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Preface

DNA microarrays are part of promising class of biotechn@eghat allow the mea-
sure of expression levels of thousands of genes simultahedlhese expressions can
be utilized for example to find changes betweefiedent biological statements. An
important question in microarray experiment is the iderdiion of genes which are
associated with a response (e.g. dose of a drug, time, teeditontrol) and covariates
(e.g. survival time, clinical outcome) of interest. Thiads to the problem of multiple
hypotheses testing. That is a testing of null hypothesig&ah gene simultaneously.

Another approach to the microarray data, but not considerékis work, can be
for example clustering. The primary goal of clustering isuging genes with similar
expression patterns (e.g. separating cancerous from nogicas genes). Similar ex-
pression patterns cartfer insights into various biological processEBshaeseleer et al.
(2000)).

Probably the first paper using microarray experiment wasegoried by Shena in his
paperSchena et al(1995). Since then, there has been a growing number of iolic
and some successes about this topic. For example in 1998 yilas shown that patients
with leukemia can be accurately classified into two knowngsabps with using just
gene expression&plub et al.(1999)). Another success turn up in 20@&b(lie (2001))
when researchers identified five patterns of gene expreksiels in breast cancer and
showed that they correspond tdfdrent types of disease withfférent prognosis. In
paperZembutsu et al(2002), they use microarrays with more than 23,000 featiares
predict the response to anti-cancer drugs in termstafaey and toxicity on a group of
patients. In 2003, there were identified 158 genes assdaiatie pancreatic cancer that
were diferentially expressed with comparison to people with a hgglancreas. An-
other success was reachedPetty et al.(2006). There was discovered a gene that has
highly different expression between cancer patients who respond thémeotherapy
treatment and patients who did not respond to the chemghéreatment.



Problems

This work concerns the use of microarrays in a comparatiperment which is de-
sired to compare gene expressions between two datasdtss issiie, one would like to
identify which of several thousands of candidate genes hadeheir expression levels
changed, that is identify which genes arffatientially expressed.

There are at least two main problems that make the work witle ggpression data
complicated. The first one is the number of genes. We oftea kaveral thousands of
genes. Consider that we test all hypotheses at significameede= 0.05. Then we
reject about 5% of true hypotheses from several thousandssult, we determine sev-
eral hundreds of non-fierentially expressed genes af@ientially expressed. Detailed
investigation of genes costs a lot of time and money. Thesefwe cannot dord so
many type | error (false positive) hypotheses. For the ciosbwer, this problem can be
partially solved by using proper multiple testing procezl(chapter 3) anfdr grouping
some genes together (chapter 6).

The second problem is that gene expressions are highlylatdebetween genes.
Klebanov and Yakovlef2007) studied various microarray data sets. They found out
that the average of correlation dbeients between genes ranged from 0.84 to 0.97.
Because we usually have only a few tens of observations, waot@&stimate the co-
variance structure of gene expression data. Hopefullyeteeists some normalizations,
which make gene expression data almost uncorrelated agccéimehelp us to handle
this problem (chapter 5).

State of arts

This work consists of 8 separate chapters. Each chaptes déal different problems
of microarray experiment or connected problems. Theretbeeresults of each chapter
do not directly depend on the results of the other chapteenckl every chapter can
be read just with basic knowledge of this problem and withoawledge of the other
chapters.

Chapter 1 serves as a brief introduction to genetics, miagagxperiments and
describes the process of obtaining and preprocessing ebanray data. There have
been a lot of papers dealing with these problems in detajl, ¥akovlev et al(2013)
or Gohlmann and Talloei2009). Because this chapter just summarize some known
things, it is based on citations and there is no our own dauions.

Chapter 2 concerns the choice of test for findinfjedentially expressed genes be-
tween two states of observations (e.g. hedihywo kinds of some disease). Usually,
thet-test or tests based arstatistic are used (s€audoit et al.(2003)). In papeZinger
et al. (1989), there was considered another test, callgdst, for this problem. More-
over, two-sample Kolmogorov-Smirnov test is reasonaldefte this problem as well.



In Gordon and Klebano¢2010), they proved that fan = m there existsy € (0,1)
such that two-sample Kolmogorov-Smirnov test is unbiaséeval « against two-sided
alternativeF # G. In this work, we extended this theorem for one-sided adtévas

A F <GorA;: F > G. We discovered that for each# mthere existsr € (0, 1)
such that this test is unbiased against one-sided alteenaWhen we considered two-
sided alternative again, we discovered thatrfog m there existsr € (0,1) and the
distributionF, such that this test is biased against this alternativeilbligion F,. Fur-
thermore, we discovered that this test need not to be unb&gainst this alternative
for another choice of* # @. These results for two-sample Kolmogorov-Smirnov test
were published iBubeliny(2013a). At the end of chapter 3, we compared the power
of t-test, N-test and two-sample Kolmogorov-Smirnov test and foundtbat N-test
serves as a good alternative fetest in case of violence of normality.

Chapter 3 deals with the properties palues of tests about gene expressions. It
is well known that gene expressions are highly correlatégdren genes, sddebanov
and Yakovle\(2007). Thereforep-values of tests about gene expressions are depen-
dent as well. However, we have seen no papers concerningetievior of p-values.
Therefore, we showed how histogram of sygkalues can look like and how can be
changed their structure in case of using some normalizatich a proportion of gene
expressions. Results of this chapter were publish&uireliny(2008).

While working with gene expression data we often need to tést@f hypotheses
simultaneously. If we used classical approach with sigaifoe levelr = 5% we would
expect to reject about 5% of all true hypotheses. It meansioch hypotheses with
type | error. In case of some thousands of genes this numbaaisceptable. Therefore,
chapter 4 deals with multiple testing procedures that elata this problem. The most
known procedure is Bonferroni proceduBenferroni(1936). This procedure controls
FWER (family wise error rate), that is the probability of comat least one type | er-
ror. Moreover, this procedure controls expected numbeymé 1 errors at predefined
level a. But this procedure is generally considered as to be too camses. Therefore,
different approach was proposed Bgnjamini and Hochberg1995). They derived
procedure that controls FDR (false discovery rate) - exggeproportion of type | er-
rors among rejected hypotheses. Another approach, caipdieal Bayes approach,
closely related to FDR was proposecddfron (2003). An overview of dierent multiple
testing procedures can be found for exampl®urdoit and van der Laari2008). In
our work, we performed an extensive simulation study to camagome of these proce-
dures. Our study showed that it is the principle of multigsting procedures and not
the principle of Bonferroni procedure that makes this procedo be considered too
conservative. Therefore, Bonferroni procedure should eatritlerestimated.

It was mentioned before, that gene expressions are highlglated between genes.
Moreover, there are many sources of systematic variatiomsi¢croarray experiments
that dfect measure of gene expressions. Therefore, microarrayatatnormalized



Yang et al(2002). But do these normalizations help in deciding proocé&sding dif-
ferentially expressed genes? In chapter 5, we performediaiion study to find how
some normalizationsfiect testing null hypotheses. We discovered that common used
procedures like quantile normalization and global norpaions result in finding too
many false positives (hypotheses with type | error). Thaesfwe proposed normal-
ization based oi-sequence (seélebanov and Yakovlei2007)). We showed that our
normalization finds reasonable number of false positivelsdstects more true positives
(invalid null hypotheses) than we would test without noriiaty. Partial results of this
chapter were published &ubeliny(2013b).

Gene expression data consists of some thousands of gendseagidre we are ex-
pected to test some thousands of hypotheses simultanedostiecrease this number,
we can group some genes into gene sets and test the equalistrdfutions of these
sets (e.g.Barry et al.(2008)). In that case, we are dealing with two-sample miltid
mensional problem. The most popular tests for this problesrHmtellings test, N-test
and tests derived from marginaétatistics. Our pre-study of Hotelling’s test for genes
sets showed strange behavior of this test. Therefore, ipteh& we looked at this test
from theoretical point of view and found some interestingufes. We discovered that
this test does not need to reach the best power in case tmaa@ginal distributions are
shifted. In case of strong dependence of components of saveptors, better power
is achieved in case of one marginal shift between samplesithease of all marginal
distributions are equally shifted. Moreover, for highlypgadent components the best
power is achieved when about half of marginal distributiaresequally shifted. These
results about Hotelling’s test were publishedBaobeliny (2011). At the end of this
chapter, we compared the power of this test Wttest and two tests based on marginal
t-statistics. These results confirmedfeient behavior of Hotelling’s test with compari-
son with another considered tests.

Type of dependence between genes can be very helpful. Fopdxaconsider that
there exists a gene which influences group of genes sucl that gene is dierential-
ly expressed the whole group of genes will b&atientially expressed. Then we could
investigate just this gene in detail instead of the groupeafes. InKlebanov et al.
(2006), they defined a type of dependence between gened tglkee A dependence. In
Lim et al.(2010), they defined another type of dependence betweers gatied hid-
den regulator dependence (HRD). They numerically demadestithat HRD is easily
mistaken for type A dependence. In this work, we defined tedieflting independence
between genes. By using this test, we discovered that theseaehot of pairs of genes
with type A dependence. On the other hand, our results shdveedhere is just small
proportion of these pairs of genes with hidden regulatoeddpnce. Therefore, type A
dependence is more frequent among pairs of genes than HRD.

Finally, our results are summarized in chapter 8.



Chapter 1

Introduction

Statistician working with gene expression data should khow these data were gained
and how these data were preprocessed before they gefhietimnd. Because the be-
ginning of these data roots in deoxyribonucleic acid (DNAgttcontains the organisms
complete hereditary information, we start this chaptehwiblogical introduction into
human genome. Thereafter, we describe how these data gre@essed until they get
into the statistician hand. Furthermore, we briefly degchasic approaches of analyz-
ing microarray data and how these data can be represented.ddtailed introduction

to the microarray data analysis can be found for examphakovlev et al(2013) or
Gohlmann and Talloe(R009). At the end of this chapter, we describe HYPERDIP and
TEL data for childhood leukemia that we use through this work

1.1 Human Genome

A eukaryote is an organism (e.g. human being, animals, plantwhose cells contain
a nucleus and other structures enclosed within membranest &dikaryotic organisms
have billions of individual cells. Almost all of these celtentain the entire genome
for that organism. This genome carries complete hereditdoymation in the form of
deoxyribonucleic acid (DNA).

The human genome consists of 23 pairs of chromosomes. Eaomokome is
made of chains of DNA. DNA consists of molecules that are weaparound each
other in a structure known as a double helix. Genes are églbersegments of the
DNA structure. In other words a gene is a section of DNA. In hus) there are about
27,000 of genes. The information contained in the gene mstréed into a messenger
ribonucleic acid (MRNA). Then this mMRNA molecule leaves thelaus of the cell and
it is transcribed into a protein (translation process). sTocess is known as gene
expression.



1.2 DNA Microarrays

DNA microarrays (also commonly known as DNA chip or biochapg small solid sup-
ports (for example microscope slides, silicon chips). Tdesibehind microarrays is
measuring the amount of thefidirent types of mMRNA molecules in a cell and thus indi-
rectly measure the expression levels of the genes. Each Didfanray spot contains
a specific DNA sequences, known as probes (also reportefgosp These probes are
complementary to the specific mMRNA molecules that correspmtite specific targeting
genes. These mRNA molecules, which have been previouslielhmeath fluorescent
dye, should hybridize with those probes. The amount of loyhation is then measured
by the amount of fluorescence. It is usually done by scannétraresults are subse-
guently analyzed by computer. A spot with brighter fluoreseemeans that the gene
represented by this spot has higher expression level.

Two kind of DNA microarrays are used nowadays: oligonudteoarrays and cD-
NA arrays.

The most commonly used DNA microarray is oligonucleotidaycalled GeneChip
manufactured by Aymetrix (http//www.affymetrix.com). Each array contains hun-
dreds of thousands of probe spots and each of these spoésnsomillions of copies of
an individual 25 base long DNA oligonucleotide.

In cDNA microarrays, each spot corresponds entirely to aipgene. The probes
are generally hundreds of bases long and measure complEm&NA (cDNA). The
expression level is then given by the measure of how much cbitkidize to its cor-
responding spot. Moreover, two separate samples are lgdulido the same array at
the one time. One of these samples is a control sample an@tbad is a sample of
interest (e.g. cancer tissue) and they are labeled withrdint dye. Expression level
of a given gene is then measured by thffadence in intensity level. Scanner which
reads cDNA microarrays produces a TIFF image. These imaggsacessed by image
analysis software.

1.3 Data preprocessing

The goal of preprocessing microarray data is to remove umedkesources of variations.
The raw microarray data of flierent probes are noisy. holloway et al.(2006), there
was shown that suitable preprocessing step is crucial eniroleliable data.

The whole preprocessing procedure begins when probe iésnare stored in the
image of scanned microarrays where each pixel of image candwne discrete level
of gray. After image acquisition, each probe is identifiedtmygrip placed on the top of
scanned image and is represented by a set of pixels. Fromeehdd pixels the overall
probe intensity is calculated. A typical first preprocegstep is background correction



that aims to remove non-biological contributions to themsities such as background
patterns across arrays, unspecific binding of the trartsetip. In Affymetrix software,
the square microarray image is divided into 16 squares. & particular square, the
background intensity is declared to be the second pereettiall probe intensities in
this square. The value that is subtracted from a given pethesveighted average of
16 background intensities where weights depend on thendistaf probeset from con-
sidered squares.

Then usually follows the base 2 logarithmic transformatiéprobeset intensities.
This is done due to the fact that lsgransformation makes the microarray intensity dis-
tribution more symmetric (see e.@hen et al.(2007)). The second reason is that the
intensity variations usually increase with intensitieartRermore, a biological side ef-
fect of log-transformation is that this transformation converts iplitative efects into
additive dtects.

The following preprocessing step is normalization that esafliterent samples of
an experiment comparable among themselves. The main gaadrofalization is to
remove systematic filerences between chips. If an experiment is done perfeldyet
is no need of normalization (there are no systematic vanaji Diferent normaliza-
tions involve various assumptions on data properties. &ibeg, we should use them
carefully. The most known normalizations are quantile redimation and global nor-
malization. The wider summary of ffierent normalizations and their comparison can
be found for example itvyang et al(2002).

Microarray technology can measure the whole genome at dBaenot all genes
are expected to be expressed. Furthermore, there existggmas that cannot or have to
be diferentially expressed (for maintenance cell). Therefareetiuce dimensionality,
some genes can be omitted.

1.4 Data analysis

Gene expression data are useful only if one can extract mgimiinformation from
them. Appropriate analysis can discover unknown propedfegenes. On the other
hand, inferior analysis can lead to wrong results and nusslba researchers. Depend-
ing on the goal of the analysis, various statistical metredagild be chosen. There are
numerous technics that concern about microarray datasisaly

1.4.1 Classification

There are two important approaches of classification of saicay data. The first one
is the discrimination between fierent known cell patterns, e.g. between tumor and



normal tissue. The second one is the identification of unknos¥l types or conditions,

e.g. new subclass of existing subclass of tumors. In thesstat literature, they are

known as discrimination (supervised) and clustering (pesused) methods. Cluster-
ing methods are more appropriate if cell classes are not kmowadvance. On the other
hand, discriminant methods are preferred if the classeksraen.

1.4.2 Discrimination methods

Suppose, that we have multivariate (consist of some genes) sampigs.. ., X, of
gene expression data. Suppose that there exist K classedl pfafiles. The goal of
discriminant analysis is to defing disjoint subset,, k = 1,...,K of sample space
such that forX; € A the predicted class s These subsets are built from observations
which are known to belong to one of the considered class. Tost kmown discrimina-
tion methods are for example Fisher linear discriminantyasis maximum likelihood
discriminant analysis, nearest neighbor and classificdteEes. Detailed description of
these methods can be found for exampl®undoit et al.(2002), where these methods
were moreover compared.

Clustering methods

Clustering method is a technique by which genes or samplegratgped based on
pairwise similarities between gerisamples. For these methods, there are two impor-
tant choices to be done. The first one is the distance measariafity) between two
elements. The most known distance measures are for examglidign distance, Man-
hattan distance and Pearson correlationffoment. The second one (called linkage)
defines how similar elements need to be in order to be assigh®the same cluster.
The examples of linkages are for example nearest neighlntingist neighbor and aver-
age linkage. Clustering methods are divided into two categohierarchical methods
and partitioning methods. Hierarchical methods build sgsive cluster using previous
clusters. Partitioning methods are based on minimizatfdmeterogeneity of clusters.
Detailed description of clustering methods can be foundcetf@mple inQuackenbush
(2001) orGohlmann and Talloe{2009).

1.4.3 Finding differentially expressed genes

The common goal of microarray study is to identifyfdrentially expressed genes under
specific conditions. It is done by testing equality of distition of gene expressions.
Detection of diferentially expressed genes depends on the design of exgrerion

8



the choice of testing statistics and the predefined signifivel. There can be two
experimental conditions or many. If we consider two expental condition we dealing
with two-sample problem. Reasonable tests for such comditban be for example
test. If we consider more than two experimental condititrentthe reasonable test can
be for example analysis of variance. Detail descriptiorests to identify dferentially
expressed genes can be found for exampl€unand Churchill(2003). The choice
of significant level depends on the type | error rate (e.q.ilfamise error rate, false
discovery rate etc.) and on the multiple testing procedearg Bonferroni procedure,
Benjamini-Yekutieli procedure etc.). Detailed summary afitiple testing procedures
and various type | error rates can be found for examplBudoit and van der Laan
(2008).

1.5 Microarray data

Microarray experiment, which produces gene expressions distinct genes, can be
represented by random vectér= (xi, ..., X»)” with mutually dependent components.
Consider that we havesamples (slides) oX. Therefore, we can represent microarray
data formgenes fromn slides bymx n matrix X = {X4]...[X,} = {Xi,j}f}’zp wherex;  is
the gene expression level foth gene fromj-th slide.

1.6 HYPERDIP and TEL data

During this work, we use HYPERDIP and TEL data for childhoodkiemia. We
do not try to study these data. We just use them to verify amukited results on
real data. These data are free to obtain from St. Jude Chilreisearch hospital
(httpy/www.stjude.org). They were observed on children’s patignthis hospital.
These data were proceed byffymetrix microarray. Both datasets consist of non-
normalized data and have 7084 genes. For HYPERDIP data, weseeobtained 88
slides and for TEL data 79 slides. More details about pracgss these data can be
found in supplementary information dfeh et al(2002) where these data were ana-
lyzed. The data, which we use, can be found in the suppleniéhisovork.

In the following chapters, we would like to uséest or Hotelling’s test for these da-
ta. It was previously mentioned that logansformation of gene expression data is ex-
pected to have approximately normal distribution. Thaefave should verify whether
log, transformation of HYPERDIP and TEL data have the normal ihistion. To do
this, we just verify whether each gene expression level basal distribution. We test
normality according to one-sample Kolmogorov-Smirnov tesd Shapiro-Wilk test.
Histograms ofp-values of these tests for both HYPERDIP and TEL data are imdigu



1.1. Because we are testing 7084 hypotheses we cannot ugeaige levelr = 5%.

In case of using it we are expected to reject abodh & 7084= 354.2 true hypotheses.
Instead of it, according to Bonferonni procedure (see Seeti@ for more details), we
should use significance lewel = 0.05/7084. Number of rejected hypotheses according
to significance levekr anda™ are in table 1.1. Although we reject some hypotheses by
Shapiro-Wilk test (one for HYPERDIP data and five for TEL datspectively), their
proportion among all genes is too small. Therefore, we cgytlsat log transformation

of these data are approximately normal distributed.
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Figure 1.1:p-values of one-sample Kolmogorov-Smirnov test and Shapiilk test for
normality of genes from HYPERDIP and TEL data.
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# of rejected hypothesesHYPERDIP| TEL

* *

a a a a
KS-test 1 0 3 0
SW-test 96 1 245 5

Table 1.1: Number of rejected hypotheses of normality by-saraple Kolmogorov-
Smirnov test and Shapiro-Wilk test at significance levet 0.05 anda* = 0.05/7084
for HYPERDIP and TEL data.
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Chapter 2

Tests for gene expression data

By working with microarray data, we often need to test the ligpsis of equality of
mean value of two samples or equality of distributions of samples. The common
used test for such problemtidest. An alternative to this test (especially if we areiinte
ested in equality of distributions or there is a violatiomofmality) can be for example
N-test or two-sample Kolmogorov-Smirnov test. At the begignof this chapter, we
describeN-test that was derived idinger et al.(1989). In what follows, we discuss
the biasedness of one-sample Kolmogorov-Smirnov testctrabe used e.g. to verify
some assumptions. Moreover, we show some interesting piegpabout biasedness of
two-sample Kolmogorov-Smirnov test that were publisheBubeliny(2013a). At the
end of this chapter, we compare the powet-tefst,N-test and two-sample Kolmogorov-
Smirnov test.

2.1 N-test

Let « andy be two probability measures defined on the Euclidean sRac€or testing
the hypothesi#d : 4 = v, Zinger et al.(1989) derive the distribution free test, called
N-test.

Let L(x,y) be a strictly negative definite kernel, thisjfﬁj:1 L(xi, X;)hih; < O for any
X1,...,Xsandhy, ..., hs, 3> h = 0 with equality if and only if allh; = 0. Define

NGiy) = 2 fRd fRd L(x, Y)dhu(x)cv(y)

- fRd fRd L(x, y)du(X)du(y) - fRd fRd L(x, y)dv(x)dv(y),

then /N(u, v) is a metric in the space of all probability measure$8n
Suppose, thak = (Xi,...,Xn,) andy = (y1,...,Yn,) are two independend-
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dimensional vector samples, consistingmfand n, observations, frony andyv, re-
spectively. Then, the empirical counterpartN(jz, v) is given by

Ry S W T R B Y NI DS ST

i=1 j=1 llljl 2|1]l
As a strictly negative definite kernklwe will use Euclidian distance that is defined by
L(xi,y;) = V2L (X —-yj)2foreachi = 1,...,npandj = 1,...,n,. For this kernel,

N(u,v) = 0 if and only if x = v. The higherN(x,y) the stronger evidence to reject
hypothesiH: u = v.

Exact distribution of statistid\(.,.) is not known, therefore we will estimate the
p-value ofN-test by permutations according to the following algorithm

Algorithm 2.1.
1. ComputeN(x, ).

2. Letz be a pooled sample of d-dimensional samplesdy. In other wordsz can
be rewritten ag = (21, ..., Zn+n,) = X1y -+ s Xnps Yo - -5 Yio) = (X, ).

3. Permutate d-dimensional vectors, the componerestofgain new sample® =
20,20y (with sample sizes ofrand p) and computeN(2, 20).

4. Repeat step K-times.

5. Estimated p-value of N-test is given by

1 K
P=% Z [Rxy)<RiE 20))°
i=1

where }; is the indicator function.

The disadvantage ®i-test is that it is too time consumable. Due to the large numbe
of genes, we cannot perform too many permutations. It lithigschoice oK. For gene
expression data it can be set just to some thousands. Therdfep-values estimated
by this test can be inaccurate (especially for lpwalues).

The simplest and the most common case is wken ., x,, andys, ..., Yy, are two
independent samples having one-dimensional distribsitwith the distribution func-
tionsF andG, respectively. We would like to test the hypothedis F = G against the
alternativeA : F # G. ThenL(x,y) = [x —y| andN-test statistic for this hypothesis is
given by

N(xy)—nl—nZZm y,|——ZZ|>q—x,|— ZZW. Yl

i=1 j=1 llljl 2|lj1
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To find out if this test hold the significance levek 0.05 we performed simple sim-
ulation. We simulated data from normal, log-normal and emif distribution and from
5000 repetitions we estimated the significance level oftdss for diferent number of
observations as proportion of rejections among all repest Estimates op-values
of N-test were based on 1000 permutations. In table 2.1, therestimates of level
in case of equal number of observationg € n, = 10,15, 20, 30,50, 75,100) in both
samples. In table 2.2, there are results of simulation forenqaal number of observa-
tions (h, = 10,15,20,30,50,75, 100 andn, = 12 25,60,95). We can see that in all
simulated cases, the estimatesr@re near 0.05. Therefore, we can say thdest hold
significance levetr.

ng=ny 10 15 20 30 50 75 100
normal | 0.049 0.053 0.049 0.047 0.050 0.054 0.049
log-normal| 0.053 0.050 0.053 0.049 0.052 0.057 0.054
uniform | 0.055 0.055 0.046 0.050 0.050 0.050 0.047

Table 2.1: Estimate of significance level= 5% of N-test for normal, log-normal and
uniform distributed samples with sample sizgs= n, = 10, 15, 20, 30, 50, 75, 100.

2.2 One-sample and two-sample Kolmogorov-Smirnov
test

One-sample and two-sample Kolmogorov-Smirnov test atamige-based tests. Con-
sider that we have a sampte, . .., X, from the distribution with unknown distribution
functionF. Let F,(X) denotes its empirical distribution function. Based on gample,
one would like to test the hypothedtf : F = F( against the alternativa; : F # Fo,
whereF, is fixed distribution function. Then one-sample Kolmogef@mirnov test is
based on statistic

Dn = d(Fn(X), Fo(X) = suplFq(X) — Fo(X)!.

The hypothesi#; is rejected at levek if and only if D, is greater than critical value
dan Of this test.

Consider now that we have another sample (independent watffirt) v, ..., Ym
from the distribution having unknown distribution funati®. We would like to test
the hypothesid, : F = G against the alternativd, : F # G. Then two-sample
Kolmogorov-Smirnov test is based on statistic

Dim = d(Fn(X), Gin(X) = sup|Fn(X) — Gm(X)I.
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n, | 10 15 20 30 50 75 100
n, normal

12| 0.046 0.053 0.051 0.046 0.045 0.049 0.052
25(10.051 0.050 0.043 0.052 0.049 0.050 0.046
60| 0.045 0.049 0.052 0.050 0.047 0.047 0.049
95| 0.051 0.053 0.053 0.055 0.049 0.050 0.046
n, log-normal
12| 0.049 0.043 0.045 0.051 0.044 0.052 0.054
251 0.049 0.048 0.052 0.048 0.052 0.050 0.050
60| 0.051 0.056 0.050 0.054 0.053 0.055 0.051
95| 0.053 0.050 0.053 0.053 0.047 0.047 0.047
n, uniform
12| 0.052 0.051 0.051 0.053 0.051 0.049 0.055
25| 0.052 0.049 0.057 0.051 0.052 0.051 0.051
60| 0.058 0.053 0.048 0.048 0.047 0.050 0.052
95| 0.053 0.046 0.058 0.054 0.047 0.049 0.054

Table 2.2: Estimate of significance lewel = 5% of N-test for normal, log-normal
and uniform distributed samples with sample simes= 10, 15, 20, 30,50, 75,100 and
n, = 12, 25,60, 95.

The hypothesisi, is rejected at levat if and only if D, is greater than its predefined
critical values, nm.

Computation ofp-values of both versions of Kolmogorov-Smirnov test cancaentl
for example inHajek et al.(1999).

It should be kept in mind that both Kolmogorov-Smirnov tekisiot depend on any
monotonic transformation of samples. In other words, if m@sform both samples (by
the same monotonic transformation) to samples with theilligion functionsF’ and
G, respectively then

suplFa(x) — Fo(¥)| = suplF4(X) — Fo(X)|

and A A A A
SUp|Fn(X) — Gm(X)| = suplF,(X) — G(X)|,

whereF is the transformed distribution function B.

2.2.1 Biasedness of one-sample Kolmogorov-Smirnov test

Although one-sample tests have only few direct applicatimn gene expression data,
they are often used to verify various assumptions. Theeefoe consider one-sample
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Kolmogorov-Smirnov test here (specially its biasedness).
Recall that a test is said to be unbiased at leviél

1. it has significance level
2. for all alternative distributions the power of this tesgreater or equal t@.

The test is said to be unbiased if it is unbiased at all leweds(0, 1). Finally, the test
is said to be biased if it is not unbiased. Specially, theitebtased at levek against
alternativeG if it is an levela test andP(reject H|G) < a. The distributionG is said
to be the most biased distribution of test for hypothésiat significance levek if G
minimizes the probability of rejection hypothesisat levela among all distributions,
that isP,(rejectH|G) < P,(rejectH|G") VG'.

Each continuous distribution can be transformed to unif@rt) distribution. Be-
cause one-sample Kolmogorov-Smirnov test does not depeiatiypmonotonic trans-
formation we can assume, without loss of generality, thathasxe independent sam-
ple X = (Xg,...,X%,)" from distribution with continuous distribution functiof with
suppF < [0,1]. Now we would like to test the hypothedi$ : F = Fq against the
alternativeA : F # Fo, whereF is the the (01) uniform distribution (for simplicity we
will write just uniform distribution) given by

0 ifx<O
Fo(x) =4 x ifO<x<1. (2.1)
1 ifx>1
Now let§ andg be such constants that9 ¢ < ¢,, andg > 1 and defines* by
o = 6‘%1. In paperMassey(1950), Massey found out that one-sample Kolmogorov-

Smirnov test is biased against two sided alternative wistrithution function defined

by

0 if X< 6
Bx—6(B-1) ifo* <x<9¢
G(X) =4 X fo<x<1l-6 ) (2.2)
Bx—(B-1)(1-6) ifl-6<x<1l-¢
if x>1-¢6"

Confidence set for empirical distribution function of onergpde Kolmogorov-Smirnov
test is given by a closed ba¥(Fo; J,.n) of radiuss, , > O centered aft, in the metric of
all distribution functions with the Kolmogorov distance figure 2.1, there are plotted
distribution functions of (left one) andG (right one) fors = 0.2 andB = 2 together
with confidence sets with,,, = 0.2 for one-sample Kolmogorov-Smirnov test. The
biasedness of Kolmogorov-Smirnov test against alterealistributionG is now evident
from the following theorem oGordon and Klebanoy2010).
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Uniform distribution Alternative distribution

-1.0 -0.5 0.0 0.5 1.0 15 2.0 -1.0 -0.5 0.0 0.5 1.0 15 2.0

Figure 2.1: Distribution functions of uniform and alterwvatdistribution (solid line) and
their confidence intervals (dashed line) of one-sample l§glonov-Smirnov test with
Oon = 0.2.

Theorem 2.2.1.Suppose that for sonfe< a < 1 there exists a continuous distribution
function F, such that

B(Fa; 60.n) € B(Fo; 0an) (2.3)
and for djference of sets @o; 6,.n) and BF3; 6,.n) holds
PFa(FAna € B(FO; 5a,n)/B(Fa; 5(z,n)) > O’ (2-4)

where F, is empirical distribution function of £ Then one-sample Kolmogorov-
Smirnov test is biased against the alternative F

Proof. Let X, ..., X, be independent identjcally distributed variables fromdtstribu-
tion F, with empirical distribution functior,,. Then

Pr,(Fra € B(Fa; 60n)) > 1- 0.
From (2.3) and (2.4) we have
PFa(lfna € B(Fo;04n)) >1-c.

That is .
P(rejectH|Ais true)= Pr,(d(Fna; Fo) > 6un) < a.

O

From this theorem, it is obvious that distribution funcsogiven by (2.2) are not
the only ones that make this test biased. For testing eguwailih uniform distribution,
one-sample Kolmogorov-Smirnov test is biased at levid all distributions with con-
tinuous distributions functions (sdy,) lower thanF, for x < 6, ., and greater thakg
for x > 1 — 6, With restriction toPFa(Ifna e B(F;6,)/B(F3;6,)) > 0.
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2.2.2 Simulations of alternative distributions

In this chapter, we will need to simulate data from an altevealistributionG. It can
be directly done from sampbé having uniform distribution by = G1(X), whereG1
is the inversion function oG. More precisely, for the distribution function given by
(2.2), this is

x+E1) if x<6

B
Y(X) =G H(x) ={ x fo<x<1-6. (2.5)
XEDAD i1 — 5> x
5 >

To find out how strong the biasedness of one-sample Kolmeg8noirnov test is we
performed simple simulation. We set the number of obseymati to ben = 50,100 and
parameteB to beg = 2,5,10,50, 1000. Fom = 50 we seb to be 01, 0.15,0.187 and for
n = 100 to be 08,0.11,0.135. Each simulation was repeated 100000 times. For each
setting we simulated random sampbes= (X, ..., X,)" from the uniform distribution
and from these samples (for better comparison) we calcutsmplesy = (yy,...,Yn)
according to (2.5). For each sampleandY, we performed one-sample Kolmogorov-
Smirnov test and estimated how many times it rejected thethgsisH at levela = 5%.

In table 2.3, there are showed thé&diences between estimates of layébr sampleX
and the estimates of power for sampleFor example, fon = 50,6 = 0.187 ands = 2
the estimate of level is equal to 0.05039, the estimate of power for sampig equal
to 0.04962. Therefore, theftkrence is equal t0.00077. All diferences of estimates
in our simulation are nonnegative and they are larger witheasing. It confirms that
the one-sample Kolmogorov-Smirnov test is not unbiased.

If sampleX is transformed to sampMé according to (2.5), it does not necessarily

n=50 n=100
60=01 6=015 6=0187|6=008 6=011 6=0.135
0.00004 0.00024 0.000770.00000 0.00002 0.00005
0.00004 0.00028 0.000730.00001 0.00004 0.00009
0.00002 0.00033 0.000870.00000 0.00002 0.00015
1
7

10
=50 | 0.00003 0.00022 0.001000.00000 0.00003 0.0001
S =1000| 0.00005 0.00035 0.000970.00000 0.00004 0.0001%1

Table 2.3: Table of dierence between estimates of lewdbr sampleX having uniform
distribution and estimate of power for sampiehaving distribution function (2.2) by
one-sample Kolmogorov-Smirnov test at lewek 0.05.

mean thatp-value of one-sample Kolmogorov-Smirnov test is changeadure 2.2 il-
lustratesp-values for 2000 simulation (top row) and there is 10631530) from these
p-values that were changed between samplesdY. We can see thgb-values for
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samples from alternative distribution are upper boundesddsyge constant (in this case
about 0.75) and the majority of changpéralues are greater than another constant (in
this case about 0.5). The upper boundpefalues for alternative samples is due to
empirical distribution function of alternative distribbom that is ever equal to zero in
6", because the minimum of is never less thaa™. That isG,(6*) = 0. Therefore,

Dn = sup, [Gn(X) — Fo(X)| > 6.

2.2.3 Maodifications of one-sample Kolmogorov-Smirnov test

Consider, that there is a real threat that the testing digtab is the distribution given
by (2.2). Now we know that one-sample Kolmogorov-Smirnast tean lead to wrong
decisions. However, what can we do? In the rest of this stibsgave propose three
modifications of this test that could help. In these modiitcat we use one-sample
Kolmogorov-Smirnov test together with another tests. Adotgg to Union-intersection
principle developed bjRoy(1957) we can write the main hypothesisas an intersec-
tion of partial hypotheseld,, wherer is some set of hypotheses, thaHs= (), H.. On
the other hand, we reject hypothesisf we reject at least one partial hypothesis. On
the grounds of holding significance level of hypothdsiand according to Bonferroni
inequality, for partial hypothesdd. we use significance level* = «/|7|, where|r| is
number of partial hypotheses.

First modification

We know that the minimum of sample from the distributi@ris never lower tham*.
Now consider, that we have sample= (xy, ..., X,) from the uniform distribution. The
minimum of sampleX is greater than or equal & with probability given by

n

PMinX > 6%) = P(vx 2 ") = | [ P(x 2 6") = (1- "),

i=1
which for a reasonable and §* is too small. Moreover, the same idea can be ap-
plied to the maximum of the sample. It leads us to the first fication of one-sample
Kolmogorov-Smirnov test.

In this modification, we use the minimum and the maximum otuapleX. There-

fore, we need to know the critical values of these statisties 6y,;, andomax be the
critical values for these statistics at lewel For the minimum ofX we have

P(MinX < 6min) = 1= PMIiNX > 6min) =1 - (1 = 6min)" = @,

therefored,in = 1 — (1 — o*)¥". The computation for maximum is analogous and we
haves ., = (1 - a*)/". Because we are going to use three tests in one test, we set
a* = a/3. The test of modification one is summarized by the followafgprithm.
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Algorithm 2.2.

1. Compute p-value (denoted bys)pof one-sample Kolmogorov-Smirnov test for the
sample X.

2. Compute the minimum and the maximum of the sample X.
3. The hypothesis H is rejected if and only if:

(minX <1-(1-a")Y" or (maxX > (1 -a*)"") or (ps < @)

Second modification

Distribution functions of the uniform and the alternativstdbutionG are diferent from
0tos and from 1- ¢ to 1. Therefore, we can use one-sample Kolmogorov-Smiresty t
for small values and large values Xfseparately. Moreover, we omit the values from
the "middle” of X.

If 6 in distributionG given by (2.2) is less than or equal to critical value of one-
sample Kolmogorov-Smirnov test,, then the one-sample Kolmogorov-Smirnov test
is biased against this alternative. Hence, as a saiiplee take normalized values &f
which are lower thai, , that is

Xl = {Xi/é(r,n;xi < 6(y,n’i = 1"'-7n}' (26)

Alternatively, we create a sample of "large” values of X frorormalized values oK
which are larger than % 6, ,, that is

Xo ={(1 = %)/0an; X > 1= 06on,i =1,...,nh (2.7)

Such defined sample§ andX; are independent and if the hypothesis is true then both
of these samples have the uniform distribution. Thereforegach of these samples
we can use one-sample Kolmogorov-Smirnov test separdtdgads us to the second
modification of one-sample Kolmogorov-Smirnov test, whiglyiven by the following
algorithm.

Algorithm 2.3.

1. Compute p-value (denoted bys)pof one-sample Kolmogorov-Smirnov test for the
sample X.

2. Compute p-values (denoted hyj@nd pnay of one-sample Kolmogorov-Smirnov test
for the samples Xand X% given by (2.6) and (2.7), respectively.

3. The hypothesis H is rejected if and only if at least of onthiefe considered tests is
rejected at levelr/3, that is fxs < @/3 OF Pmin < @/3 OF Pmax < @/3.
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Note that sampl&; or X, can be empty with positive probability and therefore one-
sample Kolmogorov-Smirnov test cannot be computed. If fipothesidH is true, then
this probability is equal to (+ §,,)" which is too small (i.e for 850 and@=0.05 it
is equal to approximately.2x10°°). Therefore, we sep-value of empty sample to be
zero.

Third modification

The third modification is similar to the second modificatiohhe only diference is
that in this modification, sampleXs; and X, are joined together and there is created
just one samplé<s. If the hypothesiH is true, X; and X, are independent and they
both have uniform distribution and therefoXg as well. Hence, we can apply one-
sample Kolmogorov-Smirnov test on sample The third modification of one-sample
Kolmogorov-Smirnov test is summarized by the followingaithm.

Algorithm 2.4.

1. Compute p-value (denoted bys)pof one-sample Kolmogorov-Smirnov test for the
sample X.

2. Compute p-values (denoted hyigpfor the sample X

3. The hypothesis H is rejected if and only if at least one of ¢eoesidered tests is
rejected at level/2, that is ps < @/2 Or pmix < /2.

Again, if the sampleXs is empty, we sepnix = O.

2.2.4 Power of modified one-sample Kolmogorov-Smirnov tests

Previously, we proposed three modifications of one-samplenkgorov-Smirnov that
should improve this test against the alternateln this section, we performed simu-
lation study, in which we verified if these tests hold nomieakl @ = 0.05 of the main
hypothesiH and we compared their power.

In order to verify if our three tests hold nominal levelwe simulated random sam-
ples from uniform distribution. We set the number of obsgoves n to be 50,100 and
1000. We performed 10000 repetitions and as the estimatvefd we took the pro-
portion of rejected hypotheses between these 10000 siongat From table 2.4, we
can see that all three modifications hold nominal lexel

The power of our three modifications is still questionableerefore, we performed
simulation to compare the power of these modifications. Wesiciered number of ob-
servations1 = 50 and 100, we set paramefee 2,5, 10,50. The last parameter we did
need to set waé. For each setting af andg we set fifty diferent equidistant values of
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K-Stest Mod1l Mod2 Mod3
n=50 | 0.0494 0.0473 0.0490 0.0482
n=100 | 0.0486 0.0449 0.0479 0.0511

n=1000| 0.0475 0.0479 0.0450 0.0480

Table 2.4: Estimate of level = 0.05 of one-sample Kolmogorov-Smirnov test and its
three modifications.

6. Each simulation was repeated 5000 times.

Figure 2.3 shows the results of our simulation. It can be gbabeach of our modi-
fications improves one-sample Kolmogorov-Smirnov testregdhe alternativé. For
n = 50 and eacs the best power has the modification three. rer 100 and3 = 2, the
first modification has the highest power, for largethe third modification has similar
power to the first one.

Let consider another alternative distribution. We assuragdlternative distribution
function increases polynomial between O @arahd between % § and 1. For simplicity,

for x from 0 toé we will considermm-degree polynomidP; withag = ... = a,,., = 0 and
am = B1, Where constarg, is such that polynomidP; satisfies?;(0) = 0 andP4(6) = 6.
For x from 1 - ¢ to 1 we considem-degree polynomiaP, witha; = ... = a1 = 0

andag = y anda,, = 3,, where constantg andp3, are such thaP,(1-¢6) = 1 -6 and
P,(1) = 1. It leads to the alternative distribution function given b

0 if x<O
B1x™ ifO<x<d
Gm(X) =4 X fo<x<l-6. (2.8)
BoX"+y ifl-6<x<1
1 if x> 1

At first, we performed simulation study in order to confirmttbae-sample Kol-
mogorov-Smirnov test is biased against the alterndiiye We setn = 50,100, m =
2,5,10,50,1000, three dferent values ob and we performed 100000 simulation. In
table 2.5, there areflierences between estimates of level 5% for sample having uni-
form distribution and the estimate of power for sample hgwistribution functionG,,
created from these uniformly distributed samples. Eachedé¢ diferences is nonneg-
ative. That acknowledges that one-sample Kolmogorov-4$mitest is biased against
the alternatives,,.

Now we compare the power of our modifications for the alteved®,,, We con-
sidered number of observations= 50 and 100, we set the degree of polynomials
m = 2,5,10,50. For parametaf we took fifty different equidistant values 6f Each
simulation was repeated 5000 times.
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n=>50 n= 100
60=01 6=015 6§=0187|6=0.08 §=011 6=0.135
0.00009 0.00029 0.000710.00000 0.00003 0.00005
0.00003 0.00037 0.000880.00001 0.00005 0.00017
0.00007 0.00023 0.000820.00000 0.00004 0.00017
5
5

10
=50 | 0.00002 0.00029 0.000740.00001 0.00002  0.0001
m=1000| 0.00001 0.00034 0.000930.00000 0.00004 0.0001

Table 2.5: Table of dierence between estimates of leweor sample having the uni-
form distribution and estimates of power for samples havirggdistribution given by
(2.8) by one-sample Kolmogorov-Smirnov test at lavet 0.05.

The results of this simulation for modified tests are in fig2i4. Forn = 50 the
third modification has the highest power. Foe 100 it is hard to say if modification
one or modification three is the best. It dependsmends because lines of power are
crossed for these two modifications.

2.2.5 Some notes on biasedness of two-sample Kolmogorov-Smirnov
test

Consider, thaky, ..., X, andys, .. ., Y are two independent identically distributed sam-
ples having distributions with continuous distributiométionsF andG, respectively.
We would like to test the hypothedit : F = G against the alternativ& : F # G. Then
two-sample Kolmogorov-Smirnov test is based on statistic

Dn,m = sup|lfn(x) - ém(X)|,
X

whereF,(x) andG(X) are the empirical distribution functions BfandG. The hypoth-
esisH is rejected for large values @f, .

At first, we should realize that statistig, , of two-sample Kolmogorov-Smirnov
test has discrete distribution. Therefopeyalues for this test have a discrete distribu-
tion as well. For example, consider the case m = 50. Then the test statistiD,,,
can take just 50 diierent values An, 2/n, ..., 1. For statistidD,, = 0.26 thep-value is
equal to 00678 and for the next valug,,, = 0.28 thep-value is equal to @392. Test-
ing at levela = 0.05 could be a bit confusing because the power of this testistaat
for each valuex € [0.03920.0678). There exists a distributidd such that power of
two-sample Kolmogorov-Smirnov test at levek 0.05 is equal to @45. Such a distri-
bution does not meet requirements of definition of unbiassslfore = 0.05 though the
power of this test is higher than exact level of this test €ua.0392. To precise the
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idea of unbiasedness for tests with discrete test statisiwvill consider just discrete
values of significance level.

It should be kept in mind that the two-sample Kolmogorov-8mmwv test does not
depend on any monotonic transformation of samples. If wesfoam both samples (by
the same monotonic transformation) to samples with digiiob functionsF’ andG’,
respectively then sypF,(x) — Gm(X)| = sup, |Fi(x) - G(X)|. Therefore, without loss of
generality, we assume thitis the uniform distribution given by

0 ifx<O
F(x)=4 x ifO<x<1. (2.9)
1 ifx>1

In Gordon and Klebanoy2010), there was proved that for= m there existsy €
(0,1) such that two-sample Kolmogorov-Smirnov test is unlidaatlevela against
two-sided alternativé # G. If we consider just one-sided alternatives: F < G or
A; 1 F > G we can extend this finding to# m.

Theorem 2.2.2.Let X, ..., X, and y, ..., Ym be independent samples from distribution
F and G. Then for arbitrary yjm € N, there existsr € (0, 1) such that two-sample
Kolmogorov-Smirnov test of hypothesis:H- = G against one-sided alternative A
F<GorA:F >Gisunbiased at levet.

Proof. Without loss of generality, we assume that the first sample ., X, is from the
uniform distribution.

Firstly, we consider only the alternati¥e : F < G. For this alternative, the Kolmogorov-
Smirnov statistic is given by

D;,m = Sup (FAH(X) - ém(X)),

x€(0,1)

whereF, andG,, are the empirical distribution functions BfandG. The hypothesisl
is rejected for small values &, .. Considekr such small, that we reject the hypothesis
H for D equals to minus one. It occurs if and only if the samptes. ., x, and
Yi,...,Ym Satisfy

maxya, ..., Ym) < min(Xy, ..., X,). (2.10)

The probability of this event is given by

1
nf (1-x)"G™(x)dx (2.11)
0
Moreover,G(x) must be monotone ard(x) > x because we consider alternatike :
F < G. Therefore, the function (2 X)"1G™(x) of integral (2.11) attains its minimum

for G(X) = x. This integral represents probability of rejection of hipsis at level
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a If alternativeG is true and it is minimized foF = x = G(x). Hence, two-sample
Kolmogorov-Smirnov test is unbiased at leel

The proof for the alternativé, : F > G is similar. We taker such small, that we
reject hypothesis if and only D, ,, = 1. The inequality (2.10) change to

maxXy, . . ., X) < Min(y, ..., Ym)

and probability of this event is then given by

1
n-1cq m
nL X1 - G(x))"dx (2.12)

For alternativeA, we haveG(x) < x. Hence, integral (2.12) is minimized f@(x) = x.
It proves the theorem. O

The result of this theorem does not mean that two-sample &gtmov-Smirnov test
is unbiased against one-sided alternative. It only sayghieae exists small levet for
which this test is unbiased. In the following theorem we stioat forn # m two-sided
Kolmogorov-Smirnov test is not unbiased against two-sialésnative.

Theorem 2.2.3.Let X, ..., X, be i.i.d from uniform distribution with distribution func-
tion Fandy,...,Yym be i.i.d. from distribution having distribution function.® n # m

then there exists € (0, 1) such that two-sample Kolmogorov-Smirnov test of hypothesis
H : F = G is biased against alternative with the distribution fupati

G(X) = ————. (2.13)
Proof. Considere such small, that we reject the hypotheldisf and only if
Dnm = SUPIFa(X) — Gu(X)| = 1.
X

That is, the samples,, .. ., X, andy;, ... ., ¥, have to satisfy

maxyi,...,Ym) < MiN(Xy, ..., X,) or maxis, ..., X,) < miny, ..., Ym). (2.14)
The probability of this event is given by
1
nf (L= X"G"(X) + X" 11 - G(x))™ dx.
0
SubstituteG(x) by y and let the derivative (according # of function
1"+ XL -y)",
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be equal to zero. It leads us to the equation

X

Y \m1_
" =y

n-1
1-y >
Therefore, the probability of event (2.14) is not minimiZedF(x) = G(x) = x but for

G(x) =

O

Some examples of distribution functions given by (2.13)iafggure 2.5. Although
we found out that two-sample Kolmogorov-Smirnov test issbthagainst alternative
(2.13) we showed it just for very smail Let denote this smallest levelby a;. Then
a1 can be directly computed by

I'(n)I"(m)

r(n+m+1) (2.15)

1
@y = nf (L=X"IX"+ x"1 (1 - x)M dx = 2n
0

wherel(.) denotes Euler gamma function. For example # 10 andm = 11 thena; is
equal to 567x10°.

All previous results are considered for Kolmogorov-Smirrstatistic D, = 1.
Let us consider the second highest value of this statistiot nF> m it is equal to
1-1/nand forn < mitis equal to 1- 1/m, respectively. We denote hy the signif-
icance levekr such that we reject two-sample Kolmogorov-Smirnov teshd anly if
Dnm = max(1-1/n,1 - 1/m).

Firstly, assume that > m > 2 and consider thdD,, = 1 — 1/n. This can occur if
and only if these samples are such that

X1 < --- < Xn-1) <Y < Xn)

or
X)) < Ym < X2 --- < Xn)-

Together with the case whédy, ,, = 1, that isXn) < Y1) Or Ym < Xu), we have thaD,,
is greater or equal to 2 1/nif and only if Xp-1y < Y1) OF Ym) < X). It leads us to the
probability of rejecting the hypothesis at level

PDnm>1-1/n) = P(Yjy; > Xp-1) + P(¥jYj < X2)

1
n(n - 1) f (21— (L - GO
+X(1 - X)"2G™(x)) dx (2.16)

26



As in the proof of the previous theorem (B(x) = y and let the derivative (according to
y) of the integrand of (2.16) equal to zero. It leads to soheedfuation

X

y m-1 _ n-3
(5" =GR
The solutiony as a function ok is given by
()™
y=G6() = —>*—:. (2.17)
1+ (Z)me

Now assume that 2 n < mand consideD,,,, = 1 — 1/m. This can be true if and
only if
Yoy <. <¥Ym1) < Xa) < Ym
or
Ya) < Xn) < Y@ --- < Y
Therefore, the probability of evel,, > 1 — 1/mis equal to

PODhm=>1-1/m) = P(Dym=1-1/m)+P(Dym=1)
= o [ (@ 9E 0 - 6)
+xX711 - G(X)™G(x)) dx
+n j: (L= X"G"(X) + x" (1 - G(X)™M dx (2.18)

As before leiG(x) = y and let the derivative of the integrand of (2.18) accordog be
equal to zero, leading to the equation

Y ym3_, X
(1—_y) 3—(m

)n—l.

Therefore, the distribution function of the most biasedriiation of two-sample Kolmo-
gorov-Smirnov test at level; is given by

(2.19)

Remark 2.2.4.1f n = 3and m= 2 or n = 2 and m= 3 then the most biased distribution
of two-sample Kolmogorov-Smirnov test is discrete distidougiven by probabilities
P(y=0)=P(y=1) =1 or P(y = 3) = 1, respectively.
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ConsiderG(x) = x then levelen, = @7 is given (according to (2.16) and (2.18)) by

ar = ankr(l;](:]-)—m = kCZl, (220)
wherek = min(n + 1, m+ 1). The distribution functions (2.17) and (2.19) &eshaped
(see figure 2.5). Although these distribution functions raweidentical and not equal
to (2.13), some interesting results can be foundn ¥ m = 2 then (2.17) and (2.19)
change td5(x) = x. It means that the distribution which minimizes (2.16) aRd 8) is
uniform distribution. It leads us to the following theorem.

Theorem 2.2.5.Letay, be given byZ.20). If n = m+ 2 or n = m— 2 then two-sample
Kolmogorov-Smirnov test is unbiased at lexg},. However, if n= m andjn — m| # 2
then Kolmogorov-Smirnov test is biased at levgh.

Proof. Because ofv,, = a», the distribution functions of the most biased distribatio
of this test at level, are given by (2.17) and (2.19). Fpr— m = 2 they change
to G(x) = x = F(X). It means that the uniform distribution minimize the prbiity
of rejection hypothesi& = G against alternativé- # G at levela, if and only if
In—m = 2. O

Remark 2.2.6. If [n — m| = 1 then two-sample Kolmogorov-Smirnov test is not biased
against the distribution functions (2.17) and (2.19) atlev;.

Let denote by, the set of distributions for which two-sample Kolmogorowighov
test is biased at level, it is

<, = {G : P(rejectH at levelajalternativeG is true)< a}.

For different levels O< a < a*, one would expect that there is some subset relation
betweens, and.«7,-. However, it is not generally true. According to the theor2&\5
there exisG, such thaG, € .7, andG, ¢ .<Z,-. On the other hand, from remark 2.2.6
we have that there exis®, such thaG], ¢ <7, andG;, € «,.. Therefore, in generaf/,

is not subset of#,- and vice versa.

Previous result can be quite simply generalizedz¢he third smallest) in case of
n > 2mor 2n < m. Adding the probability of the eveD,, = 1-2/mor Dy, = 1-2/n
to the (2.16) or (2.18) leads us to the most biased distohatat levek; given by

Go0 = — ™ ihs o 2.21)
1+ ()%
or 1
()™ .
Gs(x) = — = if m> 2n. (2.22)
1+ (ﬁ) 5



In this casegs is given by

'(n)"(m)

=k
F'(n+m+1) 200

a3z = 2k2n

where .
_ min((m+ 2)(m+ 1), (n+ 2)(n + 1))

2
If n=m+ 4 orm=n+ 4 thenGs(X) = x. Together with conditiom > 2morm > 2n
we have that fon = 6,m = 2 orn = 2,m = 6 the two-sample Kolmogorov-Smirnov
test is unbiased at levek = 3/7 and forn = 7,m = 3 orn = 3, m = 7 the two-sample
Kolmogorov-Smirnov test is unbiased at lewgl= 1/6.

Computing the power of two-sample Kolmogorov-Smirnov testanother relation
of nandmat levelas is not such simple due to the fact that it has to be solved bpléou
integration. Therefore, in such cases, finding the moseblidsstribution is much more
complicated and it is not considered here.

ko

Thea's considered so far are too small in case we have some tetsef@tions in
each sample. Therefore, we performed the following simardab look if two-sample
Kolmogorov-Smirnov test is biased against the distributja13) at levela ~ 0.05.
We set the number of observationdor the first sample b& = 10,20,50,100 and
the number of observations for the second sample ba = 11, 1521 51 101. As
a distribution of the first sample, we consider uniform dittion and for the second
sample, we consider two distributions: the uniform disttibn and distribution given
by (2.13). We performed 10000 repetitions and computed tfierdnce between the
estimate of power if the second sample is from alternatis&idution and the estimated
level a if the second sample is from uniform distribution. The résof this simulation
are in table 2.6. We can see that for all considereciddm the estimate of dierence is
greater than 0. It means that two-sample Kolmogorov-Smaitest is not biased against
alternative (2.13) at levet ~ 0.05 for the chosen parametarandm.

a=5%| m=11 m=15 m=21 m=51 m=101
n=10 | 0.0034 0.0144 0.0320 0.4153 0.7280
n=20 | 0.0291 0.0087 0.0016 0.2784 0.9170
n=50 | 0.4071 0.3403 0.2715 0.0001 0.5291
n=100| 0.9070 0.9189 0.9190 0.4557 0.0001

Table 2.6: Dfference between estimate of power for alternaBvgiven by (2.13) and
estimate of level of two-sample Kolmogorov-Smirnov test.
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2.3 Comparison of power ofN-test,t-test and two-sample
Kolmogorov-Smirnov test

One of the goals of microarray experiment is to finfletiently expressed genes between
two different groups of patients or two stages of some disease. S hiesely related
with two-sample test of hypothesis of equality of distribas of gene expression levels
between these two groups. Therefdxetest and two-sample Kolmogorov-Smirnov test
seem to be useful in such situation. On the other hand, mahygists are interested in
change of mean value of gene expression insteadtefdnce in distribution. Moreover,
log, expressions are considered to have approximately norstaildition, thereforet-
test seems to be useful as well.

One can be interested in which test is the best. Therefor@anfermed simulation
to compare the power dfl-test, t-test and two-sample Kolmogorov-Smirnov test for
some specific alternatives. We set the number of obsergatioeach sample to be
n; = np = 10,20,50,100. We compared samples frad{0, 1) andN(u, 1); logN(0, 1)
and logN(u, 1); U(0, 1) andU(0, 1) + u; N(0, 1) andN(0, o). In each comparison we
considered 10 equidistant valyesndo which differ from case to case.

Results of these simulations are in figure 2.6. We can seeNhast has better
power than two-sample Kolmogorov-Smirnov test in all siatetl cases. If there is a
change only in mean value théitest performs slightly better thaw-test. But if there
is a change in variance (log-normal and normal with changairance cases) they-
test has far better power thaéwest. ThereforeN-test seems to be better thiatest for
samples with dferent covariance structure. On the other haddest is much more
time-consuming thatitest. This fact should be likewise considered in choodiegést
we are going to use.
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Figure 2.2: p-values of one-sample Kolmogorov-Smirnov test of sampes = 50
for uniform and alternative distribution with= 0.187 and3 = 2. In the top row, there
are all p-values for 2000 simulations. In the bottom row, there ar@3l®-values that
changed between sampl¥sandY for these 2000 simulations.
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Figure 2.3: Estimate of power of our three modifications onple having distribution
functionG given by (2.2) with sample size= 50, 100.
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Figure 2.6: Comparison of power dfl-test (black),t-test (red) and two- sample
Kolmogorov-Smirnov test (green) for samples with sampleesing, = np
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Chapter 3

Dependence op-values of gene
expression data

Gene expressions are highly correlated between genesefdrermarginal tests about
genes are dependent as well as tipewalues. In this chapter, we show how histograms
of suchp-values look like and how simple normalization such as propo of gene
expressions can change the structurg-otlues. To do this we udg-test on HYPER-

DIP and TEL data. At the beginning, we consider the case whég@otheses are true.
Hence we use HYPERDIP and TEL data separately and we dividieodditem into two
halves. Thereafter, we consider cases when some hypott@sdxe false. Hence we
considerp-values ofN-test between genes of HYPERDIP and TEL data. We show that
this normalization has large impact pavalues. Results of this chapter were published
in Bubeliny(2008).

3.1 All hypotheses are true

Firstly, we consider only HYPERDIP data. We divide these diatta two halves and
construct two samples for each gene consisted of 44 slidesi$& up to 44 slides for
the first sample and the remaining 44 for the second samplel).e&ch gene, these
samples are from the same distribution with distributionclion G, i = 1,...,7084.
To emphasize the equality of distributions of these two damfor each gene (that
is, the hypothesis about equality of distributionigh gene is true) we will write this
hypothesis likeH/ : G = GM.

If gene expressions were independent between themsdhegsvalues for testing
true hypothesesl’ : G = G, i = 1,...,7084 would have uniform distribution. In
figure 3.1, we can see that the histogranpefalues forH has an obvious peak in the
top about 0.85 and it is very fiierent from the histogram of random variables having
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uniform distribution. It confirms thap-values are dependent.
Let us show how simple normalization, such as proportioreokgexpressions, can

HYPERDIP TEL

1500

Frequency
1000

Frequency
0 200 400 600 800
500

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

p-value p-value

Figure 3.1: Histograms op-values for true hypotheses for one kind of childhood
leukemia. The left histogram is for HYPERDIP data, the rigistdgram is for TEL
data.

help. We create random variablﬂlﬁ = Xoij/%2i-1jy ] =1,...,44 andnﬁk = Xoi k/ X2i-1k»
k=45,...,88. Foreachfixed=1,...,3542 these variables have the same distribution
(denoted byG). Our goal is to test true hypotheses

H': G =G foreachi =1,...,3542

simultaneously. From the histogrampmf/alues for these hypotheses (figure 3.2, the top
left one) we can see that this histogram hakedent shape from previous one. There are
almost equal columns and there is not a significant peak aastimvprevious situation.
Therefore, this histogram looks very similar to the histogrof sample from uniform
distribution.

Klebanov et al(2006) found out a new type of dependence, called type A depen
dence, which appears in microarray data. keindy be gene expression levels for
geneg, andgy, respectively. We say that paigy gy) is type A if x andy satisfy the
conditiony = xz wherezis a positive random variable stochastically independent o
X. Log, transformation of type A dependent random variables giveX¥Z, where
Y =log,y, X = log, xandZ = log, z. According to independence a&fandz we have
that VarY > Var X. Hence, this type of dependence is not symmetric.

The idea of type A dependence leads us to construct sortedrfhig to their vari-
ance)n random variables. To distinguish unsorted and sortedndom variables,
we add the indess to these variables. Therefore, we can defifie= X j/Xai-1),,
j=1,...,44 andarﬁﬁ = Xaiyk/Xei-1k K = 45,...,88 and for fixedi we denote the

distribution function ofrs by G, which is the same as the distribution functiomg,
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Figure 3.2: Histograms op-values for true hypotheses of one kind of childhood
leukemia forr random variables (the top row for HYPERDIP data, the bottom ro
for TEL data). From the left to the right we consider hypotdsd™ : G* = GT for
unordered proportions of gene expressidﬂ(@f,: Gfs = Gfs for ordered proportions of
gene expressions according to variance of gene expresamhaccording to variance
of gene log-expressions.

wherexy ; = X; andl is the index of gene witlk-th largest estimate of variance of
expression levels. The histogrammialues for hypotheses

HT: G =Gl i=1....,3542

is on the figure 3.2 (the top middle one). We observe a smatigidig-values are much
lower (columns at the beginning of the histogram are highan tfor p-values greater
than 0.2). However, this fference is not as dramatic as it was in previous comparison.

According to the type A dependence we can order genes bygingithem in in-
creasing order of estimates of variances of geng-éogressions. We create sorted
n random variables as in previous situation but witifedient ordering of genes. The
histogram ofp-values for hypotheses

H”: G =Gr, i=1,...,3542

for this ordering is on the figure 3.2 (the top right). We caa st this histogram looks
a little better than the previous one and it is very similathi® histogram for unordered
data. Therefore, this ordering seems to be better thaniogley variance of gene
expressions.
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We can proceed the same way for TEL data as it was done for HY FER&a. We
divide TEL data into 39 and 40 samples. Histogramgamlues of gene expressions for
TEL datais given in figure 3.1. Histograms for all three ditoras forr random variables
are on the figure 3.2 (the bottom row). Histogranpefalues for gene expressions from
TEL data has a peak about 0.25. All histogrampafalues forr random variables of
TEL data are similar ta random variables of HYPERDIP data.

All previous histograms indicate thatrandom variables are far less correlated than
gene expressions. It proves that normalization could make gxpression data more
workable.

3.2 Some hypotheses are false

So far, we only considered the situation where all testingofiyeses were true. Now
we would like to know how the situation change if there are edalse hypotheses.
Therefore, we take HYPERDIP and TEL data for childhood leukeimgether. We are
interested in testing which genes aréelientially expressed. It means that we would
like to test hypotheses

Hi : G = G/ foreachi = 1,...,7084

simultaneously. Histogram g#-values for these hypotheses is on the figure 3.3. We
can see that there are 493 hypotheses witlalue less than or equal to 0.05. If we use
Bonferroni inequality to decide which genes aratientially expressed at level= 5%

we reject 111 hypotheses (critical valu«%%%,).

It was shown in the previous section thaandom variables were far less dependent
between genes than gene expressions of HYPERDIP data anéxymessions of TEL
data. Therefore, as before we can define resandom variableﬁif'j = X@i).j/ X@i-1),j
and ﬂi-l,-l = y(2i),l/y(2i—1),|a i =1,...,3542, ] =1,...,88andl = 1,...,79. We can
use unordered genes or we can order them as well. The probléow we should
sort the genes. There are some reasonable solutions. Weatahbydarranging them
in increasing order of estimates of variances of gene exjmes in HYPERDIP data,
in increasing order of estimates of variances of gene egfmes in TEL data or in
increasing order of estimates of variances of pooled HYPERIDId TEL data. Because
of type A dependence we can use all three ways of genes ogderaording to estimates
of variances of gene lgeexpressions, too. We set all these options and estipate
values for hypotheses

H™: G =Gfj, i=1,...,3542

WhereG’(’i)H andG’(TJ are distribution functions of; random variables from HYPERDIP
and TEL data, respectively, created from unordered gené&®mr one of considered
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HYPERDIP-TEL: p-values of gene expressions

Frequency
200 300 400
1 1 |
|

100
1

o 4

0.0 0.2 0.4 0.6 0.8 1.0

p-value

Figure 3.3: Histogram op-values of testing equality of gene expressions between HY-
PERDIP and TEL data.

proposals of ordering of genes. Histogrampevalues for unordered genes is in figure
3.4. Histograms for ordered genes are very similar to thoseifiordered genes and
they can be found in the supplement of this work. It can bersing that there are a lot
of p-values (much more than in the previous situation) less traequal to 0.05 (it is
about 43% of all). The number of rejected hypothese& f@ndom variables according
to Bonferroni inequality at significance level= 5% (critical value isgs—ffz) are in the

table 1 (the top row).
One can say that there is a bigfdrence in what we tested. In the first case,

HYPERDIP-TEL: p-values of proportions

Frequency
500 1000 1500

0

0.0 0.2 0.4 0.6 0.8 1.0

p-value

Figure 3.4: Histogram op-values of proportions of gene expressions for unordered
genes.
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we tested 7084 hypotheses, one hypothesis for each genm that second case we
had 3542 hypotheses, one hypothesis for two genes. Bebktess is constructed for
testing random vectors too, we can make 3542 non-overlgggairs of genes and test
if the joint distributions of these pairs of genes are theeséon HYPERDIP data and
TEL data. Therefore, we are interested in simultaneouslyng hypotheses

D .
H? : (G{i_1) Giaiy) = (Glai-1)Glz)) 1 =1,...,3542

WhereGFj) is the distribution function of gene expressions for j-tingéor HYPERDIP
data andS(Tj) is the distribution function of gene expressions for j-timgéor TEL data.
We consider 7 types of ordering as before. The first one isowitbrdering, three cases
are obtained by arranging estimates of variances of genessipns for HYPERDIP
data, for TEL data and for pooled data in increasing ordere [Eist three cases are
obtained by arranging estimates of variances ofJepressions for HYPERDIP data,
for TEL data and for pooled data in increasing order. Hisaagiof p-values for hy-
pothesed? for pairs of unordered genes is in figure 3.5. Histogramsesponding to
ordered pairs are similar and they can be found in the suggleof this work. We can
see that this histogram is similar to the histogram for geqpeassions from figure 3.3.
The number of hypotheses we reject according to Bonferraumjuality are in table 3.1
(the bottom row). Their amount is far fewer than ferandom variables. Therefore,
we can say that it is not the number of hypotheses (or how manggwe use in one
hypothesis) but the manner of using gene expression levetesting hypotheses that
dramatically change the shape of histograms and the numbejeoted hypotheses.

HYPERDIP-TEL: unsorted pairs

200 300 400
1 1 |

Frequency

100
1

0.0 0.2 0.4 0.6 0.8 1.0

p-value

Figure 3.5: Histogram op-values for pairs of gene expressions for unordered genes.
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order unordered, HYP TEL H-T || log-HYP log-TEL log-H-T
proportions 626| 665 751 656 604 643 595
pairs 94 80 91 78 73 88 62

Table 3.1: The number of rejected hypotheses according tdeBomi inequality at

significance levelr = 5% for all 7 types of ordering. The top row is farrandom
variables, the bottom row is for pairs of gene expressions.
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Chapter 4

Multiple testing procedures

Gene expression data usually consist of thousands of g&tasstician working with
such data often needs to test a lot of hypotheses simultalyectherefore, there is a
need to use some multiple testing procedure that provigestian regions for each of
the hypotheses and guarantees controlling of predefinethleWhe goal of this chapter
is to make an overview of fferent type | error rates, fiierent types of power and mul-
tiple testing procedures. Many procedures rely on indepecel or special dependence
structure ofp-values or test statistics. For gene expressions, it is ifhi@wlt to verify
such dependence due to strong correlation between geneefdie, in this chapter we
introduce only such multiple testing procedures which aatredefined levek for ar-
bitrary test statistics joint distributions. A wider oveaw of multiple testing procedures
is presented for example Dudoit et al.(2003) orDudoit and van der Laa2008). At
the end of this chapter we compardeient multiple testing procedures.

4.1 Basic notes

Consider, that we want to teM hypotheses simultaneously. In any testing problem,
two types of errors can be committed. The first type, callge tyerror or false positive,
occurs if we reject true hypothesis. The second type, céieel Il error or false nega-
tive, occurs by non-rejecting false hypothesis. Ideallg,would like to minimize both

of these errors. However, it is not possible. Therefore, axeho make some tradéfo
between these types of errors. Typically, this is done bymiiing type Il error subject

to type | error constraint. A multiple testing procedureafes which hypotheses to
reject, while controlling some type | error rate. Similasiogle hypotheses testing, we
can represent results of multiple testing procedures fon @M hypotheses in terms
of confidence intervals for parameters of interest, rejactegion for the test statistics
and adjustegb-values. Adjusteg-values of multiple testing hypotheses are straightfor-
ward extensions of unadjustgavalues of single hypothesis testing. Adjusiedalue
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for i-th hypothesis, denoted lyy, is the smallest nominal type | error level of multiple
testing ofM hypotheses at which we reject this hypothesis. The hypstiesejected

if adjustedp-value is lower or equal to the type | error rate The smaller the adjusted
p-value, the stronger the evidence to reject hypothesis.

Let H denote the set of true hypotheses and consider that the mwhbee hy-
potheses i$, that is|H| = h. Likewise, letA denote the set of false hypotheses, then
| Al = M —h. Special case, when all hypotheses are thue M), is called complete null
hypotheses. Usage of multiple testing procedure givesausdhof rejected hypotheses
R and the set of non-rejected hypothe®s ThenR N H creates a set of false posi-
tives (type | errors) an®° N A a set of false negatives (type Il errors). The situation is
summarized in table 4.1, where

¢ the number of rejected hypotheseR = |R],

the number of false positives or type | errorg = |R N H|,

the number of false negatives or type Il errots = |R° N A,

the number of true negatived¥ = |R° N H|,

the number of true positivesS = |[R N Al.

Remark thath anda = M — h are unknown parameters, the number of rejected hy-
pothesefR is observable random variable aBdU, V andW are unobservable random
variables.

Not rejected Rejected )y

True hypotheses w \ h
False hypotheses U S a=M-h

z M-R R M

Table 4.1: Summary of ffierent types of decisions and errors in multiple hypotheses
testing.

We call a multiple testing procedur®l monotone if for all vectors op-valuesp
andp’ such thapp < p’ (p < pf; i = 1,..., M) the number of rejected hypotheses ac-
cording top is greater than or equal to the number of rejected hypotresEsding to
p’, that is|R(p)| = |R(p’)|. The procedure is said to be cutting whenever the procedure
rejects some hypotheses then they are those with the stnaNedues. LetM and M’
be two multiple testing procedures. Followi@prdon(2011), we say that a procedure
M’ dominates a proceduyel, if for any vector ofp-valuesp we haveR ¢ (p) 2 Rum(p),
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that is M’ rejects all hypotheseld; rejected byM (and maybe some others). In this
case, we writeM’ > M. LetC be a class of procedures and fet € C. We say that

M is the most rejective (or optimal) i@ if M > M’ for all M € C. M s said to be
unimprovable (or weakly optimal) i@ if the relationsM’ € C and M’ > M imply that

M’ = M. Note that procedurest and M’ may be incomparable, i.e., both relations
M = Mand M = M’ may be false. In particular, a class may contain more than one
unimprovable multiple testing procedure. The most reyeatiultiple testing procedure

in the class, if it exists, is unique.

When testing multiple hypotheses there are many definitiong/pe | error rates.
The commonly used type | error rates are:

o family-wise error rate FWER= P(V > 0),
e generalized family-wise error ratggFWERK) = P(V > k),
e per-comparison error rateRCER= &Y,
e per-family error rate PFER=EV,
« false discovery rateFDR = E¥ (=0 if R = 0).
Notice, thatF DR can be rewritten as

_v__
maxR, 1)
Therefore,FDR < FWERand especially for completely null hypotheses all rejected

hypotheses are type | errof/R = 1 and therefor&eWER = FDR. From Markov’'s
inequality (A.2), we have

FDR=E = E(%lR > 0)P(R > 0).

1 1
gFWERK) = P(V 2 k+1)< i ——EV = ——PFER

and specially fok = 0 we haveFWER< PFER Moreover,

EV 1
i=0 i=1

Overall, we have®’CER< FWER< PFERandFDR < FWER It means, that multiple
testing procedure controllingW ERgenerally results in fewer rejected hypotheses than
multiple testing procedure controllifgDR or PCER

The most useful type | error rates for gene expression dat&AERand FDR.
Although inequalityF DR < FWERNholds, each type | error means somethingedent
(has diferent interpretation) and we cannot say that one is betser tihe other. The
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correct choice of type | error rate depends on a situatddR generally results in more
rejected hypotheses and therefore in finding more trueipesithanFWER On the
other hand, if each type | error costs us a lot (money or hunfi@n then it is better to
useFWERcontrol instead of DR-control.

Similarly, there are many definitions for power of multipésting procedures, for
example

the probability of rejecting at least one false hypothegisyPwr= P(S > 0),

the probability of rejecting all false hypothese&llPwr = P(S = M - h),

the average powerAvgPwr= %

true discovery rate¥ DR= EZ(= 0 if R=0).

Usually, there are two main types of multiple testing prased, single-step and
stepwise procedures. In single-step procedures, eachiieg® is tested using a rejec-
tion region, which is independent on the results of testslwéiohypotheses. In stepwise
procedures, the decision to reject a particular hypotraegiends on the results of the
tests of other hypotheses. There are two main classes @fiseeprocedures, step-down
and step-up procedures. In step-down procedures, the igogficant hypotheses are
considered successively (for example in increasing orfiéner p-values). As soon
as one hypothesis is not rejected, all less significant ingsats are not rejected too.
In step-up procedures, the least significant hypothesesoagdered successively (for
example in decreasing order of th@ivalues). As soon as one hypothesis is rejected,
all more significant hypotheses are rejected too.

4.2 Multiple testing procedures for controlling FWER

Bonferroni procedure

Perhaps the best known multiple testing procedure is BamieproceduréBonferroni
(1936). This procedure rejects any hypothesis with the juséetip-value less or equal
to the cut-df @ = a/M. The set of rejected hypotheses is

. 1
R@) ={i:p < Ma}.
The corresponding adjust@evalue fori-th hypothesis ig;™= min(Mp;, 1),i = 1,..., M.

Theorem 4.2.1. Bonferroni procedure controls FWER at lewelfor arbitrary test
statistics joint distributions, that is® > 0) < a.
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Proof.

P(V > 0)

PO I(p S%a)>0)

ieH

- p(U M
1

ieH

2, PP < 5a)

ieH

h

< Maga,

IA

where the first inequality results from Bonferroni inequa(ié.1) and the second in-
equality results from inequality (A.3). |

Although this procedure is generally considered®$E Rcontrolling multiple test-
ing procedure, it controls mean number of false discovéRPEER) at levela as well,
because

EV

1 I
NI
- M
) —_
p ——
n =
| IA
N |

= —a<ua.

Bonferroni procedure is often considered as very conseevptocedure. However,
we can look at this procedure as a step-up procedure as welbrdingGordon(2007)
this procedure is unimprovable in the class of monotone speprocedures controlling
FWER

Holm procedure

Bonferroni procedure is simple to implement but it tends tddmeconservative. Im-
provement in power can be achieved by step-down Holm praeddinim (1979) which
is step-down analogue of classical Bonferroni procedurethit loss of generality,

consider that the indexes, . .., ry are such thaprl <...< pry- Then, the unadjusted
p-values cut-@s for this procedure are;, "= = 10/ the set of rejected hypotheses is
given by
1 .
Rl@) ={ri:pn s 72 1<)

and the corresponding adjustpealues are given by,” = maxc.i__, (min{(M — k +
Dp,,1}),i=1,...,M.
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Theorem 4.2.2.Holm procedure controls FWER at levelfor arbitrary test statistics
joint distributions, that is BV > 0) < a.

Proof. Consider, that we have = |H| true hypotheses. If Holm procedure rejects at
least one true hypothesis, then

. 1
minp; < ap- = —q.
it pl M-h+1 h

Thus, we have

P(V > 0)

IA

P(riggl Pi < &M-h+1)

= P(U{pi < @m-hs1))

ieH

Z P(pi < am-ns1)

IA

A
\g
S
T
z

where the second inequality results from Bonferroni ineiggéh.1) and the third in-
equality results from inequality (A.3). O

In Gordon and Salzma(2008), there was proved that Holm procedure dominates
all monotone step-down procedures controllify ER The following example shows
that the step-down condition cannot be removed.

Example 4.2.1.Let M be a procedure with unadjusted p-valugs.p, pm which rejects
all hypotheses, ifijp< a for all i, and accepts all hypotheses otherwise. This procedu
is monotone and controls FWER at level Nevertheless, the relatiomM > Holm is
nottrue: ifp=c(@/m<c<a),i=12,...,m, thenM rejects all hypotheses, while
Holm procedure rejects none.

Although Holm procedure does not dominates all monotonegatores controlling
FWER Gordon inGordon (2011) showed that this procedure is unimprovable in the
class of monotone multiple testing procedures controlfiWgER

4.2.1 Comparison of Bonferroni and Holm procedure

Bonferroni procedure is considered to be too conservativeweder, we know that
this procedure is unimprovable in the class of monotone-gpeprocedures controlling
FWER The step-down improvement of this procedure is Holm praoedWe know
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that this procedure is unimprovable in the class of monotondiple testing proce-
dures controlling=W ERand dominates all monotone step-down procedures congolli
FWER Hence, there cannot exist procedure which improves Hobmeamure among
procedures controllingfW ERat the same level. Holm procedure is less conservative
than Bonferroni procedure. In the following simulation, wargpared the dierence
between these two procedures.

We simulated (according to algorithm B.1) two independenisas of genes hav-
ing multivariate normal distributions. We considered eéhdéferent values of correlation
codficientp equal to 0, 0.5, 0.9. We set the number of ganés be 300, 500 and 1000.
The number of observatiomsin each group was equal to 20 and 50. For the number
of differentially expressed gen&swve considerek = m/20,m/10,m/5. We consid-
ered two alternatives for flerentially expressed genes. In the first alternative, theenme
value of diferentially expressed genes was shifted about conSténe considered 30
equidistant values depending on setting of parameterg midan value of dierentially
expressed genes in the second alternative was creatkdlibyensional vector of i.i.d
random variables havin§y(C, 1) distribution. To compute unadjust@evalues for each
gene we usetttest. According to Bonferroni procedure and Holm procedueeesti-
mated the average powé&iwW ERandPFERfrom 5000 repetitions.

Adjustedp-values of Bonferroni procedure are always less or equahtalues of
Holm procedure. Therefore, estimates of poviidl/ ERandPFERof Holm procedure
cannot be smaller than estimates of povwl/ ERandPFERof Bonferroni procedure.
Results form = 500,n = 50 andp = 0.5 are in figures 4.1 (alternative one) and 4.2
(alternative two). Complete results of this simulation arthie supplement of this work.
We can see that theftierences between estimatedsa ERand PFERfor Bonferroni
procedure and Holm procedure are very small, especiallgrf@llx andk. Hence, we
can say that conservativeness of Bonferroni procedure is mesult of simplicity of
this procedure but it comes from the principle of multiplstieg procedures. Moreover,
lines of estimates of average power for these two procedueesverlapped in all cases.
Therefore, we will not sfier from lack of power if we use Bonferroni procedure for
controlingFWER

HYPERDIP and TEL data

In case of simulations, we showed that results of Bonferradildolm procedure are
almost equal. Now we compare these two procedures forttagsformation of HY-
PERDIP and TEL data. If we compute adjusfeslalues oft-test for according to these
procedures we find out that there is just 116 (Bonferroni poce) and 118 (Holm
procedure) adjustep-values are lower than 1 and 71 (for both cases) lower thah 0.0
It confirms that both Bonferroni procedure and Holm procedeael to very similar
results in deciding which genes ardfdrentially expressed and which are not.
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Figure 4.1: Comparison of Bonferroni and Holm procedure ftarahtive one anch =
500,n = 50 ando = 0.5.

4.3 Multiple testing procedures for controlling gFWER

Lehmann-Romano procedures

In van der Laan et al(2004), they showed that afyW ERcontrolling procedure can
be straightforwardly augmented to control tiieW ERK). But such procedures are too
conservative.

In Lehmann and Roman@005), they generalized Bonferroni procedure and Holm
procedure to control generalized family-wise error rgk@NVERK) = P(V > k). This
generalization of Bonferroni procedure, called singlggdtehmann-Romano proce-
dure, rejects any hypothesis with the unadjuspedalue less or equal to the cuffo

a = kﬁla/. That is, the set of rejected hypotheses is given by

Rla,K)={i:p < k-'-vla}

and the corresponding adjustedialues are thus given by min(X4-p;, 1),i = 1,..., M.
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Figure 4.2: Comparison of Bonferroni and Holm procedure feerahtive two and

m = 500,n = 50 ando = 0.5.

Theorem 4.3.1.Single-step Lehmann-Romano procedure controls the gFR)ER
levela for arbitrary test statistics joint distributions, that B(V > 0) < a.

Proof.

PV > (k+ 1))

1

e O ERa)
ieH

< —EV
- k+1
1
k+1 £
1
e DNCE
k+1;
1 k+1
< —



where the first inequality results from Markov’s inequa(#y2) and the second inequal-
ity results from inequality (A.3). O

Note, that fork = O single-step Lehman-Romano procedure coincides with Bonfer
roni procedure.

The second Lehmann-Romano procedure, called step-downdreirRomano pro-
cedure, is the generalization of Holm procedure. As for Hptotedure, without loss of
generality consider, that the indexgs. .., ry are such thap,, < ... < py,. Then, the
unadjustedp-values cut-fs for the step-down Lehmann-Romano procedure are given
by

Gy = { "ﬁla ifi<k

k+1 T
Mrk+ 1 & ifi >k,

the set of rejected hypotheses is given by
R(a/’ k) = {rl : pl’| S a’l’| VI S I}

and the adjusteg-values are given by

_ :{ min{ 2% pr,, 1} ifi <k

i maxX.y,_ji(min{¥=p. 1)} if i >k

.....

Theorem 4.3.2.Step-down Lehman-Romano procedure controls the gFik)ERevel
a for arbitrary test statistics joint distributions, that BV > k) < a.

Proof. Consider, that we havgH| = h true hypotheses. Fdr < k, the probability
of at leastk + 1 false positives is equal to zero, thatR§vV > k) = 0, so there is
nothing to prove. Therefore, assume that k. Order p-values of true hypotheses
and denote them by <,...,qn. Let j be the index ofK + 1)-th ordered unadjusted
p-value of true hypotheses, thats = 1. Then, the following inequalities hold

k+1<j<M-h+k+1andwe have = M+kk++11_j“ < ¥1g. Hence,

- k+1

IS Mikr1-j”
k+1

P(ijTa)

k+1

TQSQ’,

P(V > k)

A

P(p )

IA

where the third inequality results from inequality (A.3)dathe last inequality results
from assumption that > k + 1. O

Note, that fork = 0 step-down Lehman-Romano procedure coincides with Holm
procedure.
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4.4 Multiple testing procedures for controlling FDR

Step-up Benjamini-Yekutieli procedure

In Benjamini and Yekutieli2001), they proposed step-up Benjamini-Yekutieli proce-
dure which controls false discovery raf®R = E% at level« for test statistics with
arbitrary joint distribution. Without loss of generalitprsider, that indexes, ..., ry

are such thapy, < ... < pr,. Then, the unadjusteg-values cut-f's for the step-up
Benjamini-Yekutieli procedure ar@, ™= ;—a,i=1,..., M, whereCy = it 3. The

set of rejected hypotheses is given by

R(@) = {r; : Al > i such thatp,, < al.

|
M Cwu

i=1...,M.

Theorem 4.4.1. Step-up Benjamini-Yekutieli procedure controls FDR atley for
arbitrary test statistics joint distributions, that isﬁ% <a.

Proof. Proof is not as straightforward as previous ones, theréf@g@®mitted. It can be
found in section 4 of original work dBenjamini and Yekutie(2001). O

In Benjamini and Hochber{l995), they proved that the const&hj can be omitted
for some special joint distributions of test statistics.

4.5 Empirical Bayes

An alternative way of dealing with multiple testing of hypeses is considered Efron
(2003). It is based on empirical Bayes approach developeddniétit Robbins in his
paperRobbing1964). This approach is closely relatedRDR.

Let us consider to have test statisti¢si = 1,..., mfor each ofm hypotheses. A
very simple Bayesian model assumes that we have two clasgemnes: dierentially
expressed genes (ferent”) and non-dferentially expressed genes ("nortkdrent”)
between two groups of observations. Let the prior probiaslifor these two classes be
p. andpg with corresponding prior densitidg(y) and fo(y) for statisticY. Let f(y) be a
mixture densityf(y) = pofo(y) + p1fi(y). From Bayes’ theorem, we have the following
posterior probabilities:

P(Y = yinon-diferentP(non-diferent)  pofo(y)

Po(y) = P(non-diferentY =y) = PY =) =)
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and
P(Y = yjdifferentP(different) 1- Po fo(y)
P(Y =Y) fiy)
We conclude gene asftikrentially expressed, if its posterior probabilgy(y) is
greater than or equal toda.

Since there are too many unknown parameters we cannot aeddhke exact value
of p1(y). Therefore, it will be estimated by

p:(y) = P(differenty =vy) = 4.1)

Po fo(y)

fy)
where po, ﬂ,(y) and f (y) are estimates opg, fo(y) and f(y), respectively. Now we
describe three flierent possibilities of estimating, fo(y) and f(y).

The first and the simplest proposal is considereBfion (2003), where the density
f(y) is estimated by Poisson regression from histogram coun¥datistics. As an
estimate offy Efron took density ofY-statistics in case all hypotheses are true. For
example, if we use-test thenfy will be estimated by density afdistribution with
corresponding degrees of freedom. Another unknown pasnethe probability of
gene being non-tlierent. As an estimate of this probabiliy we take

Po = myin{ f(y)/ fo(y)},

Pa(y) =1-

which is the most conservative estimate, that makes all diséepor probabilities (4.1)
nonnegative.

The second proposal is consideredBfron (2004). In his paper, Efron worked
with z-values instead of th¥-statistics. Assume that farth hypothesis = 1,...,m
we have corresponding-value p;. Thenzvalue for this hypothesis is defined ay=
®~Y(p;), where® indicates the distribution function of standard normatriisition. If
i-th hypothesis is true, them ~ N(0O, 1). As previously, we can estimate mixture density
f(2) = pofo(2) + p1fi(2) of zvalues by Poisson regression from histogram counts of
values and a$(2) we can take density dfi(0, 1).

In Efron’s paperEfron (2004), there is also considered another estimatg ¢ive
will call it as the third proposal of empirical Bayes appropach comes from the idea
that z-values of non-dferent genes are concentrated in the peak of histogram of
values. Therefore, as an estimdgeEfron takes density dfl(uo, o3), where

po = argmaxf(2)}
and
d? P!
oo=1[- a2 log f(2)],; -
In this work, we use Poisson regression (with polynomialixthsdegree) on his-
togram counts of 50 columns.
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4.5.1 Comparison of empirical Bayes approaches
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Figure 4.3: Estimate of PowefWER PFERandFDR by three empirical Bayes ap-
proaches for the number of genes = 300, the number of dirent genek = 15,
the number of observations in each gromp= 20 and for correlation cdgcient
p=0,05,0.9.

In order to compare three empirical Bayes approaches werpetbsimple simu-
lation. We considered two independent samples of genes angsed these empirical
Bayes approaches in order to decide which genes wéazelitially expressed between
these groups. These two groups were created byntvdimensional random samples
having normal distributiomNm(0, £) andNm(uy, X), whereu, had the firsm—k elements
equal to 0 and the othekzlements equal to, that is

=(0,...,0,u,....,u)".
uy = ( My s i)

m-k k

In this study, the parametgrchanged from 0.05 to 1.5 (by step 0.05). The covariance
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matrix ¥ was given by

1 p p -.op
p 1 p p
= R B
p .. p 1 p
o ... ... p 1

where we sep to be 0, 05 and 09. The data with such correlation structure were sim-
ulated according to algorithm (B.1). The sample sizes wetréose = 20, 30,50, the
number of genes was equalno = 300 500, 1000 and the number of fierent genes
werek = 15,30,60. Each simulation was repeated 3000 times. We estimagealver-
age powerFWER PFERandFDR of considered three empirical Bayes approaches.
Results of this simulation fan = 20, m = 300 andk = 15 are in figure 4.3. The whole
results of this simulation can be found in the supplemenhisfwork. For independent
genes, the power of each empirical Bayes approach is sinmit@ second proposal has
the most stable estimate BFERandFDR. Therefore, this proposal seems to be the
best for independent genes. The results for dependent geaaliferent. Although
the first proposal seems to have the best power, the estimbRISERand FDR are
very high what makes this proposal inapplicable. The thiappsal hold$=DR for all
setting and it has low estimate BFER Therefore, we should use the third empirical
Bayes approach for dependent genes.

HYPERDIP and TEL data

If we used three considered empirical Bayes approaches tala&s we would find
that we reject almost all hypotheses. This fact is causedeoy unreal estimates of
Po. For log transformation of HYPERDIP and TEL data, these prior prolitéds of
gene not to be dierentially expressed are estimated to be lower thd@d1. Therefore,
we use much realistic estimate of this probability. Wegixto be 0.9, 0.95 and 0.99.
These setting cause some estimatep.0f) to be negative. Hence we changgy) to

be Pa(y) = max(Q 1 - B202),

Now we can find which genes arefidrentially expressed according to empirical
Bayes approach. The results are in table 4.2. We can see ¢hthitd approach of
empirical Bayes has the best power (about three times gribatethe other approach-
es). Moreover, the set offierentially expressed genes founded by the first approach is
subset of dierentially expressed genes founded by the second approaicts subset

of set of diferentially expressed genes founded by the third approach.
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EB1| EB2 | EB3
Po=0090| 85 | 112 | 320
fo=095| 81 | 111 | 317
Bo=099| 80 | 110 | 311

Table 4.2: Number of rejected hypotheses for HYPERDIP and d&h by empirical
Bayes approach at significant levek 0.05.

4.6 Comparison of multiple testing procedures

FDR controlling procedures are generally considered to preduaore true positives
thanFWERprocedures. Therefore, we performed simple simulatiorrdeioto com-
pare Bonferroni procedure, Benjamini-Yekutieli procedunel @mpirical Bayes ap-
proaches. In the following simulation, we did not use alkethempirical Bayes ap-
proaches. According to previous results, we used the sepoygbsal of empirical
Bayes for independent genes and for dependent genes we @estdrthapproach of
empirical Bayes.

In this study, the data were simulated as follows. We comealevo independent
samplesX = (X, ..., X)) andY = (yi, ..., Yn) havingm-dimensional normal distribution
Nim(x, =) andNmp(uy, X). For simplicity, we consideregdy = (0, ...,0)" andu, such that
it had the firstm — k elements equal to 0 and the oth&rslements equal tp. More-
over, we took equal covariance matrix for both samples widtgaohal elements equal
to one and non-diagonal elements equal.téVe set the number of genasto be 300,
500 and 1000. The correlation dbeientp was set to 0, ® and 09. The number of
different gene& was set to be 5%, 10% and 20% from the total number of genes. The
shift parameten changed from 0.05 to 1.5 (by step 0.05). The number of obsensa
in both samples were set to be 20 and 50. Each case was sich8G06 times and we
estimated average powéWER PFERandFDR.

In figure 4.4, there are results of simulation for correlat@éticient p equal to
zero form = 300, n = 20 (the rest of results fgp = 0 are in the supplement of
this work). As we can see, that the second proposal of emapiBayes has slight-
ly greater power than Bonferroni and Benjamini-Yekutieli gedures, but it produces
more false positives as well. Benjamini-Yekutieli proceslisrmore powerful than Ben-
ferroni procedure (except of small m andk). Bonferroni procedures is the only one
procedure, which controBWERandPFER (andFDR as well), but empirical Bayes
and Benjamini-Yekutieli control& DR for eachu and they produce acceptable number
of false positives. Results for correlated data amg 300,n = 20 are in figure 4.5
and figure 4.6 (the complete results are in supplement ofwbi¥). They show that
the third approach of empirical Bayes has far better power tither two considered
procedures. Although empirical Bayes hokBR, the number of false positives is too
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Figure 4.4: Estimate of PoweFWER PFERandFDR by Bonferroni procedure, by
Benjamini-Yekutieli procedure and by the second proposahapirical Bayes approach
for the number of gene®s = 300, the number of observations in each graup20 and
for correlation coéficientp = 0.

high in comparison with the other two procedures. Benjadakutieli procedure has
better power than Bonferroni procedure. However, it seeniettno conservative for
controlling FDR. Therefore, it is reasonable to use third approach of eogliBayes

instead of Benjamini-Yakutieli procedure for controllifdPR in gene expression data.

HYPERDIP and TEL data

Results of Bonferroni procedure and empirical Bayes approaciog, transforma-
tion of HYPERDIP and TELL data were computed in previous sediof this chap-
ter. However, results of Benjamini-Yekutieli procedure gant showed yet. At level
a = 0.05 this procedure discovered 92 genes to lfedintially expressed. This is more
than Bonferroni procedure, but more than 3 times less thath dpiproach of empirical
Bayes. Summary of results for these procedures are in tableMbreover, the set of
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Figure 4.5: Estimate of PoweFWER PFERandFDR by Bonferroni procedure, by
Benjamini-Yekutieli procedure and by the third proposal wip&rical Bayes approach
for the number of gene®s = 300, the number of observations in each graup20 and
for correlation coéficientp = 0.5.

differentially expressed genes discovered by Bonferroni proeeid subset of dier-
entially expressed genes discovered by Benjamini-Yakytrecedure, which is subset
of set of diferentially expressed genes discovered by the third approbempirical
Bayes.
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Figure 4.6: Estimate of Powef WER PFERandFDR by Bonferroni procedure, by
Benjamini-Yekutieli procedure and by the third proposal wipérical Bayes approach
for the number of gena®s = 300, the number of observations in each graup20 and
for correlation coé#ficientp = 0.9.

procedure | Bonferroni| Empirical Bayes Benjamini-Yekutieli
different genes 71 317 92

Table 4.3: Number of rejected hypotheses for HYPERDIP and d@&k according to
Bonferroni procedure, third empirical Bayes approach wgh= 0.95 and Benjamini-
Yekutieli procedure at significant level= 0.05.
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Chapter 5

Normalizations

There are many sources of systematic variations in miagaxperiments thatféect
measure of gene expressions. Common way of removing suctivas is to normalize
data (see e.gYang et al.(2002)). At the beginning of this chapter, we describe three
types of normalizations: quantile normalization, globatmalization and-sequence.
Moreover, we proposed some modificatiorbedequence normalization. Thereafter, we
show that although normalizations make data almost unededathey change the gene
expressions as well. Hence for deciding which genes dferdntially expressed we
have to use normalizations very carefully in order not to fimal many false positives.
Partial results of this chapter were publishedubeliny(2013b).

5.1 Introduction

One of the problems of microarray data is that gene expmessice highly correlated
between genes. Lgdransformations of gene expressions are considered todmve
proximately normal distribution (see for examglden et al.(2007)). In Figure 5.1,
there are histograms of 100000 pairwise correlations ofFégressions between ran-
domly chosen genes from HYPERDIP and TEL data. We can sedds torrelations
take values close to one (average correlationfmment for HYPERDIP data is 0.91
and 0.92 for TEL data). This dependence of genes can influeaog multiple testing
procedures and the power of tests. Normalizations can letogeartially handle this
problem. Testing of hypotheses is performed on these tvemsid (normalized) data.
However, one can object to equality of testing with non-ralieed data and with nor-
malized data. Using normalized data, tests can break nbfeired of multiple testing
on which we would like to test hypotheses. It could bring méaige positives, which
we try to prevent.
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Figure 5.1: Histograms of 100000 estimates of random ps@wbrrelations of log
gene expressions for HYPERDIP and for TEL data.

5.2 Normalizations

Quantile normalization

The goal of the quantile normalization is to make the distidn of log-gene expres-
sions on each slide in a set of slides the same. The methodtigated by the idea
of an-dimensional quantile-quantile plot. Bolstad et al(2003), there was described
algorithm for computing&on (the matrix of log-expressions after the quantile normal-
ization). This algorithm is given as follows.

Algorithm 5.1.

1. Given n slides of laggene expressions of length m, form a matrix X with m rows
and n columns, where each slide is a column.

2. Sort each column of X to giveg.

3. Take means across rows of,Xand assign this mean to each element in the row
to get )gort'

4. Obtain Xy by rearranging each column of¢X; to have the same ordering as the
original matrix X.

For two-sample problem, there are two possibilities how e the quantile nor-
malization. The first possibility is to use the quantile natlization separately for each
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sample. The second possibility is to create one pooled x@ftdata and then make the
guantile normalization on this pooled matrix. We will cashesi both of the mentioned
possibilities of the quantile normalization.

Global normalization

Global normalization of gene expression levels comes fitoenidea that gene expres-
sion is a product of two factors. The first factor is assodatéh gene production and
the second factor is a constant unique for each slide. Torerefve can imagine lgg
expressiorx;; of genei from slide j as a sum of two factors. The first factor depends on
the genda and the second depends on the sljdthis isx; = g + s;. Hence, it seems
reasonable to subtract specific fackr= s; + c (cis a constant independent band j)
from each log-expression. There are two reasonable choic&s.ofhe first one is slide
mean, the second one is slide median. Thus, the algorithoofoputingXmean(the ma-
trix of log,-gene expressions after the global-mean normalizatioth Xag, (the matrix

of log,-gene expressions after the global-median normalizaisogiyen as follows.

Algorithm 5.2.

1. Given n slides of laggene expressions of length m, form a matrix X with m rows
and n columns, where each slide is a column.

2. Take means or medians across the columns of X to obtamspiecific factor;
or ije"forj =1,...,n.

3. For each j= 1,...,n subtract from j-th column of X slide specific facty (or
X;"e“) to obtain Xnean(0r Xmed)-

o-sequence

In their paperKlebanov and Yakovlg€2007) defined a new type of normalization. They
eliminated slide ffect in a diferent way as global normalizations do. Th&sequence
normalization is created byftierences of non-overlapping lggene expressions. Leg
gene expression data aftesequence normalization can be defined as ém* = 7, m

is tacitly assumed to be even) bydimensional matrix consisting of the random vari-
ablesdij = Xpi_1j—Xaji = 1,...,m"; j =1,...,n, wherex ;'s are log-gene expressions
for mgenes frorm slides. They do not specify the order in which genes shoutbited.
Therefore, in our simulation, we will consider two casesmlfaring of gene expression
data. The first case is a random permutation of genes. In twndecase (monoton-
ic), the ordering is according tp-values of gene expressions (we consider two-sample
case) and in order to creaig we pairi-th and (n* + i)-th gene fon = 1,..., m".
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Another problem ob-sequence is that we examindfdrence of two genes. There-
fore, we cannot make the decision for each gene separatelydedide which gene
should be considered as dfdrentially expressed and which not, we propose four rea-
sonable solutions.

Our first proposal not only pairs the-th and the ifn* + i)-th gene, but pairs thieth
and fn* + i — 1)-th gene (and the first and the last gene, respectively)#$a2, ..., m".

If the 6s created from some special gene are rejected both timesvinavill consider
this gene as dierentially expressed. If thés calculated from some special gene are
not rejected or are rejected just once we will consider tleisegas non-dierentially
expressed.

If we consider monotonic ordering then each gene is pairé¢ll twio similar (in p-
value) genes. Therefore, some improvement for monotoulierorg can be achieved by
computing the secongtsequence as theftirence of the-th and thefn—i + 1)-th gene
fori = 1,...,m*. Decisions for each gene are the same as in the previous\Wassll
this case as proposBl

In the following proposal, there is tacitly assumed thatréh&re at mosin* false
hypotheses. It seems reasonable to assume that the gerreewbies dierent expres-
sion of 5-sequence is the one with lowervalue. Therefore, in our third proposal
we assume that genes are ordered according pheatues. We pair-th and (m* + i)-th
gene. Thae-thi =1,...,m" gene is said to be flerentially expressed, & is found to
be diferentially expressed.

Our fourth proposab is something like a step-down modification of the third case
C. We consider theé-th gene fori = 1,...,m" as diferentially expressed, if al hy-
potheses foé,, h=1,...,i are rejected.

Now we explore how these normalizations change the streictipairwise corre-
lations of log-expressions. In Figure 5.2, there are histograms of 10@3fithates
of random pairwise correlations of lggene expressions after global-mean, global-
median, quantile and randofrsequence normalization of HYPERDIP and TEL data.
We can see, that these histograms afiedent from histograms of correlations of non-
normalized log-gene expressions, because they are symmetric and caateeintibout
zero.

5.3 Comparison of normalizations

Simulations

In order to compare various normalizations, we performeddhowing simulation. We
simulated two independent samples ofagne expressions; andy;j, i = 1,...,m
(the number of genes),= 1,...,n (the number of slides) as random variables (highly
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Figure 5.2: Histograms of 100000 estimates of random ps@wbrrelations of log
gene expressions of HYPERDIP (upper row) and TEL (bottom edtey normalization.
From left to right is Quantile-separate, Global-Mean, Glekledian ands-sequence
normalization.

correlated in each slide) from normal distribution.

We generated lggexpressions for both samples by the algorithm (B.1). We set
p = 0.9 and the number of genes equal to 500 (we consider only 508sgmtause of
computational complexity). We considered cases with equalber of slides for each
stagen = n; = n, = 10, 25 and 50. In the second sample, we modike€ 24, 50,

90 and 200 genes (we credéalse hypotheses). We considered twiiatent alterna-
tives. In the first alternative, we shifted mean valu& afodified log-gene expressions
on each slide of the second sample about a con§&arfor each settingn andk we
considered 15 equidistant values@fin the second alternative, we shifteébg,-gene
expressions on each slide of the second sample so that xpeictations were created
by random vectou = (uy,...,ux) with i.i.d. components having normal distribution
N(C,1).

For each setting af andk, we performed 3000 simulations. For each simulated data
we calculated quantile-separate, quantile-pooled, glmean, global median and pro-
posalsA-D of §-sequence normalization. We studied average power (piiopaf true
positives and the number offtBrentially expressed genkls mean number of false pos-
itive (estimate oPFER), probability at least one false positive (estimat&W¥ ER and
estimate of false discovery rate (as relative frequencyresgnt false positives among
rejected hypotheses) according to Bonferroni procedureraimal levele = 0.05. We
considered just-test due to computation complexity and that genéfedid in mean
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values (not in variance or distribution). The results¥btest are expected to be similar.

Results

Due to the complexity of simulation we do not show all the tesshiere. The complete
results can be found in the supplement of this work.

If we look at results for non-normalized data we can see thest for such data
holds nominal levelr of FWER but the power is very weak. On the other hand, there
are some normalizations for whithest roughly breaks level of FWER In figure 5.3
there are estimates 61W ERfor data afters-sequence normalization for random and
sorted pairs. Random pairs seem good, becatsst holds nominal level in all cases.
In some cases (especially for alternative two) of sortedspgitest afters-sequence
normalization slightly breaks. However, some proposals &sequence are very bad.
In table 5.1 there are some results for quantile normatimagproposal A and C of-
sequence. We can see that each of these normalizationsriskgon deciding which
gene is diferentially expressed and which is not. Therefore, we shootdise them in
deciding issue.

Alternative one Alternative two
k 24 50 90 24 50 90
Quantile 0.7600 0.7543 0.69270.7497 0.7503 0.702
Prop A-random 0.8623 0.9753 0.30931.0000 1.0000 1.000
Prop A-sorted | 0.5990 0.8163 0.11401.0000 1.0000 1.000
Prop C 0.1327 0.1677 0.14080.3207 0.3923 0.422

~NTO O N

Table 5.1: Estimate oFWERfor quantile normalization and proposals A and C of
6-sequence fon = 25,k = 24,50,90 andC = 0.4.

In figure 5.4, there are estimates of leuebf FWEROf t-test for non-normalized
data after global mean and global median normalizationpgjegpooled normalization
and proposals B and D @tsequence. Just for non-normalized data and proposal D,
t-test holds levelr in all cases. Global median is better than global mean naaxal
tion. However, for large number offtierent genes or large values®©ft-test for global
median normalized data breaks nominal levet 5% as well. After quantile-pooled
normalizationt-test does not break nominal level BWWERfor small number of ob-
servations or small number of false hypotheses. Propos#léBsequence works well
just for small number of dierentially expressed genes. From this angle of view, there
are just two possibilities how to normalize data. The firs¢ @ working with non-
normalized data. The second reasonable normalizatiomopal D ofs-sequence.
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Figure 5.3: Plot of estimates &\W ERfor §-sequence with random and sorted pairs for
n=25.

Now we look at average power tfest after these six normalizations. Some results
are in figure 5.5. We can see that powet-tést after proposal D is better than for non-
normalized data. The power after quantile-pooled norratibn, according to another
normalizations, decreases with increasing number of fajpetheses. The other three
procedures have better power than proposal D. Howeverpdall sumber of diferen-
tially expressed genes thisfidirence is small and for lardethis difference is mainly
influence by breaking nominal level of t-test. Therefore, proposal D éfsequence
normalization is the best normalization for deciding whggne should be considered
as a diferentially expressed gene.

5.4 HYPERDIP and TEL data

Let us work with HYPERDIP and TEL data for childhood leukenttar these data, we
test which genes areftiérentially expressed. We would like to compare non-norzedli
testing with our best behaved fourth propoBallf we applied classical approach with
thet-test for non-normalized data, we would find 7 ffelientially expressed genes. For
the N-test we discover 73 ffierentially expressed genes (67 genes are the sanie for
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Figure 5.4: Plot of estimates &W ERfor non-normalized data, global mean and me-
dian normalization,quantile-pooled normalization anogmsal B and D ob-sequence
normalization for B-25.

test and-test). If we test according to propoda) we have 81 dferentially expressed
genes by the-test and 93 dferentially expressed genes by tNetest (77 genes are
the same). These results confirm that prop@as an improvement of the classical
approach using non-normalized data.
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Chapter 6

Gene sets

As we know, gene expressions are highly correlated betweeasy Therefore, many
papers work with gene sets (eBarry et al.(2008)) instead of genes alone and therefore
deal with multidimensional hypotheses. The most popukstef two-sample problem
for gene sets are Hotelling’s tedt;test and tests derived from margitatatistics. We
wrote aboulN-test in section 2.1. In what follows, we introduce testselolasn marginal
t-statistics and Hotelling’s test. Our pre-study of Hotells test showed éierent be-
havior of this test in comparison to another considered té&terefore, for Hotelling’s
test, we derive some interesting properties in case of highrrelated data such as gene
expressions are. Results of section about Hotteling’s tesé \wublished irBubeliny
(2011). At the end of this chapter we compare the power okthess.

6.1 Tests based on margindl-statistics

There are two tests derived from margihatatistics which are often used for gene sets.
The first one is based on sum of squares of mard#s#dtistics and the second is based
on sum of absolute values of margitadtatistics, that is

and
Tabs= Z Itil,
i=1
wheret; is marginalt-statistic fori-th gene from gene set consistsrafgenes. The

critical values of these statistics are not known. Thersfare estimate thp-values of
these tests by permutations of slides.
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6.2 Hotelling's test

Hotelling's test is a multidimensional extensiontetest. Similar ta-test, we can con-
sider both one-sample and two-sample Hotelling’s test. -€amaple case deals with
hypothesis that the expected value of a sample from mulédsional normal distribu-
tion is equal to some given vector. In the two-sample casigats with the hypothesis
of the equality of expected values of two samples from munitehsional normal distri-
butions (with equal covariance structure). We will focustioa two-sample Hotelling’s
test.

Suppose we have two independent samples (of sizesidny, respectively) from
two mdimensional normal distributions with identical covaréa matrices equal tb.
In other words, we considef,, ..., X, as i.i.d. random vectors havifg,(uy, ) and
Yi,...,Yn as I.i.d. random vectors havingn(uy, ) (X andY; are independent for all
i=1...,ng]=1...,ny). For simplicity we assume that < n, + n, — 1. Our goal is
to test the hypothesH : uy = uy, against the alternativ : uy # . Hotelling’s test for
this hypothesis is based on the statistic

nn, — — _
T2= 2L (X-YV)TSHX-V 1
o (XS K- Y), (6.1)
where ]
— 1 X
X==) X
nX ; B
BEL
ny &
and . _ _ n _ _
S = Zile(xi - X)(Xi - X)T + Zizl(Yi - Y)(Y| - Y)T
- N+ Ny — 2 '
T2 is related to thé=-distribution by
N+ny-m-1_,
T ~F(Mmny+n,—m-1). (6.2)

m(ny + ny — 2)

For more details about Hotelling’s test see ecpatfield and Colling1980). We made
the assumptiom < ny + ny — 1 for two reasons. Fan > n, + n, — 1 the estimat& of

Y results in an irregular matrix, so th8t! does not exist and moreover numerator of
(6.2) is non-positive as well as the degree of freedom ofRtdbstribution. Therefore,

in such cases we use pseudo-inversio® @nd in order to estimatp-value ofH, we
use permutations of vectoX{, ..., X, Y1,..., Yy ).
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6.2.1 Hotelling’s test for dependent data

Consider that we have two independent multidimensional &srfppom normal distri-
bution. We would like to test hypothesis suggesting the Eguaf expected values in
these two samples. Assume for simplicity that all elementthe main diagonal of the
covariance matrix for both samples are equal to 1 and all other elements ard &qua
p>0,le.

1 p p ... p
o 1 p ... p
2
o ... p 1 p
o ... ... p 1

Further on, we assume that = (0,...,0)", butyu, has firstk elements equal to 1 and
the others equal to 0, i.e.
uy=(1,...,1,0,...,0)".
N—_—— N——

k m-k

For largen, andny, the matrixZ and its estimat& are approximately the same as well
as the diferences between the expected valygsuy) and between the mean values
(X Y) When dealing with real data, andn, might not be large enough but for easier
insight to the problem we use the approximati@s X andX — Y = uyx — uy. In this
caseS! ~ 7! thatis

w B B ... -B

B w —B ... -B
Stayt=| . - -0
B ... B w -B
B ... ... B w

wherew = % andp = ey For fixedn, andn, we can consider the

fraction "X"y = c of Hotelling’s statistic (6.1) as a normalizing constanét us denote

by T*2 Hotelllng s statistic withz~* instead ofS™* andpy — yy instead ofX — Y divided
by the constant. ThenT*? is squared Mahalanobis distanceugfandy, and it is given
by

TZ/C ~ T2 = (x — ﬂy)Tz_l(llx - ﬂy)
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1
w B B ... B
_:8 w _18 _,8 1
=(4...,1,0,...,0) R
——— —— ’ .
k m-k -5 ... B w B
B . B ow )|
0
k- (@ Kp = KA M=2)) —kk-L)p KL+ (m-k-1p)

(1-p)A+(Mm-1)) (1-p)A+(m=1)p)
Let us note that it does not matteyif consists of ones and zeros or equals to a constant
aand zeros. In the latter case, squared distdriéavould be multiplied bya?. Now we

will work with T*2 and investigate its behavior.

If we changed to k + 1 (meaning that we add one mordfdrent marginal distribu-
tion) we would expect thaf *? increases as well as the power of Hotelling’s test does.
For better understanding let the number of onesibe the index off 2 (we will write
it only when it is needed). Now we chang¢o k + 1 = h and we have

T2 =T +w— 2KB.

If we expected thal *2 is an increasing function df thenw — 2k3 should be greater
then zero. However, we have

1+(m-2p 2ko 1+ (m-2k-2)p
(1-p)A+(Mm-1)p) @A-p)A+(M-1)p) @L-p)L+(M-1)p)

Since the denominator is greater than zero, then2ks > 0 if and only if m =
1

s > p. It means that for not very small values @6 andk > 7 - 1 the square
Mahalanobis distancE*? is a decreasing function & This means that maximal power
of Hotelling’s test (as a function &) is not always attained fde = m but for p’s which
are not very small we have maximal power karear?y. Some examples of the behavior
of T*? as a function ok are illustrated in figure 6.1.

However, this issue is not the only one that is surprisinguabtotelling’s test. Now
we look if T;? is always lower tharT;2. It is the case when one ftérent marginal
distribution influences more than at different distributions. Therefore, we need to

compareaw with mw — m(m - 1)3. We have

w—2kB =

(1-2)
(1-p)2+(Mm-1)o)
It means tha;2— T2 < 0 if and only ifp < 0.5. Therefore, we can say that fer- 0.5

Hotelling’s test has better power for alternative with oolye marginal shift than for
alternative that all marginal distributions are equalliftsld. It can be seen from figure

T2 -T2 =w-mw+mm-1)8=(m-1)
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Figure 6.1: Plots o *2 for m = 15, 25, 40p = 0.1, 0.5, 0.9; and = 1, ..., m. Notice:
each plot is dierently scaled!

6.1 as well. MoreoveiT *? is an increasing function gf, that may seem to be surprising
as well.

Let generalize expected valpgto have componentsy;, ... ., a,). We are interested
in for which 1y € R™ the squared Mahalanobis distance has the same value. Fer som
d > 0 we define the set

Eq = {uy = (@1, ..., a8m) uy = 'py = d?).

This set is created by iso-distance curves, i.e. ellipseitls center in (0...,0). Let
denote the eigenvalues of matdix! by A, ..., A, and the eigenvectors corresponding
to these eigenvalues by, ..., ym. Then the principal axes d&4 are in the direction

of y;; i = 1,...,mand the half-lengths of the axes are given g@f i=1...,m
In our case witt=™2, the eigenvalueg; = A, = ... = Apq = ﬁ and A, = m.

The eigenvector corresponding to the smallest eigenvilugequal toy, = (1,...,1
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Therefore, squared Mahalanobis distance has the slowsstse in this direction.

6.2.2 Two-dimensional data

Let us look at Hotelling’s test in the two-dimensional caSeme plots of two-dimensi-
onal ellipsoids for dierent values of the correlation deientp are given in figure 6.2.
The squared Mahalanobis distance has the weakest incretimedirection oy = ay,

while the fastest increases is observed towards the direofia; = —a,. For example,
for p = 0.9 andd = w the principal axes are equal tal82 and 0725. It means that

foray = a = /2%2 = 2.236 squared Mahalanobis distance is the same s ferl,

a, =0 (orfora; = —a; = % = 0.513 as well). Hence, if there is only one marginal

distribution shifted by one unit, then the power of Hotedlgtest is expected to be the
same as if both marginal distributions were equally shifieadhe same direction) by
2.236 units (for the shift in opposite direction it shoulddmty 0.513 unit). These results
are in contradiction with other multidimensional testsr Ewample, consider some test
based on margindtstatistics. The power of this test is higher if both disitibns are
shifted by the same amount (batfstatistics are "large”, not depending on direction
of shift) than if there is only one marginal distribution fs@d (onet-statistic is "near”
zero).

rho=0.25 rho=0.5 rho=0.9

1.0
|
2

|

0.5
1

1

|

a2
1

a2
1

a2
0
1

-05 0.0
-10 -05 00 05 10

-1.0

Figure 6.2: Plots of 2-dimensional ellipsoids joE 0.25;0.5;0.9. Notice: each plot is
differently scaled!

6.2.3 Theory and reality

The analytical results obtained above should be verifiedhbgking if actual Hotelling’s
test outcomes correspond to the analytical results of ra@. din this subsection we
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compared the behavior of squared Mahalanobis distareaith Hotelling’s statistic
T2. For largen, andn, we assumed thal*?> ~ T?/c, wherec = . Constantc

Ny+N
changes as, andny change. It is reasonable to divide Hotelling’s stialtiﬂff’cby cin-
stead of multiplyingT *? by c in order to be able to compare haw and T*? differ for
variousn, andn,.

In order to compare the actual results with the analyticabowe performed the fol-
lowing simulations. All data were simulated fromdimensional normal distributions.
We set the dimensiomto be 10, 15 anan = 25. All simulations were performed for
three diferent values of the correlation deientp: p = 0.1,p = 0.5 andp = 0.9.
In order to compare the behavior of Hotelling’s test for vas sizes of samples we
took three choices afy, andny: n, = n, = mn, = n, = L.4mandn, = n, = 2.4m.
The number of false marginal distributioksaried from one tan. The shift value for
each of the dferent marginal distributions was set to one. The squaredaMabbis
distance was calculated according to (6.3). Hotellingiistic is estimated from 1000
simulations for each case (as the meail 9fc obtained from the simulations).

Plots of our simulated cases are shown in figure 6.3. We catinaetor all simulat-
ed situations, the shapes of the squared Mahalanobis destand Hotelling’s statistics
are similar. The only dierence is in the heights of these curves. For smailndn,
statisticT? has higher values than for large andn,. The reason for that stems from
the inaccurate estimates of the expected values and theiame@ matrix. However,
we observe that with the increasergfandn,, statisticT?/c goes toT *? relatively fast.
Therefore, the behavior of Hotelling’s test for real datexipected to be very similar to
the behavior of squared Mahalanobis distafite

In the previous section we saw that for the two-dimensioagakdhe plotted shifts
with equal values of the power of theoretical Hotelling'sttimrm elliptic curves. Hotell-
ing’s statisticsT? are random variables. Therefore, we can only estimateiif éx@ect-
ed values form elliptic curves when they are plotted. To khbis we performed the
following simulation. Instead of calculating the shifts fiwhich Hotelling’s test has
equal powers, we took some points with coordinatasa;) from the elliptic curves
observed for squared Mahalanobis distance. For each sueh p@ did 1000 simu-
lations and calculated Hotelling’s statistic. We estindatee expected value B/c as
the mean for these 1000 repetitions. We divided Hotellirsgegistics byc for better
understanding how fast these statistics g@t& We did this simulation for the values
of the correlation ca@icientp = 0.3 andp = 0.9 and as the number of observations
in each sample we took, = n, = 5,n, = ny, = 10 andn, = n, = 20. Results of our
simulation are given in table 6.1. We observe that estimatedn values of ?/c are
not very diferent, they go td *2 and their variance decreases with increasing number
of observations. Clearly, these points form elliptic curydence, we can claim that the
real Hotelling’s test behaves very similar to the theosdtane and the theory derived
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Figure 6.3: Comparisons of squared Mahalanobis distdnéeand real Hotelling’s
statisticT?/c for the dimensiorm = 10 15, 25 (from the top to the bottom); for correla-
tion codficientp = 0.1, 0.5, 0.9 (from the left to the right) and number of observations
in each sampl@&, = n, = m (denoted by +’), ny = ny = 1.4m (denoted by 'x’) and
Ny = n, = 2.4m (denoted by¢’). Squared Mahalanobis distan€¢? is denoted by3’.
The number of dferent marginal distributionisis set from one tan. Notice: each plot

is differently scaled!

for the theoretical test holds for the real Hotelling’s tastwell.

6.3 Comparison of tests for gene sets

Although there exist some papers (e ckermann and Strimm&R009) andGlazko
and Emmert-Streil§2009)) which compare tests for gene sets we performed oar ow
simulation study. We considered two-sample problem andeas gets we took inde-
pendent samples of random vectors havimdimensional normal distributioNy,(0, X)

and N(up, X), with sample sizes; andn,, respectively. For simplicity we assumed
that all elements on the main diagonal of the covarianceixatior both samples were
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T*2 = 1.0989 p=03 T*2 = 5.2632 p=09
a a Ns=5 ng=10 ng=20 a a Ns=5 ng=10 ng=20
-0.84| 0.35 | 3.12 1.74 1.35 | -1.83| -1.05| 9.58 6.72 5.96
-0.63| 0.61 | 3.03 1.81 142 | -1.38| -0.44| 9.55 6.51 5.96
-0.42| 0.79 | 3.04 1.82 1.39 | -0.92| 0.09 | 9.55 6.65 5.99
-0.21| 0.92 | 3.00 1.75 142 || -0.46| 0.57 | 9.62 6.93 5.98
0.00 | 1.00 | 3.03 1.72 1.42 | 0.00 | 1.00 | 9.10 6.99 5.83
0.21| 1.04 | 3.04 1.74 1.36 | 0.46 | 1.39 | 9.74 6.78 5.99
042 | 1.04 | 3.01 1.87 1.39 || 0.92 | 1.74 | 10.11 6.75 5.86
0.63 | 0.99 | 3.00 1.79 140 | 1.38 | 2.04 | 9.36 6.87 5.85
0.84 | 0.85| 3.32 1.81 141 || 1.83 | 2.25 | 10.21 6.87 5.96
1.05| 0.35| 3.35 1.85 1.36 | 229 | 2.09 | 9.94 6.85 5.97
var: 0.0176 0.0025 0.000] var: 0.1133 0.0202 0.0039

Table 6.1: Results of simulations of two-dimensional adjdstotelling’s statistic3?/c
with ns = ny = ny observations for each sample and correlatiorffatientp. T*? stands
for squared Mahalanobis distance aidg, &) is difference between expected values
Ux — py of these samples. On bottom line is the estimate of variaheaah column.

equal to 1 and all other elements were equal to0, i.e.

1 p p ... p
p 1 p ... p
Z: : . ) .. . ) :
p ... p 1 p
o ... ... p 1

Further on, we assumed that has the firsk elements equal to and the others equal
to 0, i.e.
w=(1,...,1,0,...,0),
ol
k m-k
wherek is the number of dierentially expressed genes. We set the number of obser-
vations in each group to be = 20,40,100. The number of genes in gene sets was
m = 20,50,100 with restriction 8 > m and the number of éerentially expressed
genek between these two groups was set to be integer pattnof4l m/2, m/4, m. We
took correlation coicientp equal to 01, 0.5,0.9 and as the dierence parametgrwe
took sequence of eleven equidistant values begin fromfBefdnt for eachn andp).
The p-values for considered tests were based on 1000 permwuaia@heach simulation
was repeated 1000 times. The power of tests was estimatedaasrmge of rejections
from these 1000 repetitions.
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Figure 6.4: Comparison of test for gene setstioe 20, p = 0.1,0.5,0.9 andm =
1,5,10,15,20.

Results of this simulation far = 20 andm = 20 are in figure 6.4. The whole results
can be found in the supplement of this work. We can see thhtimgteasing number of
differentially expressed genkshe power ofN-test and both tests based bstatistics
increases. On the other hand, their power decreases witaisiogo. N-test has the
best power between these three tests, bukferm, the power of these three tests is
almost equivalent. The Hotelling’s test behaveedent way. For smal it has the
poorest power among all four tests. However, with highéts power increases and
this test is the most powerful except for largewhere its power decreases too much.
This behavior of Hotelling’s test was discussed in the masisection. However, for
gene expression data, there are expected high correl&igivween genes and just small
number of diferently expressed genes. Therefore, Hotelling’s test séeiine the best
for such data.
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Chapter 7

Dependence vs Correlativity

It was shown that normalization of gene expressions datesdiese data almost un-
correlated. However, if correlation ciheient between two random variables is equal
to zero, it does not generally mean that these variablesxdepéendent. It is only true
for random variables having normal distribution. Therefan this chapter, we derived
test for testing independence of two random samples basedpirical characteristic
functions. Moreover, we study the power properties of thst.t

For gene expressions there were derived two types of depeadetween genes:
type A dependence (sédebanov et al(2006)) and hidden regulator dependence (see
Lim et al.(2010)). The dependence structure of genes could be vermyriam in prac-
tice. Therefore, at the end of this chapter we show that HYPIPRIDd TEL have much
more genes with type A dependence than genes with hiddeftategdependence.

7.1 Test statistic

Consider that we have two samplgs ..., X, andYs,..., Y, from distributions (say
andY, respectively) with the characteristic functiofigs) = E€sX and fy(s) = E€SY,
respectively. Moreover, consider thity(s,t) = Ed is characteristic function

of random vector (X,Y). Then these two distributions areejpendent if and only if
fxv(s,t) = fx(9)fy(t). We can employ this knowledge and use test statistic based o
difference offyy(s, t) — fx(s) fy(t). Because these characteristic functions are unknown,
we estimate them by their empirical counterparts. It lead®uneasure the amount of
dependence betweehandY by statistic

n

#(X,Y) = max }i gsXi+itYi _ % i s Z git¥i

—c<st<c - - c
S n i=1 i=1 i=1

, (7.1)

wherec > 0 is some border constant. We will call this statisgestatistic (test based
on this statistic we will call the-test).
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Another alternative to the-test could be based on statistic

o) e [FEA€ T S € 5
’ - —c<st<c st

(7.2)

The only diference betweegrstatistic andy*-statistic is in the denominator of absolute
value. Forg it is equal to one, fop* it is equal tost. We consider-c < s,t < c because
empirical characteristic functions are periodical.

Characteristic functions depend on mean and variance obrarsdmples. Hence,
¢-statistic andp*-statistic are fiected by variance and mean of both samples. There-
fore, the sampleX andY should be standardized to have mean value equal to zero and
variance equal to one. Then we should work with standardgaeaples instead of orig-
inal ones. Such standardization could be done by subtgattimsample mean and then
dividing by sample standard deviation.

Now we try to find out which value is optimal for border congtaand if ¢ is better
thang* or not. The exact distribution @f-statistic andp*-statistic is not known. There-
fore, we performed simple simulation in order to estimat@Sfuantile ofg-statistic
and ¢*-statistic for diterent border constamtand diferent number of observatioms
based on 10000 repetitions. Instead of computing maximu(i.i) numerically we
made a square lattice with mesh size 0.01x0.01cfer 0.1,0.3,0.5, 1 and we calcu-
lated maximum ofp on it. For¢* we took square lattice with mesh size 0.01x0.01 for
¢ = 0.1 andc = 0.3 and moreover foc* = 0.1 we took square lattice with mesh size
0.0025x0.0025 as well.

Firstly, we simulated random samples from two-dimensior@mal distribution
with mean equal to zero and variance matrix

~(2)

We set the number of observations= 10, 35,60, 79 and correlation cdgcientp =
0,0.3,0.6,0.9. For each setting we standardized the samples and comsisgistic
andg*-statistic. We repeated all setting 10000 times and estidhpower ofp-test and
¢*-test. Results of this simulation are in table 7.1. We canlsa&the power is similar
for all cases except fap-test withc = 1 where the power is weaker (and for larger
the power would be much weaker). Moreover with increasinmgatation codicient the
power of¢-test andp*-test increases.

Csorgo’s test

In paperCsorgo(1985), there was derived test (we call it Csorgo’s test) dstihg in-
dependence of two samples using characteristic functidadind out whethew-test
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p=03 p=06 p=09|p=03 p=06 p=09

¢-test
c=01| 0136 0.497 0.985 0.434 0.979 1.000
c=03] 0129 0.477 0.983 0.424 0976 1.000
c=05] 0130 0.492 0.985 0.434 0978 1.000

c=1 0.117 0.418 0.969 0.303 0.925 1.000
¢*-test
c=01] 0137 0.494 0.983 0.430 0.980 1.000
c=03| 0.132 0.487 0.985 0.432 0.980 1.000
c=01"| 0.135 0.495 0.984| 0.425 0.979 1.000

n=60 n=79

p=03 p=06 p=09|p=03 p=06 p=09

¢-test
c=01| 0658 1.000 1.000[ 0.776 1.000 1.000
c=03 | 0658 1.000 1.000[ 0.791 1.000 1.000
c=05| 0654 1000 1.000] 0.762 1.000 1.000

c=1 0.481 0.994 1.000] 0.585 0.999 1.000
¢*-test
c=01| 0656 0.999 1.000] 0.782 1.000 1.000
c=03| 0661 1.000 1.000[ 0.780 1.000 1.000
c=01"| 0663 1.000 1.000; 0.780 1.000 1.000

Table 7.1: Power of-test and¢*-test for normal distribution calculated on square
lattice with mesh size 0.01x0.01 (last case #ordenoted byc* is with mesh size
0.0025x0.0025).
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Csorgo’stest p=0 p=03 p=06 p=09
n=10 0.1267 0.1222 0.2093 0.378
n=35 0.1191 0.2195 0.5406 0.712
n=60 0.0999 0.3108 0.7363 0.891
n=79 0.0652 0.3890 0.8434 0.97¢

= O ©

O

Table 7.2: Power of Csorgo’s test for two dimensional nornmgthidbution with correla-
tion codficientp = 0,0.3,0.6,0.9.

has good power we try to compare this test with Csorgo’s testicel we did similar
simulation study for Csorgo’s test as we did #iztest. We set the number of observa-
tionsn = 10, 35,60, 79 and correlation cdicientp = 0,0.3,0.6,0.9. For each setting
we standardized the samples and estimate the power of Csdegb’based on 10000
repetitions. Results of these simulations are in table 72c& see that for small num-
ber of observations this test does not hold significancd leveMoreover it has poor
power in comparison witlp-test. Therefore, we can claim thattest has good power
properties.

7.2 Non-normal distribution

Now we consider Laplace distribution. We simulated similases as for normal distri-
bution. For considering dependent random samples fromelcaplistribution we creat-
ednx2 matrix from these independent samples of sizé=ach row is dierent sample)
and multiplied it by matrixt to create dependent samples. The powef-tdst andp*-
test for Laplace distribution is in table 7.3. We can see tthigtpower for independent
random variables is about 5%. It means that these tests batihal level for Laplace
distribution too. Moreover, power for dependent variatilesing Laplace distribution
is similar to power for normal distributed random variablés addition, power for all
settings is similar except faf-test withc = 1 where the power is weaker.

From Bernstein theorem (sd&agan et al.(1973)) we know that random vari-
ablesY; = X; + X, andY, = X; — X, are uncorrelated and they are independent if and
only if X; and X, have normal distribution. Therefore, for findingdifvalue is relat-
ed with correlation caicient or with independence, we performed simple simulation
Forn = 10, 35,60, 79 we took independent samplig, N, from N(O, 1), independent
sampled.;, L, having central Laplace distribution with variance equabt@ and in-
dependent samplds;, B, from Bernoulli distribution with parameter= 0,0.1,...,1.
We took samplex; = (1 - B;)N; + B;L; andX; = (1 - By)N, + B,L,. Fore = 0,
samplesX; and X, were independent having normal distribution anddcf 1 we had
independent samples from Laplace distribution. We caledlaampley; = X; + X;
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n=10 n=35
p=0 p=03 p=06 p=09|p=0 p=03 p=06 p=09

¢-test
c=01 0054 0.145 0546 0.9900.049 0.441 0981 1.00€
c=03 | 0.050 0.135 0.517 0.98§ 0.045 0.437 0.984 1.00C
c=05|0.053 0.140 0.528 0.9870.044 0.415 0.979 1.00G

c=1 | 0039 0.099 0410 0.9750.024 0.208 0.893 1.00G
¢*-test
c=01 0055 0.136 0526 0.98§ 0.051 0.444 0.979 1.00G
c=03 | 0.053 0.141 0526 0.9870.059 0.446 0.981 1.00C
c=01"0.056 0.148 0537 0.9850.052 0.435 0981 1.00C

n=60 n=79

p=0 p=03 p=06 p=09|p=0 p=03 p=06 p=09

¢-test
c=01 0047 0651 0999 1.0000.053 0.788 1.000 1.00@
c=03 |0.047 0662 0999 1.0000.049 0.794 1.000 1.00@
c=05]0.042 0635 0999 1.0000.036 0.747 1.000 1.00@

c=1 | 0025 0.342 0992 1.0000.021 0.427 0.999 1.00d
¢*-test
c=01]0.049 0676 0.999 1.0000.054 0.793 1.000 1.00@
c=03]0.048 0672 1.000 1.0000.051 0.789 1.000 1.00@
c=01"0056 0699 1.000 1.0000.050 0.783 1.000 1.00€G

Table 7.3: The power af-test for Laplace distribution calculated on square lattigth
mesh size 0.01x0.01 (last case fordenoted byc* is with mesh size 0.0025x0.0025).
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andY, = X; — X,. In figure 7.1, there is the power @ftest forc = 0.5 of samplesr;
andY, for differente. In table 7.4, there are results fer= 0 ande = 1 for all setting
of ¢-test andp*-test. We can see, that fer= 0 (for independent samples) the power is
about 005 for both tests. With increasing(and with increasing dependence as well)
the power of our tests increases. It means ghtest andp*-test, respectively are related
with dependence and not only with correlation fimgent.

For Bernstein case, the power increaseg ascreases. The power @i-test for
¢ =0.1,0.3,0.5 and forg*-test (for all settings of) was similar. From these settings for
Bernstein case, the-test withc = 0.5 has higher power. Therefore, in the rest of this

chapter we will use the-test with border constat= 0.5.

n=10

0.20
I

power
0.15
1

0.10
1

0.05

00 02 04 06 08 1.0

epsilon

power

n=35

005 010 015 0.20 0.25
1

00 02 04 06 08 1.0

epsilon

power

n=60

0.05 0.10 0.15 0.20 0.25 0.30

00 02 04 06 08 1.0

epsilon

power

0.15 0.25 0.35

0.05

n=79

00 02 04 06 08 1.0

epsilon

Figure 7.1: Plots of power for fierente for ¢ = 0.5.

7.3 HYPERDIP and TEL data

Let us look at HYPERDIP and TEL data. In both data sets, we eddgenes in de-
creasing order of their estimated variance. Thereforegéme with the highest estimat-
ed variance was the first and the gene with the smallest vaiaas the last. In figure
7.2, we can see estimates of variance according to their.ofte variance decreases
quickly only at the beginning and at the end and there are wfogénes with similar
variance.

Firstly, remember what type A dependence is. XetndY be gene logexpression
levels for geney, andgy, respectively. We say that pawm,(g,) is type A dependent if
X andY satisfy the conditiorY = X + Z, whereZ is a random variable stochastically
independent oiX.

It is too time consumable to compugetest for all pairs of genes. Therefore, we consid-
ered three parts of data. We took first 1000 genes with theekiglariance, 1000 genes
with the smallest variance and 1000 genes from the middle witexes from 3001 to
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normal laplace
N=10 n=35 n=60 Nn=79 Nn=10 n=35 n=60 n=79

p-test
c=0.1| 0.054 0.053 0.046 0.05] 0.157 0.196 0.203 0.21]
c=03| 0.044 0.052 0.050 0.054 0.157 0.203 0.223 0.24¢
c=05| 0.050 0.059 0.051 0.050 0.159 0.242 0.294 0.31%

c=1 | 0.045 0.052 0.054 0.047 0.143 0.297 0.436 0.52(
¢*-test
c=0.1| 0.050 0.048 0.048 0.054 0.158 0.200 0.198 0.209
c=0.3 | 0.053 0.057 0.050 0.051 0.151 0.217 0.210 0.222
c=0.1"| 0.048 0.050 0.054 0.050 0.162 0.220 0.262 0.269

o1 o Co 1T

Table 7.4: Power op-test for Berstein theorem (uncorrelated samples)eaad (nor-
mal distribution - independent samples) ané 1 (Laplace distribution - dependent
samples) calculated on square lattice with mesh size 0.01X&xst case fop* denoted
by c* is with mesh size 0.0025x0.0025).

4000. Each group (called upper, middle and bottom) was figated separately. So we
created 3 x Z 6 data sets. We not only considergdest for genes bug-test forG; and

G; -G, j <, whereG; denotes-th gene. We call the second case the type A situation
because if gends; andG; are type A dependent, thé&) andG; — G; are independent.
Therefore ¢(G;, G; — G;) should take smaller values tha({G;, G;). Becausep-test is

not variance invariant, we standardized each gene and efieledce of genes so that
they had zero mean and variance equal to one. The borderacbnswas set to be
0.5. Infigure 7.3, we can see histogramgafalues (499500 pairs on each plot) for all
12 situations. We can see that for type A situat#evalues take lower values than for
casual pairs of genes. These histograms are overlappddijugiper genes. However,
for type A situation, there are 730 (for HYPERDIP) and 99% (for TEL) of ¢-values
lower than 1%-quantile af-value for casual pairs of genes. Therefore, type A pairs are
much more independent than casual pairs.

Now consider mix of three groups of genes divided accordmajy tvariance. We
created new six data sets (three for HYPERDIP and three for dd&a). In order to
create these 3 groups we created three subgroups create&®dgenes with highest
variance, 500 genes indexed from 3251 to 3750 in decreasitgg of variance and 500
genes with smallest variance, respectively. Three coresidgroups were created by
taking two of three subgroups togethervalues in each subgroup had been comput-
ed in previous situations, therefore we considered grigst for genes from dierent
subgroups. Therefore, we computed 500 x 50P50000¢-values for each data set. In
figure 7.4, there are histograms @fvalues for each data set. Again, we can see that
¢-values for casual pairs are bigger than for type A situatioNon-ovelapping his-
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Figure 7.2: Plots of estimates of variance in decreasingrord

tograms are just for middle-bottom situation. Therefore,are interested in computing
proportions ofg-values for type A situations lower than 1%-quantilegofor casual
pairs. Values of these proportions are in table 7.5. Agaircaresay that type A pairs
are much more independent than pairs of genes in casual igkseover, in table 7.6
there are proportions of hypotheses we reject accordirggtést on 5% nominal level
for casual pairs and for type A situation. We can see that stimibhypotheses for ca-
sual cases are rejected and there are many hypotheses waitechtd reject for type A
situation.

upper-mid upper-botton
HYPERDIP 0.897 0.944
TEL 0.998 0.988

—

Table 7.5: Proportions ap-values for type A situation lower than 1%-quantile gaf
values for pairs of genes for upper-mid, upper-bottom ardtimoittom data sets.

7.4 Hidden regulator dependence

Lim et al. (2010) considered another type of dependence between galhed hidden
regulator dependence (HRD). They considered two genes (sadX) being HRD if
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Figure 7.3: Histograms af-values for casual pairs of gen€s andG;; i < | (black

color) and for type A situation (aqua color) for HYPERDIP arfel Tdata. We consider
1000 genes with highest variance (upper), 1000 genes wakkxes 3001 to 4000 in
decreasing order of variance (middle) and 1000 genes wittllssh variance (bottom).

there exists random variabdesuch that for log-expressiorx andy holdsx = a+ ¢ and

y = a+¢, Wheree, ande, are i.i.d random variables independentohey numerically
demonstrated that HRD is easily mistaken for type A depereleBonsider two genes,
sayG; andG;. If these genes are HRD then it does not matter if we calcyidést for

G andG; - G; or G; andG; — G; respectively. But if these genes are type A dependent
then it is not true an@-values forG; andG; — G; or Gj andG; — G; are expected
different because one pair is independent and the other notefoherwe calculate
¢-test for both pairs. By sorting genes in decreasing ordenaif estimated variance
we expect that foj < i the pairG; andG; — G; is independent and the pa#; and

G -G; is dependent. Therefore, we only take pairs of genes fortwileconsider type

A dependenceg(-test does not reject independencé&pandG; — G;, j < i at nominal
level 5%). For these pairs we calculgigest forG; andG; — G;. In table 7.7, there are
proportions of such pairs for whichttest is rejected. We can see that a lot of pairs are
rejected according te-test (for mixed groups this proportion is almost one). Efere,

we can see that type A dependence exists for genes with @eyeadit variances not as
HRD which can exist only for genes with similar estimate ofiaaces.
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Figure 7.4: Histograms af-values for casual pairs of gen€s andG;; i < j (black
color) and for type A situation (aqua color) for HYPERDIP arigll Tdata. We consider
plots for genes from upper-mid data sets, upper-bottom skettaand mid-bottom data
sets.

HYPERDIP TEL
Upper Mid Bottom| Upper Mid Bottom
normal | 0.9957 1.0000 1.00001.0000 1.0000 1.0000
type A | 0.5140 0.1596 0.07770.2553 0.0798 0.0579
U-B U-M M-B U-B U-M M-B
normal | 0.9958 0.9954 1.00001.0000 1.0000 1.0000
type A | 0.2006 0.2935 0.14300.1526 0.0952 0.1272

Table 7.6: Proportion of rejected hypotheses for HYPERDIFE&A @lata for normal
pairs and type A pairs.

HYPERDIP TEL
Upper Mid Bottom| Upper Mid Bottom
0.761 0.179 0.489| 0.885 0.068 0.400
U-B U-M M-B U-B U-M M-B
1.000 1.000 1.000f 1.000 0.999 1.000

Table 7.7: Proportion of type A genes for whi€} andG; — G;,j < i are considered
dependent.
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Chapter 8

Conclusion

One of the goals of statistician working with microarrayalét to find diferentially
expressed genes between two groups of observations @agment versus control con-
ditions, two stages of some illness). In this work, we trieddolve some problems that
make finding diferentially expressed genedfitiult.

To find differentially expressed genes one has to use two-sample tetsstong
equality of means or equality of distributions between twmples of genes. Gene
expressions after lggransformation are considered to have approximately niodiea
tribution. Therefore, in many casésest can be useful. The problem set in when we
cannot guarantee normality or there can be change not omhean but in variance of
distributions as well. Then we could use some non-paraoiest such as two-sample
Kolmogorov-Smirnov test. In this work, we showed that thasttcould be biased in
case that there is fierent number of observations in each sample of genes. Mereov
this test lacks of power. Due to the luck of power of two-sasrifblmogorov-Smirnov
test we propose to udd-test. This test is distribution free, we found out that is ha
good power properties with comparisontttest and it is much better thariest in case
that there is dference in variance of two samples. Unfortunately, we do notkthe
distribution of N-test. Thep-values of this test have to be computed by permutations
what makes this test too time consumable. Therefore, wedistili prefert-test when
we need to computp-values of hypotheses quickly.

One of the problems of microarray data is that we usually lealsege number of
genes. Hence, we have to compare thousands of genes sienul&y In other words,
we have to test thousands of hypotheses simultaneouslyefbine, some multiple test-
ing procedure has to take place here. Bonferroni proceduselisknown procedure
but it is considered to be too conservative and thereforave veak power. I&ordon
(2007), they proved that this procedure is unimprovabléédiass of monotone step-
up multiple testing procedures controlliiyV ERfor each dependence structurepsf
values. Holm procedure is step-down improvement of Bonfempoocedure. This pro-
cedure dominates all monotone step-down procedures dlomgré W ERand is unim-
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provable in the class of monotone multiple testing procesl@ontrollingFWER Our
simulations showed that there is only smalfelience in estimates ¢&fW ERof these
two procedures and the lines of power are almost overlappeerefore, the conserva-
tiveness of Bonferroni procedure comes from principle oftipld testing and not from
simplicity of this procedure. The improvement in power caechieved by using pro-
cedures controllinggr DR. Although these procedures find mor&eientially expressed
genes, they produce more false discoveries as well. Beniafekutiely procedure is
too conservative in controllingeDR. Therefore, empirical Bayes approach can help
here. On the other side, it produces too many false positidesice, we have to con-
sider if we want to controF W ER(find any false positives with small probability) and
use Bonferroni or Holm procedure or we want to con&@IR (find more diferentially
expressed genes but produce a large number of false pesisuwgell) and use empirical
Bayes approach.

Another problem of gene expression data is that genes dniylugrrelated between
themselves. Hence-values of hypotheses about genes are dependent. It inflsenc
their properties as we showed in chapter 3. There exist sommeatizations that partial-
ly solve this problem. The most common normalization suchglabal normalization
or quantile normalization makes normalized genes almosbelated. On the other
hand, they influence bothféerentially and non-dierentially expressed genes. There-
fore, they result in finding too many false positives. In oth®rds, genes that seem
to be diferentially expressed after these normalizations do nal teebe diferentially
expressed in original samples. In this work, we proposeceswonmalizations based on
6-sequence dKlebanov and Yakovlgi2007). We showed that our propogatesults in
appropriate number of false positives (another normatimatdo not). Moreover, after
this normalization, tests discover more trulyfdrentially expressed genes than if we
use non-normalized data.

In some situations, it is better to work with genes sets atstd# genes alone. There-
fore, we test two-sample hypotheses about these sets asdi¢galing with multidi-
mensional hypotheses. The common way is to use Hotelliegisar tests based dn
statistic. These tests assume normality of samples. Mergbitelling’s test assumes
equal covariance matrix for both samples. In this work, wewsdd that Hotelling’s
test has dterent behavior for dependent components of observatioas@ther tests.
Hotelling’s test has good power only if there is small prdjwor of differentially ex-
pressed genes and it lacks the power if there is high prapodf diferentially ex-
pressed genes in gene sets. Good alternative to this fdgeist, which is more power-
ful than tests based drstatistic. On the other hanbl-test is too time consumable and
it makes trouble to use this test, especially when we canftatdadlong computation of
p-values.

Finally, we know that normalizations make gene expressaia dlmost uncorrelat-
ed. However, if data are uncorrelated it does not necegsaghn that these data are
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independent. Common tests usually test only uncorrelatnmhret independence of
the data. Therefore, we proposgdest to test independence of genes. This test helped
us distinguish between type A dependence and hidden regdependence which can
occur in gene expression data.
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Appendix A

Useful inequalities

Bonferroni inequality (known as Boole inequality as well): Consider set of events
Bi, ..., By. Then, Bonferroni inequality states that

P( U Bi) < Z P(B)). (A1)

Markov's inequality: If X is any random variable aral> 0, then

P(X| > a) < L (A.2)

p-value inequality: The p-value satisfies the following inequalities with respedirtee

hypothesiH
Pu(p<a)<a. (A.3)
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Appendix B

Multivariate normal distribution with
dependent components

For generating i.i.d random vectoXs, ..., Xn, Xj = (Xajs---» Xm), j = 1,..., n from
m-dimensional normal distribution with zero mean and cavace matrix given by

1 p p ..op
p 1 p ...p
s—| - .
p p 1 p
P .o op 1
we use the following algorithm.
Algorithm B.1.
1. Generate independent random variablgsaad y;, i = 1,....m; j = 1,...,n

from the standard normal distribution.

2. For afixedo, define ¥ = \paj+ \1-pyj,i=1....m;j=1...,n.

This algorithm produces random vectors with central nomirsitibution and more-
over for each; # i, all pairwise correlationgorr(x;,j, X,;) = p and for each,k =
1,....,mandj # | we havecorr(xj, X) = O.
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Appendix C

Supplement

In this work, we performed many simulations. Due to their ptexity, all results cannot
be inserted in this work. However, omitted results can bendoan supplement CD
which contains directories (they have the same name as ¢lierséhey belong to)

1.6 HYPERDIP and TEL data - in HYPERDIP.txtand TEL.txtfiles there are
HYPERDIP and TEL data that are used across this doctorakthesi

3.2 Some hypotheses are falsén Proportions of genes.pafndPairs of genes.pdf
files there are histograms gpfvalues of proportions of genes and pairs of genes
according to dierent ordering.

4.2.1 Comparison of Bonferroni and Holm procedure- in Bonferroni-Holm.pdf
file there are complete results of simulation of sectionl4.2.

4.5.1 Comparison of empirical Bayes approachesin EB comparison.pdfile
there are complete results of simulation of section 4.5.1.

4.6 Comparison of multiple testing procedures in EB& MTP comparison.pdf
file there are complete results of simulation of section 4.6.

5.3 Comparison of normalizations- in Estimate of average power.pdf, Estimate
of FDR.pdf, Estimate of FWER.pdf, Estimate of PFERfjes$ there are tables of
complete results of simulation of section 5.3.

6.3 Comparison of tests for gene setsin Tests for gene sets.péife there are
complete results of simulation of section 6.3.
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