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1. Introduction

1.1 General introduction

This work focuses mostly on cosmological perturbation theory. Let
us start with a physical introduction. At this moment it is known
that there are three fundamental interactions, which were described
by Standard Model: electromagnetic, weak and strong nuclear forces;
The only missing knowledge is the neutrino mass. Gravity is described
by the Standard General Relativity (SGR), which is a theory of space-
time and matter. Until this moment there was no contradiction with
empirical observations of this theory. One prediction of SGR which
was not directly confirmed yet are the gravitational waves and some
people are already very optimistic that they will be found soon. It
looks like that we should be satisfied from purely empirical point of
view. However, from a mathematical point of view, the situation is
still not satisfactory. The Standard Model is based on Quantum Field
Theory (QFT), theory of gravity is purely classical. We start with the
action integral

SEH = − 1

2κ2

∫
Σ

√
−g(R− 2κLF ) d4x+

1

κ2

∫
∂Σ

√
hK, (1.1)

where g is a determinant of the metric, R is the Ricci scalar and Λ
is the cosmological constant, κ2 = 8πG and LF is the lagrangian of
matter fields, where h is a determinant of the metric on the boundary
∂Σ and K is extrinsic curvature. When we apply normal quantization
procedure in SGR, we don’t get the same equations, which follow from
the variational principle.

In addition to the two main terms, which consist of the integrals of
the spacetime region Σ, there is a term that is defined on the boundary
of this region ∂Σ.

One of the models for quantum gravity is the String Theory. Ac-
cording to this theory the elementary particles are small vibrating
strings. Originally it was formulated in the dimension of spacetime 10
or 11 but from one of the previous articles (reference[45]in Chapter
III) it is clear that we are not living in higher dimensional universe
however String Theory can be formulated also in the four-dimensional
spacetime. Physical idea behind the String Theory is different from
other theories. It is not a direct quantization of SGR or any other
classical theory of gravity. It is a prototype of unified theory of all
interactions. Gravity, as well as other interactions, only emerges in an
appropriate limit. Strings are one dimensional objects characterized
by one parameter α or the string length ls =

√
2α~. In spacetime it

forms a two dimensional surface, the world sheet. Closer inspection of
strings needs also other objects known as D-branes. String necessari-
ly contains gravity, because the graviton - the hypothetical particle -
appears as an excitation of closed strings. String Theory requires also
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the presence of supersymmetry. One simply recognizes that gravity
can be incorporated into this theory.

Another approach is loop quantum gravity. The variables used in
this theory are close to Yang-Mills type variables. The loop variables
are defined as follows. The role of the momentum variable is played
by the densitized triad

Ea
i (x) :=

√
h(x)eia(x),

while the configuration variable is the connection

GAia(x) = Γia(x) + βKi
a(x),

Ki
a(x) is related to the second fundamental form. The parameter β

is called Barbero-Immirzi psrameter, it can assume any non-vanishing
real value and this is a free parameter in loop quantum gravity. It
may be fixed by the requirement that the black hole entropy calculated
from loop quantum cosmology coincides with the Beckenstein-Hawking
expression. One can find more information in recent work of C.Kiefer
(reference is in Chapter III,[26]).

There were also other approaches toward quantum gravity, we will
mention the so called twistor theory later. We will mention now the
problem of time, It was clear many years ago that the notion of time
was absolute in the theory of Quantum Mechanics (QM), however was
relative in standard general relativity (SGR). Spacetime corresponds
to what is a particle trajectory in mechanics. When we apply the quan-
tization rules to SGR we get that the classical trajectories disappear.

The major conceptual problem concerns the arrow of time. Al-
though our fundamental laws were time reversal invariant, there was
a problem with entropy. R. Penrose wrote that it is interesting that
the universe began in a very low entropic state, he meant in a very
special state. It was also him who pointed out that he didn’t believe
in cosmological inflation.

Quantum Gravity when applied in cosmology could shed light to
interpretation of QM. There were various interpretations of QM in
the past. Let us mention for example the Feynman’s approach, which
was a beautiful combination of classical mechanics with probabilistic
approach. We mean that we integrate

∫
exp iS in this reformulation

over all trajectories. The particle could possibly travel over all paths
between the first and final point. But the biggest contribution to the
wave function is only from the classical path. R. Feynman in his orig-
inal paper showed that the standard Schrodinger equation naturally
emerges. His reformulation was a convenient way how to look at com-
putations in QM. It had further applications to QFT. He formulated
in this language so called quantum electrodynamics, which shed more
light on interaction of photons with matter, which was in his time rev-
olutionary. Mathematicians studied in connection with his works so
called Feynman integral, which is a big unsolved problem of theory of
integral. (The usual procedure in building abstract integral was not
working.)

4



There existed other interpretations of QuantumMechanics, so called
Everett’s interpretation where all the components of the wave function
are equally real. It was possible to apply the Everett’s approach in
Quantum Cosmology, when it was combined with the process of de-
coherence. Decoherence was formulated like irreversible emergence of
classical properties from unavoidable interaction with the environment.

Quantum Gravity remained a big challenge for theoretical physicists
for many years and it will be nice to formulate a consistent theory,
which could be applied in Cosmology.

1.2 Cosmology-historical background

We want to devote this part to Cosmology. In recent decaded Cos-
mology became a real science and according to some authors there is
now a golden age of Cosmology. One can half-jokingly say that this
scientific discipline is like archeology. Something happened in the past
and now we uncover the remnants of events by modern technologies.
The disadvantage is that we have only one universe. However, we use,
of course, accelerators for simmulation of very hot and dense state of
the universe.

Our present understanding of the universe is based upon the suc-
cessful hot Big Bang theory, which explains its evolution from the
first fraction of a second to our present age, 13 billion years later.
This theory rests upon Standard General Relativity (SGR) and was
experimentally verified by three observational facts: the expansion of
the universe (Edwin P. Hubble in 1930’s), the relative abundance of
light elements (George Gamow in 1940’s) and finally cosmic microwave
background (Arno A.Penzias and Robert W.Wilson in 1965).

1.3 Basics

Modern Cosmology is based on the, so called, cosmological principle:
universe looks the same for observers at all points and all directions.
It is something like the Copernican principle taken to the extreme. So,
universe looks very homogeneous and isotropic 1 on big scales (100 Mpc
and bigger), which leads to an essential simplification of our models
in the form of the so called FLRW (Friedmann-Lemaitre-Robertson-
Walker) metric. Let us now present FLRW metrics for three values
of spatial curvature of the universe K = −1, 0, 1. Open, flat and close
universe correspond to the 3-dimensional spatial slices being hyperbol-
ic surfaces with negative curvature, flat Euclidean surfaces with zero

1We have two terms: homogeneity and isotropy in a point; Isotropy in every point im-
plies homogeneity, but global homogeneity - it means also that we have local homogeneity in
sufficiently small sphere around this point- does not imply isotropy.
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curvature or 3 spheres with positive curvature

ds2 = dt2 − a2(t)

[
dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
= gµνdx

µdxν ,

where a(t) is so called scale factor, which determines the physical size
of the universe. {r, θ, φ} are comoving coordinates, a particle initially
at rest in these coordinates remains at rest. The physical separation
between freely moving particles at t = 0 and t = r is

d(t, r) =

∫
ds = a(t)

∫ r

0

ds√
1−Ks2

.

In an expanding universe (ȧ > 0) the distance increases with time:

ḋ =
ȧ

a
d ≡ Hd,

with H(t) the Hubble parameter or constant. The above is nothing
but Hubble’s law: galaxies recede from each other with a velocity
which is proportional to the distance. Hubble’s law is supported by
observations: the present day value of the Hubble law parameter is
H0 ≈ 72± 8 km/sec/Mpc.

We can write the metric (2) also in other form where we will use
notation and trick with complex numbers: S(r) = sin(

√
Kr)√
K (where the

case K = 0 can be obtained by limiting procedure);

ds2 = dt2 − a2(t)
[
dr2 + S2(r)(dθ2 + sin2 θdφ2)

]
After some computation the form of the FLRW metric in the K = 0

case can be changed in such way that it will have the same structure as
the Schwarzschild metric in standard coordinates with the difference
that we will have a function of time and radial coordinate in front of
the dT2 and dR2:

ds2 = F (T,R) dT 2 − 1

F (T,R)
dR2 −

(
dθ2 + sin2 θdφ2

)
,

where F (T,R) is a function of T (t, r) and R(t, r).

The spatial curvature of the universe is equal to the following ex-
pression:

R(3) =
6K
a2(t)

Spatially open, flat and closed universes have different geometries.
Light geodesics in these universes behave differently, and thus can
be in principle distinguished experimentally. We can also compute
a four-dimensional spacetime curvature (for example in the Lectures
on Cosmology, J. Garcia- Bellido, CERN JINR European School ) :

R(4) = 6

(
ä

a
+
ȧ2

a2
+
K
a2

)
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Finally, we could also change the time coordinate to conformal time:
dt = adη. We get from (5):

ds2 = a2(t){dη2 − [dr2 + S2(r)(dθ2 + sin2 θdφ2)]}.

This metric is conformal to Minkowski in the case of K = 0 and for us
this will be the most interesting case.

The metric in SGR is a dynamical object. The time evolution of
the scale factor is governed by Einstein equations

Gµν = Rµν −
1

2
Rgµν = 8πGTµν ,

with R and Rµν the scalar curvature and Ricci curvature tensor respec-
tively (which are both functions of the metric with up to the second
metric derivatives). We will use units in which m2

p = (8πG)−1. Depend-
ing on the dynamics - and thus matter-energy content of the universe -
we will have different possible outcomes of the evolution. The universe
may expand forever, re-collapse in the future or approach an asymp-
totic state in between. So now we will consider the matter-energy
content of the universe. The matter fluid which is consistent with the
homogeneity and isotropy is a perfect fluid, one in which an observer,
co-moving with the fluid, would see the universe around it as isotrop-
ic. The energy momentum tensor associated with such a fluid can be
written as

T µν = (ρ+ p)UµUν − pgµν ,

where p(t) and ρ(t) are pressure and energy density of the matter in
given time of the expansion, and Uµ is the co-moving four-velocity
satisfying UµUµ = 1. Let us now write the equations of motion in
an expanding universe. According to SGR, these equations can be
deduced from Einstein equations (??), where we substitute the FLRW
metric and the perfect fluid tensor (??). This leads to the famous
Friedmann equation

ȧ2

a2
= 8πG

ρ

3
− mathcalK

a2
. (1.2)

The conservation of energy, a direct consequence of general covari-
ance of the theory, can be written as

d

dt
(ρa3) + p

d

dt
(a3) = 0. (1.3)

We will introduce the equation of state parameter p = wρ. Then the
continuity equation can be integrated to give

dρ

ρ
= −3(1 + w)

da

a
=⇒ ρ ∼ a−3(1+w). (1.4)
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From the two equations (1.2) and (1.3) we could by mathematical ma-
nipulations derive the third Raychaudhuri equation:

ä

a
= −4πG

3
(ρ+ 3p). (1.5)

From (1.2), neglecting the curvature terms, it then follows

a ∼
{
t2/(3(1 + w)) w 6= 1
eHt w = 1

(1.6)

The matter in the universe consists of several fluids T νµ =
∑

i T
(i)ν

µ,
with i corresponding to radiation, non-realativistic matter or cosmo-
logical constant. If the energy exchange between these components
is negligible, it follows that all fluids separately satisfy the continuity
equation. We can define an equation of state for each fluid separately
pi = wiρi.

Radiation include, for example, photons. For radiation wrad = 1
3
and

from (1.5) we have that ρrad ∼ 1
a4
. If the universe is dominated by

radiation, it follows from (1.6) that a ∼
√
t.

Vacuum energy remains constant with time. If it dominates uni-
verse, then a(t) ∼ eHt. Define Ωi with ρc being the critical density. Then
the Friedmann equation becomes open, close, or flat with depending
on Ω = Ωi. Thus Ω is larger, smaller, or equal to one for open, close,
or flat universe, respectively. We find for the present values ΩB ∼ 0.04
(baryons), ΩDM ∼ 0.31 (dark matter), Ωγ ∼ 10−5 (radiation) ΩΛ ∼ 0.069,
(cosmological constant) - Planck collaboration.

Hubble’s law and other observations indicate that the universe is
expanding. The temperature of the radiation bath of the universe is
T 4 ∼ 1

a4
. Where for the first expression we used Stephan-Boltzmann

law. It follows that the temperature decreases with T ∼ 1
a
with the

expansion. Initially the universe was hot and dense and it cooled as it
expanded. The key ingredients of the Big Bang model are nucleosyn-
thesis matter-antimatter relation, matter-radiation equality, recombi-
nation, formation of gravitationally-bounded systems and temperature
of relic radiation.

We will not discuss now the basic cosmological models, these can
be found for example in the book of J. Garcia-Bellido[]. But we will
rather say more about cosmological constant puzzle. It is a mystery -
because the cosmological constant could be associated with the vacu-
um energy of QFT - why it has such a small value (approximately 120
orders smaller than predicted by QFT).

In spite of theoretical prejudice towards Λ = 0, there are new obser-
vational arguments for a non-zero value. The most important ones are
recent evidence that we live in a flat universe, together with indica-
tions of low mass density. That indicates that some kind of dark energy
must make up the rest of the energy density. In addition, the disagree-
ment between the ages of globular clusters and the expansion age of
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the universe may be resolved with Λ 6= 0. Finally, it was experimentally
verified that we live in an accelerating universe!

The so called dark energy have to resist gravitational collapse, oth-
erwise it would have been detected already as a part of the energy in
the halos of the galaxies. However, if most of the energy of the uni-
verse resists gravitational collapse, it is impossible for structure in the
universe to grow. This dilemma can be resolved if the hypothetical
dark energy was negligible in the past and only recently became the
dominant component.

The dark energy has negative pressure. This rules out all of the
usual suspects like neutrinos, cold dark matter, radiation, etc. It is
possible that the non-zero cosmological constant has something to do
with limits of Standard General Relativity, so that we will need other
classical theory of Gravity.

What are the shortcomings of the Big-Bang model?
Photons travel along null geodesics with ds2 = 0→ dr = dt/a(t) for a

radial path. The particle horizon (opposite to Hubble horizon) is the
type of horizon that light can travel between 0 and t and which is equal
to

Rp(t) = a(t)

∫ t

0

dt′

a(t′)
= a(t)

∫ a

0

d(lna)

aH
=

t

1− n
.

Note that the particle horizon is set by comoving Hubble radius
(aH)−1. Physical lengths are stretched by the expansion λ ≈ a. Since λ
grows with time, so thus the ratio Rp

λ
. Scales that are inside the horizon

at present were outside in earlier times. Concretely consider two CMB
photons emitted, which were emitted at the time of last scattering.
Nowadays we see on the sky two points separated by distance λ(t0) <
Rp(t0). Extrapolating back in time to the surface of the last scattering,
it follows that λ(tls) > Rp(tls) was bigger than the horizon. No causal
physics could have acted at such large scales. Yet, although these
photons came from two disconnected regions, to a very good precision
they have nearly the same temperature. People were asking, how can
this be possible.

• Horizon problem: Although the universe was vanishingly small,
the rapid expansion didn’t allow causal contact from being estab-
lished throughout. The CMB(cosmic microwave background) has
a perfect black body spectrum. Two photons coming from the op-
posite directions of the universe have nearly equal temperatures.
Yet the photons coming from the different parts of the sky, could
not have a causal contact with each other.

• Flatness problem:

Consider the Friedmann equation in the form Ω − 1 = K
(aH)2

. The
comoving Hubble radius (aH)−1 grows with time, and thus Ω = 1
is an unstable fixed point, in the language of ODE’s. Therefore
the value of Ω had to be extremely fine-tuned.
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• Monopole problem:

If the universe can be extrapolated back in time to high temper-
atures (remember we only have direct evidence for the big bang
picture for low temperatures) , the universe went through a series
of phase transitions during its evolution. There were considered
the electroweak and QCD phase transitions, and possibly other
ones at the Grand Unified Theory scales. Depending on the sym-
metry broken in the phase transition topological defects - domain
walls, cosmic strings, monopoles or textures may form. So called
Polonyi fields also presented a problem. If a semi-simple GUT
group is broken down to the Standard Model, either directly or
via some intermediate steps, monopoles form. Monopoles are
heavy pointlike objects, which behave as cold matter ρmp ≈ 1

a3
. If

produced in the early universe, the energy density in monopoles
decreases slowlier than the radiation background, and comes to
dominate the energy density in the universe early on, in conflict
with observations.

Inflation

The hot Big Bang theory could not explain the origin of structure in
the universe, the origin of matter and radiation, and the initial singu-
larity. Especially, the questions why is this universe so close to spatially
flat one and why is the matter so homogeneously distributed on large
scales, could be resolved by the so called Cosmological Inflation.2 This
theory was invented at the beginning of 1980’s by A. Guth, A. Linde
and A. A.Starobinsky like an epoch in the evolution of the universe
before the radiation epoch - phase transition - which is characterized
by ä > 0 when it was approximately only 10−43 − 10−32 second old. It
is an epoch when the universe was exponentially expanding for a tiny
moment. People used like a trigger a homogeneously distributed scalar
field, which then decayed. There is a similarity to the current situation
in our universe because we have also an accelerating epoch, but the
difference is, for example, in the duration how long it was accelerating.
(The beginning of today’s acceleration is approximately 5 billion years
old.) It was announced that from the result of experiment BICEP2,
which was published this year in March, that there were indirectly
measured gravitational waves. However, this result must be confirmed
at this moment. It look like that at this moment that there was a
contribution from "magnetized gas". (Result from September 2014.)

The vacuum like period that drives inflation must be dynamic, it
can’t be true cosmological constant, because inflation must end. If
we want to violate the strong energy condition and get a system with
ρ = −p, we can use scalar fields. We will explain the basic concept of
scalar fields minimally coupled to matter, which are one of the triggers
of the Cosmological Inflation. We will consider for simplicity the single

2 Details could be found in the Linde’s book.
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scalar field. Let’s take the following action for the scalar field, which we
will call the inflaton field (we could, for example consult the lectures
of T.Prokopec, Lectures notes on Cosmology):

S =

∫ √
−g[−1

2
R + Lϕ] d4x., (1.7)

with Lϕ = 1
2
gµν∂µϕ∂νϕ− V (ϕ) where g = det[gµν ] = −a6 (FLRW).

We can make a variation with respect to the scalar field and we get
Euler-Lagrange equations:

∂Lϕ
∂ϕ
−∇µ[

∂Lϕ
∂(∇µϕ)

] = 0 (1.8)

But
∂Lϕ
∂ϕ

= −V (ϕ),
∂Lϕ
∂(∇ρϕ

) = ∇ρϕ.

So the standard result is

2ϕ+
∂V

∂ϕ
= 0. (1.9)

With the definition
Tµν ≡ −2

1√
−g

∂Sϕ
∂gµν

, (1.10)

we get also

Tµν ≡ −∂µϕ∂νϕ+ gµν(
1

2
∂ρϕ∂

ρϕ− V (ϕ)). (1.11)

1.4 Cosmological perturbation theory

Let us make an introduction to Cosmological Perturbation Theory in
SGR. We mention that we use in this thesis a signature (−,+,+,+)
except of the part two, where we use (+,−,−,−). We consider a ST , a
perturbed ST that is close to the background ST. We have an example
of the background and a perturbed ST on the Figure 1. The metric on
the perturbed ST will be the following metric:

gµν(t, ~x) = gµν(t) + δgµν(t, ~x), (1.12)

where bar means the background and δ is a small change - perturbation
- of the metric. We also assume that first and second partial derivatives
are small, because we have second order PDE’s. The field equations
after subtraction:

δGµν = κδTµν , (1.13)

where δGµν is a perturbation of the Einstein tensor, δTµν is a perturba-
tion of energy-momentum tensor and κ = 8πG when the gravitational
constant is equal to 1.

The things above require a pointwise correspondence, so we can
make comparisons and subtractions. Given a background coordinate

11



Figure 1.1: Perturbation of background spacetime

system, we have many coordinate system in the perturbed one, for
which (??) holds. The choice among coordinates is called a gauge
choice.

In first order prturbation theory we drop all terms from our equa-
tions which are products of small quantities of δgµν, δgµν,σ and δgµν,στ .
The field equations become then the linear differential equations for
δgµν.
So, as the background ST we will take the Friedmann-Lemaitre-Robertson-
Walker ST (FLRW). And we will concentrate mainly on flat space
(FLRW(0)). The metric is in co-moving coordinates

ds2 = gµνdxµdxν = a2(η)(dη2 + dx2 + dy2 + dz2),

where a(t) can be obtained with the cosmological constant equal to
zero from Friedmann equations with cosmological constant equal to
zero. We will denote again the backfground quantities by overbar. We
could rewrite the Friedmann equations as

H 2
c =

8πρ a2(η)

3
, (1.14)

H
′

c =
−4π

3
(ρ+ 3p) a2(η), (1.15)

where H
′
c = dHc(η)

dη
is the derivative with respect to the conformal time.

The energy- continuity equation becomes just

ρ
′
= −3Hc(ρ+ p). (1.16)

We could derive further (with notation w ≡ p
ρ
) also

H
′

c =
(−1 − 3w)

2
H 2

c . (1.17)
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These equations show that w = −1
3

corresponds to constant comoving
Hubble length, when the RHS of the previous equation is zero. But for
w < −1

3
the comoving Hubble length shrinks with time (this is a typical

situation for Cosmological Inflation), whereas for w > −1
3
it grows with

time.
We can write the metric of the perturbed FLRW(0) universe as

gµν = gµν + δgµν = a2(ηµν + hµν), (1.18)

where hµν, as well as hµν,ρ and hµν,ρσ are assumed small. We are doing
the first order perturbation theory, so we shell drop from the equations
all the terms which are of order O(h2) or higher. We define

hµν ≡ ηµρησνhρσ, h
µν ≡ ηµρηνσhρσ. (1.19)

The inverse metric of the perturbed spacetime is in first order

gµν =
1

a2
(ηµν − hµν).

We shall now give different names for the time and space components
of the perturbed metric, defining

hµν =

(
−2A −Bi

−Bi −2Dδij + 2Eij

)
.
where D = −1

6
hi i carries the trace of the spatial metric perturbation

hij, and Eij is traceless,
δijEij = 0.

Since indices on hµν are raised and lowered with ηµν, we immediately
have

hµν =

(
−2A Bi

Bi −2Dδij + 2Eij

)
.
The line element is thus

ds2 = a2(η){−(1 + 2A)dη2− 2 Bi dηdxi + [(1− 2D)δij + 2Eij + hij]dxidxj}. (1.20)

The association between the background and perturbed ST will be
due to the coordinate system xα. There are many possible coordinate
systems in the perturbed STs for a given coordinate system in the
background. (GR is diffeomorphism-invariant theory and we fixed the
background.) Now we denote coordinates of the background by xα and
two different coordinates on the perturbed spacetime by x̂α and x̃α.
These coordinates are related via the following relation

x̃α = x̂α + ξα, (1.21)

where ξα and ξα,β are small quantities (zero and first derivative is small)
. And we shall think of ξα as living on the background ST.
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x̃α associates background point P with a point P̃ and analogically x̂α

associates background point P with a point P̂ . We plug to the formula
(1.21) for points P̂ and P̃ :

x̃α(P̃ ) = x̂α(P̃ ) + ξα, (1.22)
x̃α(P̂ ) = x̂α(P̂ ) + ξα. (1.23)

Now the difference ξα(P̃ )− ξα(P̂ ) is second order small, so we just write
ξα and associate it with the background point:

ξα = ξα(P )

Using previous knowledge, we get the relation between the coordinates
of two different points in a given coordinate system,

x̂α(P̃ ) = x̂α(P̂ )− ξα, (1.24)
x̃α(P̃ ) = x̃α(P̂ )− ξα. (1.25)

Let us now perturb various quantities now. We could have in the
background ST 4-scalar fields s, 4-vector fields wα and tensor fields
A
α

β . In the background spacetime we have corresponding perturbed
quantities in the perturbed ST.

s = s+ δs, (1.26)
wα = wα + δwα, (1.27)

Aαβ = A
α

β + δAαβ. (1.28)

Now let us talk about 4-scalar. The full quantity s = s+ δs lives on
the perturbed ST. However, there is no unique background quantity s
which could we assign to a point in the perturbed ST, because these
points are assigned to different points s in the background. Therefore,
we do not have unique perturbation δs, but the perturbation is gauge
dependent. The perturbations in different gauges are defined as

δ̂s(xα) ≡ s(P̂ )− s(P ), δ̃s(xα) ≡ s(P̃ )− s(P ). (1.29)

The perturbation δs is obtained from a subtraction between two
STs, but we will consider it as living on background ST. It changes
4nder the gauge transformation. We will us now this knowledge and
we will apply them δ̂s to the Weyl spinor and δ̃s:

s(P̃ ) = s(P̂ ) +
∂s

∂x̂α
(P̂ )[x̂α(P̃ )− x̂α(P̂ )] = s(P̂ )− ∂s

∂x̂α
(P̂ )ξα = s(P̂ )− ∂s

∂xα
(P )ξα,

(1.30)
used approxination ∂s

∂x̂α
(P̂ ) ≈ ∂s

∂xα
(P ), because the difference is first order

perturbation and ξα makes it second order.
The background is homogeneous: s = s(η, xi) = s(η), and

∂s

∂xα
(P )ξα = s

′
ξα.
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Thus, we get
s(P̃ ) = s(P̂ )− s′ξ0.

Our final result for a gauge transformation of δs is

δ̃s(xα) = δ̂s(xα)− s′ξ0. (1.31)

Similar results holds for vector and tensor PB’s in the two gauges. So,
for example:

δ̃wα = δwα + ξα,βw
β − wα,βξβ, (1.32)

where we dropped the hats from the first gauge, we will do the same
in the following text. By applying the gauge transformation equation
to the metric perturbation, we get

δ̃gµν = δgµν − ξρ,µgρν − ξσ,νgµσ − gµν,ηξ0, (1.33)

where we have replaced the sum gµν,αξ
α with gµν,0ξ

0, since the back-
ground metric depends only on the time coordinate η. After some
conputation we obtain after some computation the gauge transforma-
tion laws:

Ã = A− ξ0
,0 − Hc,

B̃i = Bi + ξi,0 − ξ0
,i,

D̃ = D +
1

3
ξk,k + Hcξ

0 ,

Ẽij = Eij −
1

2
(ξi,j + ξj,i) +

1

3
δijξ

k
,k. (1.34)

However we could look at the transformations differently. We fix the
correspondence between the background and perturbed ST. Now we
make coordinate transformations on the background and we induces
- via the correspondence mapping - the coordinate transformations
in the perturbed ST. We respect the homogeneity property on the
background, which gives us unique slicing of the ST into homogeneous,
t = const., spacelike slices. This leaves us homogeneous transformations
of the time coordinate, which we have as an example, when we switch
from the cosmic time t to the conformal time η, (??). We can make
transformations in the space coordinates

xi
′
= X i′

kx
k,

where X i′

k is independent of time. For the three metric in our
background we had chosen Euclidean coordinates for the 3-metric in
our background and this leaves us rotations.

gij = a2δij.

We have transformation matrices

Xµ′

ρ =

(
1 0
0 X i′

k

)
=

(
1 0
0 Ri′

k

)
,
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and
Xµ

ρ′ =

(
1 0
0 Ri

k′

)
,

where Ri′

k is a rotation matrix, with the property RTR = I or Ri′

kR
i′

l =
δkl. Thus RT = R−1, so that Ri′

k = Rk
i′.

This coordinate transformation in the background induces the cor-
responding transformation,

xµ
′
= Xµ′

ρx
ρ,

into the perturbed ST. Here the metric is

gµν =

(
−1− 2A −Bi

−Bi 1− 2Dδij + 2Eij

)
= a2ηµν + a2

(
−2A −Bi

−Bi −2Dδij + 2Eij

)
.

Transforming the metric

gρ′σ′ = Xµ
ρ′X

ν
σ′gµν ,

after computation for the perturbations in the new coordinates we
get,

A
′
= A,

(1.35)

D
′
= D,

(1.36)

Bl′ = Rj
l′Bj,

(1.37)

Ek′l′ = Ri
k′R

j
l′Eij. (1.38)

So we see that A and D transform like scalars in the background
spacetime coordinates, Bi like a 3-vector and Eij like a tensor. But
we could think of them as scalar, vector and tensor fields on the 3-
dimensional background spacetime. However, we can extract two more
scalar quantities from Bi and Eij, and a vector quantity from Bi and
Eij.
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We know from the 3-dimensional calculus - Helmholtz theorem -
that a vector field could be divided into 2 parts: the first one with
zero curl and the second one with zero divergence

~B = ~BS + ~BV ,

with ∇ × ~BS = 0 and ∇. ~BV = 0, so the first one could be expressed
as a gradient of some scalar field ~BS = −∇B. In component notation,
Bi = −B,i+B

V
i , where δijBV

i,j = 0. In like manner, the symmetric traceless
tensor field Eij can be divided into three parts,

Eij = ES
ij + EV

ij + ET
ij ,

where ES
ij and EV

ij can be expressed in terms of scalar field E and vector
field Ei,

ES
ij = (∂i∂j −

1

3
δij∇2)E = E,ij −

1

3
δijδ

klE,kl, E
V
ij = −1

2
(Ei,j + Ej,i), (1.39)

where δijEi,j = ∇ ~E = 0, δikET
ij,k = 0 and δijET

ij = 0.
We see that ES

ij is symmetric and traceless by construction. EV
ij is

symmetric by definition and the condition on Ei makes it traceless.
The tensor ET

ij is assumed to besymmetric. And the two conditions on
it make it transverse and traceless. Under rotation in the background
space,

A
′
= A, B

′
= B, D

′
= D, E

′
= E,

BV
l′ = Rj

l′B
V
j , El′ = Rj

l′Ej,

ET
j′l′ = Ri

j′R
j
l′E

T
ij .

The metric perturbation can those be divided into scalar, vector
and tensor part and these names refers to their transformation prop-
erty in the background spacetime. In all textbooks is written that
scalar, vector and tensor perturbations do not couple to each other
but they evolve independently. We had a comment already in the pre-
vious chapter. We imposed one constraint on each of the 3-vectors BV

i

and Ei, and 4 constraints on the symmetric 3-dimensional tensor ET
ij

leaving each of them 2 independent components. Thus the 10 degrees
of freedom corresponding to the 10 components of the metric pertur-
bation hµν are divided into 1 + 1 + 1 + 1 = 4 scalar, 2 + 2 = 4 vector, and
2 tensor degrees of freedom.

The scalar perturbations are for us the most important. They cou-
ple to the density and pressure perturbations and exhibit gravitational
instability: overdense regions grow more overdense; They are respon-
sible for formation of structure in the universe from small initial per-
turbations. We have an Appendix in Chapter 2 is devoted to scalar
perturbations.

The vector perturbations couple to rotational velocity perturbations
in the cosmic fluid. They tend to decay in the expanding universe and
are therefore not important in cosmology. Tensor perturbations have
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cosmological importance, since they have an observable effect on the
anisotropy of the cosmic microwave background.

We will now consider only scalar perturbations. The metric is now

ds2 = a2(η){−(1 + 2A)dη2 + (1− 2ψ)δijdxidxj}, (1.40)

where we use the curvature perturbation

ψ ≡ D +
1

3
∇2E. (1.41)

If we start from a pure scalar perturbation and we make an arbi-
trary gauge transformation ξµ = (ξ0, ξi), we may introduce also a vector
perturbation. This is pure gauge transformation and thus of no inter-
est. As we did in the previous part for Bi, we could divide ξ into part
with zero divergence and part with zero curl, expressible as a gradient
of some function ξ,

ξi = ξivec − δijξ,j ↔ ~ξvec −∇ξ,
where ξivec,i = 0. The part ξivec is responsible for spurious vector per-
turbation, where ξ0 and ξj change the scalar perturbation. For our
discussion of scalar perturbations we thus lose nothing, if we decide
that we only consider gauge transformations, where the ξitr is absent.
These scalar gauge transformations are fully specified by two functions,
ξ0 and ξ,

η̃ = η + ξ0(η, ~x),

x̃i = xi − δijξ,j(η, ~x). (1.42)

and they preserve scalar nature of the perturbation. Applied to scalar
perturbations and gauge transformations, our transformation equa-
tions become

Ã = A− ξ0′ − a
′

a
ξ0,

B̃ = B + ξ
′
+ ξ0,

D̃ = D − 1

3
∇2ξ +

a
′

a
ξ0,

Ẽ = E + ξ. (1.43)

where we have used the notation ′ ≡ ∂
∂η

for quantities which depend
on both η and ~x. The quantity ψ defined in (1.41) is often used as the
fourth scalar variable instead of D. For it, we get

ψ̃ = ψ +
a
′

a
ξ0.

We now define the following two quantities called the Bardeen po-
tentials:

Φ ≡ A+ Hc(B − E
′
) + (B − E

′
)
′
,

Ψ ≡ D + 1
3
∇2E − Hc(B − E

′
) = ψ − Hc(B − E

′
).
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The quantities are invariant under gauge transformations when we
use that H̃c = Hc, because Hc do not transform - the background quan-
tity. These potentials were introduced by Bardeen and they are the
simplest gauge-invariant linear combination of A, D, B and E, which
span a two dimensional space of gauge invariant variables and which
can be be constructed from metric-variables alone.

We can use the gauge freedom to set the scalar perturbations B and
E equal to zero. From equation (1.43) we see that this is accomplished
by choosing

ξ = −E,
ξ0 = −B + E

′
. (1.44)

Doing this gauge transformation we arrive at a commonly used
gauge, which has a name conformal-Newtonian gauge (people are us-
ing also other names for this gauge). We will denote quantities in
this gauge with the superscript N . Thus BN = EN = 0, whereas we
immediately see that

AN = Φ,

DN = ψN = Ψ. (1.45)

Thus the Bardeen potentials are equal to the two nonzero met-
ric perturbations in the conformal-Newtonian gauge. We could use
also different gauges but we are interested mainly in the conformal-
Newtonian gauge. But we will use now the computations of Riemann
and energy momentum tensor in this gauge from the lectures, for ex-
ample, of H.- K.Suonio. We will apply it to perfect fluid scalar per-
turbations, especially to scalar perturbations in the matter-dominated
universe.

By matter we mean here the non-relativistic matter, whose pressure
is so small to energy density that we could ignore it here. It is usually
called dust. Until the 1990′s it was believed that this matter-dominated
universe persists until present time. However now we know that we
are living in accelerated epoch, which means that there is an other
component of energy density of the universe with negative pressure.
This component is called dark energy (Chapter 2). So, the validity
of the matter dominated approximation is not as extensive as was
thought before, anyway there was a significant period inthe history of
the universe when it was valid.

So, we now make the matter dominated approximation and we ig-
nore pressure p = 0. We talked about this example already in the Chap-
ter 2. The order of work is always the same. We solve the background
problem and we use the background quantities as known functions of
time to solve the perturbation problem.

The background equations - we will write an overbar - are

(A1H 2
c =

8πG

3
ρa2 , (1.46)
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A2H
′

c = −4πG

3
ρa2 . (1.47)

from which we have 2H
′
c + H 2

c = 0 . The background solution is the
familiar k = 0 matter-dominated Friedmann model, a ∼ t2/3 . But we
will review the solution in terms of a conformal time. Since ρ ∼ a−3,
the solution of (??) gives

a(η) ∼ η2.

From a ∼ η2 we get

Hc =
a
′

a
=

2

η
,

and

H
′

c = − 2

η2
.

Thus from equations (??) ,

4πGa2ρ =
3

2
H 2

c =
6

η2
. (1.48)

According to [9], the perturbation equations are for p = δp = 0

∇2Φ = 4πGa2ρ[δN + 3HcvN ], (1.49)

Φ
′
+ HcΦ = 4πGa2ρvN , (1.50)

Φ
′′

+ 3HcΦ
′
+ (2Hc + H 2

c ) = 0 . (1.51)

Here we use the notation vi = −v,i and vi = δui
a
, index N denotes

again the conformal-Newtonian gauge.
Now, we will use 2H

′
c + H 2

c = 0 and the last equation (1.51). We wil
get that

Φ(η, ~x) = C1(~x) + C2(~x)η−5. (1.52)

The second term is the decaying part. We get C1(~x) from the initial
values Φin(~x) and Φ

′
in(~x) at some intial time η = ηin ,

Φin(~x) = C1(~x) + C2(~x)
1

η5
in

,Φ
′

in(~x) = −5C2(~x)η−6
in , (1.53)

where
C1(~x) = Φin(~x) +

1

5
ηinΦ

′

in(~x) , C2(~x) = −1

5
η6
inΦ

′

in(~x). (1.54)

Unless we have very special initial conditions, conspiring to make C1(~x)
vanishingly small, the decaying part soon becomes much smaller than
C1(~x) and can be ignored. Thus we have the important result that the
Bardeen potential Φ is constant in time for perturbations in the flat
matter dominated universe.
Ignoring the decaying part, we have Φ

′
= 0 and we get for the velocity

perturbation from (1.50)

vN =
HcΦ

4πGa2ρ
=

2Φ

3Hc

=
1

3
Φη = t

1
3 , (1.55)
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and from (1.49) we have

∇2Φ = 4πGa2ρ[δN + 2Φ] =
3

2
H 2

c [δN + 2Φ], (1.56)

or

δN = −2Φ +
2

2H 2
c

∇2Φ. (1.57)

Because our background space is flat we can Fourier expand the
perturbations. For an arbitrary perturbation f = f(η, xi) = f(η, ~x), we
write

f(η, ~x) =
∑
~k

f~k(η)ei
~k~x. (1.58)

Using a Fourier sum implies using a fiducial box with volume V . Fi-
nally we can let V → ∞, and replace remaining Fourier sums with
integrals. In first order perturbation theory each Fourier component
evolves independently, so we can just study the evolution of a single
Fourier component, with some arbitrary wave vector ~k, and we drop
the subscript ~k from the Fourier amplitudes. Since ~x = (x1, x2, x3) is a
co-moving coordinate, ~k is a co-moving wave vector. The co-moving
wave number k and wavelength λ = 2π

k
are related to the physical wave-

length and wave number of the Fourier mode by

kphys =
2π

λphys
=

2π

aλ
= a−1k. (1.59)

Thus the wavelength λphys of the Fourier mode grows in time as the
universe expands. Details are written in the chapter 6 of [9]. Now we
will return to equation (1.57). In Fourier space this reads

δN~k (η) = −[2Φ +
2

3
(
k

H 2
c

)2]Φ~k, (1.60)

Thus we see that for the superhorizon scales, k << Hc, the density
perturbation stays constant

δN~k = −2Φ~k = const. (1.61)

whereas for subhorizon scales, k >> Hc, they grow proportional to the
scaling factor

δN~k ∼ a ∼ t2/3. (1.62)

Since the comoving Hubble scale Hc grows with time, various scales
k are superhorizon to begin with, but later become subhorizon. We
say that the scale in question "enters the horizon". We see that the
density perturbations begin to grow when they enter the horizon, and
after that they grow proportionally to the scale factor.
But one has to remember that these results refer to the density and ve-
locity perturbations in the conformal-Newtonian gauge only. In some
other gauges these perturbations, and their growth laws would be dif-
ferent. However, for subhorizon scales general relativistic effects be-
come unimportant and a Newtonian description becomes valid. In
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this limit, the issue of gauge choice become irrelevant as all "sensible"
gauges approach each other, and the conformal-Newtonian density and
velocity perturbations become those of a Newtonian description. The
Bardeen potential can then be understood as a Newtonian gravitation-
al potential due to density perturbations.

More about perturbations can found in the lectures of M. Postma,
T. Prokopec, H. - K. Suonio. General introduction to cosmology we
could find, for example, in the text of J. G. - Bellido.

1.5 Gauge invariance

SGR is gauge invariant theory, what we already mentioned in the previ-
ous, where the gauge transformations are the generic coordinate trans-
formations from local reference frame to another. The coordinates t, x
carry an independent physical meaning. By performing a coordinate
transformation, we can create fictious fluctuations in a homogeneous
and isotropic universe, which are just gauge artefacts. For a FLRW
universe there is a special gauge choice in which the metric is homo-
geneous and isotropic, which singles out a preferred coordinate choice.
But he situation is more complicated in a perturbed universe and we
have to be careful in that. Consider first a scalar perturbation in a
fixed ST. It can be defined via δφ(p) = φp − φ0(p) with φ0 the unper-
turbed field and p is any point of the ST. Generalizing this to the
standard General Relativity, where ST is not a fixed background, but
is perturbed, if matter is perturbed, the above definition is ill defined.
Indeed, φ lives in the perturbed real ST M where as φ0 lives in another
ST, the reference spacetime M0. To define a perturbation requires an
identification that maps points in M0 to points in M . The perturbation
can then be defined via δφ = φ((p0))−φ0(p0). However, the identification
is not uniquely defined, and therefore the definition of the perturbation
depends on the choice of map. This freedom of choising map is the
freedom of choosing coordinates. The choice of map is a gauge choice,
changing the map is a gauge transformation.

Thus fixing a gauge in SGR implies choosing a coordinate system,
threading a ST into lines (corresponding to fix x) and slicing into hy-
persurface of fixed time. There are two ways to proceed, and remove
the gauge artifacts. Perform the computation in terms of the gauge
invariant quantities or in a fixed gauge.
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2. Standard General Relativity in
Higher Dimensions

2.1 Introduction

Studying SGR in higher dimensions - generally for dimension of space-
time d with non-compact dimensions - served us as a nice preparation
to our other works in Chapter II and Chapter III. Therefore we are
beginning with this topic in Chapter I and we briefly discuss at the
beginning the GHP formalism in higher dimensions. Then a section
about the classification of the Weyl tensor in higher dimensions fol-
lows. We also included a related section about classification in spinors.
In the following we also study Kundt spacetimes ( ST’s ), because of
their usefulness in perturbations of black holes. We develop some basic
concepts for dimension d.

Before we will begin our own work, let us mention also the following
inspirative ideas in connection with cosmology. Details could be found,
for example, in [1], however various authors also discuss this topic
in other sources. The author of [1] was looking on the matter in a
curved 4d ST which can be regarded as the result of the embedding in
a x4 - dependent 5d ST. The nature of the 4d matter depends on the
signature of the 5d metric. And finally, what is most important for us,
the 4d source depends on the extrinsic curvature of the embedded 4d
ST and the scalar field associated with the extra dimension. Various
cosmological models are also discussed in this book.

First of all, note that the field equations of SGR in higher dimen-
sions are more complicated and the computations more involved. Be-
cause in this thesis we want to concentrate on perturbation theory, we
should mention that perturbations of rotating objects are more com-
plex. For example, the perturbation theory of Schwarzchild black hole
was studied, even by analytical methods, already by Chandrasekhar
[38], in 1983. When we consider the Kerr black hole, which was found
in 1963, we have already much more difficult problem. And the diffi-
culty increases as we go to higher and higher dimensions. People are
using numerical simulations for studying the stability of such objects
[41]. The features of event horizons are strongly dimension dependent
as was pointed out already in [39]. Black hole thermodynamics is also
used in this analysis, [41].

The generalization of the Kerr solution - the rotating black hole -
into higher dimensions is so called Myers Perry solution. It is a hard
problem to solve the stability issues for this solution. When people
try to solve these questions, they usually begin with rotations in sin-
gle plane. Natural parameters of this solution are angular momentum
parameters and mass. From the formula for mass, it seems that the
properties of these black holes do not differ too much from their coun-
terparts in four dimensions, however this in not true, as we can see
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from the formula for gravitational attraction and centrifugal repulsion.

∆

r2
− 1 =

−µ
rd−3

+
a2

r2
, (2.1)

details in [41].
The full solution can be analyzed using the method of the phase

space. We know the term phase space from the theory of ODE’s, how-
ever here it means that we fix the mass and to every angular momen-
tum parameter we define a dimensionless quantity ji for each angular
momentum parameter, we have a system of (j1, ...jN) ,where N goes to
d − 3. Only some values of these parameters - regions - are allowed.
We can find the qualitative behaviour of solutions in dimension d, if we
know it already in dimension d−2. If we are able to achieve to find the
region where the regular black hole exist, we could express all physical
magnitudes as functions of phase space variables ji.

The global topology of these solutions is the same as for the Kerr
solutions, however there are some differences in the causal nature of the
singularities. The Myers-Perry solution is manifestly invariant under
translations and also under rotations generated by N Killing vectors.

People faced for many years the problems with the stability issues
and some questions are not answered yet. The interesting feature
occured for the ultraspinning regime of rotating black holes. They are
dynamically unstable for dimension d ≥ 6 and they come apart into
pieces.

General structure of these solutions is more complex than in 4 di-
mensions. Black rings and black saturns also exist. Therefore it is
important to find which solutions are stable in the linearized sense.

We are mostly interested in black holes. These objects are for us the
most mysterious objects in the universe. People found already many
years ago that they, however, are very easy to describe thanks to no-
hair theorems. We were able to describe such an object with only few
quantities. Also, it was found by Roger Penrose and Stephen Hawking
that there was an analogy between cosmological model and black hole,
because both have singularities. So for us, this is a motivation to study
these objects.

Let us mention here that perhaps the most fascinating objects in this
universe are various galaxies and quasars. We suppose and all indirect
measurements are in concordance with this, that super-massive black
holes are in the centers of such objects.

The study of the linearized perturbations have connections with
isometries of black hole spacetimes. But an alternative approach was
made by Teukolsky. His approach was used for dealing with perturba-
tions of Kerr solution, [38]. As we write later, the Newman-Penrose
scalars Ψi encode the information about Weyl tensor. The perturba-
tion of Ψi will be denoted by Ψ

(1)
i and the unperturbed value is Ψ0. We

have a gauge freedom in infinitesimal coordinate transformations and
infinitesimal changes of tetrad.

Ψ
(1)
0 is gauge invariant, if l is repeated principal null direction of
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background ST.
In general spacetime, the linearized equations will lead to coupled

equations of motion for the quantities Ψ
(1)
A . In an algebraically special

vacuum ST, Teukolsky showed that one can decouple these equations
to obtain a single second order wave equation for Ψ1

0 . If the ST is of
the algebraical type D, both Ψ

(1)
0 and Ψ

(1)
4 are gauge invariant. They

satisfy decoupled equations of motion. We will use the GHP formalism
in Chapter 2 to show that dΨ0 and dΨ4 decouple for the case of FLRW
ST’s , when we make appropriate simplifications of the RHS.

For the case of Kundt ST’s, we obtain decoupling these quantities
also decouple in higher dimensions. We will present it on the example
of electromagnetism, because this result is considerably simpler. Then
we will mention gravitational perturbations. The highest boost weights
components in electromagnetism are denoted by φj. In 4d these quan-
tities satisfy a decoupled system of equations and it was investigated
how this works in general dimension d:

(2þ
′
þ + ðjðj + ρ

′
þ− 4τjðj + φ− 2(d− 3)

(d− 1)
Λ)φi

+ (−2τiðj + 2τjði + 2φSij + 4φAij)φj = 0 (2.2)

It is interesting to compare this with the equation for massive scalar
field φ

(∇µ∇µ − µ2)φ = 0. (2.3)

When we write this equation in the GHP formalism, we get the
following result:

(2þ
′
þ + ðiði + ρ

′
þ + 2τiði + ρþ

′ − µ2)φ = 0. (2.4)

The basic objects are the gravitational perturbations Ωij. Ω
(1)
ij is

gauge invariant quantity, if l is a multiple WAND of the background
spacetime. Thus we should study Einstein spacetimes for which l is a
multiple WAND. In that case we have that Ωij and Ψijk vanish in the
background and that Ωij = Ω

(1)
ij and Ψijk = Ψ

(1)
ijk. And the final result is

the same: we could achieve decoupling when the ST is Kundt.
We have already enough motivation for presenting the following

concept of the algebraic classification. [41]

2.2 Algebraic classification of spacetimes in high-
er dimensions

We will mention the most important concepts from algebraic classifica-
tion of Weyl tensor in higher d-dimensional Lorentzian manifolds, [2].
The present classification reduces to the classical Petrov classification
in 4 dimensions. We shall consider null frame l, n, m(i) (l and n null
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with lµlµ = nµnµ = 0, lµnµ = 1, m(i) real and spacelike with ma
(i)m

(j)
a = δ

(j)
(i) ;

all other products vanish) in a d-dimensional Lorentzian ST with sig-
nature (−,+,+...,+) (we could choose also lµnµ = −1, both alternatives
are possible), so that

gµν = 2l(µnν) + δ(j)(k)m
(j)
µ m(k)

ν . (2.5)

The frame is covariant relative to the group of real orthochronous
(=preserves the direction of time) linear Lorentz transformations, gen-
erated by null rotations, boosts and spins:

Null rotations:
rotations of one of the null basis vectors about the other. A null
rotation about l takes the form

l 7→ l, n 7→ n+ zim(i) −
1

2
z2l, m(i) 7→ m(i) − zil, (2.6)

where z2 = zizi.
Boosts:
these are rescalings of the null basis vectors that preserve the scalar
product l.n = 1

l 7→ λl, n 7→ λ−1n, m(i) 7→ m(i), (2.7)

where λ is an arbitrary non-zero function. We shall say that l, n and
m(i) have boost weights −1, 0 and 1. Generally, we say that a tensor
quantity Tis...is has a boost weight b, if it transforms as

Ti1....is 7→ λbTi1...is (2.8)

under boosts.
Spins:
these are SO(d− 2) rotations of the spatial basis vectors

m(i) 7→ Xijm(j) (2.9)

Any tensor T can be expanded with respect to the basis l, n,m(i),
where we use a collective notation for all three vectors l(a),

Tµν...σ = l(a)
µ lb)ν ...l

(d)
σ T(a)(b)...(d), (2.10)

so, for example, (lowered) indices 0 correspond to contractions with l.
The objects T(a)(b)...(d) are ST scalars, but transform as tensor compo-
nents under local Lorentz transformations, corresponding to changes
in the choice of basis vectors. We write the covariant derivatives of the
basis vectors as

Lµν = ∇νlµ, Nµν = ∇νnµ, M
(i)
µν = ∇νm(i)µ, (2.11)

and then project into the basis to obtain the scalars L(a)(b), N(a)(b),M
(i)
(a)(b).

From the orthogonality properties of the basis vectors we have the
identities

N0(a) + L1(a) = 0, M
(i)
0(a) + L(i)(a) = 0, M

(i)
1(a) +N(i)(a) = 0, M

(i)
j(a) +M

(j)
(a)(b) = 0.(2.12)
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We introduce the notation

T{pqrs} ≡
1

2
(T[pq][rs] + T[rs][pq]).

We can decompose the Weyl tensor and sort the components of the
Weyl tensor by boost weight:

Cµν...σ =

boost weight 2︷ ︸︸ ︷
4C0(i)0(j)n{µm

(i)
ν nρm

(j)
σ}

+ 8

boost weight 1︷ ︸︸ ︷
C010(i)n{µlνnρm

(i)
σ} + 4C0(i)(j)(k)n{µm

(i)
ν m

(j)
ρ m

(k)
σ}

+4C0101n{µlνnρlσ} + 4C01(i)(j)n{µlνm
(i)
ρ m

(j)
σ}

+8C0(i)1(j)n{am
(i)
b lcm

(j)
d} + C(i)(j)(k)(l)m

(i)
{am

(j)
b m(k)

c m
(l)
d}

}
boost weight 0

+

boost weight -1︷ ︸︸ ︷
8C101(i)l{anblcm

(i)
d} + 4C1(i)(j)(k)l{am

(i)
b m

(j)
c m

(k)
d}

+

boost weight -2︷ ︸︸ ︷
4C1(i)1(j)l{am

(i)
b lcm

(j)
d}

(2.13)

The Weyl tensor is generically of boost order 2. If all C0(i)0(j) vanish, but
some C010(i) or C0(i)(j)(k) do not, then the boost order is 1, etc. The Weyl
scalars also satisfy a number of additional relations, which follow from
the curvature tensor symmetries and from the trace-free condition:

C
(i)
0(i)0 = 0, C010(j) = C

(i)
0(i)(j), C0〈(i)(j)(k)〉 = 0, (2.14)

C0101 = C
(i)

0(i)1, C(i)〈(j)(k)(l)〉 = 0 C0(i)1(j) = −1

2
C

(k)
(i)(k)(j) +

1

2
C01(i)(j), (2.15)

C011(j) = −C(i)
1(i)(j), C1〈(i)(j)(k)〉 = 0, C

(i)
1(i)1 = 0, (2.16)

where we use for the symmetrization notation 〈...〉. A real null rotation
about l fixes the leading terms of a tensor, while boosts and spins sub-
ject the leading terms to an invertible transformation. It follows that
the boost order (along l) of a tensor is a function of the null direction
l(only). We shall therefore denote boost order by B(l). We define a
null vector l to be aligned with the Weyl tensor whenever B(l) ≤ 1 (and
we shall therefore refer to l as a Weyl aligned null direction (WAND)).
We call an integer 1 − B(l) ∈ {0, 1, 2, 3} the order of alignment. The
alignment equations are d(d − 3)/2 degree-4 polynomial equations in
(d− 2) variables, which are in general overdetermined and hence have
no solutions for d > 4.
We say that the principal type of the Weyl tensor in a Lorentzian
manifold is I, II, III,N according to whether there exists an aligned l
of alignment order 0, 1, 2, 3, respectively. If no aligned l exists we will
say that the manifold is of general type G. If the Weyl tensor vanishes,
we will say that the manifold is of type O. The algebraically special
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types are summarized as follows:

I : C0(i)0(j) = 0

II : C0(i)0(j) = C0(i)(j)(k) = 0

III : C0(i)0(j) = C0(i)(j)(k) = C(i)(j)(k)(l) = C01(i)(j) = 0

N : C0(i)0(j) = C0(i)(j)(k) = C(i)(j)(k)(l) = C01(i)(j) = C1(i)(j)(k) = 0 (2.17)

A 4-dimensional Weyl tensor always possesses at least one aligned di-
rection. For higher dimension, in general, a Weyl tensor does not
possess any aligned directions. Like a remark, it was shown that if
d ≥ 5, then the set of Weyl tensors with alignment type G is a dense,
open subset of the set of all d-dimensional Weyl tensors.

2.2.1 Shear, twist and expansion

We can write
lα;βl

β = L10lα + L(i)0m
(i)
α

according to [7].
So

l is geodetic⇔ L(i)0 = 0 (2.18)

In this case the matrix L(i)(j) acquires a special meaning since it is then
invariant under the null rotations preserving l. It is then convenient
to decompose L(i)(j) into its tracefree symmetric part σ(i)(j) (shear), its
trace θ (expansion) and its antisymmeric part A(i)(j) (twist) as

L(i)(j) = σ(i)(j) + θδ(i)(j) + A(i)(j) (2.19)

σ(i)(j) ≡ L〈(i)(j)〉 −
1

n− 2
L(k)(k)δ(i)(j), θ ≡

1

n− 2
L(k)(k), A(i)(j) ≡ L[(i)(j)] (2.20)

If l is affinely parametrized, i.e. L10 = 0, the optical scalars take the
form

σ2 = l(α;β)l
(α;β) − 1

d− 2
(lα;α)2 (2.21)

θ =
1

d− 2
lα;α (2.22)

w2 = l[α;β]l
α;β. (2.23)

2.3 Spinor approach

Spinors are more simpler objects than tensors (we denote them usually
with capital index), intuitive comparison is that it is a square root from
a tensor. Why were spinors so interesting for us in the approach for
SGR ? Authors [30] and [31] showed in their book that every vector
could be written in the language of spinors. We could translate every
vectorial equation into this formalism. Some equations looks simpler
in this formalism. But very interesting is their remark that spinor
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formalism is possible to apply in dimension four, although they had an
appendix about spin spaces in all dimensions.

There are more consistent definitions. The basic spin-space for us
is 2-dimensional complex vector space equipped with skew-symmetric
bilinear form a and the objects from this space are 2-components spin-
vectors, which are the simplest spinors. 1 We denote the symplectic
form by εAB, which plays the role of the metric. We could raise and
lower indices with this object and if we have two contravariant spinors
ψA and φB, we could make an action of the bilinear form on these
spinors and we get a complex number. The forms εAB and εAB provides
a natural isomorphism between spin-space and its dual.

From a group theoretical methods are the spinors are elements of
the representation of the group SL(2,C). And for us are interesting
the mix spinor-tensor objects which make the bridge between spinors
and tensors. So we have the correspondence

σaAA′σ
b
BB′ ↔ εABεA′B′ . (2.24)

But all this is written and is well known from the literature, for
example [30], [31], [36], in various notations. But as authors from [30]
wrote in their book the complications with formulating the physical
laws were due to the tensorial approach. When we take the spinors as
basic buliding blocks, the difficulties disappears. As we already wrote,
it is possible to build spinors in all dimensions, however the dimension
of the spin-space goes like 2

n
2 , so the efficiency of the spinor formalism

is very low in higher dimensions. Later we will show how to make
the spinor classification of the Weyl tensor in higher dimensions and it
was shown in the work of [37] that it is not so useful with the standard
classification (and not equivalent).

We will begin with classification of Maxwell tensor which will be
a toy-model for us. Then we will classify the gravitational field. The
discussion of the electromagnetic field will be made in such a way as
to emphasize the analogy to classification of the Weyl tensor for the
gravitational field case.

2.3.1 Complex three space

We will follow the notation of [23]. Let Fµν be the Maxwell tensor
and let ∗Fµν be its dual. The Fµν carries the information about the
electromagnetic field. Let us also define the tensor F+

µν by

F+
µν = Fµν + i ∗ Fµν , (2.25)

1It is an interesting observation that complex numbers is not only an artificial tool, but
they are built in formulations of physical laws, as we could see from the examples of QFT, and
they played an imporant role in physics. But we could look at the complex analysis as a real
analysis, with two real variables. Why I am making this aside will be clearer from the end of
this paragraph.
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so that ∗F+
µν = −iF+

µν. In section 8.2 of [23] the spinor equivalent of the
tensor Fµν was found, whereas that of the tensor F+

µν is given by

F+
AB′CD′ = 2φAC εB′D′ , (2.26)

where φAC is the Maxwell spinor. Classification of the electromagnetic
field can be made by classifying φAB. Therefore one studies eigenspinors
and eigenvalues of the spinorial equation

φABα
B = λαA. (2.27)

To study this equation one introduces the basis in the spin space. Let
the two spinors of the basis be denoted by lA and nA, satisfying the
normalization condition lAn

A = 1. This basis induces another basis,
given by

ξ0AB = nAnB, ξ1AB = −2l(AnB), ξ2AB = lAlB, (2.28)

in the three dimensional space, E3 of bispinors. This means a bispinor
φAB can be written in terms of the basis (2.28) as

φAB =
2∑

m=0

φm ξmAB, (2.29)

where φ0, φ1 and φ2 are called dyad components of the bispinor and
corresponds to six real components of the tensor Fµν. The spin frame
lA and nA induces other basis in E3

η0AB =
1√
2
i (lAnB + lBnA), (2.30)

η1AB =
1√
2

(lAlB + nAnB), (2.31)

η2AB =
1√
2
i (lAlB − nAnB). (2.32)

This basis satisfies the orthogonality relation

ηmABη
AB
n = δmn. (2.33)

In terms of this last basis φAB can now be written as

φAB =
2∑

m=0

χmηmAB.

The two sets of three components χ and φ are then related by

χ0 =
√

2i φ1, (2.34)

χ1 =
1√
2

(φ0 + φ2), (2.35)

χ2 =
1√
2
i (φ0 − φ2). (2.36)

This we do from the group theoretical reasons, because of symmetry.
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2.3.2 Classification of the Maxwell spinor

In terms of the dyad components φm, the eigenvalue equation (2.27)
becomes

Φα = λα, (2.37)

where Φ is a matrix of rank 2, given by(
φ1 φ2

−φ0 − φ1

)
and α is a column matrix given by

(
α0

α1,

)
,

where αa are the dyad components of αA, i.e., αa = ζaAα
A, and we

have denoted ζ A
0 = lA and ζ A

1 = nA. The two eigenvalues of equa-
tion (2.27) are λ = ±

√
(φ 2

1 − φ0φ2). One, therefore, has two cases:√
(φ 2

1 − φ0φ2) 6= 0, in which case there are two different eigenspinors;
and

√
(φ 2

1 − φ0φ2) = 0 in which case there is only one eigenspinor.

2.3.3 Note on the classification of the Weyl spinor

In the previous section bivectors were discussed. We will use now this
knowledge and we will apply them to the Weyl spinor.
The Weyl tensor Cαβγδ has the same symmetry properties as the Rie-
mann tensor. In addition, it satisfies

Cρ
αρβ = 0. (2.38)

These identities reduce the number of its independent components to
ten. We could find that the spinor equivalent of Cαβγδ is completely
symmetric spinor of four indices, ψABCD,

−CAB′CD′EF ′GH′ = εACεEG ψB′D′F ′H′ + ψACEG εB′D′εF ′H′ . (2.39)

The classification of the Weyl spinor is analogical to the classification
of the classification of the Weyl tensor.

2.3.4 Complex 5-space

In order to classify the Weyl tensor we classify the Weyl spinor ψABCD in
terms of its eigenvalues and eigenspinors. The characteristic equation
is now:

ψABCDφ
CD = λφAB (2.40)

The basis lA, nA in spinorial space induces the basis

ζ0ABCD = nAnBnCnD, (2.41)
ζ1ABCD = −4l(AnBnCnD), (2.42)
ζ2ABCD = 6l(AlBnCnD), (2.43)
ζ3ABCD = −4l(AlBlC lD), (2.44)

ζ4ABCD = lAlBlC lD. (2.45)
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2.3.5 Change of frame

The key ingredient of these formulas is the following: we have 5 com-
plex vectors ζ which correspond to 5 complex Newman-Penrose scalars;
These vectors create 5 dimensional space of completely symmetric 4-
spinors. These scalars transform as vectors in this space. It is not
possible to do this in dimension 5 [35]. But why we are saying all this,
even though it was well described in the literature [23]? For example,
when we try to generalize this concept of classification, (see e.g. [35] )
to dimension 5, where it is not possible to achieve this, because there
is not such a nice relation like inclusion of E5 to E3×E3 in contrast with
four dimensions. And now comes the key thing, that the case of four
dimensions is exceptional for spinors, as was already mentioned in the
work [30], and as we already discussed in the Introduction, [45]. Also
in pure geometry the dimension four has nice properties. Why are
four dimensions so special? Let me end this section with this question
mark.

2.4 Kundt class

The motivation for studying the Kundt class is from the point of view
of perturbation theory, for example, the following: Kundt class does
not contain any black holes, however the studying of the so-called near
horizon geometry played a role in the past and lead toward the studies
of this type of space-time. The motivation came also from the theory
of supergravity, which we mentioned in the introduction. We could
find informations about algebraic types of Kundt solutions in [25].
The Kundt class was generalized to arbitrary number of dimensions
in [3]. As in four dimensions it is characterized by having a shear-free,
non-expanding, non-twisting geodesic null congruence l = ∂v. Higher-
dimensional Kundt class can be written in canonical form as follows:

ds2 = 2du[dv +H(u, v, xk)du+Wi(u, v, x
k)dxi] + gij(u, x

k)dxidxj (2.46)

The spatial coordinates are (x1, ..., xd−2); gij is the Riemanian metric.
It follows from [8] that

Cvijk =
1

2(d− 2)
[gikWj,vv − gijWk,vv]. (2.47)

and
Cvivj = 0. (2.48)

Therefore the frame component C0(i)0(j) = 0 for the natural tetrad:

lµ = (1, 0, 0, ...), nµ = (H, 1,W1,W2, ...,Wd−2), (2.49)

(where the general prescription for mµ depends on the form of gij.)
Therefore
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Lemma 2.1. The Weyl type of Kundt metrics is I or more special,

as follows from algebraical criteria, when we use the equation (2.48).
All the coordinate transformations preserving the form of metric ([3],
[8]) are:
• (v′, u′, x′i) = (v, u, f i(xk)) and J ij ≡

∂f i

∂xj

H ′ = H, W ′
i = Wj(J

−1)j i, g′ij = gkl(J
−1)ki(J

−1)l j (2.50)

• (v′, u′, x′i) = (v + h(u, xk), u, xi)

H ′ = H − h,u, W ′
i = Wi − h,i, g′ij = gij (2.51)

• (v′, u′, x′i) = (v/k,u(u), k(u), xi)

H ′ =
1

k2
,u

(H + v
k,uu
k,u

), W ′
i =

1

k,u
Wi, g′ij = gij (2.52)

• (v′, u′, x′i) = (v, u, f i(u;xk)) and J ij ≡
∂f i

∂xj

H ′ = H + gijf
i
,uf

j
,u −Wj(J

−1)j if
i
,u, W ′

i = Wj(J
−1)j i − gijf j,u,

g′ij = gkl(J
−1)ki(J

−1)l j (2.53)

The higher - dimensional Kundt class contains a number of interesting
subclasses, which we describe in what follows.
pp-wave ST:
Higher-dimensional pp-wave spacetimes are defined as in four dimen-
sions, as spacetimes which admit a covariantly constant null vector.
The most general d-dimensional pp-wave ST is given by the Brinkmann
metric (we could find reference in the section 8.3.3. of paper ([42] and
[43]) :

ds2 = 2du[dv +H(u, xk)du+W i(u, xk)dxi] + gij(u, x
k)dxidxj. (2.54)

From (2.54) it is clear that k = kµ∂µ = ∂v is a Killing vector.
From the Bel-Debever criteria that the Weyl type is N in four di-

mensions.
Now we would like to solve the question, if there exist pp-waves of
Weyl type I in higher dimensions. I assert that no: according to [8],
ω = R(0)(0) = Rvv = 0 for natural frame vector lµ = (0, 1, 0, ..., 0) and
ψi = R(0)(i) = 0 for natural frame vectors lµ and mµ

(i) ; Now we use
Proposition 2 from [7]. It follows that pp-waves couldn’t be of Weyl
type I. In fact, pp-waves are of Weyl type II, III or N in higher dimen-
sions.

Higher-dimensional Lorentzian ST’s with vanishing scalar curvature
invariants of all orders are so called VSI ST’s. It was found that all
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such ST’s belong to the Kundt class and in fact, can be written in the
canonical form, [8]

ds2 = 2(ei(xk, u) + f i(xk, u)v)dxidu+ 2dudv + (av2 + bv + c)du2 + δijdx
idxj.

Such ST’s have a Weyl tensor of algebraic type III, or more special.
Two subclasses can be distinguished, namely the case f i = 0 for all
i = 1, 2, ..., D − 2 and the case f1 6= 0 with fi = 0, i = 2, 3, ..., D − 2. A
generalization of the VSI ST’s belonging to the Kundt class, such that
all polynomial scalar invariants constructed from the Riemann tensor
and its derivatives are constant, are called CSI ST’s.

In fact both alternative assumptions 1) and 2) in the lemma be-
low uniquely identify the Kundt class of non-expanding, twist-free and
shear-free ST, i.e. L(i)(j) = 0 (L(i)0 = 0), [7]

Lemma 2.2. Given a geodetic null congruence with tangent vector l in an arbi-
trary d-dimensional ST (d ≥ 4), the following implications hold:
1)R00 = 0, θ = 0 = σ(i)(j) =⇒ A(i)(j) = 0, C0(i)0(j) = 0
2)R00 = 0, θ = 0 = A(i)(j) =⇒ σ(i)(j) = 0, C0(i)0(j) = 0

In view of 2), we can conclude that one can not generalize the
Kundt solutions by allowing for non-zero shear (as long as R00 = 0
and one insists on the non-expanding and twistfree conditions). Note
that the assumed condition R00 = 0 from previous lemma 2.2 on the
matter content is satisfied in a large class of STs such as vacuum with
a possible cosmological constant, aligned pure radiation and aligned
Maxwell fields.

Further, in both above cases 1) and 2), the fact that the tangent
vector is necessary a WAND (because of C0(i)0(j) = 0) implies for d > 4
that the considered ST is algebraically special, i.e. it can not be of
type G. In addition, if we now substitute L(i)0 = 0 = L(i)(j) in one of
the Ricci identities (11k) in [7] and we further assume R0(i) = 0, we
obtain C0(i)(j)(k) = 0. Recalling the identity C0101 = C0(j)(i)(j), we find also
C010(i) = 0, so that with previous lemma we conclude [7]:

Lemma 2.3. Under the assumption R00 = 0 = R0(i) on the matter fields, d ≥ 4
Kundt STs (L(i)0 = 0 = L(i)(j)) are of type II (or more special).

2.4.1 Recurrent spacetimes

We define a special class of Kundt spacetimes , which we will call
recurrent (RNV): there must exist a null vector lµ in a neighborhood
of every point such that

lµ;ν = α lµlν , (2.55)

where α is a scalar function;
As we could see from standard literature, there exist coordinates u,v,xi

(where i = 1, ..., d− 2), such that the metric has the form

ds2 = 2du[dv +H(u, v, xk)du+Wi(u, x
k)dxi] + gij(u, x

k)dxidxj (2.56)
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where g = gij(x
k, u)dxidxj is a u-dependent family of Riemanian metrics.

The vector field ∂v = ∂
∂v

is null and recurrent, [5].
We would like to stress that Wi are not functions of v. (If Wi was

also a function of v, then the metric (2.56) would be a general Kundt
metric.)
We would like to understand more geometrically what does it mean
that a spacetime is RNV. We can contract the equation (2.55) with
vector l, n and m. After doing this we get:

Dlµ = 0 (2.57)
∆lµ = αlµ (2.58)
δlµ = 0, (2.59)

where α is a function.
From the second equation we see the geometrical picture. Now we
transport the vector l in direction n and the change of the vector l is
again in the direction l.

Further, from the well known propagation equations

Dlµ = (ε+ ε)lµ − κmµ − κmµ (2.60)
∆lµ = (γ + γ)lµ − τmµ − τmµ (2.61)
δlµ = (α + β)lµ − ρmµ − σmµ (2.62)

we get for the natural l vector the conditions for the spin coefficients:

κ = 0, σ = 0, τ = 0, ρ = 0. (2.63)

As was already written ( and this is clear from definition ), recurrent
spacetimes are a subclass of Kundt spacetimes. But we have a natural
division of the Kundt class to subclasses according to the form of the
function Wi for vacuum, with possibly cosmological constant Λ or those
that include a Maxwell field aligned with the geometrically privileged
null vector l such that

Fαβl
β = Qlα,

where Q is a function, [8].
• We will consider the following metric in dimension 5:

g = 2du(dv +H(u, v, xk)du+Wi(u, x
k)dxi) + gij(u, x

k)dxidxj,

where gij is again Riemannian metric. Then

lµ = (1, 0, 0, 0, 0), nµ = (H, 1,W1,W2,W3)

is a choice of l and n. Non-zero Christoffel symbols of second kind with
zero up are:

Γuuu = −∂H(u, v, xk)

∂v
; Γuu2 = −∂W1(u, xk)

∂v
; ...; Γuu4 = −∂W3(u, xk)

∂v
(2.64)

We have the following lemma:

35



Lemma 2.4. For recurrent spacetimes (Wi = Wi(u, x
k)) the vector ∂

∂v
= vµ =

(0, 1, 0, ..., 0) is the recurrent vector and v0;0 = α = ∂H
∂v

.

pp-waves (ST’s admitting covariantly constant null vector, lµ;ν = 0)
are a subclass of recurrent spacetimes (α = 0). Einstein pp-waves space-
times do not admit a non-zero cosmological constant, but recurrent STs
do, as was observed in [5].

It follows from [8] that C0(i)(j)(k) = 0. Using Bel-Debever criteria in
[6] we arirved to:

Lemma 2.5. The recurrent STs are of algebraical type II or more special. (Ricci
flat recurrent STs are of algebraic type IIa or more special.)

Note that in contrast with the result of [7], we do not make addi-
tional assumptions about Ricci tensor.

This lemma 2.5 is in correspondence with the results of T. Málek.
([44]). We would like to find the conditions on metric for Weyl types
II, III, N and 0. We will solve this problem for recurrent Einstein
spacetimes or recurrent spacetimes with null radiation again with the
help of Bel-Debever criteria. The components of Weyl tensor in coor-
dinate basis could be found in [8]. After a short computation we get
the following formula

R

d− 1
gij = R

(S)
ij (2.65)

It immediately follows that, gij = 0 for Einstein and null radiation
spacetimes if we want a recurrent ST of type III or N for non-zero cos-
mological constant. Therefore Einstein recurrent spacetimes of Weyl
type III and N with non-zero cosmological constant do not exist. We
have type N recurrent ST’s, if following conditions (and (2.65)) are
satisfied for the metric (and type III if (2.65) and (2.66) are satisfied)
:

RS
ijkl −

1

D − 2
(gikRlj − gilRkj − gjkRli + gjlRki) +

R

(D − 1)(D − 2)
(gikgjl − gilgjk) = 0 (2.66)

Ruijk −
1

D − 2
(−gijRuk + gikRju − gukRji + gujRki) +

R

(D − 1)(D − 2)
(gujgik − gukgij) = 0, (2.67)

where

Rui =
1

2
[gjk(gij,u + guj,i − gui,j)],k +

1

2
[gjk(gij,u + guj,i − gui,j)](ln

√
g),k

−1

2
H,ri +

1

2
gjkglmgim,k[gul,j − guj,l]− (ln

√
g),ui −

1

4
gjkglmgkm,igjl,u (2.68)
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Conditions for type 0 metric:

0 = −1

2
H,rr + (

H,rr

d− 2
)− R

(d− 1)(d− 2)
(2.69)

0 =
Rui

d− 2
+

WiH,rr

2(d− 2)
− WiR

(d− 1)(d− 2)
(2.70)

0 = Ruiuj −
1

d− 2
(HRij −WjRui −WiRju + gijRuu) (2.71)

+
R

(d− 1)(d− 2)
(Hgij −WiWj), (2.72)

where

Ruiuj =
1

2
(gui,uj + guj,ui −H,ij − gij,uu)− ΓvijΓ

u
uu + gkl(Γ

k
uiΓ

l
uj − ΓkijΓ

l
uu)

−gukΓuuuΓkij,

Γvij =
1

2
(gij,u −Wi,j −Wj,i) +

1

2
gvk(gik,j + gjk,i − gij,k),

Γluu = gljguj,u −
1

2
gljH,j −

1

2
glvguu,v,

Γkui =
1

2
gkl(gil,u + gul,i − gui,l),

Γuuu =
1

2
H,r. (2.73)

Examples of recurrent ST’s of Ricci type N of Weyl type III, N and
0 are the same as for VSI ST’s and examples of recurrent ST’s of type
II could be found in [5].

Will be the generalized warped-product of a recurrent Einstein ST
again a recurrent Einstein ST? We will use metric (2.55) as a seed-
metric:

ds2 =
1

f
dz̃2+f [2du(dv+H(u, v, xk)du+Wi(u, x

k)dxi)+gij(u, x
k)dxidxj], (2.74)

where f = −λz̃2 + 2dz̃ + b and i, j = 1, ..., d− 2. We would like to rewrite
this metric in the Kundt-form (2.46). We will use the following trans-
formation

v =
ṽ

−λz̃2 + 2dz̃ + b
. (2.75)

We will also denote xd−1 = z̃ and W̃d−1 = − ṽ(−2λz̃+2d)
−λz̃2+2dz̃+b

. W̃s = fWs for s =

1, ..., d− 2. H̃ = fH, g̃ij = fgij, g̃d−1d−1 = 1
f
. And indices ĩ, j̃, k̃ = 1, ..., d− 1:

ds2 = 2du[dṽ + H̃(u, ṽ, xk̃)du+ W̃ĩ(u, ṽ, x
k̃)dxĩ] + g̃ĩj̃(u, x

k̃)dxĩdxj̃ (2.76)

So, we see that we also get a dependence on ṽ for W̃ĩ!

Lemma 2.6. Direct product of Ricci flat Einstein ST is again a recurrent Ricci
flat Einstein ST, but Brinkmann warped product of a recurrent Einstein ST is
not a recurrent Einstein ST.

We used software Maple for some computations.
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2.4.2 Spacetimes with null Killing vector fields

First of all I would like to mention the concept of Killing vectors (Wil-
helm Killing (1847-1923)). Existence of Killing vectors in ST’s are
connected with symmetries. A vector lµ is a Killing vector, if it satis-
fies an equation

lµ;ν + lν;µ = 0. (2.77)

We say that a spacetime is called a null Killing vector field ST (NKVF)
if it admits a null Killing vector field. Some basic information we could
find in [46].
We have a Theorem 8.21 in [21]. A null Killing vector field k is
necessary geodesic, shearfree and non-expanding, with twist given by
w2 = Rabk

akb. If k is twistfree then it must be a WAND (and vice versa
if n is odd), so that the ST is of Weyl type I and belongs to the Kundt
class. If, additionally, Rabk

a kb then the Weyl type is II.

2.5 Conclusion

In this first Chapter 1 we studied SGR in higher dimensions. We re-
viewed the algebraic classification of Weyl tensor in higher dimensions,
we mentioned the classification in spinors and then we studied the so
called Kundt class, which admits twistfree, nonexpanding and shear-
free null direction. This class played a role in the perturbation theory
in studying the so called near-horizon geometries. We provided an ex-
ample for the case of recurrent spacetimes, which contains the pp-waves
as a special case. This exact solution has a connection in the search for
the gravitational waves, which is as we mentioned in the Introduction
missing experimental consequence of SGR. People expect to find the
gravitational waves with future generation of detectors.

The algebraic classification in dimension four - so called Petrov clas-
sification - was important from other physical point of view. For ex-
ample, type D spacetimes contains black holes. 2

And finally this interesting discipline served us as motivation for
other works. Here we present literature of our team here in the Math-
ematical Institute ([2], [4], [7], [21], [33] ) and other sources. Gravita-
tional instabilty in higher dimensions was studied, for example, [15],
[18],[19] and [20].

Other sources for higher dimensions are, for example, [13], [16].
Some information about recurrent spacetimes we could find in [5],

[32] and [8] .
General books about SGR are [23], [38] and [25],.

2In SGR holds also the so called peeling theorem that far from the source are the waves of
type N, so we see the advantage of this formalism.
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3. Perturbation of FLRW
spacetimes in GHP formalism

3.1 Introduction

Our goal is to reformulate the theory of Cosmological Perturbation
Theory in the compact language of GHP formalism. This is a conve-
nient formalism, because equations are of the first order. We would
like to show the correspondence with metric perturbations in NP and if
possible also in GHP. For us, the most interesting are scalar and tensor
perturbations. We will show how to reformulate the central equation
of [2] for the case of tensor perturbations in GHP. We will perform
calculations similar to those already done in previous literature for the
case of tensor perturbations. Later we will apply this to the case with
sources. We wish to apply this machinery to the phase transition,
which means first on the Cosmological Inflation, at the beginning of
evolution of our universe.

3.2 GHP-formalism

In NP notation the components of traceless Ricci read:

Φ00 = −1

2
R11, Φ01 = −1

2
R13, Φ10 = −1

2
R14,

Φ11 = −1

4
(R12 +R34), Φ21 = −1

2
R24, Φ22 = −1

2
R22,

Φ12 = −1

2
R23, Φ02 = −1

2
R33, Φ20 = −1

2
R44, (3.1)

Λ =
1

12
(R12 −R34).

Φ′00 = Φ22, Φ′11 = Φ11, Φ′10 = Φ12, Φ′02 = Φ20, Λ′ = Λ,

Φ∗00 = Φ02, Φ∗01 = −Φ01, Φ∗10 = Φ12, Φ∗11 = −Φ11, Φ∗21 = −Φ21, (3.2)
Φ∗22 = Φ20, Φ∗12 = Φ10, Φ∗02 = Φ00, Φ∗20 = Φ22, Λ∗ = −Λ.

Let’s make the following change of tetrad:

lµ → alµ, (3.3)

lν → a−1nν , (3.4)

mρ 7→ eiθmρ. (3.5)
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The quantity which transforms under these changes of tetrad like

η → a(p+q)/2a(p−q)/2η (3.6)

is said to be a GHP-quantity of type (p, q). Now we make the stan-
dard definitions, [1],

Φ00 : [2, 2], Φ01 : [2, 0], Φ10 : [0, 2], Φ11 : [0, 0], Φ20 : [−2, 2],

Φ22 : [−2,−2], Φ12 : [0,−2], Φ21 : [−2, 0], Φ02 : [2,−2], Λ : [0, 0]. (3.7)

3.3 Computations

Reference, where the following fact can be found, [2] will be of great
importance for us : the only non-vanishing spin coefficients for the
case of FLRW are α, β, γ, µ and ρ. These are the same non-zero spin
coefficients as for the case of the Schwarzschild solution. This fact can
be employed in the analysis of unperturbed equations. This means
that we can get rid of many terms in resulting equations. We get rid
of α, β, γ and ε because they are absorbed into þ and ð (þ

′
and ð′). We

have together 12 spin coefficients, which means that there remain yet
8 more: τ , σ, κ, µ, ρ, λ, π and ν .

For the case of FLRW ST we have the following 2 equations in GHP
formalism. In standard NP we have 8 equations, but this formalism
is even more efficient. But contrary to the Schwarzschild ST, we have
sources on the right hand side of the equations. The equations read

þΨ1 − ð′Ψ0 + τ ′Ψ0 − 4ρΨ1 + 3κΨ2 = þΦ01 − ðΦ00 − πΦ00 − 2ρΦ01+

κΦ02 + 2κΦ11 − 2σΦ10, (3.8)

þΨ2 − ð′Ψ1 − σ′Ψ0 + 2τ ′Ψ1 − 3ρΨ2 + 2κΨ3 = −ð′Φ01 + þ′Φ00 − ρ′Φ00+

2τΦ01 − 2ρΦ11 − σΦ∗00 + 2τΦ10 + 2þΛ, (3.9)

where the NP components of the Weyl tensor are defined in the stan-
dard way by formulas

Ψ0 = lµmνlρmσCµνρσ,

Ψ1 = lµnνlρmσCµνρσ,

Ψ2 = lµmνmρnσCµνρσ,

Ψ3 = nµlνnρmσCµνρσ,

Ψ4 = nµmνnρmσCµνρσ.

According to the [2] - and this should be clear because of their boost
weights - the Ψ0 and Ψ4 are connected with the tensor perturbations, Ψ1

and Ψ3 are connected with the vector perturbations and ψ2 is connected
with the scalar perturbations.
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(In the case of non-zero sources we have also other two equations:

− [þ′ − 2τ ∗ + π∗]Φ01 + [−þ− 2τ ∗ + π∗]Φ12+

[ð− 2(ρ∗ + ρ∗]Φ11 − [−ð′ + µ∗ + µ∗]Φ02+

σ∗Φ∗02 + σ∗Φ∗20 − κ∗Φ∗12 − κ∗Φ∗21 + 3ðΛ = 0, (3.10)

[ð− 2τ + 2π∗]Φ11 − 3ðΛ + [−þ + 2ρ+ ρ]Φ12+

[−þ′ − 2µ− µ]Φ01 + [ð′ − τ ∗ + π]Φ02

− κΦ22 + νΦ00 + σΦ21 − λΦ10 = 0.) (3.11)

Now we will follow the approach of [5]. The difference, as we already
mentioned, is that we have sources on the RHS. However, we could
make the same steps: we will take the first equation, we make the star
duality and we add these two equations. Then we plug from the Ricci
itentities, we eliminate some of these combinations of spin coefficients
(we make also prime and star dualities of these Ricci identities ) and we
arrive at the following result (the second equation could be obtained
in similar way, this equation contain information from both (3.8) and
(3.9) 1, it should be obtained by duality) :

[þ′þ− ð′ð− (4ρ′ + ρ′) þ− ρþ′ + (4τ ′ + τ)ð + τð′ + 4ρρ′ − 4ττ ′ − 2Ψ2 + 2Λ] Ψ4+

+ [4þκ′ − 4ðσ′ − 4 (ρ− 2ρ)κ′ + 4 (τ − 2τ)σ′ + 10Ψ3] Ψ3

+ [−4σ′þ′ + 4κ′ð′ − 12κ′τ ′ + 12ρ′σ′ − 3Ψ0] Ψ2 = 0.
(3.12)

It is interesting that for this case of FLRW spacetimes, we have
cancellations of all extra terms in front of Ψ2 and Ψ3. So these terms in
the brackets are exactly the same as for the case of the Schwarzschild
spacetime. This means that when we will make perturbations of these
equations, the second and third term disappear. And this is a refor-
mulation according to [2], when we are interested in equations without
sources, i.e. when we put just delta-function on the RHS. But in lat-
er work we will be interested in the same problem but with sources,
as was already suggested in ([2]). The advantage of our approach is
that all source terms could be written in one compact form. When we
write also the sources on the RHS of equation (3.8) and (3.9) we get
the following expressions on the RHS of these two equations (however
we are interested only in the first equation):

1In [5] is the second equation little different, however we will deal only with this first equation
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ðþΦ01 − ððΦ00 − ð(πΦ00)− 2ð(ρΦ01) + ð(κΦ∗00) + 2ð(κΦ11)− 2ð(σΦ10)

þðΦ01 − þþΦ02 + þ(µΦ02)− 2þ(τΦ01)− þ(σΦ00) + 2þ(σΦ11)− 2þ(κΦ12)

− τ ′(þΦ01 − ðΦ00 − πΦ00 − 2ρΦ01 + κΦ02 + 2κΦ11 − 2σΦ10)+

κ(−ð′Φ02 + þ′Φ01 + κΦ00 + 2ρΦ01 + τ ′Φ02 + 2τΦ11 − 2ρΦ12 − 2ðΛ)+

ρ(−ðΦ01 + þΦ02 − µΦ02 + 2τΦ01 + σΦ00 − 2σΦ11 + 2κΦ12)

− σ(þ′Φ00 − ð′Φ01 − σΦ02 + 2τΦ01 − ρ′Φ00 + 2τΦ10 + 2þΛ− 2ρΦ11)

− 4τ(þΦ01 − ðΦ00 + πΦ00 − 2ρΦ01 + κΦ02 + 2κΦ11 − 2σΦ10)+

4ρ(−ðΦ01 + þΦ02 − µΦ02 + 2τΦ01 + σΦ00 − 2σΦ11 + 2κΦ12). (3.13)

We can collect terms now, so we will get the following equation:

[þ′þ− ð′ð− (4ρ′ + ρ′) þ− ρþ′ + (4τ ′ + τ)ð + τð′ + 4ρρ′ − 4ττ ′ − 2ψ2 + 2Λ]Ψ4+

[4þκ′ − 4ðσ′ − 4 (ρ− 2ρ)κ′ + 4 (τ − 2τ)σ′ + 10ψ3] Ψ3 + +[−4σ′þ′ + 4κ′ð′−
−12κ′τ ′ + 12ρ′σ′ − 3ψ0]Ψ2 = [ðþ− 2ðρ− 2ρð + þð− 2þτ − 2τþ− τ ′þ

+2ρτ ′ + κþ′ + 2ρκ− ρð + 2τρ+ σð′ − 2τσ − 4τþ + 8τρ− 4ρð
+8τρ]Φ01 + [−ðð− ðπ − πð− þσ − σþ + πτ ′ + τ ′ð + κκ+ ρσ

−σþ′ + σþ′ + σρ′ + 4τð− 4τπ + 4ρσ]Φ00 + [−2ðσ − 2σð + 2τ ′σ + 6στ ] Φ10+

+ [2ðκ+ 2κð + 2þσ + 2σþ− 2κτ ′ − 2σρ− 6κτ + 10ρσ] Φ11 − [−2þκ− 2κþ+

6ρκ+ 2κρ]Φ12 + [−2κð− 2σþ] Λ + [ðκ+ κð− þþ + þµ+ µþ− κτ ′

−κð′ + κτ ′ + ρþ− µρ+ σσ − 4κτ + 4ρþ− 4ρµ]Φ02.
(3.14)

But let’s comment more the approach from this article. It is a nice
exercise with Green’s functions, raising and lowering operators. Their
approach for the case of scalar perturbations leads also to usage of
residue theorem. Our approach should be applicable for the case of
scalar, vector and tensor perturbations together.

Let’s follow now the main road of our approach to tensor perturba-
tions. In notation of [2] (in our notation (3.12) it is the first bracket
before dΨ4) we want to solve the following equation which is a standard
method for solving linear equations with delta function source on the
right hand side:

(SD+
1 SD

−
2 + L+

3 L
−
−2)Φ2 = δ(r − r′)δ(η − η′)δ(θ − θ′)δ(φ− φ′).

Using the following formula for the Green functions

G(x, x′) =
∑
n

φ∗n(x′)φn(x)

λn
,

we get

G =

∫ ∑
k,l,m

Y m
(2)lY

m∗
(2)lR

w
(2)kR

w∗
(2)k

(k − 2)(k + 3)− (l − 2)(l + 3)
dw

=
∑
k,l

(
∑

m Y
m

(2)lY
m∗

(2)l )(
∫
Rw

(2)kR
w∗
(2)k dw)

(k + l + 1)(k − l)
, (3.15)
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where Y are spherical harmonics and R are corresponding functions
for radial-conformal part.

3.4 Remark

For the case of scalar perturbations we need to compute

G =

∫ ∑
k,l,m

Y m
(0)lY

m∗
(0)lR

w
(0)kR

w∗
(0)k

(k − 2)(k + 3)− (l − 2)(l + 3)
dw. (3.16)

and for the case of vector perturbations

G =

∫ ∑
k,l,m

Y m
(1)lY

m∗
(1)lR

w
(0)kR

w∗
(0)k

(k − 2)(k + 3)− (l − 2)(l + 3)
dw.

Let’s now do the steps of the computations for the scalar case (3.16):
The nominator is equivalent to (2l+1)

4π
C

(1/2)
l (x), where C are Gegen-

bauer polynomials. But we know that

∞∑
l=0

C
(1/2)
l (x)tl = f(1/2)(x, t) =

1√
(1− 2xt+ t2)

.

Now we use methods from mathematical analysis known as generating
function methods, see, e.g. [7], for gaining the following expression

∞∑
l=0

C
(1/2)
l (x)(2l + 1)

(k + l + 1)(k − l)
.

We proceed in three steps. Two times integration and one derivative

∞∑
l=0

C
(1/2)
l (x)

tl−k−1

l + k + 1
=

1

t2k+2

∫
f(1/2)(x, t) t

k =
1

t2k+2
F(1/2)(x, t),

F(1/2)(x, t) =

∫
tk√

1− 2xt+ t2

= (
∞∑
i=0

Ait
i)
√

(1− 2xt+ t2) + Ak

∫
1√

1− 2xt+ t2
, (3.17)

∞∑
l=0

C
(1/2)
l (x)

tl−k

(l + k + 1)(k − l)
=

∫
1

t2k+2
F(1/2)(x, t) = G(1/2)(x, t).

All these calculations, although lenghty, are feasible. For some rel-
evant formulae, see [8]. The result of all these computations is similar
to the scalar case.
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We will relate this to metric perturbations. We can write the unper-
turbed tetrad as e1

(a) = Ak(a)e(k), where we write as usual by (1) the first
order in perturbation, where the matrix A expresses the perturbations
by the tetrad. Hence we need 16 functions, 10 degrees of freedom, 4
of general covariance and 6 of tetrad rotations.

The Ricci identities, which we have in Appendix A, provide the
equations satisfied by the spin coefficients. For example the 3.48
relates the shear σ to the gravitational radiation. For relating the
spin coefficients to Aka we need to linearize the commutation relation
c

(k)
(a)(b)e

(k) = [e(a), e(b)] to first order in perturbation. With these solutions,
we can determine some of the components of the metric tensor with
the help of the formula

hµν = gµν − g(0)
µν , (3.18)

[2].
Let’s make the final comment: we will show that the central equa-

tion (6) in [2] can be formulated in GHP formalism. So we have the
following system of 8 equations. They are already linearized:

SD±∓pΦp ± L∓1∓pΦp∓1 = ... (3.19)

p takes values from the set {−2,−1, 0, 1, 2}, but two equations are ex-
cluded. So together 8 equations. (The dots means RHS-sources, which
are not important for us now.)

SD+
0 Φ0 + L−1 Φ−1 = ..., (3.20)

SD−0 Φ0 − L+
1 Φ1 = ..., (3.21)

SD+
1 Φ−1 + L−2 Φ−2 = ..., (3.22)

SD−−1Φ−1 − L+
0 Φ0 = ..., (3.23)

SD+
−1Φ1 + L−0 Φ0 = ..., (3.24)

SD−1 Φ1 − L+
2 Φ2 = ..., (3.25)

SD+
−2Φ2 + L−−1Φ1 = ..., (3.26)

SD−−2Φ−2 − L+
−1Φ−1 = ... (3.27)

We will show in the first step that they are equivalent to

þΨ1 − ð′Ψ0 + τ ′Ψ0 − 4ρΨ1 + 3κΨ2 = ..., (3.28)
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þΨ2 − ð′Ψ1 − σ′Ψ0 + 2τ ′Ψ1 − 3ρΨ2 + 2κΨ3 = ..., (3.29)

when we use prime and star duality. (Terms with κ, σ and τ are zero,
when we make the linearization.) First we make the prime duality,
then star duality of both equations which gives six equations:

ðΨ1 − þ′Ψ0 − µΨ0 − 4τΨ1 + 3σΨ2 = ..., (3.30)

þ′Ψ3 − ðΨ4 + τΨ4 + 4µΨ3 − 3νΨ2 = ..., (3.31)

ðΨ2 − þ′Ψ1 + νΨ0 − 2µΨ1 − 3τΨ2 + 2σΨ3 = ..., (3.32)

þ′Ψ2 − ðΨ3 − σΨ4 + 2τΨ3 + 3µΨ2 − 2νΨ1 = ..., (3.33)

Remaining two equations are obtained by prime duality of (3.30)
and prime duality of (3.32).

ð′Ψ3 − þΨ4 + ρΨ4 + 4πΨ3 − 3λΨ2 = ..., (3.34)

ð′Ψ2 − þΨ3 − κΨ4 + 2ρΨ3 + 3πΨ2 − 2λΨ1 = ... (3.35)

Let’s examine the first equation (3.28). þ is acting on Ψ1, quantity
of type (2,0) (according to notation in [5]), therefore þ = D. And
ð′ = δ − pα− qβ. (Quantity Ψ0 is (4,0).) So

(D − 4ρ)Ψ1 − (δ − 4α)Ψ0 = ...

We will show equivalence with

SD−1 Φ1 − L+
2 Φ2 = ..., (3.36)

S

(
D− +

S ′

S

)(
a4S3

√
2

Ψ1

)
−
(
L+ + 2 cot (θ)

)(a5S3Ψ0

2

)
= ... (3.37)

But we can multiply the second equation by a5S3

2
, use the knowledge

of spin coefficients ρ = − ȧ
a3
− S′

a2S
and α = − cot θ

2
√

2aS
. We see after usage of

D− = ∂
∂r

+ ∂
∂η

that they are completely equivalent.
Second equation (3.29)

(D − 3ρ)Ψ2 − (δ − 2α)Ψ1 = ...

is equivalent to (3.21)

SD−(a3S3Ψ2)−
(
L+

1 + cot (θ)
)(a4S3Ψ1√

2

)
= ... (3.38)

Third equation (3.30)

ðΨ1 − þ′Ψ0 − µΨ0 − 4τΨ1 + 3σΨ2 = ... (3.39)
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is equivalent to
SD+

−2Φ2 + L−−1Φ1 = ... (3.40)

Then equation (3.20) is equivalent to (3.33), (3.22), is equivalent to
(3.31), (3.23) is equivalent to (3.35), (3.24), is equivalent to (3.32) and
(3.25), is equivalent to (3.34).

We are now ready to show the equivalence of equations

ð′ð dΨ4 = S,

and
L+
−1L

−
+2 dΨ4 = S,

which is the angular part of central equation from [2] for p = −2 ,
and S means for this moment the RHS. Following expressions are the
identities:

(δ∗ − pα− qβ)(δ − pβ − qα) dΨ4, (3.41)

(δ∗ + 3α + β) [(δ + 4β) dΨ4] , (3.42)

(δ∗ + 2α) [(δ − 4α) dΨ4] , (3.43)

which is equivalent to

(
1

2a2S2
)L+
−1L

−
+2 dΨ4.

We need further to show that þ′ρ+ µρ+ 2Λ = 0. This follows from

1

a2
(
−S ′S − S ′2

S2
)−

[
äa3 − 3a2ȧ2

a6

]
+ 2

S ′ȧ

a3
+ 2

ȧ

a

(
− ȧ

a3
− S ′

a2S

)
+

1

a2

((
S ′

S

)2

−
(
ȧ

a

)2
)

+
4 (a+ ä)

4a3
. (3.44)

And now it remains to prove that

D+
−3

[
aSD−−2(aSdΨ4)

]
(3.45)

is equal to

(∆ + 2γ + 5µ) (D − ρ) dΨ4. (3.46)

Later it will be interesting to show the correspondence with central
equation in [2].

49



3.5 Appendix A: Ricci identities

We will for the completness write here the 18 Ricci identities. 6 of
them we will comment more in the next section of the appendix. In
the remaining terms are also the perturbations of derivatives. As we
know these equations are linear.

d(Dρ)− δ∗dκ− 2ρdρ− ρdε− ρdε∗ + 2αdκ = dΦ00, (3.47)

Ddσ − δdκ− 2ρdσ − 2αdκ− dΨ0 = 0, (3.48)

−∆dκ+Ddτ − ρdτ − ρdπ∗ + 4γdκ− dΨ1 = dΦ01, (3.49)

d(Dα)−δ∗dε−ρdα−αdρ+αdσ∗−αdε∗−αdε+2αdε+γdκ∗−ρdπ = dΦ10, (3.50)

d(Dβ)− δdε− αdσ − ρ∗dβ − αdε∗ + µdκ+ γdκ+ αdε+ αdρ∗ − dΨ1 = 0, (3.51)

d(Dγ)−∆dε−α(dτ −dτ ∗)−α(dπ∗−dπ)+γ(dε+dε∗)+2γdε−dΨ2 = dΦ11−dΛ,
(3.52)

Ddλ− δ∗dπ − ρdλ− µdσ∗ − 2αdπ = dΦ20, (3.53)

d(Dµ)− δdπ − µdρ∗ − ρdµ+ 2αdπ + µdε+ µdε∗ − dΨ2 = d(2Λ), (3.54)

Ddν −∆dπ − µdπ − µdτ ∗ − dΨ3 = dΦ21, (3.55)

∆dλ− δ∗dν + 2µdλ+ 2γdλ− 2αdν + dΨ4 = 0, (3.56)

d(δρ)− δ∗dσ + 4αdσ − ρdα∗ − ρdβ + dΨ1 = dΦ01, (3.57)

d(δα)− d(δβ)− µdρ− ρdµ− αdα∗ − αdα− βdβ∗−
βdβ − 2αdβ − 2dαβ − γ(dρ− dρ∗) + dΨ2 = dΦ11 + dΛ, (3.58)

δdλ− d(δ∗µ)− 4αdλ+ µdα− µdβ∗ + dΨ3 = dΦ21, (3.59)

δdν − d(∆µ)− 2µdµ− 2γdµ− 2µdγ − 2αdν = dΦ22, (3.60)

d(∆γ)−d(∆β)−γdτ+dα∗γ+dβγ−dτµ+βdγ−βdγ∗−µdβ−dµβ−αdλ∗ = dΦ12,
(3.61)
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d(∆α)− d(δ∗γ)− ρdν − αdλ− γ∗dα− αdγ∗ − γdβ∗ − dγβ∗+
dτ ∗γ + αdµ∗ + dαµ∗ + dΨ3 = 0, (3.62)

δdτ −∆dσ − µdσ − ρdλ∗ + 2γdσ + 2αdτ = dΦ02, (3.63)

d(∆ρ)− δ∗dτ + µdρ+ ρdµ∗ − 2γdρ+ 2αdτ − ρdγ − ρdγ∗ + dΨ2 = −2dΛ. (3.64)

3.6 Appendix B: Gauge invariant variables

If we make the following change of tetrad

lµ → lµ,

mµ → mµ + εalµ,

nµ → nµ + εamµ + εamµ. (3.65)

we would like to know how will transform following entities Φ. We
have several notions of gauge invariance, so called infinitesimal gauge
invariance (i.g.i.) (entity is i.g.i., if it is, for example, zero in the
baground and we can find more about it in [5] and this is an example
of so called tetrad gauge invariance (t.g.i.2). Here are the explicit
transformation properties of the entities Φ:

Φ00 → Φ00, (3.66)

Φ02 → Φ02 + 2εaΦ01, (3.67)

Φ20 → Φ20 + 2εaΦ10, (3.68)

Φ22 → Φ22 + 2εaΦ21 + 2εaΦ12, (3.69)

Φ11 → Φ11 + εaΦ10 + εaΦ01, (3.70)

Φ01 → Φ01 + εaΦ00, (3.71)

Φ10 → Φ10 + εaΦ00, (3.72)

Φ12 → Φ12 + 2εaΦ11 + εaΦ02, (3.73)

Φ21 → Φ21 + 2εaΦ11 + εaΦ20, (3.74)

Λ→ Λ. (3.75)
So, the non t.g.i are only Φ01, Φ10, Φ12 and Φ21, because the non-diagonal
entities Φ are zero.

2There are also other notions of gauge invariance.
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3.7 Appendix C: General gauge invariance

3.7.1 Conventions

We employ abstract index formalism [4] and abstract indices will be
denoted by a, b, c.... The components of tensors with respect to null
tetrad will be labelled by concrete indices (a), (b), . . . . Finally, compo-
nents of tensors with respect to coordinate system will be labelled by
Greek indices µ, ν, . . . , while their spatial parts are denoted by Latin
indices i, j, . . . . We stress once again that we use the metric tensor with
signature (1,−1,−1,−1).

3.7.2 Basic setup

Let us denote the background FLRW spacetime endowed with the
background metric by (M, g), while the perturbed spacetime is (M̃, g̃).
We assume that there is a diffeomorphism φ̃ : M 7→ M̃ which allows us
to identify the points in the background spacetime with the points of
perturbed spacetime. This identification is not unique and gives rise to
the gauge transformations. We can construct another diffeomorphism
φ̂ which is “infinitesimally close” to φ̃ as follows.

Consider a point P ∈ M and define arbitrary vector field ξ on M .
Let φε : M 7→M be the flow for this vector field, i.e.

φ0 =
d

dε

∣∣∣∣
ε=0

φε = ξ.

Next we lift the mapping φε on M̃ by

φ̃ε = φ̃ ◦ φε ◦ φ̃−1

which is the flow for the push-forward of vector field ξ,

ξ̃ ≡ φ̃∗ξ =
d

dε

∣∣∣∣
ε=0

φ̃ε.

Desired new diffeomorphism of M and M̃ is now defined by

φ̂ = φ̃ε ◦ φ̃ = φ̃ ◦ φε : M 7→ M̃.

Let X be any (tensorial) quantity defined on M and let X̃ be cor-
responding perturbed quantity defined on M̃ . We wish to define the
perturbation of quantity X as the difference of X̃ and X, but these
quantities live in different spacetimes. Hence, in order to compare
them, we have to define the perturbation as

X̃ = φ̃∗X̃ −X.

However, this depends on the diffeomorphism chosen to identify the
spacetimes. If we take infinitesimally close diffeomorphism φ̂, corre-
sponding perturbation will be

X̂ = φ̂∗X̃ −X.
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These perturbations both live in the background spacetime and can be
compared:

X̂ − X̃ = φ̂∗X̃ − φ̃∗X̃ = (φ∗ε − id) φ̃∗X̃ = ε£ξ φ̃
∗X̃ + c.

We adopt the convention that all perturbed quantities are automati-
cally pulled-back to the background spacetime, so that we do not dis-
tinguish quantity X̃ living in the perturbed spacetime and its pull-back
φ̃∗X̃ living in the background spacetime. Then we simply write

X̂ = X̃ + ε£ξX̃. (3.76)

In particular, the perturbation of the metric tensor will be denoted
by g̃µν and under the gauge transformation it transforms via the rule

ĝµν = g̃µν +∇µξν +∇µξν . (3.77)

In what follows we omit the tildas over the perturbed quantities,
but we occasionally use the hat to indicate the behaviour under the
gauge transformation.

3.7.3 FLRW spacetimes

We take the line element of the background spacetime in the form

ds2 = gµν dxµ dxν = a2(η)
[
dη2 − gij dxi dxj

]
, (3.78)

where η is conformal time, a(η) is the usual scale factor and gij is the
spatial metric. Spatial indices i, j, . . . will be lowered/raised using this
spatial metric. General perturbation is written in the form [9]

gµν = a2(η)


2A B1 B2 B3

B1

B2 −gij
B3

 , (3.79)

where A is the lapse function and Bi is the shift vector. Perturbation
of the spatial part gij can be further decomposed into gij−trace free
part and gij−trace:

gij = 2 Eij + 2D gij, (3.80)

so that
gij Eij = 0, D =

1

6
gij gij.

3.7.4 Newman-Penrose formalism

In the background spacetime we introduce the Newman-Penrose null
tetrad

eµ(a) = (lµ, nµ,mµ,mµ), (3.81)
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where a is an abstract index [4] and (a) = 0, 1, 2, 3 labels the elements of
the tetrad. The Newman-Penrose null tetrad is chosen in such a way
that

g(a)(b) = eµ(a) gµν e
ν
(b) =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 . (3.82)

Corresponding dual tetrad is

e(a)
µ = (nµ, lµ,−mµ,−mµ)

and satisfies
eµ(a) e

(a)
ν = δµν , eµ(a) e

(b)
ν = δ

(b)
(a),

where δµν is the unit tensor and δ
(a)
(b) is the Kronecker symbol.

In the perturbed spacetime we introduce the perturbed null tetrad

ẽµ(a) = (l̃µ, ñµ, m̃µ, m̃
ν
).

We also employ the notation

ẽµ(a) = eµ(a) + deµ(a).

Since both set of vectors eµ(a) and ẽµ(a) form a basis of the tangent space,
we can expand

eµ(a) = J
(b)
(a) e

a
(b), (3.83)

where J (a)
(b) are small quantities. Requiring that ẽµ(a) be the null tetrad

with respect to g̃µν, i.e.

ẽµ(a) g̃µν ẽ
ν
b = g(a)(b),

we arrive at the condition

J(a)(b) = −1

2
g(a)(b), (3.84)

where indices on Jµν are lowered/raised with the tetrad metric (3.82)
and

gµν = eµ(a) gµν e
ν
(b).

Clearly, equation (3.84) fixes only the symmetric part of matrix Jµν and
thus we can perform a gauge transformation

Jµν 7→ Ĵµν = Jµν + Fµν , (3.85)

where Fµν is an arbitrary antisymmetric matrix, without changing the
normalization of perturbed null tetrad. Let us denote the elements of
Fµν by

Fµν =


0 A1 A2 A3

−A1 0 B3 −B2

−A2 −B3 0 B1

−A3 B2 −B1 0.


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Gauge-transformed null tetrad is then

êµ(a) = eµ(a) + F
(b)
(a) e

µ
(b),

or explicitly

l̂µ = lµ − A1 l
µ + A3m

µ + A2m
µ, (3.86a)

n̂µ = nµ + A1 n
µ −B2m

µ +B3m
µ, (3.86b)

m̂µ = mµ +B3 l
µ + A2 n

µ +B1m
µ, (3.86c)

m̂µ = mµ −B2 l
µ + A3 n

µ −B1m
µ. (3.86d)

The reality of lµ and nν (and their perturbations) and the relation
mµ = mµ imply

A3 = A2, B2 = −B3, B1 = −B1, A1 = A1. (3.87)

Thus, the transformation (3.85) has 6 real parameters corresponding to
6 generators of the Lorentz group.

Basis dual to eµ(a) will be denoted by e
(a)
µ and its elements are

eµ = (nµ, lµ,−mµ,−mµ).

Corresponding perturbed dual tetrad is

ẽaµ = eaµ + deaµ,

where
e(a)
µ = −J (a)

(b) e
(b)
µ .

The connection ∇µ associated with the background spacetime is
encoded in the Ricci rotation coefficients defined by

ω
(b)

(a) (c) = e(b)
µ ∇(c)e

µ
(a) ≡ e(b)

µ e
(d)
(c)∇(d)e

µ
(a). (3.88)

The Newman-Penrose spin coefficients are related to the Ricci rotation
coefficients by relations

κ = −ω 3
0 0, ε =

1

2

(
ω 0

0 0 − ω 3
3 0

)
, π = ω 2

1 0, (3.89a)

τ = −ω 3
0 1, γ =

1

2

(
ω 0

0 1 − ω 3
3 1

)
, ν = ω 2

1 1, (3.89b)

σ = −ω 3
0 2, β =

1

2

(
ω 0

0 2 − ω 3
3 2

)
, µ = ω 2

1 2, (3.89c)

ρ = −ω 3
0 3, α =

1

2

(
ω 0

0 3 − ω 3
3 3

)
, λ = ω 2

1 3. (3.89d)

Let ∇̃µ be connection associated with the perturbed spacetime.
Then [6]

∇̃µXν = ∇µXν − ΓγµνXγ, (3.90)
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which implies

Γγµν =
1

2
gγδ (∇µgνδ +∇νgµδ −∇δgµν) . (3.91)

Under the gauge transformation (3.77) we have

Γ̂γµν = Γγµν +∇ν∇µξ
γ +Rγ

µνδ ξ
δ, (3.92)

where Rµ
νδγ is the Riemann tensor of the background spacetime.

The Ricci rotation coefficients associated with perturbed null tetrad
are

ω̃
(b)

(a) (c) = ω
(b)

(a) (c) +∇(c)J
(b)
(a) + Γ

(b)
(a)(c) + J

(d)
(a) ω

(b)
(d) (c) − J

(b)
(d) ω

(d)
(a) (c)

+J
(d)
(c) ω

(b)
(a) (d). (3.93)

Under the gauge transformation (3.85) (which does not affect the Christof-
fel symbols) we have

ω̂
(b)

(a) (c) = ω̃
(b)

(a) (c) +∇(c)F
(b)
(a) + F

(d)
(a) ω

(b)
(d) (c) − F

(b)
(d) ω

(d)
(a) (c) + F

(d)
(c) ω

(b)
(a) (d).

(3.94)

We introduce the notation

ω̂
(b)

(a) (c) = ω̂
(b)

(a) (c) − ω
(b)

(a) (c), ω
(b)

(a) (c) = ω̃
(b)

(a) (c) − ω
(b)

(a) (c).

The transformation of the spin coefficients is found from (3.89):

κ̂ = κ−DA2 + (ρ+ 2ε)A2 + κ (B1 − 2A1) + σ A2, (3.95a)

τ̂ = τ −∆A2 + +2 γ A2 + τ B1 − σ B2 − ρB2, (3.95b)

σ̂ = σ − δA2 + (2β + τ)A2 + σ(2B1 − A1)− κB2, (3.95c)

ρ̂ = ρ− δA2 + 2αA2 − ρA1 − κB2 + τ A2, (3.95d)

ε̂ = ε+
1

2
(DB1 −DA1)− εA1 + (α + π)A2 + β A2 − κB2, (3.95e)

γ̂ = γ +
1

2
(∆B1 −∆A1)− (β + τ)B2 − αB2 + γ A1 + ν A2, (3.95f)

β̂ = β +
1

2
(δB1 − δA1) + (µ+ γ)A2 + β B1 − σ B2 − εB2, (3.95g)

α̂ = α +
1

2

(
δB1 − δA1

)
+ λA2 + γ A2 − αB1 − (ε+ ρ)B2, (3.95h)

π̂ = π −DB2 + λA2 + µA2 − π B1 − 2 εB2, (3.95i)

ν̂ = ν −∆B2 + ν(2A1 −B1)− (µ+ 2 γ)B2 − λB2, (3.95j)

µ̂ = µ− δB2 + µA1 + ν A2 − 2 β B2 − π B2, (3.95k)

λ̂ = λ− δB2 + λA1 + ν A2 − 2λB1 − (π + 2α)B2. (3.95l)

The gauge freedom (3.85) can be exploited in order to eliminate some
of the spin coefficients. Typically we want to eliminate κ and (ε + ε),
for then the vector la is tangent to affinely parametrized geodesic and
Dla = 0.
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Let us now return to the gauge transformation (3.76). If

g(a)(b) = eµ(a) e
ν
(b) gµν

are the tetrad components of the perturbation, then after the gauge
transformation (3.76) the new components will be

ĝ(a)(b) = g(a)(b) + eµ(a) e
ν
(b) (∇µξν +∇νξµ) .

Explicitly in the Newman-Penrose formalism:

ĝ00 = g00 + 2Dξ0 − 2(ε+ ε)ξ0 + 2κ ξ2 + 2κ ξ2, (3.96a)

ĝ01 = g01 +Dξ1 + ∆ξ0 − (γ + γ)ξ0 + (ε+ ε)ξ1 + (τ − π)ξ2 + (τ − π)ξ2, (3.96b)

ĝ02 = g02 +Dξ2 + δξ0 − (α + β + π)ξ0 + κ ξ1 + (ρ− ε+ ε)ξ2 + σ ξ2, (3.96c)

ĝ11 = g11 + 2∆ξ1 + 2(γ + γ)ξ1 − 2 ν ξ2 − 2 ν ξ2, (3.96d)

ĝ12 = g12 + ∆ξ2 + δξ1 − ν ξ0 + (α + β + τ)ξ1 + (γ − γ − µ)ξ2 − λ ξ2, (3.96e)

ĝ22 = g22 + 2δξ2 − 2λ ξ0 + 2σ ξ1 + 2(α− β)ξ2, (3.96f)

ĝ23 = g23 + δξ2 + δξ2 − (µ+ µ)ξ0 + (ρ+ ρ)ξ1 + (β − α)ξ2 + (β − α)ξ2. (3.96g)

Following [2] we introduce operators

L± = ∂θ ∓
i

sin θ
∂φ, L±n = L± + n cot θ, (3.97)

D± = ∂r ∓ ∂η D±n = D± + n cot r. (3.98)

With this notation, the Newman-Penrose operators acquire the
form

D =
1

a2
D−, ∆ = −1

2
D+, (3.99)

δ =
1√

2S a
L−, δ =

1√
2S a

L+. (3.100)

We will need the following identities. Let X and f be real functions.
Then the equation

D−p X = f(η, r, θ, φ) (3.101)

has explicit solution

X =
1

sinp r

∫ η

0

sinp (z − η + r) f(z, z − η + r, θ, φ) dz + sin−p r C(η − r, θ, φ),

(3.102)

where C is an arbitrary function of three variables. In order to simplify
notation we introduce the integral operator

(D−p )−1f =
1

sinp r

∫ η

0

sinp (z − η + r) f(z, z − η + r, θ, φ) dz,

so that the solution (3.102) acquires the form

X = (D−p )−1f +
1

sinp r
C(η − r, θ, φ).
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3.7.5 Spatially flat case

Let us assume that the backround universe is spatially flat, so that the
spatial part of the metric (3.78) in the spherical coordinates reads

gij = diag (1, r2, r2 sin2 θ).

The perturbation of the metric (3.79) then reads

gµν =


2A B1 B2 B3

B1 −2 Err − 2D −2 Erθ −2 Erφ
B2 −2 Erθ −2 Eθθ − 2 r2D −2 Eθφ
B3 −2 Erφ −2 Eθφ −2 Eφφ − 2 r2D sin2 θ

 .

In the conformal Newtonian gauge, the perturbation acquires the form

gµν = 2 a2(η) diag (Φ,Ψ,Ψ,Ψ).

Then the tetrad components of the perturbation are

g(a)(b) =


2 a−2(Ψ + Φ) Φ−Ψ 0 0

Φ−Ψ (1/2)a2(Ψ + Φ) 0 0
0 0 −r−2 cot2 θΨ r−2Ψ(1 + csc2 θ)
0 0 r−2 Ψ(1 + csc2 θ) −r−2 cot2 θΨ

 .

(3.103)

Using (3.83) and (3.84) we can immediately write down the perturba-
tions to the elements of the null tetrad:

lµ =
1

a2
(−Φ,Ψ, 0, 0) , (3.104a)

nµ = −1

2
(Φ,Ψ, 0, 0) , (3.104b)

mµ =
1√

2 a r3

(
0, 0,Ψ,

iΨ

sin3 θ

)
. (3.104c)

Perturbation of the spin coefficients are

κ = − 1

a2
(δΦ + δΨ) , (3.105a)

ε =
1

a2
(Φ,r −Ψ,η) . (3.105b)

Thus, the perturbed vector l̃a is not tangent to a geodesic (κ 6= 0).
Now we can exploit the gauge freedom (3.85) under which κ transforms
according to the equation (3.95a),

κ̂ = − 1

a2
(δΦ + δΨ)− (D − ρ)A2.

In order to set κ̂ = 0 we have to solve this equation, which in terms of
the operator D reads

D−p
(
a r1−pA2

)
= −a r1−p δ(Φ + Ψ).
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This is of the form (3.101) and hence the solution is

A2 = −r
p−1

a
(D−p )−1

(
a r1−p δ(Φ + Ψ)

)
+

rp−1

a sinp r
C(η − r, θ, φ).

Notice that there is a residual gauge freedom in the choice of function
C. Performing this gauge transformation we achieve

κ̂ = 0.

With this choice, l̃a is a geodesic, but since (ε+ ε) 6= 0, it is not affinely
parametrized. This can be cured by additional gauge transformation,
for the relation (3.95e) implies

ε̂+ ε̂ = ε+ ε−DA1.

Solving equation

DA1 =
1

a2
(Φ,r −Ψ,η)

we set ε̂+ ε̂ = 0 and from now l̃a is an affinely parametrized geodesic.

3.8 Appendix D: Remark about Ricci identites

We could rewrite the 6 Ricci identities followingly ( [1], equation (310),
b, c, g, i, j, p ), where we make the similar notation from [2] :

1

2
D−−2(S1)− µS1 − L−−1(

a4S2dκ

2
√

2
) = Φ2, (3.106)

D+
−2(S2)− ρa2S2 + L+

−1(
√

2dνS2) = Φ−2, (3.107)

1

2
D+
−2(S1)− a2ρS2 + L−−1(

dτa2S2

√
2

) = a3S3dΦ02, (3.108)

D−−2(S2)− µS1 − L+
−1(

dπa2S2

√
2

) = a3S3dΦ20, (3.109)

1

a2
D−(dν) +

1

2aS
D+(aSdπ)− µdτ = dΨ3 + dΦ21, (3.110)

1

a3S
D−(aSdτ) +

1

2a4
D+(a4dκ)− ρdπ = dΨ1 + dΦ01, (3.111)

S1 = S3a3dσ and S2 = S3adλ. And now equations a,h,k:

1

a4S2
D−(a2S2dρ)− 1√

2S3a5
L+

1 (a4S2dκ) = ρdε+ρdε+ADρ+Eδρ+Eδρ+dΦ00,

(3.112)

1

a3S
D−(aSdµ)− 1√

2a5S3
L−1 (a4S2dπ) = µdε+ µdε− µdρ+ dΨ2 + 2dΛ, (3.113)
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1√
2aS

L−dρ− 1√
2a2S2

L−2 (aSdσ) = −CDρ− E∆ρ+ ρdα + ρdβ − dΦ1 + dΦ01,

(3.114)
Now equations d,e,f:

1

a3S
D−(aSdα)− 1√

2aS
L+

1
2

(dε) = −ADα− Eδα− Eδα + αdρ

−αdσ + αdε− γdκ+ ρdπ + dΦ10, (3.115)

1

a3S
D−(aSdβ)− 1√

2aS
L−1

2

(dε) = αdσ + αdε− µdκ− γdκ

−αdρ+ dΨ1 − ADβ − Eδβ − Eδβ, (3.116)

Ddγ+
1

2a3
D+(a3dε) = −ADγ+α(dτ−dτ)+α(dπ−dπ)−γdε+dΨ2 +dΦ11−dΛ,

(3.117)
Now equations o,q,r:

L−− 1
2

(dγ) +
1

2a2S
D+(a2Sdβ) = A∆γ − A∆β + Cδβ + Cδβ + γdτ

−γdα + µdτ + βdγ + βdµ+ αdλ+ dΦ12, (3.118)

− 1

2a3S
D+(a3Sdρ)− 1√

2aS
L+
−1dτ = A∆ρ−ρdµ+ρdγ+ρdγ−dΨ2−2dΛ, (3.119)

1

a2S
D+(a2Sdα)− L+

1
2

(dγ) = A∆α− Cδα− Cδα + CDγ + E∆γ

+ρdν + αdλ+ αdγ + γdβ − γdτ − αdµ− dΨ3 = 0, (3.120)

And finally l,m,n:

1√
2aS

L−− 1
2

(dα)− 1√
2aS

L+
−1
2

dβ = −CDα− E∆α−Bδα + CDβ + E∆β

+Bδβ + µdρ+ ρdµ+ αdα + βdβ + γ(dρ− dρ) + dΦ11 + dΛ + dΨ2,
(3.121)

1√
2a2S2

L−2 (aSdλ)− 1√
2aS

L+dµ = CDµ+E∆µ+Bδµ− dΨ3 + dΦ21, (3.122)

1√
2a3L3

L−1 (a2S2dν) +
1

2S2
D+(S2dµ) = −A∆µ+ Cδµ+ Cδµ+ 2µdγ + dΦ22,

(3.123)
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Now we will deal with the first 6 equations. We have

D+
−q[

1

a4S2−p1
D−p1(a

2S2−p1dσ)]− L−−1[D+
−q(

1√
2aS

dκ)] = D+
−qdΨ0, (3.124)

−D−p [
1

2a3S1−p2
D+
p2

(a3S1−p2dσ)]−L−−1[D−p (
1√
2aS

dτ)] = −D−p (ρdλ)−D−p (dΦ02),

(3.125)
and

1

a3S1−pD
−
p (aS1−pdτ) +

1

2a4Sq
D+
−q(a

4Sqdκ) = ρdπ + dΨ1 + dΦ01, (3.126)

We will continue to work with the 6 Ricci equations (31a)-(31f),
because we would like to rewrite them in the manner of [2].( Ψ = 0 and
Φ = 0 for simplicity but we could add these terms at the end. )

We apply operator −D on the last equation and operator ∆ on the
first. We add these two equations. Now we will use the second equation
and the commutation relation ∆D −D∆ = 2γD :

2γDdσ −∆δdκ+Dδdτ = 2γDdσ + δ(dτ + dπ) +

ρ(δdτ + δdπ)− 4(δγ)dκ− 4γ(δdκ) =

= ∆(2ρ)dσ + 2ρ(∆dσ) + ∆(2α)dκ+ 2α∆dκ+D(µ− 2γ)dσ

+(µ− 2γ)Ddσ +Dρdλ+ ρDdλ+D(2β)dτ + 2βD(dτ) (3.127)

At this moment we eliminated all second order operators and after
usage of other equations (31a)-(31f) and simplifications we get a final
result (where we omitted terms which are zero for our spin coefficients):

ρ∆dσ + µDdσ + ρµ(dσ − dσ)− 6γρdσ + ∆(2ρ)dσ + [D(µ− 2γ)]dσ

+[Dρ]dλ+ [∆(2α)]dκ+ [D(2β)]dτ = 0. (3.128)

What is interesting that the same method will lead to the following
equation ( in case of equations (31c)-(31e)):

ρ∆dλ+µDdλ+[∆ρ]dλ+2[Dµ+Dγ]dλ+(2µγ+∆µ)dσ−2[Dα]dν+2[∆α]dπ = 0.
(3.129)

Remark. If we want to include the RHS, there occures expressions like
that:

δdΨ1 −DdΦ02 + ∆dΨ0 − δdΦ01. (3.130)

3.9 Appendix E: One remark about scalar, vec-
tor, tensor decouplings in linear perturbation
theory

The following argument could be found in every good lecture book
on cosmological perturbation theory. We Taylor expand the action,
the first term is satisfied from the dynamical equations and then we
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analyze the second term. However we present here for completness
the following, because we didn’t see that it was presented somewhere
in this manner. We use the conformal Newtonian gauge and we use
coordinate approach.

Now we want to see, how will slightly change the spin coefficients.
We will make a comparison with unperturbed values and so we get also
the perturbations. This road is promising, because we could observe,
what kind of NP equations are influenced by such scalar perturbations.
(We could do that also for vector and tensor perturbations.)

We will make the following simplification first. ψ = ψ(η, r, θ), so
ψ is not a function of φ. This is according to the known result that
perturbations of spherically symmetric spacetime is axially symmetric.
(However, this is only for the simplification, we could switch on the
dependence on φ. )

The tetrad is for the case, when we switch on only the scalar per-
turbations the following. (We can check the consistency by lµnµ = 1
and mµmµ = −1.)

lµ = (1,−(1− 2ψ), 0, 0) , (3.131)

nµ =

(
a2

2
(1 + 2ψ),

a2

2
, 0, 0

)
, (3.132)

mµ =

(
0, 0,− aS√

2
(1− ψ),−iaS sin θ√

2
(1− ψ)

)
. (3.133)

Now we can compute NP-scalars and Φ(a)(b):

ρ = ρ+ δρ and uµ = uµ + δuµ,

uµ = 1
a
(1,~0) and because uµuµ = 1 we have also uµ = a(1,~0).

gµν =

(
a2(1 + 2ψ) 0

0 a2(1− 2ψ)δij

)
Now we have for the perturbations:

δui ≡ 1

a
vi,

δui = avi,

δu0 = −1

a
ψ,

δu0 = a2δu0 + 2aψ.

We can now compute, for example, Φ00:

Φ00 = −4π(ρ+ δρ)(lµuµ)2 =
−4π

a2
(ρ+ δρ)[(1− 2ψ)(1 + ψ) + v1]2
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We will start with equations (3.48) and (3.56) now. The LHS for (3.56)
is equal to

1

4S2
(
∂2ψ

∂θ2
− i

sin(θ)

∂2ψ

∂θ∂φ
+ cot(θ)

∂ψ

∂θ
)

We could see the presence of imaginary part, which is equal to 0 be-
cause ψ does not depend on φ. The LHS of (3.48) is very similar. We
compute Weyl tensor in Mathematica software and we could find that
LHS = RHS for both equations (3.48) and (3.56) as it should be.
Now we will examine the next two equations (3.53) and (3.63). Be-
cause variations of spin coefficients dλ, dσ, dπ and dτ are zero in this
case, we have only terms with dΦ02 and dΦ20, but these two pertruba-
tions are zero in the first order approximation.
So first nontrivial equation is (3.55). We need to compute

dΦ21 = −4πnµuµm
νuν(ρ+ δρ)

and also Ddν − dΨ3. After some computation - during which we get
v3 = 0 because of the imaginary part - we get the equation

Hc
∂ψ

∂θ
+

∂2ψ

∂θ∂η
= a2v2 (−4πρ),

which is one of the desired equations. We could could work with the
second nontrivial equation (3.49) in similar way. Here are the compo-
nents of Φ

dΦ21 =
−4πρav2

2
√

2S
, (3.134)

dΦ01 =
−4πρv2√

2aS
. (3.135)

We need the expressions for the work with the next twelve equations
the perturbations of NP derivatives. So:

d(Dρ) =
1

a2
[2
∂ψ

∂r

ȧ

a3
+

1

a2

∂2ψ

∂r2
+

1

a2

∂2ψ

∂r∂η
+ 2(

∂ψ

∂η
ȧa3 + ψ

äa3 − 3ȧ2a2

a6
)+

1

a2

∂2ψ

∂r∂η
− ∂ψ

∂r

ȧ

a3
+

1

a2

∂2ψ

∂η2
− ∂ψ

∂η

ȧ

a3
− 2ψ

a2
[
ȧ

ra3
− äa3 − 3ȧ2a2

a6
],

d(Dα) =
− cot θ

2
√

2a2
[
1

a
(
∂ψ
∂r
r − ψ
r2

) +
1

ar

∂ψ

∂η
+
ψȧ

a2r
], (3.136)

d(Dβ) =
cot θ

2
√

2a2

[
1

a
(
∂ψ
∂r
r − ψ
r2

) +
1

ar

∂ψ

∂η
+
ψȧ

a2r

]
−

1√
2a2

[
1

a
(
∂2ψ
∂r∂θ

r − ∂ψ
∂θ

r2
) +

1

r
(

∂2ψ
∂η∂θ

a− ∂ψȧ
∂θ

a2
)

]
, (3.137)

d(Dγ) =
1

a2

[
1

2

∂2ψ

∂r2
+

1

2

∂2ψ

∂r∂η
− ψ ∂

∂η
(
ȧ

a
)

]
, (3.138)
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d(Dµ) =
1

a2

[
−

∂ψ
∂r
r − ψ
r2

− 1

r

∂ψ

∂η
+

1

2

∂2ψ

∂r2
− 1

2

∂2ψ

∂η2
− ψ ∂

∂η
(
ȧ

a
)

]
, (3.139)

d(δρ) =
1 + ψ√

2a4r
(
∂

∂θ
+

i

sin θ

∂

∂φ
)

[
2ψȧ+ a

∂ψ

∂r
+ a

∂ψ

∂η

]
, (3.140)

d(δα) =
1 + ψ√

2a4r
(
∂

∂θ
+

i

sin θ

∂

∂φ
)

[
− cot θ√

22ra
− cot θψ

2
√

2ra

]
, (3.141)

d(δµ) =
1 + ψ√

2a4r
(
∂

∂θ
+

i

sin θ

∂

∂φ
)

[
−ψ
r

+
1

2

∂ψ

∂r
− 1

2

∂ψ

∂η

]
. (3.142)

Remark. This remark is about scalar, vector and tensor decoupling
for the case of linear perturbation theory, which is a basic fact, which
people used and uses in cosmology. We present here computations
in coordinate-depednent approach, which should be useful for gain-
ing some inside, how perturbations work. It is only a sketch of full
computations, however should be useful.

We can take equations from [9] and we can compare them with
corresponding equations in Ricci identities in [1]. We haven’t to go
through all the terms. It is enough just to look at the RHS and we
could decide which equation from I,II and III fit to the right place.
This table could be, of course, made for the case of vector and as well
tensor perturbations.
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Table 3.1: Correspondence between the Ricci identities in [1], equation 310 and
in (13.8) - (13.10) in [9]
Equation Equation from Suonio
2. I.
3. Identity
4. II.
5. II.
6. Identity
7. III.
8. Identity(first order)
9. Identity
10. II.
11. Identity
12. II.
13. III.
14. II.
15. I.
16. II.
17. Identity
18. Identity (first order)
19. Identity
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4. Scalar perturbations in
f (R)-cosmology in the late universe
Now we will use the knowledge from the Appendix A and we will
study scalar perturbations of the metrics for non-linear f(R)-models,
[17], which are examples of the so called scalar-tensor theories. We
will consider the universe at the late stage of its evolution and deep
inside the cell of uniformity. We investigate the astrophysical approach
in the case of Minkowski spacetime background and two case in the
cosmological approach: the large scalaron mass approximation and
the quasistatic approximation, and get explicit expressions for scalar
perturbations for both these cases. The previous section will be used as
a preliminary, because we can use the knowledge which is independent
on the field equations.

We will consider a special class of f(R) - models which have solutions
RdS of the equation (Appendix A)

F (R)R− 2f(R) = 0. (4.1)

This equation follows from (4.51) in Appendix A for the case of the
vacuum solutions for which Ricci scalar is constant. Such solutions are
called de Sitter points. We can expand the function f(R) in the vicinity
of one of these points:

f(R) = f(RdS)+F (RdS)(R−RdS)+o(R−RdS) = −f(RdS)+
2f(RdS

RdS

R+o(R−RdS),

(4.2)
where we used equation (4.1). Now we suppose that parameters of

the model can be chosen in such a way that

2f(RdS)

RdS

= 1⇒ f(RdS) =
RdS

2
. (4.3)

Therefore we get

f(R) = −2Λ +R + o(R−RdS),

where Λ = RdS
4
. The stability of these points was discussed in [1] and

[17]. Obviously, these models go asympotically to the de Sitter space
when R→ RdS 6= 0 with a cosmological constant Λ = RdS

4
. This happens

when the matter content becomes negligible with respect to Λ as it is
the case with late Friedmann-Lemaitre-Robertson-Walker cosmology.
We can also consider a zero solution RdS = 0 of equation (4.1) It is
correct to call these points a Minkowski one. Here, Λ = 0 and such
models go asymptotically to the Minkowski space. In particular, three
popular models, Starobinsky, Hu-Sawicky and MJWQ ([20], [21], [22]),
have stable de Sitter points in the future (approximately at the redshift
z = −1).
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We have basic Friedmann equations in case of f(R)-theories in the
Appendix A, (4.55). They describe homogeneous background. We
consider the universe at late stages of its evolution, when galaxies and
cluster of galaxies have already formed and when the universe is high-
ly inhomogeneous inside the cell of uniformity, which is approximately
150 Mpc in size. These inhomogeneities perturb the homogeneous
background. At scales larger than the cell of the uniformity, the mat-
ter fields are well described by the hydrodynamical approach. On the
smaller scales is the mechanical approach more adequate. In the me-
chanical approach, galaxies, dwarf galaxies, and clusters of galaxies
(composed of baryonic and dark matter) can be considered as separate
compact objects. Moreover, at distances much greater than their char-
acteristic sizes they can be well described as point-like matter sources
with the rest mass density

ρ =
1

a3

∑
i

miδ(~r − ~ri) ≡
ρc
a3

(4.4)

where ~ri is the radius-vector of the i-th gravitating mass in the co-
moving coordinates. This is the generalization of the well known astro-
physical approach to the case of dynamical cosmological background,
[14]. Usually, the gravitational fields of these inhomogeneities are weak
and their peculiar velocities are much less than the speed of light. All
these inhomogeneities result in scalar perturbations of the FLRW met-
rics. In the conformal Newtonian gauge such perturbed metrics are

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)(dx2 + dy2 + dz2), (4.5)

where scalar perturbations Φ,Ψ << 1. The smallness of non-relativistic
gravitational potentials Φ and Ψ and the smallness of peculiar veloci-
ties are two independent conditions. We will split the investigation of
galaxy dynamics into two steps. First we neglect the peculiar velocities
and we define gravitational potential Φ. Then we use this potential to
determine dynamical behavior of galaxies. This enables us to take into
account both the gravitational attraction between inhomogeneities and
the global cosmological expansion of the universe. The case f(R) = R
was already investigated in [3]. This result is devoted to the first step
in the program. We are going to define scalar perturbations Φ and Ψ
for the f(R) gravitational models.

Under our assumptions and according to [17], these perturbations
satisfy the following system of equations:

−∆Ψ

a2
+ 3H

(
HΦ + Ψ̇

)
= − 1

2F
[

(
3H2 + 3Ḣ +

∆

a2

)
δF − 3H ˙δF+

+3HḞΦ + 3Ḟ
(
HΦ + Ψ̇

)
+ κ2δρ] , (4.6)

HΦ + Ψ̇ =
1

2F

(
˙δF −HδF − ḞΦ

)
, (4.7)
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−F (Φ−Ψ) = δF , (4.8)

3(ḢΦ +HΦ̇ + Φ̈) + 6H(HΦ + Ψ̇) + 3ḢΦ +
∇Φ

a2
=

1

2F
[3 ¨δF + 3H ˙δF−

−6H2δF − ∆δF

a2
− 3Ḟ Φ̇− 3Ḟ (HΦ + Ψ̇)− (3HḞ + 6F̈ )Φ + κ2δρ], (4.9)

¨δF + 3H ˙δF − ∆δF

a2
− 1

3
RδF =

1

3
κ2(δρ− 3δP ) + Ḟ (3HΦ + 3Ψ̇ + Φ̇)+

+2F̈Φ + 3HḞΦ− 1

3
FδR, (4.10)

δR = −2

[
3
(
ḢΦ +HΦ̇ + Ψ̈

)
+ 12H

(
HΦ + Ψ̇

)
+

∆Φ

a2
+ 3ḢΦ− 2

∆Ψ

a2

]
,

δF = F ′δR. (4.11)

In these equations, the function F , its derivative F ′ and the scalar cur-
vature R are unperturbed background quantities. Here, ∆ is a Lapla-
cian in the comoving coordinates. As a matter source, we consider
dust like matter. Therefore δP = 0 and

δρ = ρ− ρ =
(ρc − ρc)

a3
, (4.12)

where ρ and ρ are defined in previous text.
It can be easily verified that in the linear case f(R) = R⇒ F (R) = 1,

this system of equations is reduced to equations (2.18) - (2.20) in [3].
Now we will consider previous equations (4.6) - (4.11) in the astro-
physical approach. This means that we neglect the time dependence
of functions in these equations by setting all time derivatives equal to
zero. It is supposed also that the background model is matter-free,
i.e. ρ = 0. There are two types of vacuum background solutions of the
equation (4.51): de Sitter spacetime with RdS = 12H 2 = const. 6= 0 and
Minkowski spacetime with R = 0 and H = 0 . However the system of
equations was obtained for FLRW metrics, where we explicitly took
into account the dependence of the scale factor a on time. Therefore if
we want to get the time independent astrophysical equations directly
from (4.6-4.11), we should also neglect the time dependence of a, the
background parameter H = 0 . This means that the background so-
lution is the Minkowski spacetime. This background is perturbed by
dust-like matter with the rest mass density, (4.4). Keeping in mind
that ρ = 0 we have δρ = ρ.
In the case of Minkowski background and dropping the time deriva-
tives, equations (4.6-4.11) in the astrophysical approach are reduced
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to the following system:

−∆

a2
Ψ = − 1

2F

(
∆

a2
δF + κ2δρ

)
, (4.13)

−F (Φ−Ψ) = δF , (4.14)
∆

a2
Φ =

1

2F

(
−∆

a2
δF + κ2δρ

)
, (4.15)

−∆

a2
δF =

1

3
κ2δρ− 1

3
FδR , (4.16)

δF = F ′δR, δR = −2

(
∆

a2
Φ− 2

∆

a2
Ψ

)
, (4.17)

From (4.13) and (4.15) we obtain respectively

Ψ =
1

2F
δF +

ϕ

a
=
F ′

2F
δR +

ϕ

a
, Φ = − 1

2F
δF +

ϕ

a
= − F

′

2F
δR +

ϕ

a
, (4.18)

where the function ϕ satisfies the equation

∆ϕ =
1

2F
κ2a3δρ =

1

2F
κ2δρc = 4πGNδρc, GN =

κ2

8πF
. (4.19)

Here we took into consideration that in the astrophysical approach
δρc = ρc where ρc is defined by (4.4). It is worth noting that in the
Poisson equation the Newtonian gravitational constant GN is replaced
by an effective one Geff = GN/F .

Equation (4.14) follows directly from (4.18) and consequently, may
be dropped, while from (4.16) we get the following Helmholtz equation
with respect to the scalaron function δR :

∆δR +
a2

3

(
R− F

F ′

)
δR = − a2

3F ′
κ2δρ (4.20)

On the other hand, it can be easily seen that the substitution of
equations (4.18) and (4.19) into (4.17) results in the same equation
(4.20). Therefore, in the case of Minkowski background, the mass
squared of the scalaron is

M2 =
a2

3

F

F ′
. (4.21)

Now we want to take into consideration cosmological evolution.
This means that the background functions may depend on time. In
this case, it is hardly possible to solve the system directly. Therefore,
first we study the case of very large mass of the scalaron. It should be
noted also that we investigate the universe filled with nonrelativistic
matter with the rest mass density ρ ∼ 1

a3
. Hence we will drop all terms

which decrease (with increasing a) faster than 1
a3
. This is the accuracy

of our approach. Within this approach, δρ ∼ 1
a3

, [3].
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4.1 Large scalaron mass

As we can see from equation (4.4), the limit of large scalaron mass
corresponds to F ′ → 0. Then δF is also negligible. Therefore, equations
(4.6)-(4.11) read

−∆Ψ

a2
+ 3H

(
HΦ + Ψ̇

)
= − 1

2F

[
3HḞΦ + 3Ḟ

(
HΦ + Ψ̇

)]
, (4.22)

HΦ + Ψ̇ =
1

2F

(
−ḞΦ

)
, (4.23)

Φ−Ψ = 0 , (4.24)

3
(
ḢΦ +HΦ̇ + Ψ̈

)
+ 6H

(
HΦ + Ψ̇

)
+ 3ḢΦ +

∆Φ

a2
=

1

2F

[
−3Ḟ Φ̇− 3Ḟ

(
HΦ + Ψ̇

)
−
(

3HḞ + 6F̈
)

Φ
]
, (4.25)

0 = Ḟ (3HΦ + 3Ψ̇ + Φ̇) + 2F̈Φ + 3HḞΦ , (4.26)

0 = 3
(
ḢΦ +HΦ̇ + Ψ̈

)
+ 12H

(
HΦ + Ψ̇

)
+

∆Φ

a2
+ 3ḢΦ− 2

∆Ψ

a2
(4.27)

From (4.23) and (4.24) we get

Ψ = Φ =
ϕ

a
√
F
, (4.28)

where the introduced function ϕ depends only on spatial coordinates.
Substituting (4.28) into (4.22), we obtain

1

a3
√
F

∆ϕ+
3Ḟ 2ϕ

4aF 2
√
F

=
1

2F
κ2δρ (4.29)

As we mentioned above, neglecting relativistic matter in the late uni-
verse we have δρ ∼ 1

a3
([3]). This approximation is getting better and

better performed in the limit a→∞. We assume that this limit corre-
sponds to the final stage of universe evolution. The similar limit with
respect to the scalar curvature is R → R∞, where the value R∞ is just
finite. Then from (4.29) we immediately come to the condition

F = const.+ o(1), (4.30)

where o(1) is decreasing function of a. This condition holds at the con-
sidered late stage. One can naively suppose that in the late universe
Ḟ ≈ 1

a
+ o( 1

a
). However this is wrong. Obviously, without loss of gener-

ality, we can suppose that const. = 1. From the condition (4.30) we get

F = 1 + o(1)⇒ f = −2Λ +R + o(R−R∞), (4.31)
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where Λ is the cosmological constant. Therefore the limit of the large
scalaron mass takes place for models which possess the asymptotic
form of (4.31). For example, R∞ may correspond to the de Sitter point
RdS in future. All three popular models, Starobinsky, Hu-Sawicky and
MJWQ [20],[21], [22] have such stable de-Sitter points in the future
(approximately at the redshift z = −1) ([18],[19]). The condition of
stability is 0 < RF

′

F
< 1. Since F ≈ 1, this condition reads 0 < R <

1
F ′
, which is fulfilled for the de Sitter points in the above-mentioned

models. The reason of it consists in the smallness of F ′.
We now return to the remaining equations (4.25) - (4.27) to show
that they are satisfied within the considered accuracy. First, we study
(4.25) which after the substitution of (4.28) and (4.29) and some simple
algebra takes the form

ϕḢ

a
− ϕ

2aF
(HḞ − F̈ ) = 0 (4.32)

To estimate Ḟ and F̈ , we take into account that in the limit R → R∞,
F ≈ 1, H ≈ const. ⇒ Ḣ ≈ 0, and F

′
(R∞) is some finite positive value.

Then,

Ḟ = F
′
Ṙ ≈ F

′
(R∞)Ṙ ≈ Ṫ ≈ d(1/a3)/dt ≈ H(1/a3) ≈ 1/a3

and F̈ ≈ ȧ/a4 ≈ 1
a3
. Therefore, the LHS of equation (4.32) is of order

o(1/a3) and we can put it zero within the accuracy of our approach.
Similarly, equations (4.26) and (4.27) are satisfied within the consid-
ered accuracy. It can be also seen that the second term on the left
hand side of equation (4.29) is of order O(1/a7) and should be eliminat-
ed. Thus, in the case of the large enough scalaron mass we reproduce
the linear cosmology from the nonlinear one, as it should be.

4.2 Quasi-static approximation

Now we do not want to assume a priori that the scalaron mass is large,
i.e. F ′ can have arbitrary values. Hence, we will preserve the δF terms
in equations (4.6) - (4.11). Moreover, we should keep the time deriva-
tives in these equations. Such a system is very complicated for direct
integration. However, we can investigate it in the quasistatic approxi-
mation. According to this approximation, the spatial derivatives give
the main contribution to equations (4.6)-(4.11), ([24], [23]). Therefore,
first, we should solve "astrophysical" equations (4.13)-(4.17), and then
check whether the found solutions satisfy (up to the adopted accuracy)
the full system of equations. In the other words, in the quasi-static ap-
proximation it is naturally supposed that the gravitational potentials
(the functions Φ, Ψ) are produced mainly by the spatial distribution of
astrophysical/cosmological bodies. As we have seen, equations (4.13)
- (4.17) result in (4.18) - (4.20). Now, we should keep in mind that
we have the cosmological background. Moreover, we consider the late
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universe which is not far from the de Sitter point RdS in future. This
means that δρ = ρ−ρ in (4.19), all background quantities are calculated
roughly speaking at RdS and the scalaron mass squared (4.4) reads now

M2 =
a2

3
(
F

F ′
−RdS) (4.33)

Let us consider now equation (4.20) with the mass squared (4.33).
Taking into account that now δρc = ρc−ρc, we can rewrite this equation
as follows:

∆δ̃R−M2δ̃R +
a2

3F ′
κ2

a3

∑
i

miδ(~r − ~ri) = 0, (4.34)

where

δ̃R = δR +
κ2

(F − F ′RdS)a3
κ2ρc.

Then, the general solution for a full system is the sum over all
gravitating masses. As a boundary conditions, we require for each
gravitating mass the behavior δR ∼ 1

r
at small distances r and R̃ → 0

for r → ∞. Taking all these remarks into consideration, we obtain for
the full system

δR =
κ2

12πaF ′
∑
i

mi exp(−Mi|~r − ~ri|)
|~r − ~ri|

− κ2ρc
(F − F ′RdS)a3

. (4.35)

It is worth noting that averaging over the whole co-moving spatial
volume V gives the zero value δR .This result is reasonable because the
rest mass density fluctuation δρ, representing the source of the metric
and the scalar curvature fluctuations Φ, Ψ and δρ, has a zero average
value δρ = 0. Consequently, all enumerated quantities should also have
zero average values : Φ = Ψ = 0 and δR = 0, in agreement with (4.35).
From equation (4.18) we get the scalar perturbation functions Φ and
Ψ in the following form:

Ψ =
F
′

2F
[
κ2

12πF ′
∑
i

mi exp(−M |~r − ~ri|)
|~r − ~ri|

− κ2

(F − F ′RdS)a3
ρc] +

ϕ

a
(4.36)

Φ =
−F ′

2F
[
κ2

12πF ′
∑
i

mi exp(−M |~r − ~ri|)
|~r − ~ri|

− κ2

(F − F ′RdS)a3
ρc] +

ϕ

a
(4.37)

where ϕ satisfies equation (4.19) with δρ in the form (4.12) (i.e., ρc 6= 0).
Obviously when F

′ → 0, M →∞, and we have exp(−M |~r − ~ri|)/|~r − ~ri| →
4πδ(~r − ~ri)/M2, so the expression in the square brackets in (4.36) and
(4.37) is equal to κ2δρc/[(F − F

′
RdS)a3]. Therefore, in the considered

limit F ′ → 0 we reproduce the scalar perturbations Φ, Ψ from the pre-
vious large scalaron mass case, as it certainly should be.
Thus neglecting for a moment the influence of the cosmological back-
ground, but not neglecting the scalaron’s constribution, we have found
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the scalar perturbations. They represent the mix of the standard po-
tential ϕ

a
(see the linear case [3]) and the additional Yukawa term which

follows from the nonlinearity.
Now we should check that these solutions satisfy the full system (4.6)-
(4.11). To do it, we substitute (4.35), (4.36) and (4.37) into this system
of equations. Obviously the spatial derivatives disappear. Keeping in
mind this fact the system (4.6)-(4.11) is reduced to the following equa-
tions:

3H
(
HΦ + Ψ̇

)
= − 1

2F

[(
3H2 + 3Ḣ +

∆

a2

)
δF − 3H ˙δF + 3HḞΦ

+3Ḟ
(
HΦ + Ψ̇

)]
, (4.38)

HΦ + Ψ̇ =
1

2F

(
˙δF −HδF − ḞΦ

)
, (4.39)

3
(
ḢΦ +HΦ̇ + Ψ̈

)
+ 6H

(
HΦ + Ψ̇

)
+ 3ḢΦ +

∆Φ

a2
=

1

2F
[3 ¨δF

+3H ˙δF − 6H2δF − ∆δF

a2
− 3Ḟ Φ̇− 3Ḟ

(
HΦ + Ψ̇

)
−
(

3HḞ + 6F̈
)

Φ], (4.40)

¨δF + 3H ˙δF − ∆δF

a2
= Ḟ (3HΦ + 3Ψ̇ + Φ̇) + 2F̈Φ + 3HḞΦ , (4.41)

δF = F ′δR, (4.42)

F
′

F
RdSδR = −2

[
3
(
ḢΦ +HΦ̇ + Ψ̈

)
+ 12H

(
HΦ + Ψ̇

)
+

∆Φ

a2

+3ḢΦ− 2
∆Ψ

a2

]
. (4.43)

Here the term F
′

F
RdSδR in the left hand side of (4.43) disappear due

to the redefinition of the scalaron mass squared (4.33).
It can be easily seen that all terms in (4.35), (4.36) and (4.37) depend
on time, and therefore may contribute to equations (4.38)-(4.43). As
we wrote above, according to our nonrelativistic approach, we neglect
the terms of the order o(1/a3). On the other hand, exponential func-
tions decrease faster than any power function. Moreover, we can write
the exponential term in (4.35) as follows:

κ2

12πF ′
∑
i

mi exp(−
√

1
3
( F
F ′
−RdS)|rph − rph,i|)

|rph − rph,i|
(4.44)
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where we introduced the physical distance rph = ar. It is well known
that astrophysical tests impose strong restrictions on the non-linearity
[15, 16] (the local gravity tests impose even stronger constraints ma[10,
15, 16]). According to these constraints, (4.44) should be small at the
astrophysical scales. Consequently, on the cosmological scales it will
be even much smaller. So we will not take into account the exponential
terms in the above equations. However, in (4.35), (4.36) and (4.37), we
have also 1

a3
and 1

a
terms which we should examine. Before performing

this, it should be recalled that we consider the late universe which is
rather close to the de Sittter point. Therefore, as we already noted in
the previous subsection, F ≈ 1, H ≈ const. → Ḣ ≈ 0, RdS = 12H2 and
F
′
(RdS) is some finite positive value. Additionaly, Ḟ , F̈ , Ḟ ′ ≈ 1

a3
. Hence,

all terms of the form of Ḟ , F̈ , Ḟ ′ ×Φ,Ψ, Φ̇, Ψ̇ are of the order o(1/a3) and
should be dropped. In other words, the functions F and F

′ can be
considered as time independent.
First, let us consider the terms Ψ = Φ = ϕ/a in equations (4.36) and
(4.37) and substitute them into equations (4.38) - (4.43). Such 1/a
term is absent in δR. So we should put δR = 0, δF = 0. Obviously, this
is the linear theory case. It can be easily seen that all equations are
satisfied.
Now, we study the terms ∼ 1/a3, i.e.,

δR = − κ2

(F − F ′RdS)

ρc
a3

Ψ = − κ2F
′

2F (F − F ′RdS)

ρc
a3

Φ

=
κ2F

′

2F (F − F ′RdS)

ρc
a3

(4.45)

Let us examine, for example equation (4.38). Keeping in mind that
δF = F

′
δR, one can easily get

12H 2
c

κ2F
′

2F (F − F ′RdS )

ρc
a3

= 12H 2
c

κ2F
′

2F (F − F ′RdS )

ρc
a3

+ o(1/a3 ) (4.46)

Therefore, the terms ∼ 1
a3

exactly cancel each other, and this equation
is satisfied up to the adopted accuracy o(1/a3). One can easily show
that the remaining equations are fulfilled with the same accuracy.

Thus we have proved that the scalar perturbation functions Φ and
Ψ in the form (4.36) and (4.37) satisfy the system of equations (4.38)-
(4.43) with the required accuracy. Both of these functions contain the
nonlinearity function F and the scale factor a. Therefore both the ef-
fects of nonlinearity and the dynamics of the cosmological background
are taken into account. The function Φ corresponds to the gravita-
tional potential of the system of inhomogeneities. Hence we can study
the dynamical behavior of the inhomogeneities including into consid-
eration their gravitational attraction and cosmological expansion, and
also taking into account the effects of nonlinearity. For example, the
non-relativistic Lagrange function for a test body of the mass m in the
gravitational field described by the metric (4.5) has the form ([3]):

L ≈ −mΦ +
ma2~v2

2
, ~v2 = ẋ2 + ẏ2 + ż2
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We can use this Lagrange function for analytical and numerical study
of mutual motion of galaxies. In the case of the linear theory, such
investigation was performed, e.g., in [6].

We will make a small conclusion: we have studied scalar perturba-
tions of the metrics in nonlinear f(R) gravity. The universe has been
considered at the late stage of its evolution and at scales much less
than the cell of uniformity size which is approximately 150 Mpc. At
such distances, our universe is highly inhomogeneous, and the averaged
hydrodynamic approach does not work here. We need to take into ac-
count the inhomogeneities in the form of galaxies, groups and clusters
of galaxies. The peculiar velocities of these inhomogeneities are much
less than the speed of light, and we can use the nonrelativistic approxi-
mation. This means that in equations for scalar perturbations, we first
neglect peculiar velocities and solve these equations with respect to
scalar perturbation functions Φ and Ψ. The function Φ represents the
gravitational potential of inhomogeneities. Then we use the explicit
expression for Φ to describe the motion of inhomogeneities. Such me-
chanical approach is well known in astrophysics ([14]). We generalized
it to the case of dynamical cosmological background ([3],[4]). The main
objective of this work was to find explicit expressions for Φ and Ψ in
the framework of nonlinear f(R) models. Unfortunately, in the case of
nonlinearity, the system of equations for scalar perturbations is very
complicated. It is hardly possible to solve it directly. Therefore, we
have considered the following approximations: the astrophysical ap-
proach; the large scalaron mass case and quasistatic approximation. in
all three cases, we found the explicit expressions for the scalar pertur-
bation functions Φ and Ψ up to the required accuracy. The latter means
that, because we considered nonrelativistic matter with the averaged
rest mass density ρ ∼ 1

a3
, all quantities in the cosmological approxi-

mation are also calculated up to corresponding orders of 1
a
. It should

be noted that in the cosmological approach our consideration is valid
for nonlinear models where functions of f(R) have the stable de Sitter
points in the future with respect to the present time, and the closer to
RdS we are, the most correct our approximation is. All three popular
models, Starobinsky, Hu-Sawicky, and Miranda, have such stable de
Sitter points in the future.
The quasi-static approximation is of most interest from the point of
view of the large scale structure investigations. Here, the gravitational
potential Φ contains both the nonlinearity function F and the scale
factor a. Hence we can study the dynamical behavior of the inho-
mogeneities including into consideration their gravitational attraction
and the cosmological expansion, and also taking into account the effect
of nonlinearity. All this make it possible to carry out the numerical
and analytical analysis of the large scale structure dynamics in the late
universe for f(R) models as was done in [6] for the case of standard
general relativity.

What we suggest is the following numerical scheme. Because the
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generalized Friedmann equation is of the third order (it is formally
possible to write it followingly: x′′′ = F (x, x

′
, x
′′
), we could rewrite it as

a system of three ordinary differential equations of the first order and
we make the following substitution

ẋn = yn, (4.47)

ẏn = zn, (4.48)

żn = F (xn, yn, zn), (4.49)

where we plug for the function F fom the RHS of equation (51)
in article [25] and RHS is the Hu-Sawicky function. We could use,
for example, the explicit Euler method and we could be inspired by
previous works in simulations in f(R)-gravities.

4.3 Appendix A: Basic facts from f (R) - cosmolo-
gy

We have the field equations in f(R)-theories

Σµν ≡ F (R)gµν −
1

2
gµνR + 2Fgµν −∇µ∇νF = κ2TMµν (4.50)

TMµν is again the energy momentum tensor defined by the variational
derivative of LM in terms of gµν :

TMµν =
−2√
−g

δLM
δgµν

This tensor satisfies the continuity equation, as well as Σµν, ∇µΣµν = 0.
Now, Einstein gravity without the cosmological constant corresponds
to f(R) = R and F (R) = 1, so that the term 2F in

32F − FR− 2f = κ2T (4.51)

vanishes. In this case we have R = −κ2T and hence the Ricci scalar
is directly determined by the matter. In modified gravity the term 2F
does not vanish which means there is a propagating scalar degree of
freedom, φ = F (R) . The trace equation determines the dynamics of
the scalar field. Again,

Gµν = κ2(TMµν + T effµν ), (4.52)

κ2T effµν ≡ gµν
(f −R)

2
+∇µ∇νF − gµν2F + (1− F )Rµν . (4.53)

Since ∇µGµν = 0 and TMµν = 0, then ∇µT effµν = 0 . Hence the continuity
equation holds not only for Σµν, but also for the effective T effµν ! We
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Figure 4.1: Example of a galaxy cluster

consider only f(R) -theories which admit de Sitter points: these points
corresponds to vacuum solutions at which is the Ricci scalar constant.
So,

RF − 2f(R) = 0. (4.54)

We need the Sitter points, because we want to model inflation and
accelerated expansion of our universe.
In the case of f(R)-cosmologies we get again two - but more complicated
- Friedmann equations:

3FH2 =
FR− f

2
− 3HḞ + κ2ρM (4.55)

−2FḢ = F̈ −HḞ + κ2(ρM + pM), (4.56)

plus the continuity equation ˙ρM + 3H(ρM + pM) = 0. We have again
that the first equation with the continuity equation imply the second
equation. But the steps are different than in the case of standard
general realativity.

4.4 Appendix B: Hubble flows in observable uni-
verse

We could see at the previous picture one example of a galaxy cluster:
Abell1 2744 galaxy cluster; As we all know galaxies are grouped into
larger units called clusters and superclusters. But there are not any

1George Ogden Abell (1927-1983) was an american astronom. Abell’s catalog is a list of
approximately 4000 groups of galaxies, which have at least 30 members.
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Figure 4.2: Local Hubble flow

bigger structures. This means that universe starts to be homogeneous
and isotropic on scales bigger than 150 Mpc and is well described by
the modern realization of Friedmann models, so called ΛCDM model.
One of the characteristics of this model is linear velocity-distance rela-
tion between receding motion of galaxies due to the expansion of the
universe, so called Hubble flow.
We can make a rough estimate, where the gravitational attraction pre-
vails the cosmological expansion. If we plug v 300 km/s (peculiar
velocities) and H ≈ 70km/s.Mpc, we get a rough estimate 3-6 Mpc for
our local group of galaxies. From this point of view it seems reasonable
that Edwin Hubble observed the flow on distances 10 -30 Mpc.

But recent observations indicate the presence of Hubble flows on
distances of few Mpc from the center of our group of galaxies. And
we needed any theoretical substantiation for this result. There was a
suggestion that the cosmological constant is responsible for this local
Hubble flow, but the answer is no! The global cosmological exapansion
is responsible for local cold flow, but there is a less diffusion in the
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presence of cosmological constant. ([3])

4.5 Appendix C: Boundary terms in General rel-
ativity and f(R)-theories

We start with the action integral

SEH =

∫ √
−g(R− 2κLF ) d4x, (4.57)

where LF are an other fields, and demand its variation to be zero. So

δ

∫ √
−gR d4x =

∫
δ(
√
−ggµν)Rµν d

4x+

∫ √
−ggµνδRµν d

4x (4.58)

Now we need an equality which holds for all regular matrices A

∂αA = −AAµν∂αAµν (4.59)

and which could be proven either by a help of the equation

detA = exp(tr logA)

or directly from definition of determinant. So we get for a metric gµν
that

δ
√
−g =

1

2

√
−ggµνδgµν (4.60)

The standard result is

δRµν = ∇α(δΓαµν)−∇ν(δΓ
α
µα). (4.61)

But this is a tensorial equation so it is valid for all coordinate systems.
Consequently, we have for the second integral of (4.58) that∫ √

−ggµνδRµν d
4x =

∫ √
−g ∇α(gµνδΓαµν − gµαδΓ

β
µβ) d4x (4.62)

But this is zero according to Gauss’s theorem, when we impose the
suplementary condition δ(∂µgρν)|∂Σ = 0
The second integral gives∫

δ(
√
−ggµν)Rµν d

4x =

∫ √
−g(Rµν −

1

2
Rgµν)δg

µν d4x (4.63)

But we have also matter-term in (4.57), which gives us

δ

∫ √
−gLF d4x = −1

2

∫
Tµν
√
−gδgµν d4x, (4.64)

where Tµν is the energy-momentum tensor which is given by

Tµν =
−2√
−g

[(
∂(
√
−gLF )

∂gµν,α
),α −

∂(
√
−gLF )

∂gµν
] (4.65)
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So, we reproduce finally the familiar Einstein equations

Rµν −
1

2
Rgµν = κTµν (4.66)

We will get much more complex equation in case of the so called f(R)-
gravities which we will explore latter. We saw that the boundary term
disappeared, when we impose δ(∂ρgµν)|∂Σ = 0. What will happen when
we drop this condition?
Then the variation of the metric derivatives no longer vanish on the
boundary - we have a non-vanishing boundary term. We obtain no
longer the Einstein equations in this case. Therefore we amend the
action with the new Gibbons-York-Hawking term in order to fix this
problem:

S = SEH + SB,

where SEH is the Einstein-Hilbert action and SB is the boundary term.
A variation of this boundary term is equal to:

δSB =

∫ √
−g∇ν(g

µνδΓσµσ − gµσδΓνµσ) d4x (4.67)

We will make a notation:

V ν = gµνδΓσµσ − gµσδΓνµσ (4.68)

And so we can rewrite

δSB =

∫ √
−g∇νV

ν d4x (4.69)

We use the following Christoffel symbols

Γσµν =
1

2
gσλ(∂µgλν + ∂νgµλ − ∂λgµν) (4.70)

We have immediately

δΓσµν = δ{1

2
gσλ(∂µgλν + ∂νgµλ − ∂λgµν)}

=
1

2
δgσλ(∂µgλν + ∂νgµλ − ∂λgµν) +

1

2
gσλ{∂µ(δgλν) + ∂ν(δgµλ)− ∂λ(δgµν)}

(4.71)

Because of the boundary conditions δgµν = δgµν = 0 we see from (4.71)

δΓσµν |∂Σ =
1

2
gσλ{∂µ(δgλν) + ∂ν(δgµλ)− ∂λ(δgµν)} (4.72)

We can use this for computation of V ν |∂Σ, (4.68):

V ν |∂Σ =
1

2
gµνgσλ{∂µ(δgλσ) + ∂σ(δgµλ)− ∂λ(δgµσ)} − 1

2
gµσgνλ{∂µ(δgλσ)

+∂σ(δgµλ)− ∂λ(δgµσ)} =
1

2
gµνgσλ∂µ(δgλσ)− 1

2
gµσgνλ( ∂µ(δgλσ)

+∂σ(δgµλ)− ∂λ(δgµσ)} (4.73)
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5. Conclusion
We have been studying cosmological perturbation theory in this work.
In first part - Chapter I - we study general theory of relativity in
higher dimensions with extended extra dimensions. We mentioned the
usage of GHP formalism for perturbations in higher dimensions. We
introduce what is the algebraic classification of spacetimes in higher-
dimensions and we introduce the classification in spinors. This formal-
ism we apply in the next Chapter II, where we use the GHP formalism
for the perturbations of FLRW ST’s. We want to use this result for
the phase transition at the beginning of the Universe in next works.

In Chapter III we study so called f(R)-cosmologies, which are a
promising road for modelling the accelerated expansion of the Uni-
verse. f(R)-gravities are a different theory than Standard General Rela-
tivity. We obtain by variational procedure more complicated equations.
We study scalar perturbations, which are for us important because of
coupling to matter. We want to model the origin of structures in the
Universe. We used so called quasi-static approximation for obtaining
the scalar potentials Φ and Ψ, because these equations were compli-
cated for direct integration. We used an astrophysical approach first,
where we neglect the time derivatives, and then the large scalaron mass
approximation. This gave us the standard general relativity. There are
written in our paper explicit expressions for scalar potentials Φ and Ψ
for all three cases. One term is the Yukawa term and other part is the
contribution from standard potential. There is used a generalization
of the mechanical approach for the case of cosmological background.
The hydrodynamical approach is not applicable for the cell of 150 Mpc,
where the homogeneous Friedmann background is perturbed by inho-
mogeneities. Our approach is new. Next continuation of our work
would be models with torsion. It would be interesting to concentrate
first on the Hu-Sawicky function, from the recently published paper.
This part should give us the model of evolution (dynamics) of Universe
to the future. We all believe that it will help us to formulate one day
the theory of Quantum Gravity, which is the challenge for community
of theoretical physicists.
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pwithtocSGR (Standard General Relativity),
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QCD (Quantum Chromodynamics )
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