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Abstrakt 

Tématem dizertační práce je modelování a odhadování úvěrového rizika. V práci se konkrétněji 

zaměřujeme na úvěrové riziko retailového, zejména pak hypotečního, portfolia dlužníků. Práce je 

rozdělena do tří oddělených vědeckých článků se společným tématem, čímž je vývoj 

metodologie měření úvěrových rizik od jednoduchých rozšíření v současné praxi používaných 

modelů až po vytvoření modelu, který je schopen pracovat s takovými detaily, jako je např. 

struktura durace portfolia hypotečních úvěrů. Všechny tři články používají stejnou podkladovou 

časovou řadu delikvencí a podílu vymáhaných úvěrů národního portfolia hypoték ve Spojených 

státech. Protože byl výzkum prováděn několik let, pracují novější části dizertační práce 

s dodatečnými pozorováními. 

V prvním článku demonstrujeme, že současné regulatorní standardy pro kvantifikaci úvěrových 

rizik jsou založeny na předpokladech, které nutně nereflektují realitu. Zobecněním dobře 

známého Vašíčkova modelu, který stojí za Basel II, konstruujeme model pro odhadování 

úvěrových rizik. Náš model, podobně jako Vašíčkův, dekomponuje úvěrové riziko (které 

vyjadřujeme jako portfoliovou pravděpodobnost selhání) na dva rizikové faktory, z nichž jeden 

je společný pro všechny dlužníky v portfoliu a druhý individuální pro každého dlužníka. Náš 

model obsahuje dynamiku společného faktoru, který ovlivňuje aktiva dlužníků a u kterého, na 

rozdíl od Vašíčkova modelu, povolujeme nenormalitu. Popisujeme, jak se mohou odhadnout 

parametry našeho modelu a navíc dokládáme statistickou evidenci, že model založený na 

nenormálních rozděleních lépe odpovídá pozorovaným měrám delikvencí na hypotékách ve 

Spojených státech. 

Druhý článek je pokračováním našeho výzkumu. V tomto článku představujeme vylepšený 

vícefaktorový model, který simultánně popisuje míru selhání a ztrátu v selhání. Naše 

metodologie je znovu založena na Vašíčkově modelu, který zobecňujeme ve třech směrech. Za 

prvé, přidáváme model ztráty v selhání (loss given default, LGD). Za druhé, do modelu vnášíme 

dynamiku a za třetí, pro všechny faktory povolujeme nenormální rozdělení. Jak pravděpodobnost 

selhání, tak i ztráta v selhání jsou řízeny společným a individuálním faktorem. Individuální 

faktory jsou vzájemně nezávislé, ale umožňujeme závislost společných faktorů jakéhokoliv 

druhu. Náš model testujeme na národním portfoliu hypotečních delikvencí v USA, závislost 

společných faktorů modelujeme pomocí VECM metodologie a naše výsledky porovnáváme se 
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současnými regulatorními modely z Basel II. Naše nálezy ukazují, že metodologie, která je 

schopna popsat závislost mezi rizikovými faktory, je schopna přesněji predikovat střední 

hodnotu a kvantil ztrát. 

Nejnovější část našeho výzkumu je popsána ve třetím článku. Podobně jako ve druhé části 

předpokládáme, že dlužníci drží aktiva, která pokrývají splátky dluhu, a vlastní nemovitosti, 

které slouží jako kolaterál. Hodnota aktiv i ceny nemovitostí sledují obecný stochastický proces, 

který je řízen společným a individuálním faktorem. Popisujeme vztahy mezi společnými faktory 

a podílem selhání, resp. ztrátou v selhání, a zároveň navrhujeme ekonometrický proces odhadu 

modelu. Na rozdíl od předešlého výzkumu přidáváme vícegenerační aspekt a modelujeme aktiva 

jednotlivých generací odděleně. Ukazujeme, že přesnější odhad vývoje společných faktorů může 

vést, v porovnání s Basel II rámcem, v úsporám kapitálu drženého proti kvantilovým ztrátám.  



8 
 

Abstract 

The dissertation thesis deals with modeling and estimating credit risk. In the thesis we 

particularly focus on the credit risk of retail, and more exactly mortgage, debtors. The thesis is 

organized into three separate papers with a common theme, which is a development of a credit 

risk measurement methodology from simpler enhancements of the current research to a model 

able to capture such details as e.g. the duration structure of the mortgage portfolio. All three 

papers use the same underlying dataset, a time series of the national US mortgage portfolio 

delinquency and foreclosure rates. As the research was done during several years, the latter parts 

of the thesis work with additional observations.  

In the first paper, we demonstrate that the current regulatory standards for credit risk 

quantification are based on assumptions that do not necessarily match the reality. Generalizing 

the well-known Vasicek’s model, standing behind the Basel II, we build a model of a credit risk 

of a loan portfolio. The model, similarly to the Vasicek’s model, decomposes the credit risk 

(expressed as the portfolio probability of default) into two risk factors, one common for all 

borrowers in the portfolio, and one individual for each single borrower. Our model involves 

dynamics of the common factor, which influences the borrowers’ assets, and which we allow, in 

contrary to the Vasicek’s model, to be non-normal. We show how the parameters of our model 

may be estimated, and additionally, we provide a statistical evidence that the non-normal model 

is able to fit better the observed US mortgage delinquency rates than a normal one. 

The second paper is a continuation of the research. In this paper, we introduce an improved 

multi-factor credit risk model, describing simultaneously the default rate and the loss given 

default. Our methodology is based on the Vasicek’s model, which we generalize in three ways. 

First, we add a model for loss given default (LGD), second, we bring dynamics to the model, and 

third, we allow non-normal distributions of risk factors. Both the probability of default and the 

LGD are driven by a common factor and an individual factor; the individual factors are mutually 

independent, but we allow any form of dependence of the common factors. We test our model on 

a nationwide portfolio of US mortgage delinquencies, modeling the dependence of the common 

factor by a VECM model, and compare our results with the current regulatory framework, the 

Basel II. Our findings show, that a methodology, which is able to describe the dependency 

between the risk factors, can predict the mean and the quantile losses more precisely. 
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The most recent development in our research is described in the third paper. Similarly to the 

second paper, we assume borrowers hold assets covering the instalments and own real estate 

which serves as collateral. Both the value of the assets and the price of the estate follow general 

stochastic processes driven by common and individual factors. We describe the correspondence 

between the common factors and the percentage of defaults, and the loss given default, 

respectively, and we suggest a procedure of econometric estimation in the model. On the 

contrary to the second paper, here we add a multigenerational aspect and we model the assets of 

different generations separately.  We show that a more accurate estimation of common factors 

can lead to savings in capital needed to hold against a quantile loss, compared to the Basel II 

framework.  
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1. Introduction 

 

The dissertation thesis was inspired by one particular problem, which in the last decade 

influenced banking regulation, financial markets and the trustworthiness of large financial 

institutions – modeling and estimating credit risk. In the thesis, we propose models of estimation 

of credit risk with a particular focus on the credit risk of retail, and more specifically, mortgage 

debtors. 

We built our models on the textbook approach of the risk modeling of the portfolio of loans of 

Vasicek (Vasicek, 1987), who deduces the default rates of borrowers and thus the credit risk of 

the loan portfolio from the value of the borrowers' assets, which follow a geometric Brownian 

motion. Further, we followed the extensions of Vasicek’s model of Frye (Frye, 2000), who 

assumes that the loss given default (LDG) is a second determinant of credit risk as well as, 

Pykhtin (Pykhtin, 2003), who suggests a model where LGD is driven by one systematic and two 

idiosyncratic underlying variables. Among other most influential models, we can include the 

CreditMetrics model, in which the default frequency is modeled by transition matrices and 

probabilities or the CreditRisk+ model (Wilde, 1997), which, in contrary to the CreditMetrics 

model, assumes a Poisson distribution for the default frequency. 

Our research adopted the above mentioned assumptions, namely that credit risk is based on the 

fact that the credit losses are a function of PD and LGD which are further decomposed to 

underlying factors. Also, the similarity between our research and the described approaches might 

be found in the fact that PD and LGD are both driven by systematic and idiosyncratic factors, 

specific for both variables. The main contribution of our work lies in several improvements. 

Firstly, we bring dynamics to the systematic and idiosyncratic factors. Moreover, these factors, 

in contrary to the current research, are estimated from macroeconomic indicators and only the 

remaining variance is considered to be an element of uncertainty. Secondly, the evolution of the 

residuals from the estimated models is allowed to be non-normal. Finally, in the last of the three 

models we constructed, we switch from the single portfolio approach to a multi-generation 

approach, which enables us to also model the duration structure of the loan portfolio. 
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The thesis is organized into three separate papers with a common theme, which is the 

development of a credit risk measurement methodology from simpler enhancements of the 

current research to a model capable of capturing such details as e.g. the duration structure of the 

mortgage portfolio. All three papers use the same underlying dataset, a time series of the national 

US mortgage portfolio delinquency and foreclosure rates. As the research was done over several 

years, the latter parts of the thesis utilize a longer dataset with additional observations.  

Our research was, from the very beginning, focused on relaxing tightening assumptions in 

current models; however, as the research proceeded and we discovered further and further ways 

of how to describe the development of the credit risk with a higher accuracy, the final model, 

even though based on the same basis as the most common and used credit risk methodology, 

Vasicek’s model, is a standalone method of estimating credit risk with a significantly lower 

estimated variance than Vasicek’s approach. 

In the first paper, we relax several obviously unrealistic assumptions of Vasicek’s model, 

standing behind the Basel II. Our model, similarly to Vasicek’s, assumes that assets of debtors 

follow the geometric Brownian motion. If the value of assets of a borrower falls under a certain 

threshold, commonly interpreted as a value of the borrower’s debt, the debtor defaults. Also, as 

in Vasicek’s model, we decompose the credit risk (expressed as the portfolio probability of 

default) into two risk factors, one common for all borrowers in the portfolio, and one individual 

for each single borrower. The proportion of defaults in the portfolio is calculated as a limit if the 

portfolio is sufficiently large. Additionally, by the Law of large numbers the individual factor on 

a large portfolio cancels out and enters the final loss (or, more exactly default) distribution only 

by its own distribution, which is assumed to be standard normal. 

In contrary to Vasicek's, our model involves dynamics of the common factor, which influences 

the borrower's assets. For this factor we proposed an AR process and constructed an empirical 

model (estimated by the maximum likelihood estimator), in which the factor depends on 

macroeconomic development. The model was estimated on an empirical dataset of US mortgage 

delinquency rates and macroeconomic indicators. Our analysis shows that the residuals (i.e. the 

remaining unexplained variance in the common factor) have heavier tails than the originally 

proposed normal distribution. Thus, we allow the residuals of the process of factors to be non-
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normal, with the Generalized Hyperbolic Distribution, which we show to have the best fit. In 

particular, we provide statistical evidence that the non-normal model is able to fit the observed 

US mortgage delinquency rates better than ones with normal, lognormal or beta distributed 

residuals. We point out how the assumption, that risk factors follow a normal distribution, can be 

dangerous, especially during volatile periods comparable to the crisis in 2007-2009. The 

methodology based on the normal distribution can underestimate the impact of changes in tail 

losses. However, on the other hand, in periods with low volatility, the model showed lower 

capital requirements. This is due to the fact that we estimate the future loss distribution from 

historical information, which is, in fact, neglected by Vasicek’s model. 

The first paper is a joint research with Martin Šmíd, a supervisor of the dissertation, and was 

published in the Journal of Economics in 2012. 

The second paper describes another model of credit risk, which is an extension of the research 

from the first paper. In this paper, we introduce an improved multi-factor credit risk model, 

describing simultaneously the default rate and the loss given default. Our methodology is again 

based on Vasicek’s model (and thus the assumption that assets of borrowers follow a geometric 

Brownian motion), which we generalize in three ways this time. Firstly, we add a model for loss 

given default (LGD), which is also an improvement compared to the first model. Secondly, we 

bring dynamics to the model, and thirdly, we allow non-normal distributions of risk factors. Both 

the probability of default and the LGD are driven by a common factor and an individual factor; 

the individual factors are mutually independent, but we allow any form of dependence of the 

common factors. Thus the modeling of LGD is an analogous to PD modeling, with the 

assumption that, analogously to the assets of the borrowers in the case of PD, the real estate 

prices follow a geometric Brownian motion. Based on this, we build an analytically trackable 

function, which maps the relationship between the factor and the LGD. The factors in this model 

are allowed to have a general shape with any kind of statistical distribution. 

We tested our model on a nationwide portfolio of US mortgage delinquencies; however, as to our 

knowledge, there was no comparable LGD time series publically available, therefore, we 

constructed a proxy for LGD, based on the proportion of foreclosed on defaulted mortgages. We 

modeled the interdependence of the two common factors by a VECM model, and compared our 
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results with the current regulatory framework, which is described in the Basel II. The results 

demonstrated that there is a statistically significant relationship between the actual values of the 

factors and their past values, and moreover, these two time series are cointegrated. Similarly to 

the first model, the normality of the residuals from the VECM was rejected and thus we used the 

fitted generalized hyperbolic distribution to arrive at the quantiles of PDs and LGDs. The final 

results show that, in contrary to the first paper, the capital requirement is lower than in the case 

of Vasicek’s model. This is again caused by a more accurate model (and inclusion of the LGD 

model) than in the first case. This is a clear implication for risk management and quantification 

of credit risk, because our model, compared to Vasicek’s framework, brings capital savings. 

The second paper is also a product of joint research with Martin Šmíd. It was published in the 

Czech Journal of Economics and Finance in 2012. 

The most recent development in our research, our most advanced model of quantification of 

credit risk, is described and estimated in the last paper. Similarly to the first and the second 

models, we assume that borrowers hold assets, from which they repay the instalments, and own 

real estate, which serves as a collateral. This model fixes the most significant drawback of our 

previous models, the single-generation approach. Particularly, the third model still assumes that 

the value of the assets, as well as the price of the real estate, follow a geometric Brownian 

motion driven by common and individual factors but, in contrary to the preceding research, 

portfolios last for more than a single period. In particular, in each period (or more specifically, in 

each data point) new debtors enter the examined portfolio, while a part of the examined portfolio 

exits the model by one of two possible exit states, which are a full repayment of a loan and a 

default state. However, a price for an increased accuracy in the duration of individual generations 

in the model is the loss of the analytical trackability of functions mapping factors to PD, LGD, 

respectively which have to be calculated numerically by simulation. 

In the empirical part, we describe the correspondence between the common factors and the 

percentage of defaults, and the loss given default, respectively, and we suggest a procedure of 

econometric estimation of the model. Similarly to the second model, we chose the VECM 

procedure to model the relationships between the two common factors, and also the external 

environment, represented by a set of macroeconomic variables. For this we used the same dataset 
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as in preceding cases, however, enriched with recent observations.  The VECM results showed 

that the two common factors are cointegrated, and moreover, also depended on two 

macroeconomic variables – GDP and unemployment rates. Using the enhanced framework, we 

extracted more information from the empirical datasets, which induced that, as opposed to the 

prior model, the normality of residuals was not rejected in the VECM model. The more accurate 

estimation of common factors led to lower variation of the quantile estimate, which, translated to 

the regulatory language, means savings in capital, which is needed to cover unexpected losses, as 

compared to the Basel II framework. The second implication of the model is that the mean value 

of the loss can be forecasted by means of forecasts of common factors, GDP and unemployment, 

which enables to calculate expected and unexpected losses under various macroeconomic 

scenarios. This feature can be used e.g. for stress testing. 

The third paper is research conducted together with Martin Šmíd and Jan Voříšek. This part of 

the research was not published at the time of the submission of the dissertation, but had been 

submitted to the Journal of Credit Risk. 

In the three papers we have shown that the current commonly used credit risk quantification 

methodology is a very gross estimation of the mean and quantile values of credit losses. The 

framework can be improved by relaxing several of its assumptions, which, on the other hand, 

brings mathematical and computational complications, particularly in the case of the 

multigenerational approach. In a nutshell, we have managed to bring dynamics into the evolution 

of credit losses in time, and we have described the mapping of risk factors into PD and LGD. 

Additionally, our approach is compatible with the econometric estimation of the factors model, if 

it can be estimated by MLE. Lastly, we have shown that a clear link exists between the credit 

risk and macroeconomic environment, and that this link can be incorporated into the 

quantification of credit losses. Even if the calculations are complex, usage of our model leads to 

a more exact evolution of underlying risk factors, which also leads to a lower variance in the loss 

distribution and therefore, a lower difference between the mean and the quantile losses. In 

particular, our enhanced credit risk measurement methodology can save a portion of capital. 

The complexity of our approach has also introduced a space for further improvements. Among 

the main challenges, we can point out the appropriateness of the used data, especially 
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representing the LGD. For some portfolios, more accurate LGD datasets, e.g. for traded bonds, 

may be found. Also using an internal dataset from a bank could lead to a better estimate of the 

LGD. Secondly, the computational time of estimation of the most recent model version is quite 

time consuming. Introducing several simplifications, or fine tuning the code, could lead to 

acceleration of the numerical calculation. Lastly, the model can be enhanced to calculate 

expected and unexpected losses for multiple portfolios by creating a module which would be 

capable of joining the intra- and inter-portfolio correlations. We believe that these sets of models 

can contribute to a better understanding of credit risk and might, therefore, be implemented in 

banking practices.   
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2. Modeling a distribution of mortgage credit losses 

 

2.1 Introduction 

 

In our paper, we will focus on credit risk quantification methodology. Because banking is 

heavily regulated in developed countries, the minimum standards for credit risk quantification 

are often summarized in directives. The current recommended system of financial regulation was 

developed and is maintained by international supervisory institutions located in Europe (Basel 

Committee on Banking Supervision, CEBS – Committee of European Banking Supervisors) and 

its standards are formalized in the Second Basel Accord (“Basel II,” Bank for International 

Settlements, 2006) and is implemented into European law by the Capital Requirements Directive 

(CRD) (European Commission, 2006).  

For credit risk, Basel II allows only two possible quantification methods – a “Standardized 

Approach” (STA) and an “Internal Rating Based Approach” (IRB) (for more details on these two 

methods see Bank for International Settlements, 2006). The main difference between STA and 

IRB is that under IRB banks are required to use internal measures for both the quality of the deal 

(measured by the counterparty’s “probability of default – PD”) and the quality of the deal’s 

collateral (measured by the deal’s “loss given default – LGD”). The counterparty’s probability of 

default is the chance that the counterparty will default (or, in other words, fail to pay back its 

liabilities) in the upcoming 12 months. A common definition of default is that the debtor is more 

than 90 days delayed in its payments (90+ days past due). LGD is an estimate of how much of an 

already defaulted amount a bank would lose. LGD takes into account expected recoveries from 

the default, i.e., the amount that the creditor expects to be able collect back from the debtor after 

the debtor defaults. These recoveries are mainly realized from collateral sales and bankruptcy 

proceedings. 

PD and LGD are two major and common measures of deal quality and basic parameters for 

credit risk measurement. PD is usually obtained by one of the following methods: from a scoring 

model, from a Merton-based distance-to-default model (e.g. Moody's KMV, mainly used for 
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commercial loans; Merton, 1973 and 1974) or as a long-term stable average of past 90+ 

delinquencies.1 The model, presented later in the paper, provides a connection between the 

scoring models and those based on past delinquencies. LGD can be understood as a function of 

collateral value.  

Once PDs and LGDs are obtained, we are able to calculate the “expected loss.” The expected 

loss is the first moment, the mean, of a loss distribution, i.e., a mean measure of the credit risk. It 

is a sufficiently exact measure of credit risk at the long-term horizon. However, in the short term 

(e.g., the one-year horizon), it is insufficient to protect against expected losses only. The problem 

is that losses on a portfolio follow a certain probability distribution in time. Thus, to protect itself 

against credit losses, a bank not only has to cover the expected loss (mean), but also should look 

into the right tail and decide which quantile (probability level) loss should be covered by holding 

a sufficient amount of capital.  

Banks usually cover a quantile that is suggested by a rating agency, but with the condition that 

they have to observe the regulatory level of probability of 99.9% at minimum. The regulatory 

level may seem a bit excessive, as it can be interpreted as meaning that banks should cover a loss 

which occurs once in a thousand years. The fact is that such a far tail in the loss distribution was 

chosen because of an absence of data. The quantile loss is usually calculated by a Value-at-Risk 

type model (Saunders & Allen, 2002; Andersson et al., 2001). The IRB approach is a type of 

Value-at-Risk model and approximates the loss distribution with a mixture of two standardized 

normal distributions. The IRB model assumes that credit losses are caused by two risk factors: 

first is a credit quality of the debtor and the second is a common risk factor for all debtors, often 

interpreted as macroeconomic environment. For both factors, the IRB model assumes the 

standard normal distribution in time. 

In this paper, we will introduce a new approach to quantifying credit risk which can be classed 

with the Value-at-Risk models. Our approach is different from the IRB method in the assumption 

of the loss distribution. In the general version of our model, we assume that risk factors can be 

distributed not only standard normal but can follow a more general distribution in time, the 

                                                           
1 Delinquency is often defined as a delay in installment payments, e.g., 90+ delinquencies can be interpreted as a 

delay in payments of more than 90 days. 
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distribution of the common factor possibly depending on its history (allowing us to model a 

dynamics of the factor which appeared to be necessary especially during periods like the present 

financial crisis). In the simpler version, we keep the IRB assumption that the individual risk 

factor (credit quality of a debtor) follows a standard normal distribution. In its general form, the 

new approach can be used to measure the credit risk of many types of banking products, i.e., 

consumer loans, mortgages, overdraft facilities, commercial loans with a lot of variance in 

collateral, exposures to sovereign counterparties and governments, etc. To test our model, we 

will demonstrate its goodness-of-fit on a nationwide mortgage portfolio. Moreover, we will 

compare our results with the IRB approach, prove that the assumption of normal distribution of 

the common factor can be outperformed, and comment on what difficulties can arise when an 

inappropriate assumption of normality is made. 

The paper is organized as follows. After the introduction we will describe the usual credit risk 

quantification methods and Basel II-embedded requirements in detail. Then we will derive a new 

method of measuring credit risk, based on the class of generalized hyperbolic distributions and 

Value-at-Risk methodology. In the last part, we will focus on the data description and 

verification of the ability of the class of generalized hyperbolic distributions to capture credit risk 

more accurately than the Basel II IRB approach. Moreover, we will compare the class of 

distributions we use with several distributions that are, alongside the IRB’s standard normal 

distribution, commonly used for credit risk quantification. At the end we summarize our findings 

and offer recommendations for further research. 

At the time of the dissertation defense, the Basel III enhanced banking regulation was adopted in 

Europe. However, as there were no significant changes in the Basel III regarding the calculation 

of the credit risk, our approach discussed in this paper remains still valid and up-to-date. 
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2.2 Credit risk measurement methodology 

 

The Basel II document is organized into three separate pillars. The first pillar requires banks to 

quantify credit risk, operational risk, and market risk by a method approved by a supervisor.2 For 

credit risk there are two possible quantification methods: the “Standardized Approach” (STA) 

and the “Internal Rating Based Approach” (IRB). Both methods are based on quantification of 

risk-weighted assets for each individual exposure. The STA method uses measures defined by 

the supervisor, i.e., each deal is assigned a risk-weight based on its characteristics. Risk-weighted 

assets are obtained by multiplying the assigned risk-weight by the amount that is exposed to 

default. The IRB approach is more advanced than STA. It is based on a Vasicek-Merton credit 

risk model  (Vasicek, 1987) and its risk-weighted assets calculation is more complicated than the 

STA case. First of all, PD and LGD are used to define the riskiness of each deal. These measures 

are then used to calculate risk-weighted assets based on the assumption of normal distribution of 

asset value. In both cases, the largest loss that could occur at the 99.9% level of probability3 is 

calculated as 8% of the risk-weighted assets (for more details on risk-weighted assets 

calculations see (Bank for International Settlement, 2006)). The loss itself is defined as the 

amount that is really lost when a default occurs. Default is a delay in payments of more than 90 

days (90+ delinquencies).  

 

2.2.1 Expected and unexpected loss for an individual exposure 

Expected and unexpected losses are the two basic measures of credit risk. The expected loss is 

the mean loss in the loss distribution, whereas the unexpected loss is the difference between the 

expected loss and a chosen quantile loss. In this part we will focus on expected and unexpected 

loss quantification for a single exposure, e.g., one particular loan. Calculation of both expected 

and unexpected losses requires PD and LGD. As there is no PD or LGD feature in the STA 

                                                           
2 A supervisor is an institution supervising a certain country’s financial market, for the Czech Republic the 

supervisor is the Czech National Bank. 
3 The 99.9% level of probability is defined by the Basel II document and is assumed to be a far-enough tail for 

calculating losses that do not occur with a high probability. Note that a 99.9% loss at the one-year horizon means 

that the loss occurs once in 1,000 years on average. Because the human race lacks such a long dataset, 99.9% was 

chosen based on rating agencies’ assessments.  
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method, and because supervisory institutions are interested in unexpected losses only, under STA 

it is impossible to calculate the expected loss, and even the unexpected loss calculation is highly 

simplified and based on benchmarks only. On the other hand, the advantage of this method is its 

simplicity. The IRB approach uses PDs and LGDs and thus is more accurate than the STA but 

relatively difficult to maintain. A bank using the IRB method has to develop its own scoring and 

rating models to estimate PDs and LGDs. These parameters are then used to define each separate 

exposure.4 The average loss that could occur in the following 12 months is calculated as follows: 

EL = E(PD) ∙ E(LGD) ∙ EAD,  (2.1) 

where EAD is the exposure-at-default5 and EL is the abbreviation for “Expected Loss.” The 

mean value of the expected loss is based on the mean value of the counterparty PD, the mean 

value of the deal LGD and the EAD. The EAD is usually also a variable as it is a function of a 

“Credit Conversion Factor” (CCF)6. However, for mortgage portfolios, CCF is prescribed by the 

regulator. For our calculations we assume that if a default is observed, it happens on a 100% 

drawn credit line. Thus we don’t treat EAD as a variable but a constant. EL is the average loss 

that would occur each year and thus is something that banks incorporate into their loan-pricing 

models. It necessarily has to be covered by ordinary banking fees and/or interest payments. 

However, EL is the “mean loss” and thus is unable to capture any volatility in losses. To protect 

themselves against loss volatility, banks should hold capital to cover the maximum loss that 

could occur at the regulatory probability level at minimum. To capture the variability in credit 

losses over time and to calculate the needed quantile of the loss distribution, we need a second 

moment of the loss distribution, the standard deviation and the shape of the loss distribution at 

minimum.  

On the deal level, the standard deviation calculation can be derived from the properties of 

default. Default is a binary variable – it either occurs (with a probability equal to PD) or does not 

occur (with a probability equal to (1-PD)). If the LGD is positive, the loss occurs with the same 

                                                           
4 Exposure is the usual expression for the balance on a separate account that is currently exposed to default. We will 

adopt this expression and use it in the rest of our paper. 
5 Exposure-at-default is a Basel II expression for the amount that is (at the moment of the calculation) exposed to 

default. 
6 CCF is a measure of what amount of the loan (or a credit line) amount is in average withdrawn in the case of a 

default. It is measured in % of the overall financed amount and is important mainly for off-balance sheet items (e.g. 

credit lines, credit commitments, undrawn part of the loan, etc…). 
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probability as the default, but is usually lower than the defaulted amount (due to the fact that the 

bank sells its collateral and partly collects the defaulted amount – this is, in fact, the LGD) and 

thus follows a binomial distribution7. We can calculate the standard deviation of a loss by 

substituting into the formula for the binomial distribution’s standard deviation. Finally, to protect 

itself at a given probability level, a bank has to hold a stock of capital equal to the unexpected 

loss: the difference between a certain quantile (equal to the chosen probability level) and the 

mean of the loss distribution. 

 

2.2.2 Expected and unexpected loss for a portfolio 

On the portfolio level (constructed from a certain number of individual deals), the expected loss 

calculation can be performed in the same way as for an individual deal. We either sum the 

expected losses for the deals included in the portfolio or calculate a portfolio-weighted average 

PD and LGD, where the weights are the EADs of the individual deals. The portfolio EAD is then 

calculated as the sum of the EADs for the deals included. Therefore, we can use formula (2.1) to 

calculate the portfolio expected loss. 

However, the calculation of the unexpected loss on the portfolio level is not so straightforward. 

Generally, the unexpected loss of a portfolio on a certain probability level can be calculated as a 

decrease of the loan portfolio value on the same percentile. However, deals are correlated among 

each other. We have a complicated correlation structure that is usually unknown and thus we do 

not even know how the individual deals in our portfolio interact. There are two ways of 

constructing an unexpected loss calculation model. If the correlation structure among the 

individual deals is known, we can multiply the vector of the unexpected losses by the correlation 

matrix to get a portfolio unexpected loss. This approach is often referred to as a “bottom-up” 

one. 

Often, the correlation matrix of the individual deals is not known and thus a different approach 

has to be chosen to determine the unexpected loss of the loan portfolio. The second approach is 

widely known as a “top-down” approach and the main idea is to estimate the loss distribution 

                                                           
7 Please note that the LGD variable can in some cases turn to positive values. This is for example a situation when a 

loan’s collateral covers the loan value and a bank collects some additional cash on penalty fees and interest.  
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based on historical data or assume a distribution structure and determine the standard deviation 

or directly the difference between the chosen quantile and the mean value.8 

 

2.3 Our approach 

 

2.3.1 The distribution of Loan Portfolio Value 

The usual approach to modelling the loan portfolio value is based on the famous paper by 

Vasicek (2002) assuming that the value 𝐴𝑖,1or the 𝑖-th's borrower's assets at the time one can be 

represented as      

log𝐴𝑖,1 = log𝐴𝑖,0 + 𝜂 + 𝛾X𝑖  (2.2) 

where 𝐴𝑖,0 is the borrower's wealth at the time zero, 𝜂 and 𝛾 are constants and 𝑋𝑖 is a (unit 

normal) random variable, which may be further decomposed as      

𝑋𝑖 = 𝑌 + 𝑍𝑖 

where 𝑌 is a factor, common for all the borrowers, and 𝑍𝑖 is a private factor, specific for the 

borrower (see Vasicek (2002) for details). 

 

2.3.2 The generalization 

We generalize the model in two ways: we assume a dynamics of the common factor 𝑌 and we 

allow non-normal distributions of both the common and the private factors. Similarly to the 

original model, we assume that   

log𝐴𝑖,𝑡 = log𝐴𝑖,𝑡−1 + 𝑌𝑡 + 𝑈𝑖,𝑡 (2.3) 

                                                           
8 Remember that the loss mean value equals the expected loss of a deal 
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where 𝐴𝑖,𝑡 is the wealth of the 𝑖-th borrower at the time 𝑡 ∈ ℕ, 𝑈𝑖,𝑡 is a random variable specific 

to the borrower and 𝑌𝑡 is the common factor following a general (adapted) stochastic process 

with deterministic initial value 𝑌0. Further, for simplicity,  we assume that the duration of the 

debt is exactly one period and that the initial wealth fulfils 

log 𝐴𝑖,𝑡−1 = Σ𝑗=1
𝑡−1𝑌𝑗 + 𝑉𝑖,𝑡 

for all 𝑖 ≤ 𝑛 where 𝑉𝑖,𝑡  is a centered variable specific to the borower - such an assumption makes 

sense, for instance, if 𝑌𝑡  stands for log-returns of a stock index which corresponds to the 

situation when the borrower owns a portfolio with the same composition as the index plus some 

additional assets.   

Further, we suppose that all (𝑈𝑖,𝑡, 𝑉𝑖,𝑡)𝑖≤𝑛,𝑡∈ℕ are mutually independent and idependent of 

(𝑌𝑡)𝑡∈ℕ, and that all 𝑍𝑖,𝑡 = 𝑈𝑖,𝑡+𝑉𝑖,𝑡, 𝑖 ≤ 𝑛, 𝑡 ∈ ℕ, are identically distributied with 𝔼𝑍1,1 = 0, 

var(𝑍1,1) = 𝜎, 𝜎 > 0, having a strictly increasing continuous cummulative distribution function 

Ψ (here, n  is the number of borrowers). Note that we do not require increments of  𝑌𝑡  to be 

centered (which may be regarded a compensation for the term 𝜂 present in (1) but missing in 

(2)). 

 

2.3.3 Percentage loss in the generalized model 

Denote �̅�𝑡 = (𝑌𝜏)𝜏≤𝑡 the history of the common factor up to the time 𝑡. Analogously to the 

original model, the conditional probability of the bankruptcy of the 𝑖-th borrower at the time 𝑡 

given �̅�𝑡 equals to   

 ℙ(𝐴𝑖,𝑡 < 𝐵𝑖,𝑡|�̅�𝑡) = ℙ(𝑍𝑖,𝑡 < 𝑙𝑜𝑔𝐵𝑖,𝑡 − Σ𝑗=1
𝑡 𝑌𝑗|�̅�𝑡) = Ψ(log𝐵𝑖,𝑡 − Σ𝑗=1

𝑡 𝑌𝑗), 

where 𝐵𝑖,𝑡 are the borrower's debts (installments) - we assume the debts to be the same for all the 

borrowers and all the times, i.e.  log 𝐵𝑖,𝑡 = 𝑏, 𝑡 ∈ ℕ, 𝑖 ≤ 𝑛, for some b.  

Ten primary topic of our interest is the percentage loss 𝐿𝑡  of the entire portfolio of the loans at 

the time 𝑡. After taking the same steps as Vasicek (1991) (with conditional non-normal c.d.f.’s 

instead of the unconditional normal ones), we get, for a very large portfolio, that      
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𝐿𝑡 ≐ Ψ(𝑏 − Σ𝑗=1
𝑡 𝑌𝑗),    𝑡 ∈ ℕ, 

furter implying that      

𝑌𝑡 ≐ Ψ−1(𝐿𝑡−1) − Ψ−1(𝐿𝑡)  (2.4) 

and 

𝐿𝑡 ≐ Ψ(Ψ−1(𝐿𝑡−1) − 𝑌𝑡)  (2.5) 

the latter formula determining roughly the dynamics of the process of the losses, the former one 

allowing us to do statistical inference of the common factor based on the time series of the 

percentage losses.  

To see that the Merton-Vasicek model is a special version of the generalized model, see the 

Appendix.  

In our version of the model we assume 𝑍𝑖,𝑡 to be normally distributed and the common factor to 

be an ARCH process  

tt cYY
t




2

1
, 

where ,, 21   are i.i.d. (possibly non-normal) variables and c  is a constant.   

Since the equation (2.3) may be rescaled by the inverse standard deviation of  Z  without loss of 

generallity, we may assume that Ψ is the standard normal distribution function.  

As it was already mentioned, we assume the distribution of 1  to be generalized hyperbolic and 

we use the ML estimation to get its parameters - see the Appendix for details. In addition of the 

estimation of the parameters, we compare our choice of the distribution to several other classes 

of distributions. 
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2.3.4 The class of generalized hyperbolic distributions 

Our model is based on the class of generalized hyperbolic distributions first introduced in 

Barndorff-Nielsen et al. (1985). The advantage of this class of distributions is that it is general 

enough to describe fat-tailed data. It has been shown (Eberlein, 2001, 2002, 2004) that the class 

of generalized hyperbolic distributions is better able to capture the variability in financial data 

than the normal distribution, which is used by the IRB approach. Generalized hyperbolic 

distributions have been used in an asset (and option) pricing formula (Rejman et al., 1997; 

Eberlein, 2001; Chorro et al., 2008), for the Value-at-Risk calculation of market risk (Eberlein, 

2002; Eberlein, 1995; Hu & Kercheval, 2008) and in a Merton-based distance-to-default model 

to estimate PDs in the banking portfolio of commercial customers (e.g., Oezkan, 2002). We will 

show that the class of generalized hyperbolic distributions can be used for the approximation of a 

loss distribution for the retail banking portfolio with a focus on the mortgage book.  

The class of generalized hyperbolic distributions is a special, quite young class of distributions. It 

is defined by the following Lebesque density: 

 gh(x; λ, α, β, δ, μ) = a(λ, α, β, δ)(δ2 + (x-μ)2)
λ-0,5

2 × Kλ-0,5(α√((δ2 + (x-μ)2))exp (β(x-μ)) (6) 

where 

 a(λ, α, β, δ) =
(α2-β2)0,5λ

√2π∙α(λ-0,5)δλKλ(δ√α2-β2)
 

and Kλ is a Bessel function of the third kind (or a modified Bessel function – for more details on 

Bessel functions see Abramowitz, 1968). The GH distribution class is a mean-variance mixture 

of the normal and generalized inverse Gaussian (GIG) distributions. Both the normal and GIG 

distributions are thus subclasses of generalized hyperbolic distributions. µ and δ are scale and 

location parameters, respectively. Parameter β is the skewness parameter, and the transformed 

parameter �̅� = 𝛼𝛿 determines the kurtosis. The last parameter λ is a determination of the 

distribution subclass. There are several alternative parameterizations in the literature using 

transformed parameters to obtain scale- and location-invariant parameters. This is a useful 

feature that will help us with the economic capital allocation to individual exposures. For the 
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moment-generating function and for more details on the class of generalized hyperbolic 

distributions, see the Appendix. 

Because the class of generalized hyperbolic distributions has historically been used for different 

purposes in economics as well as in physics, one can find several alternative parameterizations in 

the literature. In order to avoid any confusion, we list the most common parameterizations. These 

are: 

 ζ = δ√α2-β2, ρ =
β

α
 

 ξ = (1 + ζ)-0,5,    χ = ξρ  

α̅ = αδ, β̅ = βδ  

The main reason for using alternative parameterizations is to obtain a location- and scale-

invariant shape of the moment-generating function (see the Appendix). 

 

2.4 Data and results 

 

2.4.1 Data description 

To verify whether our model based on the class of generalized hyperbolic distributions is able to 

better describe the behavior of mortgage losses, we will use data for the US mortgage market. 

The dataset consists of quarterly observations of 90+ delinquency rates on mortgage loans 

collected by the US Department of Housing and Urban Development and the Mortgage Bankers 

Association.9 This data series is the best substitute for losses that banks faced from their 

mortgage portfolios, relaxing the LGD variability (i.e. assuming that LGD = 100%). The dataset 

begins with the first quarter of 1979 and ends with the third quarter of 2009. The development of 

the US mortgage 90+ delinquency rate is illustrated in Figure 2.1 and its descriptive statistics in 

                                                           
9 The Mortgage Bankers Association is the largest US society representing the US real estate market, with over 

2,400 members (banks, mortgage brokers, mortgage companies, life insurance companies, etc.). 
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Table 2.1. We observe an unprecedentedly huge increase in the 90+ delinquency rate beginning 

with the second quarter of 2007.  

 
Figure 2.1: Development of US 90+ delinquency rate 

 

Time Series Statistic Value (90+ delinquency) 

Mean 0,9417 

Median 0,8100 

Minimum 0,5300 

Maximum 4,4100 

Standard Deviation 0,6112 

Skewness 4,0317 

Kurtosis 17,0240 

5th percentile 0,5600 

95th percentile 2,1260 

Table 2.1: Descriptive statistics of US 90+ delinquency rate 
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Starting our analysis, we have computed the values of the common factor “Y” using the formula 

(4). Quite interestingly, its evolution is indeed similar to the one of US stock market – see  

Figure 2.2, displaying the common factor (left axis), adjusted for inflation, against the S&P 500 

stock index. A simple correlation analysis indicates that the common factor is lagged behind the 

index by two quarters (the value of the Pearson correlation coefficient is about 30%). 

 

 

Figure 2.2: Comparison of the development of the common factor and lagged S&P 500 returns 

A more exact estimation of the potential relationship, the autoregressive estimation, performed 

on log-changes (Y dependent on S&P), showed that there is a significant dependence of a change 

in the common factor on the change of the S&P 500 stock index, lagged by one quarter. The 

detailed results of the autoregressive estimation can be found in the Table 2.2. The regression R2 

was 23%. 

 

Variable  Coefficient Standard Error P-value 

Intercept 0.00024 0.00399 0.9520 

S&P 5000 0.05631 0.02851 0.0507 
Table 2.2Results of the autoregressive estimation of dependence of Y on S&P 500 
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2.4.2 Results 

We considered several distributions for describing the distribution of 1  (hence of 1)( ttL ), 

namely loglogistic, logistic, lognormal, Pearson, inverse Gaussian, normal, lognormal, gamma, 

extreme value, beta and the class of generalized hyperbolic distributions. In the set of 

distributions compared, we were particularly interested in the goodness-of-fit of the class of 

generalized hyperbolic distributions and their comparison to other distributions. For more 

information on the MLE estimation we have performed, see the Appendix.  

The second step is to test the hypothesis that the empirical dataset comes from the tested 

distribution. We used the chi-square goodness-of-fit test in the form: 

𝜒2 = ∑ (𝑂𝑖 − 𝐸𝑖)
2/𝐸𝑖

𝑡
𝑖=1 ,   (2.6) 

where Oi is the observed frequency in the i-th bin, Ei is the frequency implied by the tested 

distribution, and k is the number of bins. It is well known that the test statistic asymptotically 

follows the chi-square distribution with (k – c) degrees of freedom, where c is the number of 

estimated parameters. In general, only the generalized hyperbolic distribution from all 

considered distributions was not rejected to describe the dataset based on the chi-square statistic 

(on a 99% level). 

Figure 2.3 shows graphically the difference between the estimated generalized hyperbolic and 

normal distributions. From Figure 2.3 we can see that the GHD is able to describe better both the 

skewness and the kurtosis of the dataset. 
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Figure 2.3: Compared histograms: GHD vs. Normal vs. dataset 

The chi-square statistic show that the class of generalized hyperbolic distributions is the only one 

suitable to describe the behavior of delinquencies, even if we considered the dynamics of the 

common factor when using them. This fact can have a large impact on the economic capital 

requirement, as the class of generalized hyperbolic distributions is heavy-tailed and thus would 

imply a need for a larger stock of capital to cover a certain percentile delinquency. We will now 

demonstrate the difference between the economic capital requirements calculated under the 

assumption that mortgage losses follow a generalized hyperbolic distribution and under the Basel 

II IRB method (assuming standard normal distributions for both risk factors and a 15% 

correlation between the factors10). Note that we assume that all loans last only one period of 

time, therefore all loans enter the calculation as entrants at the beginning of the period and exit 

the calculation either by defaulting or a full repayment at the end of the period. Even though this 

is a significant limitation to our approach, it keeps our model simple and might be partially 

justified by the fact that some mortgages might be repaid at the time of interest rate re-fixation. 

 

                                                           
10 The correlation 15% is a benchmark set for the mortgage exposures in the Basel II framework. 
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2.4.3 Economic capital at the one-year horizon: implications for the crisis 

The IRB formula, defined in Pillar 1 of the Basel II Accord, assumes that losses follow a 

distribution that is a mix of two standard normal distributions describing the development of risk 

factors and their correlation. The mixed distribution is heavy-tailed and the factor determining 

how heavy the tails are is the correlation between the two risk factors. However, because the 

common factor is considered to be standard normally distributed, the final loss distribution’s tails 

could be not heavy enough. If a heavy-tailed distribution will be considered for the common 

factor, the final loss distribution would probably have much heavier tails.  Because the regulatory 

capital requirement is calculated at the 99.9% probability level, this disadvantage may lead to 

serious mistakes in the assessment of capital needs. To show the difference between the 

regulatory capital requirement (calculated by the IRB method) and the economic capital 

requirement calculated by our model, we will perform the economic capital requirement 

calculations at the 99.9% probability level as well. 

When constructing loss forecasts, we repeatedly used (2.5) to get  
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If we wanted to describe the distribution of the forecasted value we would face complicated 

integral expressions. We therefore decided to use simulations to obtain yearly figures. We were 

particularly interested in the following: the capital requirement based on average loss and the 

capital requirement based on last experienced loss. The average loss is calculated as a mean 

value from the original dataset of 90+ delinquencies and serves as a “through-the-cycle” PD 

estimate. This value is important for the regulatory-based model (Basel II) as a “through-the-

cycle” PD should be used there. The last experienced loss is, on the second hand, important for 

our model with GHD distribution due to the dynamical nature of the model. The next Table 

summarizes our findings. To illustrate how our dynamic model would predict if the normal 

distribution of the common factor was used, we added this version of the dynamic model as well. 
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Model Basel II IRB 

(through-the-cycle 

PD) 

Our dynamic model with 

normal distribution 

Our dynamic model 

with GHD 

Distribution used 

for the individual 

factor 

Standard Normal Standard Normal Standard Normal 

Distribution used 

for the common 

factor 

Standard Normal Normal Generalized Hyperbolic 

99.9% loss 10.2851% 9.5302% 12.5040% 
Table 2.3: Comparison of Basel II, Dynamic Normal and Dynamic GHD models tail losses 

The first column in the Table 2.3 relates to the IRB Basel II model, i.e. a model with a standard 

normal distribution describing the behavior of both risk factors and the correlation between these 

factors set at 15%. The PD used in the IRB formula (see Vasicek, 2002 for details) was obtained 

from the original dataset as an average default rate through the whole time period. The second 

column contains results from the dynamic model where a standard normal distribution of the 

individual risk factor is supplemented by the normal distribution, which describes the common 

factor and its parameters were estimated in the same way as those of GHD. The last column is 

related to our dynamic model where the GHD is assumed for the common factor. The results in 

the Table 2.3 show that the dynamic model, based on the last experience loss, predicts higher 

quantile losses in the case of GHD and slightly lower in the case of Normal distribution, 

compared to the IRB formula. Thus, heavy tails of the GHD distribution evoke higher quantile 

losses than the current regulatory IRB formula, which at the end lead to a higher capital 

requirement.  

 

2.5 Conclusion 

 

We have introduced a new model for quantification of credit losses. The model is a 

generalization of the current framework developed by Vasicek and our main contribution lies in 

two main attributes: first, our model brings dynamics into the original framework and second, 

our model is generalized in that sense that any statistical distribution can be used to describe the 

behavior of risk factors.  
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To illustrate that our model is able to better describe past risk factor behavior and thus better 

predicts future need of capital, we compared the performance of several distributions common in 

credit risk quantification. In this sense, we were particularly interested in the performance of the 

class of Generalized Hyperbolic distributions, which is often used to describe heavy-tail financial 

data. For this purpose, we used a quarterly dataset of mortgage delinquency rates from the US 

financial market. Our suggested class of Generalized Hyperbolic distributions showed much 

better performance, measured by the Wasserstein and Anderson-Darling metrics, than other 

“classic” distributions like normal, logistic or gamma. 

In the next section, we have compared our dynamic model with the current risk measurement 

system required by the regulation. The current banking regulation, summarized and formalized in 

the Second Basel Accord (Basel II, translated to Credit Requirements Directive or CRD in the 

EU), uses the standard normal distribution as an underlying distribution that drives risk factors 

for credit risk assessment. In the loss distribution, the mean value (expected loss) should be 

covered by banking fees and interest and the difference between the mean value and the 99.9th 

quantile (unexpected loss) should be covered by the stock of capital. We were particularly 

interested in the difference between our dynamic model and the current IRB regulatory model, 

which is used to calculate the required stock of capital in every advanced bank subject to the 

Basel II regulation.  

Our results show that the mix of standard normal distributions used in the Basel II regulatory 

framework was, at the 99.9% level of probability, underestimating the potential unexpected loss 

on the one-year horizon.  Therefore, introducing the dynamics with a heavy-tailed distribution 

describing the common factor may lead to a better capturing of tail losses.  

We have proved that using the normal distribution of risk factors development to quantify credit 

risk is an assumption that could be easily outperformed by choosing a different, alternative 

distribution, such as the class of generalized hyperbolic distributions. However, there are still 

several questions that need to be answered before the class of generalized hyperbolic 

distributions can be used for credit risk assessment. First question points at the use of the 99.9th 

quantile. As this was chosen by the Basel II framework based on benchmarks from rating 

agencies, it is not sure, whether particularly this quantile should be required in our dynamic 
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generalized model. Second, more empirical studies have to be performed to prove the goodness-

of-fit of the class of generalized hyperbolic distributions. Third, the assumption that all loans last 

only one period is limiting. The final suggestion is to add an LGD feature to the calculation to 

obtain a general credit risk model. 
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Appendix 

 

The moment-generating function for the class of generalized hyperbolic distributions is of the 

form: 

 M(u) = euμ(
α2-β2

α2-(β+u)2
)λ/2 Kλ(δ√α2-(β+u)2)

Kλ(α2-β2) , (2.1a) 

where u denotes the moment. For the first moment, the formula simplifies to (see e.g. Eberlein, 

2001 for details): 

 M'(0) = E(x) = μ +
βδ

√α2-β2

Kλ+1(δ√α2-β2)

Kλ(δ√α2-β2)
,
  (2.2a)

 

The second moment is calculated in a (technically) more difficult way: 

𝑀′′(0) = 𝑉𝑎𝑟(𝑥) = 𝛿2 (
𝐾𝜆+1(𝛿√𝛼2 − 𝛽2)

(𝛿√𝛼2 − 𝛽2)𝐾𝜆(𝛿√𝛼2 − 𝛽2)
) + 

+
(βδ)2

α2-β2 (
Kλ+2(δ√α2-β2)

Kλ(δ√α2-β2)
- (

Kλ+1(δ√α2-β2)

Kλ(δ√α2-β2)
)

2

)

  (2.3a)

 

By substituting from equations (2.2a) and (2.3a) into equation (2.1a) we obtain much simpler 

expression for the first and second moments of the class of generalized hyperbolic distributions. 

The following equations express the first and the second moment of the class of generalized 

hyperbolic distributions in their scale- and location-invariant shape: 

 M(1) = E(x) = μ +
βδ

√α2-β2

Kλ+1(ζ)

Kλ(ζ)
, 

 M(2) = Var(x) = δ2 ((
Kλ+1(ζ)

ζKλ(ζ)
) +

β2

α2-β2 (
Kλ+2(ζ)

Kλ(ζ)
- (

Kλ+1(ζ)

Kλ(ζ)
)

2

)) 

On MLE estimation of the parameters 



40 
 

To estimate the parameters of the model, i.e. the constant c and the vector of the parameters Θ of 

(the distribution of) 1 , we apply the (quasi) ML  estimate to the  sample  ,, 32 YY  computed 

from (4), using the fact, that the conditional density of tY  given 1tY   is  

𝑓(𝑦; 𝑐. Θ) = 𝜌𝑡(𝑐)𝜑(𝜌𝑡𝑦; Θ)   𝜌𝑡(𝑐) = [𝑌𝑡−1
2 + 𝑐]−1

2⁄  

where  𝜑(𝑧; Θ) is the p.d.f. of the generalized hyperbolic distribution with parameters Θ. The 

(quasi) log-likelihood function is then 

𝐿(𝑐. Θ) = ∑ log(𝜌𝑡(𝑐)) + ∑ log(𝜑(𝜌𝑡(𝑐)𝑌𝑖; Θ) )

𝑇

𝑖=2

𝑇

𝑖=2

 

Therefore, we may find its maximum in two steps: maximize 𝐾(𝑐) = maxΘ 𝐿(𝑐. Θ) where the 

right hand side is determined using the standard ML procedure for g.h. distributions. 

 

The Merton-Vasicek model as a special case of our generalized framework 

In the present section, we show how our generalized model relates to the original one. Let us 

start with the computation of the loss's distribution, given that the probability of default      

𝑝𝑡 = ℙ(𝐴𝑖,𝑡 < 𝐵𝑖,𝑡|�̅�𝑡−1) 

 is known (e.g. estimated by a credit scoring): In this case then      

𝐹(𝜃|�̅�𝑡−1) = 1 − Φ𝑡(𝜒𝑡
−1(𝑝𝑡) − Ψ−1(𝜃)). 

where 𝜒𝑡 is the conditional c.d.f. of the variable 𝜉𝑡: = 𝑌𝑡 + 𝑍1,𝑡 and t    is the conditional 

distribution function of tY  . 

To see it, note that      

𝑝𝑡 = ℙ(𝜉𝑡 < 𝑏 − Σ𝑗=1
𝑡 𝑌𝑗|�̅�𝑡−1) = 𝜒(𝑏 − Σ𝑗=1

𝑡−1𝑌𝑗) 

 and that     
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ℙ(𝐿𝑡 < 𝜃|�̅�𝑡−1) = ℙ(Ψ(𝑏 − Σ𝑗=1
𝑡−1𝑌𝑗) < 𝜃|�̅�𝑡−1) 

= ℙ(Ψ(𝜒−1(𝑝𝑡) − 𝑌𝑡) < 𝜃) = ℙ(𝑌𝑡 > 𝜒−1(𝑝𝑡) − Ψ−1(𝜃)) 

= 1 − Φt(𝜒−1(𝑝𝑡) − Ψ−1(𝜃)). 

Now, turn our attention to the correlations of the risk factors of different loans: Denoting 𝑋𝑖,𝑡: =

𝑌𝑡 + 𝑍𝑖,𝑡, we get      

)var(),var(),cov( 11,1,,   ttttittjti YYYXYXX  

 and, consequently,      

)var()var(

)var(
),(

1

1

1,,

ttt

tt

ttjti
ZYY

YY
YXXcorr









 

 In particular, if we assume Y1, 𝑌2, … to be i.i.d. and      

𝑌1: 𝑁(0, 𝜌),        𝑍1,1: 𝑁(0,1 − 𝜌) 

for some 𝜌, then clearly 𝜉𝑡: 𝑁(0,1) implying      

ℙ(𝐿𝑡 < 𝜃|�̅�𝑡−1) = 1 − 𝑁 (
𝑁−1(𝑝𝑡) − √1 − 𝜌𝑁−1(𝜃)

√𝜌
). 

= 𝑁 (
√1 − 𝜌𝑁−1(𝜃) − 𝑁−1(𝑝𝑡)

√𝜌
) 

and      

corr(X𝑖,𝑡, 𝑋𝑗,𝑡|�̅�𝑡−1) = 𝜌 

 i.e. the formuls of Vasicek (2002). 
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3. Dynamic Multi-Factor Credit Risk Model with 

Fat-Tailed Factors 

 

3.1 Introduction 

 

The recent financial crisis showed significant shortfalls in banks’ credit risk management and 

measurement processes. In particular, investments in mortgage-backed securities appeared to be 

much riskier than banks originally anticipated. Consequently, the subprime mortgage crisis in the 

US caused lots of banks to crash and triggered a worldwide debate on financial market 

regulation.  

Current credit risk measurement techniques are mostly based on evaluation of the value-at-risk 

of a creditor, i.e., the amount the creditor will lose with a certain probability as a result of 

delinquency of debtors. The distribution of the losses is usually assumed to depend on several 

risk indicators, usually linked to the riskiness of the debtor and the conditions of the loan. Most 

credit risk models are based on two indicators: the (conditional) probability of default (PD) and 

the loss given default (LGD)11, both of which are supposed to depend on other underlying 

factors. In particular, the probability of default of an individual is dependent on his/her solvency, 

which is usually assumed to be driven by a factor common to all debtors (i.e., the 

macroeconomic environment) and a factor reflecting the specifics of the individual (i.e., his/her 

ability to increase the value of his/her own assets). The loss given default, on the other hand, is 

dependent on the contractual conditions of the loan, mainly on the value of the collateral. 

Collateral value is typically assumed to be driven by one or two (the common and the individual) 

factors; the simplest models, however, take LGD as fixed. 

The Basel II (Bank for International Settlements, 2006) “Internal Rating Based” (IRB) approach 

to credit risk measurement assumes that LGD is fixed, while PD is modeled by the famous KMV 

                                                           
11 PD and LGD are usually referred to as risk factors; however, in this paper we call them “indicators” in order to 

verbally distinguish between these main quantities and the factors that drive them. 



45 
 

(Merton-Vasicek) model (Vasicek, 1987, 1991, 2002). In this model, the solvency of a debtor is 

supposed to be driven by two standard normal factors (the common and the individual one).12 

In our paper, we question three of the most restrictive assumptions of the IRB approach: the 

normal distribution of all factors, the fixed LGD, and the static nature of the approach. In our 

model, the (two) factors driving PD may follow any distribution, LGD is random and driven by 

two factors, and, moreover, our model is multi-periodic with the underlying factors allowed to 

follow a stochastic process of an arbitrary type. We show how a suitable version of our model is 

able to explain the credit losses observed in reality. In our opinion, our results might be useful 

for credit risk management in banks, specifically to determine more precisely the capital that 

banks need to hold to protect themselves against unexpectedly large credit losses. 

This paper is organized as follows. In the first part, we summarize the current state of knowledge 

in the field of credit risk modeling. In the second part, we describe our proposed methodology 

and extensions of the current regulatory framework. Then we test our approach using empirical 

data and compare our results with the Basel II IRB model. Finally, we conclude and provide 

ideas for further research. 

 

3.2 Current Credit Risk Measurement Methodologies 

 

In this section, we describe more precisely the idea of value-at-risk models for credit risk, 

summarize the basic facts about the Basel II requirements for credit risk modeling, and suggest 

ways of overcoming their shortfalls. 

  

 

 

                                                           
12 Basel II is a widely known and accepted set of principles for banking capital regulation. IRB is one of several 

credit risk quantification methods described and allowed in Basel II. The currently proposed Basel III – the 

supposed successor of Basel II – uses the same risk quantification model as Basel II. 
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3.2.1 Current Credit Risk Models  

In the past three decades, the methods used by banks to determine the riskiness of their loan 

portfolios have evolved from simple averaging of past losses to complex models that combine 

the estimated riskiness of individual loans. The most influential models include CreditMetrics 

(RiskMetrics Group, 1997), which uses transition matrices to determine the level of defaults in a 

portfolio, CreditRisk+ (Wilde, 1997), which assumes a Poisson distribution for the default 

frequency, and the KMV model (Vasicek, 1987, 1991, 2002), used by the Basel II IRB approach 

and generalized in this paper. A comprehensive comparison of these methodologies can be found 

in Crouhy et al. (2000) and in Gordy (2000). 

 

3.2.2 The KMV Model 

The KMV (Vasicek) model assumes that the wealth of an individual follows geometrical 

Brownian motion and that the values of the assets of individuals are correlated, which is 

equivalent to saying that the individual’s wealth can be decomposed into a systematic and an 

idiosyncratic part (see (3.1) and (3.2)). While the systematic part might be interpreted as the 

macroeconomic environment, the individual factor may be viewed as an ability to change one’s 

personal wealth over time (education, health conditions, etc…).13  

In particular, the KMV model assumes that the logarithm of the assets of the i-th individual 

fulfills 

,1 ,0log log .i i iA A X   
  (3.1) 

Here, ,0iA  is the individual’s wealth at time zero,   and   are constants, and iX  is a random 

variable fulfilling 

i iX Y Z 
,   (3.2) 

                                                           
13 The systematic factor is exogenous to both the KMV and to our model. For interesting research into the relations 

of systematic factors among various financial and insurance sectors, see Billio et al. (2012). 
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where Y  is the common factor and 1 2,   ,Z Z   are i.i.d. individual factors, independent of Y.  

Default is defined the state where the value of an individual’s assets decreases below a certain 

threshold iB ; this threshold is usually interpreted as the sum of the individual’s debts (including 

installments at least). The probability of default is then 

,1 [ ]i i i i iPD A B X c     P P        
,0log logi i

i

B A
c





 
 .   (3.3) 

The KMV model assumes that the factors Y  and ,   1, 2, 3,  , iZ i n  , are centered normal with 

such variances that  corr ,i jX X   for some prescribed   and each i j .  

After some calculations we obtain the rate of default (RD)14, defined as 

   

   

number of defaults
RD

number of loans
 ,  (3.4) 

which approximately fulfills  

 
     1 11 N N

N
x PD

RD x




   
  
 
 

P  ,           (3.5) 

given a sufficiently large number of loans. Here, N  denotes the standard normal cumulative 

distribution function and 1PD PD 15 (for more details of the calculation see Vašíček, 1987). It 

follows that the distribution of RD is heavy-tailed, with the heaviness of the tail dependent on the 

correlation  . 

Finally, since LGD is fixed, we may take it as a unit without any loss of generality. Thus, in the 

KMV model the credit loss L  of the portfolio equals R . 

                                                           
14 The quantity which we call RD is sometimes called the empirical or observed PD. We use a different name so as 

not to suggest that RD is an estimate of PD (it is clear from (3.5) that RD is neither unbiased nor consistent). 
15 Note that iPD PD  for any i  because the individual factors are equally distributed. 
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3.2.3 Existing Models with Random LGD 

The biggest shortfall of the original Vasicek model usually discussed in the literature (see, for 

example, Cipollini and Missaglia, 2008) is the absence or randomness of LGD. Several recent 

models assume a random LGD; however, as far as we know, none of these studies challenged the 

assumption of standard normal distribution of the risk factors. In this sub-section we describe 

several of the most popular models of this kind. 

The simplest (and the most natural) enhancement of the Vasicek model for LGD is the one 

proposed in Frye (2000), which assumes that LGD is a second risk indicator driving credit 

losses. In this model, LGD is a function of collateral: 

max[0;1 ]i iLGD Collateral   

while the collateral value is expressed as 

(1 )i i i iCollateral C  
, 

where iC  is the risk factor, which can be further expressed as a function of a systematic risk 

factor Y  identical to that driving defaults and a specific risk factor iE , i.e., 

1i iC qY qE   .                  (3.6) 

The loss distribution is taken from the Vasicek framework (i.e., fulfilling (3.1)) with  

1i iX pY pZ   ,                  (3.7) 

which implies that the correlation between defaults and LGD is determined by how factors iX  

and iC  depend on factor Y . 

An extension of the Frye model can be found in Pykhtin (2003), who supposes that the risk 

factor driving LGD depends on one systematic and two idiosyncratic factors, starting from the 

same point as Frye: 
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1i iC qY qE  
 ,  (3.8) 

1 'i i iE wZ wE    ,  (3.9) 

where the systematic factor Y  is common to both defaults and LGD. In this framework factor iZ  

also influences the idiosyncratic factor driving defaults (factor 'iE  is specific to LGD). The 

correlation between the two idiosyncratic factors is w . In practice, this approach is used by the 

Moody model (Meng et al., 2010). 

Another extension of the KMV model can be found in Witzany (2011). In this model LGD is 

assumed to be driven by a specific factor different from the one driving defaults and by two 

systematic factors, one common to the defaults and the other specific to LGD. 

 

3.3 Our Approach 

 

In our proposed model, we, similarly to Frye (2000) and Pykhtin (2003), assume a random LGD. 

However, we look at defaults and LGD separately first and then offer ideas about how these two 

can be linked through dynamic dependence of their underlying factors. While the sub-model for 

defaults is a generalization of Vasicek’s approach, the LGD sub-model is a new one, making few 

assumptions but naturally explaining LGD as a function of the price of collateral. As to the 

evolution of the factors, we allow maximum generality; in fact, we only show how to “plug in” 

any model of the factors into our approach. 

 

3.3.1 Model for Defaults 

Analogously to Vasicek, we assume that  

, , 1 ,log log Δ ,     , i t i t t i tA A Y U i n              (3.10) 
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where n is the number of borrowers, ,i tA  is the wealth of the i -th borrower at time tN , ,i tU  is 

a random variable specific to the i -th borrower, and 1Δ t t tY Y Y    is the first difference of the 

common factor tY  following a general (adapted) stochastic process. Such a setting makes sense, 

for instance, if tY  stands for (the logarithm of) a stock index; then, our model corresponds to the 

situation where a borrower owns a portfolio with the same composition as the index plus some 

additional assets. 

For simplicity, we assume that the duration of the debt is exactly one period16 and that the initial 

wealth in each period equals 

, 1 1 ,log ,     , i t t i tA Y V i n      (3.11) 

where ,i tV  is a random variable specific to the i -th borrower. Further, we assume all , ,( , )i t i n tU  N  

to be mutually independent and independent of (Δ )t tY N , and all , , ,,i t i t i tZ Z U + ,i tV , ,i n  tN  

to be identically distributed with 1,1 0Z E , 1,1var( )Z  , 0  , 1,1Z , having a strictly 

increasing continuous cumulative distribution function Ψ . Since the equation for wealth may be 

scaled, we can assume that 1  . Note that we do not require the increments of tY  to be 

centered. 

Even though the assumption of one-period duration of debts may seem very restrictive, in fact it 

is not; even if the total duration of a mortgage is measured in decades, the periods between the 

re-fixing of interest rates, at the end of which the mortgage may be repaid, are much shorter 

(sometimes as little as one year).17 

It follows from our independence assumptions that the (conditional) probability of default of the 

i -th borrower at time t  given  1 1: Δ , ,Δt tY Y Y    equals 

                                                           
16 This is a very restrictive assumption, which is a point of our further research; however, the assumption is the tax 

paid for the model’s simplicity 
17 A multi-period version of our model may also be formulated (see Šmíd and Gapko, 2010). However, this is 

tractable only by means of Monte Carlo simulation. 
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 , , , , ,[ | ] [ | ] Ψ log ,i t i t t i t i t t t i t tA B Y Z logB Y Y B Y     P P                  (3.12) 

where ,i tB  are the debts of the i -th borrower at time  t  .  

Our primary topic of interest is the rate of default (RD), which we define in our framework as 

       
t

number of defaults at t
R

n
 . As n is the number of borrowers, the definition is equivalent to that 

in the Section 3.2.2. If we assume the debts to be the same for all borrowers and at all times, i.e., 

,log , i tB b t N ,  i n , for some b, and if we approximate 𝑅𝑡 ≐ lim𝑛
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠 𝑎𝑡 𝑡

𝑛
, we 

may apply the Law of Large Numbers to the conditional probabilities described in (3.12) (we 

may do this since 1, 2,,t tA A   are conditionally independent given tY ) to obtain (for a very large 

portfolio):  

𝑅𝑡 ≐ ℙ(𝐴𝑖,𝑡 < 𝑏|�̅�𝑡) = Ψ(𝑏 − 𝑌𝑡),    𝑡 ∈ ℕ,  (3.13) 

further implying that  

Δ𝑌𝑡 ≐ Ψ−1(𝐿𝑡−1) − Ψ−1(𝐿𝑡)  (3.14) 

and 

𝑅𝑡 ≐ Ψ(Ψ−1(𝑅𝑡−1) −Δ𝑌𝑡).   (3.15) 

The latter formula roughly determines the dynamics of the process of losses, while the former 

one allows us to statistically infer the common factor based on the time series of the rates of 

default.  

Furthermore, we shall assume that factor Z is normal, i.e., Ψ  is the cumulative distribution 

function (CDF) of the standard normal distribution. 
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3.3.2 Model for LGD 

Our model for LGD is analogous to our version of the default model. However, contrary to the 

Frye and Pykhtin models, we assume a separate common factor driving LGD. This choice is 

quite natural, as the systematic conditions driving defaults are different from those driving LGD: 

while defaults depend on many different variables (e.g. average wage, unemployment rate, and 

real estate prices), losses given default depend mainly on real estate prices. Note that we do not 

assume independence of the factors driving defaults and LGD; as we show below, we allow for 

any form of stochastic dependence on each other as well as on the past values of both factors.  

Coming to the definitions, we assume that the property price of the i-th defaulted debtor is 

, ,log logi t i t i tP a I E  
,   (3.16) 

(or, equivalently,    , ,exp expi t i t i tP a I E ), where tI  is an (unobservable) common factor 

underlying LGD following a general adapted process, ,i tE  is a centered individual factor 

independent of 0(  , )t t tI Y   and all the individual factors described in subsection 3.3.1 (i.e., Ui, Vi, 

and Zi), and ia  is a constant reflecting the ratio of the i -th debtor’s property price to the common 

factor.  

Let iC  be the size of the i -th debt, including the cost of recovery. Then the recovered percentage 

of the i-th debt at time t is 

,min( ; )
.

i t i

i

i

P C
G

C
   (3.17) 

Furthermore, let us say that ,   , i iC C a a i N    and let 1, 2,,  , t tE E  be i.i.d. Given all this, we 

may assume without any loss of generality that 1,   1C a   (the constants may now be 

incorporated into I ). Then 

    ,

,min ;1  exp min ; 0t i tI E

i t i tG e I E


   .  (3.18) 
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If there is a large number of defaulted debtors, then the average of iG  is, by the Law of Large 

Numbers, 

1

1

1
lim ( | )

N

t i t
N

i

G G G I
N 

  E .  (3.19) 

 Evaluating the right-hand side (and omitting the time index), we get 

          1 1

I
min ;  min ; 

| | d 1  
E I E II I I x IG e e I e e I e e F x e F I




  



 
      

 
E E  

I

  d ( ) 1 ( )I xe e F x F I






   
,   (3.20) 

where F  is the cumulative distribution function (CDF) of 1E . Consequently, the LGD equals  

 1  tt tD G h I   ,   (3.21) 

where 

   
ι

d ( )xh F e e F x



 




    ,  (3.22) 

or, after integrating by parts, 

   
ι

dxh e F x e x








 
.   (3.23) 

As shown in the Appendix, h  is strictly decreasing, hence its inverse exists.  

Assume further that 1E  is normal with variance 2 . Then    Φ /F x x  , where Φ  is the 

standard normal CDF and 

    21
  Φ exp Φ ,

2
h h

 
    

 

     
           

     
  (3.24) 
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 ' 21 1 1
exp Φ

2
h

  
      

    

        
                

          , (3.25) 

where   is the standard normal probability density function and where the derivative of h  is 

with respect to .  For the calculation of (3.24), see the Appendix.  

 

3.3.3 Econometrics of the Model 

As already said, we place no special requirements on the (vector) process    , t tY I . We will only 

assume that the process may be transformed into independent residuals in the sense that there 

exist mappings 1 2, ,  Q Q  such that 

   1 1 2 2; ,      ,  , ,  , , ,  ,t t t t t tQ Y I Y I Y I        (3.26) 

for each t, where   is a (vector) parameter and 1 2, ,   is a sequence of i.i.d. two-dimensional 

random variables whose density   possibly depends on a (vector) parameter  . Given this 

assumption and some invertibility and differentiability conditions (which would be better tested 

in concrete cases), the conditional density of  , t tY I  given 1t   is, by the formula for 

transformed density,  

   1, ; , ( , , ; ); | ( , ) |t t t ty Q y D y         
,  (3.27) 

where ( , )tD y   is the Jacobian determinant of tQ , restricted to the last two variables.  

Suppose now that we have a sequence of historical RDs and LGDs 1 1 2 2,  , ,   ,   T TR D R D R D  at our 

disposal and we want to estimate all parameters of our model, i.e., ,  , and  . A 

straightforward way to do this is by maximum likelihood estimation, with the likelihood function 

taking the form of 
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 1 1, , , , ; , ,T TL R D R D    

             1 ' 1

1

log log , log Ψ'(Ψ ) ) log
T

t t t t t t t

t

Q D Y I R h h D    



     
            (3.28) 

(recall that      1 1 1

1Ψ Ψ ,  ).t t t t tY R R I h D

  

    Note that the third term in the square brackets 

may be omitted during the maximization because it does not depend on any parameter. 

 

3.4 Empirical Results 

 

We empirically tested our proposed methodology on a nationwide retail mortgage portfolio and 

compared the results with the Basel II IRB framework. In this section, we provide a detailed 

description of the datasets we used, the estimation process, and the results. 

 

3.4.1 Description of the Data 

The dataset for our empirical work consists of quarterly delinquency rates on mortgage loans 

from the whole US economy and was provided by the US Department of Housing and Urban 

Development and the Mortgage Bankers Association.18 All data start with the first quarter of 

1979 and end with the third quarter of 2009. Thus, the difficult period of the subprime mortgage 

crisis and the subsequent real recession is included. 

 

3.4.2 Estimation 

To estimate our model, we proceeded as follows. First, we extracted factor Y from the values of 

Rt. Second, we computed factor I from the values of D by employing h specified in (3.24); since 

the function h, which maps Dt to I, depends also on parameter  , we estimated the model for a 

sufficient number of values of  . Third, we found a suitable model for the dynamics of the pair 

                                                           
18 The Mortgage Bankers Association is the largest US society representing the US real estate market, with over 

2,400 members (banks, mortgage brokers, mortgage companies, life insurance companies, etc.) 
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(Y, I). Finally, we estimated the model of the series (Y, I) for each   and chose the version with 

the highest likelihood. 

3.4.2.1 Extraction of Y 

As a proxy for the rate of default (denoted by Rt), we used the series of 90+ delinquency rates19 

depicted in Figure 3.1. We can see that the number started growing significantly at the end of 

2007. During the estimation process, we used two types of delinquency rates: quarterly 

delinquencies and their yearly averages. The average delinquencies were used for the 

computation of the Basel II IRB capital requirement because the IRB method requires a long-

term average probability of default as an input. The quarterly delinquency rates, on the other 

hand, served as the input data for our model. 

Figure 3.1: The US 90+ delinquency rates – the proxy for RD (Rt) 

The values of the common factor “Y” were computed by means of (3.15). To verify our 

conjecture that the common factor may coincide with a stock index, we compared graphically the 

values of the common factor with the S&P 500 stock index (see Figure 3.2). It can be seen that 

the evolution of the common factor exhibits similarities to the stock index. A simple linear 

correlation analysis indicates that the common factor is lagged behind the stock index by one to 

two quarters and that both datasets are significantly correlated (the value of the Pearson 

                                                           
19 The 90+ delinquency rate is the proportion of all receivables 90 or more days past due in a given quarter. 

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

Q
1

_
1

9
7

9

Q
1

_
1

9
8

0

Q
1

_
1

9
8

1

Q
1

_
1

9
8

2

Q
1

_
1

9
8

3

Q
1

_
1

9
8

4

Q
1

_
1

9
8

5

Q
1

_
1

9
8

6

Q
1

_
1

9
8

7

Q
1

_
1

9
8

8

Q
1

_
1

9
8

9

Q
1

_
1

9
9

0

Q
1

_
1

9
9

1

Q
1

_
1

9
9

2

Q
1

_
1

9
9

3

Q
1

_
1

9
9

4

Q
1

_
1

9
9

5

Q
1

_
1

9
9

6

Q
1

_
1

9
9

7

Q
1

_
1

9
9

8

Q
1

_
1

9
9

9

Q
1

_
2

0
0

0

Q
1

_
2

0
0

1

Q
1

_
2

0
0

2

Q
1

_
2

0
0

3

Q
1

_
2

0
0

4

Q
1

_
2

0
0

5

Q
1

_
2

0
0

6

Q
1

_
2

0
0

7

Q
1

_
2

0
0

8

Q
1

_
2

0
0

9



57 
 

correlation coefficient is about 30%, which is significant at 5%). Additionally, the autoregressive 

analysis in (Gapko & Šmíd) showed a strong dependence of Y on the S&P 500 lagged by one 

quarter. 

Figure 3.2: Comparison of the common factor Y and the lagged S&P 500 index (values of the 

common factor on the left-hand scale; values of the S&P 500 on the right-hand scale) 

 

3.4.2.2 Extraction of I 

As a proxy for the LGD (denoted by Dt in our paper), the proportion of started foreclosures20 in 

the 90+ delinquency rates was used. Unfortunately, the proxy cannot be exact, because it does 

not include income collected from the sale of debtors’ property; however, it at least gives us an 

idea of how large the losses would be in the case of no real estate collateral. In other words, the 

proxy represents all possible factors except changes in the collateral (residential real estate) price 

movements. We are aware that this is a simplification, however, the provided dataset is the (to 

our knowledge) best available approximation of LGD for the overall US mortgage market. The 

resulting series of Dt is plotted in Figure 3.3. 

                                                           
20 Foreclosure is a process whereby a creditor ceases all attempts to force a debtor to repay a seriously delinquent 

debt. The loan is treated as a loss and a late collection process begins. The creditor collects the debtor’s property and 

tries to sell it on the real estate market. 
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Figure 3.3: Foreclosures/90+ delinquencies – the proxy for LGD (Dt) 

It is very interesting that, in the several recent periods, when the 90+ delinquency rate increased 

significantly, the ratio of seriously delinquent (defaulted) accounts which fell into the foreclosure 

process decreased. This can be intuitively explained by state aid under which the Fed bought a 

non-negligible amount of bad loans, especially from the mortgage market. 

3.4.2.3 Selection of the Model for (Y, I) 

The two time series used to estimate the joint model of PD and LGD behave in a different way, 

which is illustrated in the Table 3.1, where the descriptive statistics of both Rt and Dt are 

summarized. Thus we analyzed the datasets separately and then estimate the mutual relationship. 

After a preliminary analysis of the series of Y we found clear ARCH behavior of the factor, 

hence we decided to analyze the transformed version of the factor 

1

t
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Y
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instead of its original values. 
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Time Series 

Statistic 

Value (90+ 

delinquency) 

Value 

(foreclosures) 

Mean 1,1329 0,4343 

Median 0,8300 0,3400 

Minimum 0,4600 0,1300 

Maximum 5,0200 1,4700 

Standard Deviation 0,9869 0,3054 

Skewness 2,5856 1,8730 

Kurtosis 5,5353 2,5721 

5th percentile 0,5570 0,1500 

95th percentile 3,7190 1,2090 

Table 3.1: Descriptive statistics of Rt and Dt 

The stationarity of both time series was rejected as the Augmented Dicky-Fuller’s test didn’t 

reject the unit root hypothesis. Therefore, we suspected that the factors Y and I can be potentially 

nonstationary as well, which was confirmed by the Augmented Dicky Fuller’s test. 

For a sufficiently dense set of the values of σ, we extracted I by means of the inversion of h and 

fitted the (vector) time series (y, I) using a vector error correction model (VECM) with one lag, 

i.e., 

1 1 1 1 1 1 1 1 1,t t t t ty y I e                 (3.29) 

2 2 1 2 1 2 1 2,t t t t tdI y I e             ,  (3.30) 

where  y and  I are the first differences of y and I and e is an error correction term. For each of 

the examined values of σ, we computed the maximum likelihood function of the VECM model 

by means of (3.28) and chose σ = 12% as the estimate of σ since this value gave the greatest 

likelihood. We found it very interesting that the estimated σ intuitively corresponds to the 

standard deviation of real estate prices (Quigley, 1999).  
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Figure 3.4: Graphical comparison of Y and I common factors 

Figure 3.4 compares the two common factors. It seems obvious that these two show some 

similarities. To confirm whether a cointegration relationship exists between  y and  I, we 

performed the Engel-Granger cointegration test. The results confirmed that both datasets are 

nonstationary; however, the unit root test of the cointegrating regression residuals showed that 

we can’t reject the null hypothesis of unit root test. Despite the test not confirming fully our 

hypothesis of cointegration, we decided to estimate the VECM. 

The resulting VECM model with Y as the dependent variable in the first equation and I in the 

second one is summarized in Table 3.2 (in accordance with the definition of the model, 

cointegration rank 1 was assumed). 
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1st equation (Y 

dependent) 

Coefficient Value 

(SE) 

p-value 

Constant 0.552233 (0.101865) 3.44E-07 

Delta y(t-1) -0.169582 (0.0914292) 0.0663 

Delta I (t-1) 0.111233 (0.0286587) 0.0002 

Error Correction 

Term 

-0.534066 (0.0982860) 3.26E-07 

2nd equation (I 

dependent) 

Coefficient Value 

(SE) 

p-value 

Constant -0.299802 (0.321560) 0.3532 

∆ y (t-1) -0.106660 (0.288617) 0.7124 

∆ I (t-1) -0.362746 (0.0904674) 0.0001 

Error Correction 

Term 

0.293693 (0.310262) 0.3459 

Table 3.2: Estimated coefficients of the VECM model 

From the Table 3.2 we see that the (transformed) factor Y depends on the past value of both 

factors, while factor I does not show dependence on the past (except the one caused by the 

cointegration). Also, it is worth mentioning that the dependence of Y on I is much stronger than 

the dependence of I on Y. The R2 of the whole model is around 30%. Thus we found a 

cointegration between Y and I, which, on the other hand, is weaker than we expected (but still 

strong enough to show a time series inter-dependency). 

Since normality of the residuals from the VECM model was rejected (with p-value lower than 

0.01), we additionally fitted the residuals using the generalized hyperbolic distribution. This 

distribution was first described in Barndorff-Nielsen (1977), and it has been shown that it is able 

to describe financial time series more realistically than, for example, the standard normal 

distribution (Eberlein and Keller, 1995). The choice of distribution is based on Gapko and Šmíd 

(2010), where the authors found that the class of generalized hyperbolic distributions best fits the 

increments of the Y factor. 
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Before the end of this section, let us describe the derivation of the ML function (3.28) in detail. 

First, note that  

Δ
0

0 Δ

t
t

t

t t

Y
M

Q

I S





 
 

 
   , 

where tS  and tM  are matrices possibly containing past values of both (transformed) factors Y 

and I. Since, in (3.28), the term  1( , )t t t tlog D Y I log Y     does not depend on any parameter, 

it can be excluded from the maximization, so the ML estimate can be obtained by maximizing 

           
T

1 2 ' 1

1 1 1 2 t σ σ

t 1

L , , , , ; , , log log logT T t tR D R D h h D       



     
   

     
T

' 1

1

t 1

( ) logt t t T tL Q h h D  

 



  ,                   (3.31) 

where L  Is the likelihood function of the VECM model, 
1 2( , , )i i    are the residuals from the    

i-th equation of the VECM model, and i  is the density of the residuals (keep in mind, however, 

that the residuals depend on the parameters of the VECM model).  

Remark: To be rigorous, we did not proceed exactly according to Section 3 because we did not 

maximize the parameters of the VECM model and of the residuals “at once”. However, since 

both estimations are already implemented (in R language), it seems reasonable to use the existing 

methods – to estimate the VECM first and then to fit the residuals. However, we pay a price for 

this simplification: our estimate becomes a quasi-maximum likelihood one instead of a 

maximum likelihood one (because least squares estimation is an ML one only given normality of 

the residuals).  

 

3.4.3 Predictions 

Having the model, we computed the quantiles of both RD and LGD on the 99.9th percentile 

probability level, i.e., on the level used in the Basel II framework.  
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During the estimation, we had to solve a technical problem. The common practice is to measure 

credit risk over a one-year horizon, while our dataset is based on quarterly observations. In order 

to get one-year predictions exactly, we would need to calculate convolutions of the (generalized 

hyperbolic) residuals, which would lead to complicated integral expressions. Therefore, we 

decided instead to use simulations for four consecutive quarters, using the formula  

 1
4

1 4

( ( ) )t t t i
i

R R Y  
 

 

   ,  (3.32) 

which can be easily achieved by using (3.15) four times consecutively. Technically, this was 

achieved by simulating Y four time periods to the future and deducting the sum of the predictions 

from the quantile at Rt. 

3.4.3.1 Quantile of RD 

As was said in Section 3, we assumed that the distribution of the individual factor driving 

defaults, denoted by Z, is standard normal. 

We compared the quantiles of RD calculated by our proposed methodology and those obtained 

by the Basel II IRB method (assuming standard normal distributions for both risk factors and a 

15% correlation between the factors21). The result is summarized in Table 3.3. 

Model Basel II IRB 

(through-the-cycle 

PD) 

Our dynamic model 

with GHD 

Distribution used 

for the individual 

factor 

Standard Normal Standard Normal 

Distribution used 

for the common 

factor 

Standard Normal Generalized Hyperbolic 

99.9% loss 10.3% 7.2% 

Table 3.3: Comparison of Basel II and Dynamic GHD models tail RD 

                                                           
21 The 15% correlation is the benchmark set for mortgage exposures in the Basel II framework. 
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The results show that our model predicts a lower value of the quantile of RD than the IRB 

formula, which may seem surprising in light of the fact that we rejected normality of the 

residuals in favor of a fat-tailed distribution. However, if we keep in mind that we use 

information from the past to estimate the distribution of the factor (which the static model does 

not), we are able to “predict” the factor more exactly. This decreases the uncertainty in the model 

and thus explains the lower value of the quantile.  

3.4.3.2 Quantile of LGD 

Similarly to RD, we computed the quantiles of LGD (by means of simulations again). The 

resulting 99.9th LGD quantile calculated by our model, 40.6%, is slightly below the regulatory 

45% benchmark. The other computed quantiles are summarized in Table 3.4. 

 

99th quantile LGD 99.9th quantile LGD 99.99th quantile LGD 

29.8% 40.6% 50% 

Table 3.4: Selected LGD quantiles in our model 

 

3.5 Conclusion 

 

We proposed a new model for quantifying credit risk, widely generalizing the IRB approach 

implemented in the Basel II regulatory framework. In particular, we extended the original model 

framework so that both RD and LGD are considered, each being driven by one common and one 

individual factor. In our proposed methodology, nearly any dynamic stochastic model may be 

used to describe the dynamics of the (common) factors.  

We applied our model to real data, specifically to the time series of serious credit delinquencies 

in the nationwide US mortgage market. We used a VECM model with generalized hyperbolic 

residuals as the model for the common factors. Based on the model, we evaluated the quantiles 

for both RD and LGD, finding that our results are comparable with the levels prescribed by 



65 
 

Basel II. In particular, our results show that the Basel II framework gives both higher RD and 

higher LGD than our model. This is because our model, employing dynamics, gives more precise 

forecasts of both factors. In the Basel II methodology with static models, information from the 

past is not exploited. Consequently, our results show that the current regulatory framework may 

overestimate credit losses, which may result in higher capital requirements and thus higher 

customer interest rates on loans. 

The proposed methodology could be used as part of internal capital adequacy measurement in 

banks or other financial institutions. However, there are still some unresolved questions and 

suggestions for future research, including more detailed analysis of the relationship between RD 

and LGD and an empirical analysis of the model on a single bank’s portfolio. 
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Appendix 

 

In the Appendix, we provide mathematical details concerning the function h defined in Section 

3.3. First we specify its derivative: 

ℎ′(𝜄) = 𝑒𝜄 (∫ 𝐹(𝑥)𝑒𝑥dx
−𝜄

−∞

− 𝐹(−𝜄)𝑒−𝜄) 

                    = 𝑒𝜄(∫ 𝐹(𝑥)𝑒𝑥dx
−𝜄

−∞
− 𝐹(−𝜄) ∫ 𝑒𝑥dx

−𝜄

−∞
) 

       = 𝑒𝜄 ∫ [𝐹(𝑥) − 𝐹(𝜄)]𝑒𝑥dx
−𝜄

−∞
< 0. 

Second, we evaluate the function given that further 𝐸1 is normal with variance 𝜎2: 

ℎ𝜎(𝜄) =Φ (−
𝜄

𝜎
) − exp(𝜄) ∫

1

√2𝜋𝜎
exp (−

𝑥2

𝜎2
) exp(𝑥) dx

−𝜄

−∞

 

           =Φ (−
𝜄

𝜎
) − exp(𝜄)

1

√2𝜋𝜎
∫ exp (−

𝑥2

𝜎2 + 𝑥) dx
−𝜄

−∞
 

           =Φ (−
𝜄

𝜎
) − exp(𝜄)

1

√2𝜋𝜎
∫ exp (−

1

2𝜎2
(𝑥2 − 2𝑥𝜎2 + 𝜎4) +

1

2
𝜎2) dx

−𝜄

−∞
 

           =Φ (−
𝜄

𝜎
) − exp(𝜄)

1

√2𝜋𝜎
∫ exp (−

1

2𝜎2
(𝑥 − 𝜎2)2 +

1

2
𝜎2) dx

−𝜄

−∞
 

           =Φ (−
𝜄

𝜎
) − exp (𝜄 +

1

2
𝜎2) ∫

1

√2𝜋𝜎
exp (−

(𝑥−𝜎2)
2

2𝜎2
) dx

−𝜄

−∞
 

           =Φ (−
𝜄

𝜎
) − exp (𝜄 +

1

2
𝜎2) ℙ[𝑁(𝜎2, 𝜎2) < −𝜄] 

       =Φ (−
𝜄

𝜎
) − exp (𝜄 +

1

2
𝜎2)Φ (−

𝜄

𝜎
− 𝜎) 

(recall that Φ is the standard normal CDF). 
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4. Dynamic Model of Losses of a Creditor with a 

Large Mortgage Portfolio 

 

4.1 Introduction 

 

One of the sources of the recent financial crisis was the collapse of the mortgage business. Even 

if there are ongoing disputes about the causes of the collapse, wrong risk management seems to 

be one of them. Hence, realistic models of the lending institutions' risk are of great importance. 

The textbook approach to the risk control of the loans' portfolio, which is also a part of the IRB 

standard (Bank for International Settlement, 2006), is that of Vasicek (Vasicek, The Distribution 

of Loan Portfolio Value, 2002) who deduces the rates of defaults of the borrowers, and 

consequently the losses of the banks, from the value of the borrowers' assets following a 

geometric Brownian motion. 

In particular, the Vasicek's model assumes that the logarithm of the assets of the i-th individual 

fulfills 

𝐴𝑖,1 = 𝐴𝑖,0exp (𝜂 + 𝛾𝑋𝑖). 

Here, 𝐴𝑖,0 is the individual’s wealth at time zero, 𝜂 and 𝛾 are constants, and 𝑋𝑖 is a random 

variable fulfilling 

𝑋𝑖 = 𝑌 + 𝑍𝑖, 

where 𝑌 is the common factor having a centered normal distribution and 𝑍1, 𝑍2, … are i.i.d. 

centered normal individual factors, independent of 𝑌 (Vasicek, Probability of Loss on Loan 

Portfolio, 1987). 
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Default of an individual is defined by the state where the value of an individual’s assets 

decreases below a certain threshold𝐵𝑖; this threshold is usually interpreted as the sum of the 

individual’s debts (including installments at least). The probability of default is then 

𝑃𝐷𝑖 = 𝑃[𝐴𝑖.1 < 𝐵𝑖] = 𝑃[𝑋𝑖 < 𝑐𝑖], 𝑐𝑖 =
log 𝐵𝑖−log 𝐴𝑖,0−𝜂

𝛾
. 

After some calculations (cf. (Vasicek, Probability of Loss on Loan Portfolio, 1987)) we obtain 

the default rate (DR), defined as 

𝐷𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑎𝑛𝑠
, 

approximately fulfilling  

𝑃[𝐷𝑅 ≤ 𝑥] ≐ 𝑁 (
(√1 − 𝜌) ∙ 𝑁−1(𝑥) − 𝑁−1(𝑃𝐷1)

√𝜌
) 

given a sufficiently large number of loans. Here, 𝑁 denotes the standard normal cumulative 

distribution function and 

𝜌 = corr(𝑋𝑖, 𝑋𝑗) =
var(𝑌)

var(𝑌)+var(𝑍1)
. 

It follows that the distribution of 𝐷𝑅 is “heavy-tailed,”22 with the “heaviness” of the tail 

dependent on the correlation 𝜌. 

We generalize the Vasicek's model in three ways:  

1. We add dynamics to the model (note that the Vasicek's model is only one-period one).  

2. We allow more general distribution of the assets. In a nutshell, the main advantage of 

our model is that asset increments can be described by any continuous distribution, 

which potentially enables us to use a distribution that is able to fit a particular dataset 

better than the normal one. 

                                                           
22 This means that it cannot be successfully approximated by a light-tailed variable. 
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3. We add a sub-model of the losses given default which allows us to calculate the overall 

percentage loss of the bank.  

Similarly as in the Vasicek's paper, in our model, there is a one-to-one correspondence between 

the common factors and the default rate (DR), and the loss given default (LGD), which allows 

for econometric estimation of the bivariate series of DR's and LGD's. Thus, these factors can 

have a general distribution of any kind. 

To our knowledge, no dynamic generalization of the Vasicek's model incorporating the losses 

given default has been published yet. However, our approach to the dynamics and/or common 

modelling of DRs and LGDs is not the only one:  

•  There are more ways to get the relevant information from the past history of the 

system, e.g. credit scoring from which the distribution of the DR may be obtained in a 

standard way (Vasicek, The Distribution of Loan Portfolio Value, 2002) where the 

distribution of the losses is a function of the probability of default) or observing the 

credit derivatives (d'Ecclesia, 2008). Another approach to the dynamics could be to 

track the situation of individual clients (Gupton, Finger, & Bhatia, 1997) or to use 

affine processes (Duffie, 2005). The usefulness of our approach, however, could lie in 

the fact that it is applicable "from outside" in the sense that it does not require a bank's 

internal information. 

•  Numerous approaches to the joint modeling of DR and the LGD have been published 

(see e.g. (Witzany J. , 2010), (Yang & Tkachenko, 2012), (Frye, 2000) or (Pykhtin, 

2003) and the references therein.) The novelty of our approach, however, is the fact 

that the form of the dependence of the LGD on the common factor driving the LGD, is 

not chosen ad-hoc, but it arises naturally from the matter of fact. In particular, it links 

the LGD to the price of the property serving as a collateral. (Gapko & Šmíd, 2012) 

•  In its general form, our approach does not assume particular dynamics of the common 

factors econometric model of which can thus be “plugged” into the model. In contrary 

to (Gapko & Šmíd, 2012) - a simpler version of our model - multiple generations of 

debtors are tracked in the presented paper. 



72 
 

 

Our results show that applying our multi-generational model to a specific dataset leads to a much 

lower variance in the forecasted credit losses than in the case of the single-generation model. 

Mainly thanks to the fact that our econometric model uses macroeconomic variables to explain 

common factors, which is supported by several recent articles, eg (Carling, Jacobson, Lindé, & 

Roszbach, 2007). It is able to explain changes in risk factors more accurately than a simple 

model based purely on extraction of common factors from the series of DRs and LGDs. The 

higher accuracy of the loss forecast then naturally leads to more realistic determination of a 

quantile loss. In our particular case, the 99.9th quantile loss is lower than in the Vasicek's model.  

The paper is organized as follows: after the general definitions (Section 4.2,) where the models 

of DRs and LGDs are constructed the procedure of econometric estimation of the model is 

proposed (Section 4.3.) Section 4.4 describes the empirical estimation and finally in Section 4.5, 

the paper is concluded. 

 

4.2 The Model 

 

In the present section, we introduce our model and discuss its estimation. Proofs and some 

technical details may be found in the Appendix. 

 

4.2.1 Definition 

Let there be (countably) infinitely many potential borrowers. At the time 𝑆𝑖 ∈ ℕ0, the i-th 

borrower takes out a mortgage of amount 𝐶𝑖, with help of which, he buys a real property with 

price 𝑃
𝑆𝑖
𝑖 = 𝑑𝐶𝑖 for some nonrandom 𝑑 > 0. The mortgage is repaid by instalments amounting to 

𝑏𝐶𝑖 , 𝑏 > 0, at each of the times 𝑆𝑖 + 1, 𝑆𝑖 + 2, … , 𝑆𝑖 + 𝑟, where 𝑟 ∈ ℕ - the duration of the 

mortgage - is the same for all the borrowers for simplicity. 
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The assets of the i-th borrower evolve according to stochastic process 𝐴𝑡
𝑖  such that, between the 

times the installments are paid, 𝐴 follows a Geometrical Brownian Motion with stochastic trend, 

i.e.  

𝐴𝑡−
𝑖 = 𝐴𝑡−1

𝑖 exp{∆𝑌𝑡 + ∆𝑍𝑡
𝑖} ,     𝑡 ∈ ℕ,     𝑡 > 𝑆𝑖, 

where 𝑌𝑡 is a common factor (e.g. a log stock index) and 𝑍𝑡
𝑖 , 𝔼∆𝑍𝑡

𝑖 = 0, is a normally distributed 

individual factor for each 𝑖 < 𝑛 with the same variance for each 𝑖 (∆ stands for a one-period 

difference). 

The instalments are paid by means of selling the necessary amount of the assets, i.e.  

𝐴𝑡
𝑖 = 𝐴𝑡−

𝑖 − 𝑏𝐶𝑖 ,     𝑡 ∈ ℕ,     𝑡 > 𝑆𝑖. 

If 𝐴𝑡
𝑖 < 0 then we say that the borrower defaults at 𝑡. 

The price 𝑃𝑡
𝑖 of the real property serving as a collateral of the mortgage of the i-th debtor fulfils 

𝑃𝑡
𝑖 = exp{∆𝐼𝑡 + ∆𝐸𝑡

𝑖} 𝑃𝑡−1
𝑖 ,     𝑡 > 𝑆𝑖, 

(recall that 𝑃
𝑆𝑖
𝑖 = 𝑑𝐶𝑖), where 𝐼𝑡 is another common factor (e.g. the logarithm of a real estate 

price index) and ∆𝐸𝑡
𝑖 = 𝒩(0, 𝜎2) is an individual factor.23  

The exposure at default 𝐻𝑡
𝑖 (i.e. the remaining debt) of the i-th borrower at time t fulfils 

𝐻𝑡
𝑖 = 𝑝(𝑡 − 𝑆𝑖)𝐶𝑖 ,     𝑡 > 𝑆𝑖 

for some decreasing function fulfilling 𝑝(1) = 1, 𝑝(𝜏) = 0 if 𝜏 ≤ 0 or 𝜏 > 𝑟 (the shape of 𝑝 may 

depend on the way of interest calculation and the accounting rules of the bank). 

Finally, let  

𝜋1, 𝜋2, …, 

                                                           
23 It would not be difficult to have ∆𝑍1

1 and ∆𝐸1
1 non-normal for the price of loosing closed form formula for 

function ℎ (see further). 
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be the ratios of “newcomers” to the size of the overall portfolio at the times 1, 2, …. 

Assume that the increments of the individual factors  

∆𝑋1
1, ∆𝐸1

1, ∆𝑋1
2, ∆𝐸1

2, … 

∆𝑋2
1, ∆𝐸2

1, ∆𝑋2
2, ∆𝐸2

2, … 

… 

are mutually independent and independent of (𝑌𝑡, 𝐼𝑡 , 𝜋𝑡)𝑡∈ℕ and that, for any i, the initial wealth 

and the size of each mortgage depend, out of all the remaining random variables, only on 𝜔𝑆𝑖, 

where 

𝜔𝑡 = (𝑌1, 𝐼1, 𝜋1, 𝑌2, 𝐼2, 𝜋2, … , 𝑌𝑡, 𝐼𝑡, 𝜋𝑡) 

is the history of the common factors and the percentages of the newcomers up to the start of the 

mortgage (see (C) in Appendix [sec:Appendix] for details). 

Until the end of the Section 4.2, fix 𝑡 ∈ ℕ and assume that the potential borrowers are numbered 

so that only those who are active since 𝑡 − 1 to 𝑡 (i.e. those with 𝑡 − 𝑟 ≤ 𝑆𝑖 ≤ 𝑡 − 1) and who 

did not default until 𝑡 − 1 are numbered.  

 

4.2.2 Default rate 

Introduce a zero-one variable 𝑄𝑡
𝑖 indicating whether the i-th borrower defaults at t:  

𝑄𝑡
𝑖 = 𝟏[𝐴𝑡

𝑖 < 0] = 𝟏[𝐴𝑡−
𝑖 < 𝑏𝐶𝑖] = 𝟏[𝑎𝑡−

𝑖 < 𝑏] = 𝟏[log 𝑎𝑡−
𝑖 + ∆𝑌𝑡 + ∆𝑍𝑡

𝑖 < log 𝑏], (4.1) 

where 

𝑎𝑡
𝑖 =

𝐴𝑡
𝑖

𝐶𝑖
 

is the value of assets per unit of the mortgage. The first topic of our interest will be the 

percentage of defaults (i.e., the percentage of the debtors who defaulted at t): 



75 
 

𝑄𝑡 ≔ lim
𝑛→∞

1

𝑛
∑ 𝑄𝑡

𝑖𝑛
𝑖=1 . 

 It is clear from (4.1) that we may assume, without loss of generality, that log 𝑏̇ = 0 (if not than 

we may subtract log 𝑏 from the increments of the common factor). Moreover, we may assume 

that the variance of ∆𝑍𝑡 is unit (if not then we could divide log 𝑎𝑡−1
𝑖   and ∆𝑌𝑡

𝑖 by its standard 

deviation).  

Thanks to Lemma 8 (see Appendix A.1), we may, similarly to (Vasicek, 2002), apply the Law of 

Large Numbers to the conditional distribution of 𝑄𝑖 given 𝜔𝑡 to get 

𝑄𝑡 = 𝔼(𝑄𝑡
1|𝜔𝑡) = ℙ(𝑄𝑡

1 = 1|𝜔𝑡) 

and compute it, using the Complete Probability Theorem, by formula 

ℙ(𝑄𝑡
1 = 1|𝜔𝑡) = ∑ ℙ(𝑆1 = 𝑠|𝜔𝑡)ℙ(𝑄𝑡

1 = 1|𝑆1 = 𝑠, 𝜔𝑡)

𝑡−1

𝑠=𝑡−𝑟

 

From the definitions, and thanks to 𝐴(𝑡) (see Appendix A.1), 

ℙ(𝑄𝑡
1 = 1|𝑆1, 𝜔𝑡) = ℙ(log 𝑎𝑡−1

𝑖 + ∆𝑌𝑡 + ∆𝑍𝑡
1 < 0|𝑆1, 𝜔𝑡) = Ψ𝑡

𝑠(−∆𝑌𝑡|𝑆1, 𝜔𝑡−1) 

where Ψ𝑡
𝑠(∙ |𝑠, 𝜔) is the c.d.f. of log 𝑎𝑡−1

𝑖 + ∆𝑍𝑡
𝑖 given 𝜔𝑡−1 = 𝜔,  𝑆1 = 𝑠, and because 

ℙ(𝑆1 = 𝑠|𝜔𝑡) = ℙ(𝑆1 = 𝑠|𝜔𝑡−1) by Lemma 7, we are getting: 

Proposition 4.1 

𝑄𝑡 = ∑ 𝑞𝑡−1,𝑠(𝜔𝑡−1)Ψ𝑡
𝑠(−∆𝑌𝑡|𝑠, 𝜔𝑡−1)𝑡−1

𝑠=𝑡−𝑟 , (4.2) 

where 

𝑞𝑡−1,𝑠(𝜔𝑡−1) = ℙ(𝑆1 = 𝑠|𝜔𝑡−1)  

♣ 

 Note, that, by Lemma 6 (see Appendix A.1), Ψ𝑡
𝑠(∙ |𝑆1, 𝜔𝑡−1) is a strictly increasing c.d.f. of a 

convolution of two distributions, namely that of log 𝑎𝑡−1
1  and the standard normal one. Note also 
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that 𝑞𝑡−1,𝑠 is in fact the percentage of debts, started at 𝑠, and present in the portfolio between 

times 𝑡 − 1 and 𝑡. 

Corollary 4.2 

For each 𝜔𝑡−1, there exists a one to one mapping between 𝑌𝑡 and 𝑄𝑡 given by (4.2). In 

particular, 

∆𝑌𝑡 = −𝛹𝑡
−1(𝑄𝑡|𝜔𝑡−1), 

Ψ𝑡(𝑦, 𝜔) = ∑ 𝑞𝑡−1,𝑠(𝜔)Ψ𝑡
𝑠(𝑦|𝑠, 𝜔)𝑡−1

𝑠=𝑡−𝑟 . (4.3) 

♣ 

4.2.3 Loss given default 

Since the amount which the bank will recover in case of the default of the i-th debtor at time 𝑡 is 

𝐺𝑡
𝑖 = min(𝑃𝑡

𝑖, 𝐻𝑡
𝑖)

= 𝐶𝑖 min (𝑑 ∙ exp { ∑ [∆𝐼𝑗 + ∆𝐸𝑗
𝑖]

𝑡

𝑗=𝑆𝑖+1

} , 𝑝(𝑡 − 𝑆𝑖))

= 𝐶𝑖 exp {min (𝑑 + ∑ [∆𝐼𝑗 + ∆𝐸𝑗
𝑖]

𝑡

𝑗=𝑆𝑖+1

̇

) , log (𝑝(𝑡 − 𝑆𝑖))} 

we get that the percentage loss given default 𝐿𝑡, i.e. the ratio of the actual losses and the total 

exposure at default, is 

𝐿𝑡 = lim
𝑛→∞

∑ 𝑄𝑡
𝑖(𝐻𝑖 − 𝐺𝑖)𝑛

𝑖=1

∑ 𝑄𝑡
𝑖𝐻𝑖𝑛

𝑖=1

= 1 − lim
𝑛→∞

∑ 𝑄𝑡
𝑖𝐺𝑖𝑛

𝑖=1

∑ 𝑄𝑡
𝑖𝐻𝑖𝑛

𝑖=1

 

 

Proposition 4.3 

𝐿𝑡 = 1 −
∑ 𝜈𝑡,𝑠,𝜔𝑡−1ℎ𝑡−𝑠(Δ𝐼𝑠,𝑡)𝑡−1

𝑠=𝑡−𝑟

∑ 𝜈𝑡,𝑠,𝜔𝑡−1
𝑡−1
𝑠=𝑡−𝑟

                Δ𝐼𝑠,𝑡 = 𝐼𝑡 − 𝐼𝑠 (4.4) 



77 
 

where 

𝜈𝑡,𝑠,𝜔 = 𝑝(𝑡 − 𝑠)𝑐𝑠,𝜔Ψ𝑡
𝑠(−Δ𝑌𝑡|𝑠, 𝜔)𝑞𝑡−1,𝑠(𝜔),          𝑐𝑠,𝜔 = 𝔼(𝐶1|𝑆1 = 𝑠,  𝜔𝑡−1 = 𝜔) 

and 

ℎ𝜏(𝜄) = 𝑑exp {
1

2
τσ2 + 𝜄} 𝜑 (

𝜔𝜏 − 𝜄

√𝜏𝜎
− √𝜏𝜎) + 𝑝(𝜏) [1 − 𝜑 (

𝜔𝜏 − 𝜄

√𝜏𝜎
)] 

𝜔𝜏 = log(𝑝(𝜏)) − log 𝑑, 

and where 𝜑 is the standard normal distribution function. The function ℎ𝜏 is strictly increasing. 

Proof. See appendix A.2 

♣ 

Corollary 4.4 

For given 𝜔𝑡−1 there is one-to-one mapping between 𝐿𝑡 and 𝐼𝑡, given by (4.4). In particular, 

𝐼𝑡 = Υ𝑡,𝜔𝑡−1
−1 (1 − 𝐿𝑡),  (4.5) 

where 

Υ𝑡,𝜔(𝜄) =
1

∑ 𝜐𝑡,𝑠,𝜔𝑠
∑ 𝜈𝑡,𝑠,𝜔𝑡

ℎ𝑡−𝑠(Δ𝐼𝑡−1,𝑠 + 𝜄)

𝑡−1

𝑠=𝑡−𝑟

 

 ♣ 

 

4.2.4 Next period  

Now, let us proceed to the portfolio at the next period: After renumbering (excluding the 

defaulted borrowers and adding the newcomers) we get. 
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Proposition 4.5 

𝑞𝑡,𝑠(𝜔𝑡) = {

𝜋𝑡

(1 − 𝜋𝑡)𝑢𝑡,𝑠(𝜔𝑡−1)

0
       

𝑖𝑓 𝑠 = 𝑡
𝑖𝑓 𝑡 − 𝑟 < 𝑠 < 𝑡

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 

𝑢𝑡,𝑠(𝜔) = ℙ(𝑆1 = 𝑠|𝑄1 = 0, 𝜔𝑡−1 = 𝜔)

= 𝑞𝑡−1,𝑠(𝜔)
1 − Ψ𝑡

𝑠(−Δ𝑌𝑡|𝑠, 𝜔)

1 − Ψ𝑡(−Δ𝑌𝑡|𝜔) − (1 − Ψ𝑡
𝑠(−Δ𝑌𝑡|𝑡 − 𝑟, 𝜔))𝑞𝑡,𝑡−𝑟(𝜔)

 

and 

ℙ[log 𝑎𝑡
1 ≤ 𝑧|𝑆1 = 𝑠, 𝜔𝑡−1 = 𝜔] = {

𝜗𝑡,𝜔𝑡−1
(𝑧)

Ψ𝑡
𝑠(𝑧 − Δ𝑌𝑡|𝑠, 𝜔) − Ψ𝑡

𝑠(−Δ𝑌𝑡|𝑠, 𝜔)

1 − Ψ𝑡
𝑠(−Δ𝑌𝑡|𝑠, 𝜔)

     

𝑖𝑓 𝑆1 = 𝑡

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

for each 𝑧 ≥ 0 where 𝜗𝑡,𝜔(𝑧) = ℙ[𝑙𝑜𝑔 𝑈𝑖 ≤ 𝑧| 𝜔𝑡−1 = 𝜔], 𝑈𝑖 = 𝐴𝑆1
   

Proof. See appendix A.3 

♣ 

4.2.5 Econometrics of the Model 

Say we have the sample  

𝜋1, 𝑄1, 𝐿1, 𝜋2, 𝑄2, 𝐿2, … , 𝜋𝑇 , 𝑄𝑇 , 𝐿𝑇  (4.6) 

at our disposal and want to infer (some of) the parameters of our model, whose complete list is  

ℙ((𝑋, 𝑌, 𝜋) ∈ ∙), 𝑐(∙), 𝑟, 𝑑, 𝑝(∙), 𝜗∙(∙), 𝜎  (4.7) 

Clearly, some further simplification of such a rich parameter space has to be done. For simplicity 

and computability, we decided to postulate values of all the parameters except of  

ℙ((𝑋, 𝑌, 𝜋) ∈ ∙) in the empirical part of our paper so that we are able (recursively) to evaluate 

the transforming function Ψ𝑡 and Υ𝑡 independently on unknown parameters and the econometrics 
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of the model reduces to the one of the factors Y and I. In other words, the values of all parameters 

except of ℙ((𝑋, 𝑌, 𝜋) ∈ ∙) were chosen based on empirical observations or expert judgment. 

 

4.2.6 Numerics of the Model 

Generally, Ψ𝑡 is a convolution of truncated (normal) distributions (the defaults are due to the 

truncations). We chose the Monte Carlo simulation as the easiest way of the functions evaluation 

which was done in the Mathematica software. 

Since the formula for Ψ𝑡 is recursive and involves Ψ𝑡−1, … , Ψ𝑡−𝑟, which are unknown at the time 

𝑡, we acted as if the borrowing began at 𝑡 = 1, i.e. we took 𝑞1,1 = 1 and 𝑞1,𝑠 = 0 for all 𝑠 < 1. 

 

4.3 Empirical estimation 

 

In this part, we describe the estimation procedure of the previously introduced model. The final 

result of the estimation procedure is a loss distribution and, in particular, a mean predicted loss 

and a predicted loss quantile on a one-quarter horizon.  

The estimation process can be divided into three separate parts: the extraction of both common 

factors from a historical dataset, a prediction of these factors based on an econometric model and 

finally, the calculation of future mean and quantile losses given the future values of the factors. 

 

4.3.1 Data description 

We used the same dataset as in (Gapko & Šmíd, 2012), ie, a historical dataset of mortgage 

delinquencies and started foreclosures, provided by the Mortgage Bankers Association. In our 

model we took the 90+ delinquency rate at the time 𝑡 as the default rate, 𝑄𝑡. Unfortunately, to 

our knowledge, there is no nationwide public database with banks’ losses from mortgage 

portfolios that could be considered as our loss given default, 𝐿𝑡. Therefore we constructed its 
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proxy by the rate of started foreclosures from the Mortgage Bankers Association and an index of 

median prices of new homes sold from the US Census Bureau. In particular, because the 

foreclosures dataset consists of all mortgage loans that fell into the foreclosure process and does 

not describe how successful the foreclosure process was, we discounted the foreclosures by 

estimated average values of the collaterals in the portfolio; even if, as we realized, our proxy of 

the LGD is apparently an ad hoc one, it reflects the fact that the LGD grows with decreasing 

prices of collaterals.  

Formally, we put  

𝑄𝑡 = 𝐷𝑡 , 

where 𝐷𝑡 is the 90+ delinquency rate at the time 𝑡 and 

𝐿𝑡 =
𝐹𝑡

𝐷𝑡𝐽𝑡
, 

where 𝐹𝑡 is the unadjusted rate of started foreclosures from the original dataset and 𝐽𝑡 an 

estimated average value of collaterals in the portfolio calculated as  

𝐽𝑡 = ∑
𝑁𝑖,𝑠

𝑁𝑡−𝑟

𝑡−1

𝑠=𝑡−𝑟

∙
Π𝑡

Π𝑠
≐ ∑ 𝑞𝑡,𝑠(𝜔𝑡−1)

𝑡−1

𝑠=𝑡−𝑟

∙
Π𝑡

Π𝑠
, 

where 𝑁𝑖,𝑠 is the number of individuals in the 𝑠-th generation at the time 𝑡, 
𝑁𝑖,𝑡

𝑁𝑡
 the proportion of 

individuals of the 𝑖-th generation in the whole portfolio at the time 𝑡, Π𝑠 the value of the house 

price index at the time 𝑠 (recall that we assume unit price of all the collaterals at the start of the 

mortgage and that 𝑞𝑡,𝑠 is a function of the observed data).  

Both datasets entering our calculations are depicted on the following chart (in percentage of the 

total outstanding balance). 
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Figure 4.1: 90+ delinquency rate 𝑸𝒕 and the loss given default 𝑳𝒕  

 

4.3.2 Choice of Parameters  

In order to extract the rate of default and the loss given default, which is the first step in the 

estimation, we needed to restrict the number of parameters in the extracting functions given by 

(4.3) and (4.5). The parameters 

𝑐(∙), 𝑟, 𝑑, 𝑝(∙), 𝜗∙(∙), 𝜎 

were further postulated as follows: 

 The length of the mortgage, 𝑟 was set to 120 quarters (30 years) based on the long-term 

average taken from the U.S. Housing Market Conditions survey published quarterly by 

the U.S. Department of Housing and Urban Development 

 The variance of 𝐸 (the individual factor driving the property price), ie, 𝜎 of the 

distribution with the c.d.f. equal to Φ was set at 0.12 because this value was found to be 

the one maximizing the log-likelihood in the single-generation model (Gapko & Šmíd, 

2012) 

0

0,01

0,02

0,03

0,04

0,05

0,06

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

II
I-

7
9

X
-8

0

V
-8

2

X
II

-8
3

V
II-

8
5

II
-8

7

IX
-8

8

IV
-9

0

X
I-

9
1

V
I-

9
3

I-
9

5

V
III

-9
6

II
I-

9
8

X
-9

9

V
-0

1

X
II

-0
2

V
II-

0
4

II
-0

6

IX
-0

7

IV
-0

9

X
I-

1
0

lt qt



82 
 

 The size of the loan-to-value ratio 𝑑 at the beginning of the loan is set to 1 (ie, the full 

mortgage nominal is collateralized by the borrower's property); this is a simplification 

and a possible point for the model enhancement. 

 The quarterly interest rate, which determines the function 𝑝, is set to 1%; the function 𝑝 

uses the quarterly simple compounding interest to determine what amount of a mortgage 

remains to repay 

 The standard deviation of each newcoming generation's wealth 𝑈𝑖 is assumed to be 

normal with standard deviation equal to 5 

 The parameter 𝑐 - ie, the expected size of the mortgage, is assumed to be the same for all 

borrowers 

Other parameters, eg, the split on individual generations in a given period, can be calculated 

directly or derived from our assumptions. For a better understanding of how the original datasets 

𝑄 and 𝐿 are translated into the common factors 𝑌 and 𝐼, resp., we include a comparison of 𝑄 and 

𝑌 (Figure 4.2) and 𝐿 and 𝐼 (Figure 4.3). In the Figures 4.2 and 4.3, the values of the time series 𝐼 

and 𝑄 were adjusted to overlap the corresponding time series 𝑌 and 𝐿, resp. (i.e. 𝑄 multiplied by 

100 and 𝐼 multiplied by 10, so that the lines benefit from a single scale representation). 

 

Figure 4.2: The comparison of 𝑸 (blue) and 𝒀 (violet) 
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Figure 4.3: The comparison of 𝑳 (blue) and 𝑰 (violet) 

From the beginning of the dataset, there was a sustained growth of house prices, which caused 

the collateral to exceed the mortgage outstanding amount and thus decreased the LGD. However, 

in 2007, there was a downturn in housing prices and this is reflected in the increase of the LGD. 

From the Figures 4.2 and 4.3 we can graphically deduce that the evolution of both common 

factors might follow some trends, which suggests that there could be a dependence on several 

macroeconomic variables or stock market indexes. Thus, we chose a Vector Error Correction 

Model (VECM) with several exogenous macroeconomic variables, namely GDP, unemployment, 

interest rates, inflation, S&P 500 stock market index and the EUR/USD exchange rate, to capture 

the joint dynamics of the common factors 𝑌 and 𝐼. Note that we couldn't use any kind of real 

estate price index as the LGD values were adjusted by using such an index. Adding it would 

establish an unsought autocorrelation into the VECM error term. 

 

4.3.3 Estimation and prediction 

The VECM estimation was performed in the Gretl software. First, the stationarity tests of both 

VECM endogenous variables, ie 𝑌 and 𝐼, was performed and in both cases, the augmented 

Dickey-Fuller test rejected the stationarity. The Johansen's cointegration test rejects the absence 

of the first order cointegration between 𝑌 and 𝐼 on the 10% probability level (see the Appendix 
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A.6 for detailed results of the Johansen’s cointegration test and the corresponding cointegrating 

vectors). Moreover, the first VECM equation, explaining 𝑌, shows that it strongly depends on 

the year-on-year GDP growth rate. No other macroeconomic variables considered were found 

significant in this equation, even after lagging them up to four quarters. The second VECM 

equation, explaining 𝐼, also shows dependency on one macroeconomic variable - unemployment 

rate. Therefore we left the two significant variables, ie, the GDP year-on-year growth rate and 

the unemployment rate in the model. The following table summarizes our findings. It is obvious 

that the model is able to explain 𝑌 with a much higher predictive power than 𝐼, which is probably 

caused by the fact that changes of 𝐼 are based on a proxy instead of the actual LGD. 

 

 

Figure 4.4: Returns of 𝒀 (blue) and 𝑰 (violet) 
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Dependent variable 𝒀 (s.e.) 𝑰 (s.e.) 

constant -0.0098 (0.03) -0.14*** (0.04) 

d1 PD common factor 0.96*** (0.04) -0.17*** (0.05) 

d1 LGD common factor 0.13* (0.07) -0.24*** (0.09) 

GDP year-on-year 0.72*** (0.23) 0.027 (0.3) 

Unemployment rate -0.05 (0.39) 1.07** (0.5) 

Error correction term -0.0067 (0.004) 0.016*** (0.006) 

Adjusted R2 91% 15% 

 

Table 4.1: results of the PD & LGD common factors VECM estimate 

Thus the final pair of VECM equations is: 

𝑌𝑡 = −0.0098 + 0.96 ∙ 𝑑𝑌𝑡 + 0.13 ∙ 𝑑𝐼𝑡 + 0.72 ∙ 𝐺𝐷𝑃𝑡 − 0.05 ∙ 𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑡 − 0.0067

∙ 𝐸𝐶𝑡 

𝐼𝑡 = −0.14 − 0.17 ∙ 𝑑𝑌𝑡 − 0.24 ∙ 𝑑𝐼𝑡 + 0.027 ∙ 𝐺𝐷𝑃𝑡 + 1.07 ∙ 𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑡 + 0.016 ∙ 𝐸𝐶𝑡 

We also performed tests of both normality and autocorrelation of residuals. All tests show that 

error terms of both equations are not autocorrelated and approximately normal. 

After the model is estimated, we constructed a prediction of the common factors. To calculate 

the predicted 𝑌 and 𝐼, we needed a prediction of exogenous variables in the model, ie, the GDP 

y/y growth rate and the unemployment rate. As we measured the credit risk only, without an 

influence of deterioration in economic conditions, we assumed that the unemployment rate 

stayed for the prediction on its last value and the future GDP change is zero. The following two 

charts show the development of 𝑌 (Figure 4.5) and 𝐼 (Figure 4.6), including the predicted value. 
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Figure 4.5: Development of 𝒀 with the predicted value (blue) and the prediction standard error (green) 

Yt history 

Yt forecast 

95% CI 
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Figure 4.6: Development of 𝑰 with the predicted value (blue) and the prediction standard error (green) 

 

4.3.4 Prediction of losses 

The remaining step was to predict a mean and a desired quantile losses. This was done by an 

inversion function to the factor extraction functions (see (4.3) and (4.5)) in the Mathematica 

software, by which we obtained predicted DR and LGD. These two values were then multiplied 

to get a loss. The mean loss prediction is quite straightforward as we already have the predicted 

values of both common factors. However, the quantile loss has to be calculated from the quantile 

value of both common factors. To be able to compare our quantile loss with the IRB model, we 

chose to simply calculated the 99.9th quantiles of 𝑄 and the 99.9th quantile of 𝐿 and then multiply 

them24. The calculation of quantiles of 𝑄 and 𝐿 from the quantiles of 𝑌 and 𝐼 was done by the 

                                                           
24 The 99.9th was chosen to reflect the IRB, which calculates the capital requirement for credit risk as a difference 

between the mean (expected) loss and the 99.9th quantile loss. Usually, the 99.9th quantile loss is interpreted as a 

multiplication of the 99.9th quantile of Q and a “downturn” LGD (usually calculated as a 95th quantile of L). 

It history 

It forecast 

95% CI 
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function (4.2) for 𝑄 and by (4.4) for 𝐿. Quantiles of common factors were obtained from their 

prediction standard error and the assumption that error terms of both VECM equations (see Table 

4.1) are normally distributed. (Recall that we were not able to reject the normality). Thus, 

𝑌𝑞(0.999) = 𝑌𝑡+𝑖 + 𝜎𝑌 ∙ 𝑁(0.999)    𝑎𝑛𝑑 

𝐼𝑞(0.999) = 𝐼𝑡+𝑖 + 𝜎𝐼 ∙ 𝑁(0.95), 

where 𝑌𝑞(0.999) and 𝐼𝑞(0.999) are 99.9th quantiles of the factors 𝑌 and 𝐼, resp., 𝑌𝑡+𝑖 and 𝐼𝑡+𝑖 are the 

common factors predictions, 𝜎𝑌 and 𝜎𝐼 the regression standard errors and 𝑁(0.999) and 𝑁(0.95) 

the 99.9th and the 95th quantile of the standard normal distribution, resp. We constructed a one-

quarter quantile loss prediction. 

Because the Basel II IRB method calculates a twelve month forward quantile loss, to get a one 

quarter loss we divided the PD input (last DR value) by two (because the debtor’s assets are 

assumed in the IRB model to be normally distributed, the quarterly PD is exactly one half of the 

one-year PD, according to the convolution of the normal distribution). We used just one quarter 

for all the predictions. Both the comparison of the predictions of mean losses calculated by our 

proposed model and the IRB, and the comparison of the predictions of quantile loss are 

summarized in the Table 4.2. 

Model Our IRB 

mean loss 0.84% 0.78% 

99.9th quantile loss 1.23% 3.75% 

Table 4.2: comparison of our model's and IRB losses 

For the IRB model we have used the last value of default rate as an input for the PD and the last 

value of our adjusted LGD time series for an LGD. The difference between the IRB and our 

model computations is that the IRB treats LGD as a fixed variable, whereas in our proposed 

approach, we constructed a model for LGD predictions. As we can see from Table 4.2, our 

model predicts much lower quantile loss. This is due to the fact that the explanation of the 

development of default rates and LGD by our model is much neater than a crude ad-hoc 

approach of the IRB and thus the standard deviation of loss is lower. 
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4.4 Conclusion 

 

In the present paper, we suggested an estimable model of credit losses. The model is based on 

the assumption of underlying factors that are driving the probability of default and the loss given 

default. The two novelties of our approach are the multigenerational dimension of the model and 

the estimated relationship between underlying factors and a macroeconomic environment. 

The empirical estimation shows that the model leads to more accurate predictions of future mean 

and quantile losses than in the Vasicek's framework. This might lead to a saving in the amount of 

capital that is needed to cover the quantile loss. 

Even if the model is rather general and thus a bit more complicated to estimate due to the number 

of parameters, a bit less could be assumed if a user wished it, especially  

 The distribution of the individual factors need not be the same in all periods but it might 

depend on the time and on the past of the common factor 

 A dependence of the individual factors ∆𝐸𝑡
𝑖  and ∆𝑍𝑡

𝑖 could be established 

While the first generalization would not change our formulas much (some indexes would have to 

be added to the present notation) the second one would bring the necessity to work with a 

conditional distribution of ∆𝐸 given not defaulting, for which no analytical formula exists, even 

in the simple case of normal factors. 
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Appendix 

 

A.1 Definitions and Auxiliary Results 

First, we have to take into account that the borrowers have to be renumbered in each period in 

order to remove those who defaulted or fully repaid their mortgage and add those who came 

newly. Let us assume that the renumbering at 𝑡 is done as follows: once the indexes  

1, 2, . . . , 𝑖 − 1 are assigned, a random variable 𝐷𝑡
𝑖 is drawn from the Bernoulli distribution with 

parameter 𝜋𝑡. The index 𝑖 is consequently given to a newcomer, if 𝐷𝑡
𝑖 = 1 or to the first 

unindexed borrower who did not default at 𝑡 and does not repay fully his mortgage at 𝑡, if  

𝐷𝑡
𝑗

= 0. Let us denote 𝑆𝑡
𝑖 the starting time of the debtor, indexed by 𝑖 at 𝑡. 

Now, denote, 

Ω0 = (�̇�0
1, 𝑆0

1, �̇�0
2, 𝑆0

2, … ) 

and 

Ω𝑡 = (𝑌𝜏, 𝐼𝜏, 𝑍𝜏
1, 𝐸𝜏

1, 𝑍𝜏
2, 𝐸𝜏

2, … )𝜏≤𝑡 

for 𝑡 > 0 and note that, as the distribution of 𝐷𝑡
𝑖 depends only on 𝜋𝑡, which itself is a part of the 

vector 𝜔𝑡, we have that 𝐷𝑡
𝑖 is conditionally independent of Ω𝑡, 𝐷𝑡

1, 𝐷𝑡
2, … , 𝐷𝑡

𝑖−1, 𝐷𝑡
𝑖+1, …  given 

𝜔𝑡. 

Further, we have to formulate rigorously the assumptions concerning the distribution of the 

initial wealth and the property price. In particular, we assume that, for each 𝑖, (𝐶𝑖 , 𝐴𝑆𝑖

𝑖 ) =

(𝐶𝑖,𝑆𝑖
, 𝑈𝑖,𝑆𝑖

), where  

𝑪  

for any 𝑖 and 𝑡, (𝐶𝑖,𝑡, 𝑈𝑖,𝑡) is conditionally independent of Ω𝑡, (𝐶𝑗,𝑡, 𝑈𝑗,𝑡)
𝑗≠𝑖

 given 𝜔𝑡, and the 

conditional distribution of (𝐶𝑖,𝑡, 𝑈𝑖,𝑡) given 𝜔𝑡 equals for all 𝑖.  

Finally, denote 𝜔∞ = (∆𝑌𝜏, ∆𝐼𝜏)𝜏∈ℕ and assume that  
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𝑨(𝟎) 

variables �̇�0
1, 𝑆0

1, �̇�0
2, 𝑆0

2, … are mutually independent and independent of 𝜔𝑡, Ω𝑡 for any 𝑡 > 0, 

such that 𝑎0
𝑖  has the same strictly increasing continuous conditional c.d.f. given 𝑆𝑖 for each 𝑖. 

Now, let us prove that  

Lemma 6 

For each 𝑡 > 0 the following is true:  

𝑨(𝒕) 

For any 𝑖, �̇�𝑡−1
𝑖 , … is conditionally independent of 𝜔∞, (𝑆𝑡−1

𝑗
, 𝑎𝑡−1

𝑗
)

𝑗≠𝑖
 given 𝑆𝑡−1

𝑖 , 𝜔𝑡−1, such that 

𝑎𝑡−1
𝑖  has the same strictly increasing continuous conditional c.d.f. for each i.  

 

Proof. Let us proceed by induction: For 𝑡 = 0, the assertion follows from 𝑨(𝟎). Now, assume 

𝑨(𝒕) and try to prove 𝑨(𝒕 + 𝟏). Let 𝑖 ∈ ℕ. From the basic properties of conditional expectations, 

we have 

ℙ (𝑎𝑡
𝑖 < 𝑥|𝐷𝑡

𝑖, 𝜔∞, (𝑆𝑡
𝑘)

𝑘∈ℕ
, (𝑎𝑡

𝑘)
𝑘≠𝑖

) 

= {
ℙ (𝑈𝑡

𝑖 < 𝑥|𝐷𝑡
𝑖 , 𝜔∞, (𝑆𝑡

𝑘)
𝑘∈ℕ

, (𝑎𝑡
𝑘)

𝑘≠𝑖
) = ℙ(𝑈𝑡

𝑖 < 𝑥|𝜔𝑡)                                             on [𝐷𝑡
𝑖 = 1]

ℙ (𝑎𝑡−
𝐽𝑖 < 𝑥|𝐷𝑡

𝑖 , 𝜔∞, (𝑆𝑡
𝑘)

𝑘∈ℕ
, (𝑎𝑡

𝑘)
𝑘≠𝑖

) = 𝔼 (𝜋(𝑥)|𝐷𝑡
𝑖 , 𝜔∞, (𝑆𝑡

𝑘)
𝑘∈ℕ

, (𝑎𝑡
𝑘)

𝑘≠𝑖
)      on [𝐷𝑡

𝑖 = 0]
 

where  

𝜋(𝑥) = ℙ (𝑎𝑡−
𝐽𝑖 < 𝑥|(𝐷𝑡

𝑘 , 𝑆𝑡−1
𝑘 , 𝑆𝑡

𝑘)
𝑘∈ℕ

, 𝜔∞, 𝐽𝑖 , (𝑎𝑡
𝑘)

𝑘≠𝑖
) 

and  𝐽𝑖 is the index of the borrower indexed by 𝑖 at 𝑡 given the numbering from 𝑡 − 1. On the set 

[𝐽𝑖 = 𝑗], we get  

𝜋(𝑥) = ℙ (𝑎𝑡−1
𝑗

+ ∆𝑍𝑡
𝑗

+ ∆𝑌𝑡 < 𝑥|(𝐷𝑡
𝑘, 𝑆𝑡−1

𝑘 , 𝑆𝑡
𝑘)

𝑘∈ℕ
, 𝜔∞, 𝐽𝑖, (𝑎𝑡

𝑘)
𝑘≠𝑖

) 
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= 𝔼 (ℙ (𝑎𝑡−1
𝑗

+ ∆𝑍𝑡
𝑗

+ ∆𝑌𝑡 < 𝑥|𝑄𝑡
𝑗
, (𝐷𝑡

𝑘, 𝑆𝑡−1
𝑘 , ∆𝑍𝑡

𝑘)
𝑘∈ℕ

, 𝜔∞, 𝐽𝑖 , (𝑎𝑡−1
𝑘 )

𝑘≠𝑗
) |(𝐷𝑡

𝑘 , 𝑆𝑡−1
𝑘 , 𝑆𝑡

𝑘)
𝑘∈ℕ

, 𝜔∞, (𝑎𝑡
𝑘)

𝑘≠𝑖
) 

= 𝔼 (𝜌(𝑥)|(𝐷𝑡
𝑘, 𝑆𝑡−1

𝑘 , 𝑆𝑡
𝑘)

𝑘∈ℕ
, 𝜔∞, 𝐽𝑖, (𝑎𝑡

𝑘)
𝑘≠𝑖

), 

where  

𝜌(𝑥) = ℙ(𝑎𝑡−1
𝑗

+ ∆𝑍𝑡
𝑗

+ ∆𝑌𝑡 < 𝑥|𝟏[𝑎𝑡−1
𝑗

+ ∆𝑍𝑡
𝑗

+ ∆𝑌𝑡 < 0], 𝑆𝑡−1
𝑗

, 𝜔𝑡) 

(the last “=” is due to 𝑨(𝒕)) where, by the textbook calculation 

𝜌(𝑥) = 𝜓(𝑥, 𝑆𝑡−1, 𝜔𝑡−1),              𝜓(𝑥, 𝑠, 𝜔) =
Ψ𝑡

𝑠(𝑥 − Δ𝑌𝑡|𝑠, 𝜔) − Ψ𝑡
𝑠(−Δ𝑌𝑡|𝑠, 𝜔)

1 − Ψ𝑡
𝑠(−Δ𝑌𝑡|𝑠, 𝜔)

 

on the set 𝑀 = [𝑄𝑡
𝑗

= 0, 𝑆𝑡
𝑖 = 𝑆𝑡−1

𝑖 ]. Now, because [𝐽𝑖 = 𝑗] ⊂ 𝑀 and [𝐽𝑖 = 𝑗]𝑗∈ℕ cover the set 

[𝐷𝑡
𝑖 = 0], we have by Local Property  ((Kallenberg, 2002), Lemma 6.2) that  

𝜋 (𝑥) = 𝜓(𝑥, 𝑆𝑡
𝑖, 𝜔𝑡−1) 

on [𝐷𝑡
𝑖 = 0] finally giving 

ℙ (𝑎𝑡
𝑖 < 𝑥|𝜔∞, (𝑆𝑡

𝑘)
𝑘∈ℕ

, (𝑎𝑡
𝑘)

𝑘≠𝑖
) 

= 𝔼 (ℙ(𝑈𝑡
𝑖 < 𝑥|𝜔𝑡)𝟏[𝑫𝟏=𝟏] + 𝜓(𝑥, 𝑆𝑡

𝑖 , 𝜔𝑡−1)𝟏[𝑫𝟏=𝟎]|𝜔∞, (𝑆𝑡
𝑘)

𝑘∈ℕ
, (𝑎𝑡

𝑘)
𝑘≠𝑖

) 

= 𝔼 (ℙ(𝑈𝑡
1 < 𝑥|𝜔𝑡)𝟏[𝑫𝒕

𝟏=𝟏] + 𝜓(𝑥, 𝑆𝑡
𝑖, 𝜔𝑡−1)𝟏[𝑫𝒕

𝟏=𝟎]|𝜔𝑡), 

(8) 

where the last "=” is due to the conditional independence of 𝐷𝑡 of Ω𝑡, hence 𝑨(𝒕 + 𝟏) is proved. 

♣ 

Lemma 7 

For any 𝑖 ∈ 𝑁, 𝑆𝑡
𝑖 is conditionally independent of 𝜔∞, (𝑆𝑡

𝑗
)𝑗≠𝑖
̇ , given 𝜔𝑡. 
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Proof. For 𝑡 = 0 the Lemma follows from 𝑨(𝟎). Let 𝜏 > 0 and let the Lemma holds for 

𝑡 = 𝜏 − 1. ie, 

ℙ (𝑆𝜏−1
𝑘 |(𝑆𝑡

𝑗
)

𝑗≠𝑘
, �̇�∞) = ℙ(𝑆𝜏−1

𝑘 | �̇�𝜏−1). 

By our construction, 𝑆𝜏
𝑖 is a function of 𝑆𝜏−1

𝐽𝑖  where 𝐽𝑖 is defined by the previous proof. Similarly 

to the previous proof we show that, on [𝐽𝑖 = 𝑗] the probability that 𝑆𝜏
𝑖 = 𝑠 given all the variables 

𝑎𝜏−1
∙  depends only on 𝑞𝜏−1(𝜔𝜏−1) and on 𝜋𝜏. 

♣ 

Lemma 8 

𝑄𝑡
1, 𝑄𝑡

2, … are mutually conditionally independent given 𝜔𝑡. 

 

Proof. It follows from Lemma 6 that 𝑄𝑡
𝑖 is conditionally independent of (𝑄𝑡

𝑘, 𝑆𝑡−1
𝑘 )

𝑘≠𝑖
 given 

(𝜔𝑡, 𝑆𝑡−1
𝑖 ). Thanks to Lemma 7 and independence of variables Δ𝑍𝑡

∙  we get that  𝑆𝑡−1
𝑖  is 

conditionally independent of (𝑄𝑡
𝑘, 𝑆𝑡−1

𝑘 )
𝑘≠𝑖

 given 𝜔𝑡 which gives the Lemma by the Chain rule 

for conditional independence ( (Kallenberg, 2002), Proposition 6.8). 

 

A.2 Proof of Proposition 3 

By (Kallenberg, 2002), Corollary 4.5.  

𝐿𝑡 = 1 −
lim

𝑛→∞
𝑛−1 ∑ 𝑄𝑡

𝑖𝐺𝑡
𝑖𝑛

𝑖=1

lim
𝑛→∞

𝑛−1 ∑ 𝑄𝑡
𝑖𝐻𝑡

𝑖𝑛
𝑖=1

. 

Further, by Lemma 8 and by the independence of variables 𝐸, the summands in both sums are 

conditionally independent given 𝜔𝑡, hence, by the Law of large numbers,  

lim
𝑛→∞

𝑛−1 ∑ 𝑄𝑡
𝑖𝐺𝑖

𝑛

𝑖=1

= 𝔼(𝑄𝑡
1𝐺𝑡

1|𝜔𝑡) = 𝔼(𝔼(𝑄𝑡
1𝐺𝑡

1|𝜔𝑡, 𝑆𝑡−1
1 )|𝜔𝑡) 
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= ∑ 𝔼(𝑄𝑡
1𝐺𝑡

1|𝜔𝑡, 𝑆𝑡−1
1 = 𝑠)𝑞𝑡−1,𝑠(𝜔𝑡−1)

𝑡−1

𝑠=𝑡−𝑟

 

= ∑ 𝔼(𝐺𝑡
1|𝜔𝑡, 𝑆𝑡−1

1 = 𝑠)𝔼(𝑄𝑡
1|𝜔𝑡, 𝑆𝑡−1

1 = 𝑠)𝑞𝑡−1,𝑠(𝜔𝑡−1)

𝑡−1

𝑠=𝑡−𝑟

 

= ∑ 𝔼(𝐺𝑡
1|𝜔𝑡−1, 𝑆𝑡

1 = 𝑠)𝔼(𝑄𝑡
1|𝜔𝑡−1, 𝑆𝑡

1 = 𝑠)𝑞𝑡−1,𝑠(𝜔𝑡−1)

𝑡−1

𝑠=𝑡−𝑟

 

= ∑ 𝜐𝑡,𝑠,𝜔𝑡−1
ℎ𝑡−𝑠(Δ𝐼𝑠,𝑡)

𝑡−1

𝑠=𝑡−𝑟

 

ℎ𝑟(𝜄) = 𝑑𝔼(exp{𝑚𝑖𝑛(𝜄 + 𝑒𝑟 , 𝑤𝑟)})          𝑒𝑟~𝒩(0, 𝑟𝜎2) 

and analogously, 

lim
𝑛→∞

𝑛−1 ∑ 𝑄𝑡
𝑖𝐻𝑖

𝑛

𝑖=1

= ∑ 𝜐𝑡,𝑠,𝜔𝑡−1

𝑡−1

𝑠=𝑡−𝑟

 

As to ℎ, we are getting  

ℎ𝑟(𝜄) = 𝑑𝔼(exp{𝜄} exp{min(𝑒𝑟 , 𝑤𝑟 − 𝜄)}) 

           = 𝑑𝑒𝜄 [∫ 𝑒𝑥𝑑Φ(𝑟)(𝑥) + 𝑒𝑤𝑟−𝜄 (1 − Φ(𝑟)(𝑤𝑟 − 𝜄))
𝑤𝑟−𝜄

−∞

] 

           = 𝑑𝑒𝜄 ∫ 𝑒𝑥𝑑Φ(𝑟)(𝑥) + 𝑝(𝑡 − 𝑠) (1 − Φ(𝑟)(𝑤𝑟 − 𝜄))
𝑤𝑟−𝜄

−∞

, 

where Φ(𝜈) is a c.d.f. 𝒩(0, 𝜈𝜎2) - when we put 𝜍 = √𝑟𝜎, we get 

∫ 𝑒𝑥𝑑Φ(𝑟)(𝑥)
𝑤𝑟−𝜄

−∞

= ∫
1

√2𝜋𝜍
𝑒

−
𝑥2

2𝜍2𝑒𝑥𝑑𝑥
𝑤𝑟−𝜄

−∞

 

=
1

√2𝜋𝜍
∫ exp {−

𝑥2 − 2𝜍2𝑥 + 𝜍4

2𝜍2
+

1

2
𝜍2} 𝑑𝑥

𝑤𝑟−𝜄

−∞

 

= exp {
1

2
𝜍2} ∫

1

√2𝜋𝜍
exp {−

(𝑥 − 𝜍2)2

2𝜍2
} 𝑑𝑥

𝑤𝑟−𝜄

−∞
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= exp {
1

2
𝜍2} ℙ[𝑁(𝜍2, 𝜍2) < 𝑤𝑟 − 𝜄] = exp {

1

2
𝜍2} 𝜑 (

𝑤𝑟 − 𝜄

𝜍
− 𝜍) 

 hence 

ℎ𝑟(𝜄) = 𝑑 exp {
1

2
𝑟𝜎2 + 𝜄} 𝜑 (

𝑤𝑟 − 𝜄

√𝑟𝜎
− √𝑟𝜎) + 𝑝(𝑟) [1 − 𝜑 (

𝑤𝑟 − 𝜄

√𝑟𝜎
)] . 

The monotonicity is proved by the fact that 

 

𝜕

𝜕𝜄
ℎ𝑟(𝜄) = 𝑑𝑒𝜄 (Φ(𝑟)(𝑤𝑟 − 𝜄)𝑒(𝑤𝑟−𝜄) − ∫ Φ(𝑟)(𝑥)𝑒𝑥𝑑𝑥

𝑤𝑟−𝜄

−∞

) 

                = 𝑑𝑒𝜄 (Φ(𝑟)(𝑤𝑟 − 𝜄) ∫ 𝑒𝑥𝑑𝑥
𝑤𝑟−𝜄

−∞

− ∫ Φ(𝑟)(𝑥)𝑒𝑥𝑑𝑥
𝑤𝑟−𝜄

−∞

) 

                = 𝑑𝑒𝜄 (∫ Φ(𝑟)(𝑤𝑟 − 𝜄)𝑒𝑥𝑑𝑥
𝑤𝑟−𝜄

−∞

− ∫ Φ(𝑟)(𝑥)𝑒𝑥𝑑𝑥
𝑤𝑟−𝜄

−∞

) 

                =  𝑑𝑒𝜄 (∫ [Φ(𝑟)(𝑤𝑟 − 𝜄) − Φ(𝑟)(𝑥)]𝑒𝑥𝑑𝑥
𝑤𝑟−𝜄

−∞

) > 0. 

 

A.3 Proof of Proposition 5 

The fact that 𝑞𝑡,𝑡 = 𝜋𝑡 follows from the definition, as well as the fact that 𝑞𝑡,𝑠 = 0 for 𝑠 ≤ 𝑡 − 𝑟. 

Let 𝑡 − 𝑟 < 𝑠 < 𝑡, and let 𝐽𝑖 be the previous index of the borrower indexed by 𝑖 at 𝑡 (it can be eg, 

a zero if the borrower is a newcomer). Clearly, 𝑆𝑡
𝑖 = 𝑠 ⇔ D𝑡

𝑖 = 0 ∧ S𝑡−1
𝐽𝑖 = s which implies 

ℙ(𝑆𝑡
𝑖 = 𝑠|𝜔𝑡 = 𝜔) = ℙ(𝐷𝑡

𝑖 = 0, 𝑆𝑡−1
𝐽𝑖 = 𝑠|𝜔𝑡 = 𝜔) 

= (1 − 𝜋𝑡)ℙ(𝑆𝑡−1
𝐽𝑖 = 𝑠|𝐷𝑡

𝑖 = 0, 𝜔𝑡 = 𝜔) 

= (1 − 𝜋𝑡) ∑ ℙ(𝑆𝑡−1
𝑗

= 𝑠|𝐽𝑖 = 𝑗, 𝐷𝑡
𝑖 = 0, 𝜔𝑡 = 𝜔)ℙ(𝐽𝑖 = 𝑗|𝐷𝑡

𝑖 = 0, 𝜔𝑡 = 𝜔)

𝑗

. 

(9) 

Further, as 
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𝐽𝑖 = 𝑗 ⇔ ∑(1 − 𝐷𝑡
𝑘)

𝑖−1

𝑘=1

= ∑ 𝟏[𝑄𝑡−1
𝑘 = 0, 𝑆𝑡−1

𝑘 ≠ 𝑡 − 𝑟] ∧ 𝑄𝑡
𝑗

= 0 ∧ 𝑆𝑡−1
𝑗

≠ 𝑡 − 𝑟 ∧ 𝐷𝑡
𝑖 = 0

𝑖−1

𝑘=1

 

we have, from the conditional independence  

ℙ(𝑆𝑡−1
𝑗

= 𝑠|𝐽𝑖 = 𝑗, 𝐷𝑡
𝑖 = 0, 𝜔𝑡 = 𝜔) = ℙ(𝑆𝑡−1

𝑗
= 𝑠|𝑄𝑡

𝑗
= 0, 𝑆𝑡−1

𝑗
≠ 𝑡 − 𝑟, 𝜔𝑡 = 𝜔) 

=
ℙ(𝑆𝑡−1

𝑗
= 𝑠, 𝑄𝑡

𝑗
= 0, 𝑆𝑡−1

𝑗
≠ 𝑡 − 𝑟|𝜔𝑡 = 𝜔)

ℙ( 𝑄𝑡
𝑗

= 0, 𝑆𝑡−1
𝑗

≠ 𝑡 − 𝑟|𝜔𝑡 = 𝜔)
 

=
ℙ(𝑆𝑡−1

𝑗
= 𝑠, 𝑄𝑡

𝑗
= 0|𝜔𝑡 = 𝜔)

ℙ( 𝑄𝑡
𝑗

= 0|𝜔𝑡 = 𝜔) − ℙ( 𝑄𝑡
𝑗

= 0, 𝑆𝑡−1
𝑗

= 𝑡 − 𝑟|𝜔𝑡 = 𝜔)
 

=
ℙ( 𝑄𝑡

𝑗
= 0|𝑆𝑡−1

𝑗
= 𝑠, 𝜔𝑡 = 𝜔)ℙ(𝑆𝑡−1

𝑗
= 𝑠|𝜔𝑡 = 𝜔)

ℙ( 𝑄𝑡
𝑗

= 0|𝜔𝑡 = 𝜔) − ℙ( 𝑄𝑡
𝑗

= 0|𝑆𝑡−1
𝑗

= 𝑡 − 𝑟, 𝜔𝑡 = 𝜔)ℙ( 𝑆𝑡−1
𝑗

= 𝑡 − 𝑟|𝜔𝑡 = 𝜔)
 

=
(1 − Ψ𝑡

𝑠(−Δ𝑌𝑡|𝑠, 𝜔𝑡−1))𝑞𝑡−1,𝑠(𝜔𝑡−1)

1 − Ψ𝑡(−Δ𝑌𝑡|𝜔𝑡−1) − (1 − Ψ𝑡
𝑠(−Δ𝑌𝑡|𝑡 − 𝑟, 𝜔𝑡−1))𝑞𝑡−1,𝑡−𝑟(𝜔𝑡−1)

, 

which, not being dependent on 𝑗, may be pulled out from the sum in (9).  

The formula for 𝑎𝑡 is proved similarly to (8). 

 

A.4 Calculated I and Y factors values 

 

I_t Y_t 

-0.5085704994306764 0.1750314224323941 

-0.5652179040619789 0.29499719362208887 

-0.6003286726860134 0.39726324690304315 

-0.7142846940288936 0.4831112931300562 

-0.7089909630863085 0.5663748188399981 

-0.7296087627792128 0.62177922672209 

-0.8315862085305106 0.6441704838440533 

-0.8747250743449888 0.682030325836802 

-0.9321022932466507 0.6858068582489915 

-0.9860740928505496 0.7405781071561675 

-0.9858812516808483 0.7577703785643948 

-1.0546798131712412 0.8184914895224069 

-1.145392089822586 0.7888497569859749 

-1.1751966741339186 0.775126515775665 
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I_t Y_t 

-1.204994385192282 0.7232628751690667 

-1.2648677941577025 0.6632669319563341 

-1.260374426704848 0.6583394306796603 

-1.3500983104660855 0.6403376031522052 

-1.3369241183442202 0.6451641723491223 

-1.3959845393225698 0.6232469136022897 

-1.3720450761896632 0.5865533336011293 

-1.4661322775399819 0.5940264737705111 

-1.521125870894923 0.5672149289185254 

-1.470950517947169 0.5263431815334215 

-1.5679739732370455 0.49789457212455956 

-1.6234246412146365 0.5019103505517739 

-1.621815068122503 0.4875356085556648 

-1.6518621741666402 0.4396282008924923 

-1.7151686515242597 0.4109841958469174 

-1.7429709850430082 0.32515617728602303 

-1.7967922300621437 0.3100144978177349 

-1.8625266685037791 0.3081501781065848 

-1.8919278860619082 0.2787210204651825 

-1.9500296887890578 0.3255752965436441 

-2.0254666334766185 0.3950295288920353 

-2.089506961283927 0.41605229267203253 

-2.1316710987302976 0.47216029243711627 

-2.1788597478638367 0.4983019007057647 

-2.226520388009039 0.5844420997329862 

-2.2777508058634357 0.6292435689470355 

-2.367188234052972 0.6857891494125798 

-2.594356033029133 0.793265394561697 

-2.623541508469589 0.8896939710333649 

-2.655889675010422 0.9614458230550806 

-2.7849465612772697 1.0832541224488552 

-2.834434509674115 1.1663248530853085 

-2.9258144719173815 1.2419643894700658 

-2.9017781740620467 1.3040355528285077 

-2.9780728286101437 1.3666716897090283 

-3.082126572614423 1.3937441423074184 

-3.141079492999823 1.4168865758521243 

-3.215099626032445 1.4378472491515306 

-3.2488734100415506 1.4924037581671599 

-3.2641663842983104 1.5085738460642748 

-3.323310264895081 1.5682211183943218 

-3.461740546955769 1.6670219549897594 
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I_t Y_t 

-3.4919983930611553 1.7178038176817647 

-3.559792024846867 1.7745752374061303 

-3.593055705493035 1.8551937470012327 

-3.6759506164820945 1.9295322483218422 

-3.7324532575324296 2.0119527618635393 

-3.810294058415235 2.0369920679564513 

-3.916957096881624 2.122115778729583 

-3.9727811065858822 2.2144681272152598 

-4.040798354571718 2.329177803058618 

-4.09948038181535 2.381594273869628 

-4.126705632853109 2.4230376958972113 

-4.282073231913425 2.5690930936642893 

-4.45807091967635 2.6627834002645407 

-4.554001558418366 2.822242326907804 

-4.700553586639593 2.983432728717481 

-4.800448068721535 3.1096777136749996 

-5.025636371994059 3.2483920342861388 

-5.144405586880597 3.396950555671169 

-5.232449146312347 3.563173763135644 

-5.315362276622163 3.6438185605119937 

-5.391198274264772 3.6859169963916907 

-5.488498722219545 3.8107749091389342 

-5.589986709233622 3.9388572504064294 

-5.755159332299376 4.042711954406166 

-5.721204447655005 4.144359576488124 

-5.982769682007945 4.247016201093456 

-5.934641473210264 4.40610974416346 

-6.067801131025043 4.533408337128003 

-6.165165793387324 4.695116831740003 

-6.130527783445086 4.821349614109967 

-6.442817423082921 4.920074694177565 

-6.37748590441058 4.942613452907782 

-6.357131532218663 4.962394123435942 

-6.468428808140153 4.929488297901919 

-6.485003801424921 4.895025598134301 

-6.430964814163771 4.884997791830792 

-6.496787410453988 4.923402339718606 

-6.571742935480333 4.877755342046011 

-6.496945467286127 4.844222462613068 

-6.493495277547879 4.871753707722411 

-6.530422790657934 4.906942159577974 

-6.409450781122464 4.876018307094994 
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I_t Y_t 

-6.586804210438476 4.891653353971619 

-6.660044635243046 4.969424922364519 

-6.680176973574653 4.95397406620541 

-6.635464917782348 4.998234060406817 

-6.686936649990608 5.056231411087124 

-6.769848471880518 5.092698314368622 

-6.753934617729041 5.116752373834525 

-6.747612136694832 5.172631548920785 

-6.7972248093633505 5.204304681275314 

-6.739863311297612 5.122303099560624 

-6.749001028313339 5.102472539314004 

-6.821725233325911 5.13486442761028 

-6.884861152879483 5.129154855664604 

-6.98646857435743 5.1461208293027285 

-7.057653114118144 5.146289380443744 

-7.109802025416156 5.0757816626116465 

-7.183184631816278 4.930827382292277 

-7.191606185092257 4.721869858041339 

-7.2955414604882405 4.502402636615213 

-7.419561716076927 4.238439841274942 

-7.309811733979121 3.8990319206010104 

-7.215072218263964 3.438252929058797 

-7.284428929963496 2.854060530507241 

-7.34812392952542 2.2972577707675708 

-7.271114630884305 1.701483175928924 

-7.195429609139502 1.1330434995862353 

-7.189447577803872 0.5500622267900723 

-7.178559216759887 0.07173414915160903 

-7.3228487609341855 -0.29043797485787093 

-7.412594594693715 -0.5096603926497952 

-7.385587164982854 -0.7829475659868338 

-7.374518201029718 -1.0557827419142134 

-7.477512757618346 -1.293237953380052 

-7.538693072005547 -1.4512192390021252 

-7.573463355480406 -1.612371543292268 

  

  

A.5 Mathematica code 

Function, calculation of common factors I and Y from PD and LGD 

fstepM[vec_,spv_,r_,n_,sStd_,tol_,sE_,ld_,pts_]:=Module[{cn,cj,ndf,mu,

cc,cf,mun,rnv,sc,scg,scf,td,qd,in,is,inW,denS,br}, 
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cn=Transpose[{Transpose[vec[[1]]][[1]]+RandomReal[NormalDistribution[]

,Length[vec[[1]]]],Transpose[vec[[1]]][[2]]+1}]; 

cj=Sort[cn,#1[[1]]<#2[[1]]& ]; 

ndf=Max[1,Round[Length[cj]spv[[1]]]]; 

mu=cj[[ndf,1]]; 

td=Take[Transpose[cj][[2]],ndf]; 

qd=Table[Count[td,i]/Length[cj],{i,r}]; 

 

in=0; 

denS=Sum[pts[[i]] qd[[i]],{i,r}]; 

br=0; 

While[1-1/denS Sum[h[in,If[i==1,0,Sum[vec[[2,-j,2]],{j,1,i-

1}]],sE,ld,i] qd[[i]],{i,r}]>spv[[2]]+tol ||1-1/denS 

Sum[h[in,If[i==1,0,Sum[vec[[2,-j,2]],{j,1,i-1}]],sE,ld,i] 

qd[[i]],{i,r}]<spv[[2]]-tol, If[(-Sum[dh[in,If[i==1,0,Sum[vec[[2,-

j,2]],{j,1,i-1}]] ,sE,ld,i] qd[[i]],{i,r}]/denS)==0,If[br==0,inW=-

2;br=1;, Break[]],inW=in-(1-1/denS Sum[h[in,If[i==1,0,Sum[vec[[2,-

j,2]],{j,1,i-1}]],sE,ld,i] qd[[i]],{i,r}]-spv[[2]])/(-

Sum[dh[in,If[i==1,0,Sum[vec[[2,-j,2]],{j,1,i-1}]],sE,ld,i] 

qd[[i]],{i,r}]/denS)];in=inW;]; 

 

cc={Drop[Transpose[cj][[1]],ndf]-

mu,Drop[Transpose[cj][[2]],ndf]}//Transpose; 

cf=Select[cc,#[[2]]<r&]; 

mun=-mu; 

 

rnv=Sort[RandomReal[NormalDistribution[mun,sStd],n ]]; 

sc=Select[rnv,#>0&]; 

scg=Transpose[{sc,Table[0,{Length[sc]}]}]; 

scf=Join[cf,scg];  
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{scf,Append[vec[[2]],{mun,in}]} 

];   

h[\[Iota]_,is_,\[Sigma]E_,ldf_,ts_]:=Exp[\[Iota]+is+ldf+\[Sigma]E^2/2 

ts]CDF[NormalDistribution[0,1],(-ldf-\[Iota]-is)/(Sqrt[ts]\[Sigma]E)-

Sqrt[ts]\[Sigma]E]+1-CDF[NormalDistribution[0,1],(-ldf-\[Iota]-

is)/(Sqrt[ts]\[Sigma]E)] 

dh[\[Iota]_,is_,\[Sigma]E_,ldf_,ts_]:=E^(\[Iota]+is+ldf+ts 

\[Sigma]E^2/2) CDF[NormalDistribution[0,1],(-ldf-\[Iota]-

is)/(Sqrt[ts]\[Sigma]E)-Sqrt[ts]\[Sigma]E] 

sdens[n_,r_,sStd_,spv_,tol_,sE_,ld_,pts_]:=Module[{rnvs,scs,scgs,ndf}, 

rnvs=Sort[RandomReal[NormalDistribution[0,sStd],n ]]; 

ndf=Max[1,Round[n spv[[1]]]]; 

scs=Drop[rnvs,ndf]-rnvs[[ndf]];  

scgs=Transpose[{scs,Table[0,{Length[scs]}]}]; 

 

Nest[ fstepM[#,spv,r,n,sStd,tol,sE,ld,pts]& 

,{scgs,Table[{0,0},{r}]},2r] 

]  

fytM[n_,r_,sStd_,lt_,gt_,sd_,sm_,tol_,sE_,ld_,pts_]:=Fold[ 

fstepM[#1,#2,r,n,sStd,tol,sE,ld,pts]& ,{sd,sm},{lt,gt}//Transpose] 

 

Function, calculation of PD and LGD from common factors 

fstepMinv[vec_,spvInv_,r_,n_,sStd_,tol_,sE_,ld_,pts_]:=Module[{cn,cj,c

c,cf,ndf,rnv,sc,scg,scf,td,qd,denS,Lt,Gt}, 

cn=Transpose[{Transpose[vec[[1]]][[1]]+RandomReal[NormalDistribution[s

pvInv[[1]],1],Length[vec[[1]]]],Transpose[vec[[1]]][[2]]+1}]; 

cj=Sort[cn,#1[[1]]<#2[[1]]& ]; 

ndf=Count[Negative[Transpose[cn][[1]]],True]; 

Lt=ndf/Length[cj]; 

td=Take[Transpose[cj][[2]],ndf]; 
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qd=Table[Count[td,i]/Length[cj],{i,r}]; 

 

denS=Sum[pts[[i]] qd[[i]],{i,r}]; 

Gt=1-1/denS Sum[h[spvInv[[2]],Sum[vec[[2,-j,2]],{j,1,i-1}],sE,ld,i] 

qd[[i]],{i,r}]; 

 

cc={Drop[Transpose[cj][[1]],ndf],Drop[Transpose[cj][[2]],ndf]}//Transp

ose; 

cf=Select[cc,#[[2]]<r&]; 

 

rnv=Sort[RandomReal[NormalDistribution[spvInv[[1]],sStd],n ]]; 

sc=Select[rnv,#>0&]; 

scg=Transpose[{sc,Table[0,{Length[sc]}]}]; 

scf=Join[cf,scg];  

 

{scf,Append[vec[[2]],{spvInv[[1]],spvInv[[2]]}],Append[vec[[3]],{Lt,Gt

}]} 

];   

h[\[Iota]_,is_,\[Sigma]E_,ldf_,ts_]:=Exp[\[Iota]+is+ldf+\[Sigma]E^2/2 

ts]CDF[NormalDistribution[0,1],(-ldf-\[Iota]-is)/(Sqrt[ts]\[Sigma]E)-

Sqrt[ts]\[Sigma]E]+1-CDF[NormalDistribution[0,1],(-ldf-\[Iota]-

is)/(Sqrt[ts]\[Sigma]E)] 

sdensInv[n_,r_,sStd_,spvInv_,tol_,sE_,ld_,pts_]:=Module[{rnvs,scs,scgs

,ndf}, 

rnvs=Sort[RandomReal[NormalDistribution[spvInv[[1]],sStd],n ]]; 

ndf=Count[Negative[rnvs],True]; 

scs=Drop[rnvs,ndf]-rnvs[[ndf]];  

scgs=Transpose[{scs,Table[0,{Length[scs]}]}]; 
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Nest[ fstepMinv[#,spvInv,r,n,sStd,tol,sE,ld,pts]& ,{scgs,Table[{-

rnvs[[ndf]],0},{r}]},2r] 

]  

fytMinv[LG_,\[CapitalDelta]Yt_,\[CapitalDelta]It_,sd_,sm_,n_,r_,sStd_,

tol_,sE_,ld_,pts_]:=Fold[ fstepMinv[#1,#2,r,n,sStd,tol,sE,ld,pts]& 

,{sd,sm,{LG}},{\[CapitalDelta]Yt,\[CapitalDelta]It}//Transpose] 

  

Data a parameters 

data=Import[""][[1]];  

lt=Transpose[Drop[data,1]][[1]]/100; 

gt=Transpose[Drop[data,1]][[4]]; 

tol=10^-8;  

ld=Log[1];   

sE=0.12;    

((1+urok)^r urok)/((1+urok)^r-1) ;  

spv={0.005,0.004}; 

n=10000; 

sStd=5; 

r=120; 

urok=0.01;  

Table[(urok-1/(1+urok)^r+1/(1+urok)^i)/(1-1/(1+urok)^r),{i,r}]; 

pts=Prepend[Table[(-1/(1+urok)^r+1/(1+urok)^i)/(1-1/(1+urok)^r),{i,r-

1}],1]; 

 

Results 

Timing[fis=sdens[n,r,sStd,spv,tol,sE,ld,pts];] 

sd=fis[[1]];  

sm=fis[[2]]; 
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ListLinePlot[{sm[[All,1]],sm[[All,2]]},PlotRange->All] 

Timing[vytS=fytM[n,r,sStd,lt,gt,sd,sm,tol,sE,ld,pts];] 

ListLinePlot[{Drop[vytS[[2,All,1]],3r],Drop[vytS[[2,All,2]],3r]},PlotR

ange->All] 

ListLinePlot[Drop[vytS[[2,All,2]],3r]] 

ListLinePlot[{Accumulate[Drop[vytS[[2,All,1]],3r]],Accumulate[Drop[vyt

S[[2,All,2]],3r]]}] 

ListLinePlot[{lt,gt},PlotRange->All] 

sdInv=vytS[[1]]; 

smInv=Take[vytS[[2]],-r]; 

ListLinePlot[{Take[Transpose[smInv][[1]],-

10],Take[Transpose[smInv][[2]],-10]}] 

vytSinv=fytMinv[{lt[[1]],gt[[1]]},Take[Transpose[smInv][[1]],-

10],Take[Transpose[smInv][[2]],-

10],sdInv,smInv,n,r,sStd,tol,sE,ld,pts]; 

ListLinePlot[{vytSinv[[2,All,1]],vytSinv[[2,All,2]]},PlotRange->All] 

ListLinePlot[{Join[Take[lt,133],Drop[vytSinv[[3,All,1]],1]],Join[Take[

gt,133],Drop[vytSinv[[3,All,2]]],1]}] 

 

A.6 The Johansen test of cointegration for 𝑌 and 𝐼 and corresponding cointegrating 

vectors 

Rank Eigenvalue Trace test [p-value] Lmax test [p-value] 

   0    0.093990      13.766  [0.0890]      12.733  [0.0852] 

   1   0.0079771      1.0332  [0.3094]      1.0332  [0.3094]  

 

Beta (cointegrating vectors) 

𝑌 -1.1699 -0.25296  

𝐼      -0.78858      -0.65458 
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Renormalized beta coefficients 

𝑌  1.0000  0.38645  

𝐼        0.67404        1.0000   
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Report on Opponents’ comments 
 

Rita D’Ecclesia: 

The following changes were applied according to the specific comments: 

Essay 1: 

 The table with descriptive statistics of the used dataset was added and the surrounding 

text adjusted accordingly 

 The relationship between the S&P stock index and the Y common factor was estimated 

by an autoregressive model and results briefly commented in the text – this relationship 

was used only to show that there might be some dependence of the common factor on 

macroeconomic environment; this dependency is then examined more accurately in the 

Essay 3 

Essay 2: 

 All equations in the paper were numbered 

 A short explanation was added to the page 8, where Rt is defined (the difference to RD) 

 Equation 3.4 is taken from Vasicek, where the default probability is an input – it assumes 

that it is constant at a given time, but dependent on the two risk factors in its evolution; as 

this part of the essay serves only as a description of existing framework, the dissertation 

wasn’t changed at this place. 

 Non-random LGD at page 5 corrected to random LGD 

 The repetition at the bottom of the page 5 serves as an explanation that Frye and Pykhtin 

started from the same point, thus the equation was kept. 

 Equation 3.9 (= 3.7 in the opponent’s report) is taken from Pykhtin so it was kept 

 Footnote on the page 8 added to explain that the assumption of loans lasting only one 

period is very restrictive and thus is a focus of our future research. 
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 The error in the notation of Rt was fixed in the section 3.4 

 The relationship between Y and S&P 500 was estimated by the autoregressive model and 

a short note on the results was added; we are aware that this simple model of the 

correlation is far from being perfect, however, we use this simplification because 

modeling the correlation is not the main focus of this essay 

 Descriptive statistics was added for the time series Rt and Dt; also, a short notice on the 

stationarity test of the factors Y and I was shortly commented 

 In the first version of the essay, we calculated the Johansen test additionally to the Engle-

Granger, because Engle-Granger, despite confirming nonstationarity of both tested series, 

did not reject the nonstationarity of residuals from the cointegrating regression; however, 

we decided to run the VECM and our results show that there is a dependence structure 

between Y and I; a discussion was added to the section 3.4, Johansen test removed 

 Discussion of stationarity tests of residuals added 

 A note on the difference of Y on I and I on Y dependence added 

 A note explaining how the simulation was done in practice added; the reference was fixed 

 We consider our model dynamic because for LGD and PD we are able to estimate the 

dynamic relationship between underlying risk factors and macroeconomic environment 

and to predict dynamic LGD and PD 

Essay 3: 

 A note added to the section 4.2.5, explaining that values of all parameters except of 

P((X,Y,π)∈ ∙) were chosen based on empirical observations or expert judgment 

 The explanation of parameters choice in the section 4.3.2. was improved 

 Figure 4.1 switched to double range 

 Better explanation of the adjustment of I and Q at figures 4.2 and 4.3 added 
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 A short note that stationarity of both endogenous VECM variables was rejected added (at 

the beginning of the section 4.3.3) 

 Results of the Johansen test for cointegration and the cointegrating vectors added to the 

appendix; no additional normalizations (except the one provided in the appendix, which 

was done automatically by the Gretl software) were used for Y and I 

 Scales present at Figures 4.5 and 4.6, legend added to describe better the visualizations 

 σY and σI are standard errors of the cointegration regression (newly mentioned in the text) 

 As the evolution of borrower’s assets, and thus the quarterly increments of the underlying 

risk factors in the IRB framework are assumed to be normally distributed, the yearly 

increment of the underlying risk factors will be distributed normally with a quadruple 

variance 

 

Tomáš Tichý: 

 The introduction of the first paper was updated and a paragraph, which describes the 

evolution of the banking regulation since the paper was published, was added. 

 The references in the third paper were extended. 

 References to Frye and Pykhtin added to the introduction – the text referred to their work, 

but the correct reference was missing. 

 References of Eberlein (2001, 2002) we fixed. 

 Systemic replaced by systematic. 

 Misspellings and other suggestions fixed and accepted. 

 

Jiří Witzany: 
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The following changes were applied according to the specific comments: 

Essay 1: 

 A sentence explaining that 𝑍𝑖,𝑡 are identically distributed only in the case when the loans 

last only one period added. As discussed in the essay, this is the biggest shortcoming of 

the first and the second essays, which we dealt with in the last essay. 

 A note that we consider all loans as lasting only one period added to the sub-chapter 

2.4.2. This allows all loans to enter and exit the calculation each period 

Essay 2: 

 A discussion why we used the rate of foreclosures started on the defaulted accounts was 

added to the data description. Unfortunately, for the overall US mortgage market, there 

does not exist (to our knowledge) a better publicly available dataset of LGD 

Essay 3: 

 The results were recalculated using 95th quantile of L instead the 99.9th 


