, the hypothesis about equality of distribution ofi-th gene is true) we will write this
hypothesis likeH′i : GH

i = GH
i .

If gene expressions were independent between themselves, the p-values for testing
true hypothesesH′i : GH

i = GH
i , i = 1, . . . ,7084 would have uniform distribution. In

figure 3.1, we can see that the histogram ofp-values forH′i has an obvious peak in the
top about 0.85 and it is very different from the histogram of random variables having
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uniform distribution. It confirms thatp-values are dependent.
Let us show how simple normalization, such as proportion of gene expressions, can
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Figure 3.1: Histograms ofp-values for true hypotheses for one kind of childhood
leukemia. The left histogram is for HYPERDIP data, the right histogram is for TEL
data.

help. We create random variablesπ1
i, j = x2i, j/x2i−1, j, j = 1, . . . ,44 andπ2

i,k = x2i,k/x2i−1,k,
k = 45, . . . ,88. For each fixedi = 1, . . . ,3542 these variables have the same distribution
(denoted byGπi ). Our goal is to test true hypotheses

Hπi : Gπi = Gπi for eachi = 1, . . . ,3542,

simultaneously. From the histogram ofp-values for these hypotheses (figure 3.2, the top
left one) we can see that this histogram has different shape from previous one. There are
almost equal columns and there is not a significant peak as it was in previous situation.
Therefore, this histogram looks very similar to the histogram of sample from uniform
distribution.

Klebanov et al.(2006) found out a new type of dependence, called type A depen-
dence, which appears in microarray data. Letx and y be gene expression levels for
genegx andgy, respectively. We say that pair (gx,gy) is type A if x andy satisfy the
conditiony = xz, wherez is a positive random variable stochastically independent on
x. Log2 transformation of type A dependent random variables gives Y=X+Z, where
Y = log2 y, X = log2 x andZ = log2 z. According to independence ofx andz we have
that VarY > VarX. Hence, this type of dependence is not symmetric.

The idea of type A dependence leads us to construct sorted (according to their vari-
ance)π random variables. To distinguish unsorted and sortedπ random variables,
we add the indexs to these variables. Therefore, we can defineπ1s

i, j = x(2i), j/x(2i−1), j,
j = 1, . . . ,44 andπ2s

i,k = x(2i),k/x(2i−1),k, k = 45, . . . ,88 and for fixedi we denote the
distribution function ofπ1s

i, j by Gπ
s

i , which is the same as the distribution function ofπ2s
i, j,
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Figure 3.2: Histograms ofp-values for true hypotheses of one kind of childhood
leukemia forπ random variables (the top row for HYPERDIP data, the bottom row
for TEL data). From the left to the right we consider hypotheses Hπi : Gπi = Gπi for
unordered proportions of gene expressions,Hπ

s

i : Gπ
s

i = Gπ
s

i for ordered proportions of
gene expressions according to variance of gene expressionsand according to variance
of gene log2-expressions.

wherex(k), j = xl, j and l is the index of gene withk-th largest estimate of variance of
expression levels. The histogram ofp-values for hypotheses

Hπ
s

i : Gπ
s

i = Gπ
s

i i = 1, . . . ,3542

is on the figure 3.2 (the top middle one). We observe a small change: p-values are much
lower (columns at the beginning of the histogram are higher than for p-values greater
than 0.2). However, this difference is not as dramatic as it was in previous comparison.

According to the type A dependence we can order genes by arranging them in in-
creasing order of estimates of variances of gene log2-expressions. We create sorted
π random variables as in previous situation but with different ordering of genes. The
histogram ofp-values for hypotheses

Hπ
s

i : Gπ
s

i = Gπ
s

i , i = 1, . . . ,3542

for this ordering is on the figure 3.2 (the top right). We can see that this histogram looks
a little better than the previous one and it is very similar tothe histogram for unordered
data. Therefore, this ordering seems to be better than ordering by variance of gene
expressions.
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We can proceed the same way for TEL data as it was done for HYPERDIP data. We
divide TEL data into 39 and 40 samples. Histogram forp-values of gene expressions for
TEL data is given in figure 3.1. Histograms for all three situations forπ random variables
are on the figure 3.2 (the bottom row). Histogram ofp-values for gene expressions from
TEL data has a peak about 0.25. All histograms ofp-values forπ random variables of
TEL data are similar toπ random variables of HYPERDIP data.

All previous histograms indicate thatπ random variables are far less correlated than
gene expressions. It proves that normalization could make gene expression data more
workable.

3.2 Some hypotheses are false

So far, we only considered the situation where all testing hypotheses were true. Now
we would like to know how the situation change if there are some false hypotheses.
Therefore, we take HYPERDIP and TEL data for childhood leukemia together. We are
interested in testing which genes are differentially expressed. It means that we would
like to test hypotheses

Hi : GH
i = GT

i for eachi = 1, . . . ,7084,

simultaneously. Histogram ofp-values for these hypotheses is on the figure 3.3. We
can see that there are 493 hypotheses withp-value less than or equal to 0.05. If we use
Bonferroni inequality to decide which genes are differentially expressed at levelα = 5%
we reject 111 hypotheses (critical value is0.05

7084).
It was shown in the previous section thatπ random variables were far less dependent

between genes than gene expressions of HYPERDIP data and geneexpressions of TEL
data. Therefore, as before we can define newπ random variablesπH

i, j = x(2i), j/x(2i−1), j

and πT
i,l = y(2i),l/y(2i−1),l, i = 1, . . . ,3542, j = 1, . . . ,88 andl = 1, . . . ,79. We can

use unordered genes or we can order them as well. The problem is how we should
sort the genes. There are some reasonable solutions. We can do it by arranging them
in increasing order of estimates of variances of gene expressions in HYPERDIP data,
in increasing order of estimates of variances of gene expressions in TEL data or in
increasing order of estimates of variances of pooled HYPERDIP and TEL data. Because
of type A dependence we can use all three ways of genes ordering according to estimates
of variances of gene log2-expressions, too. We set all these options and estimatep-
values for hypotheses

Hπi : GπH(i) = GπT(i) , i = 1, . . . ,3542,

whereGπH(i) andGπT(i) are distribution functions ofπ(i) random variables from HYPERDIP
and TEL data, respectively, created from unordered genes orfrom one of considered
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HYPERDIP−TEL: p−values of gene expressions
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Figure 3.3: Histogram ofp-values of testing equality of gene expressions between HY-
PERDIP and TEL data.

proposals of ordering of genes. Histogram ofp-values for unordered genes is in figure
3.4. Histograms for ordered genes are very similar to those for unordered genes and
they can be found in the supplement of this work. It can be surprising that there are a lot
of p-values (much more than in the previous situation) less thanor equal to 0.05 (it is
about 43% of all). The number of rejected hypotheses forπ random variables according
to Bonferroni inequality at significance levelα = 5% (critical value is0.05

3542) are in the
table 1 (the top row).

One can say that there is a big difference in what we tested. In the first case,

HYPERDIP−TEL: p−values of proportions
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Figure 3.4: Histogram ofp-values of proportions of gene expressions for unordered
genes.
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we tested 7084 hypotheses, one hypothesis for each gene, butin the second case we
had 3542 hypotheses, one hypothesis for two genes. BecauseN-test is constructed for
testing random vectors too, we can make 3542 non-overlapping pairs of genes and test
if the joint distributions of these pairs of genes are the same for HYPERDIP data and
TEL data. Therefore, we are interested in simultaneously testing hypotheses

H2
i : (GH

(2i−1),G
H
(2i))

D
= (GT

(2i−1),G
T
(2i)) i = 1, . . . ,3542,

whereGH
( j) is the distribution function of gene expressions for j-th gene for HYPERDIP

data andGT
( j) is the distribution function of gene expressions for j-th gene for TEL data.

We consider 7 types of ordering as before. The first one is without ordering, three cases
are obtained by arranging estimates of variances of gene expressions for HYPERDIP
data, for TEL data and for pooled data in increasing order. The last three cases are
obtained by arranging estimates of variances of log2-expressions for HYPERDIP data,
for TEL data and for pooled data in increasing order. Histogram of p-values for hy-
pothesesH2

i for pairs of unordered genes is in figure 3.5. Histograms corresponding to
ordered pairs are similar and they can be found in the supplement of this work. We can
see that this histogram is similar to the histogram for gene expressions from figure 3.3.
The number of hypotheses we reject according to Bonferroni inequality are in table 3.1
(the bottom row). Their amount is far fewer than forπ random variables. Therefore,
we can say that it is not the number of hypotheses (or how many genes we use in one
hypothesis) but the manner of using gene expression levels for testing hypotheses that
dramatically change the shape of histograms and the number of rejected hypotheses.

HYPERDIP−TEL: unsorted pairs
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Figure 3.5: Histogram ofp-values for pairs of gene expressions for unordered genes.
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order unordered. HYP TEL H-T log-HYP log-TEL log-H-T
proportions 626 665 751 656 604 643 595

pairs 94 80 91 78 73 88 62

Table 3.1: The number of rejected hypotheses according to Bonferroni inequality at
significance levelα = 5% for all 7 types of ordering. The top row is forπ random
variables, the bottom row is for pairs of gene expressions.
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Chapter 4

Multiple testing procedures

Gene expression data usually consist of thousands of genes.Statistician working with
such data often needs to test a lot of hypotheses simultaneously. Therefore, there is a
need to use some multiple testing procedure that provides rejection regions for each of
the hypotheses and guarantees controlling of predefined levelα. The goal of this chapter
is to make an overview of different type I error rates, different types of power and mul-
tiple testing procedures. Many procedures rely on independence or special dependence
structure ofp-values or test statistics. For gene expressions, it is too difficult to verify
such dependence due to strong correlation between genes. Therefore, in this chapter we
introduce only such multiple testing procedures which control predefined levelα for ar-
bitrary test statistics joint distributions. A wider overview of multiple testing procedures
is presented for example inDudoit et al.(2003) orDudoit and van der Laan(2008). At
the end of this chapter we compare different multiple testing procedures.

4.1 Basic notes

Consider, that we want to testM hypotheses simultaneously. In any testing problem,
two types of errors can be committed. The first type, called type I error or false positive,
occurs if we reject true hypothesis. The second type, calledtype II error or false nega-
tive, occurs by non-rejecting false hypothesis. Ideally, we would like to minimize both
of these errors. However, it is not possible. Therefore, we have to make some trade-off
between these types of errors. Typically, this is done by minimizing type II error subject
to type I error constraint. A multiple testing procedure specifies which hypotheses to
reject, while controlling some type I error rate. Similar tosingle hypotheses testing, we
can represent results of multiple testing procedures for each of M hypotheses in terms
of confidence intervals for parameters of interest, rejection region for the test statistics
and adjustedp-values. Adjustedp-values of multiple testing hypotheses are straightfor-
ward extensions of unadjustedp-values of single hypothesis testing. Adjustedp-value
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for i-th hypothesis, denoted by ˜pi, is the smallest nominal type I error level of multiple
testing ofM hypotheses at which we reject this hypothesis. The hypothesis is rejected
if adjustedp-value is lower or equal to the type I error rateα. The smaller the adjusted
p-value, the stronger the evidence to reject hypothesis.

Let H denote the set of true hypotheses and consider that the number of true hy-
potheses ish, that is|H| = h. Likewise, letA denote the set of false hypotheses, then
|A| = M−h. Special case, when all hypotheses are true (h = M), is called complete null
hypotheses. Usage of multiple testing procedure gives us the set of rejected hypotheses
R and the set of non-rejected hypothesesRc. ThenR ∩ H creates a set of false posi-
tives (type I errors) andRc ∩A a set of false negatives (type II errors). The situation is
summarized in table 4.1, where

• the number of rejected hypotheses -R= |R|,

• the number of false positives or type I errors -V = |R ∩ H|,

• the number of false negatives or type II errors -U = |Rc ∩A|,

• the number of true negatives -W = |Rc ∩H|,

• the number of true positives -S = |R ∩ A|.

Remark thath anda = M − h are unknown parameters, the number of rejected hy-
pothesesR is observable random variable andS, U, V andW are unobservable random
variables.

Not rejected Rejected Σ

True hypotheses W V h
False hypotheses U S a = M − h

Σ M − R R M

Table 4.1: Summary of different types of decisions and errors in multiple hypotheses
testing.

We call a multiple testing procedureM monotone if for all vectors ofp-valuesp
andp′ such thatp ≤ p′ (pi ≤ p′i ; i = 1, . . . ,M) the number of rejected hypotheses ac-
cording top is greater than or equal to the number of rejected hypothesesaccording to
p′, that is|R(p)| ≥ |R(p′)|. The procedure is said to be cutting whenever the procedure
rejects some hypotheses then they are those with the smallest p-values. LetM andM′
be two multiple testing procedures. FollowingGordon(2011), we say that a procedure
M′ dominates a procedureM, if for any vector ofp-valuesp we haveRM′(p) ⊇ RM(p),
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that isM′ rejects all hypothesesHi rejected byM (and maybe some others). In this
case, we writeM′ � M. Let C be a class of procedures and letM ∈ C. We say that
M is the most rejective (or optimal) inC if M � M′ for allM ∈ C. M is said to be
unimprovable (or weakly optimal) inC if the relationsM′ ∈ C andM′ � M imply that
M′ = M. Note that proceduresM andM′ may be incomparable, i.e., both relations
M′ � M andM � M′ may be false. In particular, a class may contain more than one
unimprovable multiple testing procedure. The most rejective multiple testing procedure
in the class, if it exists, is unique.

When testing multiple hypotheses there are many definitions for type I error rates.
The commonly used type I error rates are:

• family-wise error rate -FWER= P(V > 0),

• generalized family-wise error rate -gFWER(k) = P(V > k),

• per-comparison error rate -PCER= E V
M ,

• per-family error rate -PFER= E V,

• false discovery rate -FDR= EV
R (=0 if R= 0).

Notice, thatFDR can be rewritten as

FDR= E
V

max(R,1)
= E(

V
R
|R> 0)P(R> 0).

Therefore,FDR ≤ FWERand especially for completely null hypotheses all rejected
hypotheses are type I error,V/R = 1 and thereforeFWER= FDR. From Markov’s
inequality (A.2), we have

gFWER(k) = P(V ≥ k+ 1) ≤ 1
k+ 1

E V =
1

k+ 1
PFER

and specially fork = 0 we haveFWER≤ PFER. Moreover,

PCER=
E V
M
=

1
M

M∑

i=0

iP(V = i) ≤
M∑

i=1

P(V = i) = P(V > 0) = FWER.

Overall, we havePCER≤ FWER≤ PFERandFDR≤ FWER. It means, that multiple
testing procedure controllingFWERgenerally results in fewer rejected hypotheses than
multiple testing procedure controllingFDR or PCER.

The most useful type I error rates for gene expression data are FWERandFDR.
Although inequalityFDR≤ FWERholds, each type I error means something different
(has different interpretation) and we cannot say that one is better than the other. The
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correct choice of type I error rate depends on a situation.FDRgenerally results in more
rejected hypotheses and therefore in finding more true positives thanFWER. On the
other hand, if each type I error costs us a lot (money or human life), then it is better to
useFWER-control instead ofFDR-control.

Similarly, there are many definitions for power of multiple testing procedures, for
example

• the probability of rejecting at least one false hypothesis -AnyPwr= P(S > 0),

• the probability of rejecting all false hypotheses -AllPwr = P(S = M − h),

• the average power -AvgPwr= E S
M−h,

• true discovery rate -T DR= ES
R(= 0 if R= 0).

Usually, there are two main types of multiple testing procedures, single-step and
stepwise procedures. In single-step procedures, each hypothesis is tested using a rejec-
tion region, which is independent on the results of tests of other hypotheses. In stepwise
procedures, the decision to reject a particular hypothesisdepends on the results of the
tests of other hypotheses. There are two main classes of stepwise procedures, step-down
and step-up procedures. In step-down procedures, the most significant hypotheses are
considered successively (for example in increasing order of their p-values). As soon
as one hypothesis is not rejected, all less significant hypotheses are not rejected too.
In step-up procedures, the least significant hypotheses areconsidered successively (for
example in decreasing order of theirp-values). As soon as one hypothesis is rejected,
all more significant hypotheses are rejected too.

4.2 Multiple testing procedures for controlling FWER

Bonferroni procedure

Perhaps the best known multiple testing procedure is Bonferroni procedureBonferroni
(1936). This procedure rejects any hypothesis with the unadjustedp-value less or equal
to the cut-off α̃ = α/M. The set of rejected hypotheses is

R(α) = {i : pi ≤
1
M
α}.

The corresponding adjustedp-value fori-th hypothesis is ˜pi = min(Mpi ,1), i = 1, . . . ,M.

Theorem 4.2.1. Bonferroni procedure controls FWER at levelα for arbitrary test
statistics joint distributions, that is P(V > 0) ≤ α.
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Proof.

P(V > 0) = P(
∑

i∈H
I (pi ≤

1
M
α) > 0)

= P(
⋃

i∈H
{pi ≤

1
M
α})

≤
∑

i∈H
P(pi ≤

1
M
α)

≤ h
M
α ≤ α,

where the first inequality results from Bonferroni inequality (A.1) and the second in-
equality results from inequality (A.3). �

Although this procedure is generally considered asFWERcontrolling multiple test-
ing procedure, it controls mean number of false discoveries(PFER) at levelα as well,
because

E V = E
∑

i∈H
I {pi ≤

α

M
}

=
∑

i∈H
P(pi ≤

α

M
)

=
h
M
α ≤ α.

Bonferroni procedure is often considered as very conservative procedure. However,
we can look at this procedure as a step-up procedure as well. AccordingGordon(2007)
this procedure is unimprovable in the class of monotone step-up procedures controlling
FWER.

Holm procedure

Bonferroni procedure is simple to implement but it tends to betoo conservative. Im-
provement in power can be achieved by step-down Holm procedureHolm (1979) which
is step-down analogue of classical Bonferroni procedure. Without loss of generality,
consider that the indexesr1, . . . , rM are such thatpr1 ≤ . . . ≤ prM . Then, the unadjusted
p-values cut-offs for this procedure are ˜αr i =

1
M−i+1α, the set of rejected hypotheses is

given by

R(α) = {r i : pr l ≤
1

M − l + 1
α ∀l ≤ i}

and the corresponding adjustedp-values are given by ˜pr i = maxk=1,...,r i ( min{(M − k +
1)prk,1}), i = 1, . . . ,M.
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Theorem 4.2.2.Holm procedure controls FWER at levelα for arbitrary test statistics
joint distributions, that is P(V > 0) ≤ α.

Proof. Consider, that we haveh = |H| true hypotheses. If Holm procedure rejects at
least one true hypothesis, then

min
i∈H

pi ≤ αM−h+1 =
1
h
α.

Thus, we have

P(V > 0) ≤ P(min
i∈H

pi ≤ αM−h+1)

= P(
⋃

i∈H
{pi ≤ αM−h+1})

≤
∑

i∈H
P(pi ≤ αM−h+1)

≤
∑

i∈H
αM−h+1

= h
1
h
α = α,

where the second inequality results from Bonferroni inequality (A.1) and the third in-
equality results from inequality (A.3). �

In Gordon and Salzman(2008), there was proved that Holm procedure dominates
all monotone step-down procedures controllingFWER. The following example shows
that the step-down condition cannot be removed.

Example 4.2.1.LetM be a procedure with unadjusted p-values p1, ..., pm which rejects
all hypotheses, if pi ≤ α for all i , and accepts all hypotheses otherwise. This procedure
is monotone and controls FWER at levelα. Nevertheless, the relationM � Holm is
not true: if pi = c (α/m < c < α), i = 1,2, . . . ,m, thenM rejects all hypotheses, while
Holm procedure rejects none.

Although Holm procedure does not dominates all monotone procedures controlling
FWER, Gordon inGordon (2011) showed that this procedure is unimprovable in the
class of monotone multiple testing procedures controllingFWER.

4.2.1 Comparison of Bonferroni and Holm procedure

Bonferroni procedure is considered to be too conservative. However, we know that
this procedure is unimprovable in the class of monotone step-up procedures controlling
FWER. The step-down improvement of this procedure is Holm procedure. We know
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that this procedure is unimprovable in the class of monotonemultiple testing proce-
dures controllingFWERand dominates all monotone step-down procedures controlling
FWER. Hence, there cannot exist procedure which improves Holm procedure among
procedures controllingFWERat the same level. Holm procedure is less conservative
than Bonferroni procedure. In the following simulation, we compared the difference
between these two procedures.

We simulated (according to algorithm B.1) two independent samples of genes hav-
ing multivariate normal distributions. We considered three different values of correlation
coefficientρ equal to 0, 0.5, 0.9. We set the number of genesm to be 300, 500 and 1000.
The number of observationsn in each group was equal to 20 and 50. For the number
of differentially expressed genesk we consideredk = m/20,m/10,m/5. We consid-
ered two alternatives for differentially expressed genes. In the first alternative, the mean
value of differentially expressed genes was shifted about constantC (we considered 30
equidistant values depending on setting of parameters). The mean value of differentially
expressed genes in the second alternative was created byk-dimensional vector of i.i.d
random variables havingN(C,1) distribution. To compute unadjustedp-values for each
gene we usedt-test. According to Bonferroni procedure and Holm procedurewe esti-
mated the average power,FWERandPFERfrom 5000 repetitions.

Adjustedp-values of Bonferroni procedure are always less or equal top-values of
Holm procedure. Therefore, estimates of power,FWERandPFERof Holm procedure
cannot be smaller than estimates of power,FWERandPFERof Bonferroni procedure.
Results form = 500, n = 50 andρ = 0.5 are in figures 4.1 (alternative one) and 4.2
(alternative two). Complete results of this simulation are in the supplement of this work.
We can see that the differences between estimates ofFWERandPFERfor Bonferroni
procedure and Holm procedure are very small, especially forsmallµ andk. Hence, we
can say that conservativeness of Bonferroni procedure is nota result of simplicity of
this procedure but it comes from the principle of multiple testing procedures. Moreover,
lines of estimates of average power for these two proceduresare overlapped in all cases.
Therefore, we will not suffer from lack of power if we use Bonferroni procedure for
controllingFWER.

HYPERDIP and TEL data

In case of simulations, we showed that results of Bonferroni and Holm procedure are
almost equal. Now we compare these two procedures for log2 transformation of HY-
PERDIP and TEL data. If we compute adjustedp-values oft-test for according to these
procedures we find out that there is just 116 (Bonferroni procedure) and 118 (Holm
procedure) adjustedp-values are lower than 1 and 71 (for both cases) lower than 0.05.
It confirms that both Bonferroni procedure and Holm procedurelead to very similar
results in deciding which genes are differentially expressed and which are not.
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Figure 4.1: Comparison of Bonferroni and Holm procedure for alternative one andm=
500,n = 50 andρ = 0.5.

4.3 Multiple testing procedures for controlling gFWER

Lehmann-Romano procedures

In van der Laan et al.(2004), they showed that anyFWER-controlling procedure can
be straightforwardly augmented to control thegFWER(k). But such procedures are too
conservative.

In Lehmann and Romano(2005), they generalized Bonferroni procedure and Holm
procedure to control generalized family-wise error rategFWER(k) = P(V > k). This
generalization of Bonferroni procedure, called single-step Lehmann-Romano proce-
dure, rejects any hypothesis with the unadjustedp-value less or equal to the cut-off
α̃ = k+1

M α. That is, the set of rejected hypotheses is given by

R(α, k) = {i : pi ≤
k+ 1

M
α}

and the corresponding adjustedp-values are thus given by ˜pi min( M
k+1 pi ,1), i = 1, . . . ,M.
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Figure 4.2: Comparison of Bonferroni and Holm procedure for alternative two and
m= 500,n = 50 andρ = 0.5.

Theorem 4.3.1.Single-step Lehmann-Romano procedure controls the gFWER(k) at
levelα for arbitrary test statistics joint distributions, that isP(V > 0) ≤ α.

Proof.

P(V ≥ (k+ 1)) ≤ 1
k+ 1

E V

=
1

k+ 1
E (

∑

i∈H
I (pi ≤

k+ 1
M
α))

=
1

k+ 1

∑

i∈H
P(pi ≤

k+ 1
M
α)

≤ 1
k+ 1

∑

i∈H

k+ 1
M
α

=
h
M
α ≤ α,
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where the first inequality results from Markov’s inequality(A.2) and the second inequal-
ity results from inequality (A.3). �

Note, that fork = 0 single-step Lehman-Romano procedure coincides with Bonfer-
roni procedure.

The second Lehmann-Romano procedure, called step-down Lehmann-Romano pro-
cedure, is the generalization of Holm procedure. As for Holmprocedure, without loss of
generality consider, that the indexesr1, . . . , rM are such thatpr1 ≤ . . . ≤ prM . Then, the
unadjustedp-values cut-offs for the step-down Lehmann-Romano procedure are given
by

α̃r i =

{
k+1
M α if i ≤ k

k+1
M+k+1−iα if i > k,

the set of rejected hypotheses is given by

R(α, k) = {r i : pr l ≤ α̃r l ∀l ≤ i}

and the adjustedp-values are given by

p̃r i =

{
min{ M

k+1 pr i ,1} if i ≤ k
maxl=1,...,i−k{min{M−l+1

k+1 pr l+k,1}} if i > k.

Theorem 4.3.2.Step-down Lehman-Romano procedure controls the gFWER(k) at level
α for arbitrary test statistics joint distributions, that isP(V > k) ≤ α.

Proof. Consider, that we have|H| = h true hypotheses. Forh ≤ k, the probability
of at leastk + 1 false positives is equal to zero, that isP(V > k) = 0, so there is
nothing to prove. Therefore, assume thath > k. Order p-values of true hypotheses
and denote them byq1 ≤, . . . ,qh. Let j be the index of (k + 1)-th ordered unadjusted
p-value of true hypotheses, that ispj = qk+1. Then, the following inequalities hold
k+ 1 ≤ j ≤ M − h+ k+ 1 and we have ˜α j =

k+1
M+k+1− jα ≤

k+1
h α. Hence,

P(V > k) ≤ P(pj ≤
k+ 1

M + k+ 1− j
α)

≤ P(pj ≤
k+ 1

h
α)

≤ k+ 1
h
α ≤ α,

where the third inequality results from inequality (A.3) and the last inequality results
from assumption thath ≥ k+ 1. �

Note, that fork = 0 step-down Lehman-Romano procedure coincides with Holm
procedure.
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4.4 Multiple testing procedures for controlling FDR

Step-up Benjamini-Yekutieli procedure

In Benjamini and Yekutieli(2001), they proposed step-up Benjamini-Yekutieli proce-
dure which controls false discovery rateFDR = EV

R at levelα for test statistics with
arbitrary joint distribution. Without loss of generality consider, that indexesr1, . . . , rM

are such thatpr1 ≤ . . . ≤ prM . Then, the unadjustedp-values cut-offs for the step-up
Benjamini-Yekutieli procedure are ˜αr i =

i
M CM
α, i = 1, . . . ,M, whereCM =

∑M
i=1

1
i . The

set of rejected hypotheses is given by

R(α) = {r i : ∃l ≥ i such thatpr l ≤
l

M CM
α}.

The corresponding adjustedp-values are thus given by ˜pr i = minh=i,...,M{min(CM
M
h prh,1)},

i = 1, . . . ,M.

Theorem 4.4.1.Step-up Benjamini-Yekutieli procedure controls FDR at level α for
arbitrary test statistics joint distributions, that is EV

max(R,1) ≤ α.

Proof. Proof is not as straightforward as previous ones, thereforeit is omitted. It can be
found in section 4 of original work ofBenjamini and Yekutieli(2001). �

In Benjamini and Hochberg(1995), they proved that the constantCM can be omitted
for some special joint distributions of test statistics.

4.5 Empirical Bayes

An alternative way of dealing with multiple testing of hypotheses is considered inEfron
(2003). It is based on empirical Bayes approach developed by Herbert Robbins in his
paperRobbins(1964). This approach is closely related toFDR.

Let us consider to have test statisticsYi, i = 1, . . . ,m for each ofm hypotheses. A
very simple Bayesian model assumes that we have two classes ofgenes: differentially
expressed genes (”different”) and non-differentially expressed genes (”non-different”)
between two groups of observations. Let the prior probabilities for these two classes be
p1 andp0 with corresponding prior densitiesf1(y) and f0(y) for statisticY. Let f (y) be a
mixture densityf (y) = p0 f0(y) + p1 f1(y). From Bayes’ theorem, we have the following
posterior probabilities:

p0(y) = P(non-different|Y = y) =
P(Y = y|non-different)P(non-different)

P(Y = y)
=

p0 f0(y)
f (y)
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and

p1(y) = P(different|Y = y) =
P(Y = y|different)P(different)

P(Y = y)
= 1− p0 f0(y)

f (y)
. (4.1)

We conclude gene as differentially expressed, if its posterior probabilityp1(y) is
greater than or equal to 1− α.

Since there are too many unknown parameters we cannot calculate the exact value
of p1(y). Therefore, it will be estimated by

p̂1(y) = 1− p̂0 f̂0(y)

f̂ (y)
,

where p̂0, f̂0(y) and f̂ (y) are estimates ofp0, f0(y) and f (y), respectively. Now we
describe three different possibilities of estimatingp0, f0(y) and f (y).

The first and the simplest proposal is considered inEfron (2003), where the density
f (y) is estimated by Poisson regression from histogram counts of Y-statistics. As an
estimate off0 Efron took density ofY-statistics in case all hypotheses are true. For
example, if we uset-test then f0 will be estimated by density oft-distribution with
corresponding degrees of freedom. Another unknown parameter is the probability of
gene being non-different. As an estimate of this probabilityp0 we take

p̂0 = min
y
{ f̂ (y)/ f̂0(y)},

which is the most conservative estimate, that makes all the posterior probabilities (4.1)
nonnegative.

The second proposal is considered inEfron (2004). In his paper, Efron worked
with z-values instead of theY-statistics. Assume that fori-th hypothesisi = 1, . . . ,m
we have correspondingp-value pi. Thenz-value for this hypothesis is defined byzi =

Φ−1(pi), whereΦ indicates the distribution function of standard normal distribution. If
i-th hypothesis is true, thenzi ∼ N(0,1). As previously, we can estimate mixture density
f (z) = p0 f0(z) + p1 f1(z) of z-values by Poisson regression from histogram counts ofz-
values and aŝf0(z) we can take density ofN(0,1).

In Efron’s paperEfron (2004), there is also considered another estimate off0 (we
will call it as the third proposal of empirical Bayes approach). It comes from the idea
that z-values of non-different genes are concentrated in the peak of histogram ofz-
values. Therefore, as an estimatef̂0 Efron takes density ofN(µ0, σ

2
0), where

µ0 = argmax{ f̂ (z)}
and

σ0 = [ − d2

dz2
log f̂ (z)]

− 1
2
µ0 .

In this work, we use Poisson regression (with polynomial of sixth degree) on his-
togram counts of 50 columns.
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4.5.1 Comparison of empirical Bayes approaches
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Figure 4.3: Estimate of Power,FWER, PFERandFDR by three empirical Bayes ap-
proaches for the number of genesm = 300, the number of diffrent genesk = 15,
the number of observations in each groupn = 20 and for correlation coefficient
ρ = 0,0.5,0.9.

In order to compare three empirical Bayes approaches we performed simple simu-
lation. We considered two independent samples of genes and we used these empirical
Bayes approaches in order to decide which genes were differentially expressed between
these groups. These two groups were created by twom-dimensional random samples
having normal distributionNm(0,Σ) andNm(µy,Σ), whereµy had the firstm−k elements
equal to 0 and the othersk elements equal toµ, that is

µy = ( 0, . . . ,0︸  ︷︷  ︸
m−k

, µ, . . . , µ︸   ︷︷   ︸
k

)T
.

In this study, the parameterµ changed from 0.05 to 1.5 (by step 0.05). The covariance
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matrixΣ was given by

Σ =



1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ
...
. . .
. . .
. . .
...

ρ . . . ρ 1 ρ

ρ . . . . . . ρ 1



,

where we setρ to be 0, 0.5 and 0.9. The data with such correlation structure were sim-
ulated according to algorithm (B.1). The sample sizes were set to n = 20,30,50, the
number of genes was equal tom = 300,500,1000 and the number of different genes
werek = 15,30,60. Each simulation was repeated 3000 times. We estimated the aver-
age power,FWER, PFERandFDR of considered three empirical Bayes approaches.
Results of this simulation forn = 20,m = 300 andk = 15 are in figure 4.3. The whole
results of this simulation can be found in the supplement of this work. For independent
genes, the power of each empirical Bayes approach is similar.The second proposal has
the most stable estimate ofPFERandFDR. Therefore, this proposal seems to be the
best for independent genes. The results for dependent genesare different. Although
the first proposal seems to have the best power, the estimatesof PFERandFDR are
very high what makes this proposal inapplicable. The third proposal holdsFDR for all
setting and it has low estimate ofPFER. Therefore, we should use the third empirical
Bayes approach for dependent genes.

HYPERDIP and TEL data

If we used three considered empirical Bayes approaches to real data, we would find
that we reject almost all hypotheses. This fact is caused by very unreal estimates of
p̂0. For log2 transformation of HYPERDIP and TEL data, these prior probabilities of
gene not to be differentially expressed are estimated to be lower than 0.0001. Therefore,
we use much realistic estimate of this probability. We fix ˆp0 to be 0.9, 0.95 and 0.99.
These setting cause some estimates ofp1(y) to be negative. Hence we change ˆp1(y) to
be p̂1(y) = max(0,1− p̂0 f̂0(y)

f̂ (y)
).

Now we can find which genes are differentially expressed according to empirical
Bayes approach. The results are in table 4.2. We can see that the third approach of
empirical Bayes has the best power (about three times greaterthan the other approach-
es). Moreover, the set of differentially expressed genes founded by the first approach is
subset of differentially expressed genes founded by the second approach that is subset
of set of differentially expressed genes founded by the third approach.
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EB1 EB2 EB3
p̂0 = 0.90 85 112 320
p̂0 = 0.95 81 111 317
p̂0 = 0.99 80 110 311

Table 4.2: Number of rejected hypotheses for HYPERDIP and TELdata by empirical
Bayes approach at significant levelα = 0.05.

4.6 Comparison of multiple testing procedures

FDR controlling procedures are generally considered to produce more true positives
thanFWERprocedures. Therefore, we performed simple simulation in order to com-
pare Bonferroni procedure, Benjamini-Yekutieli procedure and empirical Bayes ap-
proaches. In the following simulation, we did not use all three empirical Bayes ap-
proaches. According to previous results, we used the secondproposal of empirical
Bayes for independent genes and for dependent genes we used the third approach of
empirical Bayes.

In this study, the data were simulated as follows. We considered two independent
samplesX = (x1, . . . , xn) andY = (y1, . . . , yn) havingm-dimensional normal distribution
Nm(µx,Σ) andNm(µy,Σ). For simplicity, we consideredµx = (0, . . . ,0)T andµy such that
it had the firstm− k elements equal to 0 and the othersk elements equal toµ. More-
over, we took equal covariance matrix for both samples with diagonal elements equal
to one and non-diagonal elements equal toρ. We set the number of genesm to be 300,
500 and 1000. The correlation coefficientρ was set to 0, 0.5 and 0.9. The number of
different genesk was set to be 5%, 10% and 20% from the total number of genes. The
shift parameterµ changed from 0.05 to 1.5 (by step 0.05). The number of observations
in both samples were set to be 20 and 50. Each case was simulated 3000 times and we
estimated average power,FWER, PFERandFDR.

In figure 4.4, there are results of simulation for correlation coefficient ρ equal to
zero for m = 300, n = 20 (the rest of results forρ = 0 are in the supplement of
this work). As we can see, that the second proposal of empirical Bayes has slight-
ly greater power than Bonferroni and Benjamini-Yekutieli procedures, but it produces
more false positives as well. Benjamini-Yekutieli procedure is more powerful than Ben-
ferroni procedure (except of smallµ, m andk). Bonferroni procedures is the only one
procedure, which controlsFWERandPFER(andFDR as well), but empirical Bayes
and Benjamini-Yekutieli controlsFDR for eachµ and they produce acceptable number
of false positives. Results for correlated data andm = 300, n = 20 are in figure 4.5
and figure 4.6 (the complete results are in supplement of thiswork). They show that
the third approach of empirical Bayes has far better power than other two considered
procedures. Although empirical Bayes holdsFDR, the number of false positives is too
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Figure 4.4: Estimate of Power,FWER, PFERandFDR by Bonferroni procedure, by
Benjamini-Yekutieli procedure and by the second proposal ofempirical Bayes approach
for the number of genesm= 300, the number of observations in each groupn = 20 and
for correlation coefficientρ = 0.

high in comparison with the other two procedures. Benjamini-Yekutieli procedure has
better power than Bonferroni procedure. However, it seems tobe too conservative for
controlling FDR. Therefore, it is reasonable to use third approach of empirical Bayes
instead of Benjamini-Yakutieli procedure for controllingFDR in gene expression data.

HYPERDIP and TEL data

Results of Bonferroni procedure and empirical Bayes approach for log2 transforma-
tion of HYPERDIP and TELL data were computed in previous sections of this chap-
ter. However, results of Benjamini-Yekutieli procedure were not showed yet. At level
α = 0.05 this procedure discovered 92 genes to be differentially expressed. This is more
than Bonferroni procedure, but more than 3 times less than third approach of empirical
Bayes. Summary of results for these procedures are in table 4.3. Moreover, the set of
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Figure 4.5: Estimate of Power,FWER, PFERandFDR by Bonferroni procedure, by
Benjamini-Yekutieli procedure and by the third proposal of empirical Bayes approach
for the number of genesm= 300, the number of observations in each groupn = 20 and
for correlation coefficientρ = 0.5.

differentially expressed genes discovered by Bonferroni procedure is subset of differ-
entially expressed genes discovered by Benjamini-Yakutieli procedure, which is subset
of set of differentially expressed genes discovered by the third approach of empirical
Bayes.

58



0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

POWER:m= 300 n= 20 k= 15 ro= 0.9

mu

P
O

W
E

R

Bonf
B−Y
EB3

0.0 0.5 1.0 1.5
0.

0
0.

2
0.

4
0.

6
0.

8

FWER:m= 300 n= 20 k= 15 ro= 0.9

mu

F
W

E
R

0.0 0.5 1.0 1.5

0
2

4
6

8
10

14

PFER:m= 300 n= 20 k= 15 ro= 0.9

mu

P
F

E
R

0.0 0.5 1.0 1.5

0.
00

0.
02

0.
04

0.
06

0.
08

FDR:m= 300 n= 20 k= 15 ro= 0.9

mu

F
D

R

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

POWER:m= 300 n= 20 k= 30 ro= 0.9

mu

P
O

W
E

R

Bonf
B−Y
EB3

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

FWER:m= 300 n= 20 k= 30 ro= 0.9

mu

F
W

E
R

0.0 0.5 1.0 1.5

0
2

4
6

8
10

PFER:m= 300 n= 20 k= 30 ro= 0.9

mu
P

F
E

R

0.0 0.5 1.0 1.5

0.
00

0.
02

0.
04

FDR:m= 300 n= 20 k= 30 ro= 0.9

mu

F
D

R

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

POWER:m= 300 n= 20 k= 60 ro= 0.9

mu

P
O

W
E

R

Bonf
B−Y
EB3

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

FWER:m= 300 n= 20 k= 60 ro= 0.9

mu

F
W

E
R

0.0 0.5 1.0 1.5

0
2

4
6

8
10

12

PFER:m= 300 n= 20 k= 60 ro= 0.9

mu

P
F

E
R

0.0 0.5 1.0 1.5

0.
00

0.
01

0.
02

0.
03

0.
04

FDR:m= 300 n= 20 k= 60 ro= 0.9

mu

F
D

R

Figure 4.6: Estimate of Power,FWER, PFERandFDR by Bonferroni procedure, by
Benjamini-Yekutieli procedure and by the third proposal of empirical Bayes approach
for the number of genesm= 300, the number of observations in each groupn = 20 and
for correlation coefficientρ = 0.9.

procedure Bonferroni Empirical Bayes Benjamini-Yekutieli
different genes 71 317 92

Table 4.3: Number of rejected hypotheses for HYPERDIP and TELdata according to
Bonferroni procedure, third empirical Bayes approach with ˆp0 = 0.95 and Benjamini-
Yekutieli procedure at significant levelα = 0.05.
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Chapter 5

Normalizations

There are many sources of systematic variations in microarray experiments that affect
measure of gene expressions. Common way of removing such variations is to normalize
data (see e.g.Yang et al.(2002)). At the beginning of this chapter, we describe three
types of normalizations: quantile normalization, global normalization andδ-sequence.
Moreover, we proposed some modification ofδ-sequence normalization. Thereafter, we
show that although normalizations make data almost uncorrelated they change the gene
expressions as well. Hence for deciding which genes are differentially expressed we
have to use normalizations very carefully in order not to findtoo many false positives.
Partial results of this chapter were published inBubeliny(2013b).

5.1 Introduction

One of the problems of microarray data is that gene expressions are highly correlated
between genes. Log2 transformations of gene expressions are considered to haveap-
proximately normal distribution (see for exampleChen et al.(2007)). In Figure 5.1,
there are histograms of 100000 pairwise correlations of log2-expressions between ran-
domly chosen genes from HYPERDIP and TEL data. We can see that these correlations
take values close to one (average correlation coefficient for HYPERDIP data is 0.91
and 0.92 for TEL data). This dependence of genes can influencemany multiple testing
procedures and the power of tests. Normalizations can be used to partially handle this
problem. Testing of hypotheses is performed on these transformed (normalized) data.
However, one can object to equality of testing with non-normalized data and with nor-
malized data. Using normalized data, tests can break nominal level of multiple testing
on which we would like to test hypotheses. It could bring manyfalse positives, which
we try to prevent.
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Figure 5.1: Histograms of 100000 estimates of random pairwise correlations of log2-
gene expressions for HYPERDIP and for TEL data.

5.2 Normalizations

Quantile normalization

The goal of the quantile normalization is to make the distribution of log2-gene expres-
sions on each slide in a set of slides the same. The method is motivated by the idea
of a n-dimensional quantile-quantile plot. InBolstad et al.(2003), there was described
algorithm for computingXQN (the matrix of log2-expressions after the quantile normal-
ization). This algorithm is given as follows.

Algorithm 5.1.

1. Given n slides of log2-gene expressions of length m, form a matrix X with m rows
and n columns, where each slide is a column.

2. Sort each column of X to give Xsort.

3. Take means across rows of Xsort and assign this mean to each element in the row
to get X′sort.

4. Obtain XQN by rearranging each column of X′sort to have the same ordering as the
original matrix X.

For two-sample problem, there are two possibilities how to use the quantile nor-
malization. The first possibility is to use the quantile normalization separately for each
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sample. The second possibility is to create one pooled matrix of data and then make the
quantile normalization on this pooled matrix. We will consider both of the mentioned
possibilities of the quantile normalization.

Global normalization

Global normalization of gene expression levels comes from the idea that gene expres-
sion is a product of two factors. The first factor is associated with gene production and
the second factor is a constant unique for each slide. Therefore, we can imagine log2-
expressionxi j of genei from slide j as a sum of two factors. The first factor depends on
the genei and the second depends on the slidej, this is xi j = gi + sj. Hence, it seems
reasonable to subtract specific factorS j = sj + c (c is a constant independent oni and j)
from each log2-expression. There are two reasonable choices ofS j. The first one is slide
mean, the second one is slide median. Thus, the algorithm forcomputingXmean(the ma-
trix of log2-gene expressions after the global-mean normalization) and Xmed (the matrix
of log2-gene expressions after the global-median normalization)is given as follows.

Algorithm 5.2.

1. Given n slides of log2-gene expressions of length m, form a matrix X with m rows
and n columns, where each slide is a column.

2. Take means or medians across the columns of X to obtain slide specific factorsX j

or Xmed
j for j = 1, . . . ,n.

3. For each j= 1, . . . ,n subtract from j-th column of X slide specific factorX j (or
Xmed

j ) to obtain Xmean(or Xmed).

δ-sequence

In their paper,Klebanov and Yakovlev(2007) defined a new type of normalization. They
eliminated slide effect in a different way as global normalizations do. Theirδ-sequence
normalization is created by differences of non-overlapping log2-gene expressions. Log2-
gene expression data afterδ-sequence normalization can be defined as am∗ (m∗ = m

2 , m
is tacitly assumed to be even) byn dimensional matrix consisting of the random vari-
ablesδi j = x2i−1, j−x2i, j i = 1, . . . ,m∗; j = 1, . . . ,n, wherexi, j ’s are log2-gene expressions
for mgenes fromnslides. They do not specify the order in which genes should besorted.
Therefore, in our simulation, we will consider two cases of ordering of gene expression
data. The first case is a random permutation of genes. In the second case (monoton-
ic), the ordering is according top-values of gene expressions (we consider two-sample
case) and in order to createδi j we pairi-th and (m∗ + i)-th gene fori = 1, . . . ,m∗.
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Another problem ofδ-sequence is that we examine difference of two genes. There-
fore, we cannot make the decision for each gene separately. To decide which gene
should be considered as a differentially expressed and which not, we propose four rea-
sonable solutions.

Our first proposalA not only pairs thei-th and the (m∗ + i)-th gene, but pairs thei-th
and (m∗ + i − 1)-th gene (and the first and the last gene, respectively) fori = 2, . . . ,m∗.
If the δs created from some special gene are rejected both times thenwe will consider
this gene as differentially expressed. If theδs calculated from some special gene are
not rejected or are rejected just once we will consider this gene as non-differentially
expressed.

If we consider monotonic ordering then each gene is paired with two similar (inp-
value) genes. Therefore, some improvement for monotonic ordering can be achieved by
computing the secondδ-sequence as the difference of thei-th and the (m− i +1)-th gene
for i = 1, . . . ,m∗. Decisions for each gene are the same as in the previous case.We call
this case as proposalB.

In the following proposal, there is tacitly assumed that there are at mostm∗ false
hypotheses. It seems reasonable to assume that the gene which evokes different expres-
sion of δ-sequence is the one with lowerp-value. Therefore, in our third proposalC
we assume that genes are ordered according theirp-values. We pairi-th and (m∗ + i)-th
gene. Thei-th i = 1, . . . ,m∗ gene is said to be differentially expressed, ifδi. is found to
be differentially expressed.

Our fourth proposalD is something like a step-down modification of the third case
C. We consider thei-th gene fori = 1, . . . ,m∗ as differentially expressed, if allh hy-
potheses forδh, h = 1, . . . , i are rejected.

Now we explore how these normalizations change the structure of pairwise corre-
lations of log2-expressions. In Figure 5.2, there are histograms of 100000estimates
of random pairwise correlations of log2-gene expressions after global-mean, global-
median, quantile and randomδ-sequence normalization of HYPERDIP and TEL data.
We can see, that these histograms are different from histograms of correlations of non-
normalized log2-gene expressions, because they are symmetric and concentrated about
zero.

5.3 Comparison of normalizations

Simulations

In order to compare various normalizations, we performed the following simulation. We
simulated two independent samples of log2-gene expressionsxi j andyi j , i = 1, . . . ,m
(the number of genes),j = 1, . . . ,n (the number of slides) as random variables (highly
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Figure 5.2: Histograms of 100000 estimates of random pairwise correlations of log2-
gene expressions of HYPERDIP (upper row) and TEL (bottom row)after normalization.
From left to right is Quantile-separate, Global-Mean, Global-Median andδ-sequence
normalization.

correlated in each slide) from normal distribution.
We generated log2-expressions for both samples by the algorithm (B.1). We set

ρ = 0.9 and the number of genes equal to 500 (we consider only 500 genes because of
computational complexity). We considered cases with equalnumber of slides for each
stagen = n1 = n2 = 10, 25 and 50. In the second sample, we modifiedk = 24, 50,
90 and 200 genes (we createk false hypotheses). We considered two different alterna-
tives. In the first alternative, we shifted mean value ofk modified log2-gene expressions
on each slide of the second sample about a constantC. For each settingn andk we
considered 15 equidistant values ofC. In the second alternative, we shiftedk log2-gene
expressions on each slide of the second sample so that their expectations were created
by random vectorµ = (µ1, . . . , µk) with i.i.d. components having normal distribution
N(C,1).

For each setting ofn andk, we performed 3000 simulations. For each simulated data
we calculated quantile-separate, quantile-pooled, global mean, global median and pro-
posalsA-D of δ-sequence normalization. We studied average power (proportion of true
positives and the number of differentially expressed genesk), mean number of false pos-
itive (estimate ofPFER), probability at least one false positive (estimate ofFWER) and
estimate of false discovery rate (as relative frequency of present false positives among
rejected hypotheses) according to Bonferroni procedure at nominal levelα = 0.05. We
considered justt-test due to computation complexity and that genes differed in mean
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values (not in variance or distribution). The results forN-test are expected to be similar.

Results

Due to the complexity of simulation we do not show all the results here. The complete
results can be found in the supplement of this work.

If we look at results for non-normalized data we can see thatt-test for such data
holds nominal levelα of FWER, but the power is very weak. On the other hand, there
are some normalizations for whicht-test roughly breaks levelα of FWER. In figure 5.3
there are estimates ofFWERfor data afterδ-sequence normalization for random and
sorted pairs. Random pairs seem good, becauset-test holds nominal level in all cases.
In some cases (especially for alternative two) of sorted pairs, t-test afterδ-sequence
normalization slightly breaksα. However, some proposals ofδ-sequence are very bad.
In table 5.1 there are some results for quantile normalization, proposal A and C ofδ-
sequence. We can see that each of these normalizations is toorisky in deciding which
gene is differentially expressed and which is not. Therefore, we shouldnot use them in
deciding issue.

Alternative one Alternative two
k 24 50 90 24 50 90

Quantile 0.7600 0.7543 0.69270.7497 0.7503 0.7027
Prop A-random 0.8623 0.9753 0.30931.0000 1.0000 1.0000
Prop A-sorted 0.5990 0.8163 0.11401.0000 1.0000 1.0000

Prop C 0.1327 0.1677 0.14030.3207 0.3923 0.4227

Table 5.1: Estimate ofFWER for quantile normalization and proposals A and C of
δ-sequence forn = 25,k = 24,50,90 andC = 0.4.

In figure 5.4, there are estimates of levelα of FWERof t-test for non-normalized
data after global mean and global median normalization, quantile pooled normalization
and proposals B and D ofδ-sequence. Just for non-normalized data and proposal D,
t-test holds levelα in all cases. Global median is better than global mean normaliza-
tion. However, for large number of different genes or large values ofC t-test for global
median normalized data breaks nominal levelα = 5% as well. After quantile-pooled
normalizationt-test does not break nominal level ofFWERfor small number of ob-
servations or small number of false hypotheses. Proposal B of δ-sequence works well
just for small number of differentially expressed genes. From this angle of view, there
are just two possibilities how to normalize data. The first one is working with non-
normalized data. The second reasonable normalization is proposal D ofδ-sequence.
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Figure 5.3: Plot of estimates ofFWERfor δ-sequence with random and sorted pairs for
n=25.

Now we look at average power oft-test after these six normalizations. Some results
are in figure 5.5. We can see that power oft-test after proposal D is better than for non-
normalized data. The power after quantile-pooled normalization, according to another
normalizations, decreases with increasing number of falsehypotheses. The other three
procedures have better power than proposal D. However, for small number of differen-
tially expressed genes this difference is small and for largek this difference is mainly
influence by breaking nominal levelα of t-test. Therefore, proposal D ofδ-sequence
normalization is the best normalization for deciding whichgene should be considered
as a differentially expressed gene.

5.4 HYPERDIP and TEL data

Let us work with HYPERDIP and TEL data for childhood leukemia.For these data, we
test which genes are differentially expressed. We would like to compare non-normalized
testing with our best behaved fourth proposalD. If we applied classical approach with
thet-test for non-normalized data, we would find 71 differentially expressed genes. For
theN-test we discover 73 differentially expressed genes (67 genes are the same forN-
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Figure 5.4: Plot of estimates ofFWERfor non-normalized data, global mean and me-
dian normalization,quantile-pooled normalization and proposal B and D ofδ-sequence
normalization for n=25.

test andt-test). If we test according to proposalD, we have 81 differentially expressed
genes by thet-test and 93 differentially expressed genes by theN-test (77 genes are
the same). These results confirm that proposalD is an improvement of the classical
approach using non-normalized data.
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Figure 5.5: Plot of estimates of average power for non-normalized data, global mean
and median normalization and for proposal B and D ofδ-sequence normalization for
n=25.
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Chapter 6

Gene sets

As we know, gene expressions are highly correlated between genes. Therefore, many
papers work with gene sets (e.g.Barry et al.(2008)) instead of genes alone and therefore
deal with multidimensional hypotheses. The most popular tests of two-sample problem
for gene sets are Hotelling’s test,N-test and tests derived from marginalt-statistics. We
wrote aboutN-test in section 2.1. In what follows, we introduce tests based on marginal
t-statistics and Hotelling’s test. Our pre-study of Hotelling’s test showed different be-
havior of this test in comparison to another considered tests. Therefore, for Hotelling’s
test, we derive some interesting properties in case of highly correlated data such as gene
expressions are. Results of section about Hotteling’s test were published inBubeliny
(2011). At the end of this chapter we compare the power of these tests.

6.1 Tests based on marginalt-statistics

There are two tests derived from marginalt-statistics which are often used for gene sets.
The first one is based on sum of squares of marginalt-statistics and the second is based
on sum of absolute values of marginalt-statistics, that is

Tsq =

m∑

i=1

t2i

and

Tabs=

m∑

i=1

|ti |,

where ti is marginalt-statistic for i-th gene from gene set consists ofm genes. The
critical values of these statistics are not known. Therefore, we estimate thep-values of
these tests by permutations of slides.
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6.2 Hotelling’s test

Hotelling’s test is a multidimensional extension oft-test. Similar tot-test, we can con-
sider both one-sample and two-sample Hotelling’s test. One-sample case deals with
hypothesis that the expected value of a sample from multidimensional normal distribu-
tion is equal to some given vector. In the two-sample case, itdeals with the hypothesis
of the equality of expected values of two samples from multidimensional normal distri-
butions (with equal covariance structure). We will focus onthe two-sample Hotelling’s
test.

Suppose we have two independent samples (of sizesnx andny, respectively) from
two m-dimensional normal distributions with identical covariance matrices equal toΣ.
In other words, we considerX1, . . . ,Xnx as i.i.d. random vectors havingNm(µx,Σ) and
Y1, . . . ,Yny as i.i.d. random vectors havingNm(µy,Σ) (Xi andYj are independent for all
i = 1, . . . ,nx; j = 1, . . . ,ny). For simplicity we assume thatm< nx + ny − 1. Our goal is
to test the hypothesisH : µx = µy against the alternativeA : µx , µy. Hotelling’s test for
this hypothesis is based on the statistic

T2 =
nxny

nx + ny
(X̄ − Ȳ)TS−1(X̄ − Ȳ), (6.1)

where

X̄ =
1
nx

nx∑

i=1

Xi ,

Ȳ =
1
ny

ny∑

i=1

Yi

and

S =

∑nx
i=1(Xi − X̄)(Xi − X̄)T +

∑ny

i=1(Yi − Ȳ)(Yi − Ȳ)T

nx + ny − 2
.

T2 is related to theF-distribution by

nx + ny −m− 1

m(nx + ny − 2)
T2
∼ F(m,nx + ny −m− 1). (6.2)

For more details about Hotelling’s test see e.g.Chatfield and Collins(1980). We made
the assumptionm < nx + ny − 1 for two reasons. Form ≥ nx + ny − 1 the estimateS of
Σ results in an irregular matrix, so thatS−1 does not exist and moreover numerator of
(6.2) is non-positive as well as the degree of freedom of theF-distribution. Therefore,
in such cases we use pseudo-inversion ofS and in order to estimatep-value ofH, we
use permutations of vector (X1, . . . ,Xnx,Y1, . . . ,Yny).
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6.2.1 Hotelling’s test for dependent data

Consider that we have two independent multidimensional samples from normal distri-
bution. We would like to test hypothesis suggesting the equality of expected values in
these two samples. Assume for simplicity that all elements on the main diagonal of the
covariance matrixΣ for both samples are equal to 1 and all other elements are equal to
ρ > 0, i.e.

Σ =



1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ
...
. . .
. . .
. . .
...

ρ . . . ρ 1 ρ

ρ . . . . . . ρ 1



.

Further on, we assume thatµx = (0, . . . ,0)T , butµy has firstk elements equal to 1 and
the others equal to 0, i.e.

µy = ( 1, . . . ,1︸  ︷︷  ︸
k

,0, . . . ,0︸  ︷︷  ︸
m−k

)T
.

For largenx andny, the matrixΣ and its estimateS are approximately the same as well
as the differences between the expected values (µx − µy) and between the mean values
(X̄− Ȳ). When dealing with real data,nx andny might not be large enough, but for easier
insight to the problem we use the approximationsS ≈ Σ andX̄ − Ȳ ≈ µx − µy. In this
caseS−1 ≈ Σ−1, that is

S−1 ≈ Σ−1 =



ω −β −β . . . −β
−β ω −β . . . −β
...
. . .
. . .
. . .

...

−β . . . −β ω −β
−β . . . . . . −β ω



,

whereω = (1+(m−2)ρ)
(1−ρ)(1+(m−1)ρ) andβ = ρ

(1−ρ)(1+(m−1)ρ) . For fixednx andny we can consider the

fraction nxny

nx+ny
= c of Hotelling’s statistic (6.1) as a normalizing constant. Let us denote

by T∗2 Hotelling’s statistic withΣ−1 instead ofS−1 andµx − µy instead ofX̄ − Ȳ divided
by the constantc. ThenT∗2 is squared Mahalanobis distance ofµx andµy and it is given
by

T2/c ≈ T∗2 = (µx − µy)
TΣ−1(µx − µy)
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= ( 1, . . . ,1︸  ︷︷  ︸
k

,0, . . . ,0︸  ︷︷  ︸
m−k

)



ω −β −β . . . −β
−β ω −β . . . −β
...
. . .
. . .
. . .

...

−β . . . −β ω −β
−β . . . . . . −β ω





1
...

1
0
...

0



= kω − (k2 − k)β =
k(1+ (m− 2)ρ) − k(k− 1)ρ

(1− ρ)(1+ (m− 1)ρ)
=

k(1+ (m− k− 1)ρ)
(1− ρ)(1+ (m− 1)ρ)

. (6.3)

Let us note that it does not matter ifµy consists of ones and zeros or equals to a constant
a and zeros. In the latter case, squared distanceT∗2 would be multiplied bya2. Now we
will work with T∗2 and investigate its behavior.

If we changedk to k+ 1 (meaning that we add one more different marginal distribu-
tion) we would expect thatT∗2 increases as well as the power of Hotelling’s test does.
For better understanding let the number of ones inµy be the index ofT∗2 (we will write
it only when it is needed). Now we changek to k+ 1 = h and we have

T∗2k+1 = T∗2k + ω − 2kβ.

If we expected thatT∗2 is an increasing function ofk thenω − 2kβ should be greater
then zero. However, we have

ω − 2kβ =
1+ (m− 2)ρ

(1− ρ)(1+ (m− 1)ρ)
− 2kρ

(1− ρ)(1+ (m− 1)ρ)
=

1+ (m− 2k− 2)ρ
(1− ρ)(1+ (m− 1)ρ)

.

Since the denominator is greater than zero, thenω − 2kβ > 0 if and only if 1
2k+2−m =

1
2h−m > ρ. It means that for not very small values ofρ’s andk > m

2 − 1 the square
Mahalanobis distanceT∗2 is a decreasing function ofk. This means that maximal power
of Hotelling’s test (as a function ofk) is not always attained fork = mbut forρ’s which
are not very small we have maximal power fork nearm

2 . Some examples of the behavior
of T∗2 as a function ofk are illustrated in figure 6.1.
However, this issue is not the only one that is surprising about Hotelling’s test. Now

we look if T∗21 is always lower thanT∗2m . It is the case when one different marginal
distribution influences more than allm different distributions. Therefore, we need to
compareω with mω −m(m− 1)β. We have

T∗21 − T∗2m = ω −mω +m(m− 1)β = (m− 1)
(1− 2ρ)

(1− ρ)(1+ (m− 1)ρ)
.

It means thatT∗21 −T∗2m < 0 if and only ifρ < 0.5. Therefore, we can say that forρ > 0.5
Hotelling’s test has better power for alternative with onlyone marginal shift than for
alternative that all marginal distributions are equally shifted. It can be seen from figure
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Figure 6.1: Plots ofT∗2 for m= 15, 25, 40;ρ = 0.1, 0.5, 0.9; andk = 1, . . . ,m. Notice:
each plot is differently scaled!

6.1 as well. Moreover,T∗2 is an increasing function ofρ, that may seem to be surprising
as well.

Let generalize expected valueµy to have components (a1, . . . ,am). We are interested
in for which µy ∈ Rm the squared Mahalanobis distance has the same value. For some
d > 0 we define the set

Ed = {µy = (a1, . . . ,am); µT
yΣ
−1µy = d2}.

This set is created by iso-distance curves, i.e. ellipsoidswith center in (0, . . . ,0). Let
denote the eigenvalues of matrixΣ−1 by λ1, . . . , λm and the eigenvectors corresponding
to these eigenvalues byγ1, . . . , γm. Then the principal axes ofEd are in the direction

of γi; i = 1, . . . ,m and the half-lengths of the axes are given by
√

d2

λi
; i = 1, . . . ,m.

In our case withΣ−1, the eigenvaluesλ1 = λ2 = . . . = λm−1 =
1

1−ρ andλm =
1

1+(m−1)ρ .
The eigenvector corresponding to the smallest eigenvalueλm is equal toγm = (1, . . . ,1).
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Therefore, squared Mahalanobis distance has the slowest increase in this direction.

6.2.2 Two-dimensional data

Let us look at Hotelling’s test in the two-dimensional case.Some plots of two-dimensi-
onal ellipsoids for different values of the correlation coefficientρ are given in figure 6.2.
The squared Mahalanobis distance has the weakest increase in the direction ofa1 = a2,
while the fastest increases is observed towards the direction of a1 = −a2. For example,
for ρ = 0.9 andd = ω the principal axes are equal to 3.162 and 0.725. It means that

for a1 = a2 =

√
3.1622

2 = 2.236 squared Mahalanobis distance is the same as fora1 = 1,

a2 = 0 (or fora1 = −a2 =

√
0.7252

2 = 0.513 as well). Hence, if there is only one marginal
distribution shifted by one unit, then the power of Hotelling’s test is expected to be the
same as if both marginal distributions were equally shifted(in the same direction) by
2.236 units (for the shift in opposite direction it should beonly 0.513 unit). These results
are in contradiction with other multidimensional tests. For example, consider some test
based on marginalt-statistics. The power of this test is higher if both distributions are
shifted by the same amount (botht-statistics are ”large”, not depending on direction
of shift) than if there is only one marginal distribution shifted (onet-statistic is ”near”
zero).

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

rho=0.25

a1

a2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

rho=0.5

a1

a2

−2 −1 0 1 2

−
2

−
1

0
1

2

rho=0.9

a1

a2

Figure 6.2: Plots of 2-dimensional ellipsoids forρ = 0.25;0.5;0.9. Notice: each plot is
differently scaled!

6.2.3 Theory and reality

The analytical results obtained above should be verified by checking if actual Hotelling’s
test outcomes correspond to the analytical results of real data. In this subsection we
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compared the behavior of squared Mahalanobis distanceT∗2 with Hotelling’s statistic
T2. For largenx andny we assumed thatT∗2 ≈ T2/c, wherec = nxny

nx+ny
. Constantc

changes asnx andny change. It is reasonable to divide Hotelling’s statisticT2 by c in-
stead of multiplyingT∗2 by c in order to be able to compare howT2 andT∗2 differ for
variousnx andny.

In order to compare the actual results with the analytical ones, we performed the fol-
lowing simulations. All data were simulated fromm-dimensional normal distributions.
We set the dimensionm to be 10, 15 andm = 25. All simulations were performed for
three different values of the correlation coefficientρ : ρ = 0.1, ρ = 0.5 andρ = 0.9.
In order to compare the behavior of Hotelling’s test for various sizes of samples we
took three choices ofnx andny: nx = ny = m,nx = ny = 1.4m andnx = ny = 2.4m.
The number of false marginal distributionsk varied from one tom. The shift value for
each of the different marginal distributions was set to one. The squared Mahalanobis
distance was calculated according to (6.3). Hotelling’s statistic is estimated from 1000
simulations for each case (as the mean ofT2/c obtained from the simulations).

Plots of our simulated cases are shown in figure 6.3. We can seethat for all simulat-
ed situations, the shapes of the squared Mahalanobis distance and Hotelling’s statistics
are similar. The only difference is in the heights of these curves. For smallnx andny

statisticT2 has higher values than for largenx andny. The reason for that stems from
the inaccurate estimates of the expected values and the covariance matrix. However,
we observe that with the increase ofnx andny, statisticT2/c goes toT∗2 relatively fast.
Therefore, the behavior of Hotelling’s test for real data isexpected to be very similar to
the behavior of squared Mahalanobis distanceT∗2.

In the previous section we saw that for the two-dimensional case the plotted shifts
with equal values of the power of theoretical Hotelling’s test form elliptic curves. Hotell-
ing’s statisticsT2 are random variables. Therefore, we can only estimate if their expect-
ed values form elliptic curves when they are plotted. To check this we performed the
following simulation. Instead of calculating the shifts for which Hotelling’s test has
equal powers, we took some points with coordinates (a1,a2) from the elliptic curves
observed for squared Mahalanobis distance. For each such point, we did 1000 simu-
lations and calculated Hotelling’s statistic. We estimated the expected value ET2/c as
the mean for these 1000 repetitions. We divided Hotelling’sstatistics byc for better
understanding how fast these statistics go toT∗2. We did this simulation for the values
of the correlation coefficient ρ = 0.3 andρ = 0.9 and as the number of observations
in each sample we tooknx = ny = 5, nx = ny = 10 andnx = ny = 20. Results of our
simulation are given in table 6.1. We observe that estimatedmean values ofT2/c are
not very different, they go toT∗2 and their variance decreases with increasing number
of observations. Clearly, these points form elliptic curves. Hence, we can claim that the
real Hotelling’s test behaves very similar to the theoretical one and the theory derived
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Figure 6.3: Comparisons of squared Mahalanobis distanceT∗2 and real Hotelling’s
statisticT2/c for the dimensionm= 10 15, 25 (from the top to the bottom); for correla-
tion coefficientρ = 0.1, 0.5, 0.9 (from the left to the right) and number of observations
in each samplenx = ny = m (denoted by ’+’), nx = ny = 1.4m (denoted by ’x’) and
nx = ny = 2.4m (denoted by ’•’). Squared Mahalanobis distanceT∗2 is denoted by ’◦’.
The number of different marginal distributionsk is set from one tom. Notice: each plot
is differently scaled!

for the theoretical test holds for the real Hotelling’s testas well.

6.3 Comparison of tests for gene sets

Although there exist some papers (e.g.Ackermann and Strimmer(2009) andGlazko
and Emmert-Streib(2009)) which compare tests for gene sets we performed our own
simulation study. We considered two-sample problem and as gene sets we took inde-
pendent samples of random vectors havingm-dimensional normal distributionNm(0,Σ)
and Nm(µ2,Σ), with sample sizesn1 andn2, respectively. For simplicity we assumed
that all elements on the main diagonal of the covariance matrix Σ for both samples were
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T∗2 = 1.0989 ρ = 0.3 T∗2 = 5.2632 ρ = 0.9
a1 a2 ns = 5 ns = 10 ns = 20 a1 a2 ns = 5 ns = 10 ns = 20

-0.84 0.35 3.12 1.74 1.35 -1.83 -1.05 9.58 6.72 5.96
-0.63 0.61 3.03 1.81 1.42 -1.38 -0.44 9.55 6.51 5.96
-0.42 0.79 3.04 1.82 1.39 -0.92 0.09 9.55 6.65 5.99
-0.21 0.92 3.00 1.75 1.42 -0.46 0.57 9.62 6.93 5.98
0.00 1.00 3.03 1.72 1.42 0.00 1.00 9.10 6.99 5.83
0.21 1.04 3.04 1.74 1.36 0.46 1.39 9.74 6.78 5.99
0.42 1.04 3.01 1.87 1.39 0.92 1.74 10.11 6.75 5.86
0.63 0.99 3.00 1.79 1.40 1.38 2.04 9.36 6.87 5.85
0.84 0.85 3.32 1.81 1.41 1.83 2.25 10.21 6.87 5.96
1.05 0.35 3.35 1.85 1.36 2.29 2.09 9.94 6.85 5.97

var: 0.0176 0.0025 0.0007 var: 0.1133 0.0202 0.0039

Table 6.1: Results of simulations of two-dimensional adjusted Hotelling’s statisticsT2/c
with ns = nx = ny observations for each sample and correlation coefficientρ. T∗2 stands
for squared Mahalanobis distance and (a1,a2) is difference between expected values
µx − µy of these samples. On bottom line is the estimate of variance of each column.

equal to 1 and all other elements were equal toρ > 0, i.e.

Σ =



1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ
...
. . .
. . .
. . .
...

ρ . . . ρ 1 ρ

ρ . . . . . . ρ 1



.

Further on, we assumed thatµ2 has the firstk elements equal toµ and the others equal
to 0, i.e.

µ2 = ( 1, . . . ,1︸  ︷︷  ︸
k

,0, . . . ,0︸  ︷︷  ︸
m−k

)T
,

wherek is the number of differentially expressed genes. We set the number of obser-
vations in each group to ben = 20,40,100. The number of genes in gene sets was
m = 20,50,100 with restriction 2n > m and the number of differentially expressed
genesk between these two groups was set to be integer part of 1,m/4,m/2,m/4,m. We
took correlation coefficientρ equal to 0.1,0.5,0.9 and as the difference parameterµ we
took sequence of eleven equidistant values begin from 0 (different for eachn andρ).
Thep-values for considered tests were based on 1000 permutations and each simulation
was repeated 1000 times. The power of tests was estimated as an average of rejections
from these 1000 repetitions.
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Figure 6.4: Comparison of test for gene sets forn = 20, ρ = 0.1,0.5,0.9 andm =
1,5,10,15,20.

Results of this simulation forn = 20 andm= 20 are in figure 6.4. The whole results
can be found in the supplement of this work. We can see that with increasing number of
differentially expressed genesk the power ofN-test and both tests based ont-statistics
increases. On the other hand, their power decreases with increasingρ. N-test has the
best power between these three tests, but fork = m, the power of these three tests is
almost equivalent. The Hotelling’s test behaves different way. For smallρ it has the
poorest power among all four tests. However, with higherρ its power increases and
this test is the most powerful except for largek, where its power decreases too much.
This behavior of Hotelling’s test was discussed in the previous section. However, for
gene expression data, there are expected high correlationsbetween genes and just small
number of differently expressed genes. Therefore, Hotelling’s test seems to be the best
for such data.
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Chapter 7

Dependence vs Correlativity

It was shown that normalization of gene expressions data makes these data almost un-
correlated. However, if correlation coefficient between two random variables is equal
to zero, it does not generally mean that these variables are independent. It is only true
for random variables having normal distribution. Therefore, in this chapter, we derived
test for testing independence of two random samples based onempirical characteristic
functions. Moreover, we study the power properties of this test.

For gene expressions there were derived two types of dependence between genes:
type A dependence (seeKlebanov et al.(2006)) and hidden regulator dependence (see
Lim et al.(2010)). The dependence structure of genes could be very important in prac-
tice. Therefore, at the end of this chapter we show that HYPERDIP and TEL have much
more genes with type A dependence than genes with hidden regulator dependence.

7.1 Test statistic

Consider that we have two samplesX1, . . . ,Xn andY1, . . . ,Yn from distributions (sayX
andY, respectively) with the characteristic functionsfX(s) = EeisX and fY(s) = EeisY,
respectively. Moreover, consider thatfXY(s, t) = EeisX+itY is characteristic function
of random vector (X,Y). Then these two distributions are independent if and only if
fXY(s, t) = fX(s) fY(t). We can employ this knowledge and use test statistic based on
difference offXY(s, t) − fX(s) fY(t). Because these characteristic functions are unknown,
we estimate them by their empirical counterparts. It leads us to measure the amount of
dependence betweenX andY by statistic

φ(X,Y) = max
−c≤s,t≤c

∣∣∣∣
1
n

n∑

i=1

eisXi+itYi − 1
n2

n∑

i=1

eisXi

n∑

i=1

eitYi

∣∣∣∣, (7.1)

wherec > 0 is some border constant. We will call this statisticsφ-statistic (test based
on this statistic we will call theφ-test).
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Another alternative to theφ-test could be based on statistic

φ∗(X,Y) = max
−c≤s,t≤c

∣∣∣∣
1
n

∑n
i=1 eisXi+itYi − 1

n2

∑n
i=1 eisXi

∑n
i=1 eitYi

st

∣∣∣∣. (7.2)

The only difference betweenφ-statistic andφ∗-statistic is in the denominator of absolute
value. Forφ it is equal to one, forφ∗ it is equal tost. We consider−c ≤ s, t ≤ c because
empirical characteristic functions are periodical.

Characteristic functions depend on mean and variance of random samples. Hence,
φ-statistic andφ∗-statistic are affected by variance and mean of both samples. There-
fore, the samplesX andY should be standardized to have mean value equal to zero and
variance equal to one. Then we should work with standardizedsamples instead of orig-
inal ones. Such standardization could be done by subtracting the sample mean and then
dividing by sample standard deviation.

Now we try to find out which value is optimal for border constant c and ifφ is better
thanφ∗ or not. The exact distribution ofφ-statistic andφ∗-statistic is not known. There-
fore, we performed simple simulation in order to estimate 95% quantile ofφ-statistic
andφ∗-statistic for different border constantc and different number of observationsn
based on 10000 repetitions. Instead of computing maximum in(7.1) numerically we
made a square lattice with mesh size 0.01x0.01 forc = 0.1,0.3,0.5,1 and we calcu-
lated maximum ofφ on it. Forφ∗ we took square lattice with mesh size 0.01x0.01 for
c = 0.1 andc = 0.3 and moreover forc∗ = 0.1 we took square lattice with mesh size
0.0025x0.0025 as well.

Firstly, we simulated random samples from two-dimensionalnormal distribution
with mean equal to zero and variance matrix

Σ =

(
1 ρ

ρ 1

)
.

We set the number of observationsn = 10,35,60,79 and correlation coefficient ρ =
0,0.3,0.6,0.9. For each setting we standardized the samples and computeφ-statistic
andφ∗-statistic. We repeated all setting 10000 times and estimated power ofφ-test and
φ∗-test. Results of this simulation are in table 7.1. We can see that the power is similar
for all cases except forφ-test withc = 1 where the power is weaker (and for largerc,
the power would be much weaker). Moreover with increasing correlation coefficient the
power ofφ-test andφ∗-test increases.

Csorgo’s test

In paperCsörgö(1985), there was derived test (we call it Csorgo’s test) for testing in-
dependence of two samples using characteristic functions.To find out whetherφ-test
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n = 10 n = 35
ρ = 0.3 ρ = 0.6 ρ = 0.9 ρ = 0.3 ρ = 0.6 ρ = 0.9

φ-test
c = 0.1 0.136 0.497 0.985 0.434 0.979 1.000
c = 0.3 0.129 0.477 0.983 0.424 0.976 1.000
c = 0.5 0.130 0.492 0.985 0.434 0.978 1.000
c = 1 0.117 0.418 0.969 0.303 0.925 1.000
φ∗-test
c = 0.1 0.137 0.494 0.983 0.430 0.980 1.000
c = 0.3 0.132 0.487 0.985 0.432 0.980 1.000
c = 0.1∗ 0.135 0.495 0.984 0.425 0.979 1.000

n = 60 n = 79
ρ = 0.3 ρ = 0.6 ρ = 0.9 ρ = 0.3 ρ = 0.6 ρ = 0.9

φ-test
c = 0.1 0.658 1.000 1.000 0.776 1.000 1.000
c = 0.3 0.658 1.000 1.000 0.791 1.000 1.000
c = 0.5 0.654 1.000 1.000 0.762 1.000 1.000
c = 1 0.481 0.994 1.000 0.585 0.999 1.000
φ∗-test
c = 0.1 0.656 0.999 1.000 0.782 1.000 1.000
c = 0.3 0.661 1.000 1.000 0.780 1.000 1.000
c = 0.1∗ 0.663 1.000 1.000 0.780 1.000 1.000

Table 7.1: Power ofφ-test andφ∗-test for normal distribution calculated on square
lattice with mesh size 0.01x0.01 (last case forφ∗ denoted byc∗ is with mesh size
0.0025x0.0025).
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Csorgo’s test ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9
n = 10 0.1267 0.1222 0.2093 0.3789
n = 35 0.1191 0.2195 0.5406 0.7129
n = 60 0.0999 0.3108 0.7363 0.8911
n = 79 0.0652 0.3890 0.8434 0.976

Table 7.2: Power of Csorgo’s test for two dimensional normal distribution with correla-
tion coefficientρ = 0,0.3,0.6,0.9.

has good power we try to compare this test with Csorgo’s test. Hence we did similar
simulation study for Csorgo’s test as we did forφ-test. We set the number of observa-
tionsn = 10,35,60,79 and correlation coefficientρ = 0,0.3,0.6,0.9. For each setting
we standardized the samples and estimate the power of Csorgo’s test based on 10000
repetitions. Results of these simulations are in table 7.2. We can see that for small num-
ber of observations this test does not hold significance level α. Moreover it has poor
power in comparison withφ-test. Therefore, we can claim thatφ-test has good power
properties.

7.2 Non-normal distribution

Now we consider Laplace distribution. We simulated similarcases as for normal distri-
bution. For considering dependent random samples from Laplace distribution we creat-
ednx2 matrix from these independent samples of sizesn (each row is different sample)
and multiplied it by matrixΣ to create dependent samples. The power ofφ-test andφ∗-
test for Laplace distribution is in table 7.3. We can see thatthis power for independent
random variables is about 5%. It means that these tests hold nominal level for Laplace
distribution too. Moreover, power for dependent variableshaving Laplace distribution
is similar to power for normal distributed random variables. In addition, power for all
settings is similar except forφ-test withc = 1 where the power is weaker.

From Bernstein theorem (seeKagan et al.(1973)) we know that random vari-
ablesY1 = X1 + X2 andY2 = X1 − X2 are uncorrelated and they are independent if and
only if X1 andX2 have normal distribution. Therefore, for finding ifφ-value is relat-
ed with correlation coefficient or with independence, we performed simple simulation.
For n = 10,35,60,79 we took independent samplesN1, N2 from N(0,1), independent
samplesL1, L2 having central Laplace distribution with variance equal toone and in-
dependent samplesB1, B2 from Bernoulli distribution with parameterǫ = 0,0.1, . . . ,1.
We took samplesX1 = (1 − B1)N1 + B1L1 andX2 = (1 − B2)N2 + B2L2. For ǫ = 0,
samplesX1 andX2 were independent having normal distribution and forǫ = 1 we had
independent samples from Laplace distribution. We calculated samplesY1 = X1 + X2
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n = 10 n = 35
ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9 ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9

φ-test
c = 0.1 0.054 0.145 0.546 0.990 0.049 0.441 0.981 1.000
c = 0.3 0.050 0.135 0.517 0.988 0.045 0.437 0.984 1.000
c = 0.5 0.053 0.140 0.528 0.987 0.044 0.415 0.979 1.000
c = 1 0.039 0.099 0.410 0.975 0.024 0.208 0.893 1.000
φ∗-test
c = 0.1 0.055 0.136 0.526 0.988 0.051 0.444 0.979 1.000
c = 0.3 0.053 0.141 0.526 0.987 0.059 0.446 0.981 1.000
c = 0.1∗ 0.056 0.148 0.537 0.985 0.052 0.435 0.981 1.000

n = 60 n = 79
ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9 ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9

φ-test
c = 0.1 0.047 0.651 0.999 1.000 0.053 0.788 1.000 1.000
c = 0.3 0.047 0.662 0.999 1.000 0.049 0.794 1.000 1.000
c = 0.5 0.042 0.635 0.999 1.000 0.036 0.747 1.000 1.000
c = 1 0.025 0.342 0.992 1.000 0.021 0.427 0.999 1.000
φ∗-test
c = 0.1 0.049 0.676 0.999 1.000 0.054 0.793 1.000 1.000
c = 0.3 0.048 0.672 1.000 1.000 0.051 0.789 1.000 1.000
c = 0.1∗ 0.056 0.699 1.000 1.000 0.050 0.783 1.000 1.000

Table 7.3: The power ofφ-test for Laplace distribution calculated on square lattice with
mesh size 0.01x0.01 (last case forφ∗ denoted byc∗ is with mesh size 0.0025x0.0025).
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andY2 = X1 − X2. In figure 7.1, there is the power ofφ-test forc = 0.5 of samplesY1

andY2 for differentǫ. In table 7.4, there are results forǫ = 0 andǫ = 1 for all setting
of φ-test andφ∗-test. We can see, that forǫ = 0 (for independent samples) the power is
about 0.05 for both tests. With increasingǫ (and with increasing dependence as well)
the power of our tests increases. It means thatφ-test andφ∗-test, respectively are related
with dependence and not only with correlation coefficient.

For Bernstein case, the power increases asc increases. The power ofφ-test for
c = 0.1,0.3,0.5 and forφ∗-test (for all settings ofc) was similar. From these settings for
Bernstein case, theφ-test withc = 0.5 has higher power. Therefore, in the rest of this
chapter we will use theφ-test with border constantc = 0.5.
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Figure 7.1: Plots of power for differentǫ for c = 0.5.

7.3 HYPERDIP and TEL data

Let us look at HYPERDIP and TEL data. In both data sets, we ordered genes in de-
creasing order of their estimated variance. Therefore, thegene with the highest estimat-
ed variance was the first and the gene with the smallest variance was the last. In figure
7.2, we can see estimates of variance according to their order. The variance decreases
quickly only at the beginning and at the end and there are mostof genes with similar
variance.

Firstly, remember what type A dependence is. LetX andY be gene log2 expression
levels for genegx andgy, respectively. We say that pair (gx,gy) is type A dependent if
X andY satisfy the conditionY = X + Z, whereZ is a random variable stochastically
independent onX.
It is too time consumable to computeφ-test for all pairs of genes. Therefore, we consid-
ered three parts of data. We took first 1000 genes with the highest variance, 1000 genes
with the smallest variance and 1000 genes from the middle with indexes from 3001 to

84



normal laplace
n = 10 n = 35 n = 60 n = 79 n = 10 n = 35 n = 60 n = 79

φ-test
c = 0.1 0.054 0.053 0.046 0.051 0.157 0.196 0.203 0.211
c = 0.3 0.044 0.052 0.050 0.054 0.157 0.203 0.223 0.248
c = 0.5 0.050 0.059 0.051 0.050 0.159 0.242 0.294 0.312
c = 1 0.045 0.052 0.054 0.047 0.143 0.297 0.436 0.520
φ∗-test
c = 0.1 0.050 0.048 0.048 0.054 0.158 0.200 0.198 0.209
c = 0.3 0.053 0.057 0.050 0.051 0.151 0.217 0.210 0.222
c = 0.1∗ 0.048 0.050 0.054 0.050 0.162 0.220 0.262 0.269

Table 7.4: Power ofφ-test for Berstein theorem (uncorrelated samples) andǫ = 0 (nor-
mal distribution - independent samples) andǫ = 1 (Laplace distribution - dependent
samples) calculated on square lattice with mesh size 0.01x0.01 (last case forφ∗ denoted
by c∗ is with mesh size 0.0025x0.0025).

4000. Each group (called upper, middle and bottom) was investigated separately. So we
created 3 x 2= 6 data sets. We not only consideredφ-test for genes butφ-test forGi and
G j −Gi, j < i, whereGi denotesi-th gene. We call the second case the type A situation
because if genesGi andG j are type A dependent, thenGi andG j −Gi are independent.
Therefore,φ(Gi ,G j − Gi) should take smaller values thanφ(Gi ,G j). Becauseφ-test is
not variance invariant, we standardized each gene and each difference of genes so that
they had zero mean and variance equal to one. The border constant c was set to be
0.5. In figure 7.3, we can see histograms ofφ-values (499500 pairs on each plot) for all
12 situations. We can see that for type A situationφ-values take lower values than for
casual pairs of genes. These histograms are overlapped justfor upper genes. However,
for type A situation, there are 77.3% (for HYPERDIP) and 99.7% (for TEL) ofφ-values
lower than 1%-quantile ofφ-value for casual pairs of genes. Therefore, type A pairs are
much more independent than casual pairs.

Now consider mix of three groups of genes divided according their variance. We
created new six data sets (three for HYPERDIP and three for TELdata). In order to
create these 3 groups we created three subgroups created from 500 genes with highest
variance, 500 genes indexed from 3251 to 3750 in decreasing order of variance and 500
genes with smallest variance, respectively. Three considered groups were created by
taking two of three subgroups together.φ-values in each subgroup had been comput-
ed in previous situations, therefore we considered onlyφ-test for genes from different
subgroups. Therefore, we computed 500 x 500= 250000φ-values for each data set. In
figure 7.4, there are histograms ofφ-values for each data set. Again, we can see that
φ-values for casual pairs are bigger than for type A situations. Non-ovelapping his-
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Figure 7.2: Plots of estimates of variance in decreasing order.

tograms are just for middle-bottom situation. Therefore, we are interested in computing
proportions ofφ-values for type A situations lower than 1%-quantile ofφ for casual
pairs. Values of these proportions are in table 7.5. Again wecan say that type A pairs
are much more independent than pairs of genes in casual case.Moreover, in table 7.6
there are proportions of hypotheses we reject according toφ-test on 5% nominal level
for casual pairs and for type A situation. We can see that almost all hypotheses for ca-
sual cases are rejected and there are many hypotheses which failed to reject for type A
situation.

upper-mid upper-bottom
HYPERDIP 0.897 0.944

TEL 0.998 0.988

Table 7.5: Proportions ofφ-values for type A situation lower than 1%-quantile ofφ-
values for pairs of genes for upper-mid, upper-bottom and mid-bottom data sets.

7.4 Hidden regulator dependence

Lim et al. (2010) considered another type of dependence between genescalled hidden
regulator dependence (HRD). They considered two genes (say Xand Y) being HRD if
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Figure 7.3: Histograms ofφ-values for casual pairs of genesGi andG j; i < j (black
color) and for type A situation (aqua color) for HYPERDIP and TEL data. We consider
1000 genes with highest variance (upper), 1000 genes with indexes 3001 to 4000 in
decreasing order of variance (middle) and 1000 genes with smallest variance (bottom).

there exists random variablea such that for log2-expressionx andy holdsx = a+ ǫx and
y = a+ǫy, whereǫx andǫy are i.i.d random variables independent ona. They numerically
demonstrated that HRD is easily mistaken for type A dependence. Consider two genes,
sayGi andG j. If these genes are HRD then it does not matter if we calculateφ-test for
Gi andG j −Gi or G j andG j −Gi respectively. But if these genes are type A dependent
then it is not true andφ-values forGi andG j − Gi or G j andG j − Gi are expected
different because one pair is independent and the other not. Therefore, we calculate
φ-test for both pairs. By sorting genes in decreasing order of their estimated variance
we expect that forj < i the pairGi andG j − Gi is independent and the pairG j and
G j −Gi is dependent. Therefore, we only take pairs of genes for which we consider type
A dependence (φ-test does not reject independence ofGi andG j −Gi, j < i at nominal
level 5%). For these pairs we calculateφ-test forG j andG j −Gi. In table 7.7, there are
proportions of such pairs for whichφ-test is rejected. We can see that a lot of pairs are
rejected according toφ-test (for mixed groups this proportion is almost one). Therefore,
we can see that type A dependence exists for genes with very different variances not as
HRD which can exist only for genes with similar estimate of variances.
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Figure 7.4: Histograms ofφ-values for casual pairs of genesGi andG j; i < j (black
color) and for type A situation (aqua color) for HYPERDIP and TEL data. We consider
plots for genes from upper-mid data sets, upper-bottom datasets and mid-bottom data
sets.

HYPERDIP TEL
Upper Mid Bottom Upper Mid Bottom

normal 0.9957 1.0000 1.0000 1.0000 1.0000 1.0000
type A 0.5140 0.1596 0.0777 0.2553 0.0798 0.0579

U-B U-M M-B U-B U-M M-B
normal 0.9958 0.9954 1.0000 1.0000 1.0000 1.0000
type A 0.2006 0.2935 0.1430 0.1526 0.0952 0.1272

Table 7.6: Proportion of rejected hypotheses for HYPERDIP a TEL data for normal
pairs and type A pairs.

HYPERDIP TEL
Upper Mid Bottom Upper Mid Bottom
0.761 0.179 0.489 0.885 0.068 0.400
U-B U-M M-B U-B U-M M-B
1.000 1.000 1.000 1.000 0.999 1.000

Table 7.7: Proportion of type A genes for whichG j andG j − Gi, j < i are considered
dependent.
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Chapter 8

Conclusion

One of the goals of statistician working with microarray data is to find differentially
expressed genes between two groups of observations (e.g. treatment versus control con-
ditions, two stages of some illness). In this work, we tried to solve some problems that
make finding differentially expressed genes difficult.

To find differentially expressed genes one has to use two-sample test for testing
equality of means or equality of distributions between two samples of genes. Gene
expressions after log2 transformation are considered to have approximately normal dis-
tribution. Therefore, in many casest-test can be useful. The problem set in when we
cannot guarantee normality or there can be change not only inmean but in variance of
distributions as well. Then we could use some non-parametric test such as two-sample
Kolmogorov-Smirnov test. In this work, we showed that this test could be biased in
case that there is different number of observations in each sample of genes. Moreover,
this test lacks of power. Due to the luck of power of two-sample Kolmogorov-Smirnov
test we propose to useN-test. This test is distribution free, we found out that it has
good power properties with comparison tot-test and it is much better thant-test in case
that there is difference in variance of two samples. Unfortunately, we do not know the
distribution ofN-test. Thep-values of this test have to be computed by permutations
what makes this test too time consumable. Therefore, we should still prefer t-test when
we need to computep-values of hypotheses quickly.

One of the problems of microarray data is that we usually havea large number of
genes. Hence, we have to compare thousands of genes simultaneously. In other words,
we have to test thousands of hypotheses simultaneously. Therefore, some multiple test-
ing procedure has to take place here. Bonferroni procedure iswell-known procedure
but it is considered to be too conservative and therefore to have weak power. InGordon
(2007), they proved that this procedure is unimprovable in the class of monotone step-
up multiple testing procedures controllingFWERfor each dependence structure ofp-
values. Holm procedure is step-down improvement of Bonferroni procedure. This pro-
cedure dominates all monotone step-down procedures controlling FWERand is unim-

89



provable in the class of monotone multiple testing procedures controllingFWER. Our
simulations showed that there is only small difference in estimates ofFWERof these
two procedures and the lines of power are almost overlapped.Therefore, the conserva-
tiveness of Bonferroni procedure comes from principle of multiple testing and not from
simplicity of this procedure. The improvement in power can be achieved by using pro-
cedures controllingFDR. Although these procedures find more differentially expressed
genes, they produce more false discoveries as well. Benjamini-Yekutiely procedure is
too conservative in controllingFDR. Therefore, empirical Bayes approach can help
here. On the other side, it produces too many false positives. Hence, we have to con-
sider if we want to controlFWER(find any false positives with small probability) and
use Bonferroni or Holm procedure or we want to controlFDR (find more differentially
expressed genes but produce a large number of false positives as well) and use empirical
Bayes approach.

Another problem of gene expression data is that genes are highly correlated between
themselves. Hence,p-values of hypotheses about genes are dependent. It influences
their properties as we showed in chapter 3. There exist some normalizations that partial-
ly solve this problem. The most common normalization such asglobal normalization
or quantile normalization makes normalized genes almost uncorrelated. On the other
hand, they influence both differentially and non-differentially expressed genes. There-
fore, they result in finding too many false positives. In other words, genes that seem
to be differentially expressed after these normalizations do not need to be differentially
expressed in original samples. In this work, we proposed some normalizations based on
δ-sequence ofKlebanov and Yakovlev(2007). We showed that our proposalD results in
appropriate number of false positives (another normalizations do not). Moreover, after
this normalization, tests discover more truly differentially expressed genes than if we
use non-normalized data.

In some situations, it is better to work with genes sets instead of genes alone. There-
fore, we test two-sample hypotheses about these sets and thus dealing with multidi-
mensional hypotheses. The common way is to use Hotelling’s test or tests based ont-
statistic. These tests assume normality of samples. Moreover, Hotelling’s test assumes
equal covariance matrix for both samples. In this work, we showed that Hotelling’s
test has different behavior for dependent components of observations asanother tests.
Hotelling’s test has good power only if there is small proportion of differentially ex-
pressed genes and it lacks the power if there is high proportion of differentially ex-
pressed genes in gene sets. Good alternative to this test isN-test, which is more power-
ful than tests based ont-statistic. On the other hand,N-test is too time consumable and
it makes trouble to use this test, especially when we cannot afford long computation of
p-values.

Finally, we know that normalizations make gene expression data almost uncorrelat-
ed. However, if data are uncorrelated it does not necessarily mean that these data are
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independent. Common tests usually test only uncorrelation and not independence of
the data. Therefore, we proposedφ-test to test independence of genes. This test helped
us distinguish between type A dependence and hidden regulator dependence which can
occur in gene expression data.
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Appendix A

Useful inequalities

Bonferroni inequality (known as Boole inequality as well): Consider set of events
B1, . . . , Bn. Then, Bonferroni inequality states that

P(
n⋃

i=1

Bi) ≤
n∑

i=1

P(Bi). (A.1)

Markov’s inequality: If X is any random variable anda > 0, then

P(|X| ≥ a) ≤ E|X|
a
. (A.2)

p-value inequality: The p-value satisfies the following inequalities with respect totrue
hypothesisH

PH(p ≤ α) ≤ α. (A.3)
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Appendix B

Multivariate normal distribution with
dependent components

For generating i.i.d random vectorsX1, . . . ,Xn, Xj = (x1 j , . . . , xm j), j = 1, . . . ,n from
m-dimensional normal distribution with zero mean and covariance matrix given by

Σ =



1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ
...
. . .
. . .
. . .
...

ρ . . . ρ 1 ρ

ρ . . . . . . ρ 1



we use the following algorithm.

Algorithm B.1.

1. Generate independent random variables aj and yi j , i = 1, . . . ,m; j = 1, . . . ,n
from the standard normal distribution.

2. For a fixedρ, define xi j =
√
ρ aj +

√
1− ρ yi j , i = 1, . . . ,m; j = 1, . . . ,n.

This algorithm produces random vectors with central normaldistribution and more-
over for eachi1 , i2 all pairwise correlationscorr(xi1 j , xi2 j) = ρ and for eachi, k =
1, . . . ,m and j , l we havecorr(xi j , xk,l) = 0.
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Appendix C

Supplement

In this work, we performed many simulations. Due to their complexity, all results cannot
be inserted in this work. However, omitted results can be found on supplement CD
which contains directories (they have the same name as the section they belong to)

• 1.6 HYPERDIP and TEL data - in HYPERDIP.txtandTEL.txt files there are
HYPERDIP and TEL data that are used across this doctoral thesis.

• 3.2 Some hypotheses are false- in Proportions of genes.pdfandPairs of genes.pdf
files there are histograms ofp-values of proportions of genes and pairs of genes
according to different ordering.

• 4.2.1 Comparison of Bonferroni and Holm procedure- in Bonferroni-Holm.pdf
file there are complete results of simulation of section 4.2.1.

• 4.5.1 Comparison of empirical Bayes approaches- in EB comparison.pdffile
there are complete results of simulation of section 4.5.1.

4.6 Comparison of multiple testing procedures- in EB&MTP comparison.pdf
file there are complete results of simulation of section 4.6.

5.3 Comparison of normalizations- in Estimate of average power.pdf, Estimate
of FDR.pdf, Estimate of FWER.pdf, Estimate of PFER.pdffiles there are tables of
complete results of simulation of section 5.3.

• 6.3 Comparison of tests for gene sets- in Tests for gene sets.pdffile there are
complete results of simulation of section 6.3.
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