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Abstract

This work is devoted to seeking methods for analysis of survival data with the

Aalen model under special circumstances. We suppose, that all regression func-

tions and all covariates of the observed individuals are nonnegative. Hence, every

covariate is expected to impose an additional risk to the baseline hazard rate.

As opposed to the classic Aalen model, the cumulative regression functions are

always nondecreasing. We named this special case the monotone Aalen model.

The main objective was to establish solid methods for estimation of the unknown

functional parameters of the hazard rate. Three methods are presented in this

work.

First, we considered two likelihood based approaches with assumption of dis-

continuous cumulative regression functions, namely the nonparametric maximum

likelihood method and the Bayesian analysis using Beta processes as the priors for

the unknown cumulative regression functions. Both methods led to well defined

estimators. Study of their large-sample properties showed that under general

conditions both nonparametric likelihood estimators and the Bayesian estima-

tors were inconsistent. The consistency was found only with one-covariate model

without a baseline hazard function.

In the third method the Bayesian framework was utilized again. As opposes to

the previous, here the analysis was based on the assumption of continuity of the

hazard rate. This allowed to estimate the regression functions directly instead of

estimating their cumulative versions. The method relied on the correlated prior

approach where the regression functions were supposed to be jump processes

with a martingale structure. Due to the complexity of the posterior distribution,

the evaluation of the estimators was obtained via sample paths generated by

Gibbs sample. The performance, especially the consistency, was assessed by the

simulation study.

The three methods were demonstrated on two real datasets: the famous Dan-

ish malignant melanoma data and a never before analysed dataset on delay times

of patients with myocardial infarction.
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Chapter 1

Introduction

This thesis is devoted to exploring new possibilities in the estimation of unknown

quantities in the survival analysis models. The main focus is on developing meth-

ods to estimate the unknown regression functions in a special case of the Aalen

additive model. We consider two approaches to the estimation of the nonnegative

regression functions. The first one is based on the assumption of a discontinuous

cumulative hazard rate. We introduced two new nonparametric estimators of the

cumulative regression functions derived from the maximum likelihood methodol-

ogy and from the Bayesian framework with Beta process as a prior. This work

is motivated by the Hjort paper on Beta processes in estimation of the cumu-

lative hazard functions, [19], the path further extended by Kim and Lee to NII

processes, [27], [31]. On the contrary, in the second approach we assume that

the cumulative hazard rate is continuous and we model the regression functions

using the priors as in Arjas and Gasbarra’s work, [6].

As it soon becomes clear, the estimators derived in this thesis turned out to

be inconsistent. The reason of inconsistency of these estimators is not obvious

but it seems to be one of the problematic cases when even the reliable methods

like nonparametric maximum likelihood estimation and Bayesian approach crush

if an infinite-dimensional parameter estimation is involved. Still, it is felt that the

proposed work is beneficial to some degree. It is not known to the author that

any kind of Bayesian analysis of the general Aalen model has been done, apart

from the frailty models, see [40]. Second, it introduces a special case of Aalen

model which has interesting interpretation and good potential in data analysis.

In survival analysis non- or semi-parametric approaches have become widely

used. Functional parameters of models are often estimated as piecewise constant

function with jumps at every failure time, rather than a pre-specified parametric

function. Typical examples are the Kaplan-Meier estimator of survival function

in homogeneous case, [26], or Breslow estimator of cumulative baseline hazard
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CHAPTER 1. INTRODUCTION

function in Cox proportional hazard model, [9]. In most famous models like

Cox proportional model or Aalen’s additive model these estimators have proved

to be consistent, their asymptotic features are known and no need to impose

a functional form in advance makes them perfect candidates for usage in data

analysis. The dimension of the functional space from which the estimators are

drawn is fixed to the number of observed failures. Fixed discontinuities located

at the failure times could be viewed as a sole drawback of the estimators.

The general Aalen model was first suggested by Aalen in the eighties, [2] and

[3]. He proposed nonparametric estimators of regression functions based on the

least squares method. These were further extended to the weighted least squares

estimators by McKeague and Huffer, [21]. Both the least squares and weighted

least squares estimators are again jump processes with discontinuities located in

failure times.

Bayesian approach to survival data analysis has become a popular alternative

to the aforementioned estimators which enables one to solve concrete problems as

integrals with respect to the posterior distribution. Nowadays, the computational

feasibility is less of an issue and the inference from complicated models can be

obtained using MCMC algorithm. Popular priors for functional parameters of

survival models are the nondecreasing independent increment processes (NII),

a wider class of processes incorporating Gamma and Beta processes (and also

Dirichlet processes via the known relationship H(t) =
∫ t

0
dF (s)/(1 − F (s−))

between the cumulative hazard function H and the distribution function F ). A

process, let us say H, is a NII process if H is a nondecreasing right-continuous

function having H(0) = 0, jumps ∆H(t) ≤ 1 and either ∆H(t) = 1 for some

t or limt→∞H(t) = ∞, and obviously it induces a proper cumulative hazard

function. For more details see [12] or [31]. Lately it was shown by several authors

that the estimators of functional parameters based on these priors are consistent

and asymptotically equivalent to the standard nonparametric estimators in the

homogeneous case, the Cox model and the competing risk model, see [31], [28],

[10] respectively. For a good overview of Bayesian analysis in survival models see

e.g. [41].

In Section 1.1 and Section 1.2 we give a summary of the basic theory related

to the survival data analysis, counting processes and martingales, which will

be useful in next chapters. In Section 1.3 and Section 1.4 we introduce the

monotone Aalen model and compare it to the classic Aalen model. Furthermore,

we talk about other popular models within the survival analysis, in particular

about the well known Cox model. Next in Section 1.5 we introduce a (never

2



1.1. Survival data CHAPTER 1. INTRODUCTION

before analysed) real dataset containing observed delay-times of patients with

the myocardial infarction which will be later used to demonstrate the obtained

estimators. The chapter is finished with an outline of the main body of this thesis

in Section 1.6 and an overview of the current state of knowledge in the field in

Section 1.7.

1.1 Survival data

Let T 0
i , i = 1, . . . , n, be survival times that come from observing n independent

individuals or objects, with distribution functions Fi. As usual in applications,

the survival times can be and often are right-censored with random variables Ci.

We suppose that the censoring mechanism is independent from the failure times

T 0
i . The actual observed times are Ti = min(T 0

i , Ci).

We will prefer to work with counting processes instead of the survival times.

Let us consider a multivariate counting process N(t) = (N1(t), N2(t), . . . , Nn(t))>

observed on a time interval [0, τ ], where τ = max1≤i≤n Ti <∞. All processes start

from zero, Ni(0) = 0, and Ni(t) increases by 1 when the i-th object happens to

meet an event of interest. No two components of N(t) jump at the same time

with probability 1. For now let us suppose that the distribution of the survival

times is absolutely continuous and the densities fi of the distribution functions

Fi, i = 1, . . . , n exist.

We assume the multiplicative intensity model, meaning that the intensity takes

the form Yi(t)hi(t), where hi(t) is a deterministic bounded nonnegative continuous

hazard function and Yi(t) is a predictable {0, 1}-valued process indicating whether

the i-th individual is at risk of event whenever Yi(t) = 1. The indicator process

has its importance when the censoring is present or when the occurrence of an

event implies the end of the observing of the object. In this work we will consider

only the case when every subject can experience the event of interest only once.

The hazard function or the hazard rate related to the i-th object, hi(t), is the

instantaneous rate of an event occurring at time t defined as

hi(t) = lim
∆t→0

1

∆t
P (Ni(t+ ∆t)−Ni(t) = 1| Ft),

where Ft := σ{Ni(s), 0 ≤ s ≤ t} is a σ-algebra of the history of the i-th

individual up to time moment t. After multiplying hi(t) with ∆t we get an

approximate probability of i-th subject failing in (t, t+ ∆t].

3



1.1. Survival data CHAPTER 1. INTRODUCTION

Switching back to Ti in the definition of the hazard rate we can easily see that

hi(t) = lim
∆t→0

1

∆t

P (t < Ti ≤ t+ ∆t, Ti = T 0
i )

P (Ti > t)
=
fi(t)

Si(t)
= − d

dt
logSi(t)

and after integrating both sides and exponentiating them we get

Si(t) = exp
{
−
∫ t

0

hi(s)ds
}
.

With Si(t) = 1−Fi(t) we denoted the survival function, which is the probability

of the ith individual surviving till time t. From hi(t) = fi(t)/Si(t), the expression

for the probability density function of Ti emerges

fi(t) = hi(t) exp
{
−
∫ t

0

hi(s)ds
}
. (1.1)

Nevertheless, unlike in other fields of statistics it is not usual to describe the

distribution of Ti by densities or the distribution functions. One is often more

interested in the (cumulative) hazard rate or the survival function.

Most nonparametric methods within the survival data analysis are unable to

estimate the hazard functions directly and focus on estimation of the cumulative

hazard rate Hi(t) =
∫ t

0
hi(s)ds instead. In homogeneous case, when hi ≡ h, ∀i,

the aggregated processN(s) =
∑n

i=1 Ni(s) is sufficient for estimatingH. When no

parametric assumptions are imposed on the functional form of h, the cumulative

hazard rate H is estimated using the traditional Nelson-Aalen estimator (see [1]),

Ĥ(t) =

∫ t

0

n∑
i=1

dNi(s)∑n
j=1 Yj(s)

=

∫ t

0

dN(s)

Y (s)
,

where we denoted Y (s) =
∑n

i=1 Yi(s).

There is a one-to-one relation between the distribution function Fi and the

cumulative hazard function Hi, precisely

Hi(t) =

∫ t

0

dFi(s)

1− Fi(s−)
and Fi(t) = 1−

∏
s∈[0,t]

{1− dHi(s)}. (1.2)

The estimator of the distribution function Fi as well as the survival function

Si is then easy to obtain once we have an estimator for Hi. The relationships

in (1.2) remain intact and therefore applicable even when the distribution is not

continuous and the distribution function has no density. The symbol
∏

s∈[0,t] in

the right hand part of (1.2) is the product integration and it is a continuous

version of the ordinary product. We say that Y (t) =
∏

s∈[0,t]{1 + dX(s)} is the

4



1.2. Counting processes CHAPTER 1. INTRODUCTION

product integral of a càdlàg function X if

Y (t) = lim
max |ti−ti−1|→0

m∏
i=1

(1 +X(ti)−X(ti−1)) ,

where 0 = t0 < t1 < · · · < tm = t is a partition of the time interval [0, t]. If X

is a step function, we can write X = Xc +
∑

∆X, where XC is the continuous

part and ∆X = X − X− are the steps. For step functions the product integral

separates into two parts∏
s∈[0,t]

{1 + dX} = exp{Xc}
∏

(1 + ∆X) .

Obviously, when Fi is continuous, the latter of (1.2) reduces to Fi(t) = 1 −
exp{−Hi(t)}.

Under the multiplicative intensity model the likelihood of the observed data

N1, . . . , Nn in time interval [0, τ ], where τ = maxi{Ti}, is

L =
n∏
i=1

∏
t∈[0,τ ]

{
dHi(t)

dNi(t) (1− dHi(t))
Yi(t)−dNi(t)

}
.

In the continuous case, when hi-s exist, using the features of the product integral

simplifies the above expression down to

L =
n∏
i=1

hi(Ti)
dNi(Ti) exp {−Hi(Ti)} .

This is in agreement with L =
∏n

i=1 fi(Ti)
dNi(Ti)Si(Ti)

1−dNi(Ti), where the first

part represents the individuals who failed at their Ti-s, while the second part

corresponds to the survival of all individuals up to their Ti-s regardless if they

failed or were censored.

1.2 Counting processes and martingale theory

Since the introduction of the martingale approach and counting processes to the

statistical analysis of time-to-event data in 1970s it has become remarkably useful

in dealing with most problems arising in the survival data analysis. The central

limit theorem for martingales as stated by Rebolledo in [38] made a clear path to

proving the weak convergence of an estimator that could often be expressed as a

stochastic integral of a predictable process with respect to a local martingale. In

5



1.2. Counting processes CHAPTER 1. INTRODUCTION

next pages let us make a quick journey into the world of the martingale approach

to survival data.

Let T = [0, τ) and (Ω,F , {Ft : t ∈ T }, P ) be a complete stochastic basis,

i.e. a probability space equipped with a filtration {Ft : t ∈ T }, an increasing

right-continuous family of sub-σ-algebras of the σ-algebra F . We assume that

the components of the multivariate counting process N defined in Section 1.1

are càdlàg processes existing in the probability space (Ω,F ) and adapted to the

filtration {Ft : t ∈ T }. The filtration is supposed to fulfil the usual conditions

(see e.g. [4], pp. 60) and it can either be defined up front or generated by the

process N(t). Let us denote T = T ∪{τ}. Most of the empirical processes used

in this context live on the space of càdlàg functions D(T ) called the Skorohod

space. Since most of the theoretical results in next chapters focus on the weak

convergence of the empirical processes, we will endow the space D(T ) with

Skorohod topology.

Let us first introduce several basic terms. A process is called càdlàg if its

sample paths are right-continuous and have left-hand limits. A process X is

called adapted to the filtration {Ft : t ∈ T } if X(t) is Ft measurable for each

t. If a process is measurable with respect to the σ-algebra generated by all left-

continuous adapted processes, then it is called predictable. Finally, the process X

is bounded if there exist a finite constant Γ such that supt∈T |X(t)| < Γ almost

surely.

We say that a càdlàg processM = {M(t) : t ∈ T } is a martingale with respect

to the filtration {Ft : t ∈ T } if M is adapted to {Ft : t ∈ T }, E |M(t)| < ∞
for all t ∈ T and

E{M(t)| Fs} = M(s) a.s. for all s, t ∈ T , s ≤ t.

If the equality in the last expression is replaced by E{M(t)| Fs} ≥ M(s) then

M is called a submartingale. Further, the process M is square integrable if

supt∈T E{M(t)}2 <∞.

Looking at the multivariate counting process we defined in previous section,

we can see that every component of N(t) is a nonnegative right-continuous local

submartingale. The attribute local means that there exists a localization, i.e. a

sequence of random variables {τm}∞m=1 in T such that {τm ≤ t} ∈ Ft, P (τm ≥
t)→ 1 as m→∞ for all t ∈ T and the stopped process I(τm > 0)Ni(t ∧ τm) is

a submartingale:

E(I(τm > 0)Ni(t ∧ τm)| Fs) ≥ I(τm > 0)Ni(s ∧ τm), ∀s ≤ t, ∀i.

6
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Hence according to the Doob-Meyer decomposition (see [4], pp. 66-67), there

exists a càdlàg nondecreasing predictable process HY
i to every Ni, such that HY

i

has finite variation andHY
i (0) = 0. Moreover, we have that the difference between

Ni and HY
i ,

Mi(t) = Ni(t)−HY
i (t), t ∈ T , (1.3)

is a zero-mean right-continuous local martingale. Mi(t) is in fact the difference

between the number of the events occurred up to time t and the expected number

of events. The process HY
i is called a compensator of the process Ni and once it

exists, it is unique. It can be shown that HY
i (t) = Hi(t∧max{s ∈ T : Yi(s) = 1}),

i.e. HY
i is the cumulative intensity process of Ni and in the absolutely continuous

case HY
i (t) =

∫ t
0
Yi(s)hi(s)ds. The important consequence of this application

of Doob-Meyer decomposition is the fact, that for every Ni(t) defined as above

the uniquely determined cumulative intensity process exists, which means the

cumulative hazard rate Hi exists.

In the next, certain properties of the processes like boundedness or integrabil-

ity will hold only locally which means that a property is satisfied by the stopped

process with appropriately chosen localization. As Ni and HY
i are both locally

bounded, combining their localizing times it can be shown that Mi from (1.3)

is square integrable. By Jensen’s inequality we have that M2
i is also a local

submartingale. Applying the Doob-Meyer decomposition on M2
i we have the

existence of a compensator to M2
i that we denote 〈Mi,Mi〉 or often just 〈Mi〉.

This unique nondecreasing right-continuous predictable process is called a pre-

dictable variation process of Mi. For any two Mi and Mj, i 6= j, MiMj is again

a local submartingale with compensator 〈Mi,Mj〉 called a predictable covariation

process.

If the compensators HY
i of the counting processes Ni, i = 1, . . . , n, are contin-

uous, then for the predictive variation and covariation processes of Mi = Ni−HY
i

we have

〈Mi〉 = HY
i ∀i and 〈Mi,Mj〉 = 0 i 6= j. (1.4)

Furthermore, let us consider a process
∑n

i=1

∫
UidMi where Ui, i = 1, . . . , n

are predictable locally bounded processes and Mi, i = 1, . . . , n are from (1.3).

Processes of this type arises often in practise in statistical testing and estima-

tion within survival analysis, viz. the log-rank tests. The process
∑n

i=1

∫
UidMi

has nice features and it is a local square integrable zero-mean martingale with

compensator equal to〈
n∑
i=1

∫ t

0

Ui(s)dMi(s),
n∑
i=1

∫ t

0

Ui(s)dMi(s)

〉

7
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=
n∑
i=1

n∑
j=1

∫ t

0

Ui(s)Uj(s)d 〈Mi,Mj〉 (s), ∀t ∈ T .

If HY
i are continuous then by applying (1.4) and substituting Yi(s)hi(s)ds instead

of dHY
i (s) we see that the compensator equals to

n∑
i=1

n∑
j=1

∫ t

0

Ui(s)Uj(s)d 〈Mi,Mj〉 (s) =
n∑
i=1

∫ t

0

U2
i (s)Yi(s)hi(s)ds, ∀t ∈ T .

If E
∫ t

0
U2
i d 〈Mi〉 (s) <∞, for all i, then

∑n
i=1

∫
UidMi is a zero-mean martingale

over [0, t] and

E

{
n∑
i=1

∫ t

0

Ui(s)dMi(s)

}2

= E

n∑
i=1

∫ t

0

U2
i (s)Yi(s)hi(s)ds.

Since E
∑n

i=1

∫
UidMi = 0, we can see that E

〈∑n
i=1

∫
UidMi

〉
is the variance of

the process
∑n

i=1

∫
UidMi at t.

Finally, we recall the martingale central limit theorem which will be useful

later on. The version we state here was given by Rebolledo in [38], hence it is

called the Rebolledo theorem. Let us reformulate the theorem for the processes

which are the products of the stochastic integration with respect to martingales.

Denote

V (n)(t) =
n∑
i=1

∫ t

0

U
(n)
i (s)dM

(n)
i (s), (1.5)

where M
(n)
i = N

(n)
i −H

Y,(n)
i . The superscript (n) is to emphasize the dependence

of the processes on the sample size n. The following is the central limit theorem

for the process V (n) as stated in [14], Th. 5.3.5.

Theorem 1 (Martingale central limit theorem for V (n)) Assume that the

compensators H
Y,(n)
i of the counting processes N

(n)
i are continuous for ∀i, U (n)

i

are locally bounded predictable processes for ∀i. For any ε > 0 let us denote the

process

V (n)
ε (t) =

n∑
i=1

∫ t

0

U
(n)
i (s)I{|U(n)

i (s)|≥ε}dM
(n)
i (s).

Let V (∞) be a zero-mean Gaussian process with independent increments,

V (∞)(0) = 0 and E{V (∞)(t)}2 = C(t), where C is a continuous function.

Suppose that for all t ∈ T , as n→∞,

〈
V (n), V (n)

〉
(t)

P−−→ C(t)

8
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and 〈
V (n)
ε , V (n)

ε

〉
(t)

P−−→ 0, for any ε > 0.

Then

V (n) D−−→ V (∞) in D(T ) as m→∞.

Often we need a convergence result of a functional of a convergent process instead

of the process itself. As long as the functional in question is continuous, the

convergence to the functional of the limiting process can be achieved easily by

applying the continuous mapping theorem. Here we state the theorem as it is in

[14], Th. B.1.1.

Theorem 2 (Continuous mapping theorem) Suppose g is a continuous

mapping from one metric space (Γ,S0) to another (Γ
′
,S

′
0). If for random

elements X(n) and X defined on (Γ,S0) we have X(n) D−−→ X in (Γ,S0) then

g(X(n))
D−−→ g(X) in (Γ

′
,S

′
0).

A practical application of the continuous mapping theorem is for example the

convergence of any set of the finite-dimensional distributions of V (n) to the cor-

responding set of finite-dimensional distributions of V (∞). Often used functional

is also a supremum of the process over some time interval, i.e. the respective

convergence result would be as following

sup
0≤s≤t

V (n)(t)
D−−→ sup

0≤s≤t
V (∞)(t).

This section covers only a basic knowledge on the martingale approach to

survival data analysis to provide a foundation for findings in the next chapters.

More details and very good overview on the theory of counting processes and

their connection to martingales can be found either in [14] or [4], Ch. II.

The last theorem stated here is an inequality which is not necessarily con-

nected with stochastic processes but it will be crucial for one of the proofs in

Chapter 2.

Theorem 3 (McDiarmid inequality, [35]) Let X1, . . . , Xm be independent

random variables defined in a set X . Further, let g : Xm 7→ R be a function of

X1, . . . , Xm that satisfies∣∣∣g(x1, . . . , xi, . . . , xm)− g(x1, . . . , x
′

i, . . . , xm)
∣∣∣ ≤ ci ∀i, ∀x1, . . . , xm, x

′

i ∈ X .

Then for all ε > 0,

P
(∣∣∣g(x1, . . . , xm)− E g(x1, . . . , xm) ≥ ε

∣∣∣) ≤ 2 exp

{
−2ε2∑m
i=1 c

2
i

}
.

9



1.3. Monotone Aalen model CHAPTER 1. INTRODUCTION

Before we move on to another section, let us remind what big Op and small op

stand for in probability notation.

Definition 1 Let Xn be a set of random variables and an be a corresponding set

of constants.

(a) The notation Xn = Op(an) means that random variables Xn/an are stochas-

tically bounded, i.e. for ∀ε > 0 there exists a finite constant M such that

P

(∣∣∣∣Xn

an

∣∣∣∣ > M

)
< ε ∀n.

(b) The notation Xn = op(an) means that random variables Xn/an converge to

0 in probability with n→∞, i.e. for ∀ε > 0

lim
n→∞

P

(∣∣∣∣Xn

an

∣∣∣∣ > ε

)
= 0.

1.3 Monotone Aalen model

In this work we study the Aalen additive model of Aalen, [2] and [3], on a dataset

of form (Ti, δi, (xi,1, . . . , xi,p)
>)ni=1, where Ti = min(T 0

i , Ci) are observed right-

censored survival times, δi = I{Ti = T 0
i } is the indicator of noncensored obser-

vation and (xi,1, . . . , xi,p)
>, are p-dimensional real-valued covariate vectors. The

number of the covariates p is usually quite small, for example up to p = 3. T 0
i is a

real lifetime of ith individual with distribution function Fi = F (·|(xi,1, . . . , xi,p)>)

and Ci is a censoring variable independent on T 0
i . The Aalen model assumes that

the hazard rate for ith object is

hi(t) =

p∑
j=1

xi,jαj(t), i = 1, . . . , n, (1.6)

where α1, . . . , αp are unknown regression functions. Often xi,1 ≡ 1,∀i, and α1

represents a baseline risk of failure common for all individuals if there is no

other risk factor present. Typically, the Aalen model with a baseline regression

function is formulated as hi(t) = α0(t) +
∑p

j=1 xi,jαj(t), but for our needs it will

be more convenient to stick to the formulation in (1.6) and set xi,1 ≡ 1 if the

baseline hazard is involved. Even though we allow the covariates xi,j to be real,

hence even equal to zero, it is clearly not admissible that an individual has all

xi,j = 0, j = 1, . . . , p.

10
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Aalen studied the model assuming that αj-s take real values and only the

overall hazard function hi needs to be nonnegative. He estimated the cumula-

tive versions of regression function Aj(t) =
∫ t

0
αj(s)ds, j = 1, . . . , p by a least

squares estimator. Let us introduce processes Ni(t) = I{Ti ≤ t, δi = 1}, Yi(t) =

I{Ti ≥ t}. We denote α(t) = (α1(t), . . . , αp(t))
>, A(t) = (A1(t), . . . , Ap(t))

>, zi =

(xi,1, . . . , xi,p)
>, N(s) = (N1(s), . . . , Nn(s))> and Z(s) = (z1Y1(s), . . . , znYn(s))>.

Then the Aalen least squares estimator is equal to

Aa(t) =

∫ t

0

(Z(s)>Z(s))−1Z(s)>dN(s).

From the theory of martingales and the Doob-Meier decomposition we have

existence of a zero-mean martingale Mi(t) = Ni(t) −
∫ t

0
Yi(s)z

>
i dA(s). The esti-

mator is motivated by the fact that

E dN(t) = EZdA(t)

and intuitively

Aa(t) =

∫ t

0

Z(s)−dN(s).

The particular choice of pseudoinverse Z− = (Z>Z)−1Z> leads to Aalen estima-

tor. The unweighted least squares method, however, does not take into account

the fact that the variances of Mi-s might be unequal. Huffer and McKeague [21]

introduced a two-stage estimator which is essentially a weighted least squares

estimator with a matrix of weights V ? = diag{Zα?}−1, where α? is obtained in

the first stage as a smoothed OLS estimator via kernel estimation. Under some

conditions on the kernel function and the bandwidth, α? is a uniformly consistent

estimator of the vector of regression functions (α1, . . . , αp)
>. Essentially, V ? is

a matrix with estimators of Var(dMi(s)) on diagonal. In the second stage the

regression processes are estimated by

A?(t) =

∫ t

0

(Z(s)>V ?(s)Z(s))−1Z(s)>V ?(s)dN(s). (1.7)

Both Aalen’s and Huffer and McKeague’s estimators are under certain regularity

conditions consistent and their asymptotic distributions are p-dimensional zero-

mean Gaussian martingales. Furthermore, as shown in [4], section VIII.4.4., the

Huffer and McKeague’s WLS estimator is asymptotically efficient in the sense

that asymptotic distribution of any other estimator satisfying certain regularity

conditions cannot be more concentrated around the true value A, and therefore

the WLS estimator is optimal.

11
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In next we work with a submodel of Aalen model. First, let us suppose that

all the covariates xi,j are nonnegative. When working with an actual dataset,

this can be achieved by shifting the covariates to the positive values (and keep-

ing this adjustment in mind when interpreting the results). Second, we assume

that the regression functions αj, j = 1, . . . , p, are nonnegative and we will call

this model a monotone Aalen model. The most obvious impact of this restriction

is that the cumulative regression functions are always positive valued and non-

decreasing (hence they are monotone and inspiring the name monotone Aalen

model). Furthermore, it rules out the problematic issue with non-monotonicity

of the estimated survival functions when the standard Aalen model approach is

used (see bottom of p. 910 in [3]).

Another advantage is that the monotone Aalen model is more natural in in-

terpretation of the estimated regression functions. Let us assume, that we have

the intercept included in the model, xi,1 ≡ 1 for all i. Hence we can formulate

the model in a way that an individual with covariates xi,j = 0, j > 1, represents

an average healthy individual and their hazard rate is contained in the regres-

sion function α1. The non-zero covariates account for presence of additional

risk factors, such as smoking, stressful lifestyle or excess weight, contributing to

the normal level. This formulation of the model can be interpreted as a com-

peting risks model with p cause-specific hazard functions. The overall hazard

function of the competing risks model is the same as in (1.6) and the observed

outcome is the failure due to one of the p independent causes. Then T 0
i would

be viewed as the minimum of the p independent life-time variables with hazard

rates α1, xi,2α2, . . . , xi,pαp. Under the assumption of independence of the compet-

ing risks we have

1− F (t|zi) = {1−G1(t)}
p∏
j=2

{1−Gj(t)}xi,j ,

where G1, . . . , Gp are distribution functions of random variables with cumulative

hazard rates equal to A1, . . . , Ap. Unlike in the computing risk model we only

have information on the failure (if present: δi = 1, else δi = 0) and we do not know

which of the present risks caused the outcome. Furthermore, with the monotone

Aalen model the failure can also be a result of collective additive effect of the risk

factors. Hence, the statistical methods which apply well in the competing risks

models cannot be used in the monotone Aalen model as we do not observe the

type of failure, i.e. which of the risks caused the outcome.

In practice, it often happens that only little data contribute to the estimation

at the end of the observation window. When using the general Aalen model,

12
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it might happen that a cumulative regression function of a covariate which is

expected to have a harmful effect, exhibits a distinctive decline or even runs into

negative values. If the knowledge on the particular risk factor known before the

study strongly antagonizes this kind of behaviour, then it is most likely caused

by the general instability of the estimates at the end of the observation window.

The monotone Aalen model is of good use if we would like to utilize also the

ending of the time window and we need a nonnegative estimator as well. Further

advantage of the restriction imposed by the monotone Aalen model is that it

can produce narrower confidence bands around the estimators as it rules out the

negative values. It is though important to consider whether the assumption of

nonnegativity for αj-s is truly justified for the particular dataset in hand. The

decision about the usage of the monotone Aalen model should be based on the

beforehand knowledge of the effects of covariates on the outcome (using results

of previous studies, a mechanism of the experiment, etc.). Furthermore, this

decision should be made before looking into data as otherwise we might artificially

increase the precision of estimators by imposing the unsubstantiated restriction

on monotonicity.

The estimation in the monotone Aalen model can be done using the classic

Aalen methodology. With small datasets, however, there is a risk of running into

negative values, what is in conflict with the model interpretation. Obviously, for

large n the consistency of these estimators is a certain guarantee of obtaining

proper nonnegative estimators.

1.4 Other life-time models

Among the most popular semiparametric models belongs the well-known Cox

regression model of Cox, [9], which assumes the hazard rate hi has following

form,

hi(t) = h(t; zi) = exp{β>zi}h0(t). (1.8)

Here β is a column vector of p unknown regression coefficients and h0 is an

unknown and unspecified baseline hazard rate common for all individuals (the

hazard rate function for individual with z = (0, . . . , 0)>).

The traditional approach to the regression parameter estimation is via the

partial maximum likelihood theory. It uses the fact that likelihood can be written

as a product of two components and only one of these components contains

information about β. The estimator β̂ of β is defined as a solution of U(β, τ) = 0,

13
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where U(β, t), t ∈ [0, τ ], is the score process equal to

U(β, t) =
n∑
i=1

∫ t

0

(
zi −

∑n
j=1 Yj(s)zj exp{β>zj}∑n
j=1 Yj(s) exp{β>zj}

)
dNi(s).

Once we have the estimator for β, the cumulative baseline hazard function h0(t)

can be estimated using the Breslow estimator of similar nature as Nelson-Aalen

estimator in homogeneous case,

Ĥ0(t) =

∫ t

0

[
n∑
i=1

Yi(s) exp{β̂>zi}

]−1

dN(s). (1.9)

Andersen and Gill, [5], extended the proportional effect of the covariates on the

intensity process of a counting process and established consistency of β̂ and weak

convergence of Ĥ0 using the martingale approach. Tsiatis, [45], proved strong

consistency under the time-constant covariates.

Another class of models are accelerated failure time models, that assume that

for ith object following is true

log Ti = −Z>i β + εi, i = 1, . . . , n, (1.10)

where β is an unknown p-dimensional regression parameter and εi, i = 1, . . . , n

are the error terms that are ruled by a common, in general unknown, distribution.

The model was introduced by Kalbfleisch and Prentice in 1980, [25].

Other famous models are the already mentioned competing risks models, Cox-

Aalen models which combine both additive and multiplicative effect of covariates

on the hazard rate, frailty models and many more.

Even though many datasets are analysed using both the Cox model and the

Aalen model there are several differences between them. The main is contained

in fact that the effect of covariates on the hazard rate is multiplicative in the Cox

model and additive in the Aalen model. The important aspect of Cox model is

the log-linearity and the proportionality of the hazard meaning that the hazard

functions of two individuals should not cross and one should be a multiple of the

other. This follows from the fact that for time-constant covariates the ratio of

the hazard rates of two individuals is

hi(t)

hj(t)
=
h(t; zi)

h(t; zj)
= exp

{
β>(zi − zj)

}
≡ const, ∀t ∈ [0, τ ].

Naturally, the case of time-dependent covariates damages this property. When

the condition on the constant proportional hazard is not fulfilled, either the strat-
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ification of the dataset should be considered or a variant of the Cox model with

functions βj(t) instead of the coefficients βj can be applied. Another option is

the additive Aalen model where the regression functions are left completely un-

specified what allows for arbitrary shape of the hazard rate. If the estimates of

the cumulative regression functions in the Aalen model look like a straight line,

it can be assumed that the effect of the covariates is constant over time, hence as

long as the log-linearity is fulfilled the Cox model can be a sufficient choice.

There are several reasons why the Cox model is the most popular choice for

the time-to-event analysis. It produces estimators which are easy to interpret and

the model fitting and diagnostics are well-known and available in most commonly

used computer packages such as SAS, SPLUS and R. Still, the assumption of

the constant proportional hazards needs to be fulfilled to make this estimators

effective. On the other hand, the Aalen model is more flexible and gives an

appealing understanding how the effects of the covariates develop over time.

1.5 Real dataset: Time-delay of the patients

with STEMI

Myocardial infarction, or commonly known as heart attack, is an event when

blood stops flowing properly into a part of the heart and causes damage to the

heart muscle due to the oxygen deprivation. According to the information stated

at the webpage www.cdc.gov, heart disease is the leading cause of death worldwide

with about 25% of deaths attributable to any heart related disease. In particular,

about 15% of patients who experience acute myocardial infarction die of it.

A great part of the patients who are hospitalised with an incidence of the

heart attack are classified with ST-elevated myocardial infarction (STEMI) and

treated with reperfusion therapy which restores circulation of blood to the heart.

To fully enjoy the benefits from the reperfusion therapy it is crucial that the

therapy is initiated at early stage of the incident. Hence, it is important that

the patient with suspicion of undergoing heart attack presents early. The term

time-delay stands for the total duration from the very onset of the myocardial

infarction to the surgery itself. The onset of the myocardial infarction is defined

as the onset of the symptoms typical for the heart failure like the chest pain,

discomfort and shortness of breath. According to the present-day knowledge,

increase in the time-delay of a patient is associated mainly with female gender,

higher age, low intensity of the symptoms, daytime when the incident happens,

delay at the transfer to the hospital, etc.
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The data analysed here were collected during three years from 2009 to 2011 at

the Royal Vinohrady Teaching Hospital in Prague in the Czech Republic by Dr.

Vı́chová and Dr. Moťovská who kindly provided the author with the dataset. The

dataset contains entries about 649 patients with the highest value of the observed

time-delay equal to 5895 minutes. We decided to consider only the patients who

arrived before the first 24 hours (1440 minutes) as the data after this time-point

are too sparse. The final dataset concerns 622 patients, from which 425 are males

and 197 are females. There are no censored observations. A great amount of

medical, life-style and system delay factors associated with every patient were

collected.

The outcome of the interest here is the time-delay reported by each patient

or their relatives. The observations are naturally subject to certain inaccuracy

induced by absence of the symptoms or imprecise memory of the time when

the incidence started. The bias from the true value, however, is most likely not

systematic. We will search for the relationship of the time-delay of a patient in

connection to four factors:

GENDER: Male/Female,

FIRST CONTACT DELAY: Yes/No; a delay induced by the first contact

medical ward, e.g. by misinterpretation of the symptoms,

DAYTIME: Day/Night; the time of the day when the symptoms appear,

WORKING STATUS: Employed/Unemployed or retired.

It is well known, that women are less prone to the myocardial infarction

incidence, hence there seem to be a negligence towards the heart attack symp-

toms from both female patients and physicians. According to the findings in

several medical studies the chance that a female patient shows up later than

three hours from the onset is about 1.5 times greater than for a male patient.

The prolonging effect of the system-delay caused by the first contact physicians

on the total time-delay is obvious. The factor DAYTIME was included as it is

common that patients tend to wait till morning to visit their practising physician,

if the symptoms occur during the night time. The last factor is again crucial as

there is greater chance of getting immediate help or encouragement to call the

ambulance from co-workers. Furthermore, it carries along the information about

the age of the patient and higher age is again associated with greater time-delay.
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Figure 1.1: Left: The logged estimated cumulative baseline hazards for the time-
delay separately for male and female gender, the estimation was done using strat-
ified Cox model. Right: Standardized Schoenfeld residuals plotted against event
time from non-stratified Cox model.

Hence, the female gender, presence of the first contact delay, onset at the night

time and unemployment are all expected to have positive effect on prolonging the

time-delay. Stating the same in the opposite way, the hazard rate of the delay

time increases (i.e. the time-delay is shorter) for working male patients with

the onset of the myocardial infarction during the day and without any hold-up

caused by the first contact medical ward. To make use of the monotone Aalen

model interpretation later on, we set the baseline hazard rate to correspond to an

average non-working female patient with the onset of symptoms at night and who

gets delayed at the first contact treatment. According to the hypothesis given

by the results of most cardiological studies, this is the worst scenario and implies

the greatest time-delay, so in fact the smallest hazard rate. Any deviation from

this baseline setting, e.g. male gender or the onset of symptoms during daytime,

is expected to have an increasing effect on the hazard rate leading to a smaller

time-delay. So as opposed to the monotone Aalen model interpretation proposed

in Section 1.3, here an individual with the greatest health risk is contained in the

baseline hazard and every additional factor represents a step towards less risky

situation with regards to the impact on health of the individual. Still, this setting

is fully valid as we expect the regression functions to be positive.

We first analysed the dataset using the Cox model. The estimated parame-

ters were all significantly greater than zero what supports our hypothesis about

all the factors having increasing effect on the hazard rate. However, the propor-

tional hazard assumption seems to be invalid for the two genders, see Figure 1.1.
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1.5. Real dataset CHAPTER 1. INTRODUCTION

The graph on the left hand side shows the logged cumulative baseline hazards

estimated in the Cox model stratified according to the gender. We tested the

proportional hazard assumption using the Grambsch and Therneau test based on

rescaled Schoenfeld residuals, see [17]. Let us consider a process

M(β, t) =

∑n
i=1 Yi(t) exp{β>zi}zi∑n
i=1 Yi(t) exp{β>zi}

.

M(β, t) is in fact a weighted mean of the covariate vector at time t conditionally

on the parameter vector β. Let us suppose that the number of the failure events

is l ≤ n and let us denote these events by t1, . . . , tl and the covariate vectors

corresponding to the individuals with these failure times by z(1), . . . , z(l). Then

the Schoenfeld residuals are defined as

ri(β) = z(i) −M(β, ti), i = 1, . . . , l.

Let us consider that the data truly comes from a nonproportional Cox model with

a hazard rate equal to λ0(t) exp{β?(t)>zi}, with β? = (β?1 , . . . , β
?
p)
> and β?j (t) =

βj + θjgj(t) for some predictable gj. It shows (details in Section 2 of [17]) that

under this model E ri(β) l V (β, ti)G(ti)θ, where G(ti) = diag{g1(ti), . . . , gp(ti)},
θ = (θ1, . . . , θp)

> and V (β, ti) is a conditional variance of the covariate vector

under the original model λ0(t) exp{β>zi} (see Section 1 in [17]). Clearly, when

there is no departure from the original model λ0(t) exp{β>zi} then the Schoenfeld

residuals ri(β) will randomly vary around the x-axis. If there is however a func-

tional trend visible when a smoothed line is added to the plot of ri(βj) against

ti, for some j, it shows the functional form for β?j (t) which should be considered

in the model instead of the constant βj.

Apart from the visual check, Grambsch and Therneau, [17], derived also an

asymptotic test of a hypothesis H0 : θ = 0. Following their work it turns out

that n−1/2
∑l

i=1 G(ti)ri(β̂) is asymptotically distributed as χ2 distribution with

p degrees of freedom. The estimated value β̂ in the test statistics is the estimate

of the covariate vector derived from the Cox model under H0 (i.e. under the

proportional hazard assumption).

The Schoenfeld residuals are plotted on the right hand side graph of Figure

1.1 together with the smoothed estimation of the trend (the smoothed line is a

natural spline fit indicating a departure from proportionality once it is not flat

and straight). The smoothed line based on the Schoenfeld residuals suggests that

the covariate βj should linearly decrease towards zero in time. The p-value of the

χ2 test of the non-zero slope was 0.02.
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Figure 1.2: The estimated cumulative regression functions from the classic Aalen model for the time-delay.
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On the left hand side graph of Figure 1.1 the logarithms of the estimated

hazard rates for the two genders under the proportional hazard assumption is

plotted. Apparently, the difference of the plotted lines is fairly big up to 600

minutes and then decreases monotonically in time, signaling the slight departure

from the proportionality. This is in agreement with gj being a decreasing linear

function as indicated by the graph on the right hand side.

As the next step we fitted the classic Aalen model using the OLS technique.

The estimated regression functions are plotted in Figure 1.2. Here all the cumu-

lative regression functions’ estimates, but the one corresponding to male gender,

are positive. The estimated cumulative regression function for male grows the

most intensively within the first 200 minutes and then exhibit only slight increase

over the time. At the end of the time window, where only few observations con-

tribute to the estimation, the decline of the estimated cumulative hazard function

is distinctive. This can be given by the general instability of the estimates at the

end of the observation window. It is also possible that this particular dataset ex-

hibit a surprising twist in the patients’ behaviour in comparison to other datasets

analysed within this field. How likely is this to happen is to e.g. the cardiologists

who run the study to assess. A monotone Aalen model can be of use if the decline

at the end is attributed to the uncertainty at the end of the time window and if

there is for various reasons a need for a nonnegative estimator.

1.6 Outline of the thesis

The whole thesis is devoted to the estimation in monotone Aalen model. The

core of the developed methods is contained in three chapters. The main focus is

aimed at the well-known approaches to the estimation within the survival data

analysis, as is the nonparametric maximum likelihood and Bayesian analysis using

the Beta process in Chapters 2 and 3. This work is a topic of a paper which will

be submitted in imminent future. Chapter 4 is again devoted to the Bayesian

modelling, although using different approach. The results of this chapter are

summarized in the paper accepted for publication, [44]. In Chapter 5 we compare

the results of the methods proposed in Chapters 2, 3 and 4 to the classic Aalen

estimators using the famous Danish malignant melanoma dataset and we revisit

the real data example introduced in Section 1.5.

In Chapter 2 and Chapter 3 we deal with estimation of integrated regression

functions Aj in monotone Aalen additive model for right-censored data and we

apply the nonparametric maximum likelihood method (NPML) and Bayesian
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approach with Beta process prior. It is not known to authors that this kind of

analysis has been done before and therefore in the first place it is vital to supply

the existing reservoir of available methods. Secondly, as it turns out, for p > 1

these estimators are inconsistent – an interesting and certainly disturbing result

on its own, showing that two solid approaches like NPML and Bayesian analysis

can mislead us. Both methods were based on the assumption of the discontinuity

of the regression functions, i.e. the likelihood of the data used in deriving the

estimators was

n∏
i=1

∏
s>0


p∏
j=1

{1− dAj(s)}xi,j(Yi(s)−dNi(s))

(
1−

p∏
j=1

{1− dAj(s)}xi,j
)dNi(s)

 .

(1.11)

The maximum likelihood estimation often leads to optimal estimators, as it

is for example Nelson-Aalen estimator, further extended to Kaplan-Meier esti-

mator and the baseline hazard estimator in Cox model, all of them possessing

nice asymptotic features. Further, let us recall that in a finite-dimensional case

and for regular systems the maximum likelihood estimator (MLE) is asymptot-

ically efficient with variance reaching the Cramér-Rao’s lower bound, when the

sample size grows. A good comment on optimality of Nelson-Aalen estimator

as the nonparametric maximum likelihood estimator (NPMLE) can be found in

[4], section VIII.4.5. The reasoning goes along these lines: Nelson-Aalen as a

solution of maximum likelihood technique is asymptotically equivalent to a linear

combination of score equations, hence this estimator is asymptotically linear and

under some additional assumptions on regularity this linearity induces asymp-

totic efficiency. Interestingly, in our case of the monotone Aalen model it is the

method of weighted least squares which produces optimal estimator, not NPML.

We derive the NPML estimator for the monotone Aalen model in Chapter 2.

We give the consistency and the asymptotic distribution results of this estimator

for a case when the hazard rate equals hi(t) = α1(t)xi,1. Then we move on to

a general case with p > 1 and we explain how a rather complicated estimator

is obtained. We show that this estimator converges to a function that does not

equal the true unknown regression function. However, it is then demonstrated

that there is present a feature we would like to call an average consistency even

in the general p > 1 case.

In Chapter 3 we devote to Bayesian analysis using the Beta processes. First we

introduce the NII processes used as priors in survival data analysis and give details

on the Beta processes. We derive the posterior distribution of the regression

parameters under the Beta process prior and propose the Bayesian estimator as

the expectation of this distribution. Then the consistency results alongside with
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a Bernstein-von Mises type of statement are given for p = 1 case. Similarly

as in NPML case, the Bayesian estimators of the regression functions prove to

be inconsistent for p > 1. Interestingly, they converge to a different function

than the NPML estimator although of a similar type. Further, we generalize this

result by showing that a Bayesian estimator based on any NII process as a prior

is inconsistent. We finish the section by explaining an algorithm which can be

used to produce the estimators.

The motivation to seek a different way to estimation of regression parameters

is obvious. Therefore the next step is to conduct different Bayesian modelling

assuming that unlike in (1.11) the regression functions are continuous, i.e. αj-s

exist, and a piecewise constant process suggested by Arjas and Gasbarra [6] is ap-

plied as prior. Such approach is utilized in Chapter 4. The method approximates

the baseline hazard rate and the regression functions using piecewise constant

functions with a random number and locations of jump times. The process which

is used as prior to regression function is explained and the posterior distribution

is derived and followed by explanation of the MCMC algorithm used for estima-

tion. The resulting estimators are of rather complicated structure not allowing

one to directly assess if the estimators are consistent. Therefore we conduct a

simulation study to explore the performance of the estimators.

In Chapter 5 we revisit the STEMI dataset introduced in Section 1.5 and

demonstrate the proposed estimators in comparison to the classical least squares

estimators. We also show the performance of the estimators on the Danish

melanoma data.

The thesis is concluded with a discussion of the achieved results in Chapter

6.

1.7 Current state on cases of inconsistent esti-

mators

As one of the results of this thesis is yet an example of the inconsistent estimators,

we conclude this chapter with a summary on the current state of the knowledge

concerning the inconsistency of the estimators developed within the time-to event

framework. Obviously, the consistency of a estimator is essential to statisticians

as otherwise instead of being sure that we are getting closer and closer to the

truth with growing sample size, when the consistency is lacking we are more and

more sure about being wrong and moreover not knowing how much.
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Generally, the nonparametric maximum likelihood as a generalization of the

classic maximum likelihood method to infinitely-dimensional problems not always

carries along nice asymptotical features. Particularly, in survival analysis the re-

sults on consistency of a nonparametric maximum likelihood estimator (further as

NPMLE) vary with different settings. Furthermore, some rather weak conditions

in addition to consistency can provide a gate to asymptotic normality – e.g. Gill

et al. in [16] using the von Mises method.

For right-censored data the results have been so far comforting. The NPMLE

in the multiplicative intensity model without covariates is essentially equal to

Nelson-Aalen estimator (see Johansen [23] and Jacobsen’s work [22]) and the

same stands for the baseline hazard function in Cox model. The consistency

of these estimators is fulfilled automatically from the asymptotic results of the

Nelson-Aalen estimator and the Breslow estimator. Zeng and Lin [50] proposed

an approximate NPML method for accelerated failure time models leading to

consistent estimators when some regularity conditions are fulfilled.

The estimation gets complicated when we deal with other censoring schemes

or a truncation is present. For the interval-censored data a nice overview was done

by Huang and Wellner [20], saying that for i.i.d. data the NPMLE is consistent

in both ”case 1” (current status data) and ”case k” interval censoring. However,

the ML estimation for the joint distribution of ”case k” interval-censored survival

times and continuous marks as i.i.d. pairs gives an inconsistent estimator (see

[34]). Pan and Chappell in [36] accommodated ”case 1” interval-censored data

with left truncation and pointed out that the NPMLE in such model is incon-

sistent while the estimator based on conditioning on truncating times proved to

be consistent. Interestingly, purely left-truncated data (as well as only interval-

censored data) induces consistent NPMLE, [48]. Huang and Wellner in their

paper [20] dealt also with regression model under both interval-censoring schema

in Cox and accelerated failure time models. They got consistency of NPMLE for

both models under reasonable conditions in both ”case 1” and ”case k” interval

censoring.

For doubly-censored data the consistency was shown by Turnbull [46] under

the assumption that the times are observed only on a finite set (i.e. the check-ups

are of a finite number).

Other cases of inconsistency emerged when a likelihood is maximized with

respect to a constraint, e.g. the NPMLE of a distribution with increasing failure

rate average, [8], or the NPMLE of a distribution which is uniformly stochastically

smaller than a beforehand obtained standard, [39].
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From the Bayesian point of view, the consistency of a Bayesian estimator is

often impossible to check as the posterior distributions are often of very compli-

cated structures. Still there have been attempts to derive the asymptotic features

of some Bayesian estimators. The inconsistency problem within the Bayesian

framework was discussed in various papers, among others especially by Diaconis

and Freedman [11] and Ghosal [15]. Generally, in parametric models the conver-

gence to the true value of parameter is ensured as long as the prior distribution is

properly chosen. However, introducing a functional parameter into a model brings

along difficulties not unfamiliar to statisticians (similarly for maximum likelihood

method etc.). Wu and Ghosal [49] proved a fairly general result on consistency

for some semiparametric cases, i.e. the Cox model, accelerated failure time mod-

els, under a Levy process prior. Less optimistic result was obtained by Zhou [51]

who showed that for doubly or interval censored i.i.d. data a Bayesian estimator

under Dirichlet process prior did not have the same limit as the NPML estimator.

Although he did not directly discuss the consistency itself, the result is troubling

as often Bayesian and ML techniques lead to an identical result asymptotically.
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Chapter 2

Nonparametric maximum

likelihood estimation

In principle, the maximum likelihood estimation in parametric case estimates the

parameters of assumed distribution or model structure by finding such values

that the corresponding distribution has most likely produced the studied data.

This approach has been proven to be very efficient in most situations when an

unknown finite dimensional quantity needs to be estimated.

When we move from a parametric to a nonparametric setting, then instead of

estimating the unknown parameters of the distribution we seek the distribution

itself from a class of suitable functions. The sought entity can be in form of a

distribution function, a density or a (cumulative) hazard function. As we know,

estimation of this kind can preserve nice asymptotic properties. The classic exam-

ple would be an empirical distribution function, which by the Glivenko-Cantelli

theorem converges to the sought distribution function uniformly on R. Further-

more, a process equal to a difference of an empirical and a true distribution

function multiplied by square root of the sample size converges in distribution

to a zero-mean Gaussian process. Within the field of the survival data analysis,

we would be interested in finding an estimator of a hazard function or a survival

function. Already mentioned Kaplan-Meier estimator SK−M of a survival func-

tion S in homogeneous case is a product limit estimator made up by inserting

the Nelson-Aalen estimator of a cumulative hazard rate into the expression on

the right hand side of the (1.2). It is again a nonparametric estimator based

on no distributional assumptions and is uniformly consistent on interval [0, τ ] in

which the true survival function and the censoring survival function is non-zero.

And indeed, the process
√
n(SK−M(t)−S(t)) converges weakly, on interval [0, τ ],

to −S · U where U is a zero-mean Gaussian martingale. For details on both

consistency and weak convergence see e.g. [4], Section IV.3.2.
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Even though we often suppose that our data comes from a continuous distri-

bution, the classic nonparametric estimators like the empirical distribution func-

tion or the Kaplan-Meier estimator are discontinuous functions (step functions

in particular). So when looking for a nonparametric estimator of the cumulative

regression functions in Aalen model, we do not seek a suitable estimator in the

class of continuous functions only. On the contrary, we enlarge the class of admis-

sible functions by including discontinuous distributions into the original model

and equip the extended space with suitable topology. The maximum likelihood

estimator then is found by maximizing the probability of the observations in this

extended space. The extension can be done in many ways and often the resulting

NPMLEs equal asymptotically, see e.g. [22]. Here, let us seek the estimator in

the class of the càdlàg functions D[0, τ ] endowed with Skorohod topology.

Next section introduces the reformulation of the Aalen model in the way that

possible discontinuities in the distribution function are accommodated. More im-

portantly we state several assumptions that will hold throughout whole Chapter

2 and Chapter 3. In Section 2.2 we introduce a NPML estimator for a simplified

case of p = 1 when the hazard rate equals hi(t) = α1(t)xi,1. We show that the

proposed NPML estimator is uniformly consistent and weakly convergent process.

We move onto the general case of p > 1 in Section 2.3, where we derive the form

of the NPML estimator and we prove that it is an inconsistent estimator. The

NPML estimator, however, exhibits a so called average consistency feature and

we deal with this matter in Section 2.4. The chapter is finished with a simulated

example in Section 2.5.

2.1 Formulation of the model

As we work in an extended model we need to switch to time-discrete framework

which is suitable for characterization of both discrete and continuous distribu-

tions, see e.g. [19]. Using the relationship between Hi and Fi in (1.2), we get

that the survival function for ith observation equals

Si(t) = 1− Fi(t) =
∏
[0,t]

{1− dHi(s)}.

Accommodating the formula (1.6) for the cumulative hazard function Hi under

the monotone Aalen model to the discontinuous setting gives us

1− dHi(t) =

p∏
j=1

{1− dAj(t)}xi,j . (2.1)
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Hence, the likelihood of a sample of the time-to-event observations, transformed

to counting processes (Ni, Yi, zi)
n
i=1, is in the time-discrete framework equal to

n∏
i=1

∏
s>0

{1− dHi(s)}Yi(s)−dNi(s)dHi(s)
dNi(s)

and under the monotone Aalen model it becomes

n∏
i=1

∏
s>0


p∏
j=1

{1− dAj(s)}xi,j(Yi(s)−dNi(s))

(
1−

p∏
j=1

{1− dAj(s)}xi,j
)dNi(s)

 .

(2.2)

If kth individual dies in [t, t+ dt], the contribution to the likelihood is

p∏
j=1

{1− dAj(t)}Rj(t)−xk,j

(
1−

p∏
j=1

{1− dAj(t)}xk,j
)
.

Here we denoted Rj(t) =
∑n

i=1 xi,jYi(t). We will work with this formulation of

the likelihood of the data in the whole Chapter 2 and also in Chapter 3.

Assumption (*): Before moving to the derivation of the estimators let us make

assumptions which we suppose to hold throughout the whole Chapter 2 and Chap-

ter 3. Firstly, we expect that the covariate vectors z1, . . . , zn are independent and

ruled by an unknown distribution. In general we say that any zi, i = 1, . . . , n is

distributed similarly as a random vector z. In particular we say that every com-

ponent xi,j of zi for any i is distributed as a random vector xj. The distribution

of xj, j = 1, . . . , p, cannot be degenerated in zero.

We assume that the true underlying distribution function Fi for i = 1, . . . , n

is absolutely continuous, i.e. there exist densities fi-s and hazard functions hi-

s. Hence, there exist regression functions αj, j = 1, . . . , p. Furthermore, as τ is

the maximum observed time we suppose that there is at least one i such, that

Si(τ) = 1− Fi(τ) > 0.

Next, let us suppose that the censoring mechanism is independent and the

censoring times Ci are distributed according to a distribution with distribution

function G(t). Finally, we want that G(τ) = 1−G(τ−) > 0 for all t < τ .

The assumption on the absolute continuity of the survival times distribution

Fi might seem unnecessarily strict, considering that we will work in time-discrete

framework and with discontinuous estimators in both Chapter 2 and Chapter 3.

The results obtained in following chapters could be restated for distributions with

discontinuities, however, the character of the counting processes theory and hence
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also the theory developed in this work would become more complex. Due to the

unfavourable results we eventually decided to stay within the range of simpler

case with the absolutely continuous distributions.

2.2 Case p = 1

Let us start with the simplest case when only one covariate is considered and

we observe a dataset of following form (Ni, Yi, xi,1)ni=1 on a fixed time interval

[0, τ ], τ < ∞. As we will see later, the outcome is rather different for a single

covariate case and a multiple covariate case. The formula for the cumulative

hazard rate abiding the Aalen model simplifies into Hi(s) = xi,1A1(s) and there

is only one functional parameter A1 which needs to be estimated. Let us mention

that in this case all covariates xi,1, i = 1, . . . , n, need to be non-zero and positive.

Assuming the discontinuous cumulative hazard rate, we have

1− dHi(s) = (1− dA1(s))xi,1 , i = 1, . . . , n,

and we seek a nonparametric maximum likelihood estimator for the unknown

parameter A1(t) =
∫ t

0
α1(s)ds by maximizing the likelihood in (2.2). We can do

that separately for each s ∈ [0, τ ]. First let us consider the times between the

observed failure times, i.e. when
∑

i dNi(s) = 0. Then the likelihood is of the

following form

{1− dA1(s)}R1(s) ,

where R1(s) =
∑n

i=1 xi,1Yi(s). Clearly, this expression is maximised for dA1(s) =

0. In next we look into the times when one of the processes jumped, e.g. the

i-th individual experienced the event and dNi(s) = 1. This leads us to seeking

maxima of the following expression

{1− dA1(s)}R1(s)−xi,1 [1− {1− dA1(s)}xi,1 ] .

It can be shown that within the admissible domain [0, 1] this function gains its

maximal value when dA1(s) equals

1−
{

1− xi,1
R1(s)

}1/xi,1

=: âi,1(s), (2.3)

where we denoted the estimator of the jump at s by âi,1(s). Note, that the

estimator âi,1 is valid for assumed xi,1 > 0 and is contained in (0, 1) as long as
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xi,1 < R1(s). If the event observed in the very right-end of the time window τ is a

failure, then xi,1 = R1(s) and the estimator in this time point equals âi,1(τ) = 1.

Finally, we have a nonparametric maximum likelihood estimator for A1 of

following form

Â1(t) =
n∑
i=1

∫ t

0

âi,1(s)dNi(s). (2.4)

Representing the estimator âi,1 as a function of xi,1 by Taylor series at xi,1 = 1

and using the fact that log x ≈ x− 1 for x ≈ 1 gives

âi,1(s) = 1−
{

1− xi,1
R1(s)

}1/xi,1

=
1

R1(s)
+
xi,1 − 1

2R2
1(s)

+OP

(
1

R3
1(s)

)
. (2.5)

Approximating the estimator by two first members of the Taylor series is valid

for xi,1 bounded and R1 � 0 and becomes more and more accurate with growing

sample size. The behaviour of the approximation is exhibited in Figure 2.1, where

the estimator âi,1 from (2.3) is drawn in the solid line, the dotted line represents

the second-order approximation from (2.5) and the dashed line shows the first-

order approximation by 1/R1(s). This is shown for R1 = 10, 50, 100, 200. We

have in mind here, that larger value of R1 implies greater sample size under the

assumption that xi,1 are i.i.d. for all i. Clearly, greater R1 in comparison to xi,1

indicates higher accuracy of the approximation.

Using the approximation from (2.5) and assuming that the covariate distri-

bution has finite E |x1|2 we get that the NPML estimator equals

Â1(t) =

∫ t

0

dN(s)

R1(s)
+ εn, where εn = op(1/n

1/2).

Let us explain the order of the convergence in probability to zero of the re-

mainder term εn. Under a closer inspection we reveal that∣∣∣∣∣
n∑
i=1

∫ t

0

1

2

xi,1 − 1

R2
1(s)

dNi(s)

∣∣∣∣∣ ≤ 1

2

nmax1≤k≤n xk,1
R2

1(t)
≤ const.

max1≤k≤n xk,1
R1(t)

as R1(s) ≥ R1(t) for s ≤ t. If x1 is bounded then R1(t) = Op(n), and this implies

εn = Op(1/n). Furthermore, we have εn = op(1/n
1/2) even when the covariates

are not bounded but have finite second moments, i.e. when E |x1|2 <∞.

Let us look at the proposed model from a slightly different angle. Transform-

ing the covariate into xi,1 = exp{βwi,1} for some arbitrary β ∈ R \ 0, we get

the familiar expression of the hazard rate for one-covariate Cox model, see (1.8),

with an unknown baseline hazard α1 and a known one-dimensional parameter β.

In the reformulated model we then have that the hazard rate for i-th individual
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Figure 2.1: In the solid line the estimator âi,1 from (2.3) is drawn, the dotted
and the dashed line represents the second-order approximation from (2.5) and
the first-order approximation by 1/R1(s), respectively.

equals hi(s) = α1(s)eβwi . We only need to estimate the cumulative baseline haz-

ard rate A1 =
∫
α1 and using the Breslow estimator (1.9) introduced in Section

1.4, we have that the estimator of the cumulative baseline hazard rate equals to∫ t
0

dN(s)/
∑n

i=1 exp{βwi,1}Yi(s) =
∫ t

0
dN(s)/R1(s).

It is seen that for large n the proposed NPML estimator in Aalen model

and the Breslow estimator are equivalent. We already know that the Breslow

estimator of the cumulative baseline hazard function is weakly convergent, what

gives us a certain idea about the existence of positive asymptotic results for the

proposed NPML estimator in (2.4).

Let us start with the uniform consistency of the NPML estimator, which is

stated in the next theorem.

Theorem 4 (Consistency) Let us suppose that the conditions in Assumption

(*) in Section 2.1 are fulfilled. If Y (τ)
P−→ ∞ with n → ∞, α1 is continuous

and E |x1|2 is finite, then the estimator Â1 is an uniformly, on [0, τ ], consistent

estimator of the true A1.

Proof The proof of consistency utilizes the knowledge on the martingale theory

for counting processes which is summarized in detail in Section 1.2. We need to
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show that

sup
0≤t≤τ

∣∣∣Â1(t)− A1(t)
∣∣∣ P−−→ 0.

We have that Yi(s)xi,1α1(s)ds is a compensator for dNi(s) and Mi(s) = Ni(s)−∫ s
0
Yi(u)xi,1α1(u)du is a martingale. Hence we can write

∣∣∣Â1(t)− A1(t)
∣∣∣ ≤ ∣∣∣∣∣

(∫ t

0

n∑
i=1

âi,1(s)Yi(s)xi,1 − 1

)
α1(s)ds

∣∣∣∣∣+
∣∣∣∣∣
∫ t

0

n∑
i=1

âi,1(s)dMi(s)

∣∣∣∣∣ .
(2.6)

For the proof it is sufficient to show that both terms on the right side uniformly

converge to 0 in probability. Using the representation for âi,1 from (2.5) we have

sup
0≤t≤τ

∣∣∣∣∣
∫ t

0

(
n∑
i=1

âi,1(s)Yi(s)xi,1 − 1

)
α1(s)ds

∣∣∣∣∣
= sup

0≤t≤τ

∣∣∣∣∣
∫ t

0

n∑
i=1

(
1

R1(s)
+

1

2

xi,1 − 1

R2
1(s)

+Op

(
1

R3
1(s)

))
Yi(s)xi,1α1(s)ds

−
∫ t

0

α1(s) ds

∣∣∣∣
= sup

0≤t≤τ

∣∣∣∣∣
∫ t

0

n∑
i=1

(
1

2

xi,1 − 1

R2
1(s)

+Op

(
1

R3
1(s)

))
Yi(s)xi,1α1(s)ds

∣∣∣∣∣
≤ sup

0≤t≤τ

∣∣∣∣∣
∫ t

0

n∑
i=1

1

2

max1≤k≤n xk,1
R2

1(s)
Yi(s)xi,1α1(s)ds

∣∣∣∣∣
+ sup

0≤t≤τ

∣∣∣∣∫ t

0

Op

(
1

R2
1(s)

)
α1(s)ds

∣∣∣∣
≤ 1

2

max1≤k≤n xk,1
R1(τ)

A1(τ) +

∫ τ

0

Op

(
1

R2
1(s)

)
α1(s)ds

where under the assumptions E |x1|2 < ∞, α1 continuous and Y (τ)
P−→ ∞ the

first term is op(1/n
1/2) and the second converges to 0 in probability with n→∞.

Hence, the first part of the right side of (2.6) converges to 0 in probability.

To show that

sup
0≤t≤τ

∣∣∣∣∣
∫ t

0

n∑
i=1

âi,1(s)dMi(s)

∣∣∣∣∣ P−−→ 0

we use a corollary of Lenglart inequality ([14], Corollary 3.4.1.) which says that

for any ε, η > 0, the following relation is true

P

{
sup

0≤t≤τ

∣∣∣∣∣
∫ t

0

n∑
i=1

âi,1(s)dMi(s)

∣∣∣∣∣ > η

}
≤ ε

η2
+ P

{∫ τ

0

n∑
i=1

â2
i,1(s)d 〈Mi〉 (s) > ε

}
.
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Here we use the fact that âi,1 is adapted and predictable (from left-continuity)

and
∫ ∑

i âi,1dMi is therefore a martingale. For the variance process we have

∫ τ

0

n∑
i=1

â2
i,1(s)d 〈Mi〉 (s) =

∫ τ

0

n∑
i=1

â2
i,1(s)Yi(s)xi,1α1(s)ds.

Using the result in (2.5) we have

â2
i,1(s) =

1

R2
1(s)

+
xi,1 − 1

R3
1(s)

+Op

(
1

R4
1(s)

)
,

hence the variance process is for large n close to∫ τ

0

n∑
i=1

1

R2
1(s)

Yi(s)xi,1α1(s)ds =

∫ τ

0

1

R1(s)
α1(s)ds.

The latter converges to 0 in probability as long as Y (τ)
P−→∞ and this concludes

the proof.

Q.E.D.

In following theorem we state the weak convergence result of
√
n(Â1−A1) to

a zero-mean Gaussian process.

Theorem 5 (Asymptotic distribution) Let us suppose that the conditions in

Assumption (*) in Section 2.1 are fulfilled. If Y (τ)
P−→ ∞ with n → ∞, α1 is

continuous, E |x1|2 is finite and if there exists a function r1(s) on [0, τ ] such that

sup
0≤s≤τ

∣∣∣∣R1(s)

n
− r1(s)

∣∣∣∣ P−−→ 0,

then the process
√
n(Â1 −A1) converges weakly to a zero-mean Gaussian process

with covariate process equal to

C(t) =

∫ t

0

α1(s)

r1(s)
ds,

consistently estimated by

Ĉ(t) =

∫ t

0

n∑
i=1

n

R2
1(s)

dNi(t).

Proof The proof again relies on the martingale theory explained in Secion 1.2.

Utilizing the Doob-Meyer decomposition we can expand the expression of interest
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into two parts,

√
n(Â1(t)− A1(t)) =

√
n

∫ t

0

n∑
i=1

âi,1(s)dMi(s) (2.7)

+
√
n

∫ t

0

(
n∑
i=1

âi,1(s)Yi(s)xi − 1

)
α1(s)ds.

We need to show that the first term converges to a zero-mean Gaussian martingale

with the variance process equal to C(t) while the latter converges uniformly in

probability to zero, what is done using similar arguments as in the proof of

consistency of A1.

To handle the first part of the task we use the Rebolledo martingale central

limit theorem (see Theorem 1). Here, the examined process is

V (n)(t) =
√
n

∫ t

0

n∑
i=1

âi,1(s)dMi(s).

Since the processes âi,1 = 1 − (1 − xi,1/R1(s))1/xi,1 are adapted, predictable (all

elements are known at s−) and bounded by 1, the process V (n) is a martingale.

When we apply the knowledge from Section 1.2 and the familiar representation

for âi,1 from (2.5), we get

〈
V (n), V (n)

〉
(t) =

∫ t

0

n
n∑
i=1

â2
i,1(s)Yi(s)xi,1α1(s)ds

=

∫ t

0

n

n∑
i=1

(
1

R2
1(s)

+
xi,1 − 1

R3
1(s)

+Op

(
1

R4
1

))
Yi(s)xi,1α1(s)ds

=

∫ t

0

1
R1(s)
n

α1(s)ds +

∫ t

0

n

(
xi,1 − 1

R2
1(s)

+Op

(
1

R3
1

))
α1(s)ds.

From the assumption that sup0≤s≤τ |R1(s)/n− r1(s)| P−→ 0 together with the con-

tinuous mapping theorem (see Theorem 2) we have that

1
R1(s)
n

P−−→ 1

r1(s)
, as n→∞. (2.8)

Let us reformulate the previous into

〈
V (n), V (n)

〉
(t) =

∫ t

0

α1(s)

r1(s)
ds+

∫ t

0

(
1

R1(s)
n

− 1

r1(s)

)
α1(s) ds

+

∫ t

0

n

(
xi,1 − 1

R2
1(s)

+Op

(
1

R3
1(s)

))
α1(s) ds. (2.9)
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From (2.8) it is seen, that the second term of (2.9) converges to 0 in probability

with n→∞. For E |x1| <∞, the expression

xi,1 − 1

R2
1(s)

+Op

(
1

R3
1(s)

)
is op(1/n) and the third term of (2.9) converges to 0 in probability with n→∞.

This concludes the convergence of the predictable variance process of V (n) to the

process C(t) in probability.

Furthermore, we need to show that the predictable variance process of the

process

V (n)
ε =

∫ t

0

n∑
i=1

√
n âi,1(s)I{√n âi,1(s)≥ε}dMi(s), for any ε > 0,

converges to zero. From the same arguments as before

〈
V (n)
ε , V (n)

ε

〉
(t) =

∫ t

0

n
n∑
i=1

â2
i,1(s)I{√n âi,1(s)≥ε}Yi(s) xi,1α1(s) ds.

We already showed that n
∑n

i=1 â
2
i,1(s)Yi(s) xi,1α1(s) converges in probability to

α1(s)/r1(s) and this limit is bounded under the assumption Y (τ)
P−→ ∞. This,

together with the fact that âi,1 is op(1/n
1/2), gives

〈
V

(n)
ε , V

(n)
ε

〉
(t)

P−→ 0.

Hence, we showed that the first term in (2.7) is asymptotically distributed as

a zero-mean Gaussian process with covariance process equal to C(t) and we just

need to prove that the second term converges uniformly to 0 in probability. As

we already exhibited in Proof of Theorem 4, the expression

sup
0≤t≤τ

∣∣∣∣∣
∫ t

0

(
n∑
i=1

âi,1(s)Yi(s)xi,1 − 1

)
α1(s)ds

∣∣∣∣∣
≤ 1

2

max1≤k≤n xk,1
R1(τ)

A1(τ) +

∫ τ

0

Op

(
1

R2
1(s)

)
α1(s)ds

and under the assumptions of Theorem 5 the first term is op(1/n
1/2) while the

second is Op(1/n
2). From this we can conclude that the second expression in

(2.7) converges to 0 in probability as n→∞.

The very last is the proof that we can consistently estimate the covariance

process C(t) by

Ĉ(t) =

∫ t

0

n∑
i=1

n

R2
1(s)

dNi(s).
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Similarly as before,

∣∣∣C(t)− Ĉ(t)
∣∣∣ =

∣∣∣∣∣
∫ t

0

α1(s)

r1(s)
ds−

∫ t

0

n∑
i=1

n

R2
1(s)

dNi(s)

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

0

α1(s)

r1(s)
ds−

∫ t

0

n∑
i=1

n

R2
1(s)

Yi(s)xi,1α1(s)ds−
∫ t

0

n∑
i=1

n

R2
1(s)

dMi(s)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t

0

(
1

r1(s)
− 1

R1(s)
n

)
α1(s) ds

∣∣∣∣∣+

∣∣∣∣∣
∫ t

0

n∑
i=1

n

R2
1(s)

dMi(s)

∣∣∣∣∣ .
We already know that the first term converges to 0 in probability. The conver-

gence of the martingale in the second term to 0 in probability with growing n is

easily proven by applying the Lenglart inequality.

Q.E.D.

The convergence of NPMLE can be very slow if the covariates are close to 0.

This is because R grows very slowly with n and the approximation of âi,1 works

well only for R large.

Remark 1 A sufficient condition for the existence of a continuous r1(s) is that

the covariates xi,1 are i.i.d. and distributed according to x1 with Ex1 <∞. This

is seen from the uniform law of large numbers. Let us have a function f(x; s),

defined for (x, s) ∈ X × S, a Cartesian product of a Euclidean set X and a

compact set S. The uniform law of large numbers states that for such function,

if the following conditions are fulfilled

1. f(x; s) is continuous at every fixed s ∈ S for almost all x,

2. there exists a dominating function d(x) such that E d(X) < ∞ and

|f(x, s)| ≤ d(x)),

there exists a continuous limit in probability of 1/n
∑n

i=1 f(Xi; s) uniformly in

s ∈ [0, τ ], i.e.

sup
s∈S

∣∣∣∣∣ 1n
n∑
i=1

f(Xi; s)− E f(X; s)

∣∣∣∣∣ P−−→ 0.

Here f(x; s) = Yi(s)x and it is continuous for all x for every fixed s. Partic-

ularly, under the conditions in Assumption (*) and the conditions in Theorem 5

we have that xi,1 are i.i.d. and asymptotically distributed as x1 with Ex1 < ∞.

Hence f(xi,1; s) is dominated by d(xi,1) = xi,1 and we have the uniform limit of
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R1(s)/n on [0, τ ], in probability, equal to

r1(s) = EY (s)x1 = E E [I {T ≥ s}x1|x1] = E exp {−x1A1(s)}x1G(s),

where the expectation in the last expression is with respect to the covariate

distribution. The uniform law of large numbers stated here gives a stronger

variant of convergence, in particular the convergence with probability 1.

Remark 2 In p = 1 case, we showed that not only Aalen and McKeague-Huffer

estimator but also the proposed NPML estimator is consistent and weakly con-

vergent. The asymptotic distributions of these estimators differ though. The

asymptotic distribution of Aalen’s estimator is a zero-mean Gaussian process

with variation process equal to
∫ t

0
r

(3)
1 (s)/[r

(2)
1 (s)]2α1(s)ds where r

(2)
1 and r

(3)
1 are

uniform limits in probability of 1/n
∑

i Yix
2
i,1 and 1/n

∑
i Yix

3
i,1 respectively. McK-

eague and Huffer’s estimator induces a zero-mean Gaussian process with varia-

tion process equal to
∫ t

0
α1(s)/r1ds, i.e. both McKeague-Huffer and NPML are

asymptotically equivalent.

Remark 3 A more complicated situation arises if there are ties present in the

data. Even though we suppose that the failure times’ distributions are absolutely

continuous and the (N1, . . . , Nn) is a multivariate counting process (i.e. no twoNi-

s jump at the same time), the measurement error or a rounding up can introduce

tied observations into the dataset. Let us have two individuals i and k failing at

the same time point s. Then the contribution to the likelihood at s is

{1− dA1(s)}R1(s)−xi,1−xk,1 (1− {1− dA1(s)}xi,1) (1− {1− dA1(s)}xk,1) .

Clearly, we need to find a maximum value of following function of a,

{1− a}R1−xi,1−xk,1 (1− {1− a}xi,1) (1− {1− a}xk,1) ,

what is equivalent to solving the equation

(1− a)xi,1 − 1

(1− a)xk,1 − 1
((1− a)xk,1R1 −R1 + xk,1) + xi,1 = 0. (2.10)

If xi,1 equals xk,1 or their values are close, we have the solution

a ≈ 1−
{

1− xi,1 + xk,1
R1

}1/xk,1

.

In a general case the equation in (2.10) is not trivial to solve and the root needs

to be found numerically. We decided not to pursue the topic due to the fact,
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that the NPML approach produces inconsistent estimators in general p > 1 case.

We showed that it is all clear and well behaved as long as we stay within

the margins of a single covariate case. However, moving onto a general case

with p covariates takes us into a venture of inconsistent results despite using the

celebrated and usually reliable maximum likelihood method.

2.3 Case p > 1

We suppose, that the cumulative hazard function of an i-th individual equals

Hi(t) =
∑p

j=1 xi,jAj(t), where A1, . . . , Ap are unknown cumulative regression

functions. We would like to find estimators for these functions so that they max-

imize the likelihood in (2.2). Similarly as for the single covariate case we consider

the contribution to the likelihood at every time. For s such that
∑

i dNi(s) = 0

the contribution is equal to

n∏
i=1

{1− dHi}Yi(s) =

p∏
j=1

{1− dAj}Rj(s)

where we denoted Rj(s) =
∑

i Yi(s)xi,j, j = 1, . . . , p. Again, this achieves its

maximum value when all dAj-s are zero, i.e. dAj(s) = 0, j = 1, . . . , p. Further,

let us assume that one and only one individual had failure at time s, for example

dNi(s) = 1. Then from (2.2) we can see that the contribution to the likelihood

at this time point is equal to∏
k 6=i

{1− dHk(s)}Yk(s) dHi(s)

=

p∏
j=1

(1− dAj(s))
Rj(s)−xi,j

[
1−

p∏
j=1

(1− dAj(s))
xi,j

]
. (2.11)

It is not obvious where this function with p arguments and with the domain

of the [0, 1]p cube obtains its maximum. Let us denote dAj(s) by uj for all

j = 1, . . . , p, drop the time notation s in the expression and study the function’s

extremes.

Lemma 1 Consider the function

f(u1, . . . , up) =

p∏
j=1

{1− uj}Rj−xi,j

(
1−

p∏
j=1

{1− uj}xi,j
)

over [0, 1]p,
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where Rj ≥ xi,j > 0 for j = 1, . . . , p. If there is a unique j = j0 for which

πj = xi,j/Rj is bigger than the others, then the maximum of f occurs for u =

(0, . . . , ûj, . . . , 0)>, with ûj = 1− (1− πj)1/xi,j and with the maximum value of f

equal to πj(1− πj)1/πj−1.

In case that there are two largest πj = πk, the solution is not unique with the

maximum attained on a subset of [0, 1]p.

Proof Let us say that π1 is the largest and is the only one. To find the global

maximum we need to perform a study of function f and search for critical points

in (0, 1)p, i.e. we seek the points where all partial derivatives are equal 0 and

therefore they might be local extremes or saddle points. However, as it is easily

shown there does not exist a single spot inside the [0, 1]p cube where all partial

derivatives df/dxi,j = 0, ∀j, and we get the same result when looking on the

side-walls of the cube, hence we need to search for a potential global maximum

on the vertices. Using partial derivations for each variable while other variables

are equal to zero leads to a set of values {πj(1−πj)1/πj−1, j = 1, . . . , p} obtained

in points {u?j = (0, . . . , 1− (1− πj)1/xi,j , . . . , 0), j = 1, . . . , p} where the function

f is locally maximal. The largest is the one with the biggest πj = π1.

When we want to deal with ties it is handy to understand the problem

better. Each partial derivative induces a hyperplane in [0, 1]p on which this

partial derivative equals to 0. When there are no ties among πj-s then there

is no non-empty intersection of all the hyperplanes, therefore no critical points

inside [0, 1]p, also there cannot be found any subset of hyperplanes such that

they intersect – no critical points on the side-walls of the cube. However, let

us have a situation where the two largest equal, for instance π1 = π2. Then we

find out that the hyperplanes induced by df/dxi,1 and df/dxi,2 cut through on

set U? = {(1 − [(1 − π1)(1 − u2)−xi,2 ]1/xi,1 , u2, 0, . . . , 0), u2 ∈ [0, 1]} ⊂ [0, 1]p,

which lies on one of the side-walls, and f is the same and maximal on the whole

U?, equal to π1(1 − π1)1/π1−1. The solution is non-unique and span whole set

U?. The case of ties among πj-s smaller than the largest π1 will again impose

existence of a set on a side of [0, 1]p where the value of f will be the same

and locally maximal but the overall maximum remains located uniquely in

u?1 = (1− (1− π1)1/xi,1 , 0, . . . , 0). If there are multiple ties, e.g. π1 = π2 = π3, the

situation is analogical and the set on which f gains its maximal value is character-

ized by points (1− [(1−π1)(1−u2)−xi,2(1−u3)−xi,3 ]1/xi,1 , u2, u3, 0, . . . , 0) ⊂ [0, 1]p.

The maximal value of f remains the same with solution being again non-unique.

Q.E.D.
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Figure 2.2: Two examples of the function in Lemma 1 with two arguments u1 and
u2. The parameters are set R1 = R2 = 10 . The covariates in the left hand side
and the right hand side of the figure equal xi,1 = 1, xi,2 = 2 and xi,1 = xi,2 = 2,
respectively.

Example 1 There is an illustration of the function in Lemma 1 in the Figure

2.2. The values of the binary function f(u1, u2) are drawn for R1 = R2 = 10. The

covariates equal xi,1 = 1 and xi,2 = 2 in the left hand side of the figure. Obviously,

π2 = xi,2/R2 = 0.2 is greater than π1 = xi,1/R1 = 0.1 and indeed, the maximal

value of the function is obtained at point (0, û2) with û2 = 1− (1−π2)1/2 .
= 0.11.

The achieved maximum equals π2(1 − π2)1/π2−1 .
= 0.082. In the right hand side

an example with ties is presented. The values of the covariates are the same

and equal to xi,1 = xi,2 = 2. Here the maximal value of the function is the

same as in the example in the left hand side. Apparently, the maximum is

attained on the whole line segment between the points (û1, 0) and (0, û2), where

û1 = û2 = 1− (1− π1)1/2 .
= 0.11.

The result of Lemma 1 implies that the nonparametric maximum likelihood

estimator for the parameters of monotone Aalen model is

Âj(t) =
n∑
i=1

∫ t

0

[
1−

{
1− xi,j

Rj(s)

}1/xi,j
]
Vi,j(s)dNi(s) for j = 1, . . . , p,

(2.12)

where

Vi,j(s) = I

{
xi,j
Rj(s)

≥ xi,k
Rk(s)

, ∀k = 1, . . . , p

}
.

The random processes Vi,j are left continuous and predictable. Moreover, we have

that
∑p

j=1 Vi,j(t) = 1 for t ≥ 0, hence Vi,j represents weights over the estimators

Â1(t), . . . , Âp(t) for every t.
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For further use let us us again denote the increments in the estimated processes

by

âi,j(s) =

[
1−

{
1− xi,j

Rj(s)

}1/xi,j
]
Vi,j(s)

so that Âj(t) =
∑

i

∫ t
0
âi,j(s)dNi(s).

Remark 4 The chance that there will be ties in xi,j/Rj is rather small, especially

when the covariate distribution is continuous, unless a strong multicolinearity is

present. If e.g. xi,2 = cxi,1, ∀i, for some c ∈ R, then obviously always xi,1/R1 =

xi,2/R2.

However, when a situation with ties arises it is necessary to adjust the esti-

mator in (2.12) appropriately. As it is seen in the proof if for some time point s

ties occur, for instance xi,1/R1(s) = xi,2/R2(s) and they are the maximal among

xi,1/R1(s), . . . , xi,p/Rp(s), then the solution is obtained on the set(
u1 = 1−

[
(1− xi,1/R1(s))(1− u2)−xi,2

]1/xi,1 , u2, 0, . . . , 0
)
∈ [0, 1]p,

where u2 is anywhere between 0 and 1 under the condition that 1 − [(1 −
xi,1/R1(s))(1 − u2)−x2 ]1/xi,1 ∈ [0, 1]. The simplest would be to take e.g. u2 = 0

and u1 = 1− (1−xi,1/R1(s))1/xi,1 or u1 = 0 and u2 = 1− (1−xi,2/R2)1/xi,2 . That

in fact means that we choose whether either process Â1 or process Â2 jumps at

time s.

Remark 5 Sending the covariates xi,j to a constant bj ≥ 0 for all i and j =

1, . . . , p gets us into an i.i.d. situation when all individuals are ruled by the

same hazard function hi(s) ≡ h(s) =
∑

j bjαj(s). In the single covariate case the

hazard rate is equal to h(s) = b1α1(s) =: α(s). The cumulative version of hazard

rate
∫ t

0
α(s)ds is in the i.i.d. case well estimated by the Nelson-Aalen estimator

AN−A(t) =
n∑
i=1

∫ t

0

dNi(s)∑n
k=1 Yk(s)

=

∫ t

0

dN(s)

R(s)
.

We denoted the overall risk set by R(s) =
∑n

k=1 Yk(s).

Examining our NPML estimator for p = 1 in (2.3) and (2.4) under the i.i.d.

case we get that

âi,1(s) = 1−
{

1− b1

b1

∑n
k=1 Yk(s)

}1/b1

=
1

b1R(s)
+OP (R−2(s))
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and asymptotically the NPML estimator of A1 multiplied by b1 is equivalent to

the Nelson-Aalen estimator:

b1Â1(s) ≈ b1

n∑
i=1

∫ t

0

1

b1

dNi(s)

R(s)
= AN−A(t).

The multiple covariate case is analogical, we only have to realize, that if all

xi,j equal to bj then xi,j/Rj(s) = bj/
∑

k Yk(s)bj = 1/R(s) and we deal with ties

for all j = 0, . . . , p. It is impossible to uniquely determine the NPML estimators

for all the parameters of Aalen model as in fact we deal with the i.i.d. case and

the model with p > 1 is overparametrized. This can be solved without loss of

generality by putting Vi,1(s) = 1 and Vi,j = 0, j ≥ 2. Then the NPML estimators

are Âj(s) ≡ 0, j ≥ 2 and

Â1(s) =
n∑
i=1

∫ n

0

[
1−

(
1− b1

b1R(s)

)1/b1
]

dNi(s).

Similarly as for p = 1 we get that b1Â1(s) is asymptotically equal to the Nelson-

Aalen estimator. The Kaplan-Meier estimator SK−M for survival function is

related to the Nelson-Aalen estimator via the known relationship between the

hazard and survival function

SK−M(t) = 1−
∏
s∈[0,t]

{
1− dAN−A(s)

}
.

Here for p ≥ 1 we have

Ŝi(t) ≡ Ŝ(t) = 1−
∏
s∈[0,t]

{
1− b1dÂ1(s)

}
and due to asymptotic equivalence of the NPMLE and Nelson-Aalen estimator

we get that asymptotically the NPML estimator of S(t) is equivalent to the

Kaplan-Meier estimator.

Let us have a closer look at the estimator Âj as it is formulated in (2.12).

Using the same representation for 1 − (1 − xi,j/Rj(s))
1/xi,j as in the univariate

case in (2.5) it is seen, that for great n and under usual conditions we get

Âj(t) =
n∑
i=1

∫ t

0

[
1

Rj(s)
+

1

2

xi,j − 1

R2
j (s)

+Op

(
1

R3
j (s)

)]
Vi,j(s)dNi(s)

≈
n∑
i=1

∫ t

0

1

Rj(s)
Vi,j(s)Yi(s) z

>
i α(s) ds.
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This approximate representation of Âj serves as an inspiration for the form of its

limiting process.

Before moving onto the asymptotic behaviour of the NPML estimator let us

remind that we denoted zi = (xi,1, . . . , xi,p)
> and that we assume that for every

i the covariate vector zi possess the same distribution as the random vector z.

Theorem 6 (Inconsistency of NPMLE) Let us suppose that the conditions

in Assumption (*) in Section 2.1 are fulfilled and let us denote

Qj(s) =
n∑
i=1

Vi,j(s)Yi(s) z
>
i α(s), s ∈ [0, τ ].

If Y (τ)
P−→∞ with n→∞, αj, j = 1, . . . , p, are continuous and the covariates are

i.i.d., nonnegative and bounded, then there exist functions rj(s) and qj(s), j =

1, . . . , p, on [0, τ ], such that

sup
0≤s≤τ

∣∣∣∣Rj(s)

n
− rj(s)

∣∣∣∣ P−−→ 0,

Qj(s)

n

P−−→ qj(s), ∀s ∈ [0, τ ]

and

Âj(t)
P−−→ Bj(t) =

∫ t

0

qj(s)

rj(s)
ds, for j = 1, . . . , p, t ∈ [0, τ ]. (2.13)

If we denote the limiting process of Vi,j(s) by Vj(s) = I{xj/rj(s) is the biggest},
then the functions qj(s), s ∈ [0, τ ], j = 1, . . . , p, are equal to

qj(s) = E
[
Y (s)z>α(s)Vj(s)

]
= E

[
e−z

>A(s)z>α(s)Vj(s)
]
G(s). (2.14)

Proof The existence and continuity of the functions rj is ensured by applying

the uniform law of large numbers (see Remark 1). A bit more care is needed when

dealing with existence of the limit of Qj(s)/n = 1/n
∑n

i=1 Yi(s)z
>
i α(s)Vij(s) be-

cause the function Vij is not continuous in zi. Let us denoteQ
(n)
j (s, (z1, . . . , zn)) :=

Qj(s)/n. Then for all m ∈ 1, . . . , n, all z1, . . . , zn ∈ Rn
+ and z′m ∈ Rn

+ we get∣∣∣Q(n)
j (s, (z1, . . . , zn))−Q(n)

j (s, (z1, . . . , z
′
m, . . . , zn))

∣∣∣ (2.15)

=

∣∣∣∣ 1nYm(s)z>mα I

{
xm,j
Rj(s)

>
xm,k
Rk(s)

∀k
}
− 1

n
Ym(s)z′

>
mα

× I

{
x′m,j

Rj(s) + (x′m,j − xm,j)Ym(s)
>

x′m,k
Rk(s) + (x′m,k − xm,k)Ym(s)

;∀k

}∣∣∣∣∣ .
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If Ym(s) = 0 then the expression equals zero. Otherwise we have that, for any

i, supremum of the expression in (2.15) over all z1, . . . , zn ∈ Rn
+ and z′m ∈ Rn

+

is smaller than 2
n

sup z>α(s). For covariates bounded by some K ∈ Rp, z ≤
K <∞, it is smaller than 2

n
K>α(s). Therefore the so called bounded difference

assumption is fulfilled and using the McDiarmid inequality in Theorem 3 we have

that for any ε > 0,

P
( ∣∣∣Q(n)

j (s, (z1, . . . , zn))− EQ(n)
j (s, (z1, . . . , zn))

∣∣∣ ≥ ε
)
≤

≤ 2 exp

{
−2ε2

(2K>α(s))2/n

}
n→∞−−−→ 0 ∀ε > 0.

This gives us the convergence of Q
(n)
j (s, (z1, . . . , zn)) to EQ

(n)
j (s, (z1, . . . , zn)) in

probability, at every s ∈ [0, τ ]. Finally, due to the covariates being i.i.d. it is seen

that EQ
(n)
j (s, (z1, . . . , zn)) = E 1

n

∑
i Yi(s)z

>
i α(s)Vij(s) = EY (s)z>α(s)Vj(s).

To proceed further with the proof we will rely on the well-known martingale

theory on counting processes, see Section 1.2. It is clear that the counting process

Ni can be decomposed into sum of a martingale and an integrated compensator

for Ni, i.e. Ni(t) = Mi(t) +
∫ t

0
Yi(s)z

>
i α(s)ds, i = 1, . . . , n. It is seen that

the processes âi,j(s) are bounded and predictable, and using the aforementioned

decomposition we get

Âj(t) =
n∑
i=1

∫ t

0

âi,j(s)dMi(s) +
n∑
i=1

∫ t

0

âi,j(s)Yi(s)z
>
i α(s)ds. (2.16)

The first term is a martingale, denoted e.g. Wj(t), and applying the theory in

Section 1.2 we get that Wj(t) has the predictable variation process

〈Wj,Wj〉(t) =
n∑
i=1

∫ t

0

â2
i,jYi(s)z

>
i α(s)ds.

Now our goal is to show that Wj(t) goes to zero in probability while the second

term of the decomposition (2.16), denoted e.g. A?j(t), tends in probability to the

Bj(t) from (2.13). Once we show that A?j(t)
P−−→ Bj(t), then the proof is finished

by application of the Slutsky theorem.

Using the approximation in (2.5), which is equally valid in the multiple co-

variates case, it can be shown that

〈Wj,Wj〉(t) =
n∑
i=1

∫ t

0

1

R2
j (s)

Vi,j(s)Yi(s)z
>
i α(s)ds+ op(Rj(t)

−2)
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therefore 〈Wj,Wj〉(t) is of order Op(1/Rj(t)) and clearly going to zero in proba-

bility. Applying the same corollary of the Lenglart inequality as in the proof for

Theorem 4 we have the uniform convergence of Wj to zero on [0, τ ]. Now let us

show that A?j(t) goes to the aforementioned Bj(t) in probability. Again, we have

that

A?j(t) =
n∑
i=1

∫ t

0

1

Rj(s)
Vi,j(s)Yi(s)z

>
i α(s)ds+ op(n

−1/2) =

∫ t

0

Qj(s)

Rj(s)
+ op(n

−1/2).

We already showed in the beginning of the proof that Qj(s)/n has a limit in

probability equal to qj(s), while for Y (τ)
P−→ ∞ implies that both Rj(s) and the

limiting function rj(s) are greater than zero for any s ∈ [0, τ ]. Hence we have∣∣∣∣Qj(s)

Rj(s)
− qj(s)

rj(s)

∣∣∣∣ P−−→ 0

and this concludes the proof.

Q.E.D.

The limit of Rj(s)/n on [0, τ ] is of a similar form as in the single covariate

case (see Remark 1):

rj(s) = EY (s)xj = E E [I {T ≥ s}xj|z] = E exp
{
−z>A(s)

}
xjG(s) (2.17)

and the limiting functions Bj are

Bj(s) =

∫ t

0

qj(s)

rj(s)
ds =

∫ t

0

E
[
Y (s)z>α(s)Vj(s)

]
EY (s)xj

ds

=

∫ t

0

E
(
e−z

>A(s)z>α(s)I{xj/rj(s) is the biggest}
)

E e−z
>A(s)xj

ds

which is generally equal to Aj(t) =
∫ t

0
αj(s) ds only when p = 1. As Bj is

expressed as a Lebesgue integral, Bj is absolutely continuous on [0, τ ] and the

derivative equals bj(s) = qj(s)/rj(s). This would not be true if we did not

suppose that Aj was absolutely continuous.

Remark 6 Even though the NPML estimators for Aj, j = 1, . . . , p, are in-

consistent, it is possible to determine their asymptotic features. Using similar

techniques as in Theorem 5 it can be shown that asymptotically the process
√
n(Âj(t)−Bj(t)) is a zero-mean Gaussian process with the predictive variation
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process equal to

Cj(t) =

∫ t

0

qj(s)

r2
j (s)

ds.

The predictive variation process can be consistently estimated by

Ĉj(t) =

∫ t

0

n∑
i=1

nVi,j(s) dNi(s)

R2
j (s)

,

or for data with less observations it is more accurate to use exact expression for

jumps âi,j, i.e. we estimate the predictive variation process by

Ĉj(t) =

∫ t

0

n∑
i=1

n â2
i,j(s) dNi(s) ds.

Using the estimator Ĉj(t) we can construct naive pointwise (1−α)100% confidence

bands around the estimator Âj(t), i.e.

Âj(t) ± uα

√
Ĉj(t)

n
, t ∈ [0, τ ],

where uα is a αth quantile of standard normal distribution.

2.4 Average consistency

In the previous section we proved that the proposed NPML estimator Âj of the

integrated regression functions Aj is for general p inconsistent and it converges

in probability to Bj 6= Aj. There is, however, an interesting twist to this result

when we look at the average intensity, i.e. the intensity of a randomly picked

subject. This average intensity under the model defined in Assumption (*) in

Section 2.1 equals
p∑
j=1

rj(s) αj(s), s ∈ [0, τ ]. (2.18)

In next we show that this feature is intact even when we substitute bj-s instead

of αj-s into (2.18).

Corollary 1 (Melda corollary) Let us suppose, that the assumptions of The-

orem 6 are fulfilled. Then

p∑
j=1

rj(s) bj(s) =

p∑
j=1

rj(s) αj(s). (2.19)
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Proof Using the fact, that the limiting processes Bj in Theorem 6 equal bj(t) =

qj(s)/rj(s) we have that the average sum is

p∑
j=1

rj(s) bj(s) =

p∑
j=1

qj(s).

Further using the expressions for qj in (2.14) and similarly for rj in (2.17) we get

that

p∑
j=1

qj(s) =

p∑
j=1

E
[
Vj(s)e

−z>A(s)z>α(s)
]
G(s)

= E
[
e−z

>A(s)z>α(s)
]
G(s) =

p∑
j=1

E
[
e−z

>A(s)zj

]
G(s) αj(s)

=

p∑
j=1

rj(s) αj(s).

Q.E.D.

This interesting result says that even though the processes Âj are inconsistent,

with Âj
prob−−→ Bj 6= Aj, we still have an ’average-consistency’ effect.

An estimator of
∑p

j=1 rj(s)dBj(s) can be obtained by inserting dÂj and Rj/n

instead of dBj and rj into formula and using the approximation from before

p∑
j=1

Rj(s)

n
dÂj(s) ≈

p∑
j=1

Rj(s)

n

n∑
i=1

Vi,j(s)

Rj(s)
dNi(s) =

n∑
i=1

1

n
dNi(s), n� 0.

Let us look at possible interpretations of the obtained feature. For continuous

distribution we have

rj(s) = E [Y (s)zj] = E
[
e−z

>A(s)zj

]
G(s)

where expectation is w.r. to covariates distribution and G(s) is the censoring

survival function. Under independent censoring and i.i.d. covariates we get

p∑
j=1

rj(s)αj(s) =

p∑
j=1

E [Y (s)zjαj(s)] = E
[
e−z

>A(s)z>a(s)
]
G(s)

= E f(s, z) G(s)

where by f(·, z) we denoted the probability density of the distribution of failure

time under the covariate vector equal to z. In the case of weak censoring the
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last term gets close to E f(s, z). From this we can see the motivation of the form

of the estimator, which when is integrated and under no censoring is for large n

close to Glivenko-Cantelli statistics 1/n
∑n

i=1 Ni(s), i.e. the consistent estimator

for distribution function.

The average consistency can be understood in the way that if we consider a

random individual, on average we are able to guess correctly the probability of

their survival.

2.5 An example for case with 3 exponentially

distributed covariates

This section is devoted to assessing the performance of the proposed estimators

on a simulated example with the main interest in how big the bias from the real

values is as well as in the average consistency effect.

Let us have a triple of covariates (x1, x2, x3) ∼ Exp(λ1, λ2, λ3). In next we

derive the expressions for the limiting functions Bj from Theorem 6. First, we

have that

r1(s) = G(s)
λ1λ2λ3

(A1(s) + λ1)2(A2(s) + λ2)(A3(s) + λ3)
(2.20)

and the same is for r2 and r3 again after swapping 1 and 2, or 1 and 3, respectively.

To calculate the numerator qj we use the representation from (2.14)

qj(s) = E e
−z>A(s)z>a(s)Vj(s) G(s) =

∫
Dj(s)

e−z
>A(s)z>a(s) f(z) dz G(s)

where G(s) = 1 − G(s) is censoring survival function, Dj(s) = {z :
xj
rj(s)

>
xk
rk(s)

, ∀k 6= j}. By a simple integration we get that the limit of Â1 equals

B1(t) =
∫ t

0
q1(s)/r1(s)ds =

∫ t
0
b1(s)ds where

b1(s) = term1(s)α1(s) + term2(s)α2(s) + term3(s)α3(s).

The exact expressions for term1, term2 and term3 follow. The first term has the

simplest form and it equals

term1(s) =
λ1λ2λ3

(A2(s) + λ2)(A3(s) + λ3)

×

 1

C(s)
+

1

(A1(s) + λ1)2
− 1{

r2(s)
r1(s)

(A2(s) + λ2) + A1(s) + λ1

}2
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− 1{
r3(s)
r1(s)

(A3(s) + λ3) + A1(s) + λ1

}2


where we denoted

C(s) =

{
r2(s)

r1(s)
(A2(s) + λ2) +

r3(s)

r1(s)
(A3(s) + λ3) + A0(s) + λ1

}2

.

The second term is

term2(s) = λ1λ2λ3

×
[
r1(s)

r2(s)

1

C(s)(A2(s) + λ2)(A3(s) + λ3)

− r2(s)

r1(s)

1

(A2(s) + λ2)(A3(s) + λ3)
{
r2(s)
r1(s)

(A2(s) + λ2) + A1(s) + λ1

}2

+
1

C(s)(A2(s) + λ2)2(A3(s) + λ3)

− 1

(A2(s) + λ2)2(A3(s) + λ3)
{
r2(s)
r1(s)

(A2(s) + λ2) + A1(s) + λ1

}2

− 1

(A2(s) + λ2)2(A3(s) + λ3)
{
r3(s)
r1(s)

(A3(s) + λ3) + A1(s) + λ1

}2

+
1

(A1(s) + λ1)(A2(s) + λ2)2(A3(s) + λ3)

]
and term3 is the same as term2 only with swapping the suffices 1 and 2 in the

whole expression including C(s). Expressions for B2 and B3 can be found in

similar fashion.

The theoretical average intensity from Section 2.4 equals to

p∑
j=1

rj(s)bj(s)

and if we insert the expressions for rj and bj from above, we will indeed get that∑p
j=1 rj(s)bj(s) =

∑p
j=1 rj(s)αj(s). The sample counterpart of the cumulative

average intensity can be obtained as an approximation of the integral∫ t

0

p∑
j=1

Rj(s)

n
âi,j(s)dNi(s).
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Figure 2.3: Cumulative regression functions in a simulated Aalen model with haz-
ard rate hi(t) = 5xi,1 +xi,2 +2xi,3 and zi i.i.d. and exponentially distributed. Left
column is from the simulation with 50 observations, in the middle 100 simulated
observations and in right column 500 simulated observations. In dotted lines the
real cumulative parameter processes are plotted, the dashed lines are the NPML
estimators Âj and the solid lines are the asymptotic processes Bj of the NPML
estimators. The Aalen estimators Aaj are included in dash-dotted lines. Graphs
in the bottom row shows the average intensities.
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We ran simulations from a model with the hazard rate equal to hi(t) = 5xi,1 +

xi,2 + 2xi,3, where covariates were independent and exponentially distributed,

xi,1 ∼ Exp(1), xi,2 ∼ Exp(2) and xi,3 ∼ Exp(3). We considered three different

sample sizes: n = 50, n = 100 and n = 500. We calculated the NPML estimators

Âj based on (2.12) and compared them to the true asymptotic functions Bj

obtained from the calculations above. Out of curiosity we also estimated the

cumulative regression functions using the classic Aalen OLS estimator.

In Figure 2.3 the results of the simulations are presented. The estimators

of the cumulative regression functions are plotted in the upper three rows with

sample size growing from left to right. The bottom row shows the results on the

average intensities. The true cumulative regression functions Aj are plotted in

dotted lines, the Aalen estimators Aaj are in dash-dotted lines and the proposed

NPML estimators Âj are in dashed lines. The limiting functions Bj of the NPML

estimators are in solid lines. In the bottom graphs, only the average intensities

calculated from the true Aj-s are plotted as the average intensities obtained the

limiting Bj-s are the same.

As can be seen from the figures, the deviance of the NPML estimators Âj

from the true regression functions Aj is apparent with growing sample size. It

seems, however, that the NPML estimators are more stable than the classic Aalen

estimators Aaj and are able to extract the average intensity very well.
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Chapter 3

Bayesian analysis with Beta

process prior

The Bayesian approach to nonparametric problems has been a rather overlooked

topic and become more popular only in last decades. The delay in development

of these methods can be mainly attributed to the lack of the computing power

needed in solving many Bayesian problems as well as the complexity of dealing

with probabilities on infinite dimensional spaces.

In general, constructing a nonparametric Bayesian estimator for a cumulative

distribution function F means that we assume that F is a stochastic process

ruled by a certain probability distribution. Lévy processes have proven to be

a natural choice for a prior process when one conducts Bayesian modelling of

a process with trajectories possibly containing jumps. A first extensive class

of priors for distribution functions called Dirichlet processes was introduced by

Ferguson in [13]. These processes were further generalized to the neutral to

the right processes by Doksum in [12]. Kalbfleisch, [24], and others utilized the

well-known relationship F (t) = 1− exp{−H(t)} between cumulative distribution

function F and cumulative hazard rate H and proposed a process to model the

prior of a cumulative hazard rate H instead of F . They suggested a process

with Gamma distributed independent increments in disjoint intervals, hence this

process was named a Gamma process. Similarly, Hjort in [19] introduced Beta

processes which again had independent increments and their increments were

”almost” Beta distributed. The Beta processes are the processes of our particular

interest in this chapter. Among other popular priors within this field we can list

Pólya trees priors, correlated prior processes and various finite-mixture models of

the previous. For an extensive overview see [41].

In our situation we have unknown regression functions Aj, j = 1, . . . , p that

in fact are assumed to be continuous, however, we would like to continue with
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the work we have done in Chapter 2. Thus we will view these functions as

random processes which are discontinuous at time points of countable amount

on a bounded time interval, in particular they are assumed to be jump processes

with positive jumps which occur always in failure times and with infinitely many

tiny positive jumps at random time points (this is induced by the Lévy processes

imposed as prior distribution on the processes as we will see in next).

Let us suppose D is a set of all distribution functions on [0,∞) such that if

F ∈ D then F (0) = 0. Applying a relationship between F and H such as in (1.2)

we get a corresponding set of cumulative hazard rates, denoted e.g. A , induced

by D . For any function H on [0,∞) to be a valid member of A , H must be

a nondecreasing right-continuous function having H(0) = 0, jumps ∆H(t) ≤ 1

and either ∆H(t) = 1 for some t or limt→∞H(t) = ∞. These condition must

be met otherwise F corresponding to H would not be a distribution function. A

process H that possesses the conditions above is also called a nondecreasing inde-

pendent increment process (NII process) or subordinator and the corresponding

distribution function F is a neutral to the right process.

Following the theory of the NII processes as it was summarized e.g. by Kim

in [27] we state that for any NII process H there exists a unique random measure

µ on [0,∞) × [0, 1] such that it is a Poisson random measure and it uniquely

determines the process H by

H(t) =

∫ t

0

∫ 1

0

xµ(ds, dx).

Furthermore, there exists a unique σ-finite measure ν on [0,∞) × [0, 1] which is

a compensator of the process µ,

ν([0, t]×B) = Eµ([0, t]×B) = E

∑
s∈[0,t]

I
{

∆H(s) ∈ B r {0}
} ,

where t ≥ 0, B is a Borel subset of [0, 1].

Let us assume a NII process H with fixed discontinuities at time points

t1, . . . , tn. Then it admits a Lévy representation

E exp{−θH(t)} =

[∏
i:ti≤t

E exp{−θ∆H(ti)}

]
exp

{
−
∫ 1

0

(1− eθu)dLt(u)

}

for θ ≥ 0, t ≥ 0 where Lt, t ≥ 0 is a continuous Lévy measure. It can be seen

that

ν([0, t]×B) =

∫
u∈B

dLt(u) +
∑
ti≤t

∫
u∈B

dFH
ti

(u) (3.1)
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where FH
ti

is a distribution function of ∆H(ti), the size of the jump of the process

H at the fixed discontinuity time point ti. Consequently, ν can be seen as an

extension of the continuous Lévy measure dLt to a measure which incorporates

the fixed discontinuities as well. As we will see later, the posterior distribution

of a hazard process will always have fixed discontinuities located precisely at the

failure times. For the sake of convenience, from now on we will call also the

extended measure ν in (3.1) the Lévy measure of the process H.

Similarly as in Kim and Lee’s work ([27], [31]) we will assume following set of

processes to be our candidates for prior distribution of the cumulative regression

functions: NII processes with continuous Lévy measure of the following form

ν(ds, du) = fs(u) ds du, s ≥ 0, u ∈ [0, 1], (3.2)

where fs is such that limt→∞
∫ t

0

∫ 1

0
ufs(u) ds du =∞. Let us follow the notation

from the previous chapter, viz. Y (t) =
∑n

i=1 Yi(t) and N(t) =
∑n

i=1 Ni(t). In

an i.i.d. case, when no covariates are present and all uncensored observations

are ruled by an unknown distribution function F with corresponding cumulative

hazard function H(t) =
∫ t

0
dF (s)/(1− F (s−)), it was shown in [19] and [31] that

if H is a priori a stochastically continuous subordinator with Lévy measure as in

(3.2) then a-posteriori H is again a subordinator with Lévy measure equal to

νPOST (ds, du) = (1− u)Y (s)fs(u) ds du+ dFH
s (u)

1

∆N(s)
dN(s), (3.3)

where FH
s (u) is a distribution function on [0, 1] such that

dFH
s (u) ∝ u∆N(s)(1− u)Y (s)−∆N(s)fs(u) du.

Apparently, FH
s characterizes the distribution of a jump size of H at a fixed

discontinuity point induced by the observed data set, i.e. at a time point s

such that for some i = 1, . . . , n, the process ∆Ni(s) = 1 jumped, δi = 1 and

s = Ti is a failure time. Notice that a-posteriori the cumulative hazard function

is again a subordinator and the distribution function is a neutral to the right

process. Consequently, the NII processes display conjugacy with right-censored

i.i.d. survival data.

Let us return to the Aalen model scenario. We assume that the i-th individual

failure time is ruled by distribution function Fi and the corresponding cumulative

hazard function is Hi. Then using (1.2) and (2.1) the following relations are true

if the i-th individual hazard function abides monotone Aalen model (under time-
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independent covariate vector zi = (xi,1, . . . , xi,p)
>):

1− Fi(t) =
∏
s∈[0,t]

{1− dHi(s)} =
∏
s∈[0,t]

p∏
j=1

{1− dAj(s)}xij =

p∏
j=1

{1− dGj(t)}xi,j .

By Gj-s we denote the distribution functions corresponding to cumulative regres-

sion functions Aj-s. Using NII processes in Bayesian analysis of the monotone

Aalen model means that we assume that G1, . . . , Gp are a priori distributed as a

set of independent neutral to the right processes, i.e. a priori G1, . . . , Gp ∈ D .

Then there exists a corresponding set of subordinators A1, . . . , Ap ∈ A induced

by G1, . . . , Gp and every Aj is a priori a process with a Lévy measure as in (3.2).

In particular we will focus on one special case when the Lévy measure of Aj is

νj(ds, du) = f js (u) ds du = cj(s)u
−1(1− u)cj(s)−1dA0

j(s) du, j = 1, . . . , p,

where cj is a piecewise constant nonnegative function, A0
j is a continuous function

and A0
j ∈ A . This type of NII process is called a Beta process with parameters

cj and A0
j .

Next section gives more details on the Beta processes and explains the usage of

these processes as prior processes for the cumulative hazard functions. In Section

3.2 we derive the posterior distribution of the cumulative regression functions

under the Beta process priors. The Bayesian estimators defined as the expectation

of the posterior distribution (as modus would be hard to obtain) are introduced

in Section 3.3 and their small sample features are investigated. The section is

concluded by an algorithm for generating the Bayesian estimators using MCMC.

A special case of p = 1 is considered in Section 3.4 and the obtained asymptotic

result in form of a Bernstein-von Mises theorem is in agreement with the results

in the NPML estimation. We move on to the general case of p > 1 in Section 3.5

and we show that the proposed Bayesian estimators converge to set of functions

Dj, j = 1, . . . , p, that are in general not equal to the sought Aj, j = 1, . . . , p.

Similarly as in the NPML case, the proposed Bayesian estimators exhibit the

average consistency feature. This is dealt with in Section 3.6. The results derived

for Beta process priors are extended to a case when Aj, j = 1, . . . , p, are a priori

distributed as general NII processes in Section 3.7. In Section 3.8 we revisit the

simulated example with three exponentially distributed covariates from Section

2.5. The chapter is concluded with a discussion of the results obtained in both

Chapter 2 and Chapter 3.
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3.1 Beta process prior

Let us suppose that c is a piecewise constant nonnegative function on [0,∞)

and A0 ∈ A has jumps at points t1, . . . , tn, i.e. A0 is a cumulative hazard

with a finite number of jumps. Let us denote the continuous part of A0 by

A0
c(t) = A0(t)−

∑
ti≤t ∆A0(ti), where ∆A0(ti) = A0(ti)− A0(ti−) are the jumps.

Following the definition of Beta process in work of Hjort [19] we say that A is

a Beta process on [0,∞) with parameters c(t) and A0(t) with fixed discontinuities

at time points t1, . . . , tn if A has paths in A , has independent increments, and if

A admits a Lévy representation

E exp{−θA(t)} =

[∏
i:ti≤t

E exp{−θ∆A(ti)}

]
exp

{
−
∫ 1

0

(1− e−θu)dLt(u)

}
(3.4)

for θ ≥ 0, t ≥ 0, where Lt, t ≥ 0 is a continuous Lévy measure of form

dLt(u) =

{∫ t

0

c(s)u−1(1− u)c(s)−1dA0
c(s)

}
du, 0 < u < 1. (3.5)

The jump sizes of process A, denoted as ∆A(ti) = A(ti)−A(ti−) at times ti, i =

1, . . . , n are beta distributed with parameters

∆A(ti) ∼ beta(c(ti)∆A
0(ti), c(ti)[1−∆A0(ti)]).

The first part of the Lévy representation in (3.4) is attributed to the fixed

discontinuities while the second belongs to the continuous part. If there are no

fixed discontinuities present, the Lévy measure simplifies down to

ν(ds, du) =
d

ds
dLs(u) = cj(s)u

−1(1− u)cj(s)−1dA0(s) du. (3.6)

A sample path of a Beta process with Lévy measure equal to ν as in (3.6) will

have random jumps (i.e. discontinuities) in various time points. When fixed

discontinuities t1, . . . , tn are present then the Lévy measure equals

ν(ds, du) = cj(s)u
−1(1− u)cj(s)−1dA0

c(s) du (3.7)

+
n∑
i=1

uc(s)∆A
0(s)−1(1− u)c(s)[1−∆A0(s)]−1

B(c(s)∆A0(s), c(s)[1−∆A0(s)])
(u) du δti(ds),

where the ratio in the second term is the Beta density of the jump size at s and δti
is the Dirac measure with unit mass at point ti. There is an obvious resemblance

between the expression for the Lévy measure of a process with discontinuities in
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(3.7) and the Lévy measure of a posterior process in (3.3). In a homogeneous case

under the Beta process prior with continuous Lévy measure, the posterior process

is again a Beta process with discontinuities that are fixed in failure time points.

In the upcoming work we will assume that the cumulative regression functions

are a priori distributed as Beta processes with continuous Lévy measures as in

(3.6). A-posteriori we get that these processes are Lévy with discontinuous Lévy

measures as in (3.7) and even more, they are Beta processes outside the failure

times.

The existence and features of the Beta process was derived by Hjort in [19] who

came up with the idea within the time-discrete framework where it is true that the

increments of the Beta process are exactly beta distributed. Then he extended

this work to a time-continuous case showing that even though some desirable

features (like convolution) of beta distribution stay preserved, the distribution of

the increments of the Beta process is not exactly beta distributed. We can only

say that

dA(t) ∼ beta(c(t)dA0(t), c(t)[1− dA0(t)])

in infinitesimal way.

Now, let us have an observed dataset on n homogeneous objects with possibly

censored failure times in T1, . . . , Tn. Let us suppose, that the corresponding

cumulative hazard rate H is a priori a Beta process with parameters c and A0,

symbolically written as

H ∼ Beta(c(·), A0(·)).

It is natural, that we do not know in advance, in which sites the cumulative

hazard rate will have jumps, so we assume a continuous A0. The expectation of

the process H a priori is A0 and it can be derived analogically as in p. 1272 in

[19] from the Lévy representation of the Beta process in (3.4). We have that

E exp{−θH(t)} = exp

{
−
∫ 1

0

(1− e−θu)dLt(u)

}
, (3.8)

and by differentiating both sides of the expression w.r. to θ and then putting θ

equal zero leads us to

EH(t) =

∫ 1

0

u dLt(u) =

∫ t

0

∫ 1

0

u c(s)u−1(1− u)c(s)−1du dA0(s)

=

∫ t

0

c(s)
1

c(s)
dA0(s) = A0(t). (3.9)
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The prior variance is derived in similar fashion. By differentiating the equality in

(3.8) w.r. to θ twice and setting θ to zero we get

EH
2(t) =

(∫ 1

0

u dLt(u)

)2

+

∫ 1

0

u2 dLt(u) = [A0(t)]2 +

∫ t

0

dA0(s)

c(s) + 1
.

Hence, we have VarH(t) = EH2(t)− [EH(t)]2 =
∫ t

0
dA0(s)/(c(s) + 1).

As we already advertised, subordinators are conjugate with right-censored

i.i.d. survival data and the same is true when we choose a Beta process prior.

The posterior distribution of the cumulative hazard rate is again a Beta process

with parameters

H| Data ∼ Beta

(
c(·) + Y (·),

∫ (·)

0

c(s)dA0(s) + dN(s)

c(s) + Y (s)

)
. (3.10)

The derivation of this can be seen in [19], see especially Theorem 4.1 and Corollary

4.1. In particular, at the sites of failures the jumps in the cumulative hazard rate

H are beta distributed with parameters

∆H(Ti)| Data ∼ beta
(
dN(Ti), c(Ti) + Y (Ti)− dN(Ti)

)
.

We can take the posterior mean to be a Bayesian estimator. We already know,

that a Beta process with fixed discontinuities can be written as a summation of

the jump sizes at fixed discontinuities and a corresponding Beta process freed of

these fixed jumps. Let us denote Hc = H −∆H. Then

E(H(t)| Data) =
∑
i:Ti≤t
δi=1

E ∆H(Ti) + EHc(t),

where the expectations on the right side are with regards to the posterior dis-

tribution. As Hc is a-posteriori a Beta process with parameters c(·) + Y (·) and∫ (·)
0
c(s)dA0(s)/(c(s) + Y (s)), applying similar steps as when deriving the prior

expectation in (3.9) together with the features of beta distribution we get the

Bayesian estimator equal to (Theorem 4.3 in [19])

E(H(t)| Data) =
∑
i:Ti≤t
δi=1

dN(Ti)

c(Ti) + Y (Ti)
+

∫ t

0

c(s)dA0(s)

c(s) + Y (s)

=

∫ t

0

c(s)dA0(s) + dN(s)

c(s) + Y (s)
. (3.11)
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When looking at the estimator above, it becomes clear, that sending the param-

eter c to zero, i.e. imposing a vague prior, gives the Nelson-Aalen estimator. On

the contrary, when c approaches infinity the estimator lands in the prior guess

A0.

Apparently, Beta processes can be a good choice for a prior distribution of a

cumulative hazard rate and when taking the posterior mean to be the Bayesian

estimator, it is easy to calculate it without need to use aid of MCMC procedures.

Furthermore, as it was mentioned in Remark 3A in [19], Lt from (3.5) has a full

support on the interval [0, 1], meaning that the corresponding Beta process is

a member of A and hence a proper cumulative hazard rate. We will see, that

this feature is preserved when we consider a cumulative hazard rate to be a sum

of Beta processes, as it is in our case of Aalen model. Moreover, as the jumps

of the sample paths are contained in [0, 1], none of the cumulative regression

functions can become negative at any point within [0,∞]. This agrees well with

the monotonicity we require.

Finally, let us formulate the prior distribution for the cumulative regression

functions A1, . . . , Ap of a monotone Aalen model. For each j = 1, . . . , p, we

consider a non-negative piecewise constant function cj and a continuous A0
j such

that A0
j ∈ A . We will assume that a priori the cumulative regression functions

Aj, j = 1, . . . , p, are distributed as a set of p independent Beta processes with

parameters cj and A0
j , i.e.

Aj ∼ Beta(cj(·), A0
j(·)), j = 1, . . . , p. (3.12)

Let us recall, that the expectation of the process Aj(t) a priori is A0
j(t) while

the prior variance equals
∫ t

0
dA0

j(s)/(cj(s) + 1). Hence, the parameter cj can be

viewed as amount of trust of a statistician towards the prior guess A0
j .

Remark 7 Notice, that to make the calculations tractable we assumed that a

priori the processes A1, . . . , Ap are independent. This condition does not have to

be fulfilled when working with a real data set.

3.2 Posterior distribution

Again, we will start from the likelihood of the model adjusted in the way, that

it accommodates the jumps, as it was specified in Section 2.1. Let us recall that
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the likelihood contribution of ith individual at the time point Ti is either

∏
s∈[0,Ti]

p∏
j=1

{1− dAj(s)}xi,jYi(s) (3.13)

in case of a censored observation, i.e. when Ti = Ci and δi = 0, or

∏
s∈[0,Ti)

p∏
j=1

{1− dAj(s)}xi,jYi(s)
[

1−
p∏
j=1

{1− dAj(Ti)}xi,j
]

if there has been observed a failure, Ti = T 0
i and δi = 1. When we combine these

with the prior information, which is of the following form

∏
s∈[0,∞)

p∏
j=1

[
dAj(s)

cj(s)dA0
j (s)−1

]
{1− dAj(s)}cj(s)(1−dA0

j (s))−1 ,

we gather the form of the posterior distribution of the Aj processes.

Outside the failure times all the information from the observed data comes

in form of (3.13) and a-posteriori the regression functions Aj in these times will

be again distributed as Beta processes, with the increments approximately dis-

tributed as

dAj(s)| Data ∼ beta(cj(s)dA
0
j(s), cj(s)(1− dA0

j(s)) +Rj(s)),

where Rj(s) =
∑n

i=1 xi,jYi(s), j = 1, . . . , p. This is equivalent with saying that

outside the failure times the process Aj is a-posteriori a Beta process with pa-

rameters

Aj(t)| Data ∼ Beta

(
cj(t) +Rj(t),

∫ t

0

cj(s)dA
0
j(s)

cj(s) +Rj(s)

)
. (3.14)

This outcome is based on the work of Hjort in [19], and can be proven in detail

using similar techniques as in the proof of Theorem 4.1 (i) there. The obtained

result in (3.14) parallels the findings contained in Theorem 4.2 and Corollary

4.1 in [19]. The only difference is that the terms f js (u) are multiplied by (1 −
u)

∑n
i=1 xi,jYi(s) = (1 − u)Rj(s) instead of (1 − u)Y (s). This is given by a different

likelihood of the observed data based on the Aalen model assumption.

Determining the posterior behaviour of Aj-s is more difficult in failure times.

Let us consider the time point Ti, where i-th individual has experienced a failure

and all other individuals have not. Then combining the likelihood and the prior
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process leaves as with a following function:

p∏
j=1

[
dAj(s)

cj(s)dA0
j (s)−1

]
{1− dAj(s)}cj(s)(1−dA0

j (s))+Rj(s)−xi,j−1

×

[
1−

p∏
j=1

{1− dAj(s)}xi,j
]
.

To get a better understanding of this function let us consider a time-discrete

framework so that s ∈ S = {0, η, 2η, . . . , τ}, for some η > 0. For the regression

functions we have that they equal to Aj(s) =
∑

i:iη≤s αj(iη), where αj(iη) =

∆Aj(iη) = Aj((i − 1)η, iη] corresponds to the increment gained in the interval

((i− 1)η, iη]. The model can be reformulated from (2.1) to

1− hi(s) =

p∏
j=1

{1− αj(s)}xi,j , s ∈ S, (3.15)

where αj(s) and hi(s) are proportional to η, i.e. the αj(s)/η and hi/η,∀j,∀i, have

limits when η → 0.

In this time-discrete setting, let us assume that the cumulative regression

function Aj is a priori distributed as a time-discrete Beta process defined on S

and with parameters equal to cj(s) and A0
j(s) =

∑
iη≤s α

0
j (iη). Again, α0

j are

assumed to be proportional to η. The increments of such a Beta process on S are

exactly beta distributed with parameters

αj(s) ∼ beta(cj(s)α
0
j (s), cj(s)(1− α0

j (s))), s ∈ S.

Let us again have n individuals and n possibly censored times Ti ∈ S, i = 1, . . . , n

ruled by the hazard rate hi(s) =
∑p

j=1 xi,jαj(s), s ∈ S. Then the posterior

distribution of Aj outside the jump times is again a Beta process with

αj(s)| Data ∼ Beta

(
cj(s) +Rj(s),

cj(s)α
0
j (s)

cj(s) +Rj(s)

)
,

and the random jumps in the process trajectory outside the failure times are beta

distributed with parameters

αj(s)| Data ∼ beta(cj(s)α
0
j (s), cj(s)(1− α0

j (s)) +Rj(s)).

This result is an analogy with the nonparametric analysis of time-discrete homo-

geneous data using a Beta process in [19]. For more details on time-discrete Beta

processes see in particular Section 2 in the last cited paper.
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The compound posterior distribution of the increments (α1(s), . . . , αp(s)) at a

time point when one of the individuals fails and others do not, e.g. at s = Ti ∈ S,

is defined on [0, 1]p and equals to

1

k

p∏
j=1

αj(s)
cj(s)α0

j (s)−1(1− αj(s))cj(s)(1−α0
j (s))+Rj(s)−xi,j−1

{
1−

p∏
j=1

(1− αj(s))xi,j
}
.

The normalizing constant for this distribution is

k =

p∏
j=1

Γ
(
cj(s)α

0
j (s)

) [ p∏
j=1

Γ(cj(s)− cj(s)α0
j (s) +Rj(s)− xi,j)

Γ(cj(s) +Rj(s)− xi,j)
(3.16)

−
p∏
j=1

Γ(cj(s)− cj(s)α0
j (s) +Rj(s))

Γ(cj(s) +Rj(s))

]
.

The expression for the constant k was determined by utilizing the fact that

Γ(x)Γ(y)/Γ(x + y) =
∫ 1

0
ux−1(1 − u)y−1du. Sending η to zero takes us back

to the time-continuous case. When η ≈ 0, the posterior density at the jump

point s = Ti becomes close to

1

k

p∏
j=1

αj(s)
−1(1− αj(s))cj(s)+Rj(s)−xi,j−1

{
1−

p∏
j=1

(1− αj(s))xi,j
}

with k approaching

k ≈
p∏
j=1

Γ(1 + cj(s)α
0
j (s))

cj(s)α0
j (s)

(3.17)

×
p∑
j=1

[ψ(cj(s) +Rj(s))− ψ(cj(s) +Rj(s)− xi,j)] cj(s)α0
j (s)

where ψ(x) = Γ
′
(x)/Γ(x) is a digamma function. The equality Γ(cj(s)α

0
j (s)) =

Γ(1 + cj(s)α
0
j (s))/cj(s)α

0
j (s) is a known feature of the Gamma function. The sec-

ond part of the expression was reached by applying the following approximation

Γ(cj(s) +Rj(s)− cj(s)α0
j (s))

Γ(cj(s) +Rj(s))
≈ −ψ(cj(s) +Rj(s))cj(s)α

0
j (s) + 1,

which can be obtained from a basic derivative rule F (x+ dx) ≈ F (x) +F
′
(x)dx.

By looking closer at the expression for k in (3.17) it is understood that the

product is of order 1/∆p while the terms in summation are of order ∆ and the

whole expression is asymptotically proportional to 1/∆p−1. Hence the derived

posterior for continuous distribution via time-discretization makes sense only if
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p = 1. This complication is overcome by letting only one of the αj-s to be positive

while keeping the others equal to zero.

Let us return to the continuous setting. In next, we will state the form of the

posterior distribution of jumps (∆A1(Ti), . . . ,∆Ap(Ti)) in failure time point Ti.

Following lemma will be a cornerstone for establishing the Bayesian estimators

later in this chapter. Before we move onto the lemma, let us remind that in time-

continuous case we assume that the functions A0
j are continuous, hence there exist

α0
j , j = 1, . . . , p such that A0

j(t) =
∫ t

0
α0
j (s)ds.

Lemma 2 Assume that (Ti, δi) = (t, 1) and that there are no other failures at

this time point. Then only one of the Aj processes jumps at t; with probability

pij(t) =
[ψ(cj(t) +Rj(t))− ψ(cj(t) +Rj(t)− xi,j)] cj(t)α0

j (t)∑p
k=1 [ψ(ck(t) +Rk(t))− ψ(ck(t) +Rk(t)− xi,k)] ck(t)α0

k(t)
(3.18)

the jump ∆Aj(t) is positive and coming from the density

gij(u) =
u−1(1− u)cj(t)+Rj(t)−xi,j−1 {1− (1− u)xi,j}
ψ(cj(t) +Rj(t))− ψ(cj(t) +Rj(t)− xi,j)

(3.19)

while all other jumps ∆Ak(t) are equal to zero.

Proof To prove this result we will resort to the time-discretization. Similarly

as in the motivation on previous pages, we assume that the time variables are

observed on intervals of length η. Then we are able to derive the explicit simul-

taneous density for jumps (∆A1(s), . . . ,∆Ap(s)) = (A1(s− η, s], . . . , Ap(s− η, s])
given that Ti ∈ (s−η, s] and given the rest of the data. It follows from the results

on previous page that this density is

gη(u1, . . . , up) =
1

k

p∏
j=1

u
cj(s)A0

j (s−η,s]−1

j (1− uj)cj(s)−cj(s)A0
j (s−η,s]+Rj(s)−xi,j−1

×

{
1−

p∏
j=1

(1− u)xi,j

}
. (3.20)

The normalizing constant k is like in (3.16), in detail

k =

p∏
j=1

Γ
(
cj(s)A

0
j(s− η, s]

) [ p∏
j=1

Γ(cj(s)− cj(s)A0
j(s− η, s] +Rj(s)− xi,j)

Γ(cj(s) +Rj(s)− xi,j)

−
p∏
j=1

Γ(cj(s)− cj(s)A0
j(s− η, s] +Rj(s))

Γ(cj(s) +Rj(s))

]
.
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We need to prove that the limit of the distribution gη(u1, . . . , up) when η → 0

is as in (3.19). This can be done showing that all product moments converge

to their respective counterparts, as all product moments uniquely characterize

the distribution (see e.g. [37]). Let us denote the random vector distributed

accordingly to (3.20), by (U1, . . . , Up). Then for the q-th moment EU
q
l we have

∫ 1

0

. . .

∫ 1

0

1

k

p∏
j=1

u
cj(s)A0

j (s−η,s]−1

j (1− uj)cj(s)(1−A0
j (s−η,s])+Rj(s)−xi,j−1)du1 . . . dup

=
1

k


p∏
j=1
j 6=l

Γ(cj(s)A
0
j(s− η, s])Γ(cj(s)(1− A0

j(s− η, s] +Rj(s)− xi,j)
Γ(cj(s) +Rj(s)− xi,j)

× Γ(q + cl(s)A
0
l (s− η, s])Γ(cl(s)(1− A0

l (s− η, s] +Rl(s)− xi,l)
Γ(q + cl(s) +Rl(s)− xi,l)

−
p∏
j=1
j 6=l

Γ(cj(s)A
0
j(s− η, s])Γ(cj(s)(1− A0

j(s− η, s] +Rj(s))

Γ(cj(s) +Rj(s))

× Γ(q + cl(s)A
0
l (s− η, s])Γ(cl(s)(1− A0

l (s− η, s] +Rl(s))

Γ(q + cl(s) +Rl(s))

}
,

and for η close to zero we have

EU
q
l (s) ≈ 1

Γ(clA0
l (s− η, s] + 1)

pil(s)Γ(q + cl(s)A
0
l (s− η, s])

ψ(cl(t) +Rl(t))− ψ(cl(t) +Rl(t)− xi,l)

×
{

Γ(cl(s)(1− A0
l (s− η, s] +Rl(s)− xi,l)

Γ(q + cl(s) +Rl(s)− xi,l)

− Γ(cl(s)(1− A0
l (s− η, s] +Rl(s))

Γ(q + cl(s) +Rl(s))

}
.

The limit is equal to

EU
q
l (s)

η→0−−→ pil(s)Γ(q)

ψ(cl(s) +Rl(s))− ψ(cl(s) +Rl(s)− xi,l)
(3.21)

×
{

Γ(cl(s) +Rl(s)− xi,l)
Γ(q + cl(s) +Rl(s)− xi,l)

− Γ(cl(s) +Rl(s))

Γ(q + cl(s) +Rl(s))

}
.

The q-th moment EU
q
l (s) of the limiting distribution stated in the lemma equals

to

pil(s)

∫ 1

0

uqgil(u)du

and be using the similar techniques as before we get that it is exactly the limit

in (3.21). Hence, for all q ≥ 1 we have that the q-th moment of the time-discrete

distribution converges to the q-th moment of the distribution stated in the lemma
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with η → 0. Hence, the limiting distribution of jumps (∆A1(t), . . . ,∆Ap(t))

at t = Ti is given by the limits of all the product moments and it equals the

distribution given in the lemma.

Q.E.D.

3.3 Bayesian estimators

The expectation of a posterior distribution is often taken to be a Bayesian es-

timator. Similarly as in the i.i.d. case in (3.11) the posterior distribution of a

cumulative regression function consists of two independent components. The first

component is the stochastically continuous Beta process outside the failure times

while the second is comprised solely of jumps placed at fixed discontinuities at

failure sites.

From Lemma 2 is is seen that the posterior distribution of a jump occurrence

in the trajectory of process Aj at every failure time Ti is of Bernoulli distribution

with probability pij in (3.18). Let us denote by Uij the size of the jump of the

process Aj at the failure time Ti in case it occurs. Uij is a random variable ruled

by the density gij in (3.19). The expectation and variance of Uij, denoted e.g. ξij

and σ2
ij respectively, are easily calculated. The expectation ξij equals to

ξij(Ti) = EUij = [ψ(cj(Ti) +Rj(Ti))− ψ(cj(Ti) +Rj(Ti)− xi,j)]−1

×
(∫ 1

0

(1− u)cj(Ti)+Rj(Ti)−xi,j−1du−
∫ 1

0

(1− u)cj(Ti)+Rj(Ti)−1du

)
=

(cj(Ti) +Rj(Ti)− xi,j)−1 − (cj(Ti) +Rj(Ti))
−1

ψ(cj(Ti) +Rj(Ti))− ψ(cj(Ti) +Rj(Ti)− xi,j)
, (3.22)

and similarly, for the variance σ2
ij we have

σ2
ij(Ti) = VarUij =

(cj(Ti) +Rj(Ti)− xi,j)−1(cj(Ti) +Rj(Ti)− xi,j + 1)−1

ψ(cj(Ti) +Rj(Ti))− ψ(cj(Ti) +Rj(Ti)− xi,j)

− (cj(Ti) +Rj(Ti))
−1(cj(Ti) +Rj(Ti) + 1)−1

ψ(cj(Ti) +Rj(Ti))− ψ(cj(Ti) +Rj(Ti)− xi,j)
− ξij(Ti)2.

Combining the expectation of the stochastically continuous part of the posterior

and the expectations of the jump sizes at the points of fixed discontinuities located

at the failure times we arrive at Bayes estimators of Aj-s written as

Ãj(t) = E(Aj(t)| Data) =

∫ t

0

cj(s)dA
0
j(s)

cj(s) +Rj(s)
+

∑
Ti≤t, δi=1

pij(Ti)ξij(Ti). (3.23)
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The first part of the expression is the expectation of the Beta process with pa-

rameters cj +Rj and
∫
cj(s)dA

0
j(s)/(c(s)+Rj(s)), obtained by similar techniques

as in (3.9).

The posterior variance is again a summation of the variance of the stochasti-

cally continuous part and the variance in the fixed discontinuities. This is true

thanks to the fact that the continuous component and the fixed discontinuities of

the posterior distribution are independent. The sought expression for variance is

Var(Aj(t)| Data) =

∫ t

0

cj(s)dA
0
j(s)

(cj(s) +Rj(s))(cj(s) +Rj(s) + 1)
(3.24)

+
∑

Ti≤t, δi=1

[
pij(Ti)σ

2
ij(T1) + pij(Ti)(1− pij(Ti))ξij(Ti)2

]
.

We obtained the posterior variance of the Beta process outside the failure times

similarly as the prior variance of a Beta process in the i.i.d. case in Section 3.1.

The last term in the variance formula was derived by using the knowledge on ξij

and σ2
ij, the first and second moments of size of the jumps at fixed discontinuities.

In detail, the variance in jump times equals

Var(∆Aj(Ti)) = E(∆Aj(Ti))
2 − (E ∆Aj(Ti))

2 = pij(Ti) EU
2
ij − p2

ij(Ti)ξ
2
ij(Ti)

= pij(Ti){VarUij + (EUij)
2} − pij(Ti)2ξ2

ij(Ti)

= pij(Ti){σ2
ij(Ti) + ξ2

ij(Ti)} − p2
ij(Ti)ξ

2
ij(Ti).

Knowing the variance of Ãj is useful for setting the pointwise credibility bands

for the estimators. Furthermore, the covariance between two processes Aj and

Ak is equal to

cov(Aj(t), Ak(t)| Data) = −
∑

Ti≤t, δi=1

pij(Ti)pik(Ti)ξij(Ti)ξik(Ti).

The digamma function in the expressions (3.18), (3.19) and (3.22) can be for

large Rj-s and small cj-s (relatively to Rj-s) approximated by an asymptotical

expansion ψ(x) = log(x) +O(x−1), see [7]. Applying this gives simplified asymp-

totically equivalent versions of formulas for pij and ξij. This approximations can

be further applied to gain approximated versions of the Bayesian estimators Ãj.

We have

ξij(Ti) ≈
(cj(Ti) +Rj(Ti)− xi,j)−1 − (cj(Ti) +Rj(Ti))

−1

log(cj(Ti) +Rj(Ti))− log(cj(Ti) +Rj(Ti)− xi,j)

≈ (cj(Ti) +Rj(Ti)− xi,j)−1 − (cj(Ti) +Rj(Ti))
−1

(cj(Ti) +Rj(Ti))/(cj(Ti) +Rj(Ti)− xi,j)− 1
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hence

ξij(Ti) ≈ 1

cj(Ti) +Rj(Ti)
≈ 1

Rj(Ti)

and similarly

pij(Ti) ≈
[log(cj(Ti) +Rj(Ti))− log(cj(Ti) +Rj(Ti)− xi,j)] cj(Ti)α0

j (Ti)∑p
k=1 [log(ck(Ti) +Rk(Ti))− log(ck(Ti) +Rk(Ti)− xi,k)] ck(Ti)α0

k(Ti)

≈
xi,j/(cj(Ti) +Rj(Ti)− xi,j) cj(Ti)α0

j (Ti)∑p
k=1 xi,k/(ck(Ti) +Rk(Ti)− xi,k) ck(Ti)α0

k(Ti)

≈
xi,j/Rj(Ti) cj(Ti)α

0
j (Ti)∑p

k=1 xi,k/Rk(Ti) ck(Ti)α0
k(Ti)

.

Inserting these approximations into (3.23) yields

Ãj(t) ≈
∫ t

0

cj(s)dA
0
j(s)

Rj(s)
+

∑
Ti≤t,δi=1

1

Rj(Ti)

xi,j/Rj(Ti) cj(Ti)α
0
j (Ti)∑p

k=1 xi,k/Rk(Ti) ck(Ti)α0
k(Ti)

≈
n∑
i=1

∫ t

0

Vij(s)
dNi(s)

Rj(s)
(3.25)

where

Vij(s) =
xi,j/Rj(s) cj(s)α

0
j (s)∑p

k=1 xi,k/Rk(s) ck(s)α0
k(s)

. (3.26)

Note, that in expression (3.25) we dropped the first term
∫
cj/Rj dA0

j coming

from the stochastically continuous part of the solution as for cj small relatively

to Rj it is close to zero. Using similar techniques leads us to an approximated

expression for the variance of the Bayesian estimator, viz.

Var(Ãj(t)) ≈ (3.27)
n∑
i=1

∫ t

0

Vi,j(s)

[
2Rj(s)− xi,j + 1

Rj(s)(Rj(s) + 1)(Rj(s)− xi,j + 1)
+

1− Vi,j(s)
R2
j (s)

]
dNi(s).

Finally, it can be seen that the Bayesian estimator in (3.25) is for large n of a

similar form as the NPML estimator. The difference is, however, present in the

”weighting” processes Vi,j. While in NPML the values of Vi,j were either 0 or 1,

here the weights are contained in the interval [0, 1]. Similarly as in NPML they

sum up to
∑p

j=1 Vi,j = 1. It means that all Bayesian estimators Ã1, . . . , Ãp jump

at every site of the observed failure while in NPML only one of the processes

Â1, . . . , Âp jumps.

The validity of the approximations of the Bayesian estimators Ãj-s is con-

ditioned on the assumptions on cj-s and Rj-s. Determining sensible functions

for cj-s is a question of choosing between functions with small enough values to
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give us reasonably good approximations and greater valued functions that pro-

duce a less restrictive prior (we know, that small cj-s imply small variance of

the prior Beta process). However, as long as the covariates are not very close to

zero with growing size we have growing Rj-s and asymptotically the exact and

approximated formulas for Ãj-s become equivalent.

The estimators Ãj can be calculated directly due to the fact that the posterior

mean has an explicit (although complicated) form. When the number of obser-

vations is great, we can use the approximated versions of the estimator. Another

way to obtain the estimators is to use the aid of MCMC algorithms. The essential

part of MCMC procedure is an effective generation of the processes Aj, ∀j, from

the posterior distributions. Here the problem separates into two steps: generation

of the stochastically continuous part (a Beta process) and simulation of a jump

size in the fixed discontinuities.

Let a Beta process with parameters cj and A0
j be a prior process for Aj,

∀j. Then under monotone Aalen model, from (3.14) we have that the posterior

distributions for Aj-s are Beta processes in the zone outside of jump times,

Aj(t)| Data ∼ Beta

(
cj(t) +Rj(t),

∫ t

0

cj(s)dA
0
j(s)

cj(s) +Rj(s)

)
.

Recall, that Rj(t) =
∑n

i=1 xi,jYi(t), j = 1, . . . , p. As shown in [33], a Beta process

can be well enough approximated with a compound Poisson process. As we know

from (3.6), the Lévy measure of a Beta process A with parameters c and A0 and

with no fixed discontinuities equals to

ν(ds, du) = c(s)u−1(1− u)c(s)−1dA0(s) du, u ∈ (0, 1).

Following the work in [33], let us consider a Lévy process Aε with Lévy measure

equal to

νε(ds, du) =
Γ(ε+ c(t))

Γ(ε)Γ(c(t))
c(s)uε−1(1− u)c(s)−1dA0(s) du, u ∈ (0, 1).

It was shown in Theorem 2 in [33] that under the fulfilled assumptions of 0 <

inf0≤s≤τ c(s) ≤ sup0≤s≤τ c(s) < ∞ and A(τ) < ∞ for some τ > 0, the process

Aε
D−→ A on D[0, τ ] with ε→ 0.

Thus generating a sample path of the Lévy process Aε for ε small enough

should provide us with a reasonable approximation of a sample path of process A.

The total mass of the Lévy measure νε on [0, τ ] equals to λ =
∫ τ

0
c(t)dA0(t)/ε and

it is finite for ε > 0. Hence we can simulate a random path of Aε as a compound

Poisson process with the number of jumps following Poisson(λ), sites of jumps
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distributed according to distribution with the probability density proportional to

c(t)dA0(t)I{t ∈ [0, τ ]} and jumps size distribution equal to beta(ε, c(t)).

The difficulties lie in the observed death times where according to Lemma 2

we get fixed discontinuity in the process Aj at time Ti, such that δi = 1, with

probability pi,j(t) in (3.18) and the jump size ∆Aj(Ti) comes from the density

gi,j(u) in (3.19), while other jumps ∆Ak(Ti) are zero. The choice, which of the

processes jumps, is done randomly by drawing a variable from corresponding

multinomial distribution. Sampling a value of the jump size can be done by

using two latent variables, as it was done for Cox model in [32]. This reduces

the problem to a simple generation from exponential, truncated exponential and

gamma distribution for each fixed discontinuity.

Firstly, transform u → v = − log(1 − u). It is seen that v spans the whole

positive part of real line, v ∈ (0,∞). The posterior distribution of the jump size

becomes

gvi,j(v) ∝ (1− exp{−v})−1 exp{−v[cj(Ti) +Rj(Ti)− xi,j − 1]}(1− exp{−vxi,j}).

Following the two latent variable approach from [32], we assume to have a geo-

metric variable y and a truncated exponential variable w with distributions given

in

[y|v] ∼ geom(1− exp{−v})

and

[w|v] ∼ vxi,j exp{−vxi,jw})(1− exp{−vxi,j)})−1I(0,1)(w).

In the last we stated the density of the truncated exponential distribution. Now

it can be noticed, that under the fixed y and w the distribution of the sought

parameter v is gamma with parameters

[v|y, w] ∼ gamma(2, cj(Ti) +Rj(Ti)− xi,j + y + wxi,j).

Once the value of v is generated, the actual jump size is easily found as u = 1−e−v.

Let us have T1, . . . , Tn survival times collected from n individuals ruled by

a monotone Aalen model. Suppose, that l of these times are recorded deaths

and denote t1, . . . , tl the uncensored failure times. Let M be a total number of

iterations of the Gibbs sampler and let us denote A
(m)
j ,m = 1, . . . ,M, j = 1, . . . , p,

the sample paths of the posterior Beta processes of the cumulative regression

functions Aj, j = 1, . . . , p. Let us have a small enough ε > 0. Set τ <∞. Before

we move onto the algorithm, notice that starting values of the jump sizes in fixed
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discontinuities are needed. These can be drawn from the prior distribution, i.e.

∆A
(0)
j (ti) ∼ beta(c(ti)∆A

0
j(ti), c(ti)(1−∆A0

j(ti))).

We will summarize all the steps of the MCMC algorithm in next:

Sampling algorithm for A1, . . . , Ap:

1. Let m← 1.

2. For every i = 1, . . . , l draw U ∼ U [0, 1], if
∑j−1

k=1 pi,k ≤ U <
∑j

k=1 pi,k

(taking
∑0

k=1 pi,k = 0), then A
(m)
j jumps at ti, i.e. ∆A

(m)
j > 0, while

∆A
(m)
k = 0, ∀k 6= j.

3. Let j ← 1.

4. Stochastically continuous part:

• Sample K, the number of random jumps from Poisson(λ), where λ =
1
ε

∫ τ
0
cj(t)dA

0
j(t).

• Sample the random jump sites s1, . . . , sK from the probability density

proportional to cj(t)dA
0
j(t)I{t ∈ [0, τ ]} and order them.

• Sample the jump sizes z1, . . . , zK at sites s1, . . . , sK from the beta

distribution with [zi|si] ∼ beta(ε, Rj(si) + cj(si)).

5. Fixed discontinuities at t1, . . . , tl:

• Set i← 1.

• If the process A
(m)
j does not jump at ti, then set ∆A

(m)
j (ti) = 0, else

� Set v = − log(1−∆(A
(m−1)
j (ti))).

� Sample [y|v] ∼ geom(1− exp{−v}).

� Sample x from a truncated exponential distribution with proba-

bility density vxi,j exp{−vxi,jw})(1− exp{−vxi,j)})−1I(0,1)(w).

� Sample [v|y, w] ∼ gamma(2, cj(Ti) +Rj(Ti)− xi,j + y + wxi,j).

� Set ∆A
(m)
j (ti) = 1− e−v.

• Set i← i+ 1.

6. Set j ← j + 1 and do steps 4 and 5. Repeat until j = p.

7. Set m← m+ 1 (till m reach a large M) and return back at step 2.
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The output of the algorithm is an MCMC chain whose members are sample paths

of Aj, j = 1, . . . , p. After discarding of several starting members (burn-in part),

we can produce pointwise estimators of Aj, j = 1, . . . , p and (1−α)100% pointwise

credibility bands for the estimators by taking a 50% quantile, α/2 × 100% and

(1− α/2)× 100% quantile respectively.

3.4 Case p = 1

As we already specified in Section 2.2, if there is only one covariate present,

the hazard rate for ith individual equals hi(s) = xi,1α1(s) and transforming the

covariate into xi,1 = exp{βwi} for some arbitrarily chosen β ∈ R \ 0, we get the

familiar expression of the hazard rate hi(s) = α1(s)eβwi for one-covariate Cox

model with an unknown baseline hazard α1 and known β. Also the Bayesian

estimator for the cumulative regression function A1 =
∫
α1(s)ds of a monotone

Aalen model under a Beta process prior agrees with the estimator of baseline

hazard rate of a Cox model with known β, see p. 1284 in [19].

As it can be seen from [19], the Bayesian estimator of A1 equals

Ã1(t) = E(A1(t)| Data) =

∫ t

0

c1(s)dA0
1(s) + J(s)dN(s)

c1(s) +R1(s)
,

in which J(s) is defined via

(c1(s) +R1(s)− xi,1)−1 − (c1(s) +R1(s))−1

ψ(c1(s) +R1(s))− ψ(c1(s) +R1(s)− xi,1)
=

J(s)

c1(s) +R1(s)
.

Applying the approximation ψ(x) = log(x)+O(x−1) shows that, for large n, term

J(s) is close to 1 and therefore the estimator Ã1(t) is close to∫ t

0

{
c(s)dA0

1(s)

c1(s) +R1(s)
+

dN(s)

c1(s) +R1(s)

}
≈

∫ t

0

dN(s)

R1(s)
.

From the last expression it is seen that with growing n the impact of the prior

information vanishes and Ã1(t) behaves similarly as the NPML estimator - and

we already know that in case of p = 1 the NPMLE proved to by consistent. This

naturally implies the consistency of the Bayesian estimator Ã1 of A1.

A study of the asymptotic distribution reveals that a statement known un-

der the name Bernstein - von Mises theorem is in force here. This theorem

states that the posterior distribution centered around NPML estimator Â1 =∫ t
0

∑n
i=1

{
1− (1− xi/R1(s))1/xi,1

}
dNi(s) is asymptotically equal to the asymp-
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totic distribution of NPMLE. Even though asymptotic features are rarely of main

interest of Bayesians, the Bernstein-von Mises assertion is not an unusual out-

come and for parametric problems is valid under fairly mild conditions (see e.g.

[47]).

Theorem 7 (Bernstein - von Mises theorem for p = 1) Let us suppose

that the conditions in Assumption (*) in Section 2.1 are fulfilled. Let Â1 be the

NPML estimator of the cumulative regression function A1 =
∫
α1(s)ds. Then,

for α1 continuous and Y (τ) → ∞, the process
√
n(A1(t) − Â1(t)) a-posteriori

converges weakly on D[0, τ ], w.p. 1, to a zero-mean Gaussian process W with

independent increments and variance function equal to C(t) =
∫ t

0
α1(s)/r1(s)ds,

√
n(A1(t)− Â1(t) | (Ti, δi, zi); i = 1, . . . , n)

D−−→W (C(t)), w.p. 1.

Proof A similar problem was already solved by Kim in [28] where he deals with

a general version of Cox model with p > 1 covariates and unknown β. As we

already know, Aalen model with only one covariate can be viewed as a Cox model

with the covariate wi = log xi,1/β, for some β ∈ R\0. The proof would further go

along the lines of the proof of Theorem 3.2. in [28], starting with decomposition

√
n(A1(t)− Â1(t)| Data) =

√
n(A1(t)− AD1 (t)| Data)

+
√
n(AD1 (t)− EA

D
1 (t)| Data)

+
√
n(EA

D
1 (t)− Â1(t)| Data),

where we denoted the part with fixed discontinuities in the failure times by

AD1 (t) =
∑

Ti≤t ∆A1(Ti). The main task is to show that the first term (i.e. the

stochastically continuous part) and the third term converge weakly to 0, w.p. 1,

while the second term converges weakly to the process W (C(t)), w.p. 1. These

quests are done in same fashion as in [28] as the convergence either to zero or

to the Gaussian process is proved conditionally on β. The only difference is

that we do not have a term xe0 (where x =
√
n(β − β̂), β̂ is the MLE of β

and e0 =
∫

EweβwY/E eβwY ) included in the asymptotic process. This term

is in Cox model with an unknown β related to uncertainty introduced by this

unknown parameter.

Q.E.D.

The posterior distribution of A1 and Hadamard differentiability hand in hand

with the functional delta method (see for instance Section 20 in [47]) gives a way
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to establish analogical result for any smooth functional of A1, e.g. the distribution

function.

3.5 Case p > 1

Similarly as in NPML estimtaion, the situation changes dramatically once we

have more than one covariate in the model. Let us go back to the approximation

of the Bayesian estimators in (3.25) which under the usual conditions gives us a

clue about the tendencies of the estimators with growing n, viz.

Ãj(t) ≈
n∑
i=1

∫ t

0

Vij(s)
dNi(s)

Rj(s)
≈

n∑
i=1

∫ t

0

1

Rj(s)
Vij(s)Yi(s) z

>
i α(s) ds.

Looking closer at the weighting factor Vij in (3.26), we see that with growing n

it is similar to

Vij(s) =
xi,j/Rj(s) cj(s)α

0
j (s)∑p

k=1 xik/Rk(s) ck(s)α0
k(s)

≈ Vj(s) =
xj/rj(s) cj(s)α

0
j (s)∑p

k=1 xk/rk(s) ck(s)α
0
k(s)

.

Now we can proceed towards the inconsistency theorem analogical to its counter-

part Theorem 6 in NPML estimation.

Theorem 8 (Inconsistency of Ãj(t)) Let us suppose that the conditions in

Assumption (*) in Section 2.1 are fulfilled and let us denote

Ej(s) =
n∑
i=1

Vi,j(s)Yi(s) z
>
i α(s), s ∈ [0, τ ].

If Y (τ) → ∞ with n → ∞, αj, j = 1, . . . , p, are continuous and E z2
j < ∞,∀j,

then there exist functions rj(s) and ej(s), j = 1, . . . , p, on [0, τ ], such that

sup
0≤s≤τ

∣∣∣∣Rj(s)

n
− rj(s)

∣∣∣∣ P−−→ 0 and sup
0≤s≤τ

∣∣∣∣Ej(s)n
− ej(s)

∣∣∣∣ P−−→ 0,

and the processes Ãj = E(Aj| (Ti, δi, zi); i = 1, . . . , n) converge in probability to

Dj, w. p. 1, ∀j,

Ãj(t)
P−−→ Dj(t) =

∫ t

0

ej(s)

rj(s)
ds, w.p. 1, ∀j.

Proof First, let us see that using the approximation ψ(x) = log(x) + O(x−1),

for n >> 0 and small cj-s, the mean of stochastically continuous part of Ãj(t) is
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Op(1/n) while the second part

∑
Ti≤t, δi=1

pij(Ti) ξij(Ti) =

∫ t

0

n∑
i=1

(xi,j/Rj(s)) cj(s)α
0
j (s)∑p

k=1 (xik/Rk(s)) ck(s)α0
k(s)

dNi(s)

Rj(s)
+ op

(
1

R3
j (t)

)
.

It is sufficient to show that Ã?j(t) =
∫ t

0

∑n
i=1 Vij(s)dNi(s)/Rj(s) converges in

probability to desired Dj. We will start with Doob-Meyer decomposition of the

Ni processes that gives

Ã?j(t) =

∫ t

0

n∑
i=1

Vij(s)
dNi(s)

Rj(s)
=

∫ t

0

n∑
i=1

Vij(s)

Rj(s)
Yi(s)z

>
i α(s) ds+

∫ t

0

n∑
i=1

Vij(s)
dMi(s)

Rj(s)
.

(3.28)

The latter is a zero-mean martingale with a covariate process equal to∫ t

0

n∑
i=1

[
Vij(s)

Rj(s)

]2

Yi(s)z
>
i α(s)ds ≤

∫ t

0

n∑
i=1

1

R2
j (s)

Yi(s)z
>
i α(s)ds = op

(
n−1
)

and therefore it converges to 0 in probability, w.p. 1. Now we only

need to show that the first term in (3.28) converges in probability to∫
ej(s)/rj(s)ds, with probability 1. First, the existence of a limit ej(s) =

limn→∞ n
−1
∑n

i=1 Vij(s)Yi(s)z
>
i α(s), uniformly in [0, τ ], is ensured by uniform

law of large number as long as E z2 < ∞, as well as the existence of an uniform

limit rj(s) = limn→∞ n
−1Rj(s), see Remark 1 in Section 2.2. The proof is finished

by application of the Slutsky theorem.

Q.E.D.

Similarly as in NPML, the limiting function of Ej/n is equal to

ej(t) = E
[
Vj(s)Y (s)z>a(s)

]
= E

[
e−z

>A(s)z>α(s)Vj(s)
]
G(s). (3.29)

Remark 8 It is interesting to assess how the estimators for Aj-s behave when

the factors cj-s are sent to theirs extremes. When all cj-s go to infinity, the

estimators land in prior guesses A0
j . On the other hand, for cj → 0,∀j, we expect

to get the noninformative case (as for a noninformative prior). However, it turns

out that when all cj-s go to 0 at the same speed, the estimators become close to

Ãj(t) ≈
∫ t

0

n∑
i=1

α0
j (s)xi,j/Rj(s)∑p

k=1 α
0
k(s)xik/Rk(s)

dNi(s)

Rj(s)
,

still carrying along the prior guesses α0
1, . . . , α

0
p.
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With growing sample size the estimators converge to

Ãj(t)
P−−→

∫ t

0

n∑
i=1

E

[
α0
j (s)xj/Rj(s)∑p

k=1 α
0
k(s)xk/Rk(s)

nY z>

Rj(s)

]
α(s)ds, w.p. 1,

and for α0
1 = · · · = α0

p,

Ãj(t)
P−−→

∫ t

0

n∑
i=1

E

[
xj/Rj(s)∑p
k=1 xk/Rk(s)

nY z>

Rj(s)

]
α(s)ds, w.p. 1,

gaining ”average” weights. The estimators remain, however, inconsistent.

3.6 Average consistency

In the previous section we proved that the proposed Bayesian estimator Ãj of the

cumulative regression functions Aj is for general p inconsistent and it converges

in probability to Dj 6= Aj. There is, however, noticeable, that the estimators

have the same feature as we observed in the NPML case. We call it the average

consistency and it means that when we look at the average intensity, i.e. the

intensity of a randomly picked subject

p∑
j=1

rj(s) αj(s), s ∈ [0, τ ],

it remains the same when we plug dj(s) = ej(s)/rj(s) into the expression instead

of αj.

Corollary 2 (Melda corollary II) Let us denote dj(s) = ej(s)/rj(s). Sup-

pose, that the assumptions of Theorem 6 are fulfilled. Then

p∑
j=1

rj(s) dj(s) =

p∑
j=1

rj(s) αj(s).

Proof We proceed identically as in proof of Corollary 1. Since the derivative of

the limiting processes Dj in Theorem 6 equals dj(s) = ej(s)/rj(s), we have that

the average intensity is

p∑
j=1

rj(s) dj(s) =

p∑
j=1

ej(s) =

p∑
j=1

E
[
Vj(s)e

−z>A(s)z>α(s)
]
G(s)

= E
[
e−z

>A(s)z>α(s)
]
G(s) =

p∑
j=1

E
[
e−z

>A(s)zj

]
G(s) αj(s)
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and again
∑p

j=1 rj(s) dj(s) =
∑p

j=1 rj(s) αj(s). We used the expressions for ej

in (3.29) and for rj in (2.17) in the derivation of the result above.

Q.E.D.

3.7 Neutral to the right processes

As we already mentioned in the beginning of this chapter, Beta processes be-

long to a larger group of priors called subordinators or independent increment

processes (NII). This general class of priors was widely used especially by Kim

and Lee in [27], [29], [30] and [28]. They showed that if the cumulative hazard

rate in homogeneous model or cumulative baseline hazard rate in Cox model is

a priori distributed as a NII process, then a-posteriori it is again a NII process.

Furthermore, the posterior expectation tends to the real value of the estimated

characteristic and the posterior distribution centred around the NPML estimate

correspond to the distribution of the NPML estimate (Bernstein-von Mises the-

orems). The aim of this section is to guess how a Bayesian estimator based on a

general NII process prior performs under the monotone Aalen model.

Let us recall, that a NII process is induced by a so called neutral to the

right process that in our situation serves (latently) as a prior process for the

distribution function. Let the i-th individual possessing the time-independent

covariate vector zi = (xi,1, . . . , xi,p)
> be ruled by distribution function Fi and the

corresponding cumulative hazard function is Hi. Then, as already advertised, the

following equation is true if the ith individual is ruled by monotone Aalen model

with cumulative hazard rate Hi(t) =
∑p

j=1 xi,jAj(t):

1− Fi(t) =

p∏
j=1

{1− dGj(t)}xi,j .

By Gj-s we denote the distribution functions corresponding to cumulative regres-

sion functions Aj-s. Using neutral to the right processes in the monotone Aalen

model means that we assume that G1, . . . , Gp are a priori distributed as a set of

neutral to the right processes. Let these prior processes Gj-s be such that the

NII processes Aj induced by Gj have Lévy measure of the following form

νj(dt, du) = f jt (u) dt du, t ∈ [0, τ ], u ∈ [0, 1], j = 1, . . . , p,

where f jt are such that limt→∞
∫ t

0

∫ 1

0
uf js (u) ds du =∞.
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Utilizing the knowledge we gained in Section 3.2 and the theory on NII pro-

cesses in [29] and [30] we arrive at the posterior distribution of Aj being again a

NII process with the Lévy measure equal to

νj(dt, du| Data) = (1− u)Rj(t)f jt (u) dt du +
∑

Ti∈ death times

dHij(u) δTi(dt) pj(Ti)

where Hij is a distribution function on [0, 1] with density

hij(u) =
1

kij
(1− (1− u)xi,j) (1− u)Rj(Ti)−xi,jf jTi(u),

kij is the integration factor (and also a function of xi,j, Rj and Ti), and pj(ti) is

the probability that a-posteriori the process Aj has a jump at Ti,

pj(ti) =
kij∑p
l=1 kil

.

We introduce this result without proof but it is a corollary of slightly adjusted

version of Lemma 5.1 in [30] combined with generalization of Lemma 2 from

Beta processes to NII processes. The Bayes estimator of Aj is then equal to the

posterior mean

E{Aj(t)| Data} =

∫ t

0

∫ 1

0

u(1− u)Rj(s)f js (u) du ds +
∑

Ti≤t, δi=1

pj(Ti)ξij(Ti)

where

ξij(Ti) =

∫ 1

0

u hij(u) du.

The mean of the stochastically continuous part vanishes with growing sample size

(under some assumptions). To understand how the other part of the estimator

behaves asymptotically we follow the Kim and Lee’s approach, [29], [30] and [28],

and suppose that the function f jt in the prior distribution is of the form

f jt (u) =
1

u
gjt (u)λj(t),

where
∫ 1

0
gjt (u)du = 1 for all t and λj(t) is bounded and positive on [0, τ ]. Under

certain conditions on gjs functions parallel to the conditions in Kim and Lee’s

work and using similar laborious techniques as in proof of Theorem 4.1 in [29] we

expect to arrive to an asymptotic process of following form

E{Aj(t)| Data} P−−→
∫ t

0

1

rj
E{pj(s)Y (s)z>α(s)}ds, w.p. 1.
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And particularly for the Beta process prior, pj(s) = Vj(s). Consequently, the

Bayesian machine using a general NII process as prior still produces inconsistent

estimators.

3.8 An example with 3 exponentially dis-

tributed covariates II

In this section we revisit the example from Section 2.5 with three exponentially

distributed covariates and provide a similar analysis as in the NPML case. After-

wards, we will devote ourselves to a study of features of the approximations (3.25)

and (3.27) in Section 3.3 in comparison to the exact forms in (3.23) and (3.24).

Furthermore, we run the MCMC algorithm proposed at the end of Section 3.3

and compare the obtained estimators with the aforementioned exact estimators.

In the example in Section 2.5 we supposed that with every individual we

collected the covariate vector (xi,1, xi,2, xi,3) ∼ Exp(λ1, λ2, λ3). Asymptotically,

the Bayesian estimators Ãj of the integrated regression functions equal to Dj =∫
ej(s)/rj(s)ds, where

ej(s) = E
[
Vje
−z>A(s)z>α(s)

]
G(s)

and

rj(s) = E
[
ez
>A(s)z>α(s)

]
G(s).

The expectation is with respect to the covariate distribution. We will derive the

form of Dj only for j = 1 case, as the results are analogical for j = 2, 3. We have

already found the expression for r1 in (2.20) so let us focus on e1. The asymptotic

weight process V1 is equal to

V1(s) =
x1/r1(s)c1(s)α0

1(s)∑3
k=1 xk/rk(s)ck(s)α

0
k(s)

,

and the function e1 is a triple integral∫ ∞
0

∫ ∞
0

∫ ∞
0

V1(s) exp{−x1(A1(s) + λ1)− x2(A2(s) + λ2)− x3(A3(s) + λ3)}

× (x1α1(s) + x2α2(s) + x3α3(s))λ1λ2λ3 dx1 dx2 dx3 G(s).

This is an integral of following type
∫
x/(x + a)e−xbdx and there is no explicit

form of corresponding primitive function. Hence, the resulting function D1 is an
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Figure 3.1: Revisited example from Figure 2.3: Cumulative regression functions
in a simulated Aalen model with hazard rate hi(t) = 5xi,1 + xi,2 + 2xi,3 and zi
i.i.d. and exponentially distributed. The number of observations is n = 50 in left
column, n = 100 in the middle and n = 500 in right column. In dotted lines are
plotted the real cumulative parameter processes, the dashed lines are the exact
Bayesian estimators Ãj and the solid lines are the asymptotic processes Dj of
the Bayesian estimators from Theorem 8. The Aalen estimators Aaj are included
in dash-dotted lines. The bottom row shows average intensities.
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integral of ratio of the expression with the triple integral from above in numerator

and the function r1 from (2.20) in denominator.

Again, we present the results for the same datasets generated from the model

hi(t) = 5xi,1 + xi,2 + 2xi,3, where covariates were independent and exponentially

distributed, xi,1 ∼ Exp(1), xi,2 ∼ Exp(2) and xi,3 ∼ Exp(3) as in Section 2.5.

We assumed the same and the most simple prior Beta process for every Aj, with

cj(t) ≡ c0 = 0.1 and A0
j(t) = α0

j t ≡ t, j = 1, . . . , 3.

The results are presented in Figure 3.1 in similar layout as in the NPML case

in Figure 2.3. The true cumulative regression functions Aj are plotted in dotted

lines, the Aalen estimators Aaj are in dash-dotted lines and the exact Bayesian

estimator Ãj from 3.23 are in the dashed lines. The exact estimators were cal-

culated on a thin grid in [0, τ ] with 1000 equidistant points. The rough limiting

functions Dj calculated by approximating the triple integral in dj by a triple

sum are included in solid lines. There is a clear difference between the limiting

functions Aj and Dj and the affinity of the estimators Ãj and Âaj towards their

respective asymptotic counterparts is apparent from the graphs. The average

intensities are plotted in the graphs in the bottom row. The average intensi-

ties calculated from the true Aj-s are in solid lines, while the ones derived from

the Bayes estimator and standard Aalen estimators are plotted in dashed and

dash-dotted lines, respectively.

The other task of this section is to explore the performance of the proposed

approximations in (3.25) and (3.27) for the exact estimators of the posterior

expectation and posterior variance in (3.23) and (3.24). We also want to compare

them to estimators based on the output of the MCMC algorithm stated at the end

of Section 3.3. The approximated estimators and their variances are concentrated

only at the failure times points and are the easiest to obtain, therefore they

are our candidates for practical usage (in the case, that we would like to use

these inconsistent methods). The exact estimator sums the expectation from the

Beta process in between the failure times and the exact expectation of the beta

distributed jump sizes at fixed discontinuities. Let us denote the ordered set of

the observed lifetimes by T(1), . . . , T(n). Under the chosen prior the expectation

of the stochastically continuous part simplifies down to∫ t

0

cj(s)dA
0
j(s)

cj(s) +Rj(s)
=

∑
T(i)≤t

[
c0a0

c0 +Rj(T(i))

(
T(i) − T(i−1)

)
+

c0a0

c0 +Rj(T(i))

(
t− T(i)

)
I{T(i) = sup

k=1,...,n
{T(k) : T(k) ≤ t}}

]
,
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Figure 3.2: Revisited example from Figure 2.3: Cumulative regression functions
in a simulated monotone Aalen model with hazard rate hi(t) = 5xi,1 +xi,2 + 2xi,3
and zi i.i.d. and exponentially distributed. The number of observations is n− 50
in left column, n = 100 in the middle and n = 500 in right column. In black dotted
lines the real cumulative parameter processes are plotted, the solid green lines are
the exact Bayesian estimators Ãj and the solid blue lines are the approximated
versions Aapproxj of the estimators from (3.25). The MCMC based estimators
AMCMC
j are included in solid red lines. The 95% pointwise credibility intervals

are included in dashed lines and respective colors.
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where we assumed T(0) = 0. As already mentioned, these estimators were cal-

culated on a thin grid on [0, τ ]. Additionally, in similar fashion we obtained the

exact variances from (3.24). The pointwise credibility bands using either exact or

asymptotic posterior mean and variance are based on a normal approximation,

hence they are of following form

mean(Aj(t)| data) ± uα

√
var(Aj(t)| data), t ∈ [0, τ ],

where uα is a αth quantile of the standard normal distribution. The finite sample

distribution of the increments of Bayesian estimator is not normal and it is of

rather complicated structure. From martingale theory we can, however, expect

that the limiting distribution of
√
n(Ãj(t) − Dj(t)) is equivalent to a Gaussian

martingale, hence the distribution of the process Ãj at every time point will be

closer and closer to a normal distribution with growing n.

Next, we calculated Bayesian estimators based on the Markov chain generated

using the algorithm in Section 3.3. We ran 1500 repetitions and discarded first

500 members of the chains. The estimators were created in pointwise fashion on

the same grid. We always took the 50% quantile of the values of the members

of the chain at the particular time point of the thin net to obtain the Bayesian

estimator. The posterior median instead of mean was used to offer a comparison

to the estimators based on the exact and approximated posterior expectation.

The 95% pointwise credibility intervals were created by taking the 2.5% and

97.5% quantile at every point of the net. The results obtained from the same

datasets as used before are presented in Figure 3.2.

It is seen, that the three variants of estimators are quite similar, in particular

at the beginning of the observation windows, where lots of data are available.

The 95% pointwise credibility intervals are the thinnest when calculated from

the exact formulas and get a lot wider when the approximations are used. The

MCMC credibility bands give very similar results to the exact credibility bands.

3.9 Discussion

The Bayesian approach to the monotone Aalen model using the Beta process as

a prior process for Aj-s produces a remarkably similar outcome to the one gained

via the NPML estimation in Chapter 2.
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When looking closer at the set of the NPML and Bayesian estimators

Â1, . . . , Âp and Ã1, . . . , Ãp, it is seen that they both are of the following form

∫ t

0

n∑
i=1

Vij(s)

Rj(s)
dNi(s) + op(n

−1/2),

where
∑p

j=1 Vij(s) = 1 and they both converge to a function of the form

∫ t

0

fj(s)

rj(s)
ds,

with fj(s) = E{Vij(s)Y (s)z>α(s)}. The condition
∑p

j=1 Vij(s) = 1 is sufficient for

the estimators to have the average consistency feature. The Bayesian estimator

can also be viewed as a smoother version of the NPML with ”weights” that are

not strictly 0 or 1.

Let us suppose that we have a class of estimators for the cumulative regression

functions Aj, j = 1, . . . , p, denoted e.g. C , such that a set of the estimators for

Aalen model C?
j are members of C if

C?
j (t) =

∫ t

0

n∑
i=1

Vij(s)

Rj(s)
dNi(s), j = 1, . . . , p, (3.30)

for predictable processes Vij, j = 1, . . . , p, such that the condition
∑p

j=1 Vij(s) = 1

is fulfilled. Then

• the estimators C?
j converge to Cj =

∫ (·)
0
fj(s)/rj(s)ds with fj(s) =

E{Vij(s)Y (s)z>α(s)}, for all j = 1, . . . , p, and

• the average consistency effect is present with
∑p

j=1 rj(s)dCj(s) =∑p
j=1 rj(s)dAj(s).

In general, the limiting function Cj 6= Aj. Now the question is, under which con-

ditions Cj = Aj, j = 1, . . . , p, i.e. the set of estimators of class C are consistent,

and if there are any consistent estimators contained in C . Clearly, if

n∑
i=1

Vij(s)

Rj(s)
Yi(s)z

>
i

P−−→ (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
1 is at j-th position, 0 elsewhere

,

then the estimator C?
j given in (3.30) is consistent. If we write V =

(Vij)
n,p
i,j=1 the n × p matrix then the condition above can be reformulated as

diag{1>nZ}−1V >Z
P−−→ Ip, where Ip is a p × p matrix with ones on the diagonal

and zeros elsewhere. If we can find a matrix V which would oblige to the condi-

tion diag{1>nZ}−1V >Z
P−−→ Ip, we would gain a consistent estimator. This can
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be seen as a lead how to construct a set of consistent estimators for A1, . . . , Ap,

which would be of similar structure as the NPML and Bayesian estimators.

The condition
∑p

j=1 Vij(s) = 1 is not necessary for an estimator to be consis-

tent. Let us have a look at the traditional least squares estimator of Aalen which

is equal to

Aa(t) =

∫ t

0

(Z(s)>Z(s))−Z(s)>dN(s).

The rows of the p× n matrix (Z(s)>Z(s))−Z(s)> define the estimators for each

Aj. If we denote (Z(s)>Z(s))−Z(s)> = Ψ(s)> = (ψ1(s), . . . , ψp(s))
>, with the

n-dimensional vectors ψj(s) = (ψ1j(s), . . . , ψnj(s))
>, then the estimators for the

regression functions can be written out as follows

Aaj (t) =

∫ t

0

ψj(s)
>dN(s) =

∫ t

0

n∑
i=1

ψij(s)dNi(s), j = 1, . . . , p.

For Aaj , j = 1, . . . , p, to be the members of the class C , there must exist ran-

dom processes Vij such that ψij = Vij/Rj and the condition
∑p

j=1 ψij(s)Rj(s) =

1,∀i,∀s, must hold. If we denote R(s) = (R1(s), . . . , Rp(s))
>, then we in fact

require that Ψ(s)R(s) = 1n, where 1n = (1, . . . , 1)> with n components equal to

1. Notice, that according to the notation in Section 1.3, R(s) = Z(s)>1n and

therefore

Ψ(s)R(s) = Z(s)(Z(s)>Z(s))−Z(s)>1n.

We can see, that the expression above resembles a hat matrix from an ordinary

least squares estimation multiplied by 1n. Thus is it seen, that Ψ(s)R(s) equals

to 1n if the intercept is included in the model and only for s ≤ mini=1,...,n{Ti} or if

we allow multiple events on every subject, hence leaving the subject in risk-group

even after encountering a failure. In general, however, the Aalen least squares

estimators Aaj , j = 1, . . . , p, are not members of the class C . Still, given that

the Aalen estimators are consistent, they possess the average consistency feature.

For the finite sample, we have that the matrix Z(s)(Z(s)>Z(s))−Z(s)> has zeros

in all rows and columns which correspond to the entries from the individuals

with observed time smaller than s. If the intercept is present in the model, the

multiplication Z(s)(Z(s)>Z(s))−Z(s)> by 1n gives the vector with zeros again

at the positions corresponding to the smaller observed times and ones elsewhere.

Hence,

1

n

p∑
j=1

R>j (s)Ψ>(s)dN(s) =
1

n

n∑
i=1

dNi(s),
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matching the same result as in Section 2.4. Using the similar derivation we get the

same conclusion for the weighted least squares estimator of Huffer and McKeague.

Another option would be to generalize our NPML and Bayesian estimators

by introducing weights, i.e. we would have a weighted NPML estimator or a

weighted Bayesian estimator∫ t

0

n∑
i=1

wij(s)
Vij(s)

Rj(s)
dNi(s) + op(n

−1/2).

To achieve the consistency the weights would have to be asymptotically equal to

wij(s) ≈ αj(s)
rj(s)

qj(s)

for NPML estimator or with ej instead of qj for Bayesian estimator. It is not

entirely clear how to find weights wij which would fit this condition, though.
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Chapter 4

Bayesian analysis with correlated

piecewise constant prior

In previous chapters we explored the possibilities of estimating the cumulative re-

gression functions in the monotone Aalen model by applying two solid approaches:

the nonparametric maximum likelihood method and the Bayesian analysis with

Beta processes. We proved that the derived estimators were inconsistent for gen-

eral p > 1. This result left us empty handed and in need for a valid method if we

want to utilize the monotone Aalen model in practice.

There are, however, other options of using the Bayesian approach to solve

the statistical problems. Arjas and Gasbarra, [6], suggested Bayesian inference

of homogeneous lifetime data using a simple piecewise constant process with

dependent increments for prior for hazard function. The hazard function was a

priori a random function which was constant on some intervals and the level of the

function in an interval was dependent on the value in the previous one. Number

of the intervals and variation of the function from one interval to another was

controlled by four hyperparameters. This setting included desirable possibility

of changing the dimension of the model in favor of best fit according to the

data while moderated by the prior information. The inference was conducted

using Gibbs sampler resulting in a set of piecewise constant trajectories of a

process ruled by the posterior distribution of the hazard function. Using these

trajectories allowed one to approximate the posterior expectation of the hazard

function as well as the cumulative hazard function/survival function or any other

integrable function on space of the parameter trajectories. Arjas and Gasbarra

did not discuss the consistency issue neither they conducted a simulation study to

explore how this prior performs in estimation of the hazard rate. Their concept

is, however, natural and elegant and offers great variability within the choice of

hyperparameters.
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Hence, the main objective of this chapter is to conduct Bayesian modelling

in monotone Aalen model based on the Arjas and Gasbarra prior. We assume

that the regression functions are continuous, i.e. αj-s exist, and the piecewise

constant process is applied as a prior for the regression functions. The advantage

of this Bayesian approach as opposed to the analysis with Beta processes is that

the method estimates the regression functions directly.

On the following pages such type of modelling is demonstrated. In the next

section the process used as prior to regression function is explained. In Section 4.2

the posterior distribution under monotone Aalen model is derived and followed

by the explanation of the MCMC algorithm used for estimation. Section 4.3 is

devoted to simulation study conducted to explore the performance of the method.

We discuss the obtained outcome in Section 4.4.

4.1 Prior distribution

Based on [6], we model the unknown regression functions α1(t), . . . , αp(t) in ob-

served time window [0, τ ], where τ = max{Ti}, as a correlated piecewise constant

function. The values of regression function αj are assumed to be constant within

m(j) + 1 intervals which emerge from dividing the time window [0, τ ] by m(j)

jump times W
(j)
1 , . . . ,W

(j)

m(j) . The value of regression function αj within the inter-

val [W
(j)
k−1,W

(j)
k ) is denoted as λ

(j)
k . The number of jump times m(j) varies among

the iterations of the Gibbs sampler through adding and deleting jumps.

The regression function αj can be expressed as a simple jump process

αj(t) =
m(j)+1∑
k=1

I{W (j)
k−1≤t<W

(j)
k }

λ
(j)
k ,

where W
(j)
0 = 0 and W

(j)

m(j)+1
= τ . The elements of the prior distribution of each

regression function αj, j = 1, . . . , p are specified as follows:

• m(j) jump times W
(j)
1 , . . . ,W

(j)

m(j) are a realization of an inhomogeneous Pois-

son process with rate µ(t) = d exp{−ct}, t ≥ 0, c ≥ 0, d > 0

• m(j) + 1 parameters λ
(j)
1 , . . . , λ

(j)

m(j)+1
are gamma distributed random vari-

ables with parameters

λ
(j)
1 ∼ Γ(a0, b0)
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λ
(j)
k ∼ Γ(a, a/λ

(j)
k−1), k = 2, . . . ,m(j) + 1.

The a0, b0, a, c and d are the pre-specified hyperparameters. The convention

for the Gamma distribution parametrization here is that if X ∼ Γ(a, b) then the

density is γ(x; a, b) = ba

Γ(a)
xa−1e−bx and for mean and variance we have EX = a

b
,

VarX = a
b2

. The parameters of the prior distribution for λk-s are chosen as

suggested by Arjas and Gasbarra. Obviously, the prior and hence the posterior

distribution of the level λ
(j)
k is dependent on the value in the previous interval

λ
(j)
k−1. It is easily seen from the properties of gamma distribution that the condi-

tional mean of λ
(j)
k is set by the value in the previous interval (thus we incorporate

a martingale structure into the model)

E (λ
(j)
k | λ

(j)
k−1) =

a

a/λ
(j)
k−1

= λ
(j)
k−1, k = 2, . . . ,m(j) + 1,

while the conditional variation from the mean is adjusted by hyperparameter a,

Var (λ
(j)
k | λ

(j)
k−1) =

a(
a/λ

(j)
k−1

)2 =

(
λ

(j)
k−1

)2

a
, k = 2, . . . ,m(j) + 1.

In case the hyperparameter a is small, the regression function αj may change

greatly from one interval to another, while bigger a keeps the regression function

more compact and avoids huge jumps in it.

In original Arjas and Gasbarra paper, [6], a homogeneous Poisson process was

utilized as the prior process for jump times that split the observation window into

disjoint intervals. Here, as it will be clear from derivation in Section 4.2, the com-

putational evaluation of the posterior distribution of λk-s gets highly demanding,

even intractable, within the intervals with larger amount of uncensored events

(for instance > 15). To avoid the occurrence of extensive amount of observa-

tions in one interval it is wise to split the observation window more frequently in

the beginning where the observations usually prevail. Hence, the inhomogeneous

Poisson process with decreasing hazard rate µ(t) = d exp{−ct}, t ≥ 0, c ≥ 0, d > 0

is a natural choice for the prior distribution for jump times positions while careful

setting of hyperparameters c and d allows one to control the number of jumps

and their positions across the observation window. The likelihood of a realization

(W
(j)
1 , . . . ,W

(j)

m(j)) of the Poisson process with rate µ(t) = d exp{−ct}, t ≥ 0, such
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that W
(j)
i < τ, ∀i, is equal to

exp

{
−
∫ τ

0

µ(t)dt

}m(j)∏
i=1

µ(W
(j)
i ) = exp

{
−d
c

(1− e−cτ )
}m(j)∏

i=1

d exp{−cW (j)
i }.

The number of the jumps in the time interval [0, τ ] is a random variable with

Poisson distribution with parameter d
c
(1 − e−cτ ). The number of intervals of

jump functions is influenced by the choice of both hyperparameters c and d.

Parameter c defines the shape of the rate function with larger values implying

higher concentration of jump times close to the beginning of the observation

window. Setting c = 0 gives a homogeneous Poisson process with rate equal to

d, i.e. the jump times are spread across the observation window independently

on time. Surely, the decreasing rate µ(t) is merely a recommendation based on

the authors findings. There are many other possibilities of how to choose the

rate µ(t), e.g. one might be particularly interested in behaviour of the regression

functions in a certain part of [0, τ ], hence he would choose a function with greater

values within the relevant region.

Finally, the conditional prior distribution for the jth regression functions αj

given the values of a0, b0, a, c and d is proportional to

exp

{
−d
c

(1− e−cτ )
}m(j)∏

i=1

d exp{−cW (j)
i } γ(λ

(j)
1 , a0, b0)

m(j)+1∏
k=2

γ(λ
(j)
k , a, a/λ

(j)
k−1).

To obtain the posterior distribution the prior information is combined with the

likelihood of the observed data which under the hazard function hi as specified

in (1.6) is proportional to the following formula:

L((Ti, zi, δi), i = 1, . . . , n) ∝
n∏
i=1

hi(Ti)
δi exp

{
−
∫ Ti

0

hi(t)dt
}

=
n∏
i=1

[
p∑
j=1

αj(Ti)xi,j

]δi
exp

{
−
∫ Ti

0

p∑
j=1

αj(t)xi,j dt
}

=
n∏
i=1

 p∑
j=1

m(j)+1∑
k=1

I{W (j)
k−1≤Ti<W

(j)
k }

λ
(j)
k xi,j

δi

× exp

−
p∑
j=1

m(j)+1∑
k=1

I{Ti≥W (j)
k−1}

λ
(j)
k xi,j

(
min{W (j)

k , Ti} −W (j)
k−1

) .

In next section the derivation of the posterior distribution is explained.
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4.2 The posterior distribution and the Gibbs

sampler

Let us denote the set of parameters determining the jump function described in

previous section

H(j) = (λ
(j)
1 ,W

(j)
1 , . . . , λ

(j)

m(j) ,W
(j)

m(j) , λ
(j)

m(j)+1
), j = 1, . . . , p.

In every iteration of MCMC we gain a new trajectory characterized by H(j) for

every of the regression function. When creating a new history H(j) for αj we pro-

ceed sequentially by updating the pairs (λ
(j)
k ,W

(j)
k ), k = 1, . . . ,m(j) conditionally

on the rest of parameters in H(j) and conditionally on current states of αl, l 6= j.

The last interval is treated differently as we allow a change of the number of

the intervals induced by either adding new jump times or discarding the last

jump time if favourable for better fit. If we denote the number of added inter-

vals by η, then altogether we have 2(m(j) + η) + 1 steps within every iteration

for αj. According to the MCMC methodology we provide as many iterations as

necessary to reach certain stability in obtained trajectories, then we throw away

several of the starting iterations (burn-in part) and use the rest to calculate a

mean/median curve which represents desired estimator of the unknown regression

function. This is done in pointwise fashion on a sufficiently thin net on interval

[0, τ ]. Similarly we can obtain pointwise 95% credibility bands for the estimator

taking 0.025 and 0.975 quantile of the values in every point of the net from all the

MCMC trajectories but the burn-in part. Furthermore, by using the simulated

histories it is possible to approximate the posterior expectation of any integrable

function of H(1), . . . , H(p) with respect to the posterior distribution, as is the

predictive hazard function or survival function of an individual with certain risk

factors.

The sampling itself is done by Gibbs sampler with the simulation from a

distribution with the density proportional to exp(vW
(j)
k ) on a bounded interval

for jump times and the rejection sampling method for sampling the λ
(j)
k -s within

the intervals. The steps of the sampling are explained in detail on next pages

with overall summary of the algorithm at the end of the section.

4.2.1 Posterior distribution of regression functions levels

within intervals

The values of the regression functions are tied together in the likelihood of the

data, however, we can derive the posterior distribution separately for every regres-
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sion function, i.e. αj, as long as we work conditionally on all the other regression

functions αl, l 6= j. In particular, we will look step-by-step into every level λ
(j)
k

of the regression function αj within the intervals created by the corresponding

realization of the jump times. We will evaluate the posterior distribution condi-

tionally on the jump times and the other levels of αj and all the characteristics

of all other αl-s. Hence, the part of the likelihood of the data containing the

information within the examined interval is sufficient for specifying the posterior

distribution of single level λ
(j)
k .

Before we move to the derivation of the posterior distribution, let us us remind

that

hi(t) =

p∑
j=1

xi,jαj(t) =

p∑
j=1

m(j)+1∑
k=1

xi,jI{W (j)
k−1≤t<W

(j)
k }

λ
(j)
k , i = 1, . . . , n.

The posterior probability of the level λ
(j)
k of regression function αj in interval

I
(j)
k = [W

(j)
k−1,W

(j)
k ) is proportional to

p(λ
(j)
k | λ

(j)
1 , . . . , λ

(j)
k−1, λ

(j)
k+1, . . . , λ

(j)

m(j)+1
,W

(j)
1 , . . . ,W

(j)

m(j) , {hi}ni=1, a0, b0, a, c, d, data)

= p(λ
(j)
k | λ

(j)
k−1, λ

(j)
k+1,W

(j)
k−1,W

(j)
k , {(Ti, δi, zi, hi(−j)) : Ti ≥ W

(j)
k−1}, a0, b0, a)

∝ p(λ
(j)
k , λ

(j)
k+1, {(Ti, δi, zi, hi(−j)) : Ti ≥ W

(j)
k−1}| λ

(j)
k−1,W

(j)
k−1,W

(j)
k , a0, b0, a)

= γ(λ
(j)
k ; a, a/λ

(j)
k−1)γ(λ

(j)
k+1; a, a/λ

(j)
k ) (4.1)

×
∏

i:Ti∈I
(j)
k

(
λ

(j)
k xi,j + hi(−j)(Ti)

)δi
× exp

{
−

∑
i:Ti∈I

(j)
k

λ
(j)
k xi,j(Ti −W (j)

k−1)−
∑

i:Ti≥W
(j)
k

λ
(j)
k xi,j(W

(j)
k −W

(j)
k−1)

}

where we denoted by hi(−j)(t) = hi(t) − αj(t)xi,j the complement of the hazard

function for ith subject to term αj(t)xi,j = λ
(j)
k xi,j (conditionally on terms in hi

from latest iteration of the MCMC simulation).

Breaking down the product in the expression (4.1) we get a sum of functions∑R
r=0 βrfr(λ

(j)
k ), where R =

∑
i:Ti∈I

(j)
k
δi. The terms in the sum are

fr(λ
(j)
k ) = [λ

(j)
k ]rγ(λ

(j)
k ; a, a/λ

(j)
k−1)γ(λ

(j)
k+1; a, a/λ

(j)
k )

× exp
{
−

∑
i:Ti∈I

(j)
k

λ
(j)
k xi,j(Ti −W (j)

k−1)

−
∑

i:Ti≥W
(j)
k

λ
(j)
k xi,j(W

(j)
k −W

(j)
k−1)

}
, r = 0, . . . , R,
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and

βr =
R∑

l1=1

R∑
l2=l1+1

· · ·
R∑

lR−r=lR−r−1+1

 R∏
i=1

i/∈{l1,...,lR−r}

x?i,j

hl1(−j)(T
?
l1

) . . . hlR−r(−j)(T
?
lR−r

).

(4.2)

Here we used T ?1 , . . . , T
?
R as an auxiliary notation for the set of the failure times

in the interval I
(j)
k corresponding to the subjects with jth covariates equal to

x?1,j, . . . , x
?
R,j.

This case of distribution can be viewed as a mixture of distributions propor-

tional to fr weighted by factors βr. In particular, note that every term βrfr

represents a case, when r individuals of total R individuals who failed in interval

[W
(j)
k−1,W

(j)
k ), died because of the risk imposed by factor αj(Ti)xi,j while the rest

R − r individuals died of any other factor hi(−j)(Ti) = hi(Ti) − αj(Ti)xi,j. This

corresponds to aforementioned interpretation of the monotone Aalen model when

all the covariates in the model represent an additional risk of death to the baseline

risk α1 while every of the covariates increases the probability of failure, however,

only one causes the death. Generating a sample from this kind of distribution can

be done using classical approaches to mixtures of distributions. First we calculate

the weights wr = βr/
∑R

s=0 βs and then we generate a sample from U [0, 1]. If the

sampled value falls in the interval [
∑r−1

s=0 ws,
∑r

s=0ws) then we sample from the

distribution proportional to fr (here put
∑−1

s=0 w(s) = 0).

The simulation from the distribution proportional to function fr is done sim-

ilarly as in Arjas and Gasbarra’s work in [6]. Assuming ξ > 0 we could rewrite

the function fr in following form

fr(λ
(j)
k ) = dr,ξ(λ

(j)
k )gr,ξ(λ

(j)
k )

where

dr,ξ(λ) = λξ+r−1 exp
{
− λ
[ a

λ
(j)
k−1

+
∑

i:Ti∈I
(j)
k

xi,j(Ti −W (j)
k−1)

+
∑

i:Ti≥W
(j)
k

xi,j(W
(j)
k −W

(j)
k−1)

]}
gr,ξ(λ) =

1

λξ
exp

{
− 1

λ
aλ

(j)
k+1

}
.

The first function dr,ξ(·) is the probability density function of gamma distribution

Γ(ξ + r, a

λ
(j)
k−1

+
∑

i:Ti∈I
(j)
k
xi,j(Ti − W

(j)
k−1) +

∑
i:Ti≥W

(j)
k
xi,j(W

(j)
k − W

(j)
k−1)). The
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function gr,ξ(·) is the density of the distribution known as the inverse-gamma

distribution with parameters ξ + 1 and aλ
(j)
k+1.

As the following holds

dr,ξ(λ)gr,ξ(λ) ≤ dr,ξ(λ) max
λ

gr,ξ(λ) = dr,ξ(λ)gr,ξ(aλ
(j)
k+1/ξ),

the rejection sampling method may be directly applied. All we need is to simply

sample from the gamma distribution with density dr,ξ as long as necessary to

reach the acceptance. To increase the probability of acceptance we set the value

of ξ to let the modes of both dr,ξ and gr,ξ equal. This is quaranteed when ξ

satisfies following equation:

ξ + r − 1
a

λ
(j)
k−1

+
∑

i:Ti∈I
(j)
k
xi,j(Ti −W (j)

k−1) +
∑

i:Ti≥W
(j)
k
xi,j(W

(j)
k −W

(j)
k−1)

=
aλ

(j)
k+1

ξ
.

The special case is the simulation of λ
(j)

m(j)+1
in the very last interval I

(j)

m(j)+1
=

[W
(j)

m(j) , τ). The value of λm(j)+1 does not influence any subsequent level of the

hazard function and therefore the posterior distribution for λm(j)+1 simplifies to

a mixture of gamma distributions, symbolically written as

R∑
r=0

βr γ
(
a+ r, a/λ

(j)

m(j) +
∑

i:Ti∈I
(j)

m(j)+1

xi,j(Ti −W (j)

m(j))
)

(4.3)

where βr is as in (4.2) and again R being total of observed deaths in I
(j)

m(j)+1
.

It is typical with lifetime distribution that the incidents are clustered in

the beginning of the observation window. However, if lots of observations fall

into the examined interval, the evaluation of the weighting coefficients βr, r =

0, . . . , R becomes a serious computational problem, as we need to consider ev-

ery r-combination of total R observations within the interval. This is exactly(
R
r

)
possibilities of what caused the deaths occurred within the examined time

interval: either the actual αj(·)xi,j or the complementary hi(−j)(·). However, the

number of all r-combinations, r = 0, . . . , R, equals to 2R and while for R = 10 we

have 1024 options to explore, for R = 15 we get up to circa 3 · 105 combinations.

A feasible approximation to calculate the βr-s is in need. One of the options is for

every r such that it produces larger number of combinations than a fixed number

L (i.e. if
(
R
r

)
> L) then instead of using all the combinations in the evaluation

of βr we would randomly choose only L combinations. To get the proportionally

equal number it is necessary to multiply the obtained number by ratio
(
R
r

)
/L.
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Choice of the value for L is a question of balance of precision of the evaluation

on the one hand and computational feasibility on the other hand. The various

choices of L and its impact on the posterior distribution is discussed in Section

4.3 along with the simulations.

4.2.2 Posterior distribution of jump times

The posterior distribution for the particular jump time W
(j)
k in the regression

function αj is again determined only by the parts of the likelihood and prior

information that are affected by W
(j)
k . The posterior probability of jump time

W
(j)
k can be written as

p(W
(j)
k | W

(j)
1 , . . . ,W

(j)
k−1,W

(j)
k+1, . . . ,W

(j)

m(j) , λ
(j)
1 , . . . , λ

(j)

m(j)+1
, {hi}ni=1,

a0, b0, a, c, d, data)

= p(W
(j)
k | W

(j)
k−1,W

(j)
k+1, λ

(j)
k , λ

(j)
k+1, {(Ti, δi, zi, hi) : Ti ≥ W

(j)
k−1}, c, d)

∝ p(W
(j)
k , W

(j)
k−1,W

(j)
k+1, λ

(j)
k , λ

(j)
k+1, {(Ti, δi, zi, hi) : Ti ≥ W

(j)
k−1}, c, d)

∝ exp

{
−d
c

(
1− e−cτ

)}
d exp{−cW (j)

k }
∏

i:Ti∈I
(j)
k

hi(Ti)
δi

∏
l:Tl∈I

(j)
k+1

hl(Tl)
δl

× exp
{
−

∑
i:Ti≥W

(j)
k+1

[
λ

(j)
k xi,j(W

(j)
k −W

(j)
k−1) + λ

(j)
k+1xi,j(W

(j)
k+1 −W

(j)
k )
]

−
∑

i:Ti∈I
(j)
k+1

[
λ

(j)
k xi,j(W

(j)
k −W

(j)
k−1) + λ

(j)
k+1xi,j(Ti −W

(j)
k )
]

−
∑

i:Ti∈I
(j)
k

λ
(j)
k xi,j(Ti −W (j)

k−1)
}
. (4.4)

The expression is in core similar to the result of Arjas and Gasbarra, [6]. In

the examined interval the posterior distribution is between the observation times

proportional to u exp(vW
(j)
k ). A new jump position can be generated from this

piecewise continuous distribution for example by using rejection sampling. A

special case is when we update the last jump time W
(j)

m(j) where the simulation

is on [W
(j)

m(j)−1
,∞) and the probability of a jump falling out of [W

(j)

m(j)−1
, τ) is

proportional to

exp

{
−d
c

} ∏
i:Ti∈[W

(j)

m(j)−1
,τ ]

hi(Ti)
δi exp

{
−
∑
i:Ti=τ

λ
(j)

m(j)xi,j(τ −W
(j)

m(j)−1
)

−
∑

i:Ti∈[W
(j)

m(j)−1
,τ)

λ
(j)

m(j)xi,j(Ti −W
(j)

m(j)−1
)
}
.
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If an updated jump is generated outside the window [W
(j)

m(j)−1
, τ), this jump is

simply discarded and the iteration is ended. However, if this updated jump

W
(j)

m(j) < τ then we try to sample another new jump W
(j)

m(j)+1
on the interval

[W
(j)

m(j) , τ) and if this jump falls into the observation window we keep it and

instead of [W
(j)

m(j) , τ) we introduce two intervals [W
(j)

m(j) ,W
(j)

m(j)+1
) and [W

(j)

m(j)+1
, τ)

into the sets of the intervals. We set m(j) ← m(j) + 1 and sample value λ
(j)

m(j)+1

for the newly created interval at the end of the observation window. Summed

up, in one iteration we either add one or more new jumps into the estimator or

we erase one jump. For detailed explanation of the algorithm see pp. 512-513 in

Arjas and Gasbarra, [6].

Another option is to use the Metropolis-Hasting algorithm. Let us denote

the conditional posterior distribution of W
(j)
k from (4.4) with ppost(W

(j)
k ). As

the proposal density we may consider the density of the uniform distribution on

interval [W
(j)
k−1,W

(j)
k+1). Then the proposal acceptance density of new jump time

located in W new equals to

αpost(W
(j)
k ,W new) = min

{
1,
ppost(W new)

ppost(W
(j)
k )

}
.

Apart from sampling new positions of jump times from posterior distribution we

would like to allow adding a new jump into the last interval or deleting the very

last jump W
(j)

m(j) . The problem of adding/discarding of a jump can be formulated

as birth and death, i.e. a special case of reversible jump problem (for details

see e.g. [18]). The set of jump times represents the finite point process within

the interval [0, τ ] with the density (proportional to the posterior density of jump

time) with respect to the unit intensity Poisson process. Hence we may adopt

the birth-death Metropolis-Hastings algorithm to provide desired steps of adding

or deleting particular jump times. The disadvantage of the Metropolis-Hastings

algorithm in comparison to the Gibbs sampler is the necessity to repeat the

sampling from the proposal density until we reach the acceptance, what might

be time consuming.

Now let U be the total number of the iterations of the Gibbs sampler and let

us denote

H(j)(u) =
(
λ

(j)
1 (u),W

(j)
1 (u), . . . , λm(j)(u)(u),W

(j)

m(j)(u)
(u), λ

(j)

m(j)(u)+1
(u)
)
, u ≤ U,

the uth member of the Markov chain {H(j)(u)}Uu=0 generated in uth iteration of

the Gibbs sampler. The chain {H(j)(u)}Uu=0 corresponds to jth regression function

αj, j = 1, . . . , p. The steps of the algorithm can be summarized as follows:
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Sampling Algorithm:

• generate a starting trajectory H(j)(0) for j = 1, . . . , p from the prior distri-

bution; m(j)(0) let be the random number of jumps which comes from the

inhomogeneous Poisson process simulation of jump times

• for uth iteration, where u ∈ {1, . . . , U}, do

◦ for j = 1, . . . , p do

1. set m(j)(u)← m(j)(u− 1),

2. k ← 1,

3. sample λ
(j)
k (u) from posterior distribution in (4.1) (sampling from

the mixture distribution),

4. sample W
(j)
k (u) from posterior distribution in (4.4), k ← k + 1

5. repeat steps 3. and 4. until k = m(j)(u),

6. sample λ
(j)

m(j)(u)
(u) from posterior distribution in (4.1),

7. sample W
(j)

m(j)(u)
(u) from posterior distribution in (4.4), if

W
(j)

m(j)(u)
(u) ≥ τ then discard it, else set m(j)(u) ← m(j)(u) + 1

and repeat steps 6. and 7.,

8. sample λ
(j)

m(j)(u)+1
(u) from posterior distribution in (4.3).

The problem of ergodicity of every complement H(j)(u) of the resulting

Markov chain is similar to the original Arjas nad Gasbarra’s method as long

as the other complements H(k)(u), k 6= j are held fixed. If the birth-death

Metropolis-Hastings algorithm is used for simulation of new intervals, the pro-

posal density and the acceptance probability needs to be specified in the manner

which allows for the detailed balance condition to be fulfilled. The ergodicity

is then ensured similarly as with standard Hastings algorithms. More details

on the ergodicity and proper specification of the acceptance probability when

switching between the subspaces can be found in [18].

4.3 Simulations

The posterior distribution of the method proposed in this chapter is of rather

complicated structure not allowing us to gain straightforward asymptotic fea-

tures. It estimates the functional parameters or any integrable function of these

parameters by approximating the posterior expectation, in fact by averaging a

set of jump functions, each with a finite number of jumps. These jumps are not
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fixed through the iterations, hence the method provides us with an estimator

resembling a continuous function. The choice of hyperparameters and no func-

tional restriction allows for very flexible estimation. These features are the assets

of the method, however, to assess the performance of the obtained estimators we

rely on the aid of simulation techniques. The method was tested on 300 datasets

sampled from a model hi(t) = α1(t) + α2(t)xi,2 + α3(t)xi,3 of the hazard rate on

interval [0, 1] with regression functions equal to

α2(t) = sin(πt) + 1.5

α3(t) = exp(−3t) + 1

and the baseline hazard rate α1(t) was chosen to be a piecewise constant func-

tion with jumps in (0.2, 0.35, 0.6, 0.7, 0.9) and values (0.8, 2.2, 3, 0.9, 1.5, 2). The

time-constant covariates were sampled randomly for every dataset from gamma

distributions with parameters Γ(2, 2) and Γ(1, 2) for xi,2 and xi,3, respectively.

We have chosen various shapes of the regression functions to compare how well

different functions can be approximated by the proposed method. We estimated

the regression functions under two different priors

PRIOR 1: a0 = 0.1, b0 = 0.1, a = 0.5, c = 1, d = 25,

PRIOR 2: a0 = 0.1, b0 = 0.1, a = 0.2, c = 0.5, d = 35.

The parameters of PRIOR 1 was chosen to produce jump functions with smaller

variations from one level to another and less intervals while smaller a in PRIOR 2

allowed for greater variability. The number of the jump times on [0, 1] is a priori

Poisson distributed with mean approximatelly equal to 16 and 28 for PRIOR 1

and PRIOR 2, respectively.

The number of observations was n = 25, 50 and 80 and we generated 100

datasets for every n. The observations were independently right-censored with

non-censoring rate equal to ≈ 0.8. If a generated failure time fell out of the

interval [0, 1], it was right-censored at time 1. For every dataset we calculated

the estimators based on both PRIOR 1 and PRIOR 2. The expectations of

the posterior distribution for regression functions were approximated on a thin

grid by pointwise averages of members of gained Markov chains H(j), j = 1, 2, 3

after discarding the first 100 from total U = 500 iterations of the Gibbs sampler.

Alongside classic Aalen estimators were calculated with 95% pointwise confidence

bands. These bands were created in pointwise fashion on a thin grid by taking

2.5% and 97.5% sample quantiles of the members of Markov chains without the

burn-in.
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n A1 Bayes A1 Aalen A2 Bayes A2 Aalen A3 Bayes A3 Aalen
PRIOR 1 25 BIAS 0.013 -0.001 0.001 0.005 0.001 0.002

MSE 0.001 0.017 0 0.016 0 0.028
MAE 0.013 0.038 0.004 0.035 0.005 0.046
Sup 0.131 0.44 0.051 0.431 0.054 0.598

Surface 0.066 0.165 0.069 0.153 0.094 0.206
50 BIAS 0.011 -0.004 -0.001 0.004 -0.001 -0.001

MSE 0.001 0.005 0 0.005 0 0.011
MAE 0.011 0.021 0.004 0.021 0.004 0.032
Sup 0.114 0.273 0.054 0.291 0.05 0.413

Surface 0.062 0.107 0.063 0.101 0.091 0.144
80 BIAS 0.009 -0.003 -0.002 0.001 -0.002 -0.001

MSE 0.001 0.004 0 0.003 0 0.006
MAE 0.01 0.019 0.004 0.016 0.005 0.024
Sup 0.105 0.229 0.056 0.214 0.051 0.312

Surface 0.056 0.084 0.059 0.076 0.087 0.109
PRIOR 2 25 BIAS 0.013 -0.001 0.001 0.005 0.001 0.002

MSE 0.002 0.017 0.003 0.016 0.004 0.028
MAE 0.013 0.038 0.004 0.035 0.005 0.046
Sup 0.131 0.44 0.051 0.431 0.055 0.598

Surface 0.066 0.165 0.069 0.153 0.094 0.206
50 BIAS 0.011 -0.004 -0.001 0.004 -0.001 -0.001

MSE 0.003 0.005 0.001 0.005 0.002 0.011
MAE 0.011 0.021 0.005 0.021 0.004 0.032
Sup 0.116 0.273 0.056 0.291 0.058 0.413

Surface 0.062 0.107 0.064 0.101 0.091 0.144
80 BIAS 0.009 -0.003 -0.002 0.001 -0.003 -0.001

MSE 0.002 0.004 0.001 0.003 0.002 0.006
MAE 0.015 0.019 0.006 0.016 0.005 0.024
Sup 0.105 0.229 0.058 0.214 0.053 0.312

Surface 0.059 0.084 0.062 0.076 0.091 0.109

Table 4.1: Results of simulation study: average values of measures of precision
calculated from 100 instances for every prior and every number of observations
per dataset n = 25, 50 and 80. Statistics for Aalen estimators were calculated
alongside.

We considered several measures of precision of both Bayesian and Aalen esti-

mators, in detail the functional BIAS

BIAS(Âj) =

∫ τ?

0

(
Âj(t)− Aj(t)

)
dt,

and analogically calculated functional MSE, functional mean absolute error

(MAE), supremum of the absolute differences between real and estimated re-

gression functions and surface. The last characteristic is the surface of the area

contained between 95% pointwise credibility/confidence bands. The integrals

were approximated by summation on a thin grid of 100 time points within the

interval [0, τ ?]. We chose the right end τ∗ so that the interval [0, τ∗] represented

the part of the whole interval [0, 1] where in all instances the Aalen estimators

were calculated. The minimal value of τ ? for all datasets was equal to 0.17. The
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A1 A2 A3

Bayes Aalen Bayes Aalen Bayes Aalen
95% 99% 95% 95% 99% 95% 95% 99% 95%

PRIOR 1 n = 25 0.97 0.97 0.74 0.99 0.99 0.63 0.99 0.99 0.52
n = 50 0.96 0.98 0.82 0.97 0.97 0.43 0.96 0.97 0.49
n = 80 0.93 0.93 0.66 0.92 0.93 0.4 0.98 1 0.37

PRIOR 2 n = 25 0.97 0.97 0.74 0.99 0.99 0.63 0.99 0.99 0.52
n = 50 0.97 0.98 0.82 0.97 0.97 0.43 0.96 0.98 0.49
n = 80 0.94 0.94 0.66 0.92 0.92 0.4 0.99 1 0.37

Table 4.2: Results of simulation study: average values of simultaneous coverage of
95% and 99% pointwise credibility bands for Bayesian estimation and 95% point-
wise confidence bands for Aalen. The values are calculated from 100 instances
for every prior and every number of observations per dataset n = 25, 50 and 80.

estimators proposed in this paper are able to estimate the unknown parameters

on the whole observation window [0, τ ] but similarly as the classic Aalen estima-

tors they suffer from great instability at the end where few observations appear.

Therefore we decided to evaluate the statistics only on the interval with enough

observations in hand, where both Aalen and Bayesian estimators are stable. The

average values of the statistics are displayed in Tab. 4.1.

Further we examined the coverage of the pointwise credibility/confidence

bands for Bayesian estimation and Aalen estimators on [0, τ ?]. The coverage was

calculated as the proportion of the datasets where the true cumulative regres-

sion functions were contained within the pointwise credibility/confidence bands

(again, evaluated on the thin grid on [0, τ ?]). See Tab. 4.2 for the results.

From the results in Tab. 4.1 it is obvious that the Bayesian estimators in

comparison to standard least squares Aalen estimators can suffer from greater

functional BIAS, see in particular the estimator of A1. Overall, the average of

the functional BIAS of the Bayesian estimators does not suggest any discrepancy

from the consistency, as it has a decreasing tendency for both priors. Interesting

is that, the proposed Bayesian estimators have consistently smaller functional

MSE, functional MAE and supremum of the differences, suggesting that while on

average these estimators might be for some regression functions less precise, the

variation from the true value of the sought parameter is fairly small. Further,

from the coverage results in Tab. 4.2 we see that the incidences when the real

regression function is contained in the 95% pointwise credibility bands on the

shortened interval [0, τ ?] varies from 92% to 99% of all cases, while the coverage

of pointwise 95% confidence bands based on the Aalen estimators was a lot worse

with 40% to 82%. Obviously, these bands are pointwise, hence, they are not

expected to fulfil the required 95% coverage. Another interesting result is that the

surface of the estimated credibility bands is for smaller datasets (n = 25) about
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Figure 4.1: Graphs of the pointwise averages of the estimators obtained from 100
repetitions for prior 1 and numbers of observations n = 25, 50 and 80. The true
regression function is plotted in solid line, average of the Bayesian estimators in
dashed line and average of the Aalen’s estimators in dotted line. The average
pointwise credibility/confidence bands are included: Bayesian credibility bands
in dark gray and Aalen’s confidence bands in light gray.

half of the area contained within the Aalen pointwise confidence bands. With

growing number of observations the surface of the Aalen pointwise confidence

bands is rapidly decreasing, however, not in the single case it reached the average

surface of the Bayesian credibility bands. It is to be expected, though, that for

datasets with several hundreds of observations the Aalen confidence bands would

by narrower than the Bayesian credibility bands. This follows in the first place

from the consistency of the Aalen estimators, secondly it is suggested by the rate

of decline of the averaged surfaces of Aalen confidence bands from the simulations

in comparison to the Bayesian credibility bands.

The fact that the characteristics describing the variability of the estimators

are smaller for Bayesian estimators than for the Aalen’s least squares estimators

is not a great surprise. The Bayesian estimators work with more information from
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the very start as they are restricted to the positive values, while Aalen estimators

span the whole real line at every time point.

Furthermore, the high values (between 92% and 99%) of the simultaneous

coverage of the pointwise 95% credibility bands of the Bayesian estimators are

rather curious in comparison to the coverage of the Aalen estimators. Indeed,

if the pointwise coverage of the pointwise 95% credibility bands were evaluated

instead, the coverage would be even higher (close to 1 in most cases). There is

no exact explanation for this phenomenon, perhaps just the smoothness of the

Bayesian estimators in comparison to the variability of the Aalen least squares

estimators could enhance the coverage. Furthermore, we could have had a look

at the behaviour of the estimators after the τ ? = 0.17 to assess the closeness of

the fit to the real regression functions in later times. The reason why it was not

done is that the focus was on the part of the time interval where both Aalen least

squares and Bayesian method provide a good estimation based on enough data.

A differently designed simulation model with more data available in later times

would be useful in this kind of study.

For illustration we included graphs of the pointwise averages of the estimators

obtained from 100 repetitions for every size of dataset and for prior 1, see Fig.

4.1. The true regression functions are plotted in solid line, the averages of the

proposed Bayesian estimators are in dashed line and the averages of the Aalen

estimators are in dotted line. We added average pointwise credibility bands for

Bayesian estimators (dark gray area) and confidence bands for Aalen estimators

(light gray area) into the graphs. It can be seen that for small datasets (n=25) the

classic Aalen’s estimation and the proposed Bayesian solution on average produce

similar estimators. The average credibility bands of the Bayesian estimator are a

lot slimmer than the average Aalen estimators’ confidence bands, i.e. the graphs

support the results on smaller variation of proposed estimators from the true

value. When looking only at the part with positive values, the Aalen confidence

bands and Bayesian credibility bands take almost similar surface. With growing

number of observations Aalen estimators apparently exhibit better fit. The graphs

based on the results obtained from PRIOR 2 show the same trend and are not

displayed here.

4.3.1 Computational aspects of the estimation

The estimation was conducted in program R version 3.0.2 on 64-bit Ubuntu 13.04

and on a computer with Intel Core i5-3470 CPU 3.20GHz × 4 and 3.8 GiB RAM.

An average time of the computations was the same for both priors and it was

about 3, 9 and 20 minutes for the total number of observations n = 25, 50 and 80,
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respectively. The number of observations and choice of hyperparameters influence

the computational time in a great deal. The most crucial is the approximation

of the mixture weights βr suggested in Section 4.2. To assess the performance of

the proposed approximations with different choice of L we decided to resort to

an easier setting.

The most simple situation arises when we suppose that the regression func-

tions are constant over the whole time window. Here, in particular, let us have a

model hi(t) = 1 + xi,2 + xi,3, where xi,2 ∼ Γ(2, 2) and xi,3 ∼ Γ(1, 2) . We suppose

that the regression function αj(s) ≡ λj,∀s. The posterior distribution of the level

λj is the mixture of the gamma distributions similarly as in the very last interval

of the general model with jumps, see (4.3). The restriction to no jumps in the

path of the regression functions reduces the complexity of the Bayesian solution

tremendously. The approximation problem however remains present as all non-

censored observations fall in one considered interval, the whole time window. We

tested the performance of the approximation proposed at the end of Section 4.2.1

on 1000 small datasets with n = 10 observations. The chosen hyperparameters of

the prior distribution were a0 = 0.1 and b0 = 0.1. Here we were able to evaluate

the posterior distribution of the λj with exact weights. We calculated the approx-

imated posterior distributions with L = 20 and L = 50 alongside. It turned out

that the output of the Gibbs samples based on the approximated posterior distri-

butions are very close to the estimators obtained from the exact distributions, see

Table 4.3. In Table 4.3 there are shown the averaged characteristics calculated

across all the simulated datasets. In the first column we have the averages of the

mean of all but burn-in trajectories λj,∀j, and the averages of the median, 2.5%

quantile and 97.5% quantile of all trajectories follow in next columns. The esti-

mators based on the exact posterior distribution and the L = 20 approximated

posterior distributions for every simulated dataset are plotted in Figure 4.2. As

it can be seen, the pairs of the two estimators exhibit very good correspondence.

mean(λj) median(λj) 0.025 quantile(λj) 0.975 quantile(λj)
EXACT: j = 1 1.178 1.043 0.092 2.975

j = 2 1.216 1.050 0.055 3.329
j = 3 1.190 0.844 0.001 4.304

APPROX L = 20: j = 1 1.174 1.041 0.092 2.981
j = 2 1.216 1.047 0.056 3.327
j = 3 1.194 0.848 0.001 4.297

APPROX L = 50: j = 1 1.174 1.045 0.095 2.980
j = 2 1.214 1.045 0.054 3.322
j = 3 1.194 0.847 0.001 4.318

Table 4.3: The statistics of estimated regression functions based on the evaluation
of the posterior distribution, exact on the top, approximated on the bottom.
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Hence, it seems that the approximation with L = 20 should be sufficient enough

for models with about 10 observations within intervals.

The results in Table 4.3 suggest that the median of the trajectories might

be more accurate than the mean value. This can be caused by the possible

outliers produced in some iterations of the Gibbs sampler due to the fact, that

the estimator is sampled from the Gamma distribution, hence a nonsymetrical

distribution with heavier right tail.

The mean computation time needed for the calculation of the estimators for

a simulated dataset with n = 10 was on average 43.3 seconds for the exact

derivation of the posterior and 34.5 seconds and 48.3 seconds for the approximated

posteriors with L = 20 and L = 50, respectively. There is apparent a slight

decrease in the computation time when L = 20 is used. The increase of the

computational time when L = 50 is used is because of the random generation

of the permutations which is more time consuming than the exact calculations.

Once the number of observations within the intervals is greater than 15 the little

cost of time due to random samples generation will be negligible in comparison

to evaluation of all permutations.

The simulations conducted in the simpler setting should give us certain ease

when using the proposed approximation of βr. Obviously, there are no means

to test the accuracy of the approximation in larger datasets as obtaining the

exact values of βr is computationally intractable. Still, the results gained in the

simple scenario suggest that the approximation with sensibly chosen L should be

satisfactory. The choice of L should be considered in connection with the mean

number of observations expected within the intervals.

The number of iterations 500 and burn-in value 100 in the simple case of

constant regression functions was based on the MCMC trace of the parameters
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Figure 4.2: The values of the estimators obtained via exact posterior distribution
plotted agains the estimators from the L = 20 approximated posterior distribu-
tion for a dataset with observations n = 10, the hazard rate hi = 1 + xi,2 + xi,3
and a constant estimation with no jumps.
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Figure 4.3: The MCMC trace of the regression functions for a dataset with ob-
servations n = 10, the hazard rate hi = 1 + xi,2 + xi,3 and a constant estimation
with no jumps.

λj, j = 1, 2, 3. An example of MCMC traces of the estimated parameters for a

randomly chosen dataset is in Figure 4.3.

Assessing the convergence when the original situation is considered is problem-

atic due to moving jumps and varying number of intervals. To justify the chosen

number of iterations and burn-in we plotted MCMC traces of regression functions

for number of datasets at random time points. Most of the traces evinced signs

of stabilization around a mean value after 50 to 100 iterations. An example of

the MCMC traces of estimated regression functions at a randomly chosen time

point can be seen in next section.

4.3.2 Choice of the hyperparameters

In this section we deal with the choice of hyperparameters for one of the datasets

from simulation study with n = 50. Let us recall, that the MCMC settings was

L = 20, U = 500 and burn-in = 100. We have tried several hyperparameters for
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Figure 4.4: The MCMC trace of the trajectories obtained with the estimation
with PRIOR 2. The plotted values are taken at time point t = 0.2.

prior distributions. In particular, we had

PRIOR 1: a0 = 0.1, b0 = 0.1, a = 1, c = 1, d = 20,

PRIOR 2: a0 = 0.1, b0 = 0.1, a = 0.5, c = 1, d = 50,

PRIOR 3: a0 = 0.1, b0 = 0.1, a = 10, c = 1, d = 20.

The prior was always the same for each regression function. We chose low values

for a0 and b0 to set a rather uninformative start of the MCMC trajectory. The

value of the regression functions in the first interval is on average a priori equal to

1, but the prior variance equal to 10 allowed for great variability. The level of vari-

ability throughout the whole trajectories was controlled by choice of parameters

a and d. Smaller value of parameter a and greater values of parameter d implied

greater variation from one interval to another. Hence, PRIOR 2 would produce

the most variable estimators while PRIOR 3 should be the flattest. PRIOR 1 is

a middle way between these PRIOR 2 and 3.
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The estimated regression functions and their cumulative versions are plotted

in Figure 4.5, Figure 4.6 and Figure 4.7. For comparison we added classic Aalen

estimators to graphs with the cumulative regression functions. Apparently, the

obtained estimators exhibit the behaviour expected from the choice of their re-

spective prior distributions. The greatest variation is indeed to see in Figure

4.6 with PRIOR 2. The estimators tend to copy the real regression functions

in particular at the beginning of the time window. The great variation at the

start could be possibly attributed to the values of parameter a0 and b0. The ef-

fect of different prior distribution is less obvious when looking at the cumulative

regression functions on the right hand side of figures, apart from the very flat

estimators with PRIOR 3. We also plotted MCMC traces from the estimation

with PRIOR 2 at time point 0.2 in Figure 4.4.

4.4 Discussion

The estimation proposed in this chapter was taken down a slightly different path

than in Chapter 3 where we estimated the cumulative regression function with

Beta process priors. On contrary, here we worked with likelihood based on con-

tinuous regression functions. The performance of the method based on Arjas nad

Gasbarra’s correlated prior was tested in the simulation study. The focus was

in particular on the consistency of the estimators, which was very lacking in the

previous chapters. The method provides one with the estimators of the regression

functions αj directly, however, as the intention was to compare the features of the

proposed Bayesian estimators with Aalen least squares estimation, the cumula-

tive regression functions were assessed in the simulation study. It should be also

noted, that the estimators of the cumulative versions are more stable than the

noncumulative ones, hence, they might be preferred. On average the estimators

of αj are good estimators, however, they are more sensitive to the choice of the

prior parameters.

The results of the simulations suggest certain tendency of the Bayesian estima-

tors towards the real values, but with a lot slower pace than the standard Aalen

least squares estimators. The apparent advantage of the Bayesian estimators lies

in the values of functional MSE and MAE and in the coverage performance of

the pointwise credibility intervals. The obtained numbers suggest that the pro-

posed Bayesian estimators can be of better use with small sized datasets where

the least squares estimation can be unstable and suffer from great variation. Fur-

thermore, Aalen estimator can run into the negative values while we would like
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Figure 4.5: PRIOR 1 with parameters a0 = 0.1, b0 = 0.1, a = 1, c = 1 and
d = 20. The left hand graphs show the real regression functions in solid lines and
estimated regression functions in dashed lines. The true cumulative regression
functions are plotted on the right hand figures in solid lines. The estimated
versions are in dashed lines and Aalen estimators are in dotted lines.

106



4.4. Discussion CHAPTER 4. CORRELATED PRIOR

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
2

4
6

8
α1

Time

R
eg

re
ss

io
n 

fu
nc

tio
n

●●●● ●●●●●●●●● ●●●●● ●●●●●●●●● ●● ●● ●●● ● ● ● ● ●+ + ++ + ++ ++ + +

true
Bayesian

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0

A1

Time

C
um

. r
eg

re
ss

io
n 

fu
nc

tio
n

●●●● ●●●●●●●●● ●●●●● ●●●●●●●●● ●● ●● ●●● ● ● ● ● ●+ + ++ + ++ ++ + +

true
Bayesian
Aalen

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−
1

0
1

2
3

4
5

6

α2

Time

R
eg

re
ss

io
n 

fu
nc

tio
n

●●●● ●●●●●●●●● ●●●●● ●●●●●●●●● ●● ●● ●●● ● ● ● ● ●+ + ++ + ++ ++ + +

true
Bayesian

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−
1

0
1

2
3

4

A2

Time

C
um

. r
eg

re
ss

io
n 

fu
nc

tio
n

●●●● ●●●●●●●●● ●●●●● ●●●●●●●●● ●● ●● ●●● ● ● ● ● ●+ + ++ + ++ ++ + +

true
Bayesian
Aalen

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
2

4
6

8
10

12

α3

Time

R
eg

re
ss

io
n 

fu
nc

tio
n

●●●● ●●●●●●●●● ●●●●● ●●●●●●●●● ●● ●● ●●● ● ● ● ● ●+ + ++ + ++ ++ + +

true
Bayesian

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−
1.

0
0.

0
1.

0
2.

0

A3

Time

C
um

. r
eg

re
ss

io
n 

fu
nc

tio
n

●●●● ●●●●●●●●● ●●●●● ●●●●●●●●● ●● ●● ●●● ● ● ● ● ●+ + ++ + ++ ++ + +

true
Bayesian
Aalen

Figure 4.6: PRIOR 2 with parameters a0 = 0.1, b0 = 0.1, a = 0.5, c = 1 and
d = 50. The left hand graphs show the real regression functions in solid lines and
estimated regression functions in dashed lines. The true cumulative regression
functions are plotted on the right hand figures in solid lines. The estimated
versions are in dashed lines and Aalen estimators are in dotted lines.
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Figure 4.7: PRIOR 3 with parameters a0 = 0.1, b0 = 0.1, a = 10, c = 1 and
d = 20. The left hand graphs show the real regression functions in solid lines and
estimated regression functions in dashed lines. The true cumulative regression
functions are plotted on the right hand figures in solid lines. The estimated
versions are in dashed lines and Aalen estimators are in dotted lines.
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to abide by the monotonicity condition. Another advantage is that we can obtain

the estimators of the αj-s directly instead of the cumulative versions and these

estimators are close to continuous functions. Apart from the possible bias, the

main disadvantage of this method is certainly concentrated in the computational

demands as well as the need for careful choice of the hyperparameters. Hence,

for datasets with greater number of observations, it is recommended to reach for

the classic Aalen or Huffer and McKeague estimation where the consistency is

assured and computational demands are less overwhelming.

We will conclude this chapter by suggesting a few possibilities for a future

work in this direction. It is clear that a greater simulation study is needed to

draw a steady conclusion on the consistency of the proposed estimators. Further-

more, it is feasible to extend the proposed method into several more complicated

scenarios. It could be applied on a data with recurrent events with only minor

changes in the posterior distribution. Secondly, if we considered a prior distribu-

tion for λ
(j)
k which would be contained on the whole real line, it would lead to a

Bayesian approach to the classic Aalen model. The other possibility is to create

a hierarchical model by imposing a prior distribution on the parameters a0, b0, a,

c and d instead of the fixed values. Both recurrent events and hierarchical model

are employed in previous work of the author, see [43].
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Chapter 5

The real data example revisited

In this chapter we return to the real dataset introduced in Section 1.5. We apply

the estimators developed in the previous chapters and look at their performance

in real data setting in Section 5.1. Apart from the real dataset we also take a

look at the well-known Danish malignant melanoma data in Section 5.2 as this

dataset has served as a benchmark dataset in the survival analysis for years.

5.1 Time-delay dataset

Let us remind that the dataset consists of records of the time-delay, i.e. the

duration from the onset of myocardial infarction until the reperfusion surgery

takes place. The data were collected at the Royal Vinohrady Teaching Hospital

in Prague in the Czech Republic and contains 622 entries. We already did a

preliminary analysis of four factors which are believed to increase the hazard

function (i.e. shorten the time-delay) in Section 1.5. Based on the beforehand

knowledge on the time-delay issue we concluded that the monotone Aalen model

is an appropriate choice to model the relationship between the hazard rate and

the four chosen factors, namely gender, presence of first contact delay (yes/no),

which part of the day the myocardial infarction set in (day/night) and working

status of the patient (employed/unemployed or retired).

We estimated the cumulative regression functions using the nonparametric

maximum likelihood estimators developed in Chapter 2 and the Bayesian esti-

mators based on Beta process priors from Chapter 3. The parameters of Beta

process prior were set to cj(t) ≡ c = 0.001 and A0
j(t) = α0

j t ≡ 0.001t, j = 1, . . . , 5,

i.e. a priori the cumulative regression functions increase on average by 1 every

1000 minutes but by setting c = 0.001 we allow for a great variability. As we

already know, when the prior is the same for all covariates then asymptotically

the effect of the parameters of the prior processes disappears. In particular, at
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Â2

0 200 400 600 800 1000 1200

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

First Contact Delay: No

Time [minutes]

C
um

. r
eg

re
ss

io
n 

fu
nc

tio
n

A3
a

A
~

3

Â3

0 200 400 600 800 1000 1200

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

Daytime: Day

Time [minutes]

C
um

. r
eg

re
ss

io
n 

fu
nc

tio
n

A4
a

A
~

4

Â4
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Figure 5.1: The estimated cumulative regression functions from the classic Aalen model for the time-delay of the myocardial infarction
patients, NPML estimators and Bayesian estimators with Beta process priors. Estimates of the average intensity are included.
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Figure 5.2: The Bayesian estimation with correlated prior for the regression functions for the data on time-delay of the myocardial
infarction patients. The pointwise 95% credibility bands are included in dashed lines.
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Figure 5.3: The Bayesian estimation with correlated prior: cumulative versions of the estimated regression functions with pointwise 95%
credibility bands in dashed lines. Aalen least squares estimators are included in dotted lines.

113



5.2. Danish malignant melanoma CHAPTER 5. REAL DATA ANALYSIS

fixed discontinuities for great n the parameters crosses out while the stochastically

continuous part vanishes. Hence, with great amount of data and equal priors there

is no or little impact of the choice of the prior parameters on the estimators.

The fitted cumulative regression functions can be seen at Figure 5.1. The

nonparametric maximum likelihood estimators Âj with 95% pointwise confidence

bands based on the derivations in Remark 6 are in green lines while in red lines we

have the approximated Bayesian estimators and 95% pointwise credibility bands

calculated from the approximated variances in (3.27). The pointwise credibility

bands were calculated using a normal approximation, for details see Section 3.8.

The least squares estimators are included in black lines. Obviously, both the

NPML and Bayesian estimators are very different from the Aalen least squares

estimators and even though they are of similar structure, they are different from

each other. The last subplot, however, shows that averaged cumulative intensities

coincide.

As a next step we estimated the regression functions using the Bayesian ap-

proach with correlated prior introduced in Chapter 4. As the increase in the

hazard rate associated with one minute is very small, the estimation based on

sampling from gamma distribution can run into a computational difficulties for

gamma distributions with mean close to zero. Therefore the data were trans-

formed into hours with maximal observed value equal to 24 hours. We assumed a

flexible prior with great variation and with following set of parameters a0 = 0.01,

b0 = 0.1, a = 1, c = 0.05 and d = 3 for every regression function. The mean

number of jumps in the trajectories was a priori around 40. The estimated re-

gression functions based on the averages of the MCMC trajectories on a grid and

their cumulative versions are plotted in Figure 5.2 and Figure 5.3. The pointwise

95% credibility bands made of 2.5% and 97.5% quantiles are included in dashed

lines. The cumulative versions are plotted on the right hand side of the figure to-

gether with the Aalen least squares estimators. Both Bayesian and least squares

estimators show quite similar behaviour. The shape of the Bayesian estimators

of the cumulative regression functions suggests that the regression functions are

close to linear. The pointwise credibility bands are almost the same or slightly

wider than the Aalen least squares pointwise confidence bands.

5.2 Danish malignant melanoma

The famous Danish dataset contains survival times of patients with malignant

melanoma who had their tumour completely removed. The 225 patients were
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followed during the study from 1962 to 1977 and the information whether the

patient survived or died during the follow-up up to 1977 was recorded. If the

person died from other reason than the melanoma, their observation was marked

as censored. The variable of main interest was the time since the operation.

Furthermore, gender, age of the patient and characteristics of the removed tumour

were collected. In our analysis we will focus on gender and two characteristics of

the tumour: thickness of the removed tumour and the ulceration, i.e. dichotomous

variable describing if ulcers were present on the surface of the tumour. Let us

ponder for a while if the monotone Aalen model is a suitable choice to analyse

the relationship between the survival times and the three variables. The greater

values of thickness and presence of ulcers is known to be related to later stages of

the skin cancer, hence with growing thickness and present ulceration the survival

time will shorten (i.e. the two characteristics can be viewed as risk factors). This

goes well with the assumption of the monotone Aalen model. A questionable

aspect is the sex variable as there is no obvious reason why the mortality should

be greater for one gender than for another. However, according to several sources

there is a statistical evidence that men are more likely to develop and die of

melanoma than women and this risk is linked to the fact, that men have higher

annual exposure to UV. If we accept this information as reliable enough, we may

proceed to the analysis of the dataset using the monotone Aalen model. We

will also compute the classic Aalen estimators to allow for comparison with our

estimators.

For total of 205 patients we have complete information on their gender, thick-

ness of the tumour and ulceration. Most of the survival times are censored and

there is precisely 57 cases of death and 148 censored observations. The maximal

observed time equals to 5565 days while the greatest noncensored observation is

3338 days since the surgery.

We calculated the estimators of the cumulative regression functions related to

gender, thickness of the tumour and presence of ulceration using the nonparamet-

ric maximum likelihood estimator developed in Chapter 2, Bayesian estimators

with Beta processes in Chapter 3 and Bayesian estimators based on the correlated

prior in Chapter 4.

The estimators based on the nonaparametric maximum likelihood method

and Bayesian with Beta processes can be seen at Figure 5.4. Similarly as for

the dataset on time-delays from previous section, we set the parameters of Beta

process prior to cj(t) ≡ c = 0.001 and A0
j(t) = α0

j t ≡ 0.001t, j = 1, . . . , 4, i.e. we

think that the cumulative regression functions increase by 1 every 1000 days but

by setting c = 0.001 we state that we do not have a great belief in the chosen prior
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processes. The NPML estimators Âj together with the 95% pointwise confidence

bands are plotted in green lines while the approximated Bayesian Ãj estimators

with 95% pointwise confidence bands based on approximated variances and nor-

mal approximation are in red lines. The black lines represent the Aalen least

squares estimator. Obviously, our estimators differ from the Aalen estimators

greatly, what is no surprise considering their asymptotic features. The estimated

cumulative regression functions still average each other out, as it can be seen at

the plot of the average intensity in the right hand bottom corner of the Figure

5.4.

Similarly as for the time-delay dataset, the estimation based on Bayesian

analysis with correlated prior required that the survival time since operation

was considered in years and not days. This is done to avoid the computational

difficulties with sampling from gamma distribution with mean close to zero, which

happens when the risk associated with a day is very small. In Figure 5.5 there

are displayed results for the Bayesian analysis with the correlated prior where we

chose the parameters a0 = 0.01, b0 = 1, a = 0.1, c = 0.1 and d = 3. Again,

the chosen parameters allowed for great variation with average prior number

of jumps equal to approximately 20 jumps. The number of iteration was 500

and first 100 was discarded as burn-in part. The posterior pointwise mean and

credibility bands based on 2.5% and 97.5% quantiles can be seen in the graphs.

The estimated cumulative regression functions are not equal to Aalen’s least

squares estimators and for the cumulative regression functions related to thickness

and ulceration we can see a certain deviation. In the simulation study which is

described in Section 4.3 we observed many datasets for which the estimators

based on the correlated prior and on the least squares differed, see for example

Figure 4.5. Also the differences seem to average each other out, hence overall the

estimated hazard rate should be quite similar based on both approaches. What

is of greater concern here is the size of the pointwise credibility bands which are

considerably greater. This is partly caused by the flexibility of the chosen prior

and it is present especially for greater time hence possibly it is implied by lack

of the failures after 10 years of follow-up. It is also a characteristic trait of the

method (discussed in Section 4.4). The other disadvantage is the computational

time required to run the MCMC which was about 1 hour.

Let us return to the interpretation of the model. In particular, in our setting,

the baseline hazard rate contained in the intercept represents a female patient

with the tumour thickness equal to zero and with no ulceration, hence, it is a

healthy woman without melanoma. Of course, the estimation is an extrapolation

from the data which contain solely patients with diagnosed melanoma. It is still
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expected that this healthy woman has a certain risk of eventually dying of skin

cancer over the course of years, hence this cumulative baseline hazard rate is

expected to be either close to zero or slightly growing. This is not fulfilled with

the Aalen least squares estimator of the intercept, which is decreasing and have

therefore difficult interpretation. The problems with a decreasing least squares

estimator of intercept can be overcome by shifting the quantitative covariates to

have their mean in zero, i.e. in our case we would subtract 2.92 from the thickness

variable. This is however not possible when using the monotone Aalen model as

all covariates must be nonnegative. The restriction to using only nonnegative

variables can be seen as a limitation of usage of the monotone Aalen model, as

is for example in case of the malignant melanoma where shifting variables might

propose better interpretation of the estimated cumulative baseline hazard rate.
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Figure 5.4: The estimated cumulative regression functions from the classic Aalen model for the Danish melanoma data, NPML estimators
and Bayesian estimators with Beta process prior. Estimates of the average intensity are included.
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Figure 5.5: Left: The Bayesian estimation with correlated prior for the regression
functions for the Danish melanoma data. The pointwise 95% credibility bands
are included in dashed lines. Right: The cumulative versions of the estimated
regression functions with pointwise 95% credibility bands in dashed lines. Aalen
least squares estimators are included in dotted lines.
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Chapter 6

Discussion

The main objective of the thesis was to find estimators for the (cumulative) re-

gression functions in the Aalen model under the monotonicity restriction. We

supposed that the cumulative regression functions Aj(t) =
∫ t

0
αj(s)ds were non-

decreasing and the covariates were nonnegative. With this restraint we had that

the regression functions αj were nonnegative and it allowed for a more natural

interpretation of the regression functions. If the baseline hazard is included in

the model, it represents a level of hazard of failure for a normal healthy indi-

vidual. Every additional covariate then can be viewed as an excess additive risk

imposed on the individual. This is a frequent concept in many epidemiological

and health studies where often an impact of a particular hazardous behaviour or

environment on health is investigated. This could be for instance a study of a

time to manifestation of lung cancer of workers in uranium mines in relation to

the average daily dose of radon measured in the respective sites of the mines or an

effect of reported daily dose of cigarettes on time to developing a cardiovascular

disease. The monotone diversion from the classical Aalen model carries along its

nice features, i.e. that the effect of the covariates on the hazard function can vary

over time and it does not require proportional hazards as in Cox model.

In search for an estimator of regression functions we resorted to the maximum

likelihood methods. First, we developed well defined nonparametric maximum

likelihood estimators for the cumulative regression functions. We explored its

features including the large sample behaviour. It revealed itself that the non-

parametric maximum likelihood estimation works well solely under the model

with hazard rate equal to h(t) = α1(t)x1 where no baseline hazard and only a

single covariate is included. For more covariates the estimators become incon-

sistent. These results have been proven and the limiting functions and weak

convergence were investigated. A consistency was, however, found for the aver-
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age intensity (i.e. a concrete linear combination of the nonparametric maximum

likelihood estimators of the cumulative regression functions).

As the next step we explored a Bayesian approach by assuming Beta processes

as prior processes for the cumulative regression functions. We explained in detail

the features of these step processes, which turns out to be perfectly suited to

be cumulative regression functions with regards to existence of the well defined

cumulative hazard function. We derived the posterior distribution, investigated

its traits and took the posterior expectation to serve as the Bayesian estimators

for the cumulative regression functions. Unlike with many Bayesian machines

nowadays the estimators have explicit form and can be calculated without aid of

the MCMC procedures. Similarly as in the nonparametric maximum likelihood

estimation, the Bayesian estimators proved to be inconsistent if more than one

covariate was involved. The same consistency result for the average intensity as

of the nonparametric maximum likelihood estimators was found.

The third path of the research in the thesis was again taken towards the

Bayesian methods, however with continuity assumption on the cumulative haz-

ard rate. We proposed a sensible prior distribution with a martingale structure

based on Arjas and Gasbarra’s work, [6]. The method approximates the base-

line hazard rate and the regression functions using piecewise constant functions

with a random number and locations of jump times. We derived the posterior

distribution for the parameters of the model and proposed a sampling algorithm

for generation of the estimators via Gibbs sampling. The performance of the

method was tested in the simulation study. The results of the simulations sug-

gest a tendency of the Bayesian estimators towards the real values, but with a

lot slower pace than the standard Aalen least squares estimators. The apparent

advantage of the Bayesian estimators lies in the values of functional MSE and

MAE and in the coverage performance of the pointwise credibility intervals. The

obtained numbers suggest that the proposed Bayesian estimators can be of better

use with small sized datasets where the least squares estimation can be unstable

and suffer from great variation. All in all, the method looks promising, however,

the computational demands and lack of the knowledge on large sample behaviour

makes its use questionable.

The performance of all estimators was displayed under particular settings in

examples, on a data on time-delay of patients with myocardial infarction and on

the ”benchmark” Danish malignant melanoma dataset.

The inconsistency we have revealed with the nonparametric maximum like-

lihood method and the Bayesian analysis with Beta processes is rather curious.

There is not an obvious cause of this discrepancy. We are left to consider this
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to be one of the infinitely-dimensional cases where the consistency is not always

reached also with trustworthy maximum likelihood based methods. The additive

character of the hazard rate could possibly inflict the difficulties with grasping

the truth underlying the data.

6.1 Future research directions

The lack of easy-to-obtain and consistent estimators which would abide the mono-

tonicity restriction is obvious. There are several possibilities which has not been

pursued in this work and that look fairly promising.

We could abandon the nonparametric setting and specify the form of the

regression functions in advance. A fairly non-restrictive set-up is to assume that

αj are piecewise constant functions with fixed numbers of jumps and estimate

the values of these functions via maximum likelihood method. The most simple

situation arises when that the cumulative regression functions are linear, i.e.

Aj(t) = αjt. The estimator would be given by the following estimation equation

n∑
i=1

∫ τ

0

zi
z>i α

dNi(s)−
n∑
i=1

∫ τ

0

Yi(s)zids = 0.

This is derived from the log-likelihood of the data under the assumption of con-

stant regression functions. The generalization to piecewise constant regression

functions is straightforward. In general we can suppose that the regression func-

tions are given a parametric form, Aj(t) = αj,θ(t). The vector of unknown pa-

rameters θ is again found by the maximum likelihood method.

The problem with estimation of several functional parameters could be over-

come by another simplification. Let us suppose we have an additive model of the

hazard rate with the following form

h(t) = h0(t) + α>z,

where h0 is a baseline hazard, α = (α1, . . . , αp)
> is a p-dimensional vector of un-

known parameters and z is a covariate vector. Then there is only one infinitely-

dimensional parameter to estimate and either the nonparametric maximum like-

lihood method or Bayesian methods could be applied. This type of model was

already analysed Sinha et al. in [42] via integrated likelihood with Gamma pro-

cess priors. Their work could possibly be extended by incorporating a parametric

form for the regression functions αj = αj,θ(t) to allow for the variation of the

effect of covariates on the hazard rate.
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Another option is to lean on the least squares method which gave the consis-

tent estimators under the classical Aalen model. The goal would be to derive a

monotone alternative to Aalen’s and Huffer-McKeague’s estimators by using re-

stricted least squares estimation with constraint that the increments are positive,

i.e. ∆Aj ≥ 0.

Furthermore, other Bayesian machines utilizing popular priors like Polya trees

and mixture Dirichlet priors could be explored. In frequentist framework a pos-

sibility would be to transform the actual problem into a model with relative and

excess risk and use related methods.
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