Univerzita Karlova v Praze Matematicko-fyzikální fakulta ## RIGORÓZNÍ PRÁCE Mgr. Milan Mad'ar ## Multivariate GARCH Katedra pravděpodobnosti a matematické statistiky Studijní program: Matematika Studijní obor: Finanční a pojistná matematika Praha 2014 #### Poďakovanie Na tomto mieste by som rád poďakoval doc. RNDr. Janovi Hurtovi CSc. za nápady pre ďalší rozvoj práce a Prof.dr. A.W. van der Vaartovi z VU University Amsterdam za veľmi zajímavú tému a konzultácie. Ďalej by som chcel poďakovať Jozefovi Maďarovi za morálnu podporu behom štúdií. Prehlasujem, že som túto rigoróznu prácu vypracoval samostatne a výhradne s použitím citovaných prameňov, literatúry a ďalších odborných zdrojov. Beriem na vedomie, že sa na moju prácu vzťahujú práva a povinnosti vyplývajúce zo zákona č. 121/2000 Sb., autorského zákona v platnom znení, najmä skutočnosť, že Univerzita Karlova v Praze má právo na uzavrení licenčnej zmluvy o použití tejto práce ako školného diela podľa § 60 odst. 1 autorského zákona. Názov práce: Viacrozmerný GARCH Autor: Mgr. Milan Mad'ar Katedra: Katedra pravděpodobnosti a matematické statistiky Abstrakt: Predložená práca pojednáva o regionálnych a globálnych väzbách, ako dôkaz integrácie akciových trhov vo Frankfurte, Amsterdame, Prahe a USA. Využívaný je prístup viacrozmerných GARCH modelov zároveň k zachyteniu dynamiky prenosu volatility medzi súvisiacimi devízovými kurzami. Definujeme tri základné typy modelov. U každého typu sú uvedené definície, vlastnosti a postup odhadu parametrov s príslušnými dôkazmi. Praktická časť práce ilustruje použitie jednotlivých modelov na reálnych dátach. Práca sleduje dva rôzne ciele, jednak charakteristiku a popis existencie regionálnych a globálnych väzieb medzi akciových trhmi, ale aj vzájomné porovnanie jednotlivých viacrozmerných GARCH modelov na vzorke dát. Výsledkom je, že odhady podmienených korelácii závislých na čase naznačujú obmedzenú integráciu medzi trhmi z čoho vyplýva, že investori môžu využiť diverzifikáciu portfólia medzi rôzne akciové trhy a znížiť tým rizikovosť investície obzvlášť v dobe krízy. **Kľúčové slová:** viacrozmerný GARCH, VECH, BEKK, O-GARCH, GO-GARCH, CCC, DCC Title: Multivariate GARCH Author: Mgr. Milan Mad'ar Department: Katedra pravděpodobnosti a matematické statistiky Abstract: This thesis will examine the regional and global linkages as evidence the integrated markets consist of stock markets in Frankfurt, Amsterdam, Prague the U.S. Therefore we will utilize the multivariate GARCH approach that investigates into the dynamics of volatility transmission of related foreign exchange rates. Also, we will define three basic model classes. For each of the model classes a theoretical review, basic properties and estimation procedure with proofs are provided. We illustrate approach by applying the models to daily market data. Our two main aims are discussing and reporting the existence of regional and global stock markets linkages and provide a comparison of such multivariate GARCH models on the data sample. We find out that the estimated time-varying conditional correlations indicate limited integration among the markets which implies that investors can benefit from the risk reduction by investing in the different stock markets especially during the crisis. **Keywords:** multivariate GARCH, VECH, BEKK, O-GARCH, GO-GARCH, CCC, DCC # Contents | 1 | Introduction | | | | | | |---|---|--|------------|--|--|--| | 2 | \mathbf{Pre} | liminary analysis | 9 | | | | | | 2.1 | Data | 9 | | | | | | 2.2 | Stylized features of financial data | 2 | | | | | | | 2.2.1 Volatility clustering | 3 | | | | | | | 2.2.2 Heavy tails | .3 | | | | | | | 2.2.3 Aggregational Gaussianity | 4 | | | | | | | 2.2.4 Leverage effect | .5 | | | | | 3 | \mathbf{Uni} | variate GARCH 1 | 7 | | | | | | 3.1 | Basic Idea | 7 | | | | | | 3.2 | The GARCH model | 8 | | | | | | 3.3 | GARCH (1,1) process | 23 | | | | | | 3.4 | Estimation of the GARCH model | 24 | | | | | 4 | Mu | ultivariate GARCH 31 | | | | | | | 4.1 | Basic Idea - why extend from univariate to multivariate? 3 | 31 | | | | | | 4.2 | 6.2 Generalizations of the univariate GARCH models | | | | | | | | 4.2.1 VECH model | 3 | | | | | | | 4.2.2 BEKK model | 8 | | | | | | 4.3 | Linear combinations of univariate GARCH models | 4 | | | | | | | 4.3.1 O-GARCH model | 15 | | | | | | | 4.3.2 GO-GARCH model | 16 | | | | | | 4.4 Nonlinear combinations of univariate GARCH models | | | | | | | | | 4.4.1 CCC model | 2 | | | | | | | 4.4.2 DCC model | 7 | | | | | | 4.5 | Goodness of Fit | 60 | | | | | | | 4.5.1 Goodness of fit of marginals 6 | 60 | | | | | | | 4.5.2 Goodness of multivariate fit | 1 | | | | | 5 | \mathbf{Em} | pirical application 6 | 3 | | | | | | 5.1 | Background of the data | 64 | | | | | | 5.2 | Data summary statistics | | | | | | | 5.3 | Estimation results | 57 | | | | | | 5.4 | Model comparison | 2 | | | | | | 5.5 | Goodness of Fit. | 7 4 | | | | | CONTENTS | 6 | |----------|---| | | | | | 5.5.1 | Goodness of marginal fits | 74 | | | | | |----|--------------|------------------------------|----|--|--|--|--| | | 5.5.2 | Goodness of multivariate fit | 77 | | | | | | 6 | Conclusion | 1 | 81 | | | | | | 7 | Appendix | | 83 | | | | | | Bi | Bibliography | | | | | | | # Chapter 1 ## Introduction In the face of globalization, it is important to document developments and linkages in global as well as in local markets. An accumulation of such information will provide a platform for determining the integration of global markets. An understanding of linkages and volatility transmission in stock and foreign exchange market returns and correlation of such returns will help investors or fund managers better manage their investment portfolios. They want to diversify portfolios as much as possible on account of risk minimization however, the diversification benefits of investigating in the different markets depend on the extent of the linkages between the markets, or we can ask how strong are markets integrated which requires a good understanding of underlying foreign exchange volatility. Only when market returns are less than perfectly correlated, is risk reduction possible. Indeed with the current crisis of confidence in risk management and the requirements of regulators, there is a requirement for GARCH modeling to take explicitly into account multivariate issues. When we are employing a multivariate framework, we are always balancing between two difficulties. First and foremost, with robust models we have to consider the number of parameters in the model which increases quickly with the dimension of the model resulting estimation problems. Overleaf simple models may not be able to capture the relevant dynamics in the structure. A lot of multivariate GARCH models have been developed and we survey three basic approaches. There exists substantial literature on the research on market return, volatility and even integration in the stock markets all around the world. Most of them have focused on national and regional stock and foreign exchange markets only. Henceforth a comprehensive analysis of more multivariate GARCH models on real data absent. Therefore, I became motivated by the impact of the recent crisis. Own contribution was 1 Introduction 8 primarily into the summarizing the particular component parts of multivariate GARCH models into the one complex work thereof, to show robustness of the GARCH methods and show how models are used in practice. Thesis contains two main aims, analyze the dynamics of volatility transmission in foreign exchange markets, examining the stock market linkages from a very representative global perspective and then comparing such basic types of multivariate GARCH models on the data. The rest of the thesis is organized as follows. The next chapter gives some basic details about the used data and presents some of the stylized features of financial data, which need to be taken into account when writing down models. The Chapter 3 presents a theoretical survey of univariate GARCH models, while Chapter 4 collects theoretical survey of multivariate GARCH framework, containing the following models: VECH, BEKK, O-GARCH, GO-GARCH, CCC and DCC. For each class of the model, a theoretical review, basic properties and estimation procedure are provided. Chapter 5 presents the findings and analysis from applying three multivariate models namely BEKK, GO-GARCH and DCC on the data containing data description, estimation results and models comparison. The thesis is concluded in Chapter 6. # Chapter 2 # Preliminary analysis #### 2.1 Data In this thesis, we used data which could be divided into the two major groups. On one hand, our data consists of the daily closing spot prices for the US dollar and Euro versus Czech Koruna from the Bloomberg research database. The daily series represents changes between business days with no adjustment for holidays. Euro and US dollar represent major currencies in pairs against Czech koruna. On the other hand, data used in the study consist of time series of daily stock market indices at the closing values of the markets in Prague (PX), Amsterdam (AEX), Frankfurt (DAX) and the U.S. (DJIA). The stock indices are based in the local currency terms and their changes are thus restricted to the movements in the stock process, avoiding any distortions included by the currency exchange rates devaluations of the countries. The investigated currencies, U.S. dollar and Euro, constitute the largest foreign exchange markets in the world measured in terms of turnover, are highly liquid, and have low transaction costs. Trading also occurs on a 24 hour basis, with almost instantaneous transmission of news items to market participants using computerized technology and on-line broking services. Consequently these markets are as close to the efficient market ideal as is currently possible.
It is clear that because of the market in Prague, we selected third currency Czech koruna. We assume that the reader is familiar with background of this three widely accepted currencies. We therefore focus more on stock market issues. The stock market in Prague represents the emerging markets in Central and Eastern Europe, Amsterdam represents the market situation in Western Europe, Frank2.1 Data **10** furt which is one of the biggest stock markets in Europe represents the market situation in Europe and finally we used data from U.S. given by Dow Jones index which generally reflects the financial situation in this part of the world. The stock markets in Frankfurt and the U.S. are considered to serve well as leaders for the regional and global developed markets respectively and are expected to play an influential role in the markets in Central and Western Europe. The inclusion of the stock markets in Frankfurt and the U.S. therefore permits us to investigate the regional and global linkages between markets. The indices used in this thesis are the widely accepted benchmark indices for the stock markets. Because in different countries holidays, no trading days fall on different dates, we have removed the data of those dates, when any series has a missing value due to no trading. Thus all data are collected for the same dates across the stock markets. The DAX (Deutscher Aktien-Index (German stock index)) is a blue chip stock market index consisting of the 30 major German companies trading on the Frankfurt Stock Exchange. Prices are taken from the electronic Xetra trading system. According to Deutsche Boerse, the operator of Xetra, DAX measures the performance of the Prime Standard's 30 largest German companies in terms of order book volume and market capitalization. The base date for the DAX is 30 December, 1987 with a base value of 1,000. The Xetra system calculates the index every second since January 1, 2006. The AEX index, derived from Amsterdam Exchange index, is a stock market index composed of Dutch companies that are traded on Euronext Amsterdam, formerly known as the Amsterdam Stock Exchange. Started on 3 January 1983 from a base level of 100 index points, the index is composed of a maximum 25 of the most actively traded securities on the exchange. The AEX is a market value-weighted index. The index comprises a basket of shares, the numbers of which are based on the constituent weights and index value at the time of readjustment. The value of the index is calculated by multiplying the price (in Euros) of each of the stocks by the number of shares that are trading in the basket, then summing the resulting numbers and dividing by 100. The PX index (until March 2006 the PX 50) is an index of major stocks that 2.1 Data 11 trade on the Prague Stock Exchange. Selected as the starting exchange day (a benchmark date) for the Index PX 50 was 5 April 1994 and its opening value was fixed at 1,000 points. At this time the index included 50 companies traded on the Prague Stock Exchange, accordingly named PX 50. Frequency of calculation is every 15 seconds. The DJIA index derived from Dow Jones Industrial Average, also referred to as the Industrial Average, the Dow Jones, the Dow 30, or simply the Dow, is one of several stock market indices created by Wall Street Journal editor and Dow Jones & Company co-founder Charles Dow. It is an index that shows how 30 large, publicly owned companies based in the United States have traded during a standard trading session in the stock market. It is the second oldest U.S. market index after the Dow Jones Transportation Average, which Dow also created. Dow is among the most closely-watched benchmark indices tracking targeted stock market activity. Figure 2.1: FX rates EUR/USD and CZK/USD during January 2007 and December 2012. The studied period is between January 1, 2007 and December 30, 2012, and the data in this study are downloaded from the website Yahoo Finance ¹, Prague Stock Exchange and Bloomberg. Figures 2.1 and 2.2 presents the time plots of the time series, which fluctuate on a daily basis. Note that we denote successive price observations made at time t and t-1 as P_t and P_{t-1} , respectively, then transformation a price series P_t into a log return ¹http://finance.yahoo.com Figure 2.2: Stock indices of AEX, DAX, PX, DJIA correspond, to the stock markets in Amsterdam, Frankfurt, Prague and the U.S. during January 2007 and December 2012. or simply return series r_t $$r_t = \log \frac{P_t}{P_{t-1}} = \log P_t - \log P_{t-1}.$$ Note that, r_t represents the interest or percentage yield obtained within period t-1 to t. Plots of returns computed from our data can be found in Figures 2.3 and 2.4. ### 2.2 Stylized features of financial data When the statistical models are developed to describe financial data, it is often useful to have some directives which describe the most important characteristic features of the data which the models should have to consider. These directives are referred to as "stylized features" or "stylized facts". Taylor [28] mentioned that "General properties that are expected to be present in any set of returns are called stylized facts." Stylized features are the result of more than half of the Figure 2.3: Return Series of FX rates EUR/USD and CZK/USD during January 2007 and December 2012. century empirical studies on financial time series, examines their properties from a statistical point of view. Let us start by stating a set of stylized facts which are common to a wide set of financial analysis. Let us explain number of them. #### 2.2.1 Volatility clustering Volatility clustering refers to observation, as noted by Mandelbrot [24], that large changes tend to be followed by large changes, of either sign, and small changes tend to be followed by small changes what is a well-known stylized fact in financial markets. In simple terms, volatility clustering manifests itself as quiet periods interrupted by volatile periods called turbulence. As can be seen from Figures 2.3 and 2.4 the changes between large return changes and relatively silent phases of small price activity is a slow process and does not indicate any significant autocorrelation. A look at the autocorrelation function Figure 2.5 of the realization shows a rapid decay of the autocorrelations of price changes. We can also see that absence of autocorrelation in returns does not imply the independence of the increments. Simple nonlinear function of returns, such as squared returns or absolute returns, show significant positive autocorrelation. #### 2.2.2 Heavy tails The observation of time series have a distribution, which is often assumed to be a normal (Gaussian). However, empirical studies of any financial time series shows, that this is not quite correct. Mandelbrot was the first to show that returns Figure 2.4: Return Series of AEX, DAX, PX, DJIA correspond, to the stock markets in Amsterdam, Frankfurt, Prague and the U.S. during January 2007 and December 2012. on financial markets are not Gaussian, but exhibit excess kurtosis. Heavy tails distribution means that the unconditional price or return distributions tend to have fatter (leptokurtic) tails then the normal distribution. In terms of shape, as we can see from Figure 2.6 a leptokurtic distribution has a more acute peak around the mean (that is, a higher probability than a normally distributed variable near the mean) and fatter tails (that is, higher probability for extreme events than in normally distributed data). Measure of fatness of the tails of a random variable X_t distribution is kurtosis defined as $\kappa_4(X) = \mathbb{E}(X - \mathbb{E}X)^4/(varX)^2$. For normally distributed variable is equal to 3. #### 2.2.3 Aggregational Gaussianity By aggregational Gaussianity we mean the fact that long term aggregation of returns, in the sense of assuming the returns over longer periods, will lead to approximately normally distributed variables. Figure 2.5: Autocorrelations of daily changes of PX index computed by R programming software. #### 2.2.4 Leverage effect The volatility tend to be larger for the price falls, than for price rises, when the magnitude of the price rise and fall, is identical. This is asymmetric influence of negative and positive information on future level of volatility. Figure 2.6: Histogram of price increments DAX and Dow Jones stock indices during January 2007 and December 2012 computed by R programming software, solid line represent density function of normal distribution. # Chapter 3 ## Univariate GARCH #### 3.1 Basic Idea We start with basic univariate GARCH framework. In 1982 Engle¹ introduced a volatility process with time varying conditional variance, known as the Autoregressive conditional heteroskedasticity (ARCH) process. The popularity of this class of models can be inferred, that several hundred research papers using this model have appeared in the decade since its introduction. Detailed discussion, technical conditions and statistical properties this type of models have been studied for example in Weiss [33]. However, in many of the financial applications with the ARCH models empirical works shows that high ARCH order has to be selected to catch the dynamic of the conditional variance of the financial time series. The high order of the model of course implies that many parameters have to be estimated and this is also difficult for computation. Another practical difficulty is that with high order of the model estimation will often lead to the violation of the non-negativity constraints that are needed to ensure that the conditional variance is always positive. Four years after, Bollerslev [7] introduced the generalized version of the model namely GARCH model as a natural solution of the high ARCH orders problem. Bollerslev's model is based on an infinite ARCH and reduces the number of parameters that needs to be estimated from infinite number to just a few. The main principle of
modeling time series using GARCH is that a large movements in period ("bursts of activity") increase the variance of the movements in the following periods. This constructs a feedback ¹The winner of the 2003 Nobel Memorial Prize in Economic Sciences for his work Engle, R. F.: Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. mechanism whereby a single univariate series determines both, the time series and its conditional variance structure. Alternating between volatile and quiet periods as we mentioned before is called volatility clustering. In finance GARCH-type processes became very favourite to model returns of stocks, exchange rates, stock indices and other series observed at equidistant time points. They have been designed to capture so-called stylized facts of such data which are, as we said before volatility clustering and others like dependence without correlation and tail heaviness. There exist many types of GARCH processes and the linear ones were the earliest. Before we start with the definition of GARCH model we introduce some of the basic building blocks of time series analysis, which we will often use in the next parts. First are the white noise series which can be defined as a doubly infinite sequence of random variables Z_t with mean zero and finite variances. Special types of white noise series are independent and identically distributed series. The i.i.d. white noise series ourselves are not so interesting, but are important to construct other series, for instance series where the random variables are dependent, so that the future can be predicted from past. We shall speak about a heteroscedastic white noise processes if the autocovariances at nonzero lags vanish, but the variances are still time-dependent. A related concept is a martingale difference sequences. Filtration \mathcal{F}_t is a non decreasing collection of σ -fields $\cdots \subset \mathcal{F}_{-1} \subset \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots$ A martingale difference sequence relative to the filtration \mathcal{F}_t is a time series X_t such that X_t is \mathcal{F}_t -measurable and $\mathbb{E}(X_t|\mathcal{F}_{t-1})=0$ almost surely for every t. This implies that any martingale difference sequence X_t with finite second moments is a white noise series with zero first moment given the past. However conversely not every white noise series is a martingale difference sequence relative to a natural filtration. #### 3.2 The GARCH model In this section we closely follow van der Vaart [30], chapter 8, whereas there exists plenty of possible definitions of GARCH process. We chose this interpretation, because we can easily move into multivariate framework. **Definition 1.** A GARCH (p,q) process is a martingale difference sequence X_t relative to a given filtration \mathcal{F}_t , whose conditional variances $\sigma_t^2 = \mathbb{E}(X_t^2|\mathcal{F}_{t-1})$ satisfy, for every $t \in \mathbb{Z}$ and given constants $\alpha, \phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q$, $$\sigma_t^2 = \alpha + \sum_{i=1}^p \phi_i \sigma_{t-i}^2 + \sum_{i=1}^q \theta_i X_{t-i}^2, \tag{3.1}$$ where $p \ge 0, \quad q \ge 0, \quad \alpha > 0,$ $\phi_i \geq 0, \quad i = 1, \dots, p,$ $\theta_i \ge 0, \quad i = 1, \dots, q.$ To understand properties of GARCH processes, it is informative to use the following representation. We can rewrite equation (3.1) for the conditional variance σ_t^2 using lag or back shift operator B, defined as $BX_t = X_{t-1}$ and convention that $\phi(z) = 1 - \phi_1 z - \ldots - \phi_p z^p$ and $\theta(z) = \theta_1 z + \cdots + \theta_q z^q$. Then we can rewrite (3.1) as $$\phi(B)\sigma_t^2 = \alpha + \theta(B)X_t^2.$$ Note that for p = 0, i.e. if the coefficients ϕ_1, \ldots, ϕ_p all vanish, then the process of σ_t^2 reduces to a pure ARCH (q) process, and for p = q = 0 the process of σ_t^2 reduces to the white noise. In the ARCH (q) process the conditional variance σ_t^2 is modelled as linear function of $X_{t-1}^2, \ldots, X_{t-q}^2$, when as the GARCH (p,q) allows lagged conditional variances to enter as well. If we assume $\sigma_t > 0$, then we can define $Z_t = X_t/\sigma_t$. The martingale difference property of X_t with the definition (3.1) of σ_t^2 as conditional variance implies that $$\mathbb{E}(Z_t|\mathcal{F}_{t-1}) = 0, \qquad \mathbb{E}(Z_t^2|\mathcal{F}_{t-1}) = 1. \tag{3.2}$$ We can also define the GARCH process X_t starting with given martingale difference process Z_t and a process σ_t that is \mathcal{F}_{t-1} measurable and then $X_t = \sigma_t Z_t$. If (3.1) is valid then σ_t is the conditional variance of X_t . In the most cases we assume that the variables Z_t are i.i.d.. Then Z_t is independent of \mathcal{F}_{t-1} . This assumption is equivalent to assuming that conditional law of the variables $Z_t = X_t/\sigma_t$ given \mathcal{F}_{t-1} is a given distribution, for instance standard normal distribution and then we can write ² $$X_t | \mathcal{F}_{t-1} \sim N(0, \sigma_t^2). \tag{3.3}$$ $^{^{2}}$ In assuming the conditional distribution to be normal we follow Engle [15], but other distributions could be applied as well. We now move on to the stationary condition of the GARCH processes. Consider the following construction. Let Z_t be a martingale difference sequence such that $\mathbb{E}(Z_t|\mathcal{F}_{t-1}) = 0$, $\mathbb{E}(Z_t^2|\mathcal{F}_{t-1}) = 1$, defined on a fixed probability space. Then we construct a GARCH process such that $X_t = \sigma_t Z_t$ by first defining the process of squares σ_t^2 in terms of the Z_t . If the coefficients α, ϕ_i, θ_i are nonnegative we obtain a stationary solution if $\sum_{i=1}^p \phi_i + \sum_{i=1}^q \theta_i < 1$. Note that the non-negativity of α, ϕ_i, θ_i is necessary condition for the non-negativity of σ_t^2 . We can state the following theorem see van der Vaart [30]. **Theorem 1.** Let $\alpha > 0$, let $\phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q$ be non-negative numbers, and let Z_t be a martingale difference sequence satisfying (3.2) relative to a filtration \mathcal{F}_t . Then there exist a unique stationary GARCH process X_t such that $X_t = \sigma_t Z_t$, where $\sigma_t^2 = \mathbb{E}(X_t^2 | \mathcal{F}_{t-1})$, if and only if $\sum_{i=1}^p \phi_i + \sum_{i=1}^q \theta_i < 1$. This unique process among the GARCH processes X_t such that $X_t = \sigma_t Z_t$ has bounded second moments and $\mathbb{E}(X_t) = 0$, $var(X_t) = \alpha[1 - \sum_{i=1}^p \phi_i - \sum_{i=1}^q \theta_i]^{-1}$. *Proof.* Assume that $\sum_{i=1}^{p} \phi_i + \sum_{i=1}^{q} \theta_i < 1$. Using substitution we get $$\sigma_{t}^{2} = \alpha + \sum_{i=1}^{p} \phi_{i} \sigma_{t-i}^{2} + \sum_{i=1}^{q} \theta_{i} Z_{t-i}^{2} \sigma_{t-i}^{2}$$ $$= \alpha + \sum_{j=1}^{p} \phi_{j} \left(\alpha + \sum_{i=1}^{p} \phi_{i} \sigma_{t-i-j}^{2} + \sum_{i=1}^{q} \theta_{i} Z_{t-i-j}^{2} \sigma_{t-i-j}^{2} \right) + \sum_{j=1}^{q} \theta_{j} Z_{t-j}^{2} \left(\alpha + \sum_{i=1}^{p} \phi_{i} \sigma_{t-i-j}^{2} + \sum_{i=1}^{q} \theta_{i} Z_{t-i-j}^{2} \sigma_{t-i-j}^{2} \right)$$ $$\vdots$$ $$= \alpha \sum_{k=0}^{\infty} M(t, k), \qquad (3.4)$$ where M(t, k) are all the terms of the form $$\prod_{i=1}^{p} \phi_i^{a_i} \prod_{j=1}^{q} \theta_j^{b_j} \prod_{l=1}^{n} Z_{t-S_l}^2,$$ for $$\sum_{i=1}^{p} a_i + \sum_{j=1}^{q} b_j = k, \qquad \sum_{i=1}^{q} b_i = n,$$ and $$1 \le S_1 < S_2 < S_3 < \dots < S_n \le \max\{kq, (k-1)q + p\}.$$ Since $\sum_{i=1}^{p} \phi_i + \sum_{i=1}^{q} \theta_i < 1$, then series $\alpha \sum_{k=0}^{\infty} M(t,k)$ converges and thus $$M(t,0) = 1,$$ $$M(t,1) = \sum_{i=1}^{p} \phi_i + \sum_{i=1}^{q} \theta_i Z_{t-i}^2,$$ $$M(t,2) = \sum_{j=1}^{p} \phi_j \left(\sum_{i=1}^{p} \phi_i + \sum_{i=1}^{q} \theta_i Z_{t-i-j}^2 \right) + \sum_{j=1}^{q} \theta_j Z_{t-j}^2 \left(\sum_{i=1}^{p} \phi_i + \sum_{i=1}^{q} \theta_i Z_{t-i-j}^2 \right),$$ and in general $$M(t, k+1) = \sum_{i=1}^{p} \phi_i M(t-i, k) + \sum_{i=1}^{q} \theta_i Z_{t-i}^2 M(t-i, k).$$ (3.5) Since \mathbb{Z}_t^2 is i.i.d., the moments of M(t,k) do not depend on t, and in particular $$\mathbb{E}(M(t,k)) = \mathbb{E}(M(s,t)), \tag{3.6}$$ for all k, t, s. From (3.5) and (3.6) we get $$\mathbb{E}(M(t,k+1)) = \left(\sum_{i=1}^{p} \phi_i + \sum_{i=1}^{q} \theta_i\right) \mathbb{E}(M(t,k))$$ $$\vdots$$ $$= \left(\sum_{i=1}^{p} \phi_i + \sum_{i=1}^{q} \theta_i\right)^{k+1} \mathbb{E}(M(t,0))$$ $$= \left(\sum_{i=1}^{p} \phi_i + \sum_{i=1}^{q} \theta_i\right)^{k+1}.$$ (3.7) Finally by (3.5), (3.6) and (3.7), $$\mathbb{E}(X_t^2) = \alpha \mathbb{E}\left(\sum_{k=0}^{\infty} M(t,k)\right) = \alpha \sum_{k=0}^{\infty} \mathbb{E}(M(t,k))$$ $$= \alpha \left[1 - \sum_{i=1}^{p} \phi_i + \sum_{i=1}^{q} \theta_i\right]^{-1},$$ (3.8) if and only if $$\sum_{i=1}^{p} \phi_i + \sum_{i=1}^{q} \theta_i < 1,$$ and X_t^2 converges almost surely. $\mathbb{E}(X_t) = 0$ and $cov(X_t, X_s) = 0$ for $t \neq s$ follows immediately by symmetry. Note that in practice, one observes a sample X_1, \ldots, X_T and also in this situation we assume that this vector comes from a stationary model. In particular, we assume that X_0 and σ_t have the stationary initial distribution. The previous theorem implies that the condition $\sum_{i=1}^p \phi_i + \sum_{i=1}^q \theta_i < 1$, is necessary for existence of a stationary GARCH process with bounded second moments, but strong than necessary if we are interested in a strictly stationary solution to the GARCH equations with possibly infinite second moments. Conditions for strict stationarity we will specify later. The GARCH process has a close relation to widely known Box-Jenkins ARMA processes. Consider $\eta_t = X_t^2 - \sigma_t^2$ so that $\sigma_t^2 = X_t^2 - \eta_t$. Rearranging the terms in (3.1) process can be interpreted as an ARMA
process $$X_t^2 = \alpha + \sum_{i=1}^{\max(p,q)} (\theta_i + \phi_i) X_{t-i}^2 + \eta_t - \sum_{i=1}^p \phi_i \eta_{t-i}.$$ (3.9) It is easy to check that η_t is a martingale difference series (i.e. $\mathbb{E}(\eta_t) = 0$ and $cov(\eta_t, \eta_{t-i}) = 0$ for $i \geq 1$) and a white noise sequence if its second moments exist and are independent of t. However η_t in general is not an i.i.d. sequence. Equation (3.9) is an characterizing equation for ARMA process X_t^2 of orders m = max(p,q) and p with AR parameters $\phi(B) + \theta(B)$, MA parameters $-\theta(B)$ and uncorrelated innovation sequence $\{X_t^2 - \sigma_t^2\}$. Furthermore, it may be seen that the GARCH model is based on a infinite dimensional ARCH (∞) model. To ensure a well-defined process all the parameters in the infinite dimensional ARCH representation $$\sigma_t^2 = \frac{\alpha}{1 - \phi(1)} + \frac{\theta(B)}{1 - \phi(B)} X_t^2, \tag{3.10}$$ must be nonnegative. This assumed that all the roots of the polynomial $1 - \phi(B) = 0$ lie outside the unit circle. In Chapter 2 we introduced some of the stylized facts of financial time series and let now discuss how the GARCH models consider these features. Volatility clustering is one of the features that is always presented in financial time series and it is completely captured by GARCH models. It is because large absolute values of a GARCH series at time t - 1, ..., t - q in the past lead, through the GARCH equation (3.1), to a large conditional variance σ_t^2 at time t, and hence the value $X_t = \sigma_t Z_t$ of the time series at time t tends to be large. By equation we can see that a large σ_{t-1}^2 or X_{t-1}^2 gives rise to a large σ_t^2 . So then large σ_{t-1}^2 tends to be followed by another large σ_t^2 , generating the behavior of volatility clustering. Another stylized fact that may be very often observed in financial time series are leptokurtic tails of the marginal distribution. As we mentioned before a quantitative measure of fatness of the tails distribution of a random variable X is the kurtosis defined as $\kappa_4(X) = \mathbb{E}(X - \mathbb{E}X)^4/(varX)^2$. And is equal to 3 for a normally distributed variable. If $X_t = Z_t \sigma_t$, where σ_t is \mathcal{F}_{t-1} measurable and Z_t is independent of \mathcal{F}_{t-1} with mean zero and variance one, then $$\mathbb{E}X_{t}^{4} = \mathbb{E}\sigma_{t}^{4}\mathbb{E}Z_{t}^{4} = \kappa_{4}(Z_{t})\mathbb{E}(\mathbb{E}(X_{t}^{2}|\mathcal{F}_{t-1}))^{2} \geq \kappa_{4}(Z_{t})(\mathbb{E}\mathbb{E}(X_{t}^{2}|\mathcal{F}_{t-1}))^{2} = \kappa_{4}(Z_{t})(\mathbb{E}X_{t}^{2})^{2}.$$ Dividing the left and right sides by $(\mathbb{E}X_t^2)^2$, we can see immediately that $\kappa_4(X_t) \ge \kappa_4(Z_t)$. A soon as the variance of the random variable $\mathbb{E}(X_t^2|\mathcal{F}_{t-1})$ is large the difference can be significant. Taking the difference of the left and right sides gives $$\kappa_4(X_t) = \kappa_4(Z_t) \left(1 + \frac{var \mathbb{E}(X_t | \mathcal{F}_{t-1})}{(\mathbb{E}X_t^2)^2} \right).$$ Consequently, the tail distribution of a GARCH process is heavier than a normal distribution. If we use a Gaussian process Z_t , then the kurtosis of the observed series X_t is always bigger than 3. It follows that the GARCH structure is able to capture some of the observed leptokurtosis of financial time series. Next stylized fact observed in financial time series are positive auto-correlations for the sequence of squares X_t^2 . The auto-correlation function of the squares of a GARCH series will exist under appropriate additional conditions on the coefficients and the noise process Z_t . We can compute auto-correlation function of this using the ARMA relation (3.9) for the square process X_t^2 and using formulas for the auto-correlation function of an ARMA process. Note that the process η_t in (3.9) is defined through X_t and hence its variance depends on the parameters in the GARCH relation. ### 3.3 GARCH (1,1) process The most simple example of GARCH processes is GARCH (1,1) process in which conditional variances are given by $$\sigma_t^2 = \alpha + \phi \sigma_{t-1}^2 + \theta X_{t-1}^2, \qquad \alpha > 0, \quad \phi \ge 0, \quad \theta \ge 0.$$ From Theorem 1 $\phi + \theta < 1$ suffices wide-sense stationary. If we assume stationarity of the process X_t then expectation of σ_t^2 does not depend on t and is equal $$\mathbb{E}\sigma^2 = \mathbb{E}X_t^2 = \frac{\alpha}{1 - \phi - \theta}.$$ By squaring the GARCH equation we can find $$\sigma_t^4 = \alpha^2 + \phi^2 \sigma_{t-1}^4 + \theta^2 X_{t-1}^4 + 2\alpha \phi \sigma_{t-1}^2 + 2\alpha \theta X_{t-1}^2 + 2\phi \theta \sigma_{t-1}^2 X_{t-1}^2.$$ If Z_t is independent of \mathcal{F}_{t-1} , then $\mathbb{E}\sigma_t^2 X_t^2 = \mathbb{E}\sigma_t^2$ and $\mathbb{E}X_t^4 = \kappa_4(Z_t)\mathbb{E}\sigma_t^4$. If we assume that moments exist and are independent of t, then $$\mathbb{E}(X_t^4) = \mathbb{E}(Z_t^4)\mathbb{E}(\sigma_t^4) = 3\alpha^2(1+\phi+\theta)[(1-\phi-\theta)(1-\phi^2-2\phi\theta-3\theta^2)]^{-1}.$$ Since the marginal kurtosis is given by $$\kappa_4 = \frac{\mathbb{E}(X_t^4)}{\left[\mathbb{E}(X_t^2)\right]^2},$$ from previous calculus it immediately follows that $$\kappa_4 = \frac{3(1+\phi+\theta)(1-\phi-\theta)}{(1-\phi-\theta)(1-\phi^2-2\phi\theta-3\theta^2)}.$$ A little calculus shows $$\begin{aligned} 3var(\sigma_t^2) &= \mathbb{E}(X_t^4) - 3\left[\mathbb{E}(X_t^2)\right]^2 \\ &= \frac{3\alpha^2(1+\phi+\theta)}{(1-\phi-\theta)(1-\phi^2-2\phi\theta-3\theta^2)} - 3\left[\frac{\alpha}{1-\phi-\theta}\right]^2 \\ &= \frac{3\alpha^2}{(1-\phi-\theta)^2} \frac{2\theta^2}{(1-\phi^2-2\phi\theta-3\theta^2)}. \end{aligned}$$ Since from the assumptions we have that $\alpha > 0$, $1 - \phi - \theta > 0$ and $1 - \phi^2 + 2\phi\theta - 3\theta^2 < 1$, it follows that all the factors in are positive so we conclude that the GARCH (1,1) process is leptokurtic. #### 3.4 Estimation of the GARCH model Existence of stationary solution for the GARCH process is the key ingredient to derive the estimation procedure and asymptotic theory. Consider the GARCH (p,q) model defined as before. The existence of unique and strictly stationary solution to the GARCH equations is that if and only if the sequence of matrices A_t , where $$A_{t} = \begin{pmatrix} \phi_{1} + \theta_{1} Z_{t-1}^{2} & \phi_{2} & \cdots & \phi_{p-1} & \phi_{p} & \theta_{2} & \dots & \theta_{q-1} & \theta_{q} \\ 1 & 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & 0 & \dots & 0 & 0 \\ Z_{t-1}^{2} & 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$ has a strictly negative top Lyapunov exponent $\gamma < 0$, where $$\gamma = \inf_{T \in N^*} \frac{1}{T} \mathbb{E} \log \|A_{-1} A_{-2} \dots A_{-T}\| = \lim_{n \to \infty} \frac{1}{T} \log \|A_{-1} A_{-2} \dots A_{-T}\|, \quad a.s.$$ (3.11) Here $\|.\|$ may be any matrix norm because the definition of γ does not depend on the choice of a norm. The Lyapunov exponent in general cannot be calculated explicitly for the model under study, but it can be estimated numerically for a given sequence Z_t . Existence of top Lyapunov exponent γ is guaranteed by the inequality $\mathbb{E}(\log^+ \|A_1\|) \leq \mathbb{E}\|A_1\| < \infty$. Let $Y_t = (\sigma_t^2, \dots, \sigma_{t-p+1}^2, X_{t-1}^2, \dots, X_{t-q+1}^2)' \in \mathbb{R}^{p+q}$ and $b = (\alpha, 0, \dots, 0)' \in \mathbb{R}^{p+q}$. Then GARCH equation can be equivalently rewritten as the system of equations $$Y_t = A_t Y_{t-1} + b, (3.12)$$ and if $\gamma < 0$, the unique strictly stationary solution is given by $$Y_t = b + \sum_{k=1}^{\infty} A_t A_{t-1} \dots A_{t-k+1} b.$$ (3.13) **Theorem 2.** Let $\alpha > 0$, and ϕ_1, \ldots, ϕ_p , $\theta_1, \ldots, \theta_q$ be a nonnegative numbers, and let Z_t be an i.i.d. sequence with mean zero and unit variance. There exists a strictly stationary GARCH process X_t such that $X_t = \sigma_t Z_t$, where $\sigma_t^2 = \mathbb{E}(X_t^2 | \mathcal{F}_{t-1})$ and $\mathcal{F}_t = \sigma(Z_t, Z_{t-1}, \ldots)$, if and only if the top Lyapounov coefficient of the random matrices A_t given by (3.11) is strictly negative. For this process $\sigma(X_t, X_{t-1}, \ldots) = \sigma(Z_t, Z_{t-1}, \ldots)$. *Proof.* We give a short proof for more details see van der Vaart [30]. Let first define b as $b = \alpha e_1$, where e_i is the *i*th unit vector in \mathbb{R}^{p+q+1} . If γ' is strictly larger than the top Lyapounov exponent γ , then as $T \to \infty$ $$||A_t A_{t-1} \dots A_{t-T+1} b|| < e^{\gamma' T} ||b||, \quad a.s$$ If $\gamma' < 0$ then $\sum_{T} ||A_t A_{t-1} \dots A_{t-T+1} b|| < \infty$ almost surely. Then the series on the righ hand side of (3.13) converges almost surely and defines a process Y_t . Next step is define processes σ_t and X_t by setting $\sigma_t = \sqrt{Y_t}$ and $X_t = \sigma_t Z_t$. It follows from (3.12) that this equation satisfy the GARCH relation. And because the process is a fixed measurable transformation of (Z_t, Z_{t-1}, \dots) for each t, then the process (σ_t, X_t) is strictly stationary. Now we have to prove that $\sigma(X_t, X_{t-1}, \dots) = \sigma(Z_t, Z_{t-1}, \dots)$. We can see immediately that X_t is $\sigma(Z_t, Z_{t-1}, \dots)$ -measurable because of construction of X_t . For second implication Z_t is $\sigma(X_t, X_{t-1}, \dots)$ -measurable we use relation $(\phi - \theta)(B)X_t^2 = \alpha + \phi(B)\eta_t$, for $\eta_t = X_t^2 - \sigma_t^2$. We conclude that η_t is $\sigma(X_t^2, X_{t-1}^2, \dots)$ -measurable, if the polynomial
ϕ has no zeros on the unit disc. Finally, we show the necessity of the top Lyapounov exponent being negative. If there exists a strictly stationary solution to the GARCH equations, then by the non-negativity of the coefficients $$\sum_{i=1}^{T} A_0 A_{-1} \dots A_{-T+1} b \le Y_0,$$ for every T, and then $$A_0 A_{-1} \dots A_{-T+1} b \to 0, \quad a.s. for T \to \infty$$ By the definition of b the last equation is equivalent to $A_0A_{-1} \dots A_{-T+1}e_1 \to 0$. Using the structure of the matrices A_t we next see that $A_0A_{-1} \dots A_{-T+1} \to 0$ in probability as $T \to \infty$. Because the matrices A_t are independent and the event where $A_0A_{-1} \dots A_{-T+1} \to 0$ is a tail event, this event must have probability one. This is possible only if the top Lyapounov exponent γ of the matrices A_t is strictly negative. The estimation of GARCH models is usually carried out using maximum likelihood estimation. However, obtaining a likelihood function is not straightforward. We have data X_1, \ldots, X_T assumes to be random observations which are given from a distribution $F_X(x;\theta)$ and we denote joint probability density $(x_1,\ldots,x_T)\mapsto p_{T,\theta}(x_1,\ldots,x_T)$ of these observations that depends on a unknown parameter θ from the parameter space Θ . The stochastic process defined by $$L(\theta) \mapsto p_{T,\theta}(X_1, \dots, X_T) = p_{\theta}(x_1)p_{\theta}(x_2|x_1)\dots p_{\theta}(x_T|x_{T-1}, \dots, x_1),$$ is the likelihood function. If the observations X_1, \ldots, X_T are i.i.d. then the likelihood function is the product of the likelihood functions of the individual observations. We may extend the conditioning in each term to include the whole past, yielding the quasi (pseudo) likelihood $$L(\theta) = p_{\theta}(x_1|x_0, x_{-1}, \dots) p_{\theta}(x_2|x_1, x_0, \dots) \dots p_{\theta}(x_T|x_{T-1}, x_{T-2}, \dots).$$ Observe that the formula of the quasi likelihood function requires to know all values $X_{T-1}, \ldots, X_0, X_{-1}, \ldots$ but in practice the variables X_0, X_{-1}, \ldots are not observed. However the past observations X_0, X_{-1}, \ldots do not play an important role in defining quasi likelihood because the likelihood does not change much if the conditioning in each term is limited to a fixed number of variable in the past, and most of the terms of the product will take almost a common form. Similarly, if the time series is AR of order p, i.e. $p(x_t|x_{t-1}, x_{t-2}, \ldots)$ depends only on $x_t, x_{t-1}, \ldots, x_{t-p}$, then the two likelihoods differ only in p terms. This should be negligible when T is large relative to p. In GARCH (p,q) situation a practical implementation is to define $\sigma_0^2, \ldots, \sigma_{1-p}^2$ and X_0^2, \ldots, X_{1-q}^2 to be zero, and compute next $\sigma_1^2, \sigma_2^2, \ldots$ recursively using observation X_1, \ldots, X_T . Now, suppose that we have GARCH process $X_t = \sigma_t Z_t$ with the noise process Z_t and given observations X_1, \ldots, X_T . A common practice in estimation of the GARCH models is to assume Z_t to be Gaussian when deriving the likelihood and this is a basic estimation method for classic GARCH models. The vector of parameters is $$\theta = (\theta_1, \dots, \theta_{p+q+1})' = (\alpha, \phi_1, \dots, \phi_p, \theta_1, \dots, \theta_q)'$$ and belongs to a parameter space Θ . We denote true unknown parameter value by $\theta_0 = (\alpha_0, \phi_{01}, \dots, \phi_{0p}, \theta_{01}, \dots, \theta_{0q})'$, where $\theta_0 \in \Theta$. Then $$p_{\theta}(x_{1}|x_{0}, x_{-1}, \dots) p_{\theta}(x_{2}|x_{1}, x_{0}, \dots) \dots p_{\theta}(x_{T}|x_{T-1}, x_{T-2}, \dots)$$ $$= \prod_{t=1}^{T} \frac{1}{\sigma_{t}(\theta)} f_{z} \left(\frac{X_{t}}{\sigma_{t}(\theta)} \right).$$ (3.14) Note that X_t given the whole past X_{t-1}, X_{t-2}, \ldots , and conditioning argument yields the density function p_{θ} of X_1, \ldots, X_T through the conditional densities of the X_t 's given $X_1 = x_1, \ldots, X_T = x_T$. Assuming that Z_t is Gaussian then conditionally on initial values, the quasi log-likelihood function for a GARCH (p,q) process is given by (ignoring some constants) $$L_t(\theta) = L_t(\theta; X_1, \dots, X_T) = \frac{1}{2T} \sum_{t=1}^T l_t(\theta),$$ (3.15) where $$l_t(\theta) = -\left(\log \sigma_t^2(\theta) + \frac{X_t^2}{\sigma_t^2(\theta)}\right). \tag{3.16}$$ The quasi maximum likelihood estimator of θ is defined as any measurable solution $\hat{\theta}_T$ that maximizes the likelihood function within parameter space Θ , i.e., $$\hat{\theta}_T = \arg\max_{\theta \in \Theta} L_t(\theta). \tag{3.17}$$ The resulting value is the quasi maximum likelihood estimator of the parameters of a GARCH (p,q) process. However, as we can see there are obvious problems with this procedure. Most controversial assumption is that Z_t as Gaussian noise process. Although this is not the most realistic assumption, it gives nice results such as \sqrt{T} -consistency (consistency with \sqrt{T} -rate) and \sqrt{T} -normality. Theoretical works (see references below) shows that asymptotic properties remain valid for large number of noise distributions. Attempts to replace the Gaussian density of the Z_t 's by a more realistic density for example t-density can lead to non-consistency of the QMLE. If one wants to achieve consistency, the exact density of underlying Z_t need to be known. But when dealing with data one can never rely on this assumption. There exist various papers dealing with the asymptotic properties of the quasi MLE and have been studied initially by Weiss [33] but only for pure ARCH (q) processes and fourth-order moment conditions on the process. The problem of finding weak assumptions for the consistency and asymptotic normality of the QMLE in GARCH models solved Lee and Hansen [22] and Lumsdaine [23] for the GARCH (1,1) case. The asymptotic properties of QMLE for the GARCH (p,q) models have been studied by, amongst others, Francq and Zakoïan [19] and Berkes et al. [5]. We introduce convergence and asymptotic normality under the conditions presented in Francq and Zakoïan. For more details and proofs of the theorems see Francq and Zakoïan. Assume that Z_t is i.i.d. and the QMLE $\hat{\theta}_T$ maximizes the likelihood under Θ . Let $\mathcal{A}_{\theta_0}(z) = \sum_{i=1}^q \theta_i z^i$ and $\mathcal{B}_{\theta_0}(z) = 1 - \sum_{i=1}^p \phi_i z^i$ with the convention $\mathcal{A}_{\theta_0}(z) = 0$ if q = 0 and $\mathcal{B}_{\theta_0}(z) = 1$ if p = 1. To show strong consistency the following assumptions will be made. **Assumption 1.** The parameter space Θ is compact. **Assumption 2.** $\gamma < 0$ and $\forall \theta \in \Theta$, $\sum_{i=1}^{p} \phi_i < 1$. **Assumption 3.** Z_t^2 has a non-degenerate distribution with $\mathbb{E}Z_t^2 = 1$. **Assumption 4.** If p > 0 then $\mathcal{A}_{\theta_0}(z)$ and $\mathcal{B}_{\theta_0}(z)$ have no common root, $\mathcal{A}_{\theta_0}(z) \neq 0$, and $\phi_{0p} + \theta_{0q} \neq 0$. We are now in a position to state the following consistency theorem. **Theorem 3** (Strong consistency). Let $(\hat{\theta}_T)$ be a sequence of QML estimators satisfying (3.17). Then, under assumptions 1-4 $$\hat{\theta}_T \to \theta_0$$, almost surely when $T \to \infty$. (3.18) Proof. See Francq and Zakoïan [19]. Theorem shows that there exists a consistent root of the likelihood equation. To establish the asymptotic normality we require the following additional assumptions. **Assumption 5.** $\theta_0 \in \Theta^c$, where Θ^c denotes the interior of Θ . Assumption 6. $\kappa := \mathbb{E}Z_t^4 < \infty$. **Theorem 4** (Asymptotic normality). Under the assumptions of Theorem 3 and assumptions 5 and 6 $\sqrt{T}(\hat{\theta}_T - \theta_0)$ converges in distribution to $N(0, (\kappa - 1)J^{-1})$, where $$J := \mathbb{E}_{\theta_0} \left(\frac{\partial \ell_t(\theta_0)}{\partial \theta \partial \theta'} \right) = \mathbb{E}_{\theta_0} \left(\frac{1}{\sigma_t^4(\theta_0)} \frac{\partial \sigma_t^2(\theta_0)}{\partial \theta} \frac{\partial \sigma_t^2(\theta_0)}{\partial \theta'} \right). \tag{3.19}$$ *Proof.* See Francq and Zakoïan [19]. The results above shows that the quasi likelihood estimate $\hat{\theta}_T$ is \sqrt{T} -consistent for the true parameter values and \sqrt{T} -asymptotically normal with mean θ_0 and covariance matrix specified before. However, in the presence of non-Gaussian innovations, this estimator can fail to produce asymptotically efficient estimates. Given the results of Theorem 2 and Theorem 3 and mild regularity conditions on the innovation terms we can construct semiparametric estimators which are asymptotically more efficient than the QMLE. # Chapter 4 ## Multivariate GARCH # 4.1 Basic Idea - why extend from univariate to multivariate? Nowadays globalization has resulted in higher international economics integration, investors and also financial institutions are interested in knowing financial markets integration and how financial volatilities together move over time across several markets. Empirical results show that working with separate univariate models is much less relevant than multivariate modeling framework. Cross market effects capturing returns linkage, transmission of stocks and volatility spillover effects are used to indicate markets integration. All of these assumptions can therefore be summed in the following points: - In financial econometrics and management understanding, predicting the dependence in the co-movements of asset returns is important. For example, asset pricing depends on the covariance of the assets in a portfolio. Hence it is important to consider the co-movements in the portfolio. - Financial volatilities move together more or less closely over time across assets and markets. - Recognizing this feature through a multivariate model should lead to more relevant
empirical models than working with separate univariate models. - In financial applications, extending from univariate to multivariate modeling opens the door to better decision tools in various areas such as asset pricing models, portfolio selection, hedging, and Value-at-Risk forecasts. autoregressive conditional Multivariate generalized heteroscedasticity (MGARCH) models were initially developed in the late of 1980s and the first half of the 1990s. The most common application of these class of models is to estimate the volatility spillover effects among different markets. When we are in multivariate framework, we are always balancing between two expected difficulties, on one hand as the number of parameters in MGARCH model often increases very quickly with the dimension of the model, the specification of the model should be parsimonious enough to allow for relatively easy estimation of the model and also allow for easy interpretation of the model parameters. On the other hand parsimony means simplification and models with only a few parameters may not be able to capture the relevant dynamics in the covariance structure. Another feature that needs to be taken into account in the specification of the model is imposing positive definiteness (as covariance matrix need, by definition, to be positive definite). One possibility is to derive conditions under which the conditional covariance matrices implied by the model are positive definite, but this is often infeasible in practice. An alternative is to formulate the model in a way that positive definiteness is implied by the structure (in addition to some simple constraints). We review different specifications of conditional covariance matrices in the following subsections. We distinguish three approaches for constructing multivariate GARCH models - Generalizations of the univariate GARCH model - Linear combinations of univariate GARCH models - Nonlinear combinations of univariate GARCH models Before we start with the definitions we introduce some basic blocks of multivariate framework concerned the GARCH models. Consider a stochastic vector process X_t with dimension n. Let \mathcal{F}_t be the non decreasing collection of σ -fields generated by past of the series X_t , i.e. $\mathcal{F}_t = \sigma(X_t, X_{t-1}, \dots)$. Assume that conditional covariance matrix H_t of X_t is measurable with respect to \mathcal{F}_{t-1} . The multivariate GARCH framework is then given by $$X_t = H_t^{1/2} Z_t, (4.1)$$ where $H_t = [h_{ij}]_t$ is $n \times n$ symmetric positive definite matrix for all t. $H_t^{1/2}$ may be obtained by Cholesky factorization of H_t and Z_t is a n dimensional i.i.d. vector process with zero mean and unit variance. Hence Z_t is independent of \mathcal{F}_{t-1} , it follows that $cov(Z_t|\mathcal{F}_{t-1}) = cov(Z_t) = I_n$. The process X_t is then a n dimensional vector martingale difference sequence $$\mathbb{E}(X_t | \mathcal{F}_{t-1}) = 0,$$ $$cov(X_t | \mathcal{F}_{t-1}) = H_t^{1/2} cov(Z_t | \mathcal{F}_{t-1}) H_t^{1/2} = H_t.$$ (4.2) The information set \mathcal{F}_t contains both lagged values of the squares and crossproduct of X_t and elements of the conditional covariance matrices up to time t. The challenge in multivariate GARCH modeling is to find a parametrization of H_t as a function of \mathcal{F}_{t-1} that is fairly general while feasible in terms of estimation. # 4.2 Generalizations of the univariate GARCH models The extension from a univariate GARCH model to an n-variate model (multivariate) requires considering n-dimensional stochastic process with zero mean random variables X_t and covariance matrix H_t . #### 4.2.1 VECH model VECH model proposed by Bollerslev, Engle and Wooldridge [10] is straightforward generalization of the univariate GARCH model. Every conditional variance and covariance is a function of all lagged conditional variances and covariances, as well as lagged squared returns and cross products of returns. The VECH (p,q) model can be defined using Bollerslev interpretation as follows. **Definition 2.** A VECH (p,q) process is a martingale difference sequence X_t relative to a given filtration \mathcal{F}_t , whose conditional covariance matrix $H_t = cov(X_t | \mathcal{F}_{t-1})$ satisfy, for every $t \in \mathbb{Z}$ $$vech(H_t) = c + \sum_{i=1}^{q} A_i vech(X_{t-i} X'_{t-i}) + \sum_{i=1}^{p} G_i vech(H_{t-i}), \tag{4.3}$$ where $vech^{1}(.)$ is the operator that stacks the lower triangular portion of a symmetric square $n \times n$ matrix into a (n(n+1)/2)-dimensional vector, c is an ¹In many of the literature about the multivariate GARCH models we can find different (n(n+1)/2)-dimensional vector, and A_i , G_i are square parameter matrices of order (n(n+1)/2). For illustration we consider bivariate VECH (1,1) model and denote $h_t = vech(H_t)$ then (4.3) becomes $$h_{t} = \begin{bmatrix} h_{11,t} \\ h_{12,t} \\ h_{22,t} \end{bmatrix}$$ $$= \begin{bmatrix} c_{1,t} \\ c_{2,t} \\ c_{3,t} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} X_{1,t-1}^{2} \\ X_{1,t-1}X_{2,t-1} \\ X_{2,t-1}^{2} \end{bmatrix} + \begin{bmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{bmatrix} \begin{bmatrix} h_{11,t-1} \\ h_{12,t-1} \\ h_{22,t-1} \end{bmatrix}.$$ Notice that, here we can immediately see equivalency VEC and VECH representation. In VEC² representation all covariance equations appear twice, because there is an equation for $h_{ij,t}$ as well as for $h_{ji,t}$. All the off diagonal terms appear twice within each equation (i.e. both of the terms $X_{i,t-1}X_{j,t-1}$ and $X_{j,t-1}X_{i,t-1}$ and both of the terms $h_{ij,t-1}$ and $h_{ji,t-1}$ appear in each equation). These redundant terms we can remove without affecting the model. If we do that, dimensions of our matrices A_i and G_i will be n(n+1)/2 instead of n^2 as we mentioned before. This model is very general, flexible and we can also directly interpret the coefficients, however it brings two major disadvantages in applications. The number of parameters in the model equals $(p+q)(n(n+1)/2)^2 + n(n+1)/2$, which makes this model practicable in practice only in the bivariate case. Second is that there exist only sufficient conditions on the parameters to ensure that conditional variance matrices H_t are positive definite almost surely for all t. Bollerslev, Engle, and Wooldridge [10] introduced restriction of the model such that, each component of the covariance matrix H_t depends only on its own past and past values of $X_tX'_t$. In other words in the diagonal representation, is assumed that the matrices A_i and G_i are diagonal. This so called diagonal VECH notation, VEC (p,q) instead of VECH (p,q). It is because we can use two possible vectorization of covariance matrix H_t . The difference between vec and vech operator is that for a symmetric matrix A, the vector vec (A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the (n(n+1)/2) entries on and below the main diagonal. ²using vec vectorization in definition of VECH model. model (DVECH) reduces the number of parameters to (p+q+1)n(n+1)/2 and in this case is also possible to obtain conditions for positive definiteness of H_t for all t. However, DVECH representation seems to be too restrictive since no interaction is allowed between the different conditional variances and covariances. Here we derive a sufficient condition for diagonal VECH model for H_t to be positive definite. Then the diagonal VECH model can be written in matrix representation as follows $$H_t = \tilde{C} + \tilde{A} \odot X_{t-1} X'_{t-1} + \tilde{G} \odot H_{t-1}, \tag{4.4}$$ where the symbol \odot represents Hadamard³ product of the two matrices, \tilde{C} , \tilde{A} and \tilde{G} are all $n \times n$ parameter matrices. Using Cholesky decomposition of the parameter matrices and from properties of Hadamard product can be seen that usual matrix multiplication will be carried out first, hence $\tilde{A}\tilde{A}' \odot X_{t-1}X'_{t-1}$ should be interpreted as $(\tilde{A}\tilde{A}') \odot (X_{t-1}X'_{t-1})$. Then $$H_t = \tilde{C}\tilde{C}' + \tilde{A}\tilde{A}' \odot X_{t-1}X'_{t-1} + \tilde{G}\tilde{G}' \odot H_{t-1}, \tag{4.5}$$ since $\tilde{C}\tilde{C}'$, $\tilde{A}\tilde{A}'$ and $\tilde{G}\tilde{G}'$ are all positive semi-definite, H_t will be positive definite for all t as far as the initial covariance matrix H_0 is positive definite. If sample covariance is used for H_0 then H_t will always be positive definite. So each conditional covariance depends on its own past values. The difference between this representation and Bollerslev diagonal VECH representation is that the parametrization used here imposed restrictions implicitly among different parameters to ensure that the parameter matrix is positive semi definite, and which further assure the conditional covariance matrices are positive definite. By writing the parameter matrices in the form of $\tilde{C}\tilde{C}'$, $\tilde{A}\tilde{A}'$ and $\tilde{G}\tilde{G}'$ instead of just \tilde{C} , \tilde{A} and \tilde{G} the positive semi-definiteness is guaranteed in estimation without imposing any further restrictions. Let define the backshift operator L such that $L^K X_t = X_{t-k}$ and convention that $A(L) = A_1 L + A_2 L^2 + \cdots + A_q L^q$ and $G(L) = G_1 L + G_2 L^2 + \cdots + G_p L^p$. Let Z_t be an n dimensional i.i.d. vector process with mean zero and unit variance. Hence Z_t is independent of \mathcal{F}_{t-1} , it follows that $cov(Z_t|\mathcal{F}_{t-1}) = cov(Z_t) = I_n$. There exists a VECH process X_t such that $X_t = H_t^{1/2} Z_t$, where $H_t = cov(X_t|\mathcal{F}_{t-1})$ ³The Hadamard product $A \odot B$ of two
matrices of the same dimensions is a matrix of the same dimensions with elements given by $(A \odot B)_{ij} = A_{i,j}.B_{i,j}$. and $\mathcal{F}_t = \sigma(X_t, X_{t-1}, \dots)$. Assuming that X_t is doubly infinite sequence, we can rewrite equation for conditional covariance matrix (4.3) as $$vech(H_t) = \sum_{i=1}^{\infty} G(L)^{i-1} [c + A(L)vech(X_t X_t')]. \tag{4.6}$$ The following computation shows that this parametrization gives indeed VECH model $$vech(H_{t}) = c + A(L)vech(X_{t}X'_{t}) + \sum_{i=2}^{\infty} G(L)^{i-1}[c + A(L)vech(X_{t}X'_{t})]$$ $$= c + A(L)vech(X_{t}X'_{t}) + G(L)\sum_{i=1}^{\infty} G(L)^{i-1}[c + A(L)vech(X_{t}X'_{t})]$$ $$= c + A(L)vech(X_{t}X'_{t}) + G(L)vech(H_{t}).$$ (4.7) Note that the back shift operator L works also with vech operator such that shifts indices in both X_t 's and H_t . We can state the following stationary theorem of Bollerslev, Engle and Wooldridge [10]. **Theorem 5.** Let c be an (n(n+1)/2)-dimensional vector and A_i , G_i are square parameter matrices of order (n(n+1)/2). Let Z_t be an i.i.d. vector process with mean zero and unit variance. Hence Z_t is independent of \mathcal{F}_{t-1} , it follows that $cov(Z_t|\mathcal{F}_{t-1}) = cov(Z_t) = I_n$. Then there exists a covariance stationary VECH process X_t such that $X_t = H_t^{1/2}Z_t$, where $H_t = cov(X_t|\mathcal{F}_{t-1})$ and $\mathcal{F}_t = \sigma(X_t, X_{t-1}, \ldots)$ if and only if all the eigenvalues of A(1) + G(1) are less than one in modulus. *Proof.* Assuming that X_t is doubly infinite sequence we can use the VECH representation for conditional covariance matrix given in (4.6) and for simplicity we denote $\eta_t = vech(X_tX_t')$ and $h_t = vech(H_t)$. Then second step is to define \mathbb{E}_{t-1} to be expectations operator, conditioned on the information set \mathcal{F}_{t-1} . Then we can compute Next we use some knowledge from matrix theory about asymptotic properties of square matrix U. If all the eigenvalues of matrix U are less than one in modulus then $U^{\tau} \to 0$ as $\tau \to \infty$. Hence the eigenvalues of U are less than one in modulus if and only if $[I + U + U^2 + \dots] \to (I - U)^{-1}$. Therefore $\mathbb{E}_{t-\tau}\eta_t$ converges in probability to $[I - A(1) - G(1)]^{-1}c$ as $\tau \to \infty$ if and only if the eigenvalues of (A(1)+G(1)) are less than one in modulus. Also, $\mathbb{E}(X_tX'_{t+\gamma}) = \mathbb{E}[\mathbb{E}(X_tX'_{t+\gamma})] = 0$ for all $\gamma \neq 0$. Then $\mathbb{E}(X_tX'_{t+\gamma})$ exists and depends only on γ for all t. For any parametrization necessary and sufficient conditions on the parameters we have to ensure that conditional covariance matrices H_t are positive definite. This can be difficult to check for given parameters, Engle and Kroner [17] propose a new parametrization for H_t that easily imposes these restrictions. #### 4.2.2 BEKK model We consider BEKK (p, q, K) model proposed by Baba, Engle, Kraft and Kroner [4] defined as follows. **Definition 3.** A BEKK (p,q) process is a martingale difference sequence X_t relative to a given filtration \mathcal{F}_t , whose conditional covariance matrix $H_t = cov(X_t | \mathcal{F}_{t-1})$ satisfy, for every $t \in \mathbb{Z}$ $$H_{t} = CC' + \sum_{k=1}^{K} \sum_{i=1}^{q} A_{ik}^{*'} X_{t-i} X_{t-i}' A_{ik}^{*} + \sum_{k=1}^{K} \sum_{i=1}^{p} G_{ik}^{*'} H_{t-i} G_{ik}^{*}, \tag{4.8}$$ where C is a upper triangular $n \times n$ matrix, A_{ik}^* and G_{ik}^* are $n \times n$ parameter matrices and summation limit K determines the generality of the process. The decomposition of the constant term into a product of two triangular matrices ensures positive definiteness of H_t . A property of BEKK model is that conditional covariance matrices H_t are positive definite by construction. A sufficient condition for positivity is for example that at least one of the matrices C or G_{ik}^* have full rank and the matrices H_0, \ldots, H_{1-p} are positive definite. Let now turn to investigate the relationship between the BEKK and VECH parametrization. Relationship between this two parametrization can be found by vectorizing 4 of equation (4.8) $$vec(H_t) = (C \otimes C)'vec(I_n) + \sum_{k=1}^{K} (A_{1k}^* \otimes A_{1k}^*)'vec(X_{t-1}X_{t-1}')$$ $$+ \sum_{k=1}^{K} (G_{1k}^* \otimes G_{1k}^*)'vec(H_{t-1}).$$ $$(4.9)$$ Hence $$A_1 = \sum_{k=1}^{K} (A_{1k}^* \otimes A_{1k}^*)' \tag{4.10}$$ and $$G_1 = \sum_{k=1}^{K} (G_{1k}^* \otimes G_{1k}^*)', \tag{4.11}$$ which leads to the following representation theorem Engle and Kroner [17] that establishes the equivalence of DVEC models that have positive definite covariance matrices and general diagonal BEKK models. **Theorem 6.** The VECH and BEKK parametrization are equivalent if and only if there exist c, A_{ik}^* and G_{ik}^* such that $$c = (C^* \otimes C^*)' vech(I_n),$$ $$A_i = \sum_{k=1}^K (A_{ik}^* \otimes A_{ik}^*)',$$ $$G_i = \sum_{k=1}^K (G_{ik}^* \otimes G_{ik}^*)'.$$ $$(4.12)$$ *Proof.* Without lost of generality we prove this theorem only for p = q = 1. Recognizing that $\eta_t = vech(X_tX_t')$ and $h_t = vech(H_t)$, then the VECH (1,1) becomes $$h_t = c + A_1 \eta_{t-1} + G_1 h_{t-1} \tag{4.13}$$ and the BEKK (1,1) becomes $$H_{t} = CC' + \sum_{k=1}^{K} A_{1k}^{*'} X_{t-1} X_{t-1}' A_{1k}^{*} + \sum_{k=1}^{K} G_{1k}^{*'} H_{t-1} G_{1k}^{*}.$$ (4.14) ⁴Recognizing that $vec(ABC) = (C' \otimes A)vec(B)$, where \otimes denote the Kronecker product that is an operation on two matrices of arbitrary size resulting in a block matrix. Vectorizing equation (4.14) gives $$vech(H_{t}) = vech(CC') + vech\left(\sum_{k=1}^{K} A_{1k}^{*'} X_{t-1} X_{t-1}' A_{1k}^{*}\right) + vech\left(\sum_{k=1}^{K} G_{1k}^{*'} H_{t-1} G_{1k}^{*}\right)$$ $$h_{t} = vech(CC') + \sum_{k=1}^{K} (A_{1k}^{*} \otimes A_{1k}^{*})' vech(X_{t-1} X_{t-1}') + \sum_{k=1}^{K} (G_{1k}^{*} \otimes G_{1k}^{*})' vech(H_{t-1})$$ $$= (C \otimes C)' vech(I_{n}) + \sum_{k=1}^{K} (A_{1k}^{*} \otimes A_{1k}^{*})' \eta_{t-1} + \sum_{k=1}^{K} (G_{1k}^{*} \otimes G_{1k}^{*})' h_{t-1}.$$ $$(4.15)$$ Now if (4.12) hold, then last term in (4.15) becomes $$h_t = c + A_1 \eta_{t-1} + G_1 h_{t-1},$$ which is exactly (4.13) and then we proved sufficiency. Next step is to show that relations (4.13) and (4.15) hold for all X_{t-1} , proving necessity. So by appropriate choice of X_{t-1} , each column of A_1 can be equated individually with each column of $\sum_{k=1}^{K} (A_{1k}^* \otimes A_{1k}^*)'$. For instance, letting $X'_{t-1} = (1, 0, \dots, 0)$ establishes equality of the first column of A_1 with the first column of $\sum_{k=1}^{K} (A_{1k}^* \otimes A_{1k}^*)'$. The rest of relations (4.12) can be done in the same way. Conclusion of theorem is that each of the BEKK models implies a unique VECH model, which then generates positive definite conditional covariance matrices, while the converse implication is not true. To show that converse implication is not true we simply distinguish that for a given A_1 the choice of A_{1k}^* is not unique. This can be seen by recognizing that $(A_{1k}^* \otimes A_{1k}^*) = (-A_{1k}^* \otimes -A_{1k}^*)$, so while $A_1 = \sum_{k=1}^K (A_{ik}^* \otimes A_{ik}^*)'$ is unique the choice of A_{ik}^* is not unique. Note that from relations (4.12) is obvious that DVECH is returned from the BEKK parametrization if and only if each of the A_{ik}^* and G_{ik}^* matrices are diagonal. It can be also shown that the BEKK model eliminates few, if any of the interesting positive definite models permitted by the VECH model. All positive definite DVECH models can be written in the BEKK framework, so that if one restricts the focus to diagonal models, the BEKK model is equally general as the VECH model. Now we are going to discuss necessary and sufficient conditions for covariance stationary of the BEKK process. Let L be back shift operator such that $L^K X_t = X_{t-k}$ and convention that $A(L) = \sum_{k=1}^K (A_{ik}^* \otimes A_{ik}^*)' L + \dots + \sum_{k=1}^K (A_{qk}^* \otimes A_{qk}^*)' L^q$, $G(L) = \sum_{k=1}^{K} (G_{1k}^* \otimes G_{1k}^*)' L + \dots + \sum_{k=1}^{K} (G_{pk}^* \otimes G_{pk}^*)' L^p$ and $c = (C^* \otimes C^*)' vech(I_n)$. Let Z_t be an i.i.d. process with mean zero and unit variance. There exists a BEKK process X_t such that $X_t = H_t^{1/2} Z_t$, where $H_t = cov(X_t | \mathcal{F}_{t-1})$ and $\mathcal{F}_t = \sigma(X_t, X_{t-1}, \dots)$. Assuming that X_t is doubly infinite sequence we can rewrite equation for conditional covariance matrix (4.8) using vectorization as $$vech(H_t) = \sum_{i=1}^{\infty} G(L)^{i-1} [c + A(L)vech(X_t X_t')].$$ (4.16) By the Theorem 6 this parametrization gives BEKK model because $$vech(H_{t}) = c + A(L)vech(X_{t}X'_{t}) + \sum_{i=2}^{\infty} G(L)^{i-1}[c + A(L)vech(X_{t}X'_{t})]$$ $$= c + A(L)vech(X_{t}X'_{t}) + G(L)\sum_{i=1}^{\infty} G(L)^{i-1}[c + A(L)vech(X_{t}X'_{t})]$$ $$= c + A(L)vech(X_{t}X'_{t}) + G(L)vech(H_{t}).$$ (4.17) Notice that the parametrization in (4.16) nests both the VECH and the BEKK models. **Theorem 7.** Let C is a upper triangular $n \times n$ matrix and A_{ik}^* , G_{ik}^* are $n \times n$ parameter matrices. Let Z_t be an i.i.d. process with mean zero and unit variance. Hence Z_t is independent of \mathcal{F}_{t-1} , it follows that $cov(Z_t|\mathcal{F}_{t-1}) = cov(Z_t) = I_n$. There exists a covariance stationary BEKK process X_t such that $X_t = H_t^{1/2} Z_t$, where $H_t = cov(X_t|\mathcal{F}_{t-1})$ and $\mathcal{F}_t = \sigma(X_t, X_{t-1}, \dots)$ if and only if all the eigenvalues of A(1) + G(1) are less than one in modulus. *Proof.* The proof for the BEKK model is analogous as in the VECH model, except that we substitute relations (4.12) into proof. So BEKK model is covariance stationary if and only if all the eigenvalues of $\sum_{i=1}^{q} \sum_{k=1}^{K} (A_{ik}^* \otimes A_{ik}^*) + \sum_{i=1}^{p} \sum_{k=1}^{K} (G_{ik}^* \otimes G_{ik}^*)$ are less than one in modulus. Then the
unconditional covariance matrix, when it exists, is given for K = 1 $$\mathbb{E}(\operatorname{vech}(X_t X_t')) = [I - (A_{11}^* \otimes A_{11}^*) - (G_{11}^* \otimes G_{11}^*)]^{-1} \operatorname{vech}(C'C). \tag{4.18}$$ Estimation of multivariate GARCH models is troublesome, since the number of parameters may be large also for relative small vector dimension n. Let us assume through this chapter that Z_t are i.i.d. $N(0, I_n)$. The conditional covariance matrices H_t are modeled as (4.8). Let p be a density function, θ be the vector of parameters that are needed to parametrize. Suppose that there is an underlying data generating process characterized by the unknown parameter vector θ_0 which one wants to estimate using a given sample of T observations. Hence the joint distribution of (X_1, X_2, \ldots, X_T) where T is the number of observations, need not to be multivariate normally distributed. But the joint density is the product of all the conditional densities, so the log-likelihood function of the joint distribution is the sum of all the log-likelihood functions of the conditional distributions. Thus under the assumption that Z_t are i.i.d. conditionally on initial values, the quasi log-likelihood function is given by $$L_t(\theta) = \sum_{t=1}^{T} \ell_t(\theta)$$ (4.19) where $$\ell_t(\theta) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\log|H_t| - \frac{1}{2}X_t'H_t^{-1}X_t. \tag{4.20}$$ The quasi maximum likelihood estimator of θ is defined as any measurable solution $\hat{\theta}_n$ that maximizes the likelihood function with respect to these parameters. A reasonable set of assumptions on initial conditions is that all presentable data has been fixed at their unconditional expectation. For example X_0X_0' is assumed to equal its unconditional expectation, given in (4.18). Note that because no reference is made to the functional form chosen for the conditional covariance matrix, we may apply the result of this section whether the VECH or BEKK parametrization is chosen. In either case, however, the models are large and complex, leading one to question how flat the likelihood function is with respect to many of the parameters in the model such as the diagonal model or the BEKK model with K=1 and then use Lagrange multiplier test to examine the validity of the restriction. Statistical properties of multivariate GARCH models are only partially known. For development of statistical estimation, it would be desirable to have conditions for strict stationarity and ergodicity of a multivariate GARCH processes, as well as conditions for consistency and asymptotic normality of quasi maximum likelihood estimator. Comte and Lieberman [14] study asymptotic properties of the quasi⁵ maximum likelihood estimator. They provide conditions for strong consistency and asymptotic normality of the quasi maximum likelihood estimator $\hat{\theta}$. In addiction they give, through survey of asymptotic results published so far for univariate as well as multivariate GARCH processes. Let us state for completeness two of their main theorems for strong consistency and asymptotic normality of the QML estimator. For the proofs and further details refer to Comte and Lieberman [14]. Consider the BEKK (p,q) model as defined by (4.8) then we can write the following two theorems. **Theorem 8** (Consistency of quasi MLE). For the MGARCH (p, q) process defined by (4.8) with $Z_t \sim i.i.d.(0, I_n)$ and for $\hat{\theta}_T$, the quasi maximum likelihood estimate obtained from a sample of length T, and the true parameter $\theta_0 \in \Theta$, assume that - Θ is compact, C, A_i and G_i , are continuous functions of θ , and there exists $a \ c > 0$ such that $\inf_{\theta \in \Theta} \det(C(\theta)) \ge c > 0$, - model is identifiable in the sense of Engle and Kroner [17], - rescaled errors Z_t admit a density absolutely continuous with respect to the Lebesgue measure and positive in a neighborhood of the origin, - for all $\theta \in \Theta$, $\rho(\sum_{i=1}^q A_i(\theta) + \sum_{i=1}^p G_i(\theta)) < 1$. Where ρ returns the largest modules of the eigenvalues. Then $\hat{\theta}_T$ is strongly consistent that is, $\hat{\theta}_T \to \theta_0$ almost surely for $T \to \infty$. Theorem 9 (Asymptotic Normality of quasi MLE). Under the assumptions - assumptions from Theorem 8 and C, A_i G_i , admit continuous derivatives up to order 3 on Θ , - components of Z_t are independent, - X_t admits bounded moments of order 8, - the initial states of the process H_t are fixed stationary. ⁵Note that in Comte and Lieberman [14] $\hat{\theta}$ is presented as quasi MLE, since they do not assume that Z_t 's are Gaussian, but work with the Gaussian log-likelihood function. Then the quasi MLE $\hat{\theta}_T$ given the initial state is strongly consistent and $$\sqrt{T}(\hat{\theta}_T - \theta_0) \to N(0, C_1^1 C_0 C_1^1),$$ (4.21) where $C_1 = \mathbb{E}\left(\left(\frac{\partial^2 \ell_t(\theta_0)}{\partial \theta_i \theta_j}\right)_{1 \geq i, j \geq r}\right), C_0 = \mathbb{E}\left(\frac{\partial \ell_t(\theta_0)}{\partial \theta} \frac{\partial \ell_t(\theta_0)}{\partial \theta}'\right)$ and r is the length of the parameter vector θ . The BHHH (Berndt Hall and Hall and Hausman) iterative algorithm is useful in practice to obtain the optimal values of parameters by utilizing the following equation proposed by Engle and Kroner [17] $$\theta^{(i+1)} = \theta^{(i)} + \lambda_i \left(\left(\frac{\partial \ell_t}{\partial \theta} \right)' \frac{\partial \ell_t}{\partial \theta} \right)^{-1} \left(\frac{\partial \ell_t}{\partial \theta} \right)' \tag{4.22}$$ where $\theta^{(i)}$ denotes the parameter estimate after the i^{th} iteration; $\frac{\partial \ell_t}{\partial \theta}$ is evaluated at $\theta^{(i)}$ and λ is a variable step length chosen to maximize the likelihood function in the given direction, which is calculated from a least squares regression of a $T \times 1$ vector of ones on $\frac{\partial \ell_t}{\partial \theta}$. # 4.3 Linear combinations of univariate GARCH models In this section we introduce somewhat different approach of multivariate GARCH models. One can assume that the observed data can be linearly transformed into a set of components by means of an matrix i.e. model tries to express multivariate GARCH by means of univariate GARCH models. This approach has been proposed initially by Alexander and Chibumba [2] and called the Orthogonal GARCH (O-GARCH). Clearly one of the restrictions imposed by the O-GARCH model is that, it requires the matrix that is assumed to link the components with the observed variables, to be orthogonal. This restriction has great computational properties and analytical tractability, so that O-GARCH models have found many applications in finance. However orthogonal matrices are very special and they only reflect a very small subset of all possible invertible linear maps. The generalized O-GARCH model allows the linkage to be given by any possible invertible matrix and was proposed by van der Weide [31], as a generalization of the orthogonal GARCH model. The O-GARCH model is also known to suffer from identification problem, mainly because estimation of the matrix is entirely based on unconditional information (the sample covariance matrix). For example, when the data exhibits weak dependence, the model has substantial difficulties to identify a matrix that is truly orthogonal. #### 4.3.1 O-GARCH model Consider a vector process X_t representing n different returns. Letting \mathcal{F}_t denote the filtration generated by X_t and denote V_t conditional covariance matrix of X_t such that $V_t = cov(X_t|\mathcal{F}_{t-1})$. The data are commonly normalized, so that every series has unit sample variance and zero mean. The vector process X_t can be represented as linear combination of n uncorrelated univariate GARCH processes Y_t with unconditional variances of one. **Definition 4.** The O-GARCH (p,q) process is a vector process X_t defined as $$X_t = MY_t, (4.23)$$ where M is a $n \times n$ orthogonal⁶ matrix and Y_t is n vector process with the components y_{it} which satisfy $$\mathbb{E}(y_{it}|\mathcal{F}_{t-1}) = 0, \quad var(y_{it}|\mathcal{F}_{t-1}) = h_{it}, \quad cov(y_{it}, y_{jt}|\mathcal{F}_{t-1}) = 0, \quad i \neq j = 1, \dots, n,$$ (4.24) such that the components of Y_t are conditionally uncorrelated and each component is modeled as a univariate GARCH process $$y_{it}|\mathcal{F}_{t-1} \sim N(0, h_{it}),$$ $$h_{it} = \alpha_i + \sum_{j=1}^q \theta_{ji} y_{ji,t-1}^2 + \sum_{j=1}^p \phi_{ji} h_{ji,t-1} \qquad for \quad i = 1, \dots, n.$$ (4.25) The conditional covariances of X_t are given by $$V_t = MH_tM', H_t = diag(h_{1t}, \dots, h_{nt}).$$ (4.26) We assume that Y_t and hence X_t is covariance stationary, such that the unconditional variances $H = var(Y_t)$ and $V = var(X_t) = MHM'$ exist. The $^{^6}$ We follow Alexander [1], however there exist other possibilities for instance Vrontos et al. [32] restrict M to be lower triangular, which is not without loss of generality. parameters for O-GARCH (p, q) model are all ϕ_{ji} , all θ_{ji} , M and V. The number of parameters to be estimated in this model is equal (p+q)n(n+5)/2. Denote P the orthogonal matrix of eigenvectors of V, and Λ the diagonal matrix containing the corresponding eigenvalues, such that $V = P\Lambda P'$. Then Y_t satisfies $H = var(Y_t) = PVP' = \Lambda$, such that the components of Y_t are unconditionally uncorrelated. This property is then amplified by assumption that the Y_t are conditionally uncorrelated and then H_t is diagonal. After we have estimated all the parameters, the conditional covariance matrix of the original series is simply $$V_t = \mathbb{E}_{t-1} X_t X_t' = \mathbb{E}_{t-1} M Y_t Y_t' M' = P H_t P'. \tag{4.27}$$ The advantage of the model is that only a few
principle components are enough to explain most of variability in the system which suggest this model applicable in large dimension models. However when the data exhibits weak dependence, the O-GARCH model is not always able to identify the orthogonal matrix M which lead to the development of more general model. #### 4.3.2 GO-GARCH model Generalized O-GARCH model was proposed by van der Weide [31] and in this section we closely follow his work. In the GO-GARCH model the components of X_t do not have to be standardized as in the O-GARCH model. The starting point of the GO-GARCH model is the assumption defined as follows. Assumption 7. The observed process X_t is defined by a linear combination of conditionally uncorrelated components Y_t $$X_t = MY_t \tag{4.28}$$ where Y_t is a n vector process with the components y_{it} of which satisfy $$\mathbb{E}(y_{it}|\mathcal{F}_{t-1}) = 0, \quad var(y_{it}|\mathcal{F}_{t-1}) = h_{it}, \quad cov(y_{it}, y_{jt}|\mathcal{F}_{t-1}) = 0, \quad i \neq j = 1, \dots, n.$$ (4.29) The linear map M that links the unobserved components with the observed variables is assumed to be constant over time, and invertible. Hence the GO-GARCH model can be defined as follows. **Definition 5.** The GO-GARCH (p,q) process is a vector process X_t defined as $$X_t = MY_t. (4.30)$$ Where each of the component process y_{it} is modeled as a univariate GARCH process and then $$y_{it}|\mathcal{F}_{t-1} \sim N(0, h_{it}),$$ $$h_{it} = \alpha_i + \sum_{j=1}^q \theta_{ji} y_{ji,t-1}^2 + \sum_{j=1}^p \phi_{ji} h_{ji,t-1} \quad for \quad i = 1, \dots, n.$$ (4.31) Hence, the conditional covariances of X_t see van der Weide [31] are given by $$V_t = MH_tM', \qquad H_t = diag(h_{1t}, \dots, h_{nt}). \tag{4.32}$$ Note that we impose without lost of generality that each of the unobserved components y_{it} have unit variance so that V = MM'. If we consider the singular value decomposition of M $$M = P\Lambda^{1/2}U' \tag{4.33}$$ where P and Λ denote the matrices with, respectively, the orthogonal eigenvectors and the eigenvalues of V = MM', then U is the orthogonal matrix of eigenvectors of MM'. The matrices P and Λ will be estimated directly by means of unconditional information, as they will be extracted from the sample covariance matrix V, the main task for inference on the loading matrix M is to identify the orthogonal matrix U. The O-GARCH model corresponds then to the particular choice $U = I_n$. Van der Weide express U as the product of n(n-1)/2 rotation matrices $$U = \prod_{i < j} G_{ij}(\delta_{ij}), \qquad -\pi \le \delta_{ij} \le \pi, \qquad i, j = 1, 2, \dots, n,$$ (4.34) where $G_{ij}(\delta_{ij})$ performs a rotation in the plane spanned by the *i*th and *j*th vectors of the canonical basis of R over an angle δ_{ij} . For example in the trivariate case $$G_{12} = \begin{pmatrix} \cos \delta_{12} & \sin \delta_{12} & 0 \\ -\sin \delta_{12} & \cos \delta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}, G_{13} = \begin{pmatrix} \cos \delta_{13} & 0 & -\sin \delta_{13} \\ 0 & 1 & 0 \\ -\sin \delta_{12} & 0 & \cos \delta_{13} \end{pmatrix}. \quad (4.35)$$ As rotation angles are most often used the Euler angles which can be estimated by means of maximum likelihood. It is obvious that the (G)O-GARCH model is covariance stationary if the n univariate GARCH processes are themselves stationary. GO-GARCH model has property that it can be nested as a more general BEKK model. To keep it simple we focus on the GO-GARCH (1,1) model only, but it can be verified that the results also hold for the more general GO-GARCH (p,q) model. Consider the following BEKK representation $$V_{t} = C + \sum_{i=1}^{n} A_{i} X_{t-1} X_{t-1}' A_{i}' + B V_{t-1} B', \tag{4.36}$$ where C is a positive definite $n \times n$ matrix⁷, A_i and B are $n \times n$ matrices. The following theorem show relationship between models. **Theorem 10.** Let the matrices $\{A_i\}_{i=1}^m$ and B be restricted to have identical eigenvector matrix M, where the eigenvalues of A_i are all zero except for the ith one. Moreover, assume that C can be decomposed as MD_CM' , where D_C is some positive definite diagonal matrix. Then the associated BEKK parameterization, given in (4.36) is a GO-GARCH process with GARCH (1,1) component where the M reflects the linkage between the conditionally uncorrelated components and the observed process. *Proof.* The matrices $\{A_i\}_{i=1}^n$ and B are assumed to have identical eigenvector matrix M. So they can be diagonalized as follows $$A_i = MD_{A_i}M^{-1}$$ and $B = MD_BM^{-1}$, (4.37) where $\{D_{A_i}\}$ and D_B denote diagonal eigenvalue matrices. Note that all element of the matrix D_{A_i} are zero except for its *i*'th diagonal element, which represents the only non-zero eigenvalue of A_i and will be denoted as a_i . By substitution we have $$V_{t} = MD_{C}M' + \sum_{i=1}^{n} MD_{A_{i}}M^{-1}X_{t-1}X'_{t-1}M^{-1'}D_{A_{i}}M' + MD_{B}M^{-1}V_{t-1}(M^{-1})'D_{B}M',$$ $$V_{t} = M(D_{C} + \sum_{i=1}^{n} D_{A_{i}}M^{-1}X_{t-1}X'_{t-1}(M^{-1})'D_{A_{i}} + D_{B}M^{-1}V_{t-1}(M^{-1})'D_{B})M'.$$ $$(4.38)$$ By definition we have $X_t = MY_t$. Then $Y_t = M^{-1}X_t$ represent the unobserved components in the GO-GARCH framework. Let $H_t = M^{-1}V_tM^{-1}$ denote the ⁷In order to guarantee positive definiteness of V_t for all t. conditional covariance matrix of Y_t . Rearranging terms in (4.38) we can find that $$H_t = D_C + \sum_{i=1}^n D_{A_i} Y_{t-1} Y'_{t-1} D_{A_i} + D_B H_{t-1} D_B.$$ (4.39) By the properties of the matrices $\{D_{A_i}\}$ it follows that the sum can be rewritten using Hadamard product as $$\sum_{i=1}^{n} D_{A_i} Y_{t-1} Y'_{t-1} D_{A_i} = D_A \odot Y_{t-1} Y'_{t-1}, \tag{4.40}$$ where $D_A = diag\{a_1, \ldots, a_n\}$. Then D_C , D_B and $D_A \odot Y_{t-1}Y'_{t-1}$ are all diagonal, and the conditional covariance matrix of Y_t , denoted by H_t , is also diagonal. Therefore, equation (4.39) implies univariate GARCH (1, 1) specifications for the components of Y_t , as it is assumed by the GO-GARCH model. The parameter estimation of the GO-GARCH model is carried out as usual with maximum likelihood estimation. We show before that GO-GARCH can be nested as more general BEKK model, so that most of the theory of maximum likelihood estimation available for the BEKK models can be applied for GO-GARCH models. The parameters that need to be estimated include the vector θ of rotation coefficients that will identify the invertible matrix M, and the parameters (ϕ_i, θ_i) for the n univariate GARCH models. The quasi log-likelihood function $L_t(\theta)$ for the GO-GARCH with a given sample of T observations is given by $$L_{t}(\theta) = -\frac{1}{2} \sum_{t=1}^{T} n \log(2\pi) + \log|V_{t}| + X'_{t}V_{t}^{-1}X_{t}$$ $$= -\frac{1}{2} \sum_{t=1}^{T} n \log(2\pi) + \log|Z_{\theta}H_{t}M_{\theta}| + Y'_{t}M'_{\theta}(M_{\theta}H_{t}M_{\theta})^{-1}Y_{t}M_{\theta} \qquad (4.41)$$ $$= -\frac{1}{2} \sum_{t=1}^{T} n \log(2\pi) + \log|M_{\theta}M'_{\theta}| + \log|H_{t}| + Y'_{t}H_{t}^{-1}Y_{t},$$ where $M_{\theta}M'_{\theta} = P\Lambda P'$ is independent of θ . Even in high-variate cases, when the covariance matrices are very large, it should not be a problem to maximize the quasi log-likelihood function over the n(n-1)/2 + 2n parameters. However practical power of GO-GARCH model lies in its two-step estimation procedure. For this method it is necessary that link matrix M is orthogonal. In first step, matrices P and Λ are estimated directly by means of unconditional information as they will be extracted from sample covariance matrix V_t . This involves only solving an eigenvalue problem. In the second step the conditional information is used to estimate rotation coefficients of U and all θ_i and ϕ_i of n factors. This separation shows that a two-step estimation procedure is feasible and that variances and correlations can be estimated separately. The two-step approach mainly has the advantage that the dimensionality of the maximization problem is reduced accelerating the maximization process. #### NLS The problems of maximizing the multivariate likelihood function for high dimensions lead to development of three-step procedure. This method was proposed by Boswijk and van der Weide [12]. First step is the same as before and the second step of the two-step procedure is divided into two steps. This allows to separate the estimation of a part of link matrix U from univariate GARCH parameters. The tree-step procedure tries to identify U from the autocorrelation structure of $s_t s_t'$ where $s_t = \Lambda^{-1/2} P' X_t$. They obtain estimate for B = UA'U by regressing the following model $$s_t s_t' - I_m = B(s_{t-1} s_{t-1}' - I_m) B + \Gamma_t, \qquad \mathbb{E}(\Gamma_t) = 0,$$ (4.42) using non-linear least squares method. Estimate for U may be obtained as the eigenvector matrix of B as A is diagonal matrix. The three-step procedure is not only more practical in terms of implementation but also is less prone to convergence problems. However the main disadvantage is loss of efficiency. #### Chicago The two-step as well as the three-step procedure seems to be too slow when dimension of the model is high. Broda and Paolella [13] introduced a new two-step procedure for estimation of GO-GARCH model. They use independent component analysis ICA as the main tool for the decomposition of a high-dimensional problem into a set of univariate models. The ICA algorithm maximizes the conditional heteroscedasticity of the estimated components. Their method is called CHICAGO (Conditionally Heteroscedastic Independent Component Analysis of Generalized Orthogonal GARCH models). Their procedure allows them to apply non-Gaussian innovations. The independent component analysis ICA is more powerful tool than the principle components analysis in a sense of preserving interesting features of the data like clusters. This is because the simple
method tries to find the direction of the component in with the variance of the data is maximized whereas the ICA tries to find the direction of the component in which the interesting features of the data are kept. Broda and Paolella estimate U by independent component analysis. There are many approaches for solving ICA problem. There is a matter of choosing an appropriate objective function and optimization algorithm. This might be expressed in the following formulation ICA method = objective function + optimization algorithm.⁸ One of the most important restrictions for ICA is that the independent components must be nongaussian. One of the method for solving this problem is by maximizing negentropy.⁹ The central limit theorem tells that the distribution of the sum od independent random variables with finite second moments converges to a Gaussian distribution. The second method of solving ICA is by exploiting the time structure of the data set. This approach seems to be more natural for time series data e.g. financial returns data as the financial data exhibit GARCH-effects. This is why by maximizing the autocorrelation of the squared returns one can separate independent components. For more details see Hyvarinen et al.¹⁰ Here we compare three estimators of matrix U, one of van der Weide [31], NLS of Boswijk and van der Weide [12] and ICA of Broda and Paolella [13]. NLS estimators are virtually unbiased whereas ICA shows small bias. NLS and ICA are much more robust as they are separated from factors specifications. ICA doesn't exhibit problems with convergence conversely to van der Weide estimator. Time of the estimation shows big discrepancy between the estimators. ICA algorithm is 56 and 297 times faster than NLS and ML respectively. Taking into account all features (i.e. robustness, accuracy, reliability and speed) the ICA estimator looks very promising. This method is not only extremely accurate but also computationally cheap. ⁸Hvvarinen 1990 ⁹Differential entropy H of a random vector y with density f(y) is defined as $H(y) = -\int f(y) \log f(y) dy$ This measure is well known as the Shanon's entropy or measure of uncertainty. A Gaussian variable has the largest entropy among all random variables of equal variances. Therefore negentropy is a measure of nongaussianity. ¹⁰Hyvarinen, A.,Karhunen, J. and Oja, E. (2001): Independent Component Analysis. John Wiley & Sons As we discussed before in Theorem 10, the GO-GARCH model is a special case of the BEKK model of Engle and Kroner [17], and as such the general results of Comte and Lieberman [14] concerning consistency and asymptotic normality of maximum likelihood estimators can be directly applied. Conditions for strong consistency of the maximum likelihood estimator for BEKK model are given by Theorem 8 and conditions for the asymptotic normality are given in Theorem 9 and then strong consistency and asymptotic normality of the quasi MLE for GO-GARCH can therefore be established by appealing this conditions. For initial value we choose the unconditional covariance matrix. # 4.4 Nonlinear combinations of univariate GARCH models This section collects such models that may be viewed as nonlinear combinations of univariate GARCH models. The models in this category are based on the idea of modeling the conditional variances and correlations instead of straight forward modeling the conditional covariance matrix. In most of the literature about multivariate GARCH models these models can be found as models of conditional variances and correlations. This class of models includes Constant Conditional Correlation Model (CCC, Bollerslev [8]), and Dynamic Conditional Correlation Models (DCC models of Tse and Tsui [29], and Engle [16]). #### 4.4.1 CCC model The conditional correlation matrix in this class of models is time invariant. Conditional covariance matrix thus can be specified in a hierarchical way. First, one chooses a GARCH-type model for each conditional variance. Second, based on the conditional variances, one models the conditional correlation matrix (imposing its positive definiteness $\forall t$). Since conditional correlation matrix is time invariant, the conditional covariances are proportional to the product of the corresponding conditional standard deviations. Let us formalize our assertions. **Definition 6.** The CCC(p,q) process is a martingale difference sequence X_t relative to a given filtration \mathcal{F}_t , whose conditional covariance matrix $H_t = cov(X_t | \mathcal{F}_{t-1})$ satisfy $$H_t = D_t R D_t = (\rho_{ij} \sqrt{h_{iit} h_{jjt}}), \tag{4.43}$$ where $$D_t = diag(h_{11t}^{1/2} \dots h_{nnt}^{1/2}) \tag{4.44}$$ and $$R = (\rho_{ij}) \tag{4.45}$$ is a symmetric positive definite matrix with $\rho_{ii}=1, \forall i$. Then the off-diagonal elements of the conditional covariance matrix are defined as $[H_t]_{ij}=h_{it}^{1/2}h_{jt}^{1/2}\rho_{ij}$ for $i\neq j,\ 1\leq i,j\leq n$. h_{iit} is defined as univariate GARCH(p,q) model¹¹ $$h_t = c + \sum_{i=1}^q A_i X_{t-i}^2 + \sum_{i=1}^p G_i h_{t-i},$$ (4.46) where c is $n \times 1$ vector, A_i and G_i are diagonal $n \times n$ matrices. Time invariant $n \times n$ symmetric matrix R with unit diagonal elements, containing the constant conditional correlations ρ_{ij} . If the elements of c and the diagonal elements of A_i and G_i are positive, and the conditional correlation matrix R is positive definite, then the conditional covariance matrix H_t is positive definite. Positivity of the diagonal elements of A_i and G_i is not however necessary for R to be positive definite unless p = q = 1. This CCC model contains n(n+5)/2 parameters. The CCC model was first introduced by Bollerslev [8]. Although the CCC model because of simplicity and attractive parametrization has been very popular in practice, empirical studies have suggested that the assumption of constant conditional correlations, and thus the conditional covariances may be too restrictive and unrealistic. A sufficient condition for strict stationarity and the existence of fourth-order moment of the CCC (p,q) is established in Aue, Hormann, Horvath, and Reimherr [3]. Existence of stationary solution is the key ingredient for estimation, so we first state necessary and sufficient conditions for strict stationarity ¹¹Can be defined as any univariate GARCH model, because of simplicity we choose the simplest one. of the model. Technique is very similar as in the univariate GARCH models so we state only consequential points. We can write $$X_t = D_t \eta_t, \qquad \eta_t = R^{1/2} Z_t,$$ (4.47) then we define matrix Ω as follows $$\Omega_t = \begin{pmatrix} \eta_{1t}^2 & 0 & \cdots & 0 \\ 0 & \ddots & & dots \\ dots & & \ddots & \\ 0 & \cdots & & \eta_{nt}^2 \end{pmatrix}.$$ And let define the $(p+q)n \times (p+q)n$ matrix $$C_t = \begin{pmatrix} \Omega_t A_1 & \Omega_t A_2 & \cdots & \Omega_t A_q & \Omega_t G_1 & \Omega_t G_2 & \cdots & \Omega_t G_p \\ I_n & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & I_n & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & I_n & \cdots & 0 & 0 & \cdots & 0 \\ A_1 & A_2 & \cdots & A_q & G_1 & G_2 & \cdots & G_p \\ 0 & 0 & \cdots & 0 & I_n & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & I_n & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & I_n & 0 \end{pmatrix}.$$ Theorem 11. Let c_i be an n-dimensional vector R be a time invariant $n \times n$ symmetric matrix and let A_{ij} , G_{ij} , are square diagonal matrices of order n. Let Z_t be an i.i.d. vector process with mean zero and unit variance. Hence Z_t is independent of \mathcal{F}_{t-1} , it follows that $cov(Z_t|\mathcal{F}_{t-1}) = cov(Z_t) = I_n$. There exists stationary CCC process X_t such that $X_t = H_t^{1/2}Z_t$, where $H_t = cov(X_t|\mathcal{F}_{t-1})$ and $\mathcal{F}_t = \sigma(X_t, X_{t-1}, \ldots)$ if and only if $\gamma(C_0) < 0$, where $\gamma(C_0)$ is the top Lyapunov exponent of the sequence $C_0 = \{C_t, t \in \mathbb{Z}\}$. This stationary solution, when $\gamma(C_0) < 0$, is unique and ergodic. *Proof.* The proof similar to that given for univariate GARCH (p,q) models. Existence of top Lyapunov exponent γ is guaranteed by the condition $\mathbb{E}(\log^+ ||C_0||) < \infty$. Then for $\gamma(C_0) < 0$ the series $$Y_t = b + \sum_{k=1}^{\infty} C_t C_{t-1} \dots C_{t-k+1} b$$ (4.48) converges almost surely for all t. A strictly stationary and ergodic solution is obtained as $X_t = \{diag(Y_{q+1,t})\}^{1/2} R^{1/2} Z_t$ where $Y_{q+1,t}$ denotes the (q+1)th subvector of size n of Y_t . The proof of the uniqueness is exactly the same as in the univariate case. Now we show the necessity of the top Lyapounov exponent being negative. It suffices to show that $$\lim_{k \to \infty} C_0 C_{-1} \dots C_{-k+1} e_i \to 0, \quad a.s. \quad for \quad 1 \le i \le p + q.$$ (4.49) Existence of a strictly stationary solution implies as $k \to \infty$ $$C_0C_{-1}\dots C_{-k+1}b \to 0 \quad a.s.$$ (4.50) Using the relation $b = e_1 \Omega_{-k} c + e_{q+1} c$ we get $$\lim_{k \to \infty} C_0 \dots C_{-k+1} e_1 \Omega_{-k} c = 0, \qquad \lim_{k \to \infty} C_0 \dots C_{-k+1} e_{q+1} c = 0, \quad a.s.$$ Since components of c are strictly positive (4.49) thus holds for i = q + 1. Using $$C_{-k+1}e_{q+i} = \Omega_{-k+1}G_ie_1 + G_ie_{q+1} + e_{q+i+1}, \qquad i = 1, \dots, p$$ (4.51) with convention $e_{p+q+1} = 0$, for i = 1 we obtain $$0 = \lim_{t \to \infty} C_0 \dots C_{-k+1} e_{q+1} \ge \lim_{k \to \infty} C_0 \dots C_{-k+1} e_{q+2} \ge 0.$$ Therefore (4.49) holds for i = q + 2 and by induction, for i = q + j, j = 1, ..., p. Moreover, $C_{-k+1}e_q = \Omega_{-k+1}A_qe_1 + A_qe_{q+1}$ so (4.49) holds for i = q and thus we can conclude that for other values of i (4.49) holds using recursion. Estimation of the CCC models is as usual carried out using maximum likelihood estimator.
Let (X_1, \ldots, X_T) be an observation of length T of the unique and strictly stationary solution X_t of model (4.43). Conditionally on initial values we can write quasi likelihood function as $$L(\theta) = L(\theta; X_1, \dots, X_T) = \prod_{t=1}^{T} \frac{1}{(2\pi)^{n/2}} |H_t(\theta)|^{1/2} \exp\left(-\frac{1}{2} X_t' H_t^{-1}(\theta) X_t\right), \quad (4.52)$$ and the corresponding quasi log-likelihood $$L_t(\theta) = \frac{1}{t} \sum_{t=1}^{T} \ell_t,$$ (4.53) where $$\ell_t = \log |H_t(\theta)| + X_t' H_t^{-1}(\theta) X_t. \tag{4.54}$$ A QML estimator of θ is defined as any measurable solution $\hat{\theta}_t$ of $$\hat{\theta}_t = \arg\max_{\theta \in \Theta} L_t(\theta). \tag{4.55}$$ Asymptotic properties of QMLE were developed by Francq and Zakoïan [20]. They proved \sqrt{n} -consystency and \sqrt{n} -normality under the similar assumptions as they introduced in the univariate case. The following assumptions will be used to establish the strong consistency of the QMLE. Assume that Z_t is i.i.d. and the QMLE $\hat{\theta}_t$ maximizes the quasi log-likelihood under Θ . Let $\mathcal{A}_{\theta_0}(z) = \sum_{i=1}^q \theta_i z^i$ and $\mathcal{B}_{\theta_0}(z) = 1 - \sum_{i=1}^p \phi_i z^i$ with the convention $\mathcal{A}_{\theta_0}(z) = 0$ if q = 0 and $\mathcal{B}_{\theta_0}(z) = 1$ if p = 1. To show strong consistency the following assumptions will be made. **Assumption 8.** $\theta_0 \in \Theta$ and Θ is compact. **Assumption 9.** $\gamma(C_0) < 0$ and $\forall \theta \in \Theta$, $|\mathcal{B}_{\theta}(z)| = 0 \Rightarrow |z| > 1$. **Assumption 10.** The components of Z_t are independent and their squares have non degenerate distributions. **Assumption 11.** If p > 0, then $\mathcal{A}_{\theta_0}(z)$ and $\mathcal{B}_{\theta_0}(z)$ are left coprime and $M_1(\mathcal{A}_{\theta_0}, \mathcal{B}_{\theta_0})$ has full rank n. **Assumption 12.** R is a positive definite correlation matrix for all $\theta \in \Theta$. **Theorem 12** (Strong consistency). Let $\hat{\theta}_t$ be a sequence of QML estimators satisfying (4.55). Then, under assumptions 8-12 $$\hat{\theta}_t \to \theta_0, \qquad almost surely when n \to \infty.$$ (4.56) *Proof.* See Francq and Zakoïan [20]. Theorem shows that there exist a consistent root of the likelihood equation. To establish the asymptotic normality, we require the following additional assumptions. **Assumption 13.** $\theta_0 \in \Theta^c$, where Θ^c denotes the interior of Θ . Assumption 14. $\mathbb{E}\|\eta_t\eta_t'\|^2 < \infty$. **Theorem 13** (Asymptotic normality). Under the assumptions of Theorem 12 and assumptions 13 and 14 $\sqrt{n}(\hat{\theta}_t - \theta_0)$ converges in distribution to $N(0, J^{-1}IJ^{-1})$, where J is a positive-definite matrix and I is a semi positive-definite matrix, defined by $$I = \mathbb{E}_{\theta_0} \left(\frac{\partial \ell_t(\theta_0)}{\partial \theta} \frac{\partial \ell_t(\theta_0)}{\partial \theta'} \right), \qquad J = \mathbb{E}_{\theta_0} \left(\frac{\partial^2 \ell_t(\theta_0)}{\partial \theta \partial \theta'} \right). \tag{4.57}$$ Proof. See Francq and Zakoïan [20]. Note that when n = 1, results becomes to the univariate setting. In particular, no assumption is made concerning the existence of moments of the observed process. #### 4.4.2 DCC model A new class of multivariate models called dynamic conditional correlation (DCC) model was proposed by Engle and they are the generalization of the CCC model by making the conditional correlation matrix time-dependent. These models are flexible like univariate GARCH and parsimonious parametric models for the correlations. **Definition 7.** The Dynamic Conditional Correlation (DCC) process of Engle [2002] is a martingale difference sequence X_t relative to a given filtration \mathcal{F}_t , whose conditional covariance matrix $H_t = cov(X_t | \mathcal{F}_{t-1})$ satisfy $$H_t = D_t R_t D_t, (4.58)$$ where $$D_t = diag(h_{1t}^{1/2} \dots h_{nt}^{1/2}) \tag{4.59}$$ and R_t is $n \times n$ time varying correlation matrix of X_t . h_{it} is defined as univariate GARCH(p,q) model¹² $$h_{it} = c_i + \sum_{j=1}^{q_i} \theta_{ij} X_{t-j}^2 + \sum_{j=1}^{p_i} \phi_{ij} h_{t-j},$$ (4.60) where c_i , θ_{ij} and ϕ_{ij} are non negative parameters for $i=1,\ldots,n$, with the usual GARCH restrictions for non-negativity and stationary being imposed, such as non-negativity of variances and $\sum_{j=1}^{p_i} \phi_{ij} + \sum_{j=1}^{q_i} \theta_{ij} < 1$. ¹²Can be defined as any univariate GARCH model, we chose the simplest one. Note that the univariate GARCH models can have different orders. The number of parameters to be estimated equals (n+1)(n+4)/2 in bivariate case and is quite large when the n is large. There exists different forms of R_t . When specifying a form of R_t , two requirements have to be considered. First H_t has to be positive definite, because it is a covariance matrix. To ensure H_t to be positive definite, R_t has to be positive definite (D_t is positive definite since all the diagonal elements are positive). Second is that all the elements in the correlation matrix R_t have to be equal to or less than one by definition. To ensure both of these requirements in the model, R_t is decomposed into $$R_t = Q_t^{*-1} Q_t Q_t^{*-1} (4.61)$$ and Q_t has the following dynamics $$Q_t = (1 - a - b)\bar{Q} + a\eta_{t-1}\eta'_{t-1} + bQ_{t-1}, \tag{4.62}$$ where $\eta_t = D_t^{-1} X_t$ and $\bar{Q} = cov[\eta_t \eta_t'] = \mathbb{E}[\eta_t \eta_t'] = R$ is the unconditional covariance matrix of the standardized errors η_t . \bar{Q} can be estimated as $$\bar{Q} = \frac{1}{T} \sum_{t=1}^{T} \eta_t \eta_t',$$ where parameters a and b are scalars, and Q_t^* is diagonal matrix with square root of the diagonal elements of Q_t at the diagonal. Q_t has to be positive definite to ensure R_t to be positive definite. There are also some criterions on the parameters a and b to guarantee H_t to be positive definite such as $a \ge 0$, $b \ge 0$ and a + b < 1. In addition the starting value of Q_t , has to be positive definite to ensure H_t to be positive definite. The correlation structure can be extended to the general DCC (M, N) model $$Q_t = \left(1 - \sum_{i=1}^{M} a_m - \sum_{n=1}^{N} b_n\right) \bar{Q}_t + \sum_{m=1}^{M} a_m \eta_{t-1} \eta'_{t-1} + \sum_{n=1}^{N} b_n Q_{t-1}.$$ (4.63) In this thesis only the DCC (1, 1) will be studied. For more details see Engle [16]. Suppose now that process Z_t is multivariate Gaussian distributed such that $\mathbb{E}Z_t = 0$ and $\mathbb{E}[Z_t Z_t'] = I_n$, Engle proposed the estimation of the DCC model by two-step procedure. This is possible as the conditional variance $H_t = D_t R_t D_t$ can be divided into volatility part and correlation part. Instead of using the likelihood function for all the coefficients he suggested replacing R_t by the identity matrix which leads to a quasi log-likelihood function that is the sum of likelihood functions of n univariate models. In the second step Engle estimates parameters of R_t . Method produces consistent but not efficient estimators. In order to estimate the parameters of H_t , the following log-likelihood function L can be used $$L = -\frac{1}{2} \sum_{t=1}^{T} (n \log(2\pi) + \log(|H_t|) + X_t' H_t^{-1} X_t)$$ $$= -\frac{1}{2} \sum_{t=1}^{T} (n \log(2\pi) + \log(|D_t R_t D_t|) + X_t' D_t^{-1} R_t^{-1} D_t^{-1} X_t)$$ $$= -\frac{1}{2} \sum_{t=1}^{T} (n \log(2\pi) + 2 \log(|D_t|) + \log(|R_t|) + X_t' D_t^{-1} R_t^{-1} D_t^{-1} X_t).$$ $$(4.64)$$ In the first step the likelihood involves replacing R_t with the identity matrix I_n in (4.64). Let the parameters of the model θ be written in two groups $(\psi, \theta) = (\psi_1, \ldots, \psi_T, \theta)$, where the elements of ψ_i correspond to the parameters of the univariate GARCH model for the *i*th returns, $\psi_i = (c, \phi_{1i}, \ldots, \phi_{p_ii}, \theta_{1i}, \ldots, \theta_{q_ii})$. Lets call the first step quasi log-likelihood function $L_1(\psi)$ defined as $$L_{1}(\psi) = -\frac{1}{2} \sum_{t=1}^{T} (n \log(2\pi) + 2 \log(|D_{t}|) + \log(|I_{n}|) + X_{t}' D_{t}^{-1} R_{t}^{-1} D_{t}^{-1} X_{t})$$ $$= -\frac{1}{2} \sum_{t=1}^{T} (n \log(2\pi) + 2 \log(|D_{t}|) + X_{t}' D_{t}^{-1} R_{t}^{-1} D_{t}^{-1} X_{t})$$ $$= -\frac{1}{2} \sum_{t=1}^{T} \left(n \log(2\pi) + \sum_{i=1}^{n} \left[\log(h_{it}) + \frac{X_{it}^{2}}{h_{it}} \right] \right)$$ $$= -\frac{1}{2} \sum_{i=1}^{n} \left(T \log(2\pi) + \sum_{t=1}^{T} \left[\log(h_{it}) + \frac{X_{it}^{2}}{h_{it}} \right] \right),$$ $$(4.65)$$ which is the sum of the log-likelihoods of the univariate GARCH processes of n returns. Hence the parameters of the different univariate models can be determined separately. The result of first step is the estimator of parameter ψ . Then also the conditional variance h_{it} is estimated for each returns i = 1, ..., n and then $\eta_t = D_t^{-1/2} X_t$ and $\bar{Q} = \mathbb{E}[\eta_t \eta_t']$ can be estimated as well. In the second step, $\theta = (a, b)$ is estimated, given the estimated parameters 4.5 Goodness of Fit 60 from step one. Second step quasi log-likelihood is defined as follows $$L_{2}(\theta|\hat{\psi}) = -\frac{1}{2} \sum_{t=1}^{T} (n \log(2\pi) + 2 \log(|D_{t}|) + \log(|R_{t}|) + X_{t}' D_{t}^{-1} R_{t}^{-1} D_{t}^{-1} X_{t})$$ $$= -\frac{1}{2} \sum_{t=1}^{T} (n \log(2\pi) + 2 \log(|D_{t}|) + \log(|R_{t}|) + \eta_{t}' R_{t}^{-1} \eta_{t}).$$ (4.66) Since we are conditioning on $\hat{\psi}$, the D_t terms are constant and we can exclude that terms and maximize $$L_2^*(\theta|\hat{\psi}) = -\frac{1}{2} \sum_{t=1}^{T} (\log(|R_t|) + \eta_t' R_t^{-1} \eta_t).$$ Asymptotic properties of the two-step estimation procedure have been studied in Engle and Schepard [18]. They introduced assumptions for consistency and asymptotic normality of the parameter estimates for DCC models. ### 4.5 Goodness of Fit To
check whether the fitted model is appropriate we may check the goodness of the residuals separately for each asset series and the goodness of the multivariate fit. ### 4.5.1 Goodness of fit of marginals There exist several ways to check if the model fits the data. First we will consider the fit of the marginals. If the model is suitable, the standardized errors Z_t , should be i.i.d. This can be checked by several different tests. #### 1. Plot of the errors The errors should look random, if they are i.i.d. #### 2. Ljung-Box test The Ljung-Box test checks whether the data are auto correlated based 4.5 Goodness of Fit 61 on a number of lags, m. We want to test whether the autocorrelations, $\gamma_1, \ldots, \gamma_m$ of Z_t is 0 or not. The test can be defined as: $H_0: \gamma_1 = \dots = \gamma_m = 0$ H_1 : At least one $\gamma_i \neq 0, i = 1, \dots, m$ The statistic is: $$Q_m = n(n+2) \sum_{i=1}^m \frac{\hat{\sigma_i}^2}{n-i}$$ where n is the sample size, $\hat{\sigma_i}^2$ is the sample correlation of Z_i^2 , at lag i, and m is the number of lags being tested. When n is large, then Q_m is asymptotically distributed as a chi-squared distribution with m degrees of freedom under the null hypothesis. Then for a significance level α , we reject H_0 if $$Q_m > \chi_{1-\alpha,m}^2$$ where $\chi^2_{1-\alpha,m}$ is the α -quantile of the chi-square distribution with m degrees of freedom. If we accept H_0 , we do not reject the hypothesis that the errors are random. In practice, the selection of the number of lags, m, may affect the performance of Q_m . Therefore, several values of m are often tested. #### 3. Q-Q plot Q-Q plot is a graphical method to check whether a data set is from a given distribution. One plots the assumed distribution on the horizontal axis and the quantiles of the data set on the vertical axis. If the data set is from the assumed distribution, then the plot will approximately be a straight line, especially near the center. If one has significant deviations from linearity, the null hypothesis of the assumed distribution for the data set is rejected. #### 4.5.2 Goodness of multivariate fit In the previous section we have described how to validate univariate fit. The multivariate fit does not have fit well, even through the marginals do. Hence it is important also to validate the multivariate fit. Assessing multivariate fit is however difficult, and there exists only a few statistical goodness of fit in the literature. The test considered in this thesis, is the Baringhaus-Franz multivariate 4.5 Goodness of Fit 62 test, called an in-sample test. #### Baringhaus-Franz multivariate test The test described in Baringhaus and Franz checks whether to data sets, X and Y, are identically distributed or not. The test can be defined as: $H_0: X$ is distributed as Y $H_1: X$ is not distributed as Y The test statistic is: $$T = \frac{mn}{m+n} \left(\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} ||X_i - Y_j|| - \frac{1}{2m^2} \sum_{i=1}^{m} \sum_{j=1}^{m} ||X_i - Y_j|| - \frac{1}{2n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} ||X_i - Y_j|| \right)$$ $$(4.67)$$ where ||.|| is the Euclidean distance. When using this test for validation of the goodness of fit, X_1, \ldots, X_m are vectors of errors, Z_t , of length d, while Y_1, \ldots, Y_n are vectors of samples from a given distribution, e.g. multivariate Gaussian. Or we can also test Student's t or skew Students's t. The critical point is obtained by bootstrapping this statistic with a 95% confidence level. If the observed test statistic T falls inside the confidence interval, the null hypothesis that the model explained the data well is accepted. # Chapter 5 # **Empirical application** This chapter contains empirical application of the multivariate GARCH models proposed in the previous chapter and we present the results of our analysis. We have investigated the empirical evidence of conditional volatilities and believe that such approach provide a comprehensive picture of world stock market comovements between the distinct largest financial centers and their development in the recent crisis. The models used in the empirical application were these three: BEKK model proposed by Baba, Engle, Kraft and Kroner, GO-GARCH model of van der Weide and Dynamic conditional correlation (DCC) of Engle. The used data are described in Chapter 2, however let us it briefly recapitulate. The data consists of daily foreign exchange returns of Euro/Czech koruna and U.S. dollar/Czech koruna pairs and as mentioned before, further we have returns of 4 stock market indices. Namely AEX, DAX, PX and DJIA correspond to the Amsterdam, Frankfurt, Prague stock market indices and Dow Jones Industrial Average respectively. The rest of this chapter is organized as follows. In the first part we provide briefly global review into the background of our data fundamentals. Then data descriptions are summarized, whereas in the second part we take a look at the dynamics of estimated conditional volatilities using all three models. We study volatility dynamics of the returns by utilizing multivariate GARCH models and then we report statistically significant cross market effects as evidence of linkages and measure the extent of the linkages by the estimated time-varying correlations. The next part of this chapter is focused on comparison of the multivariate GARCH models. The focus of reporting results will therefore be on conditional correlations implied by the estimated models. This chapter will end up with diagnostic checking of our results. All the estimations in this thesis were performed by the R programming software which is freely available¹. The main three packages used are: mgarchBEKK developed by Schmidbauer and Tunalioglu (2006), ccgarch developed by Nakatani (2009) and gogarch developed by Pfaff (2009). ## 5.1 Background of the data In this section we will explore the background that underlies the data. It is important to explore fundamentals that pleased a crucial role in impact the financial crisis. Overall, this will be a rudimentary introduction. The financial crisis of 2007–2008, also known as the Global Financial Crisis and 2008 financial crisis, is considered by many economists the worst financial crisis since the Great Depression of the 1930s. The loosing threat of collapse of large financial institutions, the bailout of banks by national governments, and downturns in stock markets around the world contributed to the precarity of the crisis. In many areas, the housing market also suffered, results evictions, fore-closures and prolonged unemployment. The crisis played a significant role in the failure of key businesses, declines in consumer wealth that estimates in trillions of U.S. dollars, and a downturn in economic activity leading to the 2008–2012 global recession and contributing to the European sovereign-debt crisis. The Federal Reserve, cut short-term interest rates to near zero, embarked upon three rounds of unconventional monetary policy known as quantitative easing, or QE. These measures involve the purchase of long-term securities and aim to stimulate the economy by lowering long-term borrowing costs. In Europe the ECB's first supplementary longer-term refinancing operation (LTRO) with a sixmonth maturity was announced March 2008. In the immediate aftermath of the financial crisis palliative fiscal and monetary policies were adopted to mitigate the shock to the economy. The interest rates near zero resulted the yield of fixed ¹http://www.r-project.org/ income markets decreased rapidly and investors began to look for more investment opportunities. Stocks proved to be a very good alternative instead of bonds which developed in increase of major stock indexes. On the other hand emerging markets also offered impressive opportunities for investment. This leads to an observation that there exists significant correlations between yield curves in United states and Europe. Henceforth as we show further in this thesis presented indices will exhibit significant correlations because of presented fundamentals. All these we need to take into account when we are writing down models. Currents a tendency of governors of ECB to reduce the correlation between US and European yield curves which will change correlation between stock markets indices substantially. The curves flatting continued since the end of 2012. Often a flatter yield curve, indicates a monetary-induced slowdown in growth. It is not surprising that after FED decision to reduce QE in the end of 2013 resulted in increasing of interest rates in the United states. Henceforth investors transferred their investments from emerging markets back into to the United states. This precipitance, a weakening of local currencies against the euro or dollar and the stock markets do not exhibit the strong linkages as before. Finally we would like to mention the new regulation policy instituted in July 2010 designed as the Dodd-Frank Act regulatory reforms were enacted to lessen the chance of a recurrence. European regulators introduced Basel III regulations for banks. Consisting of increased capital ratios, limits on leverage, narrow definition of capital (to exclude subordinated debt), limit counter-party risk, and new liquidity requirements. Critics argue that Basel III doesn't address the problem of faulty risk-weightings. Major banks suffered losses from AAA-rated created by financial engineering (which creates apparently risk-free assets out of high risk collateral) that required less capital according to Basel II. Lending to AA-rated sovereigns has a risk-weight of zero, thus increasing lending to governments and leading to the next crisis. There exists also views that regulations (Basel III, Dodd-Frank) have indeed led to excessive lending to risky governments and the ECB pursues even more lending as the solution. In this section we have summarized our findings on fundamental point of view and now in the rest
chapter we will engage with technical analysis using multivariate GARCH models. | | EUR/CZK | USD/CZK | |-------------|-----------|-----------| | Mean | -5.898e-5 | -1.266e-5 | | Std. Dev. | 0.00521 | 0.00959 | | Skewness | -0.0310 | 0.1500 | | Kurtosis | 6.109 | 5.090 | | Jarque-Bera | 2434.321 | 2914.976 | Table 5.1: Descriptive Statistics of the foreign exchange returns. Table 5.2: Descriptive Statistics of the Indices. | | AEX | DAX | PX | DJIA | |-------------|------------|------------|------------|-------------| | Mean | -2.6797e-4 | -3.6927e-5 | 3.5270e-4 | -2.2371e-5 | | Std. Dev. | 0.01694524 | 0.01725464 | 0.01662702 | 0.01346429 | | Skewness | -0.1711321 | 0.01974198 | -0.6053644 | -0.00931465 | | Kurtosis | 6.668711 | 4.215467 | 11.64303 | 6.81868 | | Jarque-Bera | 4412.066 | 1759.293 | 13554.24 | 4600.591 | ## 5.2 Data summary statistics Table 5.1 provides a summary of the descriptive statistics of the returns for the two currencies measured against Czech koruna. For the standard normal distribution, the skewness and kurtosis have values of 0 and 3, respectively. As can be observed from the table both series have a relatively high kurtosis greater than 3 indicating that the series is non-symmetric with higher peaks than the normal distribution. Situation is similar in stock markets data. In Table 5.2 we report the descriptive statistics for each index. Can be observed that the standard deviation of the daily returns shows little variation across the indices. We find out that the European indices are a bit more volatile than the U.S. Dow Jones index. It is not surprising that least volatile European index is the Prague PX index, because it is the smallest from our sample in terms of market capitalization. However, there is still significant difference between PX and Dow Jones index. More apparent differences between the indices concern skewness and kurtosis. From descriptive statistics, we read that the 5.3 Estimation results 67 | | AEX | DAX | PX | DJIA | |------|-----------|-----------|-----------|------| | AEX | 1 | | | | | DAX | 0.8568444 | 1 | | | | PX | 0.5330840 | 0.4924072 | 1 | | | DJIA | 0.5630591 | 0.6086716 | 0.3260289 | 1 | Table 5.3: Unconditional Correlation coefficients of the returns series. empirical densities associated with the PX and Dow Jones indices exhibit the most substantial heavy tails, however all series exhibit heavy tailed distributions. The unconditional correlations for each pair are displayed in the Table 5.3. More importantly, we need to find out the dynamics of the correlations, so in the next sections we take a look at the estimation results. #### 5.3 Estimation results The main findings of this thesis can be summarized as follows. First of all we provide a general view of our estimation results, then we take a look at each model separately. Finally we provide a comparison of all models. We start with the BEKK (p,q) model. Estimated coefficients of the parameters of the BEKK model for both data samples exchange rates and stock market indices respectively can be found in Tables in the Appendix. The order of the model was estimated as BEKK (1,1) with K=1 and the method for the estimation of parameters was maximum log-likelihood. To illustrate the time commitment of the estimation of the complex BEKK model we mention that it took 1 hour and 45 minutes. A plot of the estimated conditional volatilities of the series in Figure 5.1 reveals that the volatility dynamics of foreign exchanges is similar e contra to Figure 5.2, which implies that European stock indices have always been more volatile than the U.S. Dow Jones especially during the beginning of financial crisis in 2008, which is not surprising. However we can clearly see quite similar dependence in conditional volatilities for each series. The second model which we consider in our empirical application is the GO-GARCH (p,q) model. Components were estimated by maximum likelihood with Figure 5.1: Estimated conditional volatility of the foreign exchange rates during January 2007 and December 2012, using BEKK, GO-GARCH and DCC model computed in R programming software. formula for unobserved components as GARCH (1,1). Estimation of the parameters included two parts. The estimation of inverse matrix of the linear map M given in Table 7.5, and the estimation of the parameters of the GARCH models of the unobserved components. Coefficients of the estimated parameters can be found in Table 7.6 in Appendix. Estimated conditional volatilities for each of the series based on the GO-GARCH model are displayed in Figures 5.1 and 5.3 respectively. Here we can also see quite similar dependence in conditional volatilities for all stock market series except PX. The PX index differs in its estimated conditional volatility during the crisis, which is much smaller compared to the other series. The last model which we consider was the DCC model. The DCC estimates of the conditional correlations between the volatilities and also estimates of the GARCH parameters are presented in Table 7.7. As the estimates of both a, the impact of past shocks on current conditional correlations, and b the impact of previous dynamic conditional correlations, are statistically significant, this clearly indicates that the conditional correlations are not constant. The estimate of a is generally low and close to zero, whereas the estimate b is extremely high and close to unity. The conditional correlations between the indices are dynamic. These findings are consistent with the plots of dynamic correlations between the index pairs in Figures 5.5 - 5.10 which change over time. Figure 5.4 displays the estimated volatilities based on the DCC model. At first sight, all tree methods seem to imply very similar volatilities. Figure 5.2: Estimated conditional volatility of stock indices AEX, DAX, PX, DJIA (corresponding, to the stock markets in Amsterdam, Frankfurt, Prague and the U.S.) during January 2007 and December 2012, using the BEKK model computed in R programming software. DCC correlation seems to be much more stable than both GO-GARCH correlations. There is big variability in GO-GARCH estimates. Figures 5.1, 5.2, 5.3 and 5.4 provide a general view of the dynamics of the conditional volatility over the entire sample. We can clearly see from the graphs that as soon as in the foreign exchange rates the GO-GARCH model provides smoother conditional volatilities in comparison to the BEKK. In estimates of stock market data, the smoother volatilities are provided by DCC model. In general, BEKK estimates are more volatile than the other multivariate models. Volatility strongly increases during the financial crisis, which is not surprising. Even dramatic events such as widely known financial crisis of 2007-present, a crisis triggered by a liquidity crisis in the United States banking system. Volatility is somewhere near the peaks reached in the mid-1990s. This increase is observable on all financial markets and is captured by all models. We observe the same phenomenon in the U.S. dollar/Czech koruna currency pair. Other research papers find out this long term phenomenon in many emerging market currencies Figure 5.3: Estimated conditional volatility of stock indices AEX, DAX, PX, DJIA (corresponding, to the stock markets in Amsterdam, Frankfurt, Prague and the U.S.) during January 2007 and December 2012, using the GO-GARCH model computed in R programming software. including some that experienced currency crises in the recent past. In recent years, a number of countries have adopted more flexible exchange rate regimes, often after being unable to maintain fixed or very narrow bands. Much more interesting results of this investigation are the estimated conditional correlations between the stock markets presented in Figures 5.5 - 5.10. Such previous findings are robust across models and are valid also in stock markets. It is clear that correlations have changed substantially over the 6 year period and exhibit time-dependence. We now move to the investigation of market linkages between the European indices and the globally leading developed market index Dow Jones. We can see from Figures 5.8 and 5.9 quite similar level of dependence between DAX & DJIA and AEX & DJIA respectively. The correlations between DAX & DJIA are quite strongly positively correlated and seem to be stable during the financial crises. High conditional correlation represents high financial integration, how- Figure 5.4: Estimated conditional volatility of stock indices AEX, DAX, PX, DJIA (corresponding, to the stock markets in Amsterdam, Frankfurt, Prague and the U.S.) during January 2007 and December 2012, using the DCC model computed in R programming software. ever economic and political developments of the different regions plays significant role especially during the relatively quiet periods without financial crises. A bit different situation is displayed in Figure 5.10 which represents the conditional correlation between DJIA & PX. Correlations seem to be stable in this case, however BEKK line exhibits big volatility. From our sample pair DJIA & PX represents for investors the best ability of portfolio diversification. In Europe the most developed stock market is Frankfurt. As we expect the correlations between DAX & AEX are highest and smooth. These results suggest that the regional developed market in Frankfurt is influential in the pricing process of the markets in Amsterdam and Prague, and there is a close relationship between the stock markets in Amsterdam and Frankfurt in particular. Given this interdependence, investors may perceive the stock markets in Frankfurt and Amsterdam as one investment opportunity instead of two separate classes of assets. The emerging stock market in Prague is much more affected by the local political and economic decisions in the Czech Republic. The evidence in this study seems to confirm some findings in earlier studies, which that suggest that stock market
movements Figure 5.5: Estimated conditional correlation of stock indices AEX & DAX computed in R programming software. in one country can significantly affect stock market movements in another country via a transmission mechanism that exists because global markets are now more closely integrated. It is possible that changes in the U.S. stock returns do indeed influence those of other markets. However emerging markets of the world are responding to economic and political developments in their regions as well. These results indicate further opportunities for global portfolio diversification. # 5.4 Model comparison We have observed a number of apparent results. Whereas estimated conditional volatility for each model seems to be similar, for the conditional correlations the differences between the three methods are more pronounced. This is obvious from Figures 5.5 - 5.10, where we have depicted the estimated conditional correlation series of each stock market pairs in a separate plot. The most obvious difference between the BEKK correlations and the other two specifications is the range in which they vary. This feature of BEKK model is useful, however for this generality indeed we need to pay that a lot of parameters have to be estimated and then, as we mentioned before, this model cannot be used in high dimensional #### **AEX & PX return conditional correlation** Figure 5.6: Estimated conditional correlation of stock indices AEX & PX computed in R programming software. systems. We also see that the GO-GARCH and DCC correlation patterns are similar, and that correlation series behaves like a smoothed version of the BEKK correlations. However DCC provides a little underestimate correlations comparing to the GO-GARCH, most in the beginning of the period. It is quite debatable whether the short periods of very low correlation implied by the BEKK model are genuine, they may be fully driven by the volatility patterns in those periods, and in that case the less volatile behavior of the GO-GARCH and DCC correlations may provide a better indication of the actual correlation between the pairs of the stock markets indices. The BEKK model is not very convenient for investigating conditional covariances in high-dimensional systems, because it has huge time commitment. Thus we can use BEKK model without any restrictions on the parameters in long term technical analysis on stock markets, but it is useless in short decision processes such as algorithmic trading. However, we have a direct interpretation of the parameters which explain such of an interesting information. The off-diagonal elements of the matrices A capture the cross-market shock effects among the four pairs. The off-diagonal elements of matrices G capture the cross-market volatility #### DAX & PX return conditional correlation Figure 5.7: Estimated conditional correlation of stock indices DAX & PX computed in R programming software. spillovers. Although the estimated models do not display fully identical correlations, the general message in them remains more or less the same. It is up to the user to select the model he wants to use in portfolio management. ## 5.5 Goodness of Fit We test the goodness of fit using the methods described in Chapter 4.5. ## 5.5.1 Goodness of marginal fits In this section we will check whether the errors, Z_t , for each of the three time series is i.i.d. or not. The errors is jointly calculated from $Z_t = H_t^{-1/2} X_t$ #### 1. Plot of the standardized errors, Z_t The standardized errors, Z_t , are shown in Figure 5.11 for one time series and the three different models. Plots of the other three series looks alike. ## #### DAX & DJ return conditional correlation Figure 5.8: Estimated conditional correlation of stock indices DAX & DJIA computed in R programming software. There are no distinct difference between the errors of the three different models. The plot of the DCC errors have some large negative values, and do not quite look like white noise. It seems like the model have not explained all the variation in the data, especially in the negative direction for these series. The BEKK and GO-GARCH errors on the other hand, look random and i.i.d. distributed. Assumption that Z_t is a vector process with zero mean and unit variance is satisfied for all models and series. #### 2. Ljung-Box test The results of the Ljung-Box test are shown in Figure 5.12. The red line indicates the 5% level. There is no visible difference between the three models in this test. This test accept the hypothesis that the errors, Z_t , are uncorrelated for some of the lags for the European series. Hence there is no clear conclusion whether the European errors in the BEKK model are uncorrelated or not from this test. For the DJIA series on the other hand, this test concludes that the errors of the DJIA series is not uncorrelated, DJ & AEX return conditional correlation ## 8 9.0 4. 0.2 2007 2008 2009 2010 2011 2012 2013 Figure 5.9: Estimated conditional correlation of stock indices DJIA & AEX computed in R programming software. since the hypothesis of uncorrelateness is rejected for all lags tested. The hypothesis of uncorrelateness is accepted for almost all the lags for the European errors under all models. Here the errors of the data seems to be uncorrelated. #### 3. Q-Q plot Figure 5.13 represent Q-Q plots which are Quantile-Quantile plots where we can visually check for fit of a theoretical distribution to the observed data. The observed values are plotted against the theoretical quantiles. A good fit of the theoretical distribution to the observed values would be indicated by this plot if the plotted values fall into a straight line. We see a nice correspondence in figures between the quantiles of the data and the quantiles of the fitted Gaussian. Note that the correspondence is higher in the middle region. In the left and right tail the dataset quantiles are higher and lower than the fitted Gaussian ones which indicates the old faithful data has heavier tails than the normal fitted Gaussian in both tails (but #### DJ & PX return conditional correlation Figure 5.10: Estimated conditional correlation of stock indices DJIA & PX computed in R programming software. ignoring the tails the correspondence is quite good). Hence we can conclude that our models fit well. The DCC model seems to better fit the data , than the BEKK and GO-GARCH models. ### 5.5.2 Goodness of multivariate fit The test presented in Section 4.5.2. will be considered. In this section we will check the errors, Z_t jointly. #### Baringhaus-Franz multivariate test The test statistic is used to test if the errors, Z_t , are Gaussian with the estimation parameters. The dimension of Z_t is 1421x4 for each of the model. We will test whether Z_t is from the multivariate Gaussian distribution. We test Z_t against a data set of simulated multivariate standardized Gaussian variates of the same dimension as Z_t . With 1000 bootstrap replicates, the critical point is estimated to be 1.98. The observed statistic are T = 9.15 for the BEKK model, T = 10.26 for the GO-GARCH model and T = 8.14, which gives a p-value Figure 5.11: Plot of selected errors. of 0.00 for each of the model. Hence the hypothesis that Z_t is distributed as multivariate standardized Gaussian is rejected. Figure 5.12: p-values from the Ljung-Box statistics for each of the four series AEX, DAX, PX, DJIA using BEKK, GO-GARCH and DCC model. Figure 5.13: The QQ-plots of the standardized residuals for each of the four series AEX, DAX, PX, DJIA using BEKK, GO-GARCH and DCC model plotted against normal distribution. ## Chapter 6 ## Conclusion Ultimately volatilities and correlations among market returns are widely used in asset pricing, risk management, etc. The correct estimation in financial asset risk has important implications for investors using standard asset pricing models. Although researchers have built many multivariate models, we still face the problems of curse of dimension due to the number of parameters and the restrictions on the parameters to ensure the positive definiteness of the covariance matrix. In this thesis we presented a summary of theoretical and empirical modeling with multivariate GARCH models and highlighted their features. There exist several types of multivariate GARCH models and we surveyed their basic construction. Through the empirical work, BEKK, GO-GARCH and DCC models were considered and we used multistep maximum likelihood estimation procedures to estimate the models. One of the main findings is that conditional correlations exhibit significant changes over time so we concluded that despite the impact of globalization there still exist opportunities to maximize global portfolio returns through diversification. Our comparison of the models shows that the best model is BEKK, because it contains the most information and it is robust. However, it can be used only in small dimensional systems and long term technical analysis. The differences between DCC and GO-GARCH models are not very significant and it is up to the user to select the model that he wants to use in portfolio management. Our data sample contains only 4 stock markets and 2 exchange rates all over the world. Indeed one of the challenges for the future may be including many more stock market representatives with related exchange rates such as stock markets in New York, London, Brussels, Vienna, Warsaw or markets in Russia, Asia etc. The greatest challenge in the future will be developing a model which possesses the capabilities to work with numerous series achieving 6 Conclusion 82 the flexibility of the correlations. ## Chapter 7 Table 7.1: Estimated parameters of the BEKK model for the foreign exchange rates using R programming software. | | C estimates: | | ARCH estimates: | | | GARCH estimates: | | | |------|--------------|----------|-----------------|-----------|-----------|------------------|-----------|-----------| |
 [, 1] | [, 2] | | [, 1] | [, 2] | | [, 1] | [, 2] | | [1,] | 0.004022 | 0.003747 | [1,] | -0.213836 | 0.402224 | [1,] | 1.137612 | 1.330774 | | [2,] | 0.000000 | 0.003085 | [2,] | -0.024131 | -0.647911 | [2,] | -1.319593 | -1.364835 | Table 7.2: Estimation of the unobserved components of the GO-GARCH model for the foreign exchange rates using R programming software. | com | component GARCH model of y1 | | | ponent GA | RCH model of y2 | |------------|-----------------------------|------------|------------|-----------|-----------------| | | Estimate | Std. Error | | Estimate | Std. Error | | α_1 | 0.006876 | 0.002361 | α_2 | 0.004719 | 0.002403 | | θ_1 | 0.066163 | 0.013278 | θ_2 | 0.035643 | 0.005629 | | ϕ_1 | 0.923888 | 0.015038 | ϕ_2 | 0.961683 | 0.005971 | | | inverse of li | near map M | | | | | | [,1] | [, 2] | | | | | [1,] | 1.106201 | -1.760648 | | | | | [2,] | -1.565876 | 0.758795 | | | | Table 7.3: Estimation of the coefficients of the DCC model for the foreign exchange rates using R programming software. | | c_1 | c_2 | θ_{11} | θ_{21} | θ_{21} | θ_{22} | |-----------|----------------------|----------------------|----------------------|----------------------|------------------|---------------------------------| | Estimate | 1.77e-09 | 1.93e-09 | 0.044451 | 0.010989 | 0.004733 | 2.01e-02 | | Std.Error | 1.50 e-06 | 3.59e-02 | 0.019356 | 1.014234 | 0.784739 | 4.78e-07 | | | | | | | | | | | ϕ_{11} | ϕ_{21} | ϕ_{12} | ϕ_{22} | dcc a | dcc b | | Estimate | ϕ_{11} 0.067246 | ϕ_{21} 0.244156 | ϕ_{12} 0.688066 | ϕ_{22} 0.782775 | dec a = 0.049417 | $\frac{\text{dec }b}{0.926287}$ | Table 7.4: Estimated coefficients of the BEKK model for the stock indices using R programming software. | | | C estimat | tes: | | |------|--------------|---------------|--------------|-------------------| | | [, 1] | [,2] | [, 3] | [,4] | | [1,] | -0.001328252 | 0.0007815360 | -0.007136690 | 0.0009434768 | | [2,] | 0.000000000 | -0.0002523830 | 0.001593616 | 0.0077046831 | | [3,] | 0.000000000 | 0.0000000000 | 0.004083134 | 0.0009110713 | | [4,] | 0.000000000 | 0.0000000000 | 0.000000000 | 0.0054894023 | | | | ARCH estin | nates: | | | | [, 1] | [, 2] | [, 3] | $\overline{[,4]}$ | | [1,] | 0.4498350 | 0.1717677 | 1.81319949 | -0.34512093 | | [2,] | -0.5521095 | -0.2778714 | -1.75350218 | 0.32867268 | | [3,] | 0.2539265 | 0.4869067 | 0.29606270 | -0.09401716 | | [4,] | -0.1322980 | -0.4634222 | -0.02202411 | -0.18845023 | | | | GARCH esti | mates: | | | | [, 1] | [, 2] | [, 3] | $\overline{[,4]}$ | | [1,] | 0.53359550 | 1.67104581 | 0.630420825 | 0.555606895 | | [2,] | 0.14676640 | -0.53467291 | 0.330673484 | 0.004454358 | | [3,] | 0.27559500 | 0.07941991 | -0.511893705 | 0.011039569 | | [4,] | 0.01806348 | 0.02735065 | -0.007910602 | -0.176833176 | Table 7.5: The inverse linear map M of the GO-GARCH model for the stock indices using R programming software. | | [,1] | [, 2] | [, 3] | [,4] | |------|------------|-------------|------------|-------------| | [1,] | -1.5790340 | 0.54437287 | 0.5986121 | -0.01659185 | | [2,] | 1.2247263 | -1.85931672 | 0.1977904 | -0.01368647 | | [3,] | 0.1504665 | 0.62499901 | -0.3200783 | -1.19868540 | | [4,] | 0.1740508 | -0.06600478 | -0.9525356 | 0.41074408 | Table 7.6: Estimation the unobserved components of the GO-GARCH model for the stock indices using R programming software. | component GARCH model of y1 | | | component GARCH model of y2 | | | |-----------------------------|--------------|----------------|-----------------------------|------------|-------------| | | Estimate | Std. Error | | Estimate | Std. Error | | α_1 | 0.002453505 | 0.0007907027 | α_2 | 0.01169125 | 0.003377802 | | $ heta_1$ | 0.095984809 | 0.0113428725 | θ_2 | 0.07564997 | 0.009729530 | | ϕ_1 | 0.903295047 | 0.0103996197 | ϕ_2 | 0.91696444 | 0.010068098 | | con | nponent GARC | CH model of y3 | component GARCH model of y4 | | | | | Estimate | Std. Error | | Estimate | Std. Error | | α_3 | 0.005753897 | 0.001574812 | α_4 | 0.02364814 | 0.005380396 | | θ_3 | 0.087195479 | 0.010800894 | θ_4 | 0.10975311 | 0.012080695 | | ϕ_3 | 0.904130614 | 0.011275317 | ϕ_4 | 0.87279734 | 0.012526196 | Table 7.7: Estimation the coefficients of the DCC model for the stock indices using R programming software. | | c_1 | C_2 | c_3 | c_4 | |--|---|--|--|---| | Estimate | 2.150578e-09 | 2.172862e-08 | 4.036082e-05 | 3.736150e-07 | | Std.Error | 1.165675 e-05 | 3.476810e-02 | 3.304652e-02 | 1.731100e-02 | | | θ_{11} | θ_{21} | θ_{31} | θ_{41} | | Estimate | 0.05819915 | 0.0001371262 | 0.001034935 | 0.03017585 | | Std.Error | 0.04722802 | 0.4794529685 | 0.314904224 | 0.22678224 | | | θ_{12} | θ_{22} | θ_{32} | θ_{42} | | Estimate | 0.05649081 | 9.987891e-03 | 0.009407108 | 0.001248209 | | Std.Error | 0.64837345 | 1.546184e-05 | 0.033259931 | 0.040022438 | | | θ_{13} | θ_{23} | θ_{33} | θ_{43} | | Estimate | 0.02124878 | 0.01411880 | 0.07519828 | 0.00875847 | | Std.Error | 0.01663747 | 0.04481412 | 0.56621089 | 0.43600906 | | | θ_{14} | θ_{24} | θ_{34} | θ_{44} | | Estimate | 0.0448448 | 0.02122279 | 1.777048e-01 | 0.06470316 | | Std.Error | 0.3357809 | 0.80412176 | 2.355803e- 05 | 0.03407691 | | | | | | | | | ϕ_{11} | ϕ_{21} | ϕ_{31} | ϕ_{41} | | Estimate | ϕ_{11} 0.26481339 | ϕ_{21} 0.55286028 | ϕ_{31} 0.55360694 | ϕ_{41} 0.03337047 | | Estimate
Std.Error | , | <u> </u> | , - | , | | | 0.26481339 | 0.55286028 | 0.55360694 | 0.03337047 | | | 0.26481339
0.03238008 | 0.55286028
0.02720216 | 0.55360694
0.06119448 | 0.03337047
0.54261979 | | Std.Error | 0.26481339 0.03238008 ϕ_{12} | 0.55286028 0.02720216 ϕ_{22} | 0.55360694 0.06119448 ϕ_{32} | 0.03337047 0.54261979 ϕ_{42} | | Std.Error Estimate | 0.26481339 0.03238008 ϕ_{12} 0.05516633 | $0.55286028 0.02720216 \phi_{22} 0.1419639$ | 0.55360694 0.06119448 ϕ_{32} 0.06464883 | 0.03337047 0.54261979 ϕ_{42} $2.664884e-02$ | | Std.Error Estimate | 0.26481339 0.03238008 ϕ_{12} 0.05516633 0.40661244 | 0.55286028 0.02720216 ϕ_{22} 0.1419639 0.4919522 | 0.55360694 0.06119448 ϕ_{32} 0.06464883 1.24803387 | 0.03337047 0.54261979 ϕ_{42} $2.664884e-02$ $5.204570e-06$ | | Std.Error Estimate Std.Error | 0.26481339 0.03238008 ϕ_{12} 0.05516633 0.40661244 ϕ_{13} | 0.55286028 0.02720216 ϕ_{22} 0.1419639 0.4919522 ϕ_{23} | 0.55360694 0.06119448 ϕ_{32} 0.06464883 1.24803387 ϕ_{33} | 0.03337047 0.54261979 ϕ_{42} $2.664884e-02$ $5.204570e-06$ ϕ_{43} | | Estimate Std.Error Estimate | 0.26481339 0.03238008 ϕ_{12} 0.05516633 0.40661244 ϕ_{13} 0.09009870 | 0.55286028 0.02720216 ϕ_{22} 0.1419639 0.4919522 ϕ_{23} 0.28060490 | $0.55360694 \\ 0.06119448 \\ \phi_{32} \\ 0.06464883 \\ 1.24803387 \\ \phi_{33} \\ 0.001208547$ | $0.03337047 \\ 0.54261979 \\ \phi_{42} \\ 2.664884e-02 \\ 5.204570e-06 \\ \phi_{43} \\ 0.002628470$ | | Estimate Std.Error Estimate | 0.26481339 0.03238008 ϕ_{12} 0.05516633 0.40661244 ϕ_{13} 0.09009870 0.02081805 | $\begin{array}{c} 0.55286028 \\ 0.02720216 \\ \hline \phi_{22} \\ 0.1419639 \\ 0.4919522 \\ \hline \phi_{23} \\ 0.28060490 \\ 0.01545874 \\ \hline \end{array}$ | $0.55360694 \\ 0.06119448 \\ \phi_{32} \\ 0.06464883 \\ 1.24803387 \\ \phi_{33} \\ 0.001208547 \\ 0.009197382$ | $0.03337047 \\ 0.54261979 \\ \phi_{42} \\ 2.664884e-02 \\ 5.204570e-06 \\ \phi_{43} \\ 0.002628470 \\ 0.031374674$ | | Estimate Std.Error Estimate Std.Error | 0.26481339 0.03238008 ϕ_{12} 0.05516633 0.40661244 ϕ_{13} 0.09009870 0.02081805 ϕ_{14} | $\begin{array}{c} 0.55286028 \\ 0.02720216 \\ \hline \phi_{22} \\ 0.1419639 \\ 0.4919522 \\ \hline \phi_{23} \\ 0.28060490 \\ 0.01545874 \\ \hline \phi_{24} \\ \end{array}$ | 0.55360694 0.06119448 ϕ_{32} 0.06464883 1.24803387 ϕ_{33} 0.001208547 0.009197382 ϕ_{34} | 0.03337047 0.54261979 ϕ_{42} $2.664884e-02$ $5.204570e-06$ ϕ_{43} 0.002628470 0.031374674 ϕ_{44} | | Estimate Std.Error Estimate Std.Error Estimate Std.Error | 0.26481339 0.03238008 ϕ_{12} 0.05516633 0.40661244 ϕ_{13} 0.09009870 0.02081805 ϕ_{14} 0.6312651 | $\begin{array}{c} 0.55286028 \\ 0.02720216 \\ \hline \phi_{22} \\ 0.1419639 \\ 0.4919522 \\ \hline \phi_{23} \\ 0.28060490 \\ 0.01545874 \\ \hline \phi_{24} \\ 0.1156965 \\ \end{array}$ | $\begin{array}{c} 0.55360694 \\ 0.06119448 \\ \hline \phi_{32} \\ 0.06464883 \\ 1.24803387 \\ \hline \phi_{33} \\ 0.001208547 \\ 0.009197382 \\ \hline \phi_{34} \\ 0.05845889 \\ \end{array}$ | 0.03337047 0.54261979 ϕ_{42} $2.664884e-02$ $5.204570e-06$ ϕ_{43} 0.002628470 0.031374674 ϕ_{44} 0.7690477 | | Estimate Std.Error Estimate Std.Error Estimate Std.Error | 0.26481339 0.03238008 ϕ_{12} 0.05516633 0.40661244 ϕ_{13}
0.09009870 0.02081805 ϕ_{14} 0.6312651 0.2305305 | 0.55286028 0.02720216 ϕ_{22} 0.1419639 0.4919522 ϕ_{23} 0.28060490 0.01545874 ϕ_{24} 0.1156965 0.1964639 | $\begin{array}{c} 0.55360694 \\ 0.06119448 \\ \hline \phi_{32} \\ 0.06464883 \\ 1.24803387 \\ \hline \phi_{33} \\ 0.001208547 \\ 0.009197382 \\ \hline \phi_{34} \\ 0.05845889 \\ \end{array}$ | 0.03337047 0.54261979 ϕ_{42} $2.664884e-02$ $5.204570e-06$ ϕ_{43} 0.002628470 0.031374674 ϕ_{44} 0.7690477 | | Estimate Std.Error Estimate Std.Error Estimate Std.Error | 0.26481339 0.03238008 ϕ_{12} 0.05516633 0.40661244 ϕ_{13} 0.09009870 0.02081805 ϕ_{14} 0.6312651 0.2305305 $dcc a$ | $\begin{array}{c} 0.55286028 \\ 0.02720216 \\ \hline \phi_{22} \\ 0.1419639 \\ 0.4919522 \\ \hline \phi_{23} \\ 0.28060490 \\ 0.01545874 \\ \hline \phi_{24} \\ 0.1156965 \\ 0.1964639 \\ \mathrm{dcc}\ b \end{array}$ | $\begin{array}{c} 0.55360694 \\ 0.06119448 \\ \hline \phi_{32} \\ 0.06464883 \\ 1.24803387 \\ \hline \phi_{33} \\ 0.001208547 \\ 0.009197382 \\ \hline \phi_{34} \\ 0.05845889 \\ \end{array}$ | 0.03337047 0.54261979 ϕ_{42} $2.664884e-02$ $5.204570e-06$ ϕ_{43} 0.002628470 0.031374674 ϕ_{44} 0.7690477 | ## **Bibliography** - [1] ALEXANDER, C. O. (2001): Orthogonal GARCH, *Mastering Risk*, Vol. 2, edited by C.O. Alexander, 21-38, London: Financial Times-Prentice Hall. - [2] ALEXANDER, C. O. AND CHIBUMBA, A.M. (1995): Multivariate Orthogonal Factor Garch, University of Sussex Discussion Papers in Mathematics. - [3] AUE, A., HORMANN, S., HORVATH, L. AND REIMHERR, M. (2009): Break detection in the covariance structure of multivariate time series models, Annals of Statistics, 37, 4046-4087. - [4] Baba, Y., Engle, R. F., Kraft, D. and Kroner, K. (1990): Multivariate simultaneous generalized ARCH, *mimeo*, UCSD. - [5] Berkes, I., Horvath, L. and Kokoszka, P. S. (2003): GARCH processes: structure and estimation. *Bernoulli*, 9, 201-227. - [6] BAUWENS, L., LAURENT, S. AND ROMBOUTS, J. V. K. (2006): Multivariate GARCH models: A survey, *Journal of Applied Econometrics*, 21, 79-109. - [7] Bollerslev, T. (1986): Generalized Autoregressive Conditional Heteroskedasticity, *Journal of GARCH*, 31, 307-327. - [8] BOLLERSLEV, T. (1990): Modelling The Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized ARCH Model, Review of Economics and Statistics, 72, 498-505. - [9] BOLLERSLEV, T., ENGLE, R. F. AND NELSON, D. B. (1994): ARCH models, *Handbook of Econometrics*, ed. by R. F. Engle, and D. L. McFadden, 4, 2959-3038. Elsevier Science, Amsterdam. BIBLIOGRAPHY 89 [10] Bollerslev, T., Engle, R. F. and Wooldridge, J. M. (1988): A capital asset pricing model with time-varying covariances, *The Journal of Political Economy*, 96, 116-131. - [11] Boswijk, H. P. and van der Weide, R. (2008): Testing the number of factors in GO-GARCH models, 2nd Annual Conference on Bootstrap and Numerical Methods in Time Series, Granger Centre, University of Nottingham. - [12] BOSWIJK, H. P. AND VAN DER WEIDE, R. (2006): Wake me up before you GO-GARCH, Tinbergen Institute Discussion Papers 06-079/4, Tinbergen Institute. - [13] Broda, S. A. and Paolella, M.S. (2008): CHICAGO: A fast and accurate method for portfolio risk calculation, *Journal of Financial Econometrics*, 7, 412-436. - [14] Comte, F. and Lieberman, O. (2003): Asymptotic theory for multivariate GARCH processes, *Journal of Multivariate Analysis*, 84, 61-84. - [15] ENGLE, R. F. (1982): Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, *Econometrica*, 50, 987-1006. - [16] ENGLE, R. F. (2002): Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models, *Journal of Business and Economic Statistics*, 20, 339-350. - [17] ENGLE, R. F. AND KRONER, K. F. (1995): Multivariate simultaneous generalized ARCH, *Econometric Theory*, 11, 122-150. - [18] ENGLE, R. F. AND SHEPPARD, K. (2001): Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH, NBER Working Papers 8554, National Bureau of Economic Research, Inc. - [19] Francq, C. and Zakoian, J-M. (2004): Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes. *Bernoulli*, 10, 605-637. - [20] Francq, C. and Zakoian, J-M. (2010): QML estimation of a class of multivariate GARCH models without moment conditions on the observed process. *MPRA Paper No. 20779*, Unpublished. BIBLIOGRAPHY 90 [21] Hong, L. and Majerowska, E. (2008): Testing stock market linkages for Poland and Hungary: A multivariate GARCH approach, Research in International Business and Finance, 22, 247-266. - [22] LEE, S. AND HANSEN, B. (1994): Asymptotic theory for the GARCH (1,1) quasi maximum likelihood estimator, *Econometric Theory*, 10, 29-52. - [23] Lumsdaine, R. (1996): Consistency and asymptotic normality of the quasi maximum estimators in conditional heteroskedasticity models, *Econometrica*, 65, 587-599. - [24] Mandelbrot, B. (1963): The variation of certain speculative prices, *The Journal of Business of the University of Chicago*, 36, 394-419. - [25] SHEPPARD, K. (2003): Multi-step estimation of Multivariate GARCH models, Proceedings of the International ICSC Symposium: Advanced Computing in Financial Markets, University of California at San Diego, revised 25 Oct 2003. - [26] SCHEICHER, M. (2001): The comovements of stock markets in Hungary, Poland and the Czech Republic, *International Journal of Finance and Eco*nomics, 6, 27-39. - [27] SILVENNOINEN, A. AND TERASVIRTA, T. (2008): Multivariate GARCH models, Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008. - [28] TAYLOR, S. J. (2005): Asset Price Dynamics, Volatility, and Prediction, Princeton University Press. - [29] TSE, Y. K. AND TSUI, K. C. (2002): A multivariate generalized autoregressive conditional heteroscedasticity model with time-varying correlations, Journal of Business and Economic Statistics, 20, 351-362. - [30] VAN DER VAART, A. W. (2008): Time series, Lecture notes, Vrije Universiteit Amsterdam. - [31] VAN DER WEIDE, R. (2002): GO-GARCH: A multivariate generalized orthogonal GARCH model, *Journal of Applied Econometrics*, 17, 549-564. - [32] Vronos, I. D., Dellaportas, P. and Politis, D. N. (2003): A full-factor multivariate GARCH model, *Econometrics Journal*, 6, 312-334. BIBLIOGRAPHY 91 [33] Weiss, A. A. (1986): Asymptotic theory for ARCH models: Estimation and testing, *Econometric Theory*, 2, 107-136.