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Abstract

Název práce: Vážené poloprostorové hloubky a jejich vlastnosti

Autor: Lukáš Kot́ık

Katedra / Ústav: Katedra pravděpodobnosti a matematické statistiky MFF
UK

Vedoućı doktorské práce: Doc. RNDr. Daniel Hlubinka, PhD.

Abstrakt: Statistické hloubkové funkce se staly populárńım nástrojem při stati-
stickém neparametrickém zpracováńı mnohorozměrných dat. Nejznáměǰśı
hloubkovou funkćı je tzv. poloprostorová hloubka, která má mnoho
žádoućıch vlastnost́ı. Některé jej́ı vlastnosti však často vedou k zaváděj́ıćım
výsledk̊um, obzvláště v př́ıpadě jiných než elipticky souměrných rozděleńı.
Práce zavád́ı 2 nové tř́ıdy hloubkových funkćı. Obě zobecňuj́ı polopros-
torovou hloubku, zachovávaj́ı si některé jej́ı vlastnosti a v př́ıpadě jiných
než elipticky souměrných, multimodálńıch a směsových rozděleńı mohou
vést k lepš́ım výsledk̊um a v́ıce respektuj́ı geometrickou strukturu dat.
Definice je založena na použit́ı váženého (polo)prostoru namı́sto indikátoru
samotného poloprostoru. Speciálńı volbou vah, předevš́ım v práci zave-
dených kuželosečkových vah, dostaneme link mezi lokálńım pohledem
na data, tzv. jádrovými odhady hustoty a mezi globálńım pohledem na
data v podobě poloprostorové hloubky. Mı́ru lokalizace určuje tvar váhové
funkce. V práci jsou odvozeny vlastnosti zavedených hloubkových funkćı,
včetně stejnoměrné silné konzistence. Limitńı rozděleńı je rovněž disku-
továno a také jsou zmı́něna daľśı témata (regresńı hloubka, funkcionálńı
hloubka), která maj́ı spojitost s hloubkou dat a navrhované hloubkové
funkce zde mohou přinést určitá vylepšeńı.

Kĺıčová slova: hloubka dat, mnohorozměrná data, neparametrické metody,
uspořádáńı, asymptotika
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Abstract: Statistical depth functions became well known nonparametric tool of
multivariate data analyses. The most known depth functions include the
halfspace depth. Although the halfspace depth has many desirable prop-
erties, some of its properties may lead to biased and misleading results
especially when data are not elliptically symmetric. The thesis introduces
2 new classes of the depth functions. Both classes generalize the halfspace
depth. They keep some of its properties and since they more respect the
geometric structure of data they usually lead to better results when we deal
with non-elliptically symmetric, multimodal or mixed distributions. The
idea presented in the thesis is based on replacing the indicator of a halfs-
pace by more general weight function. This provides us with a continuum,
especially if conic-section weight functions are used, between a local view of
data (e.g. kernel density estimate) and a global view of data as is e.g. pro-
vided by the halfspace depth. The rate of localization is determined by the
choice of the weight functions and theirs parameters. Properties including
the uniform strong consistency of the proposed depth functions are proved
in the thesis. Limit distribution is also discussed together with some other
data depth related topics (regression depth, functional data depth) where
the application of the proposed depth functions can bring some improve-
ments.
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Preface

Thesis is organized as follows. First, assumptions and notations that are used
in the whole thesis are introduced. First chapter shows introduction to the data
depth. General definition of the depth function and definitions together with
some properties and graphical illustration of different depth functions are shown.
Chapter 2 defines new depth functions and shows their properties. Chapter 3
proves the uniform strong consistency of the proposed depth functions and dis-
cusses the limit distribution. Chapter 4 defines a special class of the proposed
depth function that brings continuum between the halfspace depth and the kernel
density estimates. Chapter 5 includes the other topics that are related to data
depth, e.g. directional quantiles, regression depth and functional data depth. Last
chapter includes brief discussion. In the Appendix we can find some technical
theorems and lemmas used in the proofs. The thesis was written in LATEX using
modified version of Princeton University Thesis class (puthesis.cls). Majority of
computations were done in R software ([R Core Team, 2014]). Some procedures
were programmed in C, C++ and FORTRAN 77, 95.

Notation and Basic Assumptions

In the thesis we use the following notations and suppose the following assump-
tions.

(i) Vectors are written in bold italic math font, matrices are in bold math font,
i.e. X denote a vector, A denote a matrix.

(ii) We suppose a probability space (Ω,A,P) and random vectors with values
in Rp, where p ∈ N. A distribution (inducted probability measure on Rp) of
a random vector X is denoted by P or PX .

(iii) With a support sp(P) of probability measure P we mean the smallest closed
set having probability 1, i.e.

sp(P) =
⋂
{F ∈ F : P(F ) = 1},

where F denotes class of all closed subsets of Rp.

(iv) A random sample of sample size n from P is denoted by X1, . . . ,Xn. In
this thesis we suppose that P is an absolutely continuous (with respect to

1



PREFACE

Lebesgue measure) probability distribution. Note that, the majority of the
results in this thesis holds also for discrete distributions. Some theorems
are formulated and proved for general distribution P . This way we obtain
results for the empirical version of proposed depth functions.

(v) The random sample versions of mathematical operators is denoted by ‘n’
subscript, i.e. the empirical probability measure we denote by Pn and its
corresponding expected value by En . We sometimes work with a random
vector X with distribution Pn (given a realization of a random sample
X1, . . . ,Xn) instead of the random sample X1, . . . ,Xn itself.

(vi) For some functions (depth functions in particular) when needed we add an
additional parameter behind the semicolon. This parameter denotes the
distribution. For instance

HD(x; P) or HD(x;X)

denotes the halfspace depth of a point x with respect to distribution P of
a random vector X. Another example is that the following equality also
holds

HD(x; Pn) = HDn(x).

Further when we work with a depth function we sometimes omit the dis-
tribution parameter (stated behind semicolon), i.e. for instance instead of
D(θ; P) we use only D(θ) especially in cases where there is no need to
specify a distribution.

(vii) 〈u,v〉 denotes an inner product of vectors u and v and ‖u‖ denotes a
norm of a vector u. In whole article we suppose Euclidean scalar product
and Euclidean norm but majority of definitions and theorems can also be
generalized in a straightforward way to any Hilbert space.

(viii) An indicator function is denoted by 1 {}, i.e.

1 {condition} =

{
1, condition holds,

0, otherwise.

(ix) M c stands for the complement of a set M , i.e. M c = Rp rM for any set
M.

(x) M, int(M) and ∂M denotes the closure, interior and border of a set M.

(xi) ] (u,v) stands for the angle between vectors u and v, such that ] (u,v) ∈
[0, π].

(xii) Vector and matrix transpose is denoted by “T” superscript.

2
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(xiii) Orthogonal matrix A is matrix such that

AAT = ATA = I,

where I denotes identity matrix. Dimension of this matrix is clear from the
context.

(xiv) The unit sphere in Rp is denoted by Sp, i.e.

Sp = {u ∈ Rp : ‖u‖ = 1}.

(xv) In the text we use serif font to emphasize computer programs, software
packages etc.

(xvi) We use quotation marks for notions that are not formally defined.

3



Chapter 1

Introduction to Data Depth

1.1 Introduction

The data depth is a nonparametric tool for statistical analysis of multivariate
data. Roughly speaking, depth is a function which measures for each point in a
p-dimensional Euclid space its centrality (or outlyingness) with respect to a given
probability distribution. Formally the data depth is a function

D : Rp × P −→ [0,+∞),

where P denotes a set of probability distributions on Rp. The first argument
represents the points to which it assigns depth value according to a probability
distribution. In general we do not suppose any other properties. The most popu-
lar and known depth function is the halfspace depth introduced in [Tukey, 1974].
The halfspace depth of a point x is defined as infimum of probabilities of all
closed halfspaces containing x.

Over past two decades the data depth methodology has been intensively stud-
ied and it has proved its usefulness in many applications such as rank tests, non-
parametric robust estimation of location and scale parameters and data classifica-
tion, see e.g. [Liu & Singh, 2006], [Zuo & Serfling, 2000b], [Fraiman et al., 1999]
or [Lange et al., 2014, Li et al., 2012].

The depth should be rather global than local characteristics of the position
of the point; this is the main difference from the probability density which char-
acterizes local “position” of the point with respect to the distribution. Data
depth is mostly used to define centre-outward ordering for multivariate data, i.e.,
the depth induces linear (semi)ordering in situations where no natural order-
ing exists. Hence it is often used as a nonparametric and usually robust tool
of measure of spread, shape and symmetry of data, and as an outlier detec-
tion tool. The overview of depth and its desirable properties may be found in
[Zuo & Serfling, 2000a] or in [Serfling, 2006].

There is a lot of approaches to the data depth using various depth functions.
See [Liu et al., 2003] where some of the most popular, and their properties, ap-
plications and computational aspects, are presented. In this thesis we propose a
modification of the halfspace depth which improves its performance in some ap-
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1.1. Introduction CHAPTER 1. DATA DEPTH

plications, especially in cases when data does not have strictly convex level-sets
of probability density function.

The halfspace depth has many good properties, see e.g. [Serfling, 2006].
Even some fine properties hold for the halfspace depth, e.g., it was proved in
[Kong & Zuo, 2010, Struyf & Rousseeuw, 1999] that the halfspace depth may
characterize the underlying distributions. On the other hand a direct application
of the halfspace depth to high-dimensional data leads to some problems and
surprising results, see [Dutta et al., 2011]. It should be mentioned here, that
for the unimodal elliptically symmetric absolutely continuous distributions the
halfspace depth and the probability density functions are equivalent in the sense
that there exists a bijection between the depth of a point and the probability
density at that point. In this case majority of depth functions serves as a robust
alternative to “classical” parametric multivariate methods based on assumption
of normality or on assumption of elliptical symmetry.

In the thesis we focus on different situations when the halfspace depth (and
also majority of other depth functions) and the probability density disagree. This
is, for example, typical for probability distributions with nonconvex or discon-
nected level-sets of the probability density function. In this case majority of pop-
ular depth functions used nowadays tends to produce contours that are “more
convex” that expected and that are spread to the direction when only few ob-
servations or low probability mass occurs. Hence it can fail to give us proper
information about the data and it may have negative influence to the applica-
tions of the depth, e.g., in classification problems, but also for outliers detection,
tests of unimodality and other.

See Figure 1.1 for a simple illustration of an application of depth functions
and also as an illustration of problem stated in previous paragraphs. It shows
bivariate boxplots for Exp(1)×Exp(1) distribution with 5 outlying points - group
of observations that are in the neighbourhood of point with coordinates (4, 4)T .
The data depth is a tool that can, and is, used for generalization of boxplot to
higher dimensions. Having a bivariate boxplot, we immediately see shape and
spread of the data. The inner set consists of 50% of observations. Usually, points
outside the outer set (called fence) are suspected of being outliers. The left panel
shows so called bagplot, that can be obtained in R using function bagplot from
aplpack library. In this case the halfspace depth was used as a tool that identifies
the inner and outer set. No outlying observations are detected. Note that also
no false identification of non-outlying observations happened. The right panel
shows another generalization of boxplot. It is based on a classical assumption of
elliptical symmetry - the covariance matrix is (robustly) estimated and then it
is used for construction of a bivariate boxplot. It can be also viewed as depth
based approach since Mahalanobis distance and thus Mahalanobis depth is used.
This boxplot was computed using R function bivbox that can be downloaded
from http://www.stat.sc.edu/~hitchcock/chapter2_R_examples.txt. This
method detects all 5 outlying observations. But further it falsely marks non-
outlying observations as outliers. Even worse the fence is spread to the direction
where no observations occur. It will have negative impact on statistical inference
based on this method. Note that, even for almost perfect depth function, there

5
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Figure 1.1: Bivariate boxplots for bivariate exponential distribution with con-
tamination of few outlying points. Left panel: bagplot based on the halfspace
depth. Right panel: bivbox based on assumption of elliptical symmetry, i.e. the
Mahalanobis depth is used.

exist situations when an outlying point attains high value of depth (or equivalently
has low rank) - e.g. see Figure 1.10 – 1.18 to see how various depth functions
behave while applied on different datasets. The data depth proposed in the
thesis deals better with problems mentioned in these paragraphs but usually in
additional cost of need for more observations.

Figure 1.2: Protect the King! - The Fellowship of the Ring. King is well protected
- his position is in the so called deepest point.

Here is another motivation for our modification of the halfspace depth (Regina
Liu’s interpretation of data depth from ICORS 2011 conference):

6
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“Suppose we have a king who we want to protect with guards. We
place the guards around the king. The depth function should measure
how well is the king protected. Intuitively, well protected king is well
surrounded by the guards. It means that he is covered against attack
from every direction. Clearly, the defence of the king is as weak as its
weakest spot – e.g. a direction where few guards are standing or where
the guards leave uncovered view on the king. More in the center the
king is placed more protection he has.”

Figure 1.2 illustrates a well protected king. In the words of statistical data
depth the king is placed in the deepest point if we consider the positions of the
guards as a bivariate dataset.

Figure 1.3: Protect the King! - The Return of the King. Affine invariant depth
functions say that the king is still well protected.

The main idea of our modification of the halfspace depth may be – in this
interpretation – summarized as follows: the halfspace depth is counting the guards
in given halfspace regardless how far to the left or to the right they are. In
contrary to this we propose to count the distant guards only partially (assigning
some weight to them) or not to count them at all. In this sense we localize the
halfspace depth and it will be shown in the thesis that, using the depth proposed
here, one may balance the characterization of the point between the global (depth
of the point) and local (probability density at the point) point of view. Note that
in a similar way it is possible to localize other depths as well. However, in the
thesis we focus on the halfspace depth only.

Consider the situation in Figure 1.3. Only difference to Figure 1.2 is that
the distance between the guards linearly increases in one direction. Nowadays a
big attention is given to affine invariant depth functions. Authorities in the field
of data depth say that it is one of a key properties. Such depth functions say
that the king is still well protected - the king position remains to be in deepest
point. There lie the same number of guards in the halfspace indicated by arrow
as in Figure 1.2 but there exists an uncovered area heading from outside directly
towards the king. In this “protect the king” example there may be better to
sacrifices the affine invariance to still keep the king in the well protected position.

7
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Figure 1.4: Protect the King! - The Two Towers. Non-convexly supported distri-
bution of guards “around” the king. Majority of nowadays used depth functions
says that the king is still well protected.

Figure 1.4 is an example of how non-convexly supported distribution of guards
may still provide the good defence for the king. It is obvious that the arrow
indicates the weakest direction. But there is still a lot of guards in the halfspace
towards that arrow. The halfspace depth, similarly as other depth functions,
says that the king has the best protection available. In this case the localized
versions of depth will help to keep the king in better protected position. The
depth proposed in the thesis suggests to use a depth function which we places
the king in the spot where the least protected direction is better protected than
the least protected direction from any other spot.

As noted in the beginning of this chapter the depth functions have many
applications. Besides the robust rank test, outlier detection tool, robust es-
timates of scale and location it can be used to evaluate the difference in two
distributions. Figure 1.5 shows so called depth–depth plot. It is used as a tool
to visualize spread and location differences between two distributions. Here
the kernel weighted conic depth (see Section 4.2, in particular Definition 13 and
Example 15) was used to plot the depth of all observations with respect to
Exp(1)×Exp(1) distribution (first class of observations) against the depth with
respect to Exp(1/2) × Exp(1/2) distribution (the second class of observations).
The layout of the observations indicates difference in scale and also in location.
In recent developments of data depth methodology this tool has been used for
classification. In the depth–depth plot a dividing curve is fitted and for a new
observation the depth is computed with respect to both distributions (datasets
from both classes). The class of the observation is assigned according to on
which side of the dividing curve the observation lies. In some cases, the localized
depth proposed in this thesis brings some improvements. Some of these results
have been published in [Hlubinka & Vencalek, 2013].
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Figure 1.5: Depth–depth plot for Exp(1) × Exp(1) and Exp(1/2) × Exp(1/2)
distributions. As a depth function the generalized halfspace depth was used (see
Chapter 2) with the kernel weighted conic function with Gaussian kernel, eccen-
tricity e = 1.5 (hyperbolic depth) and smoothing parameter σ = 0.4 were used.
For more details see Section 4.2.

Following sections introduce a general definition of the statistical depth func-
tion. Some properties emerging from the general definition may lead to intriguing
properties discussed in this section. Then a short overview of depth functions is
shown. Only halfspace depth is discussed more thoroughly because it is a start-
ing point for the depth functions proposed by us. Our goal was to find a depth
function that generalizes the halfpace depth, keeps some of it properties and that
works well with non-convexly supported data or bimodal data.

Chapter 2 shows definitions of the proposed depth functions and shows their
properties. The affine invariant modification of proposed depths is defined. Chap-
ter 3 proves the uniform strong consistency. Also the influence function is derived
and the limit distribution is discussed.

In Chapter 4 we define the class of depth functions that provides us with a con-
tinuum between the halfspace depth and the kernel density estimate. Properties
of this class are proved and also one possible characterization / interpretation
of one member from this class is shown. This characterization can be used in
econometric optimization.

Chapter 5 is not directly about data depth functions. It deals with topics that
are directly connected to the data depth or where the data depth, the proposed
depth in particular, can be used. In the first section the directional depth and
directional quantiles are defined. In fact, the directional quantiles were one of our
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main motivation to work on the proposed depth. The directional approach need a
central point. This center should be well balanced - it should be well surrounded
by observations. First we used the Tukey median (the deepest point with respect
to the halfspace depth) to estimate the center. But for some data, especially for
“banana” shaped data, this point fails to provide us with good results. There was
a need to find a depth which provides us with the deepest point that more respect
the shape of data. It seems that the proposed depth leads to a choice of a very
natural center for directional quantiles. Other sections deal with a regression
depth and a functional data depth. In both fields our proposed depth can be
applied and it may bring some improvements.

The last chapter discusses the results and possible future development of pro-
posed data depth.

1.2 General Definition of Data Depth

In the late nineties and the years that follows, statistical depth functions be-
came increasingly used. Main reason is an increase of computational power - till
nineties no big attention was put on the data depth concepts since their ideas
were usually impossible to realize due weak computation power. Nowadays it is
easy to obtain computer that can handle heavy computations that are usually
needed to calculate a depth of one or more points in multivariate data space. So
the data depth concepts have become little bit more widely spread. Many new
definitions, concepts and application occurs in a great variety. Some statistical
depth authorities (e.g. see [Zuo & Serfling, 2000a, Zuo & Serfling, 2000c]) noted
that an exact definition of the statistical depth function is needed.

Since the depth provides us with center-outward ordering and the center or
the deepest point plays relatively important role in the data depth, we should first
note what center is. Not all classes of probability distributions posses naturally
given central point - e.g. consider bivariate exponential distribution Exp(λ1) ×
Exp(λ2) for some λ1, λ2 > 0. But there exists a broad class of distributions
where concept of the centres seems to be very natural and intuitive. It is a class
of symmetric distributions with respect to some notion of symmetry. Let us
mention some:

• The distribution is elliptically symmetric about a point ξ ∈ Rp if its density
f can be written in the following form:

f(x) = g
(
(x− ξ)TΣ−1(x− ξ)

)
,

where g is a nonnegative function and Σ−1 is a definitely positive p × p
matrix.

• The distribution of random vector X is centrally symmetric about a point
ξ if the distribution of X − ξ is the same as the distribution of ξ −X.

10
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ξ

Decreasing?

Figure 1.6: Are the key properties always desirable? The deepest point ξ of
general depth function lies in the center but also outside the support. Since the
depth should decreases along rays starting in ξ the points outside the support
have higher depth values than the points well surrounded by data.

• The distribution of random vector X is angularly symmetric about a point
ξ if the distribution of (X − ξ)/‖X − ξ‖ is the same as the distribution of
(ξ −X)/‖X − ξ‖.

Now we present a general definition of depth function on Rp according to
[Zuo & Serfling, 2000a] (Def. 2.1). Denote by P the class of distributions on the
Borel sets of Rp. Distribution of a given random vector X is denoted by PX .

Definition 1 (Key properties of depth function). Let the mapping D(·; ·) : Rp×
P −→ R be bounded, nonnegative, and satisfies:

1. D(Ax+ b; PAX+b) = D(x; PX) holds for any random vector X ∈ Rp, and
p× p nonsingular matrix A, and any vector b ∈ Rp.

2. D(ξ; P) = supx∈Rp D(x; P) for any P ∈ P having center ξ (with respect to
at least one of latter notions of symmetry).

3. For any P ∈ P having the deepest point ξ, D
(
ξ + t(x − ξ); P

)
≥ D(x; P)

holds for t ∈ [0, 1].

4. D(x; P)
‖x‖→+∞−−−−−→ 0 for any P ∈ P .

Then we say that D satisfies the key properties.

The deepest point in latter definition is defined as follows.

Definition 2 (The deepest point). The deepest point with respect to a distribu-
tion P and a depth function D is the point θ such that

D(θ; P) = max
x

D(x; P).

If there exists more such points the deepest point is defined as their mean.

A function that satisfies properties of Definition 1 is what some statisticians
call the general depth function. These “desirable” properties may be too strict in
some cases and can also bring some controversies. Let us briefly discuss some:

11
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1. Depth is an affine invariant function. Consider the situations on Fig. 1.2
and Fig. 1.3. Affine invariant depth functions say that king has the same
protection in both cases.

2. Depth is maximal at the center of distribution. It is usually a good assump-
tion unless we work with mixtures of distributions or with a distribution
where no natural center exists. Consider situation on Fig. 1.6. ξ is the cen-
ter of symmetry with respect to the all mentioned symmetry notions and it
even does not lie inside the support of the distribution (shadow rectangles).
Another example can be seen on Fig. 1.4 where no natural center exists.

3. Considering a ray starting at the deepest point, the depth of points along
the ray is nonincreasing as the distance from the deepest point increases.
Again consider the case on Fig. 1.6. Closer to the support of the data we
move, the depth decreases. Another example is shown on Fig. 1.4. In this
case some of the depth functions (the halfspace depth, the Liu (simplicial)
depth, ...) say that the king is almost in the deepest spot. Depth functions
satisfying this non-increase property claim that more the king approaches
his guards less protection he gets.

4. The depth function is vanishing at infinity. That is indeed the property
that every depth should posses in any occasion.

Zuo and Serfling ([Zuo & Serfling, 2000a]) consider broad classes of depth
functions and study the possession of these key properties. Properties 1–3 are all
connected with the convexity of sets of points whose depth is higher than a given
value. Formal definitions of such regions is following.

Definition 3. Suppose d > 0. The d-central region of a depth function D and a
distribution P is the set

C(d) = {x : D(x; P) ≥ d}.

In [Zuo & Serfling, 2000c] these regions are called d-trimmed regions. Usually
using a depth function that satisfies key properties 1–3 leads to fact that central
regions are convex (or near to convex) and it happens even in cases when one can
intuitively expects another shape of such regions. Therefore constructions of more
general central regions may be needed. Besides the well known level sets of the
probability density function, [DasGupta et al., 1995] considered a general family
of star-shaped sets (for definition see Def. 16). The “best” shape of central regions
is proposed and it is then inflated (or deflated) in order to obtain the central region
of given probability. The idea behind this approach is substantially different from
the depth based approach.

But, as we will see, even for absolutely continuous distributions with convex
support, like the bivariate exponential distribution or the bivariate [0, 1]2 uniform
distribution, some disadvantages of the depth functions (especially the halfspace
depth function) satisfying key properties may be disclosed. It is the main motiva-
tion for us to propose a larger class of depth functions derived from the halfspace
depth.

12
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There also has been particular interest in the deepest point (see Def. 2). This
is usually used as a measure of position of the data. The sample deepest point is
often used as a robust estimate of the mean value. It plays similar role as median
in univariate data analysis. So there is a need for the deepest point whose position
respects the geometry of the data. As we have already seen and we will see some
of the depth functions (e.g. the halfspace depth, the Liu/simplicial depth) that
satisfy the properties of Def. 1 provide us with the deepest point that may lie quite
near the border (or even outside the border) of the support of the distribution.

1.3 The Halfspace Depth

One of the most popular, the most known and surely the most used depth
functions is the halfspace depth, defined by [Tukey, 1974]. [Donoho, 1982,
Donoho & Gasko, 1992] have studied its breakdown properties. The compu-
tational aspect may be found, for example, in [Rousseeuw & Ruts, 1996] and
[Struyf & Rousseeuw, 2000], [Matoušek, 1992] has proposed fast algorithm for
computing the deepest point of random sample. See also [Zuo & Serfling, 2000c]
for broad discussion on features of data depth and, in particular, of the halfspace
depth.

We can calculate the halfspace depth of a point using R package depth (func-
tion depth). Besides the halfspace depth the package contains functions for cal-
culating the Liu (simplicial) and the Oja depth.

Definition 4. Let P be a probability measure on Rp. The halfspace depth of a
point θ ∈ Rp is defined as

HD(θ) = inf
‖u‖=1

P
(
{y : uTy ≥ uTθ}

)
.

In other words, the halfspace depth of x is the infimum of probability mass of
all closed halfspaces whose border includes θ. Figure 1.7 illustrates this definition.
The depth is assigned according to the probability in the “worst direction”. In
case of elliptically symmetric distributions the minimum probability halfspace is
the halfspace whose border is tangent to an elliptic contour. There needs not
to exist unique minimum probability halfspace. For instance, consider case of
multivariate normal distribution and its mean. All the halfspaces with border
going through mean attain probability 1/2.

The halfspace depth is well defined for all θ ∈ Rp. The empirical (sample
version of) halfspace depth HDn(θ) for a random sample X1, . . . ,Xn of the dis-
tribution P is defined as a halfspace depth for the empirical probability measure
Pn, i.e.

HDn(θ) = inf
‖u‖=1

1

n

n∑
i=1

1
{
uTX i ≥ uTθ

}
.

This definition is illustrated on Fig. 1.8. We simply calculate the number of points
lying in each halfspace and as the depth we take proportion of observations lying
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θ

min. probability halfspace

u

Figure 1.7: The halfspace depth of a point θ is the probability of minimum half-
space that contains this point. In the case of elliptically symmetric distribution
it is the halfspace whose border is tangent to an elliptical contour.

θ

Figure 1.8: The sample halfspace depth of a point θ is the minimum number of
points lying in halfspace that contains point θ divided by size of the sample. In
this case n = 10. HDn(θ) = 3/10.

in a halfspace with the smallest number of observations. The minimum empirical
probability halfspace needs not to be unique.

The definitions of the halfspace depth and its empirical version may be, using
inner product notation, equivalently rewritten as

HD(θ) = inf
‖u‖=1

E1 {〈X − θ,u〉 ≥ 0} ,

HDn(θ) = inf
‖u‖=1

1

n

n∑
i=1

1 {〈X i − θ,u〉 ≥ 0} .
(1.1)

All mentioned definitions are very intuitive and easily interpretable. More-
over, there are many properties of the halfspace depth which made this depth
popular and widely used. Besides the key properties from Definition 1 additional
properties can be proved:

1. The d-central region, {x : HD(x) ≥ d}, of points whose depth is higher
than a given value d is convex for any d (convexity of central regions, quasi-
concavity of depth function).
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2. The empirical halfspace depth HDn(x) converges almost surely to HD(x)
as n→∞ for all x ∈ Rp (strong consistency).

3. The deepest point is unique for absolutely continuous distributions.

4. Under mild conditions the distribution of
√
n
(
HD(θ; Pn) − HD(θ; P)

)
converges to normal distribution if θ is not a center of symmetry (see
[Massé, 2004]).

5. The breakdown point of the halfspace depth median (the deepest point) is
at least 1/(p+ 1).

Figures 1.10, 1.13 and 1.16 show halfspace depth contours (borders of central
regions from Def. 3). More info about datasets used in this figures can be found
in Example 1, 2 and 3. Another example can be seen on Fig. 4.6. We can see
that the shape of central regions may sometimes differ from our expectation. Es-
pecially in the case of distribution similar to bivariate exponential (see Example
2) one would like to obtain more triangle shaped contours. [Dutta et al., 2011]
makes very detailed review of some counterintuitive properties of the halfspace
depth. It seems that the halfspace depth is not compatible with nonconvexly
supported distributions. In application it can lead to some undesirable conse-
quences (e.g. in multivariate ordering a point outside the data can have same
order as a point well surrounded by the data). This is why some researches try
to improve this depth functions - to keep its good properties and to make it
compatible with noncovexly supported data. One of the possibilities is localiza-
tion - see [Agostinelli & Romanazzi, 2011] and [Paindaveine & Van bever, 2013]
or Subsection 1.4.9 for short summary of this concept. Other possibility is pro-
posed in this thesis. It brings another generalization of the halfspace depth that
can more reflects the shape of the data.

Besides the well known halfspace depth there exists a lot of other depth func-
tions. Next section make a short overview of them.

1.4 Data Depth - Overview of Some Existing

Depth Functions

A lot of data depth related results has appeared in the last two decades. Un-
fortunately there does not exist a comprehensive overview of existing depth
functions and their properties. Although some summary results can be found
in [Liu et al., 1999], [Zuo & Serfling, 2000a] and [Liu et al., 2003]. In-depth
overview of existing depth functions and their properties could fulfil a whole
single thesis. Hence this section shows only brief overview. Instead of a list of
depth functions’ properties we show graphical results of application of all depth
functions mentioned in this section to 3 different datasets. See Figures 1.10 –
1.18 which show 20%, 40%, 60% and 80% sample depth contours. With τ · 100%
depth contour we mean the border of the central set C(d) (see Definition 3) such
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that
P
(
C(d)

)
= τ.

For τ depth contours with higher values of τ we should be aware of so called
course of dimensionality (see e.g. [Hastie et al., 2009], Chapter 1, Section 2.5).
In multidimensional space many points lie on the border of data cloud. For
instance, consider uniform distribution on unit sphere in dimension 2. About
25% of observations lie in distance greater than 0.87 from the center. Compare
it to dimension 1 where this value is 0.75. A quarter of observations lie in a
relatively narrow band near the border of the support. This is why the 80%
depth contour is often very rugged.

In the following paragraphs the depth functions are defined for an absolutely
continuous probability measure P on Rp and for a point θ ∈ Rp. Functions are
listed in random order. Some figures show contours that are expected to be
smooth but that are little bit rugged (e.g. in the case of the Liu depth). It is
usually consequence of the fact that contours are interpolated from a grid points
whose depth is calculated (ggplot with geom contour from excellent R library
ggplot2 is used for interpolation - see [Wickham, 2009]).

1.4.1 The Mahalanobis and the Euclidean Depth

The Mahalanobis depth is one of the oldest depth function. It is derived from
the well known Mahalanobis distance (see [Mahalanobis, 1936]) and it is still
often applied in simple classification and clustering problems, psychology, data
visualizations etc. It is strongly connected with the elliptical symmetry and its use
for non-elliptically symmetric distributions can lead to distorted results. Central
regions C(d) are always ellipsoids. The Mahalanobis depth of a point θ ∈ Rp is
defined as

MHD(θ) =
(

1 + (θ − µ)TΣ−1(θ − µ)
)−1

,

where µ is the mean vector and Σ is the covariance matrix of distribution P .
If we replace these characteristics by their sample version we obtain the sample
version of the Mahalanobis depth.

If no covariance structure of data is considered we obtain the Euclidean depth.
Its center regions are spheres. It is defined as

ED(θ) =
(

1 + ‖θ − µ‖
)−1

.

The Mahalanobis depth satisfies the key properties (see Definition 1). Together
with Euclidean depth it can can be calculated using depth function from R library
depthproc. This function is very fast and it also can be set as hyper-threaded.
Untill now (july 2014) it has not been finished yet but its beta version can be
installed from R-Forge. See Figures 1.11, 1.14 and 1.17 for examples of these
depth functions. For alpha vs. gamma intakes (Fig. 1.17) the data were first
standardized before depth computations.
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1.4.2 The Liu (Simplicial) Depth

The Liu depth is one of the most known depth function. It is also called the
simplicial depth. It is defined in a relatively intuitive way. First it appeared in
[Liu, 1990]. The definition is as follows

SD(θ) = P
(
θ ∈ S[X1, . . . ,Xp+1]

)
,

where S[X1, . . . ,Xp+1] is a closed simplex formed by p+ 1 independent random
variables on Rp with distribution P . Hence the more probability mass is dis-
tributed around the point the deeper the point lies. This depth function satisfies
the key properties from Definition 1 (see [Liu, 1990, Zuo & Serfling, 2000a]). The
sample version is defined as

SDn(θ) =

(
n

p+ 1

)−1 ∑
1≤i1<...<ip+1≤n

1
{
θ ∈ S[X i1 , . . . ,X ip+1 ]

}
.

The sample deepest point need not to be unique. An improved definition, that
leads to unique sample deepest point for discrete distributions, was introduced
in [Burr et al., 2003]. This depth function can be calculated using depth function
from R library depth. Computation is relatively fast. For dataset from Example 3
the computation does not lead to sensible results. Hence a graphical presentation
for this data is not shown. Contours for other 2 datasets can be seen on Figure
1.10 and 1.13. Contours should be always convex. The discrepancy from convex-
ity are most likely due the interpolation of contours from a set of grid points and
also because of some numerical instabilities of the Liu depth computations using
function depth.
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Figure 1.9: The convex hull peeling depth.
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1.4.3 The Convex Hull Peeling Depth

The convex hull peeling depth was introduced in [Barnett, 1976]. Only popu-
lation version was defined. It is one of the most intuitive depth functions - we
peel a layer by layer of data cloud until we get to the deepest spot. Layers
consist of borders of convex hulls of remaining points after previous layers were
removed. Depth is assigned according to how deep the layer is. See Fig. 1.9 for
an illustration of this principle, where convex hulls are plotted for the uniform
distribution on [0, 1]× [0, 1]. Formal definition of sample version can be found in
[Barnett, 1976] or [Porzio & Ragozini, 2007]. Last cited article also shows defini-
tion of the population version of the depth - authors call it convex hull probability
depth. Authors further proved that population version satisfies key properties.
There are many functions in R that can be used for fast computation of con-
vex hulls of a set of points, e.g. see libraries grDevices (chull function), geometry
(convhulln function) and spatstat (function convexhull.xy). Figures 1.10, 1.13 and
1.16 show contours for the convex hull pealing depth.

1.4.4 The Oja Depth

[Oja, 1983] defined the Oja depth as follows.

OD(θ) =
(

1 + E volume
(
S[θ,X1, . . . ,Xp]

))−1
,

where S[θ,X1, . . . ,Xd] is, similarly as in Subsection 1.4.2, the closed simplex
with vertices θ, and p random observations X1, . . . ,Xp. The sample version is
defined in the same way as the sample version of Liu depth. The central regions of
the Oja depth tend to be elliptic with no respect to the geometry of the data - see
Figures 1.10, 1.13 and 1.16 for examples. For alpha vs. gamma intakes (Fig. 1.16)
the data were first standardized before depth computations. This depth has never
been widely used. The Oja depth is not affine invariant but an affine invariant
modification exists (see [Zuo & Serfling, 2000a]). It can be calculated using depth
function from R library depth. Computation lasts longer than computation for
other depth functions from this library.

1.4.5 The Zonoid Depth

It was introduced in [Koshevoy & Mosler, 1997]. The definition is a little bit com-
plicated and not so intuitive as previous depth functions’ definitions. Consider a
family Dα of nested sets in Rp. Suppose that expectation EX is finite. The sets
are called the zonoid regions if D0 = Rp and for α ∈ (0, 1]

Dα =

{
EXg(X) : g : Rp →

[
0,

1

α

]
,E g(X) = 1

}
.

The zonoid depth is defined as

ZD(θ) = max {α : θ ∈ Dα} .
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The sample version is obtained if the empirical expectation En is used in the
definition of Dα. Instead of functions it suffices to use constants 0 ≤ λi ≤
1/α, i = 1, . . . , n. The deepest point is always the mean EX. If the mean is
also the center of a symmetry then the zonoid depth satisfies the key properties
from Definition 1. This depth function is not robust. If the depth is applied
to non-symmetric distributions central regions sometimes tend to be stretched
to the direction where no big density of observations occurs - see Figures 1.10,
1.13 and 1.16. This depth can be computed using depth.zonoid function from R
ddalpha library.

1.4.6 The Projection Depth

Definition of the projection depth is relatively straightforward. Projection outly-
ingness of a point θ is defined as

PO(θ) = sup
u: ‖u‖=1

∣∣uTθ −Med(uTX)
∣∣

MAD(uTX)
,

where Med(Y ) and MAD(Y ) denote univariate median and mean absolute devi-
ation of a random variable Y (MAD(Y ) = Med

∣∣(Y −Med(Y ))
∣∣). The projection

depth can be now defined as

PD(θ) =
(
1 + PO(θ)

)−1
.

This depth function satisfies the key properties - see [Zuo & Serfling, 2000a]. The
sample version is obtained if we replace population statistics with their random
sample counterparts. Projection to lines has some (geometric) information loss.
As it can be seen in Figures 1.10, 1.13 and 1.16 the projection depth central re-
gions tend to stretch to places where no points occur. In contrary to concluding
remarks in [Zuo & Serfling, 2000a] the author of the thesis does not recommend
to use this depth function. [Zuo & Serfling, 2000a] claims that this depth has an
advantage, as an implementation of the projection pursuit method, to powerfully
extract information from the data. Projection pursuit method is indeed very
powerful method but its power lies more in application of so called ridge func-
tions on the projections - see e.g. [Hastie et al., 2009] for more information. The
projection depth can be calculated with depth function from R depthproc library.
See Subsection 1.4.1 for more details about this library.

1.4.7 The Lq Depth

The Lq, q > 0, norm can serve as a distance (or outlyingness) measure. The

Lq norm we denote by ‖·‖q. It holds ‖x‖q = (|x1|q + . . .+ |xp|q)1/q . Using this
distance measure the Lq depth function is defined as

LqD(θ) =
(
1 + E‖θ −X‖q

)−1
.
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The depth is not affine invariant (see [Zuo & Serfling, 2000a]) hence it does not
satisfy all the properties from Def. 1. The sample version is obtained if we replace
E with En. Figures 1.11, 1.14 and 1.17 show contours for this depth if q = 2. In
this case the deepest point is so called spatial median. For alpha vs. gamma
intakes (Fig. 1.17) the data were standardized before the depth was calculated.
The central regions of the Lq depth have tendency to be in spherical shape (if
the scale of all coordinates is the same) even if the “shape” of the data is very
different. That’s why the author does not recommend to use this popular depth
function. The depth can be computed with depth function from R depthproc
library. See Subsection 1.4.1 for more details about this library.

1.4.8 The Likelihood Depth

This depth is very simple. Suppose that f is the probability density of P , then

LD(θ) = f(θ)

is the likelihood depth. This depth was first considered in [Fraiman et al., 1999].
The deepest point is the modus. It is clear that this depth does not satisfy
the key properties. The sample version is obtained if any of density estimates
is used, for example the kernel density estimate. Central regions C(d) are
called levelsets and have the smallest volume possible. Some authorities (e.g.
[Zuo & Serfling, 2000a]) object against consider LD as a depth function because
it reflects more “local” than “global” property of the data. Figures 1.11, 1.14 and
1.17 show contours for this depth. For alpha vs. gamma intakes the data were
first standardized before the depth was computed. Function kde from R library
ks was used for computation. Automatic selection of bandwidth was used.

1.4.9 Other Depth Functions

Of course we do not make complete survey of all existing depth notions. Besides
other we did not mention the majority depth, which had not been widely used
because no fast algorithm existed. Fast and effective calculation of this depth
was recently investigated in [Chen & Morin, 2013], where also definition can be
found.

Another not mentioned depth notion is localized depth. Since majority of
depth functions produce convex central regions even in the case of multimodal
distribution some researchers tried to find a connection between local and global
view of the data. Paper [Agostinelli & Romanazzi, 2011] proposes simple local-
ization of the halfspace and Liu depth. For former they consider only finite width
slabs instead of halfspaces, for latter they consider only simplices with smaller
volume than some fixed threshold. Implementation of this approach can be found
in R library localdepth. [Paindaveine & Van bever, 2013] shows another concept
of localization - they claim that they introduce concept that makes data depth
compatible with multimodal or non-convexly supported distributions. Suppose
we want to calculate the depth of a point θ. First we need symmetrize the dis-
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tribution P about θ, P sym = 1/2 PX +1/2 P2θ−X . Then for any depth function
satisfying key properties 2. and 3. (see Def. 1) we consider the depth with respect
to the conditional symmetrized probability measure to the central regions with a
given confidence level. Smaller the confidence level is the higher degree of local-
ization occurs. Formal definition can be seen in the article. As a disadvantage of
majority of depth function dealing with non-convexity (including the generalized
halfspace depth and the weighted halfspaces ratio depth introduced in this thesis)
authors point out that in extreme localization the depth usually converges to a
density or to a constant. Their localized depth does not posses this property.

1.4.10 Examples

This subsection graphically illustrates properties of majority of the depth func-
tions mentioned in the thesis. We used 3 datasets described in Examples 1 - 3.
See also introduction of Section 1.4 for more information. The figures titled Band
Depth, Parabolic Depth, Kernel Parabolic Depth and Kernel Hyperbolic Depth
show contours for the depth functions proposed later in the thesis (Chapter 2
and Chapter 4).

Example 1 (A mixture of 2 Gaussian distributions). This example illustrates
how data depth functions deal with bimodal non-convexly shaped data, i.e. with
data where is hard to measure centrality. The data (sample size is 1000) consists
of 50%:50% mixture of two Gaussian distributions,

N
((

0
6

)
,

(
1 0
0 9

))
, N

((
6
0

)
,

(
9 0
0 1

))
.

See Fig. 1.10 - 1.12.

Example 2 (Exponential distribution). It is almost classical data depth exam-
ple. Fig. 1.13 - 1.15 show sample depths contours for a “bivariate exponential
distribution”. The dataset consists of 1000 simulated bivariate observations from
Exp(1)× Exp(1) distribution.

Example 3 (Long lived radionuclides intake vs. gamma intake). This dataset
consists of 10503 observations of long lived radionuclides (in Bq) and gamma
(in mSv) monthly intakes for Rožná mine miners during 2003 - 2012. Data were
collected from personal dosimeters. One would expect linear relationship between
these two variables. Unfortunately there exist many unobservable and unknown
variables and mechanisms that affect this relation. Consequence is that both
variables are not strongly correlated. If the depth function is not affine invariant,
the data were first scaled to have unit variance. Then the depth function was
applied and finally the result was retransformed back to the original scale. See
Figures 1.16 - 1.18.
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Figure 1.10: Depth functions - contours (20%, 40%, 60% and 80%) for a mixture
of 2 Gaussian distributions.
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Figure 1.11: Depth functions - contours (20%, 40%, 60% and 80%) for a mixture
of 2 Gaussian distributions.
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Figure 1.12: Depth functions - contours (20%, 40%, 60% and 80%) for a mixture
of 2 Gaussian distributions.
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Figure 1.13: Depth functions - contours (20%, 40%, 60% and 80%) of exponential
distribution.
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Figure 1.14: Depth functions - contours (20%, 40%, 60% and 80%) of exponential
distribution.
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distribution.
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Figure 1.16: Depth functions - contours (20%, 40%, 60% and 80%) of alpha and
gamma intakes.
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Figure 1.17: Depth functions - contours (20%, 40%, 60% and 80%) of alpha and
gamma intakes.
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Figure 1.18: Depth functions - contours (20%, 40%, 60% and 80%) of alpha and
gamma intakes.
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Chapter 2

Weighted Depths

This chapter introduces two classes of depth functions that have their origin
in the halfspace depth. We begin with a straightforward and very natural
generalization of the halfspace depth. Some of the results also appeared in
[Hlubinka et al., 2010].

2.1 Definition of the Generalized Halfspace

Depth

Definition 4 may be immediately suggesting to replace the halfspace with affine
boundary by another “halfspace” with a more general boundary (or even without
boundary); then it is quite natural to do the next step and to replace the indicator
in (1.1) by a more general weight function. This directly leads us to the definition
of the generalized halfspace depth.

Definition 5 (Generalized halfspace depth). Suppose a measurable bounded
weight function

w : Rp × Sp −→ R. (2.1)

The generalized halfspace depth with respect to the weight function w and prob-
ability distribution P of a random vector X ∈ Rp of a point x ∈ Rp is defined
as

Dw(x; P) = inf
‖u‖=1

Ew(X − x,u) = inf
‖u‖=1

∫
Rp
w(y − x,u) dP(y). (2.2)

The sample version is defined as

Dw,n(x) = inf
‖u‖=1

1

n

n∑
i=1

w(X i − x,u).

Note 1. We remind that if the probability distribution P and the weight function
w are clear from the context they will be often omitted from the notation and we
will simply write D(x) for a generalized halfspace depth of a point x. Further
if the weight function depends on some parameter of interest we sometimes use
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x

u

v

w(· − x, u)

w(· − x, v)

Figure 2.1: The calculation of the generalized halfspace depth at a point x ∈ R2

is illustrated. The “banana shaped” distribution is considered, random sample
of size n = 73 is taken from the distribution. A parabola (with focus x, u
perpendicular to its directrix and a fixed distance between focus and directrix) is
used as a boundary of the generalized halfspace and hence an indicator of closed
parabola is used as the weight function w. As u ranges over S2 the observations
lying inside parabola determined by x and u are counted. The parabola covering
the minimum number of observations (5 in the example) is shown in gray colour.
Hence, the empirical depth of x is 5/73. For an illustration another candidate
on minimal parabola (in direction v) is also shown in the figure. It contains 24
points hence it is not minimal.

notation with this parameter in subscript instead of subscript denoting the weight
function.

Note 2. Since we consider only bounded measurable weight functions we may,
without loss of generality, consider the weight functions to be non-negative. On
the other hand, considering nonmeasurable weight function need not to make
sense, and unbounded weight functions do not bring any advantage to the gener-
alized halfspace depth.

One can see the illustration of the generalized halfspaces depth idea on Fig-
ure 2.1. Similarly as in the definition of the halfspace depth of a point x, a vector
u ∈ S2 represents the direction from x to which we look and count the “number”
of observations that “protect” x. The depth of the point x is then “number” of
observations “protecting” x from the least favorable direction. Of course if, in
the previous sentence, our wish is to be more mathematically precise and formal,
we have to first specify the weight function w that determines the properties of
the generalized depth. Then the vague terms “number” and “protect” can be
replaced with something more specific.

The weight function in Figure 2.1 is just an indicator function but it may be
quite general function as follows from Definition 5. On the other hand the weight
function may be considered to be “regular” for practical applications. The weight
function is usually considered to be symmetric and piecewise continuous (see the
discussion below).

Definition 6. Multivariate function w : Rp ×Sp → R is called piecewise contin-
uous in what follows if
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u

tux

〈u, x〉u

〈u, x〉

0

Figure 2.2: Illustration of the definition of the spherical symmetry of the weight
function. The weight of x depends only on distances between the orthogonal
projection of x to the line tu and points x, 0 (‖x− 〈u,x〉u‖, 〈u,x〉).

1. for any nondegenerate bounded closed interval I ⊂ Rp×Sp there exist pair-
wise disjoint open connected sets Gi, i = 1, . . . , N such that I =

⋃N
i=1Gi,

and w is continuous on Gi, i = 1, . . . , N , and

2. the discontinuity points of w form a subset of a closed set of zero Lebesgue
measure.

There are different notions of symmetry for multivariate functions. The most
important symmetry for weight functions is the spherical symmetry. When we
talk about a spherical symmetric weight function we mean the function that
satisfies the following definition.

Definition 7 (Spherical symmetry of the weight functions). We say that a weight
function w : Rp × Sp → R is spherically symmetric if there exists a piecewise
continuous bounded function h : [0,+∞)× R→ R such that

w(x,u) = h
(
‖x− 〈u,x〉u‖, 〈u,x〉

)
= h

(√
‖x‖2 − 〈u,x〉2, 〈u,x〉

)
. (2.3)

The second equality is consequence of the Pythagorean theorem.

Remark 3. Fig. 2.2 illustrates the definition of the spherical symmetry. In other
words the spherically symmetric weight function w(x,u) depends only on the
decomposition of the point x to its projection to line tu, t ∈ R (point 〈u,x〉u,
and its norm 〈u,x〉) and its distance from that line (‖x− 〈u,x〉u‖). Note that
for u = (0, . . . , 0, 1)T it holds

w
(
(x1, . . . , xk, . . . , xp)

T ,u
)

= w
(
(x1, . . . ,−xk, . . . , xp)T ,u

)
, k = 1, . . . , p− 1.

One of the main advantages of the generalized halfspace depth is that for a
well chosen weight function the depth contours respect the shape of the probabil-
ity density function contours. In particular, the weighted version of the halfspace
depth is more sensitive to nonconvexity or disconnectivity of the underlying dis-
tribution (nonconvexity or disconnectivity of its support or of the density function
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d/2
d/2

u

0
0

u

α
α

Figure 2.3: The band and the cone weight functions. They are simply the indi-
cators of the band (resp. cone) in given direction u.

level-sets). Naturally, the sensitivity depends mostly on the chosen weight func-
tion. Hence, one may say that the generalized halfspace depth for a proper weight
function is closely related to the structure (geometry) of data.

This property of generalized halfspace depth may be useful if one needs to
identify data with non-convex support, mixtures of distributions or for better
results of classification or if the problem is to find proper trimming boundary
region for a multivariate trimmed mean. An illustration of this fact can be seen
on Figure 2.1. The point x is quite deep point of the dataset – from the halfspace
depth point of view (but as it was illustrated in Section 1.4 we can expect similar
results for most of the depth functions). On the other hand, point x is not so
well covered from the direction u and the generalized halfspace depth reveals this
fact.

Example 4 (Weight functions). We introduce a sample of recommended and
useful choices of the weight functions. All the weight functions mentioned here
are spherically symmetric (see Definition 7) and also piecewise continuous.

• The halfspace depth: Let

w(x,u) = 1
{
uTx ≥ 0

}
(2.4)

then Dw is the halfspace depth. See Fig. 1.10, 1.13 and 1.16 for the halfspace
depth contours examples.

• The band (cylinder) depth: Consider

w(x,u) = 1 {‖x− 〈x,u〉u‖ ≤ d/2, 〈x,u〉 ≥ 0} , (2.5)

where d > 0 is given bandwidth or diameter of the cylinder base (in higher
dimensions), respectively. See the left panel of Fig. 2.3. The depth of x
is based on probabilities (empirical probabilities) of (half-)cylinders in the
direction of u with radius d/2 for which x is in the centre of the cylinder
base. Examples of the band depth contours can be seen on Figures 1.11,
1.14 and 1.17.
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• The cone depth: Let α ∈ [0, π/2] and

w(x,u) =

{
1, if ] (x,u) ≤ α,

0, otherwise.
(2.6)

It is an indicator of a cone in the direction given by u and with the apex
angle 2α. See also the right panel of Fig. 2.3.

• The kernel band depth: A slight modification or generalisation of the band
depth is given by the weight function

w(x,u) = 1 {〈x,u〉 ≥ 0} k(‖x− 〈x,u〉u‖), (2.7)

where k is a function k : R → [0,+∞). The usual choice of k is one of
the kernel functions used for univariate probability density estimation. See
Fig. 2.4 for examples of weight function based on a triangular kernel and on
a Gaussian kernel k. The weight does not depend on the distance of x in
the direction of u but only on the distance of x from the line tu, t ∈ R (see
Fig. 2.2). Being derived from the band depth the kernel band depth has
similar properties as the band depth. On the other hand, the kernel band
depth is more flexible than the band depth, hence it gives usually better
results if a suitable kernel function k is chosen. Note that if we choose k ≡ 1
we obtain the halfspace depth.

• The kernel cone depth: Similarly as the kernel band depth we can define
the kernel cone depth weight function as

w(x,u) = 1 {〈x,u〉 ≥ 0} k(] (x,u)), (2.8)

where k : [0, π/2]→ [0,+∞) is a kernel function. The weights are assessed
according to the angles from directional vector u. Kernel functions that are
equal to 0 at some finite value should be used. See Fig. 5.1 and also Section
5.2.2 for examples (triangular and tricube kernel) of such kernels.

• The conic section depth: Suppose that C(u, t) is a conic section (sphere,
ellipsoid, paraboloid or hyperboloid) with major axis in the direction given
by u ∈ Sp and with the focus in the point tu. Usually we set parameter t
to the point tu be a focus or to apex be in the origin. Then the following
weight function may be naturally defined:

w(x,u) = 1 {x ∈ C(u, t)} .

For more details about a class of weight functions with focus in x see Chap-
ter 4 Section 4.1 and also see Figure 4.1. Examples of contours obtained by
a parabolic weight function with apex in origin can be seen on Figures 1.11,
1.14 and 1.17 - see panels titled “Parabolic Depth”.
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• The kernel weighted conic section depth: The conic section depth may be
generalized in a similar way as the band depth is generalized to the kernel
band depth. More details are given in Chapter 4. Examples of contours
for kernel parabolic and kernel hyperbolic weight functions can be seen on
Figures 1.12, 1.15 and 1.18.

• The local kernel depth: Consider w(x,u) = k(x) for some (non-negative)
function k such that ∫

Rp
k(x) dx = 1,

i.e., k is some kernel function. In other words the weight function w does
not depend on the directions u ∈ Sp. The principal difference from the
probability density kernel estimation is that the kernel function k is consid-
ered fixed with respect to the sample size; the “bandwidth” of k is a fixed
value. More details are given in Chapter 4 in the Section 4.2.

0

u

0

u

Figure 2.4: The kernel band depth weight functions - triangular and Gaussian
kernel.

Example 5 (Localization of the depth function). The weight function that fol-
lows is a slight modification of the weight function in (2.7). If we replace the
indicator of a halfspace with a function of the distance from the boundary of the
halfspace we can obtain a depth function that is local. Usual choice is the func-
tion that decreases with increasing distance from the boundary. More precisely,
suppose a function g : R→ [0,+∞). Further suppose

lim
|t|→+∞

g(t) = 0.

Then we can modify the weight function in (2.7) as follows

w(x,u) = g(〈x,u〉) k(‖x− 〈x,u〉u‖).

It proposes a class of localized generalized halfspace depth that can only respect
a local geometry of the data. For instance if k ≡ 1 and

g(t) = 1 {〈x,u〉 ≥ 0} e−λt2 ,

where λ > 0 we obtain the localized halfspace depth with rate of localization λ.
The localized halfspace depth introduced in [Agostinelli & Romanazzi, 2011] and
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briefly mentioned in Subsection 1.4.9 is also a member of this class of localized
generalized halfspace depth functions.

It is not easy to calculate the depth function for arbitrary point x ∈ Rp. We
show a “classical” example.

Example 6. Let X be a two dimensional random vector with Gaussian distri-
bution N2(0, I2). Suppose we have a band weight function (2.5) for given d > 0.

First we show that for an arbitrary point x it holds

Dw(x) = inf
‖u‖=1

Ew(X − x,u) = Ew(X − x,x/‖x‖).

It means that “minimal” direction is the direction along the ray which connects
the origin and x. Without loss of generality we can assume that x = (0, x2)

T

(the distribution is symmetric about 0 and also about any line containing 0). For
such point x let u = (0, 1)T . See also Fig. 2.11 for illustration of the following
ideas.

One has

Ew
(
(x1, x2)

T , (0, 1)T
)

= P(X2 > x2, −d/2 < X1 < d/2)

=
(
1− Φ(x2)

)(
Φ(d/2)− Φ(−d/2)

)
,

where Φ is the distribution function of N (0, 1). For any other direction u 6=
(0, 1)T and w(x,u) there exists uniquely determined rotation A such that Au =
(0, 1)T and AX = X ′ ∼ N2(0, I2). For x = (0, x2)

T it holds Ax = x′ where
x2 > x′2. It holds that

Ew(x,u) = Ew
(
x′, (0, 1)T

)
= P(X ′2 ≥ x′2)P(x′1 − d/2 < X ′1 < x′1 + d/2)

= (1− Φ(x′2))(Φ(x′1 + d/2)− Φ(x′1 − d/2)).

The expression can be rewritten as follows

Ew(x,u) =
(
1− Φ(x2 sinα)

)
·
(
Φ(x2 cosα + d/2)− Φ(x2 cosα− d/2)

)
,

where α = π/2 − ]
(
u, (0, 1)T

)
. Its derivative with respect to α is equal to 0

for α = π/2. Hence π/2 is the point of local extrema. Further the derivative is
negative for α = 0. It offers that the function decreases on the interval [0, π/2).
Unfortunately it is hard to show that the derivative is negative for all (0, π/2)
but numerical computations suggest that the derivative is really negative. Thus
the depth of the point (0, x2)

T most likely is

Dw((0, x2)
T ) =

(
1− Φ(x2)

)(
Φ(d/2)− Φ(−d/2)

)
.

Since AX is N2(0, I2) for any orthogonal matrix A one has that the depth of
arbitrary point x ∈ Rp is

Dw(x) =
(
1− Φ(‖x‖)

)(
Φ(d/2)− Φ(−d/2)

)
.
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This example is rewritten in Section 2.3 for the weighted halfspaces ratio depth.
Mentioned depth can be computed exactly without need for numerical computa-
tions.

2.2 Properties of the Generalized Halfspace

Depth

Let us turn our attention to the basic properties of the generalised halfspace
depth. All the results that follow hold for an absolutely continuous distribution
P and also for an empirical distribution Pn (and therefore for the empirical depth)
as well.

First of all we will show that under a natural condition on the weight function
the generalised halfspace depth is vanishing at infinity.

Theorem 1 (Vanishing at infinity). Consider a weight function w such that for
all u ∈ Sp it holds

lim
k→∞

sup
x: 〈x,u〉≤−k

w(x,u) = 0. (2.9)

Then for any probability measure P it holds that

lim
‖x‖→∞

Dw(x; P) = 0.

Proof. Suppose a random vector X with distribution P . To prove the theorem
we use the following two properties.
1. Since every probability measure on metric space Rp is tight, i.e., for arbitrary
ε > 0 there exists a constant r1 such that P(‖X‖ > r1) < ε. Hence

P(〈X,x/‖x‖〉 > r1) < ε, ∀x ∈ Rp.

2. From equation (2.9) it follows (by shifting w to x and by using the definition
of limit) that for arbitrary ε > 0 there exist a constant r2 such that ∀x ∈ Rp

sup
y: 〈y−x,x/‖x‖〉≤−r2

w(y − x,x/‖x‖)

= sup
y: 〈y,x/‖x‖〉≤‖x‖−r2

w(y − x,x/‖x‖) < ε, ∀x ∈ Rp.

These facts are sufficient to finish the proof (see Figure 2.5). For arbitrary
ε > 0 there exist constants r1, r2 such that if ‖x‖ > r1 + r2 then

P(〈X,x/‖x‖〉 > r1) < ε,

and since ‖x‖ − r2 > r1 it holds

sup
y: 〈y,x/‖x‖〉≤r1

w(y − x,x/‖x‖) ≤ sup
y: 〈y,x/‖x‖〉≤‖x‖−r2

w(y − x,x/‖x‖) < ε.

38



2.2. Properties of GHD CHAPTER 2. WEIGHTED DEPTHS

x

r2

r1
x/‖x‖

0

P < ε &

w
w < ε

P ≥ 1− ε &

w ≥ ε

Figure 2.5: Depth is vanishing at infinity. Grey region indicates the weight
function for the point x and in the direction x/‖x‖. The light blue region has
probability smaller than ε and the weight function there can attain arbitrary
values. The white region is the region where the weight function is less than ε.

Indeed: the weight function w is evaluated far from the origin so that w is small
enough on a halfspace, {y : 〈y,x/‖x‖〉 ≤ r1}, with probability greater than
1− ε. Hence, if ‖x‖ > r1 + r2 then

Dw(x; P) = inf
‖u‖=1

Ew(X − x,u) ≤ Ew(X − x,x/‖x‖)

=

∫
y: 〈y,x/‖x‖〉>r1

w(y − x,x/‖x‖) dP(y)

+

∫
y: 〈y,x/‖x‖〉≤r1

w(y − x,x/‖x‖) dP(y)

≤LP(〈X,x/‖x‖〉 > r1) + εP(〈X,x/‖x‖〉 ≤ r1) ≤ Lε+ ε.

(2.10)

where L is constant such that w ≤ L (w is bounded). �

General formulation of the theorem may seem little bit formal. Now we rewrite
the theorem for spherically symmetric weight functions.

Corollary 2 (Vanishing at infinity). Consider a nonnegative spherically sym-
metric weight function w(x,u) = h(‖x− 〈u,x〉u‖, 〈u,x〉) such that

lim
z→−∞

sup
d≥0

h(d, z) = 0 (2.11)

holds. Then
lim

‖x‖→∞
Dw(x; P) = 0.

Remark 4. All the weight functions considered in this thesis satisfy either condi-
tion (2.11) or condition (2.9).

Proof of Corollary 2. Validity of (2.9) follows from the definition of spherically
symmetric weight functions (see Defintion 7) and from (2.11). �
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Vanishing at infinity is one of the so called key properties (see Def. 1).
The generalized halfspace depth does not in general satisfy the other three
key properties. The depth function is not affine invariant but there exists a
modification of the depth that satisfies this property. The depth also needs not
to attain its maximum in the center of symmetry and needs not to decrease
along rays starting in the deepest point. Fig. 1.6 shows an illustration of the case
where these properties need not to hold for the weight function whose “width”
is not high (e.g. the band weight function (2.5) with d less than distance of the
rectangles).

One of the disadvantage of the halfspace depth, simplicial depth and some
other known depth functions is that a point outside a support of distribution can
attain relatively high values of depth. A properly chosen weight function can
overcome this property. For instance consider a weight functions to be as shown
on Fig. 2.6 (gray regions). It shows “banana” shaped data. The left panel shows
the halfspace depth contours. Even a point x that is quite far from the data
cloud has significantly nonzero depth. It leads to convex contours that are going
through regions with no data. On the other hand if we choose a weight function
shown on the right panel of Fig. 2.6 the depth of a point x that lies on border of
the data is equal to zero. It leads to contours that more respect the shape of the
data.

x

x

Figure 2.6: In contrast to the halfspace depth there exists a weight function for
which a point outside a support attains zero depth value.

The latter we write as a remark without the proof.

Remark 5. For a probability distribution satisfying that its zero measure sets’
radius is greater than a given value δ > 0 there exists a weight function w such
that Dw(x) = 0 for all x outside the support of the distribution and Dw(x) > 0
for all x inside the support. Note that this condition is only sufficient conditions.

The value of depth of any point depends on the weight function. To asses how
deep a point is, one may be interested in limits for the depth function.

Theorem 3. Suppose a weight function such that 0 ≤ w ≤ L. Then for any
x ∈ Rp and any probability measure P on Rp it holds that

0 ≤ Dw(x; P) ≤ L.
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Proof. It is clear because

0 ≤ EP w(X − x,u) ≤ L ∀u ∈ Sp.

�

The generalized halfspace depth in general is not affine invariant. But it can
be shown that it is rotation and translation invariant.

Theorem 4 (Rotation and translation invariance). The generalised halfspace
depth is translation invariant. If w is moreover a spherically symmetric weight
function then the generalised halfspace depth defined on Euclidean space is also
rotation invariant, i.e.

Dw(Ax+ a; AX + a) = Dw(x;X)

for any orthogonal matrix A ∈ Rp×p and any vector a ∈ Rp.

Proof. It is easy to see that the depth is translation invariant for any weight
function.

Consider a spherically symmetric weight function and an orthogonal matrix
A. It holds (due to the orthogonality of A)

〈Av,A(X − x)〉 = 〈v,X − x〉, ∀v ∈ Sp

and

‖Ay‖ = ‖y‖, ∀y ∈ Rp.

Hence

Dw(Ax+ a; AX + a) = inf
‖u‖=1

Ew(A(X − x),u)

= inf
‖u‖=1

Eh(‖A(X − x)− 〈u,A(X − x)〉u‖, 〈u,A(X − x)〉)

= inf
‖v‖=1

Eh(‖A(X − x)− 〈Av,A(X − x)〉Av‖, 〈Av,A(X − x)〉)

= inf
‖v‖=1

Eh(‖A[(X − x)− 〈v,X − x〉v]‖, 〈v,X − x〉)

= inf
‖v‖=1

Eh(‖(X − x)− 〈v,X − x〉v‖, 〈v,X − x〉) = Dw(x;X).

�

Note that a spherical symmetry is only a sufficient condition. It is not diffi-
cult to find a non-spherically symmetric weight function that gives also rotation
invariant depth.

In particular, the generalised halfspace depth in general is not invariant to
scale transformations (with different scaling of axes). It is well known that also
the spatial median is not affine equivariant and therefore there has been developed
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so called transformation/retransformation technique for constructing affine equiv-
ariant spatial median, see e.g. [Ilmonen et al., 2012, Chakraborty et al., 1998].
These methods may be also easily applied to the generalised halfspace depth and
we henceforth consider the generalised halfspace depth satisfying conditions of
Theorem 4 to be affine invariant.

On the other hand the affine invariance may be a source of problems. The
depth based classification (in particular with the simple yet natural maximum
depth rule) usually needs to be modified to give good results. The problems
is mainly in the scale invariance of the depth (unlike the probability density
function which is not scale invariant at all). More discussion on the necessary
modification of the depth-based classifiers may be found in [Li et al., 2012] or in
[Hlubinka & Vencalek, 2013].

The affine invariance of the data depth seems to be a natural and desirable
property since it is a natural property of an univariate quantile based depth.
Recall that:

1. The generalised halfspace depth is translation and rotation invariant.

2. There is a transformation/retransformation technique which makes the pro-
posed depth affine invariant if needed.

But note also that:

3. An univariate depth based on quantiles is even invariant to any strictly
monotone transformation as the univariate quantiles itself are equivariant
with respect to such transformation; for multivariate data it is not true at
all – consider , e.g. the log-log transformation and the celebrated halfspace
or simplicial depths. We are usually not surprised that the multivariate
depth is not invariant to such nonlinear transformations.

4. Recall the “protection of the king” interpretation of the depth. The distance
of the “guards” along some axis increases as the coordinates on the axis are
multiplied by a factor greater than one. Hence, the king becomes “less
protected” from the the direction perpendicular to the axis and his depth
decreases.

Hence, we do not consider the full affine invariance (beyond the rotation and
translation one) to be the key property of the depth. But as we have mentioned
above, it is always possible to have fully affine invariant generalised halfspace
depth. In the next definition (one possible) affine invariant modification of the
generalised halfspace depth is presented.

Definition 8 (An affine invariant modification of depth). Suppose that the co-
variance matrix ΣX of a random vector X exists and that it is nonsingular.
Further suppose a spherically symmetric weight function w. Then an affine in-
variant depth function may be defined as

D̃w(x;X) = Dw(Σ
−1/2
X x; Σ

−1/2
X X) = inf

‖u‖=1
Ew
(
Σ
−1/2
X (X − x),u

)
, (2.12)

42



2.2. Properties of GHD CHAPTER 2. WEIGHTED DEPTHS

where Σ
−1/2
X denotes an inverse square root of ΣX .

The sample version for known matrix ΣX is obtained in the same way as
in Definition 5. If we do not know this matrix we use a sample version of the
covariance matrix, Σn, instead. In such case, one has

D̃w,n(x;X) = inf
‖u‖=1

1

n

n∑
i=1

w
(
Σ−1/2n (X i − x),u

)
.

The sample version of matrix has to satisfy affine equivariance property - (2.13).
Since the depth is usually robust (depends on the weight function) the sample co-
variance matrix should also posses this property. The classical sample covariance
matrix,

Σn =
1

n− 1

n∑
i=1

(X i −Xn)(X i −Xn)T ,

satisfies the equivariance property but it is very sensitive to outliers. See
[Stahel, 1981] for overview estimators of ΣX which satisfy the equivariance
property and that are also robust.

Lemma 28 says how we can obtain an inverse square root matrix. First we
need to get inverse of ΣX . Then the lemma is applied for C = Σ−1X . Actually,
there is even no need to calculate inverse of ΣX – we only need to calculate

Λ−1/2 = diag

{
1√
λ1
, . . . , 1√

λp

}
. It is clear that

var
(
Σ
−1/2
X X

)
= Σ

−1/2
X ΣXΣ

−1/2
X = I.

In R the square root matrix can be computed with function sqrtm() in package
expm or by using singular value decomposition - function svd() in R base package.

Remark 6. The nonsingularity of matrix ΣX is not restrictive assumption. If the
covariance matrix is singular, the vectorX lies on a lower dimensional hyperplane
in Rp and hence we may transform X to the lower dimensional random vector
without loosing any information.

In the previous definition any affine equivariant dispersion functional disp(X)
may be used instead of the covariance matrix varX in order to obtain affine
invariant version of the depth (see proof of the Theorem 5). The functional
should satisfy the following properties: for any random vector Z the functional
disp(Z) ∈ Rp×p is a positive definite symmetric nonsingular matrix and for any
nonsingular matrix A ∈ Rp×p it holds that

disp(AZ) = Adisp(Z)AT . (2.13)

There is plenty of papers focused on this topic. For details see [Donoho, 1982],
[Stahel, 1981], [Rousseeuw, 1985].

Theorem 5. Let the weight function w be spherically symmetric and X be a
random vector with positive definite covariance matrix varX = Σ

1/2
X Σ

1/2
X . Then

43



2.2. Properties of GHD CHAPTER 2. WEIGHTED DEPTHS

D̃w defined as (2.12) is affine invariant, i.e. for any nonsingular matrix A ∈
Rp×p, it holds that

D̃w(Ax; AX) = D̃w(x;X).

Proof. It is clear that if w is spherically symmetric then there exists a function
w̃ such that

w(y,u) = w̃(Γuy),

where Γu is an orthogonal matrix such that

Γuu = (0, 0, . . . , 0, 1)T . (2.14)

Matrix Γu exists but it needs not to be unique. On the other hand w̃(Γuy) does
not depend on the choice of matrix Γu since

w̃(Γuy) = h
(√

(Γuy)21 + . . .+ (Γuy)2p−1, (Γuy)p

)
does not depend on the choice of orthogonal matrix satisfying (2.14). Note that
function h is the function from equation (2.3).

Recall that the depth function Dw is rotation invariant for spherically sym-
metric weight functions by Theorem 4. Denoting the set of all orthogonal p × p
matrices by Op, i.e.,

Op = {Γ ∈ Rp×p : ΓΓT = I},
then

Dw(x;X) = inf
‖u‖=1

Ew(X − x,u) = inf
Γ∈Op

E w̃(Γ(X − x)).

Consider first the case varX = ΣX = I and let A be a nonsingular p × p
matrix. Then

D̃w(Ax; AX) = Dw(Σ
−1/2
AX Ax,Σ

−1/2
AX AX)

= inf
Γ∈Op

E w̃(ΓΣ
−1/2
AX A(X − x)).

(2.15)

It must be proved that ΓΣ
−1/2
AX A is an orthogonal matrix. Multiplying the latter

matrix by its transpose results in

(ΓΣ
−1/2
AX A)TΓΣ

−1/2
AX A = AT (Σ

−1/2
AX )TΓTΓΣ

−1/2
AX A = ATΣ−1AXA

= AT (AΣXAT )−1A = AT (AT )−1Σ−1X A−1A

= Σ−1X = I.

(2.16)

Hence, from (2.15), it holds

D̃w(Ax; AX) = inf
Γ∈Op

E w̃(Γ(X − x)) = inf
Γ∈Op

E w̃(ΓΣ
−1/2
X (X − x)) = D̃w(x;X),

by the obvious fact that {ΓΣ
−1/2
AX A : A ∈ Op} = Op.

Consider now a general case with a nonsingular covariance matrix varX =
ΣX 6= I. There exists a random vector Y and a regular matrix D which satisfy
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varY = I and X = DY . By the first part of the proof one has

D̃w(x;X) = D̃w(Dy; DY ) = D̃w(y;Y ),

where ξ = D−1x. And again, using the result from the first part of the proof, we
finally have

D̃w(Ax; AX) = D̃w(ADy; ADY ) = D̃w(y;Y ).

�

We see, that affine invariance is “somehow” connected with elliptical symme-
try. Use covariance matrix ΣX as a measure of dispersion usually makes sense for
elliptically symmetric distributions (in particular normal distribution). For other
than elliptically symmetric distributions use of a covariance matrix as a measure
of dispersion always need not to make sense. Majority of the depth functions
(actually all known depth functions to the author) that are affine invariant does
not work well for non-elliptical distributions.

Unfortunately, the empirical depth is not unbiased estimator of the population
depth in general. Indeed it is even always non-positively biased estimator of the
depth.

Theorem 6 (Biasness). For any weight function and for any probability distri-
bution P it holds

EDw,n(x) ≤ Dw(x; P).

Proof. Since

Dn(x) = inf
‖u‖=1

1

n

n∑
i=1

w(X i − x,u) ≤ 1

n

n∑
i=1

w(X i − x,u), ∀u : ‖u‖ = 1.

then

EDn(x) ≤ E
1

n

n∑
i=1

w(X i − x,u) = Ew(X1 − x,u), ∀u : ‖u‖ = 1.

And finally
EDn(x) ≤ inf

‖u‖=1
Ew(X1 − x,u) = D(x).

�

The exact calculation of bias of the empirical generalised halfspace depth is
typically impossible. Even for the “simplest” halfspace depth it is usually not
possible to find explicit form of the expectation of the sample depth.

In some situations not only the expectation but the empirical depth itself
cannot be larger than the population depth.

Example 7. Consider the uniform distribution on the unit circle (with centre
in the origin). Let us calculate the halfspace depth of the origin. It is clear that
HD(0) = 1/2.
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On the other hand let n = 2k + 1 be a sample size for k ∈ N. Then, clearly,

HD2k+1(0) ≤ k

2k + 1
<

1

2
= HD(0),

hence

EHD2k+1(0) ≤ k

2k + 1
<

1

2
= HD(0).

For any even sample size n = 2k it holds

HD2k(0) ≤ k

2k
=

1

2
= HD(0).

Uniqueness of the deepest point cannot be in general ensured for the genralised
halfspace depth. While for absolutely continuous probability distributions the
halfspace depth gives always the unique deepest point it need not to remain true
for the generalised halfpsace depth.

Figure 2.7: The deepest point may not be unique. The dark red line marks the
set of all deepest points. Minimal bands for some points are shown in light blue
color. Support of the uniform distribution is marked with gray color.

Example 8 (Non-uniqueness of the deepest point). Suppose we have a band
weight function (see (2.5)) of bandwidth 2h defined as

w(x,u) = 1 {‖x− 〈x,u〉u‖ ≤ h & 〈x,u〉 ≥ 0}

and set h = 0.25.
Consider a bivariate uniform distribution on a rectangle [−1, 1] × [−0.5, 0.5]

(see Fig. 2.7). Then it holds that the set of all the deepest points is equal to A =
{[−0.5, 0.5]× {0}} (dark red line in the figure). For any x ∈ A, Dw(x) = 0.25.

Example 9 (Uniqueness of the deepest point). Consider again the weight func-
tion from the previous example. Consider further a bivariate Gaussian distribu-
tion N (0,Σ), where σ11 > σ22, σ12 = σ21 = 0. Then 0 is the unique deepest
point,

Dw(0) =
2Φ(0.25/σ11)− 1

2
.

Again, it is not hard to show that Dw(x) < Dw(0) for any x 6= 0.
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Note that in both examples above we have considered centrally symmetric
distributions (see Section 1.2). It seems that the main reason why there is the
unique deepest point of the Gaussian distribution is its elliptical symmetry to-
gether with the fact that the center is also the modus. We see that it is not
difficult to find centrally symmetric distribution such that the point of symmetry
is not the deepest point and hence there must exist multiple deepest points. The
set of all the deepest points even need not to be connected.

The second reason of possible multiplicity of deepest points is the weight
function, in particular the restricted support of the band weight function; the
support of w is not the whole halfspace {x : 〈x,u〉 ≥ 0} and the complement of
the support does not have the same geometry as the support. The deepest point
of uniform distribution on rectangle is unique if the support of weight function w
is the whole halfspace. Even more, the deepest point of uniform distribution on
a rectangle is unique for the band weight function as well if the bandwidth 2h is
wider than the larger side of the rectangle.

Consider a spherically symmetric weight function (Definition 7) such that

h(t, l) = e−t
2/σ2

1 {l ≥ 0}

(the weight function is shown on the right panel of Fig. 2.4) then in Example 8
we obtain the unique deepest point (equal to 0) also for the uniform distribu-
tion. The reason is that all points in the halfspace are “counted” by the latter
weight function in contrast to the band weight function (especially with small
bandwidth). The parameter σ enables to control a “directional localness.” For
large values of σ the corresponding generalized halfspace depth is similar to the
classical halfspace depth while for small values of σ the results are more local.

In Section 2.3 a version of the weighted depth with the unique deepest in
the centre of symmetry is proposed. Another possibility how to obtain a unique
“deepest point” is to take the geometric centre (i.e., the mean of deepest points
with respect to the Lebesgue measure) of all deepest points. The following theo-
rem shows that such deepest point has symmetric distribution in the case when
P is symmetric distribution.

Theorem 7 (Symmetricity of the deepest point). If the distribution of X is
centrally symmetric about a point θ (i.e. X − θ and −(X − θ) are identically
distributed), then the distribution of the geometric centre of the set of all the
sample deepest points is also symmetric about the population centre θ.

Proof. It follows easily from the symmetry of distribution of X, the orthogonal
invariance of the generalised halfspace depth (Theorem 4), and the fact that the
geometric centre is equivariant to all orthogonal transformations. For more details
see also [Liu et al., 1999], Proposition 3.1, where the result is proved for an affine
invariant depth function, but it remains the same in the case of invariance to only
orthogonal transformations.

Briefly: Without loss of generality suppose θ = 0. Denote by θ̂(X1, . . . ,Xn)
the geometric center of all sample deepest points based on the random sample
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X1, . . . ,Xn. The proof is based on the fact that

θ̂(−X1, . . . ,−Xn) = −θ̂(X1, . . . ,Xn).

This equation is valid because of the symmetry, invariance of the depth against
orthogonal transformations and the equivariance of the geometric center against
all orthogonal transformations of the set of all sample deepest points.

�

The theorem has one useful corollary.

Corollary 8. Suppose that the conditions of Theorem 7 hold. Then the geomet-
ric center of the set of all the sample deepest points is unbiased estimator of a
population center θ.

Proof. As a consequence of symmetry (Theorem 7) it holds

E
(
θ̂(X1, . . . ,Xn)− θ

)
= −E

(
θ̂(X1, . . . ,Xn)− θ

)
.

Hence
E θ̂(X1, . . . ,Xn) = θ.

�

Remark 7. In the latter corollary the geometric center functional can be replaced
with any functional that assigns an unique point to any set of points and that is
affine equivariant against orthogonal transformations of this set.

Theorem 6 and Example 7 show that the depth is biased. Fortunately, biase-
ness does not affect the “order” of the deepest point and thus the sample deepest
point is unbiased estimator.

2.3 The Weighted Halfspaces Ratio Depth

In this section we propose depth function derived from the generalized halfspace
depth which produces the unique deepest point and it still keeps some of the
advantages of the generalized halfspace depth. Actually, our first proposal of the
depth that allows us to have noncovex contours (and hence eliminate the cases
when the deepest point lie outside the support of a distribution) was the depth
defined in this section.

Majority of the results derived in this section are consequences of the results
for the generalized halfspace depth. The generalized halfspace depth seems to be
more intuitive and also posses better properties. This is the reason why we first
introduced the generalized halfspace depth.

The main idea of the depth introduced in this section is to use ratio of
weighted probability of opposite halfspaces instead of only weighted probability of
a (half)space. Using same notation as in previous sections we define the weighted
halfsapces ratio depth (WHRD) in the following manner.
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Definition 9 (WHRD). Suppose a measurable bounded weight function

w : Rp × Sp −→ R.

The weighted halfsapces ratio depth of a point x ∈ Rp with respect to the weight
function w and probability distribution P of a random vector X ∈ Rp is defined
as

RDw(x) = inf
‖u‖=1

Ew(X − x,u)

Ew(X − x,−u)
. (2.17)

The sample version is defined as

RDw,n(x) = inf
‖u‖=1

Enw(X − x,u)

Enw(X − x,−u)
= inf
‖u‖=1

∑n
i=1w(X i − x,u)∑n
i=1w(X i − x,−u)

.

The term 0/0 is in both cases defined to be 1.

The definition, for the band weight function (see (2.5)), is illustrated on
Fig. 2.8. Examples of contours for the weighted halfspaces ratio depth for the
band and cone weight functions, (2.5) and (2.6), can be seen on Figures 1.12, 1.15
and 1.18.

Similarly, as in the case of generalized halfspace depth, we can obtain the
halfspace depth if we choose the weight function to be equal to the indicator of
a halfspace. But for this purpose it is better to use an alternative definition of
WHRD:

Definition 10 (WHRD II). Define depth function

R̂Dw(x) = inf
‖u‖=1

Ew(X − x,u)

Ew(X − x,u) + Ew(X − x,−u)
, (2.18)

for a weight function w; the ratio 0/(0 + 0) is now defined as 1/2.

The depth functions RD and R̂D are equivalent in the sense of the multivariate
ordering:

Theorem 9. For any weight function w and for all x, x1, x2 ∈ Rp the equivalence

RDw(x1) ≤ RDw(x2) ⇐⇒ R̂Dw(x1) ≤ R̂Dw(x2) (2.19)

holds. Moreover,

R̂Dw(x) ≤ 1

2
, (2.20)

and

RDw(x) =
R̂Dw(x)

1− R̂Dw(x)
. (2.21)

Proof. The proof of (2.20) is very similar to the proof of Theorem 10 that will
follow:

R̂Dw(x) = inf
‖u‖=1

Ew(X − x,u)

Ew(X − x,u) + Ew(X − x,−u)
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= inf
‖u‖=1

min

{
Ew(X − x,u)

Ew(X − x,u) + Ew(X − x,−u)
,

Ew(X − x,−u)

Ew(X − x,u) + Ew(X − x,−u)

}
≤ 1

2
.

Denote for fixed u ∈ Sp

v+ = Ew(X − x,u)

and
v− = Ew(X − x,−u).

If v− > 0 then

v+
v−

=
v+

v− + v+

(
v−

v− + v+

)−1
=

v+
v− + v+

(
1− v+

v− + v+

)−1
. (2.22)

If v− = 0 and v+ > 0 then v− and v+ in (2.22) may be interchanged (see arguments
for (2.20)).

If both v− = v+ = 0 then the 0/0 ratios are defined as

v+
v−

= 1,

v+
v− + v+

=
1

2
.

It follows

v+
v−

=
v+

v− + v+

(
1− v+

v− + v+

)−1
=

1

2

(
1− 1

2

)−1
= 1.

Equation(2.21) now follows from definition of v+ and v−.
Since the function

x 7→ x/(1− x)

is increasing in x for x ∈ [0, 1/2], the equivalence (2.19) follows. �

Remark 8. The previous theorem shows that the depth (2.18) is in some sense a
direct generalisation of the halfspace depth. Indeed, the halfspace depth HD(x)

is for absolutely continuous distributions equal to R̂Dw(x) for the weight function
defined in equation (2.4) of Example 4.
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x
u−u

B+(x, u)B−(x, u)

d/2

Figure 2.8: The band weight function for the weighted halfspaces ratio depth.
Numerator function is in blue colour, denominator function in gray color.

Example 10. Consider the band (cylinder) weight function (see (2.5) in Exam-
ple 4). In particular, for R2 the definition has the following meaning (see also
Fig. 2.8). Given a fixed point x ∈ R2 and a direction u ∈ S2, we consider a line
l = x+ tu, t ∈ R for which a band with width d

B(x,u) = {y ∈ R2 : dist(y, l) ≤ d/2}

is defined (dist denotes the Euclidean distance). The band B(x,u) is divided
by a segment orthogonal to u and containing x into two half-bands B+(x,u)
and B−(x,u). Denoting p+(x,u) and p−(x,u) the probabilities of B+(x,u) and
B−(x,u) respectively, the band WRHD becomes

RDd(x) = inf
‖u‖=1

p+(x,u)

p−(x,u)
.

The sample version is calculated from the number of observations in B+(x,u)
and B−(x,u). The depth from the alternative definition (Def. 10) is in the form

R̂Dd(x) = inf
‖u‖=1

p+(x,u)

p−(x,u) + p+(x,u)
.

The example is connected with our motivation mentioned in introduction
chapter - with directional quantiles, see Section 5.1 for more informations. Sup-
pose that a minimal direction exists and denote it by u0. Consider a representa-
tion of a point (y − x) ∈ Rp as (r;u), in the form

y − x = ru,

where r ∈ R and u ∈ Sp ∩ {v : vp ≥ 0}. Latter representation is similar to
a representation in spherical coordinates system. Representation of the random
vector X − x (random vector shifted to x) we denote by (R;U). Then it can be
shown that it holds

lim
d→0+

R̂Dd(x) = P (R ≥ 0|U = u0) .

Hence the deepest point is well balanced with respect to the conditional proba-
bility mass on lines going through this point. This property was one of our goals
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when we searched for suitable centre for directional approach. The same result
can be shown using the cone weight function (2.6) when α→ 0 + .

2.4 Properties of the Weighted Halfspaces Ra-

tio Depth

Let us summarise some facts about the depth function RD. There is one advan-
tage in comparison to the generalized halfspace depth - WHRD is always between
0 and 1.

Theorem 10. Suppose a weight function w ≥ 0. Then for any probability measure
P on Rp and any x ∈ Rp it holds

0 ≤ RDw(x; P) ≤ 1.

Proof. The first inequality is clear.
For the second inequality it is not difficult to see that

min

{
Ew(X − x,u)

Ew(X − x,−u)
,
Ew(X − x,−u)

Ew(X − x,u)

}
≤ 1

It follows

RDw(x) = inf
‖u‖=1

Ew(X − x,u)

Ew(X − x,−u)

= inf
‖u‖=1

min

{
Ew(X − x,u)

Ew(X − x,−u)
,
Ew(X − x,−u)

Ew(X − x,u)

}
≤ 1.

�

Similarly as in the case of the generalized halfspace depth we can prove that
WHRD vanishes at infinity. We need to assume additional assumptions.

Theorem 11 (Vanishing at infinity). Suppose a continuous distribution and a
spherically symmetric weight function. Further suppose that

w(x,u) = l
(
‖x− 〈u,x〉u‖

)
m
(
〈u,x〉

)
,

where

1. l : [0,+∞) −→ [0,+∞) is nonincreasing function, l is bounded and l(0) >
0,

2. m : R −→ [0,+∞) is nondecreasing function on [0,+∞), m is bounded
and

lim
z→−∞

m(z) = 0.
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Then
lim

‖x‖→+∞
RDw(x) = 0.

Note 9. Conditions from the theorem are only sufficient conditions.

w(· − x, u0)

w(· − x,−u0)

u0
−u0

w(· − x, u0) is small enough

P > 1− ε
x0 > r

Figure 2.9: WHRD vanishes at infinity. Illustration for the proof of Theorem
11. Support is in gray color. The weight function in a direction u0 (resp. in a
direction −u0) is marked with red color (resp. with blue color). The green circle
denotes the sphere with probability greater than 1− ε.

Proof of Theorem 11. The proof is very similar to the proof of Theorem 1. Thus
the proof is not shown here in detail. Figure 2.9 illustrates the ideas of the proof.

Briefly: Under theorem’s assumptions the following hold. For any ε > 0 there
exists r = r1 + r2 > 0 satisfying:

(a) P({y : ‖y‖ > r1}) < ε,

(b) if ‖x‖ > r then there exists a direction u0 such that

(c) Ew(X − x,−u0) & O(ε) (Since m is nondecreasing on [0,+∞) and
1. holds.),

(d) Ew(X − x,u0) ≈ o(ε) (Since (a) and 2. hold we can move x until r2
is high enough for validity of this property.).

Fact that upper bound for the depth of x is

Ew(X − x,u0)

Ew(X − x,−u0)

finishes the proof. �

Theorem 12. The depth function RDw defined by (2.17) is translation invariant.
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Proof. It follows directly from the definition that

RDw(x+ a;X + a) = RDw(x;X).

�

Theorem 13. Suppose a spherically symmetric weight function. Then the depth
function defined by (2.17) is rotation invariant.

Proof. The proof follows the lines of the proof of Theorem 4. For the numerator
and denominator the same equations as are in the proof hold. �

We can obtain affine invariance property in the same way as in the case of the
generalized halfspace depth (Definition 8 and Theorem 5).

Theorem 14 (Affine invariant modification of WHRD). Suppose that the co-
variance matrix ΣX of a random vector X exists and that it is positive define.
Further suppose a spherically symmetric weight function w. Then the depth func-
tion defined as

R̃Dw(x;X) = RDw(Σ
−1/2
X x; Σ

−1/2
X X) = inf

‖u‖=1

Ew(Σ
−1/2
X (X − x),u)

Ew(Σ
−1/2
X (X − x),−u)

, (2.23)

where, again, Σ
−1/2
X denotes an inverse square root of ΣX (Σ

−1/2
X Σ

−1/2
X = Σ−1X ),

is affine invariant. In other words, for any nonsingular matrix A ∈ Rp×p it holds
that

R̃Dw(Ax; AX) = R̃Dw(x;X).

The sample version is defined the same way as the sample version of the affine
invariant modification of the generalized halfspace depth - an affine equivariant
sample dispersion matrix is substituted for the covariance matrix.

Proof of Theorem 14. The proof is almost the same as the proof of Theorem 5.
Only one difference is in the denominator. In the first part of the proof we use
relation Γ−u = −Γu. If we follow the lines of the proof, the expression (2.15) will
be in the form

R̃Dw(Ax; AX) = inf
Γ∈Op

E w̃(ΓΣ
−1/2
AX A(X − x))

E w̃(−ΓΣ
−1/2
AX A(X − x))

.

From equation (2.16) it follows that −ΓΣ
−1/2
AX A is also orthogonal matrix and

hence
R̃Dw(Ax; AX) = R̃Dw(x;X).

That finishes the part of the proof when ΣX = I.
The part of the proof for a general covariance matrix ΣX remains the same.

�
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Remark 10. Remark 5 and the thoughts in the text preceding the remark also
hold here, i.e. for any distribution we can find a weight function such that the
depth is zero outside the support of the distribution.

In previous sections we saw that the generalized halfspace depth does not
have to attain its maximum value in the center even in the case of symmetric
distributions. One of the advantage of WHRD is that it provides us with the
deepest point in the center of symmetry (see Theorems 15, 16). There is also
usually the unique deepest point, especially for symmetric distributions. On the
other hand WHRD in general does not give us a unique deepest point even in a
situation of an absolutely continuous distribution with connected support.

Example 11. Let us consider a uniform distribution on a set

S = {(x1,x2)T : 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 1}
∪ {(x1, x2)T : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 10}.

Let us consider the band weight function (see (2.5) and Example 10) with a small
d, say d = 1/10, and the corresponding WHRD function. From the shape of
the support S it follows that the only unique deepest point may lie on a line
x1 = x2 only. It can be seen that for any point x on the line x1 = x2 it holds
RD(x) ≤ 1/9.

Consider the point z = (5, 1/2)T . After some calculations we get RD(z) >
1/9 ≥ RD(x) for any x = (x1, x1)

T . Indeed, the lower estimate for RD(z) may
be obtained considering a line l connecting z and the point (0, 10)T together
with a band of the width d around l and, on the other hand considering a line l′

connecting z and the point (5, 0)T with the same band around. See Figure 2.10
for a visualisation of this example.

RD(x) ≤ 1/9

z, RD(z) > 1/9

Figure 2.10: The deepest point need not to be unique, see Example 11.

In this example there is no natural central point although the distribution
is symmetric about the line x2 = x1. There are two deepest points (symmetric
about the line of symmetry). The central regions are symmetric about the x1 = x2
axis as well.

In general the WHRD does not satisfy two of the key properties. The depth
is not affine invariant. Although, as shown in the previous theorem, an affine
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invariant modification exists. And it needs not to decrease along the rays be-
ginning in the deepest point. In Example 11 there is not any “natural” deepest
point. On the other hand, if there exists an intuitive deepest point, like the point
of central symmetry, we would like to prove that it is the deepest point for the
WHRD. Indeed it is, in contrast to the generalized halfspace depth, the case for
a suitable weight function.

Theorem 15. Let the weight function w be spherically symmetric and suppose
that the distribution of X is centrally symmetric about a point θ. Then

RDw(x) ≤ RDw(θ) = 1, ∀x ∈ Rp.

Proof. It can be assumed that θ = 0 without loss of generality (the translation
invariance of depth function RDw). Since w is spherically symmetric it holds

w(x,u) = w(−x,−u), ∀x ∈ Rp, u ∈ Sp. (2.24)

It follows that

Ew(X,u) = Ew(−X,−u) = Ew(X,−u).

The first equality is the consequence of (2.24), the second equality is the conse-
quence of the fact that X is centrally symmetric about 0. Thus RDw(0) = 1.
The fact that RDw(x) ≤ 1, ∀x, (see Theorem 10) completes the proof. �

Latter result may be extended to angular symmetric distributions.

Theorem 16. Let w be spherically symmetric and suppose that the distribution
of X is angular symmetric about point θ. If w is such that

w(kx,u) = w(x,u), ∀x ∈ Rp, k ≥ 0 (2.25)

then
RDw(x) ≤ RDw(θ) = 1, ∀x ∈ Rp.

Proof. It is analogous to the proof of Theorem 15. Let θ = 0 without loss of
generality. Under the assumption (2.25) it holds

Ew(X,−u) = Ew(−X,u) = Ew(−X/‖X‖,u)

= Ew(X/‖X‖,u) = Ew(X,u)

for all u ∈ Sp. Hence

RDw(0) = inf
‖u‖=1

Ew(X,u)

Ew(X,−u)
= 1.

�

Remark 11. Condition (2.25) says that a weight function is constant along the
rays beginning in the origin.
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x

0

u

(0, 1)T

x′ A

Figure 2.11: The band WHRD for bivariate standard Gaussian distribution. The
gray coloured band is the minimal band.

It is not always easy to calculate the depth of arbitrary point x ∈ Rp. We
finish this section with an example similar to Example 6. Now the calculation is
easier. Note that it does not hold in general that calculation of WHRD is easier
than the generalized halfspace depth calculation.

Example 12. Let X be a two dimensional random vector with Gaussian distri-
bution N (0, I2). Suppose we have the band weight function (2.5) for given d > 0.
We use the same notation as in Example 10, hence

RDd(x) = inf
‖u‖=1

p+(x,u)

p−(x,u)
. (2.26)

Remind that p+(x,u) denotes the probability of the band in the direction u from
the point x and with width d, p−(x,u) denotes the band in opposite direction.
First we show that the minimal direction is the direction along the ray connecting
the origin with point x, i.e. that for an arbitrary point x it holds

RDd(x) = min

{
p+(x,u0)

p−(x,u0)
,
p−(x,u0)

p+(x,u0)

}
for u0 such that 0 ∈ {x+ tu0, t ∈ R}. Without loss of generality we can assume
that x = (0, x2)

T (the distribution is symmetric about 0 and also about any line
containing 0). For such a point x let u = (0, 1)T . It is clear that

w((x1, x2)
T , (0, 1)T ) =

{
1, if − d/2 < x1 < d/2, x2 > 0,

0, otherwise.

In what follows see Fig. 2.11 as an illustration of ideas used in this example. For
any other direction u 6= (0, 1)T there exists an uniquely determined orthogonal
rotation A ∈ Rp×p such that Au = (0, 1)T and AX = X ′ ∼ N (0, I2). For
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x = (0, x2)
T it holds Ax = x′ where x2 > x′2. It holds that

p+(x,u) = p+(x′, (0, 1)T ) = P(X ′2 ≥ x′2)P(x′1 − h < X ′1 < x′1 + h)

= (1− Φ(x′2))P(x′1 − h < X ′1 < x′1 + h),

p−(x,u) = Φ(x′2)P(x′1 − h < X ′1 < x′1 + h)

where Φ denotes the distribution function of N (0, 1). Since Φ(x2) > Φ(x′2) it
follows

p+(x,u)

p−(x,u)
=

1− Φ(x′2)

Φ(x′2)
>

1− Φ(x2)

Φ(x2)
=
p+(x, (0, 1)T )

p−(x, (0, 1)T )
.

Hence

RDd(x) =
1− Φ(x2)

Φ(x2)
.

Since both the depth function and the distribution are invariant with respect to
an orthogonal rotation, it follows that for any y ∈ R2

RDd(y) = RDd

(
(0, ‖y‖)T

)
=

1− Φ(‖y‖)
Φ(‖y‖) .

The depth does not depend on the value of d and it is equivalent to the halfspace
depth (see Theorem 14).

2.5 Computational Aspects

We shortly discuss the computational aspects of the sample depth computation.
Since the weighted halfspace depths (GHD, WHRD) are defined for a broad class
of weight functions, a general fast algorithm for the depth computing does not
exist. Also, the theoretical depth of a point x under a general absolutely con-
tinuous distribution P cannot be usually calculated exactly and some numerical
approximation is needed. It is caused by the fact that w(x,u) can attain different
values for every transformation u ∈ Sp, which means that possibly uncountable
number of values must be considered.

On the other hand, in some special cases the sample depth may be calculated
exactly. It is the case when the weight function is piecewise constant. The cone
depth (2.6), the band depth (2.5), the halfspace depth (2.4) are, in particular,
examples of such depths. The set {∑n

i=1w(X i−x),u), u ∈ Sp} is finite for each
x in such a case.

Straightforward algorithm is used to calculate the sample depth of a given
point x. It uses a predefined number of vectors in Sp which represent directions
(usually halfspaces) in which we compute sample weighted probability. For every
such vector we calculate the sample weighted probability. The depth is set to the
smallest value of weighted probability (GHD) or of portions of sample weighted
probabilities in directions u and −u (WHRD). For sample size n the calculation
of weighted probability takes O(n) steps. There are k directions (we usually set
k = 1000, which brings very precise answer), hence computation of the depth of
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a given point takes O(kn) steps. If one wants to compute the depth of all points
in dataset it takes O(kn2) steps.

When we use Fortran and C programming languages and when sample size
n = 1000 then the sample depth calculation of all points in the dataset takes
about 20 – 50 seconds on average current (2014) computer. In R, MATLAB and
similar programs, the calculation usually takes much longer (in R almost 100 fold
increase of computational time). For the sample depth calculation the routines
were programmed in Fortran and C and they were compiled as dynamic libraries.
These libraries were linked to R via R functions. Hence for work with data the R
programming language was used. Source files for Fortran, C and R can be provided
by the author if requested. For a large datasets in higher dimension computation
speed improvement can be achieved if GPU parallel computing (e.g. NVIDIA
CUDA platform) is used.
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Chapter 3

Consistency and Some Other
Asymptotical Properties

The strong consistency of the sample version of the proposed depth functions is
discussed in this chapter. First the consistency of the generalized halfspace depth
is shown. The consistency of the weighted halfspaces ratio depth is obtained by
slight expansion of the results and statements in the proofs of consistency of the
generalized halfspace depth. As we will see, compared to former depth, the latter
depth need not to be uniformly consistent over Rp.

The proof for both depth functions is based on Uniform law of large numbers.
For more details about this law see Appendix. Results about strong consistency
first appeared in [Kot́ık, 2009] and in [Hlubinka et al., 2010].

3.1 Consistency of the Sample Generalized

Halfspace Depth

In this section we prove that Dw,n(x) is uniformly strong consistent, i.e.,

sup
x∈Rp

∣∣Dw,n(x)−Dw(x)
∣∣ n→∞−−−→ 0 almost sure

for any absolutely continuous multivariate distribution, for regular weight func-
tion (as stated in Theorem 17), and without any assumption on moments.

Note 12. The regularity of the weight function needs some continuity assumption.
Since the weight function w is defined on Rp × Sp the convergence

(yT ,uT )T −→ (xT ,vT )T

on Rp × Sp is defined in the sense

‖x− y‖+ ] (u,v) −→ 0. (3.1)

Theorem 17 (Uniform strong consistency). Consider a random sample X1, . . . ,
Xn from an absolutely continuous distribution P and suppose a weight function
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w satisfying

lim
(yT ,uT )T→(xT ,vT )T

w(y,u) = w(x,v) for a.a. x ∈ Rp and for all v ∈ Sp. (3.2)

Further suppose that

lim
k→∞

sup
u∈Sp

sup
x:〈x,u〉≤−k

w(x,u) = 0. (3.3)

Then
sup
x∈Rp

∣∣Dw,n(x)−Dw(x)
∣∣ n→+∞−−−−→ 0 almost surely. (3.4)

Note 13. Recall that the weight function is supposed to be measurable and
bounded (see Definition 5).

Note 14. Equation (3.3) means that for arbitrary u ∈ Sp a function w(·,u)
uniformly vanishes at infinity in the halfspace with normal vector given by −u.
Every weight function should posses this property.

Note also that for the spherically symmetric weight functions the condition
(3.3) is equivalent to the condition (2.11), i.e. the convergence is always uniform
in u ∈ Sp.

Finally note that for weight functions like halfspace, band (cylinder), kernel
band (see Example 4) it holds w(x, u) = 0 if 〈x,u〉 < 0 and (3.3) holds trivially.

Proof of Theorem 17. First the uniform strong consistency over a compact set,
(3.5), is shown. This result is then extended to whole Rp.

Now we show the uniform strong consistency over any compact set, i.e., for
arbitrary compact set C ⊂ Rp it holds that

sup
x∈C

∣∣Dw,n(x)−Dw(x)
∣∣ n→+∞−−−−→ a.s. (3.5)

It is sufficient to show that the class of functions

G = {z 7→ w(z − x,u) : u ∈ Sp, x ∈ C} (3.6)

satisfies the Uniform law of large numbers (ULLN) with respect to the probability
measure P . Indeed, if the class (3.6) satisfies the ULLN then (see Appendix and
Theorem 31 in particular)

sup
u∈Sp, x∈C

∣∣∣∣∣ 1n
n∑
i=1

w(X i − x,u)− Ew(X − x,u)

∣∣∣∣∣ n→+∞−−−−→ 0 a.s. (3.7)

and since (see Lemma 29 for the following inequality)

sup
x∈C

∣∣∣∣∣ inf
u∈Sp

1

n

n∑
i=1

w(X i − x,u)− inf
u∈Sp

Ew(X − x,u)

∣∣∣∣∣
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≤ sup
x∈C, u∈Sp

∣∣∣∣∣ 1n
n∑
i=1

w(X i − x,u)− Ew(X − x,u)

∣∣∣∣∣ n→+∞−−−−→ 0 a.s. (3.8)

We will prove that the standard bracketing sufficient condition for the ULLN (see
Theorem 31) holds for the class (3.6), i.e., that

H1,B(ε,G,P) < +∞, ∀ε > 0,

where H1,B(ε,G,P) denotes entropy with ε–bracketing of G for L1(P)–metric.

The bracketing functions are constructed as local suprema and infima of (3.6).
Define functions WU

x,s(z;ϕ, ξ) and WL
x,s(z; ξ, ϕ) for all s ∈ Sp, x ∈ C and 0 <

ϕ < π, ξ > 0 as

WU
x,s(z; ξ, ϕ) = sup

{
w(z − a,u) : a ∈ Rp, ‖a− x‖ ≤ ξ; u ∈ Sp,] (u, s) ≤ ϕ

}
,

WL
x,s(z; ξ, ϕ) = inf

{
w(z − a,u) : a ∈ Rp, ‖a− x‖ ≤ ξ; u ∈ Sp,] (u, s) ≤ ϕ

}
.

It is clear that

WL
x,s(z; ξ, ϕ) ≤ w(z − a,u) ≤ WU

x,s(z; ξ, ϕ) (3.9)

holds for all z ∈ Rp and for all a,u such that ‖a− x‖ < ξ and ] (u, s) < ϕ.
It follows from Lemma 30 that WL

x,s(·; ξ, ϕ) and WU
x,s(·; ξ, ϕ) are nonnegative

measurable functions on Rp for any x ∈ Rp,u ∈ Sp, ξ > 0, ϕ > 0.
The next step is to show that for any ε > 0 and for an arbitrary unit vector

s ∈ Sp and any x ∈ C there exist ξ, ϕ > 0 such that bracketing functions
WL
x,s(·; ξ, ϕ) and WU

x,s(·; ξ, ϕ) are ε-close to w(· − x, s) in L1(P) metric. Indeed,
as WU and WL are bounded measurable functions it is possible to write

lim
ϕ→0+
ξ→0+

EWU
x,s(X; ξ, ϕ) = E lim

ϕ→0+
ξ→0+

WU
x,s(X; ξ, ϕ) = Ew(X − x, s). (3.10)

We can change the limit and the integral sign in (3.10) because of boundedness
and measurability of WU

x,s(·; ξ, ϕ) by use of Lebesgue’s dominated convergence
theorem. The second equation of (3.10) is a consequence of the continuity condi-
tion (3.2) (recall that we are considering depth for P being absolutely continuous
distribution).

Consider any fixed vectors x, s. It follows from (3.10) that for all ε > 0 there
exists ϕε > 0 and ξε > 0 such that for all ϕ ∈ [0, ϕε) and all ξ ∈ [0, ξε) it holds

E
∣∣WU

x,s(X; ξ, ϕ)− w(X − x, s)
∣∣ =

∣∣EWU
x,s(X; ξ, ϕ)− Ew(X − x, s)

∣∣ < ε.

The first equality follows from the inequality (3.9) - the difference is greater than
0. An analogous result holds for WL

x,s(·; ξ, ϕ) as well.
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Hence for arbitrary x ∈ C and arbitrary s ∈ Sp and any ε > 0 there is a pair
ξε(x, s) > 0 and ϕε(x, s) > 0 such that

sup
ξ<ξε(x,s), ϕ<ϕε(x,s)

E
∣∣WU

x,s(X; ξ, ϕ)−WL
x,s(X; ξ, ϕ)

∣∣ < ε. (3.11)

Now we show that the entropy with ε-bracketing of G is finite. Choose any
ε > 0, and for all couples x ∈ C, s ∈ Sp define sets

Uε(x, s) = {a ∈ Rp : ‖a− x‖ < ξε(x, s)} × {u ∈ Sp : ] (u, s) < ϕε(x, s)} .

The sets Uε(x, s), (x, s) ∈ C ×Sp, form an open covering of the set C ×Sp, i.e.,

C × Sp ⊆
⋃

x∈C, s∈Sp
Uε(x, s),

and as C ×Sp is a compact subset of the metric space (R2p, d2p) (d2p denotes the
usual Euclid distance) it is possible to find a finite subcovering. It means that
there exists finite N ∈ N and points xi ∈ C, si ∈ Sp, i = 1, . . . , N such that

C × Sp ⊆
⋃

i=1,...,N

Uε(xi, si).

It follows that for fixed ε > 0 and any function w(· − a,u) ∈ G there exists
k ∈ {1, . . . , N} such that (a,u) ∈ Uε(xk, sk). Hence, it holds

WL
xk,sk

(
z; ξε(xk, sk), ϕε(xk, sk)

)
≤ w(z − a,u), ∀z ∈ Rp

w(z − a,u) ≤ WU
xk,sk

(
z; ξε(xk, sk), ϕε(xk, sk)

)
, ∀z ∈ Rp.

(3.12)

It follows that the pairs of the functions (WL,WU) in (3.12) for i = 1, . . . , N
form an ε–bracketing for G, and since

H1,B(ε,G,P) ≤ logN < +∞

it follows that (3.7) (the Uniform strong consistency of the sample depth over a
compact set C) is proved.

Now we prove that (3.7) holds on the whole Rp. Uniform strong consistency
of the sample depth over the whole space Rp (3.4) follows from the uniform
strong consistency over an arbitrary compact set together with the tightness of a
probability measure, and condition (3.3).

Choose arbitrary ε > 0. Consider a closed ball C = {x : ‖x‖ ≤ r} ⊂ Rp

such that P(Cc) < ε. Take K > 0 large enough such that w(x,u) < ε for any
x ∈ Rp, u ∈ Sp such that 〈x,u〉 < −K. Denote CK the closed K neighborhood
of C, i.e.

CK = {x : ‖x‖ ≤ r +K}.
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Then the following 2 properties hold for all ω ∈ A, where the set A satisfies
P(A) = 1. ω-notation is suppressed in the following lines.

1. There exists n1 ∈ N such that supx∈CK |Dw,n(x)−Dw(x)| < ε for all n ≥ n1.

2. There exists n2 ∈ N such that Pn(Cc) < 2ε for all n ≥ n2 since P(Cc) < ε.
This follows from the Glivenko-Cantelli theorem applied to the random
sample ‖X1‖, ‖X2‖, . . . , ‖Xn‖, . . . .

As the weight function is considered bounded, say w(x,u) ≤ b, it follows that
for all x ∈ Cc it holds that

Dw,n(x) ≤ bPn(Cc) + ε,

Dw(x) ≤ bP(Cc) + ε

and therefore there exists some constant B which does not depend on ε such that
it almost sure holds that for all n ≥ n2

sup
x∈CcK

∣∣Dw,n(x)−Dw(x)
∣∣ ≤ b

(
Pn(Cc) + P(Cc)

)
+ 2ε < Bε. (3.13)

So eventually, for all ε > 0 it holds almost sure: there exist CK ⊂ Rp and
n0 = max{n1, n2} such that for all n ≥ n0

sup
x∈Rp

∣∣Dw,n(x)−Dw(x)
∣∣

≤ max

{
sup
x∈CK

∣∣Dw,n(x)−Dw(x)
∣∣, sup
x∈CcK

∣∣Dw,n(x)−Dw(x)
∣∣}

< Bε.

These lines finishes the proof of uniform almost sure convergence over Rp, (3.4).
�

The condition (3.2) seems to be quite technical. For usual and reasonable
choice of piecewise continutous functions the theorem can be rewritten as follows.

Corollary 18 (Consistency of piecewise continuous weight functions). Suppose
that a weight function w is spherically symmetric (Definition 7) and that a func-
tion h from (2.3) is piecewise continuous function (see Definition 6). Further
suppose

lim
t→−∞

sup
s≥0

h(s, t) = 0. (3.14)

Then conditions (3.2) and (3.3) of Theorem 17 hold and the generalized halfspace
depth is uniformly strongly consistent.

Proof. Condition (3.14) immediately implies the validity of condition (3.3). It
only remains to show that condition (3.2) holds. Since function(

x
u

)
7−→

(
‖x− 〈u,x〉u‖
〈u,x〉

)
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is continuous and also function h is continuous almost everywhere on [0,+∞)×R,
the set of all discontinuity points of

w(x,u) = h(‖x− 〈u,x〉u‖, 〈u,x〉)

has zero Lebesgue measure. �

Remark 15. Uniform strong consistency holds for any weight function mentioned
in this thesis, i.e. for the halfspace depth, the kernel density estimates with a
fixed bandwidth, the band depth, the (weight) conic section depth and others.
All mentioned depths use weight functions that are continuous or piecewise con-
tinuous, hence conditions of Corollary 18 hold.

Remark 16. If a weight function w satisfies the assumptions from Theorem 17,
then for known covariance matrix ΣX the affine invariant version of the depth
(see Definition 8 and Theorem 5) is also uniformly strongly consistent.

Proof. Since

D̃w(x) = inf
u:‖x‖=1

Ew
(
Σ
−1/2
X (X − x),u

)
,

it only remains to realize that the weight function(
x
u

)
7−→ w

(
Σ
−1/2
X x,u

)
satisfies the conditions from Theorem 17. �

3.2 Consistency of the Sample Weighted Halfs-

paces Ratio Depth

We use results from the previous section to prove consistency of the sample version
of the weighted halfspaces ratio depth. Let us first denote two important subsets
of points. Define

H1 = {x : inf
u: ‖u‖=1

Ew(X − x,u) > 0},

H2 = {x : ∃δ > 0, ∃ux ∈ Sp, Ew(X − x,ux) = 0 and Ew(X − x,−ux) > δ}.

A constant δ does not depend on x.

Remark 17. The set H1 contains the interior of support sp(P), i.e. points whose
open neighbourhood is contained in the support of P . In the case of absolutely
continuous distribution P(H1) = 1. On the other hand the set H2 represents
points with zero depth and (csp(P))c ⊂ H2 under very weak conditions on the
weight function w. Here csp(P) denotes the convex closure of sp(P). If x ∈ H1

then RD(x) > 0 and supx∈H2
RD(x) = 0. Usually, H1 ∪H2 = Rp.
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Theorem 19 (Consistency of WHRD). Consider a random sample X1, . . . ,Xn

from absolutely continuous distribution P and suppose a weight function satisfying
the conditions of Theorem 11. Then

sup
x∈H1∪H2

∣∣RDw,n(x)− RDw(x)
∣∣ n→+∞−−−−→ 0 almost surely. (3.15)

Proof. The proof use results from the proof of the consistency of the generalized
halfspace depth which was presented in the previous section. In particular we use
ULLN property stated in (3.7) which was proved in the proof of Theorem 17.

For our purposes we will use standard conventions from the measure theory
for the extended real line [−∞,+∞], e.g. 0.(±∞) = 0, +∞ +∞ = +∞, etc.
and we define logarithm in zero: log 0 := limx→0+ log x = −∞.
Let us, for any x ∈ H1 ∪H2 and for any u ∈ Sp, use the notation

R̂D(x,u) =
Ew(X − x,u)

Ew(X − x,−u)
,

where the term 0/0 is defined again as 1.
First the case x ∈ H1 is treated. It holds

0 < RD(x) ≤ R̂D(x,u) ≤ 1/RD(x) < +∞, ∀u ∈ Sp.

It follows from Lemma 29 that∣∣log RDn(x)− log RD(x)
∣∣ =

∣∣∣∣ inf
u∈Sp

log R̂Dn(x,u)− inf
u∈Sp

log R̂D(x,u)

∣∣∣∣
≤ sup
u∈Sp

∣∣∣log R̂Dn(x,u)− log R̂D(x,u)
∣∣∣

≤ sup
u∈Sp

(∣∣∣ log
1

n

n∑
i=1

w(X i − x,u)− log Ew(X − x,u)
∣∣∣

+
∣∣∣log

1

n

n∑
i=1

w(X i − x,−u)− log Ew(X − x,−u)
∣∣∣)

≤ 2 sup
u∈Sp

∣∣∣log
1

n

n∑
i=1

w(X i − x,u)− log Ew(X − x,u)
∣∣∣

(almost) surely. It follows that

sup
x∈H1

∣∣log RDn(x)− log RD(x)
∣∣

≤ 2 sup
x∈H1

sup
u∈Sp

∣∣∣log
1

n

n∑
i=1

w(X i − x,u)− log Ew(X − x,u)
∣∣∣.
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Under theorem assumptions it follows from (3.7) that for arbitrary compact set
C ⊂ Rp,

sup
x∈H1∩C

∣∣log RDn(x)− log RD(x)
∣∣

≤ 2 sup
x∈H1∩C,u∈Sp

∣∣∣log
1

n

n∑
i=1

w(X i − x,u)− log Ew(X − x,u)
∣∣∣

−→ 0 a.s.

So eventually
sup

x∈H1∩C

∣∣RDn(x)− RD(x)
∣∣ −→ 0 a.s. (3.16)

Now we consider the points from the set H2. Then

sup
x∈H2

RD(x) ≤ sup
x∈H2

R̂D(x,ux) = 0.

It follows

sup
x∈H2

RDn(x) ≤ sup
x∈H2

R̂Dn(x,ux)

≤ 1

δ
sup
x∈H2

1

n

n∑
i=1

w(X i − x,ux)

≤ 1

δ
sup

x∈H2,u∈Sp

1

n

n∑
i=1

w(X i − x,u).

The latter is consequence of non-negativeness of the weight function together
with properties of the set H2. Again, using (3.7), we obtain that for any compact
set C ⊂ Rp it holds that

sup
x∈H2∩C

RDn(x) −→ 0 a.s. (3.17)

And finally, from (3.16) and (3.17), one has

sup
x∈(H1∪H2)∩C

∣∣log RDn(x)− log RD(x)
∣∣ −→ 0 a.s.

If we consider the vanishing at infinity property from Theorem 11 then the
same arguments as in the last paragraph of the proof of Theorem 17 finishes the
proof of the uniform consistency over H1 ∪H2. �

Remark 18. The uniform consistency holds over H1 ∪H2 for any weight function
mentioned in this thesis except conic section weight functions if e < 1 (see Chapter
4).

We see that in contrary to the generalized halfspace depth the WHRD is not
uniformly consistent over whole Rp in general. There arises a natural question
what can be said about the points outside H1 ∪ H2 and about the set H1 ∪ H2

67



3.2. Consistency of WHRD CHAPTER 3. ASYMPTOTICS

itself. First of all, let us show two counterexamples to the consistency of the
sample depth.

w+

w−

x
x

w+

w−

Figure 3.1: The sample depth needs not to be consistent. w+ denotes w(·−x,u)
and w− denotes w(· − x,−u). For any n there always exists a point, denoted it
by “∗”, that causes that the sample depth of the theoretical deepest point x is
zero.

Example 13 (Non-consistency of the sample depth). We consider a uniform
distribution on a “hourglass” set, and a uniform distribution on “four tiles”. See
Figure 3.1 for illustration. The band weight function (2.5) is used for “four tiles”
distribution, the cone weight function (2.6) is used for “hourglass” distribution.
The width parameter of both functions is chosen such that “0/0” occurs. In both
cases the distributions are symmetric about a naturally defined central point x
and it is exactly the point x where the problem arises. For any sample size
n there exists a.s. a direction un ∈ Sp such that Enw(X − x,un) = 0 while
Enw(X − x,−un) > 0. In both cases the central point x is the only point for
which the sample depth is not consistent. On the left panel of Fig. 3.2 we see that
for the non-center point there exists a direction u such that Ew(X − x,u) = 0
and Ew(X − x,−u) > 0 and hence the sample depth is consistent. It holds
H1 ∪ H2 = Rp \ {x}. Both central points are also points of discontinuity of
the depth function. Indeed, the theoretical depth RD(x) = 1 as follows from
the symmetry of distribution (see Theorem 15). On the other hand there exists
sequence xn → x such that RDn(xn) = 0 almost sure for all n. It’s clear that in
both examples the sample generalized halfspace depth is consistent even for the
point x and D(x) = Dn(x) = 0. We see that this two depth functions can have
completely different behaviour, especially for symmetric distribution when the
center does not lie inside the support and simultaneously there is a “free view”
outside the support. Note that such distributions are very unusual.

The nature of the problem lies in the limit of “0/0” type. Assume without
loss of generality that the central point x is equal to 0. In both cases there exists
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a direction u0 ∈ Sp and a sequence of directions un ∈ Sp such that

Ew(X,u0) = 0, Ew(X,−u0) = 0,

Ew(X,un) > 0, Ew(X,−un) > 0 ∀n,
Ew(X,un)→ 0, Ew(X,−un)→ 0 as n→ +∞.

(3.18)

Note that in this case the generalized halfspace depth of the point 0 is equal to
0. This properties hold for the point x on the left panel of Fig. 3.1 but does not
hold for the non-central point x shown on the left panel of Fig. 3.2. There exist
technical assumptions on the support of probability measure P and on the weight
function (beside the regularity condition (3.2)) such that (3.18) does not hold for
any point x ∈ Rp. Obviously, the critical points are in the interior of convex
support and simultaneously in the complement of interior of support itself.

Therefore, if sp(P) coincides with convex closure of sp(P) then, for an usual
choice of the weight functions, H1 ∪ H2 = Rp and the strong consistency holds
for any point. An example may be normal distribution, bivariate exponential
distribution, uniform distribution on a convex set and many others.

w+

w−

x

w+

w−

x

Figure 3.2: In contrary to the situation shown on the left panel of Fig. 3.1 the
sample depth of the point x is consistent. The point x shown on the left panel is
non-central. The point x shown on the right panel is central and the band width
is high enough. In this example these conditions are suficient for consistency of
RDn(x).

As we have mentioned above, there are technical conditions on the support
of probability measure P together with the weight function w such that the
consistency holds for any y ∈ Rp. An example (see also Figure 3.2) of such
sufficient conditions may be

• There exist r > 0 and δ0 > 0 such that w(y,u) ≥ δ0 if ‖x− 〈u,x〉u‖ ≤ r.

• The interior of support sp(P) is a connected set or it is not connected and
distance between individual connected sets of the support is strictly less
than r.
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These conditions are neither necessary conditions, nor the only possible sufficient
conditions. In general, the set of points for which the consistency does not hold is,
however, small in the sense of probability. Indeed, for any absolutely continuous
distribution P it holds

P
(
y : RDn(y)

n→∞−−−→ RD(y), a.s.
)

= 1.

The non-consistent points are, as may be clear from the counterexamples, special
cases and may be considered as rather “pathological”. In particular, consider
the “hourglass” distribution together with the band weight function then the
consistency of the sample depth holds for the central point x as well as for any
other points y ∈ R2. Hence, it is a combination of a specific weight function and
a specific distribution which causes the trouble at x.

3.3 Influence Function and Notes on Limit Dis-

tribution

In this section we show some thoughts about the generalized halfspace depth that
are important for the derivation of the limit distribution. The derivation of limit
distribution is not easy for general form of the weight function and arbitrary
continuous distribution. This section is rather informal and does not include
precise mathematical derivations of the results. Asymptotics for special case of
generalized halfspace depth - the halfspace depth - is derived in [Massé, 2004].

We introduce this section with the derivation of the influence function since
it, under certain circumstances, can be used while proving asymptotic normality.
It is also good measure of robustness. It is very difficult to find the influence
function for a general weight function w.. Fortunately, when the weight function
is an indicator function, the influence function can be derived. Results about
the influence function of the halfspace depth can be found in [Romanazzi, 1999,
Chen & Tyler, 2002]. The results that are shown here expand the results from
these articles.

Theorem 20 (Influence function for an indicator weight function). Let us have
a point x ∈ Rp and an absolutely continuous distribution P and a weight function
w such that

•
w(x,u) = 1 {x ∈ A(u)} ,

where A(u) is a non zero Lebesgue measure set for all u ∈ Sp.

• there exists unique minimal direction u0 ∈ Sp, i.e.

Dw(x; P) = Ew(X − x,u0) = E1 {X − x ∈ A(u0)} .
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Then the influence function of generalized halfspace depth of x is

IFx(z) = 1 {z − x ∈ A(u0)} −Dw(x).

Proof. Let us denote
Pz
ε = (1− ε) P +εδz,

where δz(z) = 1 and δz(B) = 0 if z /∈ B. Then

IFx(z) = lim
ε→0+

Dw(x; Pz
ε )−Dw(x; P)

ε
.

Denote

S1(z) = {u : z − x ∈ A(u)},
S2(z) = {u : z − x /∈ A(u)}.

The depth with respect to the measure Pz
ε is

Dw(x; Pz
ε ) = min

{
inf

u∈S1(z)
E1 {X − x ∈ A(u)} , inf

u∈S2(z)
E1 {X − x ∈ A(u)}

}
,

where

inf
u∈S1(z)

E1 {X − x ∈ A(u)} = (1− ε) inf
u∈S1(z)

P(x+ A(u)) + ε,

inf
u∈S2(z)

E1 {X − x ∈ A(u)} = (1− ε) inf
u∈S2(z)

P(x+ A(u)).

First consider case

inf
u∈S2(z)

P(x+ A(u)) ≤ inf
u∈S1(z)

P(x+ A(u)).

Then

Dw(x; Pz
ε ) = (1− ε) inf

u∈S2(z)
P(x+ A(u)) = (1− ε)Dw(x; P), ∀ε ≥ 0.

Now consider

inf
u∈S2(z)

P(x+ A(u)) > inf
u∈S1(z)

P(x+ A(u)). (3.19)

If there exists ε0 > 0 such that

(1− ε0) inf
u∈S2(z)

P(x+ A(u)) ≥ (1− ε0) inf
u∈S1(z)

P(x+ A(u)) + ε0

then also latter inequality holds for any ε, 0 ≤ ε ≤ ε0. Hence

Dw(x; Pz
ε ) = (1− ε) inf

u∈S1(z)
P(x+A(u)) + ε = (1− ε)Dw(x; P) + ε, 0 ≤ ε ≤ ε0.

71



3.3. Limit Distribution of GHD CHAPTER 3. ASYMPTOTICS

Finally if

(1− ε) inf
u∈S2(z)

P(x+ A(u)) < (1− ε) inf
u∈S1(z)

P(x+ A(u)) + ε

then there exists ε0 > 0 (since (3.19) holds) such that

Dw(x; Pz
ε ) = (1− ε) inf

u∈S1(z)
P(x+A(u)) + ε = (1− ε)Dw(x; P) + ε, 0 ≤ ε ≤ ε0.

So eventually, for small enough ε one has

Dw(x; Pz
ε ) =

(1− ε)Dw(x; P), if inf
u∈S2(z)

P(x+ A(u)) ≤ inf
u∈S1(z)

P(x+ A(u)),

(1− ε)Dw(x; P) + ε, otherwise.

The first condition in latter function holds if z /∈ x + A(u0). The derivative of
Dw(x; Pz

ε ) with respect to ε completes the proof. �

Remark 19. In the last lines of the proof we can see that the assumption that
the unique minimal direction u0 exists is not necessary. It was used only for
simplicity in the theorem. Without these assumption it holds that

IFx(z) = 1

{
inf

u∈S2(z)
P(x+ A(u)) ≤ inf

u∈S1(z)
P(x+ A(u))

}
−Dw(x). (3.20)

Note 20. Influence function for a general weight function w is usually in form

IFx(z) = w(z − x,u0)−Dw(x),

where u0 is a minimal direction.

Under some circumstances the influence function can be used for derivation
of asymptotic normal distribution. For this purpose the expectation and the
variance is needed.

Remark 21. Let the assumptions of Theorem 20 hold. Then

E IFx(X) = 0

and
var IFx(X) = Dw(x)(1−Dw(x)).

Proof.

E IFx(X) = E
(
w(X − x,u0)−Dw(x)

)
= Dw(x)−Dw(x) = 0.

var IFx(X) = E IF2
x(X) = E

(
w2(X − x,u0)− 2Dw(x)w(X − x,u0) + D2

w(x)
)

= Ew2(X − x)−D2
w(x) = Dw(x)(1−Dw(x)).

�
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Note 22. In the case of general form of w the variance usually is

var IFx(X) = Ew2(X − x,u0)−D2
w(x).

The mean value remains the same.

Now we list some basic properties of the influence function (3.20).

1. The influence function is bounded, i.e.

−1 ≤ IFx(z) ≤ 1, ∀z ∈ Rp.

It follows directly from (3.20).

2. The local shift sensitivity of generalized halfspace depth for an indicator
weight function is infinite. To see this, let us realize that IFx(z) is equal
to 1 − Dw(x) if z is in minimal direction from x and equal to −Dw(x)
otherwise. Hence the influence function is discontinuous on the boundary
between minimal indicator set x+A(u0) and its complement. The jump is
equal to 1 irrespective of the value of Dw(x).

3. The depth of peripheral points is more exposed to contamination of the
distribution than the depth of central points. To see this consider a distri-
bution with a bounded connected support. Often supz∈Rp |IFx(z)| is equal
to 1 for x lying on the border and equal to max{1− Dw(x),Dw(x)} for x
near the center.

To derive limit distribution suppose assumption of Theorem 20. Under suit-
able regularity condition and if the minimal direction u0 is unique, one has (von
Mises expansion)

Dw(x; Pn)−Dw(x; P) =
1

n

n∑
i=1

IFx(X i) +Rn,

where the remainder term is

Rn = min
u∈Sp

1

n

n∑
i=1

w(X i − x,u)− 1

n

n∑
i=1

w(X i − x,u0).

Note that this expansion and the remainder term remain the same if we use
general weight function instead. The distribution of

√
n
(
Dw(x; Pn)− Dw(x; P)

)
is asymptotically normally distributed if

√
nRn

P−→ 0 if n→ +∞. (3.21)

Since
E
√
nRn =

√
n
(
Dn(x)−Dw(x)

)
one has (by using Markov inequality) that (3.21) holds if

√
n
(
Dn(x)−Dw(x)

) n→∞−−−→ 0 (3.22)

73



3.3. Limit Distribution of GHD CHAPTER 3. ASYMPTOTICS

in probability. It is not easy to show that neither (3.21) or (3.22) hold.
[Romanazzi, 1999] claims that (3.22) holds and therefore if unique minimal
direction (halfspace) exists the sample halfspace depth is asymptotically normal.
Under certain regularity conditions on w and on P the same result should also
holds here, i.e.

√
n
(
Dw(x; Pn)−Dw(x; P)

) n→∞−−−→
in Law

N
(
0,Ew2(X − x,u0)−D2

w(x)
)
. (3.23)

Anyway latter consideration are only valid if the unique minimal direction u0

exists. This is quite usual assumption for non-central points. If x is the center
of central symmetry, the limit distribution is not Gaussian. Surprisingly, in such
a case, the limit distribution can be found relatively easily.

Note 23. Suppose a centrally symmetric distribution P (see Section 1.2 for the
definition of central symmetry) and a spherically symmetric weight function w.
If x ∈ Rp is the center of the symmetry then

√
n
(
Dw(x; Pn)−Dw(x; P)

) n→∞−−−→
in Law

inf
u∈Sp

Yu, (3.24)

where Yu is a Gaussian process such that

EYu = 0 for any u ∈ Sp

and

cov(Yu, Yv) = Ew(X − x,u)w(X − x,v)−D2
w(x) for any u,v ∈ Sp.

Proof. It holds that

√
n
(
Dw(x; Pn)−Dw(x; P)

)
=
√
n

(
inf
u∈Sp

1

n

n∑
i=1

w(X i − x,u)−Dw(x; P)

)

= inf
u∈Sp

√
n

(
1

n

n∑
i=1

w(X i − x,u)− Ew(X − x,u)

)
.

In last equation we used the fact that

Ew(X − x,u) = Dw(x; P) for any u ∈ Sp.

Let us denote

Y n
u =

√
n

(
1

n

n∑
i=1

w(X i − x,u)− Ew(X − x,u)

)
.

Then

1. EY n
u = 0 for any u ∈ Sp.
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2. If we denote
µ(u) = Ew(X − x,u),

then for any u,v ∈ Sp

R(u,v) := cov(Y n
u , Y

n
v ) = nE

(
1

n

n∑
i=1

w(X i − x,u)
1

n

n∑
j=1

w(Xj − x,v)

− 1

n

n∑
i=1

w(X i − x,u)µ(v)− 1

n

n∑
i=1

w(X i − x,v)µ(u) + µ(u)µ(v)

)

= n

(
1

n2

n∑
i=1

n∑
j=1

Ew(X i − x,u)w(Xj − x,v)− µ(u)µ(v)

)

=
1

n

n∑
i=1

n∑
j=1

(
Ew(X i − x,u)w(Xj − x,v)− µ(u)µ(v)

)
=

1

n

n∑
i=1

cov
(
w(X i − x,u), w(X i − x,v)

)
+

1

n

∑
i 6=j

cov
(
w(X i − x,u), w(Xj − x,v)

)
(3.25)

= cov
(
w(X − x,u), w(X − x,v)

)
+ 0

= Ew(X − x,u)w(X − x,v)−D2
w(x).

Because of independence of X i,Xj, i 6= j, the term in (3.25) is equal to 0.

3. For any u ∈ Sp
Y n
u

n→∞−−−→
in Law

Yu ∼ N (0, R(u,u)).

It follows directly from the Central Limit Theorem.

Using Donsker Theorem it follows that

Y n n→∞−−−→
in Law

Y.

Finally, using Continuous Mapping Theorem, one has

inf
u∈Sp

Y n
u

n→∞−−−→
in Law

inf
u∈Sp

Yu.

�

The covariance structure of the limit Gaussian process depends on the choice
of the weight function and also on the distribution P .

Example 14 (Limit distribution of the halfspace depth). Consider bivariate
Gaussian distribution N (0, I) and the halfspace depth, i.e. the generalized half-
space depth with the weight function (2.4). The bottom panel of Fig. 3.3 shows
the histogram and kernel density estimate of the sample depth distribution (left
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Figure 3.3: The limit distribution of the center of symmetry. The top panel
shows the simulated limit distribution. Bottom panel shows distribution of√
n
(
HD(0; Pn)− 1/2

)
for n = 1000.

hand side of (3.24)) of the center of symmetry - 0 - and the sample size n = 1000.
The sample distribution is obtained for 10 000 simulations. Histogram and ker-
nel density estimate of simulated limit distribution (right hand side of (3.24)) is
shown on the top panel of Fig. 3.3.

Note that HD(0) = 1/2 and the covariance function of Yu is

cov(Yu, Yv) =
π − ] (u,v)

2π
− 1

4
.

Now consider the point x = (0, 1)T . The Halfspace Depth of this point is
1 − Φ(1)

.
= 0.1587, where Φ is the distribution function of N (0, 1). Asymp-

totic variance is HD((0, 1)T )(1 − HD((0, 1)T ))
.
= 0.1335. The limit distribution,

(3.23), is the Gaussian distribution. It is plotted as the black curve in Figure 3.4.

Histograms show the distributions of
√
n
(

HD
(
(0, 1)T ; Pn

)
− HD

(
(0, 1)T

))
for

n = 500, 1000, 10000. Again, 10 000 simulations were made to obtain this data.

The rate of convergence depends on the choice of the weight function. Usually,
the limit approximation can be used for smaller n if the weight function is not
“focused” on small area (e.g. it is the case of the halfspace depth). If the point
is not the center then the sample depth is biased and the distribution of Dw,n is
shifted to the left. The shift is even visible for considerable sample size - see the
bottom panel of Figure 3.4. Also the distribution is lightly skewed if n < 1000.
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Figure 3.4: Limit distribution of non-central point. The distribution of√
n
(

HD
(
(0, 1)T ; Pn

)
− HD

(
(0, 1)T

))
for n = 500, 1000, 10000. Curves show the

density of limit normal distribution.

77



Chapter 4

From the Halfspace Depth to the
Kernel Density Estimate

The idea of kernel (band) weight function for the generalized halfspace depth may
suggest to study weight functions connecting the halfspace depth on one hand
and local probability density function estimates on the other hand. Note that
the weight function w with

• bounded support, i.e. {x : w(x,u) > 0} is bounded subset of Rp, or with

• bounded integral, i.e.
∫
Rp w(x,u) dx = c for some constant c (we choose

usually c = 1),

is getting quite close to the idea of local smoothing techniques. Let us introduce
a special class of weight functions to illustrate this idea. Note that all the theo-
rems from Section 2.2, including the uniform strong consistency, hold for weight
functions from this class.

4.1 Indicator of a Conic Section as a Weight

Function

Recall that the choice of a weight function w(x,u) = 1 {〈x,u〉 ≥ 0} leads to the
halfspace depth. We will use the class of conic section functions as a general-
isation of the boundary line to obtain a family of weight functions connecting
the halfspace depth and a certain kernel density estimate. The interior of conic
section functions provides a naturally and simply defined class of the generalized
halfspaces.

Definition 11. For the given eccentricity parameter e ≥ 0 the function re :
Rp × Sp → R,

re(x,u) = ‖x‖ − e〈u,x〉, (4.1)

is called the conic section radius function of the eccentricity e.
The set

R = Re,u,l = {x : re(x,u) ≤ l} (4.2)
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ux

y

‖y − x‖

〈y − x, u〉

2 arctan
√
e2 − 1

{y : re(y − x, u) = l}

l

l
1+e

Ce(u)

Figure 4.1: A contour (bold curve) of a conic section re(y − x,u) = l is shown.
One branch of a hyperbola (with focus x, directional vector u perpendicular to
the conjugate axis, fixed eccentricity e > 1 and a fixed radius l > 0) is used as the
boundary of the generalized halfspace. The gray cone indicates the area where
re(x,u) is negative.

is the conic section with eccentricity e, u being normal vector to the directrix,
and l is the parameter (“radius”) of the conic section.

We have two parameters, one of them - eccentricity e - controls the shape of
Re,u,l. Second parameter l controls the “width” of Re,u,l. See Figure 4.1. The
distance from origin 0 (resp. the point whose depth we calculate) to the vertex
of the conic section is equal to l/(1 + e). The distance between the origin and the
intersection of the conic section with the hyperplane {y : 〈u,y〉 = 0} is equal to
l. In the case of ellipse (0 ≤ e < 1) the distance from origin to the other vertex
is equal to l/(1 − e). Boundaries of Re,u,l for various values of eccentricity e is
shown on Fig. 4.2. The conic section radius l is set to 1. Hence the graphs of
implicit function re(x,u) = 1 are shown. The role of the eccentricity e is also
explained in Table 4.1.

Remark 24. For arbitrary u ∈ Sp and for 0 ≤ e ≤ 1 (sphere, ellipsoid and
paraboloid) it holds that

re(x,u) ≥ 0 for all x ∈ Rp.

If e > 1 (hyperboloid) for any u ∈ Sp it holds that

re(x,u) ≤ 0 iff x ∈ Ce(u),

where Ce(u) is the closed cone with the vertex in 0, axis in the direction of
u and aperture (maximum angle between lines going through vertex) equal to
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e = 0 0 < e < 1 e = 1 e > 1 e = +∞
Sphere: ra-
dius l, centre 0)

Ellipsoid: one
focus 0, length
of major axis
is 2l/(1 − e2),
length of mi-
nor axes is
2l/
√
1− e2

Paraboloid:
focus 0, focus–
vertex distance
is l/(1 + e)

Hyperboloid:
focus 0, focus–
vertex distance
is l/(1 + e),
aperture of
the asymp-
totic cone is
2 arctan

√
e2 − 1

Halfspace: 0
on boundary,
u is the nor-
mal vector to
the boundary
hyperplane

“Kernel density
estimate”

Localised depth Depth with possibly non–convex
contours

The halfspace
depth

local characteristic global characteristic

Table 4.1: Conic sections with respect to the eccentricity e, i.e. a characteristic
of implicit functions re(x,u) = l for a fixed value l, l > 0. A graphic illustration
of the role of the eccentricity is shown on Fig. 4.2.

2 arctan
√
e2 − 1. Greater eccentricity e implies wider cone (i.e. greater aperture).

On Fig. 4.1 the cone Ce(u) is marked as the gray coloured area.

Definition 12 (Conic section weight function I). For given radius l > 0 and
eccentricity e ≥ 0 we define the indicator conic section weight function as

w(x,u) = 1 {re(x,u) ≤ l} = 1 {x ∈ Re,u,l} . (4.3)

In other words this weight function is an indicator of a conic section of eccen-
tricity e, radius l, with the major axis in the direction given by u, and with the
focus in the origin.

Note 25. The sphereR0,u,l clearly does not depend on u. Hence the corresponding
depth is simply

Dw(x) = P(‖X − x‖ ≤ l).

If we calculate the (conic section) depth of a point x ∈ Rp, the weight function
w of (4.3) is in the form

w(y − x,u) = 1 {re(y − x,u) ≤ l} . (4.4)

Eccentricity 0 ≤ e < 1 provides us with an ellipsoid with one focus in x. If e = 1
we obtain a parabola with focus in x and finally, e > 1 gives us a hyperbola again
with one focus in the point x. Choosing e = 0 the weight function w becomes
indicator of a sphere, hence it does not depend on the direction u ∈ Sp. The
weight function may be rescaled to have unit integral with respect to the Lebesgue
measure and hence a kernel density estimate with kernel

k(x) =
Γ (p/2 + 1)

πp/2lp
1 {‖x‖ ≤ l} (4.5)
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e = 0 e = 0.5 e = 0.75

e = 0.9

e = 1
e = 1.3e = 2e=4e = 12

Graph of the conic sections x2 + y2 = l + ex, l = 1

Figure 4.2: Graphs of conic sections (graphs of implicit functions re(x,u) = l)
in R2 for different values of the eccentricity e. The radius is set to l = 1 and
u = (1, 0)T , hence all the contours go through the points (0, 1)T and (0,−1)T .

is obtained. Note that it holds

Vol({y : ‖y‖ ≤ l}) =
πp/2lp

Γ (p/2 + 1)
.

Hence the first term from the right hand side of (4.5) is equal to the inverse of
volume of a (hyper)sphere in Rp with radius l.

To conclude this section it remains to show that the weight function w defined
in (4.4) converges to the indicator of a halfspace if e→ +∞.

Theorem 21. For arbitrary u ∈ Sp and arbitrary l > 0 it holds that

lim
e→+∞

1 {re(x,u) ≤ l} = 1 {x ∈ Hu,l} ,

where
Hu,l = {x : 〈x,u〉 > 0} ∪ {x : 〈x,u〉 = 0, ‖x‖ ≤ l}. (4.6)

The set Hu,l is “almost” halfspace with normal vector u; the only difference
is in a part of the boundary line {x : 〈x,u〉 = 0}. Since we assume absolutely
continuous distributions only we get the halfspace depth if e→ +∞.
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Proof of Theorem 21. Without loss of generality consider u = (0, . . . , 0, 1)T . The
proof is divided into three parts according to the values of 〈u,y〉 = yp.
Case 1: Consider yp > 0. It holds

〈y,u〉 > 0⇒ re(y,u)
e→+∞−−−−→ −∞ < l,

and therefore y ∈ Hu,l.
Case 2: Consider yp = 0. It holds

〈y,u〉 = 0⇒ re(y,u) = ‖y‖,

and therefore y ∈ Hu,l.
Case 3: Consider yp < 0. It holds

〈y,u〉 < 0⇒ re(y,u) =
e→+∞−−−−→ +∞ > l,

and therefore y 6∈ Hu,l. �

4.2 Kernel Weighted Conic Functions

The conic section indicator weight function from the previous section may be
combined with a (univariate) weight function. A natural selection of such a weight
function is any kernel function well known from kernel smoothing techniques.

One possible class of the weight functions that have their origin in the kernel
density estimate is presented below. This class covers broad and relatively natural
choices of the weight functions.

Definition 13. Suppose a non-increasing bounded function

k : R −→ [0,+∞), such that k(l) = k(0) if l ≤ 0,

and ∫
Rp
k(‖x‖) dx = 1.

Then the kernel weighted conic function is defined as

w(x,u) = k(re(x,u)).

Note 26. In contrast to the classical kernels the function k from Definition 13
satisfies k(l) = k(0) for l < 0. It is mentioned above that re(x,u) may be
negative only for hyperboloids (e > 1) if x ∈ Ce. Hence, the weight function w is
constant on Ce.

Example 15 (Choices of kernels). Let us show two possible kernels:
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1. Gaussian kernel: Suppose given parameter σ > 0 then

k(l) =

(2π)−p/2σ−p exp

(
− l2

2σ2

)
, if l ≥ 0,

(2π)−p/2σ−p, if l < 0,

satisfies conditions from Definition 13. Hence the kernel conic weight function is
in the form

w(x,u) =

(2π)−p/2σp exp

(
−(‖x‖ − e〈x,u〉)2

2σ2

)
, if x ∈ Rp \ Ce(u),

(2π)−p/2σp, if x ∈ Ce(u).

Graphs of this function are on Figure 4.3. Examples of contours for kernel
weighted parabolic and hyperbolic functions with the Gaussian kernel can be
seen in Figures 1.12, 1.15 and 1.18.

2. Triangular kernel: For a given parameter σ > 0 we can define the triangular
kernel function as

k(l) =



pΓ(p/2 + 1)

πp/2σp
, if l < 0,

pΓ(p/2 + 1)

πp/2σp

(
1− l

σ

)
, if 0 ≤ l ≤ σ,

0, if l > σ.

Again, it can be shown that k satisfies condition from Definition 13.

Remark 27. Other kernels well known from the literature (e.g. [Silverman, 2000,
Schimek, 2000]) may be easily applied to the kernel weighted halfspace depth as
well.

The halfspace depth is again the limiting case of the kernel weighted depth if
e→ +∞.

Theorem 22. Let w be a kernel weighted conic function from Definition 13.
Denote by De the depth function using this weight function for a given eccentricity
e. Then, for arbitrary x ∈ Rp it holds that

lim
e→+∞

De(x) = k(0)HD(x).

Proof. Since k is bounded, we suppose an absolutely continuous distribution and
(see the proof of Theorem 21)

lim
e→+∞

k(re(x,u)) =


k(0), if 〈x,u〉 > 0,

k(‖x‖), if 〈x,u〉 = 0,

0, if 〈x,u〉 < 0.
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Figure 4.3: Kernel weighted conic functions for values of eccentricity e =
0, 0.5, 1, 2 and for the Gaussian kernel with σ = 1.

Then using Lebesgue theorem one has

lim
e→+∞

De(x) = inf
u∈Sp

E lim
e→+∞

k(re(X − x,u))

= k(0) inf
u∈Sp

E1 {〈u,X − x〉 > 0} = k(0)HD(x).

�

Remark 28 (Bandwidth selection). There is a question how to choose the band-
width parameter. For instance, consider the Gaussian kernel from Example 15.
The bandwidth parameter is denoted by σ in the example. A recommended strat-
egy to choose σ is to start with e = 0, i.e., with kernel density estimation. Hence,
the bandwidth parameter σ can be chosen with help of the well known plug–in or
cross validation estimate of mean integrated square error. Such estimates can be
obtained using R library called ks. Setting diagonal bandwidth matrix and using
the average of its diagonal components as our bandwidth parameter σ works fine
here. For e > 0 our recommendation is to use the same bandwidth parameter as
for e = 0.

Example 16. A random sample was simulated from a mixture of distributions
P = 0.5 P1 +0.5 P2, where P1 ∼ N

(
(0, 0)T , I

)
, and P2 ∼ N

(
(4, 0)T , I

)
. The
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Gauss kernel, e = 0.5 (ellipse), σ = 0.366
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Figure 4.4: 25%, 50%, and 75% depth contours of the kernel weighted conic
function for values of eccentricity e = 0 (upper left panel), and e = 0.5 (upper
right panel). In the bottom panels contours of the corresponding weight functions
for the direction u = (1, 0)T are plotted (for values i

10
w(0,u), i = 1, . . . , 10).

Gaussian kernel (Example 15) was used. The eccentricity parameters were chosen
to be:

• e = 0 (kernel density estimate),

• e = 0.5 (elliptic weight function),

• e = 1 (parabolic weight function),

• e = 1.5 (hyperbolic weight function), and

• e = +∞ (the halfspace depth).

The bandwidth parameter was chosen for e = 0 using plug–in estimate as σ =
0.366. The same bandwidth is used for all values of the eccentricity.

Depth contours for 25%, 50%, and 75% probability contents are shown in
Figures 4.4, 4.5, and 4.6. Clearly the smaller the value of the eccentricity e is the
more local characterisation of the underlying distribution we get and vice-versa.
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4.2. Weighted Con. Sec. CHAPTER 4. FROM HALFSPACE TO KDE
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Gauss kernel, e = 1 (parabola), σ = 0.366
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Gauss kernel, e = 1.5 (hyperbola), σ = 0.366
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Figure 4.5: 25%, 50%, and 75% depth contours of the kernel weighted conic
function for values of eccentricity e = 1 (upper left panel), and e = 1.5 (upper
right panel). In the bottom panels contours of the corresponding weight functions
for the direction u = (1, 0)T are plotted (for values i

10
w(0,u), i = 1, . . . , 10).

The weight function contours are also shown in Figures 4.4, and 4.5. The
maximum of the kernel is attained at 0, and it holds that w(0,u) = k(0)

.
= 1.19.

The weight function contours i× 0.119, i = 1, . . . , 10, are plotted.

Remark 29 (Maximum of the kernel weighted conic function). We will illustrate
the general fact about the kernel weighted conic functions just for the bivariate
setting (p = 2). Consider a direction u = (1, 0)T . Then

(i) If e < 1 the “inner” contour I (the set of points where the weight func-
tion attains its maximum) consists of exactly one point, in particular I =
{(0, 0)}.

(ii) If e = 1 then I = (t, 0)T , t ≥ 0.

(ii) If e > 1 then I = Ce(u) (see Remark 24 for definition of Ce).

Similar results hold for p > 2 as well.
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Gauss kernel, e = + ∞ (halfspace depth), σ = 0.366
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Figure 4.6: 25%, 50%, and 75% depth contours of the halfspace depth, i.e., the
kernel weighted conic function for the limiting eccentricity e = +∞.

4.3 Characterization of Some Conic Section

Depth Functions

Paper of [Carrizosa, 1996] shows a characterization of the halfspace depth. The
deepest point is so called Simpson point. It is known in econometrics and opera-
tional research. In the paper it is shown that

HD(x) = inf
y∈Rp

P({a : ‖a− y‖ ≥ ‖a− x‖}).

Suppose two firms want enter the market. Consumers are assumed to be dis-
tributed in R2 according to probability measure P . Location of the facilities of
both firm we denote by F 1, F 2. Further assume that consumers will use their
closest facility, therefore the first firm captures consumers of those a which

‖a− F 1‖ ≤ ‖a− F 2‖.

If the first firm locates its facility in F 1 then the second firm will locate its facility
at

F 2 = arg max
y∈R2

P({a : ‖a− y‖ ≤ ‖a− F 1‖})

to obtain the best possible market share. Hence the first firm should locate its
facility at the position which minimizes the market share of the other firm entering
the market, i.e.

F 1 = arg max
F∈R2

inf
y∈R2

P({a : ‖a− F ‖ ≤ ‖a− y‖}).

This is actually the deepest point of the halfspace depth. These considerations
lead to the situation where the best location to place a new facility is exactly the
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d0

firm F1firm F2
the market
share of F1

(consumers
closer to F1)

the market
share of F2

(consumers
closer to F2)

the joint market
share of F1 and
F2 (the distance
to F1 is “more
or less” the same
as the distance to
F2)

‖a− F1‖ <

a
b

| ‖b− F1‖ − ‖b− F2‖ | ≤ ε

‖a− F2‖ − ε

Figure 4.7: The market share. Facilities cannot be placed closer than d0 to each
other. Consumers with ±ε same distance to the both facilities choose the facility
randomly.

location where other existing facilities are located.

Now we consider situation where a new facility can be located in the distance
not less than a given value and where both firms have a joint market share, i.e.
there exists an area such that consumers have more or less the same distance to
the both firms. Formally - suppose that the second firm (on location F 2) will
not place its facility closer to the first firm (location F 1) than d0, further suppose
that for a “shared distance” ε > 0 the first firm captures a consumer on a location
a if

‖a− F 1‖ < ‖a− F 2‖ − ε,
similarly the second firm. If∣∣‖b− F 1‖ − ‖b− F 2‖

∣∣ ≤ ε

a consumer on a position b chooses between F 1 and F 2 randomly. This can be
the case of two mobile network operators and their transmitter facilities. See
Figure 4.7 for an illustration. The market share belongs only to the firm in a
position F 1 - in the worst case scenario (if F 2 is in optimal position) - is

MSd0,ε(F 1) = inf
F 2: ‖F 2−F 1‖≥d0

P
(
{a : ‖a− F 1‖ < ‖a− F 2‖ − ε}

)
.

In the following theorem it is shown how is this market share measure connected
with the generalized halfspace depth.
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F2 F1

d/2

v(d)

l(d)

Figure 4.8: Dependence of hyperboloid parameters on the distance between fo-
cuses.

Theorem 23. Let us have d0 > 0 and ε > 0. Then for any F 1 ∈ Rp

MSd0,ε(F 1) = Dw(F 1),

where

w(x,u) = 1

{
rd0/ε(x,u) <

d20 − ε2
2ε

}
.

Hence

MSd0,ε(F 1) = inf
u∈Sp

E1

{
rd0/ε(X − F 1,u) <

d20 − ε2
2ε

}
,

where the random vector X describes distribution of the consumers.

Proof. See Figure 4.8. Figures 4.1 and 4.7 may be also handy. Suppose fixed
ε > 0 and consider F 1,F 2, ‖F 1 − F 2‖ = d. Then the set of points a satisfying∣∣‖a− F 1‖ − ‖a− F 2‖

∣∣ = ε

is a hyperboloid with focuses in F 1,F 2. It is well known that for a hyperboloid
holds that

e(d) =
d/2

d/2− v(d)
,

ε =
(
d− v(d)

)
− v(d),

v(d) =
l(d)

1 + e
.

Where in parenthesis we emphasize the fact that values of these parameters de-
pend on value of parameter d. It follows

e(d) =
d

ε
,

l(d) =
d2 − ε2

2ε
,
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v(d) =
d− ε

2
.

Then if d > d0 it follows

v(d) > v(d0),

l(d) > l(d0).

Hence the part of the hyperboloid closer to F 1 for d0 is nested in the part of
hyperboloid for d > d0 (if the direction of axis remains the same). Therefore the
infimum occurs for ‖F 1 − F 2‖ = d0, i.e. for “fixed” shape of hyperboloid with
the focus in F 1, conic section radius l = l(d0) and eccentricity e = e(d0). �

Note 30. Without the joint market share (the case ε = 0) similar thoughts lead
to a market share

MSd0(F 1) = Dw(F 1),

where
w(x,u) = 1 {〈x,u〉 ≥ −d0/2} .

Hence the consumers are divided into 2 hyperplanes where the boundary lies at
the half distance between facilities’ locations F 1 and F 2.
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Chapter 5

Other Depth Approaches

This chapter describes some ideas that are closely related to the data depth and
where the proposed depth functions can be used and may bring some improve-
ments. First a directional approach is introduced. There exist more possibilities
how to define directional quantiles. One of the most promising approach is to
look for univariate quantiles of the distance from some point given direction. The
depth functions proposed in the thesis provide us with very good and natural
candidate for such point.

The second section deals with regression depth that is very promising method
when dealing with noisy regression data. Unfortunately not a big development
of this methodology have been done so far. The most known definition is defini-
tion according to [Rousseeuw & Hubert, 1999]. Other definition of the regression
depth is connected with the classical data depth. We can use a classical data
depth function to determine the depth of a regression plane. Our proposed depth
can also be used for this purpose. We also show a new result about a non-fit
position of quadratic regression fit.

Finally we mention functional data depth. Now it is a very popular topic and
it is still under massive development since it provides us with very good possi-
bility of functional data interference. Popular integral depth can be extended if
we consider also derivatives of functions. Then instead of univariate depth inte-
grand we use the classical data depth function. Again, use of the depth function
proposed in this thesis can bring improvements since it can “more respect” the
shape of data.

5.1 Directional Quantiles - Directional Depth -

Introduction

This section is about the directional quantiles approach that is in some sense
well connected with the depth and that brings generalization of quantiles to
the multivariate case. Univariate quantiles are one of the main concepts in the
statistics. Unfortunately no direct generalization to multivariate case exists. It is
due to the lack of natural ordering in multidimensional space. Although a lot of
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approaches have appeared in recent 50 years, none of them has become broadly
preferred or used.

There exist many definitions of the directional quantiles in multivariate case.
Master thesis [Hasil, 2004] introduces idea of directional quantile in the multi-
variate settings. Master thesis [Kot́ık, 2007] shows properties and possibilities of
estimation of the directional quantiles. The idea is based on finding univariate
quantiles on rays beginning in the “center”. This section is dedicated primarily
on this approach since the results has not been published yet. First we briefly
recapitulate the other directional approaches.

The easiest way to define multivariate quantiles arises from the “classical”
assumption of normality. Multivariate τ -quantiles can be defined as points laying
on the border of an ellipsoid with the probability τ . Parameters of this ellipsoid
depend on the covariance matrix of the underlying distribution. The assumption
of normality (or of the elliptical symmetry) is often too strong and it need not
to be valid in many situations. In this case one would like to use nonparametric
approach. Various ideas have been shown in the literature. An approach based on
the depth functions can be seen e.g. in [Liu et al., 1999]. border of a central region
with a probability τ can be considered as a set of all multivariate τ quantiles.
Other approach was proposed in [DasGupta et al., 1995]. Their construction of
central sets is based on scaling of a suitable a priori given set.

Paper [Wei, 2008] uses similar approach to the approach proposed in this
section. Having θ ∈ Rp as a center of the distribution the τ100% directional
interval of X along the line a(u) = {θ + tu, t ∈ R} is defined as the closed
interval [lτ (u), uτ (u)] which contains all of the points x ∈ a(u) satisfying

P
(
〈X,u〉 ≤ x|X ∈ a(u)

)
≤ 1 + τ

2

and

P
(
〈X,u〉 ≤ x|X ∈ a(u)

)
≥ 1− τ

2
.

The τ -central region is defined as

C(τ) =
⋃
u∈Sp

[lτ (u), uτ (u)].

It holds that for continuous distributions the τ -central region has probability
τ. In other (Wei) words the τ -central region consists of a family of directional
reference intervals, each of which reflects the outlyingness of measurements from
θ along one spatial direction. Clearly, if p = 1 then C(τ) =

[
F−1(1−τ

2
), F−1(1+τ

2
)
]
,

where F−1 is the quantile function. Wei uses this approach to construction of
covariate-dependent quantile contours of conditional growth charts.

Paper [Kong & Mizera, 2012] shows another definition of the directional quan-
tiles. Authors do not suppose a known central point θ. They also do not work
with conditional distribution. They define τ -directional quantile along direction
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u ∈ Sp as
Q(τ,u) = inf

{
t : P

(
〈u,X〉 ≤ t

)
≥ τ

}
.

Obviously, 〈u,X〉 = t is the hyperplane with normal vector u and in the distance
t from the origin. Thus Q(τ,u) is the quantile of the projection of X into
tu, t ∈ R. Main interest of the authors is not the directional quantiles themselves
but the directional quantiles envelopes. The definition is

C(τ) =
⋂
u∈Sp

H
(
u, Q(τ,u)

)
,

where H(u, Q(τ,u)) = {x : 〈u,x〉 ≥ τ}. Theorem 2 from the paper shows that
C(τ) corresponds to the τ -central halfspace depth region from Definition 3, i.e. it
holds that

C(τ) =
{
x : HD(x) ≥ τ

}
.

It is a completely different approach from Wei’s definition of the directional
quantiles. It inherits the properties of the halfspace depth, hence the directional
quantiles envelopes are always convex sets and also border of an envelope can lie
outside the support for some directions. The Wei’s approach considers only the
conditional probability on the lines going through the central point hence the
border of any τ -central set lies inside the support for any direction u ∈ Sp if the
central point lies inside the support.

Our definition ([Hasil, 2004, Kot́ık, 2007]) is similar to [Wei, 2008]. Instead
of lines going through a center we consider rays beginning in the center. This
seems to be more appropriate in the case of star-shaped (see Definition 16) central
regions than the Wei’s approach. On the other hand it is more sensitive to the
proper choice of the central point. If a naturally given central point exists (such
as center of a symmetry) the proposed directional approach is quite natural.

5.2 Directional Quantiles along Rays

Suppose a univariate random variable X with a distribution function F . Then
the quantile function F−1 is defined in the following way

F−1(u) = inf{x : F (x) ≥ u}, 0 < u < 1.

The median µ̂ is any point that satisfies µ̂ = F−1(1/2). So it can be though as a
central point of the underlying distribution. From this center we can look to the
direction left and right and calculate there conditional quantiles. More formally,
we consider conditional distribution functions

Fr(x) = P(X ≤ x|X > µ̂) = 2F (x)− 1, for x > µ̂,

Fl(x) = P(X > x|X ≤ µ̂) = 1− 2F (x), for x ≤ µ̂.
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Conditional quantiles “to the direction left” and “to the right” are F−1r (τ) =
F−1(1+τ

2
) and F−1l (τ) = F−1(1−τ

2
). It holds that

P
(
F−1l (τ) ≤ X ≤ F−1r (τ)

)
= τ,

if X has a continuous distribution. Thus we get the τ -confidence interval that
is the same as the τ -confidence interval obtained directly by F−1, because both
direction from µ̂ have the same probability. We use similar approach for random
vectors.

In what follows we suppose a distribution with a density f . Our aim is to
find the conditional quantiles in all directions (rays) from a central point. So
there is a need of existence of a naturally given point that represents the center.
Note that the choice of the center may have an influence on the properties of the
directional quantiles so if there does not exist a naturally preferred central point
we suggest to use some generalization of the univariate median based on the data
depth - i.e. the deepest point. The central point needs to be well balanced in the
sense that it is well surrounded by data. It is desired that in any direction from
the central point there lies as much probability mass as possible.

Now consider multivariate case. Let µ be a center of the underlying distribu-
tion. For each ray starting in µ we find the univariate quantiles of the variable
measuring the distance from this point. Since every such ray has zero probability
in Rp, we need first consider how to settle with conditional probability of the
distance from the central point given the direction. A nice representation of the
distance from µ and directions in Rp is provided by using hyperspherical coordi-
nates (r,ϕ) = (r, (ϕ1, . . . , ϕp−1)

T ). In what follows we denote the transformation
from hyperspherical coordinates back to Cartesian coordinates by ψ.

x1 = µ1 + r sinϕ1 sinϕ2 . . . sinϕp−2 sinϕp−1,

x2 = µ2 + r sinϕ1 sinϕ2 . . . sinϕp−2 cosϕp−1,

ψ : (r,ϕ) 7→ ...

xp−1 = µp−1 + r sinϕ1 cosϕ2,

xp = µp + r cosϕ1.

(5.1)

Jacobian of the latter transformation is

J(r,ϕ) = rp−1 sinp−2 ϕ1 . . . sinϕp−2.

The function ψ is one to one mapping for ϕi ∈ (0, π), i = 1, . . . , p − 2, ϕp−1 ∈
(0, 2π), r > 0. Each direction is determined by a vector of angles.

Our aim is to find quantiles of the radius (random variable ρ) for a given
vector of angles (random vector φ). For this, we use the conditional distribution
that we obtain by using the transformation theorem. The joint density of radius
and angles (ρ,φ) (function p) the marginal density of φ (function s) and the
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conditional density for given φ = ϕ (function q) are

p(r,ϕ) =
∣∣J(r,ϕ)

∣∣ f(ψ(r,ϕ)
)

= rp−1 sinp−2 ϕ1 . . . sinϕp−2 f
(
ψ(r,ϕ)

)
,

s(ϕ) =

∫ +∞

0

p(u,ϕ) du,

q(r|ϕ) =


p(r,ϕ)

s(ϕ)
if s(ϕ) 6= 0,

0 if s(ϕ) = 0.

(5.2)

In what follows we often work with the conditional distribution function of the
radius variable given angle:

P(ρ ≤ r|φ = ϕ) =

∫ r

0

q(u|ϕ) du.

5.2.1 Directional Quantiles in Rp

In this section we define a population version of the directional quantiles and we
show some of its basic properties. We propose two different definitions. First
definition is based on the transformation to hyperspherical coordinates. The
second, that can help to better understand our approach and that may seem
to be more straightforward, is based on evaluation of limit of the conditional
probability of a cone in given direction.

Definition 14. Suppose a random vector X ∈ Rp and its representation (ρ,φ)
in hyperspherical coordinates shown in (5.1). Then, for any ϕ, ϕi ∈ (0, π), i =
1, . . . , p−2, ϕp−1 ∈ (0, 2π), we define the conditional distribution and the quantile
function of the radius for a given angle (direction) as

Q(r|ϕ) = P(ρ ≤ r|φ = ϕ)

and
Q−1τ (ϕ) = inf{r ≥ 0 : Q(r|ϕ) ≥ τ}.

Then the τ -directional quantile in the direction represented by the angle ϕ is
defined as

θτ (ϕ) = ψ
(
Q−1τ (ϕ),ϕ

)
.

In other words θτ (ϕ) is a point that lies in the distance of Q−1τ (ϕ) from the center
in the direction represented by the angle ϕ.

Note 31. At the endpoints of the interval for angles (values 0, π, 2π) we can
define the τ -directional quantile as a limit of θτ (·) at these values.

We show another way how to define the directional quantiles. For any direc-
tion s ∈ Sp, we denote by

Aδµ(s) = {x ∈ Rp : ] (x− µ, s) ≤ δ}
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an infinite cone with the apex µ, with the axis in the direction given by s and
with an aperture 2δ. Finally, we denote the cone of height r by

Aδµ(s, r) = {x ∈ Rp : ] (x− µ, s) ≤ δ, ‖x− µ‖ ≤ r}.

Using this notation we can define the conditional distribution function in a dif-
ferent manner.

Definition 15 (Alternative definition). The conditional distribution function of
the radius (distance from center) for a given direction s ∈ Sp is defined as

F (r|s) = lim
δ→0+

P
(
X ∈ Aδµ(s, r) | X ∈ Aδµ(s)

)
.

We define the τ -directional quantile in direction s in the same way as in Def. 14,
i.e. as the point

θτ (s) = µ+ F−1(τ |s) · s,
where again F−1(·|s) is the conditional quantile function.

Note 32. There is one to one correspondence between vectors of angles ϕ and
vectors of directions s ∈ Sp, (since ψ(1,ϕ) − µ ∈ Sp). Hence according to
circumstances, we can use the notation θτ (ϕ) or θτ (s).

The next theorem claims when the latter and the former definitions are equiv-
alent. For this purpose we need one additional assumption.

Theorem 24. Suppose that the density f of a random vector X is bounded and
continuous and that condition

lim
r→+∞

sup
s∈Sp

∫ +∞

r

tp−1f(µ+ ts) dt = 0 (5.3)

holds. Then Def. 14 and Def. 15 are equivalent.

The proof is very similar to the proof of Theorem 26 and it uses results from
the proof of Theorem 25. Therefore the proof of the theorem will follow later.

Condition (5.3) states the uniform integrability and it can be replaced with
condition (5.4) that is easier to check:

∃γ > 0 : sup
s∈Sp

∫ +∞

0

tp−1+γf(µ+ ts) dt < +∞. (5.4)

Note that it is not sufficient to assume that the components of X posses finite
moments.

Theorem 25. Suppose that (5.4) holds then (5.3) also holds.

Proof. Suppose, without lost of generality, that µ = 0. It holds that∫ +∞

r

tp−1f(ts) dt ≤
∫ +∞

r

tp−1
tγ

rγ
f(ts) dt ≤ 1

rγ

∫ +∞

0

tp−1+γf(ts) dt
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≤ 1

rγ
sup
s∈Sp

∫ +∞

0

tp−1+γf(ts) dt
r→+∞−−−−→ 0,

where last term goes to 0 because we have uniform finiteness of integrals (5.4).
Hence (5.3) holds. �

Assumption (5.4) holds for majority of multivariate distributions. Let us
present a simple and classical example.

Example 17. Consider a multivariate normal distribution N (µ,Σ) with density
f , where µ will also represents the center. Further without loss of generality we
suppose µ = 0. Set γ = 1. Then

sup
s∈Sp

∫ +∞

0

tp−1+γf(ts) dt < +∞,

since 〈s,X〉 is also Gaussian and hence it possesses finite moments. It follows
that (5.4) holds and so does Theorem 24.

The set of all τ -directional quantiles, {θτ (s) : s ∈ Sp}, give us a surface in
Rp. The next theorem shows when this surface is continuous. Let us denote by
λ1 Lebesgue measure in R. Suppose that the support M = sp(P) is star–shaped
about the central point µ in the sense of the following definition.

Definition 16. We say that a setM is star–shaped about a point µ ∈M if, for
every x ∈M, the line segment joining µ and x is completely contained in M.

Theorem 26. Let µ ∈ int(M) and letM be star shaped about µ. Further suppose
that condition (5.3) or (5.4) holds, the density f is bounded and continuous on
M and

λ1(∂M∩ l) = 0, for arbitrary line l such that µ ∈ l. (5.5)

Then s 7→ θτ (s) is continuous function for any τ ∈ (0, 1).

Proof. First we show that for each vector of angles ϕ0 and any sequence of vectors

of angles {ϕn}, such that ϕn
n→+∞−−−−→ ϕ0, the conditional distribution function

Qn(x) = Q(x|ϕn) =

∫ x

0

q(t|ϕn) dt =
1

s(ϕn)

∫ x

0

p(t,ϕn) dt

converges weakly to Q0(x) = Q(x|ϕ0). This means to show that for almost all
r > 0 we can change the limit and the integral sign.

Assumption µ ∈ int(M) together with the continuity of f imply the continuity
of the joint density p (see (5.2)) on {(r,ϕ) : r ≥ 0, ψ(r,ϕ) ∈ int(M)}. Further,
condition (5.5) guarantees that all the limits of ϕ 7→ p(r,ϕ) exist (in other words
we can informally say that no “jumps” of the quantile θτ (·) will occur). Since f
is bounded we can use Lebesgue convergence dominating theorem in the following
equation. For any r > 0 it holds that

lim
n→+∞

∫ r

0

p(t,ϕn) dt
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= lim
n→+∞

∫ r

0

tp−1 sinp−2 ϕn,1 . . . sinϕn,p−2 f(ψ(t,ϕn)) dt (5.6)

=

∫ r

0

p(t,ϕ0) dt.

To finish the proof of the weak convergence of Qn we need to show similar result
to (5.6) for the marginal density

s(ϕ) =

∫ +∞

0

p(t,ϕ) dt =

∫ +∞

0

tp−1 sinp−2 ϕ1 . . . sinϕp−2 f(ψ(t,ϕ)) dt.

Suppose ε > 0. Then, since (5.3) (or (5.4) which is a sufficient condition for (5.3))
holds, there exists r0 > 0 such that∣∣∣∣sup

ϕ

∫ +∞

r0

p(t,ϕ) dt

∣∣∣∣ ≤ sup
ϕ

∫ +∞

r0

tp−1f(ψ(t,ϕ)) dt < ε. (5.7)

And so eventually, since (5.6) holds, there exists n0 such that if n > n0 then

|s(ϕn)− s(ϕ0)| ≤
∣∣∣∣∫ r0

0

p(t,ϕn) dt−
∫ r0

0

p(t,ϕ0) dt

∣∣∣∣
+

∣∣∣∣∫ +∞

r0

p(t,ϕn)) dt

∣∣∣∣+

∣∣∣∣∫ +∞

r0

p(t,ϕ0)) dt

∣∣∣∣ < 3ε.

The inequality for last two terms is obtained by using (5.7).
HenceQn converges weakly toQ0.According to Lemma 8.3.1 in [Resnick, 1999],

Q−1τ (ϕn)
n→+∞−−−−→ Q−1τ (ϕ0) for arbitrary τ ∈ (0, 1). Heine definition of continuity

finishes the proof. �

Proof of Theorem 24. The proof is very similar to the proof of Theorem 26. With-
out loss of generality we assume s = (0, . . . , 0, 1)T . Such direction has hyperspher-
ical coordinates representation as the vector of angles ϕ̃ = (0, . . . , 0)T . According
to Note 31 and according to the proof of the weak convergence of Qn from the
proof of Theorem 25, one has

lim
ϕ→ϕ̃

Q(r|ϕ) = Q(r|ϕ̃), ∀r > 0.

We now show that this limit is equal to F (r|s).

F (r|s) = lim
δ→0+

P(X ∈ Aδµ(s, r)| X ∈ Aδµ(s))

= lim
δ→0+

∫ r
0

∫ δ
0
· · ·
∫ δ
0

∫ 2π

0
p(t,ϕ) dϕp−1 . . . dϕ1 dt∫ +∞

0

∫ δ
0
· · ·
∫ δ
0

∫ 2π

0
p(t,ϕ) dϕp−1 . . . dϕ1 dt

= lim
δ→0+

∫ r
0

2πδp−2p(t,ϕ∗t,δ) dt∫ +∞
0

2πδp−2p(t,ϕ∗t,δ) dt
= lim

δ→0+

∫ r
0
p(t,ϕ∗t,δ) dt∫ +∞

0
p(t,ϕ∗t,δ) dt

(5.8)
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=
limδ→0+

∫ r
0
p(t,ϕ∗t,δ) dt

limδ→0+

∫ +∞
0

p(t,ϕ∗t,δ) dt
=

∫ r
0
p(t, ϕ̃) dt∫ +∞

0
p(t, ϕ̃) dt

= Q(r|ϕ̃). (5.9)

In equation (5.8) we used the mean value theorem for integration, where for
any t > 0 elements of ϕ∗t,δ satisfy (ϕ∗t,δ)i ∈ [0, δ), i = 1, . . . , p − 2, (ϕ∗t,δ)p−1 =
0. The change of limit and integration sign in (5.9) is possible using the same
arguments as in the proof of Theorem 26. And finally, for arbitrary u > 0,
limδ→0+ p(t,ϕ

∗
t,δ) = p(t, ϕ̃), since p(t, ·) is bounded and continuous function. �

Example 18. Do we really need assumption (5.3) to hold? Consider function

h(t) =


1

4t2
if |t| > 1,

1

4
if |t| ≤ 1

and define f(x1, x2) = h(x1)h(x2). Then f is a density of a random vector with
spherically symmetric distribution. We choose the center of symmetry (0, 0)T as
the center for the directional quantiles. Since

lim
r→+∞

sup
s∈Sp

∫ +∞

r

tf(ts) dt = lim
r→+∞

∫ +∞

r

tf(t, 0) dt

= lim
r→+∞

∫ +∞

r

1

16t
dt = +∞,

assumption (5.3) does not hold. And, indeed, it can be shown that τ -directional
quantiles θτ (·) at directions that correspond to the angles 0, π/2, π, 3π/2 tends
to infinity for any τ ∈ (0, 1).

Univariate quantiles are often used for construction of confidence intervals.
One would like to know if it makes sense to use directional quantiles for such a
purpose in the multivariate case. In the following, for any random vector Z and
its τ -directional quantiles θτ (s), we denote τ -central region as

CZ(τ) = {µ+ ts : 0 ≤ t ≤ F−1(τ |s), s ∈ Sp}.

Theorem 27. Let X be a random vector with a continuous distribution. Then

(i) P
(
X ∈ CX(τ)

)
= τ, ∀τ ∈ (0, 1),

(ii) CX(α) ⊆ CX(β) if 0 < α ≤ β < 1,

(iii) CAX(τ) = ACX(τ) for an arbitrary nonsingular matrix A, if the center of
the random vector AX is equal to Aµ.
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Proof. (i): Using hyperspherical representation of the set CX(τ) one has

P
(
X ∈ CX(τ)

)
=

∫ 2π

0

∫ π

0

. . .

∫ π

0

∫ Q−1
τ (ϕ)

0

q(r|ϕ)s(ϕ) dr dϕ1 . . . dϕp−1

=

∫ 2π

0

∫ π

0

. . .

∫ π

0

τ s(ϕ) dϕ1 . . . dϕp−1

= τ

∫ 2π

0

∫ π

0

. . .

∫ π

0

s(ϕ) dϕ1 . . . dϕp−1 = τ.

The proof of property (ii) is clear. Property (iii) is an obvious consequence of the
fact that an affine transformation maps an arbitrary line to a line. �

5.2.2 Estimation

Now we show how we can estimate the directional quantiles. The estimate is
based on Def. 15.

For now we suppose that we already know the central point of our data. It may
mean that a position of the center arises naturally from a character of data. If we
do not know it (actually more realistic situation) we assume that we have already
estimated such point. In both cases we denote the center used for estimation of
the directional quantiles by µ̂.

We estimate the τ -directional quantile in direction given by s ∈ Sp in straight-
forward way according to Def. 15. We simply estimate the conditional distribu-
tion only from observations that lie in a cone of some predefined aperture 2α.
The parameter (angle) α here represents the “kernel width” and we first have to
choose it. Choice of the kernel width can be done in the same way as a choice of
a bandwidth in kernel density estimates or smoothing regression methods. After
choosing the width of the kernel, the estimate for the conditional distribution
function F (r|s) can be obtained by employing, in Def. 15, the empirical proba-
bility measure Pn(A) = 1

n

∑n
i=1 1 {X i ∈ A}. Now, the estimate is defined as

Fα,n(r|s) = Pn(Aαµ(s, r) | Aαµ(s)) =
Pn(Aαµ(s, r))

Pn(Aαµ(s))

=

∑n
i=1 1

{
X i ∈ Aαµ(s, r)

}∑n
i=1 1

{
X i ∈ Aαµ(s)

} .

(5.10)

The τ -directional quantile in a direction given by s is then estimated in a standard
way by

F−1α,n(τ |s) = inf{r ≥ 0 : Fα,n(r|s) ≥ τ}.
This is an easy and computationally non–demanding way how to obtain an esti-
mate. If we choose α→ 0 (sufficiently slowly) with increasing sample size n then
it can be shown that under certain conditions Fα,n is an consistent estimate.
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0 α

1

0 α

1

Figure 5.1: Left panel illustrates a triangular kernel function. Right panel
illustrates a tricube kernel (5.12).

As well as in the kernel density estimates we can in (5.10) use a kernel “cone”
function instead of indicator of a cone. Suppose a “cone” kernel function

w : [0, π] −→ [0,+∞), where w(β) = 0 if β ∈ (π/2, π].

and define a kernel estimate of the conditional distribution function as

Fw,n(r|s) =

∑n
i=1w(] (X i − µ, s)) 1 {‖X i − µ‖ ≤ r}∑n

i=1w(] (X i − µ, s))
. (5.11)

Again, the conditional quantiles F−1w,n are defined in the same way as before.
Equality (5.11) states more general form of (5.10). For instance if we choose
w(β) = 1 {β ≤ α} then we get the same result as in (5.10). α is the bandwidth
parameter. Another example is the triangular kernel. See the left panel of Fig. 5.1
for illustration of this kernel function and the left panel of Fig. 5.2 for application
of this kernel. This kernel linearly decreases from 1 to 0 on the interval [0, α],
where α ∈ (0, π/2]. Next useful kernel is the tricube kernel (see the right panel
of Fig. 5.1) w(β) = k(β/α), where

k(u) =
70

80

(
1− |u|3

)3
1 {|u| ≤ 1} (5.12)

for bandwidth parameter α. The tricube kernel usually leads to good results since
it smoothly decreases to zero value in the predefined point.

In the following remark we list the properties that are known from kernel
estimates theory or that are clear. So they are stated without the proof in the
following remark. We denote the sample version of the set CX(τ) for a kernel
function w by Cw,n(τ), i.e.

Cw,n(τ) = {µ+ ts : 0 ≤ t ≤ F−1w,n(τ |s), s ∈ Sp}.

Remark 33. The following properties hold.
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(i) According to the sample size we can choose a kernel wn such that F−1wn,n(τ |s)
is a consistent estimate of F−1(τ |s), thus for sufficiently large n approxi-
mately bnτc points lie in the confidence set Cwn,n(τ).

(ii) Cw,n(τ) is rotational invariant for any w.

(iii) Cw,n(τ1) ⊆ Cw,n(τ2) for any w if τ1 ≤ τ2.

When p = 2, i.e. in two dimensional space it is also possible to estimate
directional quantiles using τ -quantile regression (see [Koenker, 2005]) for doublets
(Ri, Fi), i = 1, . . . , n. Here (Ri, Fi), i = 1, . . . , n, is a random sample obtained by
inverse polar transformation ψ−1 of random sample X i, i = 1, . . . , n (see (5.1)).
We can apply τ -quantile regression estimate of Ri on

1, sinFi, cosFi, sin 2Fi, cos 2Fi, . . . , sinLFi, cosLFi,

where L is the order of Fourier series expansion. For more information about
Fourier series see e.g. [Tolstov & Silverman, 1976]. Parameter L has to be chosen
in advance. Any usual technique such as cross-validation can be used. Higher
values (relative to sample size n) of L lead to “rugged” estimate, lower values lead
to “oversmooth” estimate. If we denote estimated coefficients of finite Fourier
series expansion by α̂0, α̂1, . . . , α̂L, β̂1, . . . , β̂L we obtain continuous 2π-periodical
function

rτ (ϕ) = α̂0 +
L∑
i=1

α̂i sin iϕ+ β̂i cos iϕ. (5.13)

After transformation back to Cartesian coordinates we obtain an estimate of
quantile contour. We can proceed in similar way if p > 2, but a non-smoothness
issues for certain values of angles has to be solved and hence other expansion such
as spherical harmonics expansions are recommended to use.

5.2.3 Selection of the Smoothing Parameter

The choice of smoothing parameter in (5.10) and (5.11) or the choice of order
of expansion in (5.13) plays an important role. We suggest to use the K-fold
cross-validation, where K = 10, to deal with bias–variance trade-off. Let κ :
{1, . . . , n} → {1, . . . , K} be an indexing function that indicates the partition to
which observation i is allocated by the randomization. For kernel estimate we
choose smoothing parameter α (or even a kernel w) according to criterion

CV (α) =
1

n

n∑
i=1

ρτ

(
‖X i − µ‖ − F−1w,n,κ(i)

(
τ | X i/‖X i‖

))
,

where F−1w,n,k is an estimate based on (5.11) or (5.10) computed with the k–th part
of the data removed. The loss function ρτ is the quantile regression loss function,
i.e.

ρτ (u) = u(τ − 1 {u < 0}).
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Kernel estimate

Figure 5.2: Estimated 75% reference quantile contours for artificial data of the
sample size n = 1000. On the left picture the estimate obtained by (5.11) for the
triangular kernel with α0 = π/7

.
= 0.449 is plotted (chosen by cross validation

- see Fig. 5.3). 749 points lie inside the estimated central region. The Fourier
series estimate (5.13) for L = 4 is on the right picture. 751 measurements lie
inside. The dashed contour denotes the theoretical contour with 760 points lying
inside.

Tenfold cross-validation was used in Example 19, see also Fig. 5.3. It seems that
for the triangular kernel we should choose value of bandwidth α between 0.35
and 0.5.

5.2.4 Choice of the Center

To know a position of a center is more a wish than a reality. Of course, sometimes
there exists a naturally given center (e.g. when we measure deviations, it may
sound reasonable to choose the origin 0 as a center). In other cases we need to
choose somehow such point. We suggest to use some multivariate generalization
of the univariate median. Most of these generalizations satisfy the desirable
property that the deepest point is in some sense the most “surrounded” by data.

We recommend to use some of the data depth function showed in the previous
chapters (actually to find appropriate center point for directional quantiles was
one of motivation to work on data depth). In particular use of the generalized
halfspace depth leads to good central points. The most appropriate candidate
points for a center we obtain by using the kernel cone depth for the weight function
defined in (2.8). The best results we get if the kernel cone weight function (and
bandwidth parameter) is the same as in the estimation of directional quantiles in
(5.11). But it is tricky to properly choose the bandwidth parameter if we do not
know the position of center.
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Figure 5.3: Tenfold cross-validation curve for data from Example 19 as a func-
tion of the bandwidth parameter α. Bumpiness occurs due to the fact that for
each value of the bandwidth α we use different (randomly chosen) division into
the training sets and the validation set. It also indicates variance of the cross-
validation procedure. Due to the variance there does not exist unique “best”
choice of the bandwidth but there are many values of bandwidth parameters that
are not statistically different.

The deepest point obtained by kernel cone depth is the most appropriate
choice of center for estimating the directional quantiles because the radius is the
most balanced in the sense that probabilities along the least favourable direction
is the highest possible.

5.2.5 Examples

Example 19 (The kernel estimate and the Fourier series estimate applied on
artificial data). See Fig. 5.2. Dataset was simulated from the model defined as

X = R cosF, Y = R sinF,

where F ∼ U(0, 2π) and R|F ∼
∣∣∣N(0,

(
3/2 + cos30(F/2)

)2)∣∣∣.
Simulated data (Xi, Yi), i = 1, . . . , 1000 are shown on the figure along with the
estimated 75% reference quantile contours. The theoretical center is the origin
0. The estimate for the center (0.005, 0.004)T was obtained by using the kernel
cone depth weight function (2.8). The triangular cone weight function (see the
left panel of Fig. 5.1) with α0 = π/7

.
= 0.45 was used. The same weight function

was used as a kernel while estimating the contour shown on the left panel of
Fig. 5.2. On Fig. 5.3 we can see the tenfold cross-validation curve. It seems that
we should choose value of bandwidth between 0.35 and 0.5. 749 points lie inside
the estimated contour.
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Figure 5.4: Kernel directional quantiles estimate of 20%, 40%, 60%, 80% contours
for alpha and gamma intakes.

The Fourier series estimate for p = 4 is on the right panel of Fig. 5.2. 751
measurements lie inside. The dotted contour denotes the theoretical contour with
760 points lying inside.

Example 20 (The alpha and gamma intakes in the Rožná mine). Here we
show contours for data from Example 3. 20%, 40%, 60%, 80% contours are
shown on the Figure 5.4. The triangular cone weight function was used for the
deepest point (center) calculation and for kernel estimates of directional quan-
tiles. The bandwidth parameter α = π/16 was chosen. The central point is
(62.5 Bq/month, 0.35 mSv/month)T .

5.2.6 Relation to the Data Depth

Besides the fact that the deepest point leads to choice of a good central point the
directional quantiles can be considered as a data depth function. Given a central
point θ any point x ∈ Rp can be represented as

x = θ + r(x)s(x),

where r(x) ≥ 0 and s(x) ∈ Sp. Then F
(
r(x)|s(x)

)
can be thought as a measure

of non-centrality (outlyingness) of x and hence the function

DQ(x) =
1

1 + F
(
r(x)|s(x)

)
can be though as a data depth function. It is clear that DQ satisfies all the
properties of Definition 1 (key properties). Note that the central sets need not
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Figure 5.5: Regression plane in nonfit position. The figure was reproduced from
[Rousseeuw & Hubert, 1999].

to be convex and that the sample version does not satisfy key property 1 - affine
invariance.

5.3 Regression Depth

There were attempts to apply concept of the data depth to other than Euclidean
spaces. Papers [Rousseeuw & Hubert, 1999, Rousseeuw et al., 1999] introduce a
notion of depth in the regression setting. This section shows brief overview of this
concept and shows new finding about a regression depth (see Def. 17) in regression
setting with quadratic (polynomial) transformation of the independent variable.

Consider a linear regression

EY = β0 + Xβ,

where Y ∈ Rn is a random vector, X ∈ Rn×p is a dataset matrix and β ∈ Rp is
a vector of regression coefficients. Regression depth assigns values to regression
functions θ0 + xTθ, θ0 ∈ R,θ ∈ Rp, according to their centrality with respect to
dataset X.

Univariate median is a point with property that the number of removed ob-
servation (resp. probability mass of removed halfline in population case) to make
this point lying outside the dataset is the highest possible. Similar though is used
for definition of regression depth. Informally the regression depth of a regression
plane is the smallest number of observations (Yi,X i) that have to be removed
to guarantee that no points lie between this plane and a vertical plane. Fig. 5.5
shows plane, represented by vector of regression coefficient θ, where no points
have to removed.

For formal definition we first need to define nonfit position of a plane. De-
note by yi ∈ R and xi ∈ Rp, i = 1, . . . , n, observed dependent variable and
independent variables. Further for any vector of regression coefficients θ0, θ =
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(θ1, . . . , θp)
T denote by

ri(θ0,θ) = yi − θ0 − xTi θ, i = 1, . . . , n,

the residuals of the fit.

Definition 17. Regression coefficients θ0, θ = (θ1, . . . , θp)
T are called a nonfit to

X (matrix with xi as rows) iff there exists an affine hyperplane V in independent
variables space Rp such that no xi belongs to V and such that ri(θ0,θ) > 0 for
all xi in one of its open halfspaces and ri(θ0,θ) < 0 for all xi in the other open
halfspace.

See Fig. 5.5 for illustration of a nonfit. Now we can proceed to the definition
of regression depth.

Definition 18. The depth RegD(θ0,θ) is the smallest number of observations
(yi,xi) that would be removed to make a θ0,θ nonfit.

The depth function RegD provides good center–outward ordering of re-
gression planes. The deepest point is an estimate of β0,β. It posses good
properties - almost identical properties as the median regression estimates plus
it is very robust to leverages. Unfortunately it is computationally demand-
ing. For computational aspects see [Rousseeuw & Struyf, 1998]. Only “naive”
O(np+2) algorithm exists, small sample distribution is hard to determine and
the asymptotic distribution is not in explicit form and it need to obtained via
simulations (see [Bai Zhi-Dong, 1999]). Also no implementations in statistical
software exist. There is a room for further investigations on this very promising
statistical concept.

Often we work with quadratic transpose of an univariate dependent variable
x. Suppose model

E[Y |x] = β0 + β1x+ β2x
2,

where β0, β1, β2, x ∈ R. The nonfit and the regression depth is defined the same
way as in Def. 17 and 18 with xi = (xi, x

2
i )
T . There arises a question how the

depth can be interpreted in original univariate variable x space.
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v1 v2

Figure 5.6: Regression depth in quadratic regression setting is equal to the mini-
mum (according to all positions of v1 ≤ v2) number of observations lying only in
yellow or only in white areas.
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Figure 5.7: Illustration of quadratic regression model Y = β0+β1x+β2x
2+ε. Left

panel shows dependent variable plotted against independent variable x. We see
quadratic dependence. Right panel shows the same dataset where the dependent
variable is plotted against x and x2 (axis denoted by z). Observed points are
plotted in blue color, their projection to the independent x, x2-variables space
are plotted in red color. Left panel also shows the orthogonal projection to the
x, y-space.

Remark 34. Regression coefficients θ0 (intercept), θ1 (linear term), θ2 (quadratic
term) in quadratic regression setting are nonfit if there exist points v1 ≤ v2 such
that at least one of the following properties holds
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1. ri(θ0, θ1, θ2) > 0 for xi ∈ (v1, v2) and ri(θ0, θ1, θ2) < 0 for xi ∈ (−∞, v1) ∪
(v2,+∞).

2. ri(θ0, θ1, θ2) < 0 for xi ∈ (v1, v2) and ri(θ0, θ1, θ2) > 0 for xi ∈ (−∞, v1) ∪
(v2,+∞).

Regression depth is the smallest number of observations (yi, xi, x
2
i ) that would

be removed to make θ0, θ1, θ2 nonfit.

Fig. 5.6 illustrates the nonfit for quadratic regression. To make a quadratic
curve nonfit observations only in the yellow areas or only in the white areas need
to be removed.

Proof of Remark 34. We only need to realize the geometry of y, x, x2 space - see
Fig. 5.7, where the same data are plotted in two ways. Consider a plane in R3.
To be consistent with the right panel of the figure we denote axis by x, z, y. The
plane can be represented as a set

{(x, z, y) : y − θ0 − θ1x− θ2z = 0} (5.14)

where θ0, θ1, θ2 are “regression” plane coefficients. Observations lie in the set
{(x, z, y) : z = x2} (see red points in the figure). The projection of observation
into the x, y plane ({(x, z, y) : z = 0}) gives us the original space that consists of
only x, y coordinates - see the left panel of the figure. The same way we obtain
view of a quadratic fit (5.14) - the fitted quadratic function f(x) = θ0+θ1x+θ2x

2

is projection of the set

{(x, z, y) : z = x2} ∩ {(x, z, y) : y − θ0 − θ1x− θ2z = 0}

into x, y plane. There are 2 possibilities. The first possibility is case when a line
in x, z space crosses the parabolic function z = x2 in two points (on Fig. 5.6
these points have x coordinate equal to v1 and v2) and divides the parabola into
area above the line and the area under the line. Nonfit means that residuals of
all observations belonging to one area of the parabola are positive and residuals
of observations that belong to the other area are negative. After projection to
x, y plane it means that for the projected parabolic function the property 1. or
2. must hold. The second possibility is the case when a line is parallel with z axis
- the line crosses the parabola in only one point and thus after projection to x, y
plane there is only one point v1 which divides the parabola into two parts. It is
the case why we allow that v1 = v2 to be hold. �

The same way we can proceed when using a polynomials of higher orders.
But we obtain much more points that divided the line to areas with only
negative or only positive residuals. One rule holds - an area with only negative
residuals is always followed with an area with only positive residuals or vice versa.

We can also define the regression depth using a “classical” data depth func-
tion. Any depth function can be extended to the regression framework if we
consider the depth of all regression coefficients of all the planes going through
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p+ 1 points from the dataset. The deepest point is an estimate of regression co-
efficients. This is a multiple regression modification of Passing-Bablok regression
(see [Passing & Bablok, 1983] or [Leonhardt & Zawta, year unknown]) that is of-
ten used in error in variable regression problems and in measurements method
comparisons because it is pretty robust with respect to outlying observations both
in dependent and independent variables.

5.4 Functional Data Depth

Functional data has become very popular in recent years. In conventional statisti-
cal analyses data are considered as scalars or vectors. In functional data analysis,
each observations is considered as a real function, Xi(t), i = 1, . . . , n, t ∈ I,
where I ⊂ R is an interval. Usually, Xi are supposed to be continuous and
smooth. This statistical concept arises quite naturally in many areas of re-
search. In biology, economics, medicine, the observed data are often stochas-
tic functions or curves. t is usually time variable. Even some problems that
can be solved using techniques of multivariate data analysis is better to ap-
proach via functional data, e.g. if a data generating process depends on time
and multivariate observations are observed in different times for different sub-
jects. Very comprehensive overview of methods and its applications can be seen
in [Ramsay & Silverman, 2005, Ramsay & Silverman, 2002].

Very important task in the functional data analysis is to define a center-
outward ordering (and thus rank statistics) and robust estimates such as the
median curve or the trimmed mean curve. This is why the functional data depth
is nowadays under intensive investigation.

The straightforward way how to define the functional data depth is to express
(approximate) functional observations as a finite linear combination of some basis
functions and then apply an “ordinary” depth function (see Chapters 1 and 2)
on obtained coefficients. This approach seems to be not appropriate because
dimension (number of coefficients) is relatively high compared to sample size and
curse of dimensionality occurs (see e.g. [Hastie et al., 2009], Chapter 1, Section
2.5) - majority of points are lying on the “border” of data cloud and hence they
have almost zero depth. In some cases an improvement can be achieved if we
reduce dimension with principal components.

[Fraiman & Muniz, 2001] defined an integral depth. It’s now called the
Fraiman-Muniz depth (FD). Suppose an one dimensional depth function D, then
the depth of functional observation x is

FD(x) =

∫
I

D(x(t)) dt. (5.15)

Usual choice of D is the halfspace depth, i.e. the minimum of probability mass of
the halfline beginning at x(t). This depth provides us with sensible center-outward
ordering.

[Hlubinka & Nagy, 2012] proposes to also consider derivatives while making
the depth calculations because two very different (e.g.. increasing and decreasing)
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functions can have the same depth in some cases. Instead of only x(t) in (5.15)
the paper proposes to use, for a given order of derivation K ≥ 1, a vector of(

x(t),
∂

∂t
x(t), . . . ,

∂K

∂tK
x(t)

)T
.

In this case, D is a multivariate depth function - e.g. any depth function mentioned
in this thesis. The same approach can be used when dealing with multivariate
functional data, i.e. when X i(t) = (Xi1(t), . . . , Xip(t))

T , t ∈ I, i = 1, . . . , n.
Multivariate functional data represent often trajectories. Application of func-

tional data depth in this case can be used in computer / mobile game industry
if we want to compare gaming style of one player with gaming styles of other
players - we are looking for outlyingness of trajectory of the player. Since inte-
gral depth usually leads to good results and there does not exist many methods
for analyzing functional data, we can expect that “ordinary” depth functions will
found applications in this field in the future.

Another definition was shown in [López-Pintado & Romo, 2007] and
[López-Pintado & Romo, 2009]. The depth proposed there is called the band
depth. Suppose that P is a distribution of functional data of interest, i.e. P
is a probability measure on a space of continuous (and usually also smooth)
functions. The functional band depth of J ≥ 2 order is defined as

BD(x) =
1

J − 1

J∑
j=2

P
(
inf{X1, . . . , Xj} ≤ x ≤ sup{X1, . . . , Xj}

)
,

where X1, . . . , Xj is a random sample from P . In proposed papers authors show
that this depth satisfies the key properties of Def. 1. But it is very weak if
the observations are noisy and in comparison to Fraiman-Muniz depth it is very
computation demanding (O(nJ)).
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Conclusion

This thesis brings two new classes of statistical depth functions based on weighted
probabilities. Both classes generalize the well known halfspace depth. In both
cases instead of considering only indicators of halfspaces we consider a more
general class of weighted (half)spaces. This allows us to more respect the ge-
ometric structure of data especially when non-convexly supported distributions
are considered. When we deal with non-convexly supported, bimodal or mixed
distributions the majority of statistical depth functions often lead to results when
big attention is given to observations lying far away from the rest of the data. It is
undesirable property, even for the cases where one to one correspondence between
depth of the points and the probability distribution exists - consider e.g. trimmed
mean, outlier detection or rank test. In these cases it is very important to assign
weights (ranks or values of outlyingness) according to the geometric structure of
the data. It means that points outside the support or outlying points in the areas
with low density should not attain high depth values (and thus high rank or low
values of outlyingness). If the latter does not hold the depth based procedures
such as rank tests or trimmed mean estimates lost their robustness even in the
case when the used depth function is very robust. Proposed depth functions does
not suffer from this when suitable weight function is used.

Properties of both proposed classes of depth functions are proved and dis-
cussed in detail. We also defined an affine invariant version of proposed depth
functions. The uniform strong consistency over Rp is also proved and some re-
sults about the limit distribution are established and discussed. It seems that
convergence is very slow, mainly due to the fact that the sample version of the
depth is biased. It limits use of the depth in cases when the limit distribution is
needed. The generalized halfspace depth posses many good properties and brings
a natural link between very local view of data (kernel density estimate) and global
view of the data (the halfspace depth). In general it does not provide us with
the unique deepest point and the deepest point needs not to lie in the center of
symmetry, especially in cases when the center does not lie inside the support. If
there exists a need to avoid this the weighted halfspaces ratio depth should be
used.

The use of data depth is very sensitive to the what to be deep means in specific
situations. Badly chosen depth function (wrong definition of the meaning to be
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deep) can lead to wrong results. So in advance to depth application we have to
properly choose the depth functions according to the character of our problem.
For instance the halfspace depth, the Liu depth, the projection depth and many
other depth functions are good tools when we work with elliptically symmetric
data (especially with multivariate normal distribution) with presence of outlying
observations. In this case application of these depths is very effective since it is
robust and not a big amount of observations is needed. On other hand when we
work with non-elliptically symmetric distribution these depths can lead to biased
and misleading results. The depth functions proposed in this thesis can avoid this
but in the additional cost of need for a bigger dataset. If it is used for smaller
datasets it can happen that the majority of points is marked as points on the
border of dataset (i.e. the points with low depth values), especially when a local
weight function is used.

To be deep or not to be deep?

The thesis also discusses some “classical” data depth related concepts such
as regression depth, directional quantiles and functional data depth. In all these
fields the proposed depth can bring some improvements.

Nowadays a lot of multivariate data is collected. Hence the use of data depth
functions can play important role in the future. Unfortunately the data depth
methodology is still not fully developed. Also fast algorithms for higher dimen-
sional data does not exist and contemporary computation power needs not to
be sufficient for straightforward computation. The proposed depth functions are
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quite computational demanding. So it can limits its use, especially in data with
dimension higher than 3, when the computation is very slow. This fact together
with need of bigger sample size are the biggest disadvantages of the proposed
depth functions.
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Appendix

Additional Lemmas

Lemma 28. Let C be p × p positive definite matrix. Denote its eigenvalues by
λ1 ≥ · · · ≥ λp. Then λi > 0, i = 1, . . . , p. Further denote by U matrix, whose
k-th column is equal to eigenvector xk, which corresponds to eigenvalue λk and
satisfies xTkx = 1. Let Λ

1
2 = diag{

√
λ1, . . . ,

√
λp}. Then

C = LL, where L = UΛ
1
2 UT .

The proof is in [Rao, 1973].

Lemma 29. Consider two bounded functions f, g : M → R where M is subset
of a space equipped with a norm or with a distance. Then

sup{|f(x)− g(x)| : x ∈M} ≥ | inf{f(x) : x ∈M} − inf{g(x) : x ∈M}|.

Proof. If inf f = inf g then it follows immediately because sup |f − g| ≥ 0.
If inf f > inf g then there exists ε0 > 0 such that for all ε, 0 < ε < ε0, exists

xg ∈M which satisfies

inf g ≤ g(xg) < inf g + ε < inf f ≤ f(xg).

Therefor

sup |f − g| ≥ |f(xg)− g(xg)| ≥ | inf f − g(xg)| > | inf f − inf g| − ε

for all ε, 0 < ε < ε0. This completes the proof of the lemma. �

Lemma 30. Let f be a measurable function, f : M1 ×M2 → [0,+∞). Further
suppose that

lim
(x1,x2)→(ξ,ν)

f(x1, x2) = f(ξ, ν)

for almost all ξ ∈ M1 and all ν ∈ M2. Consider a fixed ξ0 ∈ M1 and a fixed
ν0 ∈M2. Then for any ε1 > 0 and ε2 > 0 the function

z 7→ sup{f(z − x1, x2) : x1 ∈M1, d1(x1, ξ0) ≤ ε1; x2 ∈M2, d2(x2, ν0) ≤ ε2}

is universally measurable.
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Proof. The problem is equivalent to a problem of measurability of a function

g(z, s) = sup{h(z, t) : τ(t, s) ≤ e}

if h :M1 ×M→ [0,+∞) is a measurable function, where (M, τ) is a separable
metric space. To see the equivalence let (M, τ) = (M1, d1) × (M2, d2) and
s = (ξ0, ν0). Denote Ba = {(z, t) : h(z, t) > a} and note that Ba is a Borel set
for any a due to the measurability of h. Denote Ca := {(z, s) : g(z, s) > a}. It
is clear that for any z

Ca
z = Ue(Ba

z ),

where Ad = {s : (z, s) ∈ A} denotes the d-section of a set A and Ue(N) denotes
the e-neighbourhood of a set N ⊂ M. The set Ca is therefore a projection of a
Borel set

Da,e = {(z, s, t) ∈M1 ×M×M : (z, t) ∈ Ba, τ(s, t) ≤ e}

into the first two coordinates.
Since the projection of a Borel set is an analytic and hence a universally

measurable set it follows that g(y, x) is universally measurable function. �

Remark 35. If a function g is universally measurable then for any finite Borel
measure µ on R × R (in particular for any probability measure) there exists a
pair of Borel functions g1, g2 such that g1(y, x) ≤ g(y, x) ≤ g2(y, x) and g2 = g1
µ-almost surely. Hence the Lebesgue integral of universally measurable function
is well defined.

Uniform Law of Large Numbers and Entropy

In this section we briefly introduce some basic notions from the empirical process
theory. Suppose a measure Q and a class G of real valued functions on Rp such
that

G ⊂ Lq(Q) =

{
f :

∫
Rp
|f(x)|q dQ(x) < +∞

}
for q ≥ 1. The Lq(Q) norm of a function f is defined as

‖f‖q,Q =

(∫
Rp
|f(x)|q dQ(x)

)1/q

.

The δ–entropy with bracketing of a class G is the logarithm of the minimum
number N of pairs of functions {gLj , gUj }j=1,...,N such that for all j = 1, . . . , N

‖gLj − gUj ‖q,Q ≤ δ

and such that for each g ∈ G there exists a k ∈ {1, . . . , N} such that

gLk (x) ≤ g(x) ≤ gUk (x), ∀x ∈ Rp.

116



ULLN APPENDIX

Latter number of pairs we denote by Hq,B(δ,G, Q). We set Hq,B(δ,G, Q) = +∞
if no finite set of such pairs, that covers G, exists. Here G represents a set of
transformations of a random vector X ∈ Rp with distribution given by Q. The
following theorem says when the empirical mean converges uniformly over the
class of functions G.

Theorem 31. LetX ∈ Rp be a random vector with distribution given by Q and let
G be class of real valued functions on Rp such that G ⊂ L1(Q). If H1,B(δ,G, Q) <
+∞, ∀δ > 0, then

sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(X i)− E g(X)

∣∣∣∣∣ n→+∞−→ 0 almost surely. (6.1)

We say that G satisfies the uniform law of large numbers if (6.1) holds.

The theorem is a corollary of the ordinary law of large numbers and its proof can
be found in [Geer, 2000] or in [Pollard, 1984].
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