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Introduction

This thesis presents a our research and results we achieved in two different topics: dynam-
ics of the sporadic meteoroids in the Solar System and determination of the collisional
probability between two bodies. While at the first glance these topics may not share many
common features, the advancement in the correct evaluation of the collisional probability
between Earth and dust particles provided us an important tool for building a satisfactory
steady-state model for the sporadic meteoroid complex. Our research led to five publica-
tions in peer-reviewed journals, namely Astrophysical Journal and Icarus. This thesis is
organized as a guidebook that connects particular papers together, provides overview and
major conclusions for the studied topics. Our intention is to provide to reader a general
overview of the topic with emphasized important ideas and procedures leading to our
final conclusions. Published papers are attached to the thesis and their contents are not
rewritten but only commented, which we find the best ratio between clarity and length
of the text.

Since the first man looked up to the night sky and saw a falling star, the mankind was
wondering: where these falling stars were coming from and will there be more and bigger
of them? The second part of the question was already answered by dinosaurs long time ago
(Bottke et al., lZDQﬂ), but they obviously didn’t leave any message. During a brief history
of mankind there were several events yielding enough power to pose a threat to citywide
regions, in the last century e.g., Tunguska event in 1908 (see, m , for a great
review of the event and its most possible cause), Caruca event in 1930 (Bailey ﬁi: all, |l9_9ﬂ
or the most recent Chelyabinsk event in 2013 (IBMHM, |20_13 . The best precaution
against these hazardous objects, called near-Earth objects (NEOs), is to know about them
long enough before they hit the planet. Current technology prohibits us from moving the
entire planet, thus the only hope is to change the orbit of the projectile (see e.g., the
NEOShield project, LHammﬂ, |2Qlj) Even with the most advanced current telescopes
we are not able to see all NEOs in the Solar System that may pose a threat in near
future. Models for NEOs developed by (Bottke et aIJ [Zﬂﬂﬂ and further improved by
(Iﬁmmkmﬂ |2Q1_2§ ), provide a substantial agreement with an observed population and

also give us an estimate for bodies invisible to contemporary telescopes.

One of the most fundamental pieces of information is a knowledge of the collision-
al probability between possible hazardous object and the Earth. To estimate the true
collisional probability one can fill the ellipsoid of the orbital elements errors with clones
of an investigated body and propagate them in time. This method is rather time de-
manding and not applicable for larger populations of bodies, and also works only for
shorter timescales because of the stochastic nature of the problem. Many scientists dealt
(see references in papers A and B) with this problem in more statistical way, evaluat-
ing a mean collisional probability between target and projectile that was averaged over
a timescale longer than timescale of a secular evolution of the projectile orbit. This ap-
proach is very convenient and efficient for many different problems in the modern celestial
mechanics, such as collisions of primordial populations of bodies in the Solar System with
planets (Bottke et al.| |2ﬂlj statistical evaluation of the collisions in the asteroid belt

; |l9_92) or determination of the mass influx onto the Earth from var-
ious sources of dust particles in the Solar System (Nesvorny et aJJ, |2Q1d ). Deep knowledge
of the collisional theories is an essential part of their proper application to the studied
problem, because many simplifications and assumptions are needed for a fast, but still




accurate to the highest possible degree, algorithm. We developed a generalization of
the standard works of Opik (1951); Wetherill (1967); Kessler (1981); IGreenberg (1982)
eliminating an assumption of no secular variation of eccentricity and inclination of the
projectile. Many objects in the Solar System follow orbits experiencing Kozai oscillations
that may significantly change their eccentricities and inclinations in several thousands
years. We adopt the crudest approximation of the Kozai oscillations, which provides our
new theory an advantage over the previous standard theories, allow us to more precisely
determine the collisional probability for bodies, where these standard theories might fail,
while achieving the same results in situations, where assumptions of standard theories are
valid. Our work is summarized in Chap. [[land papers A and B.

Every day the Earth’s atmosphere is showered by countless small particles of asteroidal
and cometary origin. Born in the various places in the vast space of the Solar System,
extending from the Sun to the Oort cloud, these particles, called meteoroids, experience
a gravitational attraction of the Sun and planets in the Solar System, effects of the solar
radiation, or pressure of the solar wind. En route from many prolific sources of the dust
particles in the Solar System, such as Jupiter-family comets, Halley-type comets, Oort
cloud comets, or the asteroid belt, they must overcome a suite of obstacles. Only a small
fraction of the original population released from comets pass through an invisible, though
very effective, barrier of Jupiter, survive long enough inside the zodiacal cloud without
a destructive collision with their smaller, but more abundant, counterparts, and finally
acquire an orbit that intersects Earth’s orbit at exact time and position to be detect-
ed by ground-based of space-borne systems. Larger meteoroids, while passing through
the Earth’s atmosphere, experience a significant friction that causes them to ablate and
produce a visible streak of light dM)ndmkM, mﬂﬁ) Many of these meteors can be ob-
served by a naked eye, and thousands of visual meteors are observed every day by projects
like Cameras for Allsky Meteor Surveillance (CAMS) (Jenniskens et all, 2011). A large
fraction of meteoroids is smaller than it is required for a detection by the most advanced
meteor hunting visual systems. Seemingly left to their own final fate in evaporation in
the atmosphere or impacting the Earth’s surface, these particles invisible to the visual
systems interact with molecules of air and produce a train of ionization several kilome-
ters long. Several radar systems around the world can using the specular reflection from
these trains observe these bodies, and accurately determine their orbits before entering
the atmosphere.

Using decades of analysis of the radar observation datasets two different components
of the Earth’s meteor complex were distinguished: (1) particles associated with meteor
streams impacting the Earth at discrete and well-defined time windows lasting typically
several days (e.g., Brown et all, 2008, |20_1d), and (2) sporadic meteor background (e.g.,

, |l9_9_d) While stream meteors are well known in the general public, in
fact, the sporadic meteors dominate the time-integrated flux at Earth by about a factor
10 (Lhnﬁmnd_]ﬂrpﬂd, |19_9_3) Stream meteors can be usually easily linked to their parent
body, on the other hand, orbits of the sporadic component of meteoroids hitting the Earth
are , due to hundreds thousand years of dynamical evolution, completely different from
the distribution of the orbital elements of their parent bodies. Sporadic meteoroids impact
the Earth from various directions on the sky during the whole year, however, the geometry
of their flux, as seen from the Earth, is not isotropic, and rather they are grouped into
certain concentrations of radiant positions with a wide range of impact velocities. The
most of the particles observable at the Earth in the sporadic meteoroid complex belong
to one of the three groups: (1) the helion/anti-helion sources, (2) the north/south apex
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sources, and (3) the north/south toroidal sources. This is caused by a limited number of
source populations for the sporadic particles in the Solar System, combined with Earth’s
heliocentric motion. Long-term dynamical evolution makes finding groups of parent bod-
ies difficult and requires a proper, and time-demanding, modeling (Wiegert et al.|, |20D_g;
Msmrnm_aﬂ/ ,|20_1d) with many dead ends of research. At the beginning of our research,
we dared to set a bold objective: to develop a steady state models able to explain the
most of observed structures of the sporadic meteoroid background population, match the
observed distributions of the orbital elements, radiant positions, comply with constraints
given by both ground-based and space-borne systems, and use only realistic and properly
modeled populations of the dust producing bodies. We review our modeling effort in
Chap. 2 and papers C, D, and E.







1. Contributions to the collision
probability theory

In this chapter, we review our two papers dealing with the collisional probability between
two celestial bodies on bound heliocentric orbits, present our motivation, and also some
blind branches of our research. Our goal is to provide a standalone theory developed from
the basic principles, which was not possible to fully describe in our papers. Simulations
and tests performed to prove validity of our theories are extensively described in both
papers, and thus we are not repeating these parts in the following text and address the
reader directly to the papers.

Papers reviewed in this chapter:

Paper A: Vokrouhlicky, D., Pokorny, P, & Nesvorny, D., 2012, Opik-type collision
probability for high-inclination orbits, Icarus, 219, 150.

Paper B: Pokorny, P., Vokrouhlicky, D., 2013, Opik—type collision probability for high-
inclination orbits: Targets on eccentric orbits, Icarus, 226, 682.

1.1 Introduction and motivation

As stated in the Introduction, many problems in the celestial mechanics require a correct
determination of the probability with which two bodies could collide. Since the precise
calculation of a set of differential equations describing motion of gravitationally interacting
bodies is not an easy task even for current computers, there was, and we believe there
also will be, a considerable demand for an analytic solution of a similar problem, even
when we assume a very simplified scenario. In this chapter, we focus on an evaluation of
collision probability averaged over the secular orbital timescale.

The first drop in the ocean was a paper published by (@) This rather geo-
metrical work allowed to estimate collisional probabilities in the Solar System in almost
no time, and even though more than 50 years old is still used by many contemporary sci-
entists. Opik, however, adopted slightly restrictive assumptions: the target is on circular
non-inclined orbitl] and the projectile is assumed to have the constant semimajor axis a,
the eccentricity e, and the inclination ¢, while remaining Euler angles, the longitude of the
ascending node €2 and the argument of pericenter w undergo an uniform precession. Fig.
[LTshows an evolution of the eccentricity and inclination of two bodies, the minor planet 1
Ceres (dashed lines), and the comet 96P /Machholz (solid lines). We immediately see that
Opik’s assumptions are violated by behavior of 96P /Machholz which undergoes stron
Varlatlons in e and /. Such behavior is described as Kozai- L1dov oscillations (If@ @f
, ) and will be more precisely discussed in Sec. Even for 1 Ceres with very
small Values of e and I the body do not conserve the 1n1t1al values in time, however, the
variations are small enough to keep Opik’s assumptions valid.

Therefore, Opik’s approach cannot be used for targets on highly inclined orbits, or
those have large values of eccentricity, because the original assumptions are violated and

! By a non-inclined orbit, we always mean that the orbit is coplanar to the local reference plane, e.g.,
the Laplace plane in the Solar System
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Figure 1.1: Evolution of eccentricity (black lines) and inclination (gray lines) of 1 Ceres
(dashed lines) and 96P /Machholz (solid lines) in backward time. While 1 Ceres undergoes
only small variations in e and I, 96P /Machholz experiences Kozai-Lidov oscillations lead-
ing to severe changes of both eccentricity and inclination with ~ 4000 y period. Initial
orbital elements a,e and [ for 1 Ceres: a = 2.783 au, e = 0.0820, [ = 10.562° and for
96P /Machholz: a = 3.037 au, e = 0.9590, [ = 58.145°.

the evaluation method may fail. Opik also presented a rough correction factor for targets
on elliptic orbits, however, still based on circular motion of the target. Wetherill (Il%j)
improved Opik’s original theory and made it valid bodies, where both are on arbitrary
bound orbits. Still the theory assumed uniform distribution of the apsidal and nodal
longitudes and also no variations of ¢ and I in time. |Greenberg (Il%d) found a flaw of
Wetherill’s approach noting a wrong assumption of uniform probability distribution of
true anomaly for both target and projectile. This assumption may introduce an error
comparable with eccentricities of the bodies. Greenberg presented a corrected version of
Wetherill’s approach and his theory is used by the many of researchers today.

[Kesslexl (@) presented a different, more geometrical method using a concept of a
spatial density, average number of objects found in a unit volume in space. One of the
advantages of this method is that it could be used for evaluating collision probability of
an artificial spacecraft with different bodies in the Solar System, because the target is
represented by its position and velocity vectors instead of orbital elements. However, the
theory still assumes constant values of e and I and uniform precession of nodes for both
target and projectile. In consequence, all presented theories give comparable results if
used correctly for bodies that are not violating the original assumptions, however, may
fail in situation, when the original assumptions are not satisfied.
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Figure 1.2: Evolution of longitude of the ascending node (black lines) and argument
of pericenter (gray lines) of 1 Ceres (dashed lines) and 96P/Machholz (solid lines) in
time. While 1 Ceres undergoes only slow uniform precession in € and w, 96P /Machholz
experiences Kozai-Lidov oscillations leading to non-uniform changes of both € and w
with ~ 8000 y period, where the period is two times slower than for e and I due to the
symmetries of the problem.



We have mentioned that many scientists sought the best solution for the collisions
of two bodies in the Solar System. Our goal was to overcome the common assumptions
of these all theories, namely the invariance of e and [ in time. At the first glance,
it seemed simple to incorporate a perturbing body causing Kozai-Lidov oscillations of
the projectile and also possibly of the target, however, a few months of calculations
convinced us that our original task was not simple at all. We especially focused on
Kessler’s theory because it gives a considerable freedom for the target body, and the theory
itself is understandable and straightforward. We must admit that the exact analytical
solution of latitude dependence of spatial density of a projectile’s orbit undergoing Kozai-
Lidov oscillations remains unknown to us even for the most simple setup of the bodies
(Sun—projectile-perturber). This task may be solved numerically, which, however, was
not the goal we intended to achieve. On the other hand, detailed study of Kessler’s
theory allowed us to obtain an analytical solution for collision probabilities for projectiles
on hyperbolic orbits, which will be further investigated in future.

Our main goal was thus completely redefined. We chose the simplest scenario with
Sun as a center of gravity, circular non-inclined target (e.g. idealized Earth), projectile
on bound heliocentric orbit, and perturbing body on circular non-inclined orbit (e.g.,
idealized Jupiter). Then, if the first step was analytically solvable, proceed to more
complex orbits of the target, perturber and add more perturbing bodies.

1.2 Kozai-Lidov dynamics

In this section, we briefly recall fundamental ideas of the Kozai-Lidov model for the
secular evolution of the projectile orbit. We omit a more detailed study because the

mechanism was extensively presented by numerous authors (IleQd |195_1| M |l9fﬁ
Thomas and Morbidelli, 1996; (Gronchi and Milani, 1998, 1999; Morbidelli, 2002) and re-

strict our explanation only to the simple setup of the problem.

1.2.1 Quadrupole approximation of the perturbing function

Consider a simple scenario: a projectile (e.g., asteroid or comet) is moving through the
idealized Solar System where only the Sun and Jupiter are present. The projectile’s mass
m is negligible in comparison with mass of Jupiter mj or mass of the Sun m. Coordinates
of Jupiter, and those of projectile, are referred to the center of the Sun. We can write the
Hamiltonian H for this system as

H = mHo+mP, (1.1)
_ _9me
Hy = e (1.2)
1 r.ry
P o () o

where H, is an unperturbed Keplerian part of H, P is the planetary perturbation of
Jupiter, a is the semimajor axis of projectile, G is the gravitational constant, r and r; are
the heliocentric distances of the projectile and Jupiter, and r and rj are respectively the
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heliocentric vectors of projectile and Jupiter defined as

r = af(cosE —e)ep +nsin Feq| , (1.4)
cos {2 cosw — sin 2 sinw cos [
ep = sinQ2cosw + cosQsinwcos ! | , (1.5)
sin I sinw

—cos2sinw — sin Q) cosw cos [
eq = —sinQsinw 4+ cosQcoswcosI | | (1.6)
sin / cos w

where u is the eccentric anomaly, e the eccentricity, n* = 1 — €2, I the inclination,  the
longitude of the ascending node, and w the argument of pericenter. Function P can be
expressed using Legendre polynomials P,(cosS):

P— —Gm, (FlJ 3 (L)npn(cos S) — Tff;f) , (L1.7)

”
n>1 N

where r.ry = rrycosS. At the moment, we restrict our investigation only to terms up
to the quadrupole part of P, where we consider only P;(cosS) = cos S and Ps(cosS) =
1/2(3cos* S — 1) are present. Thus we readily get

1r 2 my ]_T rry 2
= —Gmy 1573 (3cos®S —1) = —G— 3| —) —1] - (1.8)
Ty

T3 27“J Ty

Since we are mainly interested in the secular evolution of the orbital elements, we need
to eliminate fast angles, mean anomalies [ and [j, from the perturbation function P.
This is achieved by integrating the function P over the whole range of [ and [; with an
assumption that values of both mean anomalies are uniformly distributed in time. This,
so called averaging technique, can be expressed in the integral from as follows

P = 4—7T2/W /Wpdzjdz (1.9)

where it is convenient to use following transformations

I = u,dlzgdu, (1.10)

2
ly — fJ,le = i (E) de s (111)

3 \ay
where aj is the semimajor axis of Jupiter, n; = /1 — ey, ey is the eccentricity of Jupiter,
and f; is the true anomaly of Jupiter. The calculation is straightforward since the odd
terms of sines and cosines vanish. Finally, we obtain an averaged perturbation function
P as follows

2
P = —1gZ;J <%m) [(2 + 362) (3 cos® [ — 1) + 15e%sin? I cos 2w}
1
= —1—6FC, (1.12)
2
_ Gmy <L) 7 (1.13)
ajgny \ajmy

C = [(2+43€¢") (3cos® I — 1) + 15¢*sin® I cos 2w] (1.14)

11



where P is an integral of motion in our approximation, because P is derived directly from
the Hamiltonian H and does not explicitly depend on time variable.

Dynamical equations for the Keplerian orbital elements are thus easily derived from
the Lagrangian equations of the perturbation theory (see, e.g., pp. 306 in m,

2003)

da 2 OP
= = = 1.1
dt na 0l 0 (1.15)
de n OP n OP 5m 5 . 5 .
— = — = — =I"— Isin?2 1.16
dt ena? Ow  ena? Ol 8e (¢"sin” I sin 20) (1.16)
dl 1 1 oP oP 15
— = —— —cot[— | = —T*— (e’sin 2/ sin2 1.17
dt na’n (sin]@Q 0 &u) 167 (¢*sin 21 sin 20) (1.17)
ds) 1 oP 3cos !
— = - =T (=2 —3e?+5¢? 2 1.1
dt na’nsin I 01 8na277( ¢ oercos w) (1.18)
dw n OP 1 oP
— = - — tl— =
dt ena? Oe + na®n v ar
3
= —S—F* (n* = 5cos” I +5 (cos® I — 1) cos 2w) (1.19)
n
dl N 2 OP N n* OP
N — n R — N
dt na da  ena? Oe
|- 3n? 2 .2
= n—Zl" C—?T (3cos* I — 1+ 5sin” I cos 2w) (1.20)
with -
"=—. 1.21
— (1.21)
These equations give us two additional integrals of motion
a = const, (1.22)
d dl
c = ncos]zconst(:>%d—(zcosl—nsinla:0, (1.23)

where Eq. ([L23]) comes simply from Eqgs. (ILI6) and (ILI7). We should also note an order
of magnitude of the neglected secular terms in our quadrupole approximation. The order
of magnitude of the octupole term, n = 3, in Eq. (1), is proportional to (a/ay - € - ey).

) neglected Jupiter’s eccentricity, thus all odd-order terms were dropped from
the disturbing function. Recent observations show that some exoplanetary systems con-
tain planets with retrograde orbits, which can be explained by adding the octupole term
to the dynamical equations. Derivation and some interesting dynamical consequences of
the octupole term will be discussed in Sec. [L2.21 The magnitude of the n = 4 term, the
hexadecapole term, is proportional to (a/ajy)?, where this term provides only corrections
to the quadrupole term, and does not imply significantly different dynamical evolution to
the quadrupole term, contrary to the octupole term.

Now, we briefly investigate a meaning of integral C' (Eq. [[L.14]). Since the integral c
ties eccentricity e and inclination I together, we may substitute one of them and process
our analysis only in two-dimensional space of parameters (e,w). Dynamical evolution of
e and w thus strictly follows C' = const isoline. Let us denote two new variables that are
more convenient for description of the problems where eccentricity approaches zero

k =ecosw ,

1.24
h=esinw , ( )

12



which gives us a new form of the integral C

3c?
_ 2 2 .
H(k,h) = (2+ 3k +3h)(1—/<;2—h2 1)

; (1.25)

Fig. shows the evolution of e and w given by the Hamiltonian from Eq. (L2 on
six surfaces with different values ¢ = const. Each surface in Fig. is defined by the
maximal value of the inclination I, = arccos(c), corresponding to e = 0. For small
values of I.c = 5°,25° the level curves of C'(k,h) are very close to circles changing
to ovals with increasing value of I,.,. This means that the argument of perihelion w
circulates over 360 degrees and eccentricity e remains during the whole secular cycle of w
almost constant. By consequence, also inclination I does not experience any significant
changes.

For I,.x = 35°, the level curves are elongated along h axis. The argument of perihelion
w still circulates, however, values of eccentricity e oscillate more significantly, acquiring
the maximum values for w = 90° and 270°, where, on the other hand, the inclination [
assumes the minimum value.

When the maximal value of the inclination is higher than a critical value I . > I =
39.2°, the topology of the C' isolines changes severely. The origin in (k, h) plane, where
e = 0, becomes an unstable equilibrium point. A separatrices plotted with solid bold
black lines in Fig. divides the phase space into three different parts: a region that is
still similar to previous cases where w still circulates over 360 degrees, and two regions
where w librates around either 90 or 270 degrees (the precession stops and w is not able
to overcome the barrier represented by h = 0 level). This behavior is usually called Kozai
oscillations or Kozai-Lidov oscillations.

Increasing I, causes the Kozai oscillations to become stronger, meaning that the
difference between maximum and minimum values of e and I become larger. This may
pose severe consequences for bodies with low present values of e because during their
secular cycle their orbit can cross the orbits of the planets in the Solar System.

Now, we proceed to an analysis of C(k, h), which will give us another insight to the
behavior of the orbits depicted in Fig. At first we analyze a behavior of C'(k, h) along
the h axis. On the h axis lie two stationary points for I,.. > I and also the saddle
point of the separatrix. We seek extremes of C'(0,h) that we easily obtain by its first
derivative

(24 3h2)(3¢2 — 1 — h?) — 15R%(1 — & — h?)

o= L-n (1.26)
W:O@h(3h4—6h2+3—53):0,

which lead to three different solutions: A = 0 and hy = £4/1— c\/% (we assume
—1 < h < 1). The solution hy gives us positions of the stationary points and also the
critical value of the ¢ integral for which he > 0 & ¢ > cuy = \/% thus the critical
value for the maximal value of the inclination is I > I = arccos(y/3/5) = 39.2°. The
separatrix is represented by C(0,0) = 2(3¢*> — 1) isoline where bodies with C > C(0,0)
circulate over 360 degrees in w while bodies with C' < C(0,0) enter the forced stationary
mode around hy.
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The existence of the Kozai oscillations depends only on a value of ¢, in other words,
on the initial conditions of the orbit. Its existence does not depend on the mass of the
perturbing body, however, the mass of the perturbing body influences a timescale of this
effect, and may lead to extremely long timescales for low-mass perturbers.

The derivation of the characteristic timescale Tk, of the Kozai oscillations can be
found e.g., in [Kinoshita and Nakai (2007). Since Kinoshita and Nakai (2007) used a dif-
ferent formalism, we express this derivation in our variables in the following paragraph.

From the topology of C-isolines know that the argument of pericenter w circulates
around origin for certain values of C' and c¢. To obtain characteristic timescale Tig,a; of
the Kozai oscillations, we thus must solve one of the dynamical equations and look for
the period defined by two moments when a given variable assumes the same value.

In the following paragraph we will search for a solution of following equation

X = n, (1.27)
dX dn de 15 5 . 5 .
— = Pp— =—2e— =—-"1 Isin2w . 1.2
7 U e p ¢ sin” Isin 2w (1.28)
Using Eq. ([L23]) we get
X 1
X _ —5(1—X)(X—02)sin2w, (1.29)

dt - 4/X
which is a differential equation that depends on two variables X and w. Now, we eliminate

w from Eq. (L29). The C integral is a constant of motion, thus we may search its value
for wy = 0°, where the second term in Eq. (23] vanishes

C =10— 12X, + 6¢* (1.30)

where Xy = 1 — €2, and also for wy = 0° we have also Iy and 7. From Eq. (LIG) we
see that eg is the minimum value for a given orbit. Combining Eqs. ([L25]) and (L30) we

obtain X%+ X(5+5c% —4X, 5c?
cos 2w = — X5+ 5¢ — 4Xy) = 5c = cos’w — sin’w . (1.31)

51— X)(X — )
From Eq. (IL31) we get

1+4+cos2w  —3X?+ X(5+5c% —2Xp) — Hc?

2 = = 1.32
s 2 5(1— X)(X — ) ’ (1.52)
, 1 — cos 2w 2X(Xo — X)
2 — — . 1.33
S 2 51— X)(X — &) (1.33)
(1.34)
This allows us to substitute w with X
dX
— :—g\/Z(XO—X)(—3X2+X(5+502—2X0)—502) ) (1.35)

Since (—3X? + X (5 + 5c2 — 2X) — 5¢?) is a quadratic equation, we easily find its roots

—(5+5c¢% —2Xp) £ /(5 + 5c2 — 2X()? — 60c2

X1, = = , (1.36)
X1X2 = 2627 (137)

5+ 52 — 2X,
X 4+ X, = % (1.38)
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and thus we obtain

dX 3
— =5 V22X = X)(X - X1) (X2 — X) . (1.39)
Eq. (I39) is a nonlinear ordinary differential equation, that can be solved by a straight-

forward quadrature. The solution can be expressed with the Jacobi elliptic functions

X = Xo+ (X; — Xg)en®0 | (1.40)
where
2K
o = =2 (nwt + f) , (1.41)
T 2
3v6
n, = = f”r*\/XQ _X, (1.42)
128 K
The expression K (k) in Eqgs. (L41)) and (L42) is the complete elliptic integral of the first
kind .
2 d©
K(k) = / , (1.43)
0 1 — k2sin?©
where k is the modulus X _ X
=t 1 1.44
X, - X, (1.44)
Finally, the characteristic timescale Tk,,.; of the Kozai oscillations is
512v/2K (k
TKozai - \/_ ( ) (145)

3\/5\/0[2 - Oz()P* ’
where I'* comes from Eq. (LZI]). In the Solar System this value may range from thousands
of years, e.g., for 96P/Machholz Tk = 6314 yr to several hundred thousand years for
hypothetical body with a =1 AU, e = 0 and I = 60°, which would have Tk,.; = 326, 000
yT.

1.2.2 Octupole Term in the Kozai-Lidov Dynamics

In previous section, we studied Kozai-Lidov oscillations only in quadrupole approximation
which, although very simplified, give very interesting results and dynamical consequences.
Now, we will briefly investigate influence of the octupole term in the planetary pertur-
bation function P by simply adding n = 3 term in Eq. (L1). The octupole part Py

reads
3
s (2) s (_)] 4
rry rry

We use the same averaging technique as in case of the quadrupole part, and after a slight
algebra we obtain the averaged octupole term in the planetary perturbation function Py
that reads

1 3 1 3
Poct - —ngar— (5 C0S35 — 3 cos S) = _gﬁ_T_

4 3
5 ry 271y

3
15

Poct = _oms <L) —eeg{(cosQcosw — sin Qsinw cos I)

ayny \ajns ) 32

[—16 — 12¢* 4 (15 + 20€?)(1 — sin? I sin? w) — 15n*(1 — sin” I cos® w)]

—10cos In*(— sin Qsinw + cos Qcoswcos I)} . (1.47)
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From Eq. (L47) we see that the Py is a linear function of eccentricity e; of the per-
turbing body. Since in the Solar System all massive planets have very low eccentricities
ey < 0.05 the effects of the octupole part of the perturbation functions are dampened and
can be omitted in the first-order approximation. However, for larger values of e the mag-
nitude of P, cannot be neglected and must be treated correctly. The octupole extension
of the perturbation potential has been used in studies of secular evolution of hierarchical
triple star systems (IKrvmolowski and MazehL |_‘|_9_9_$j; Ford et &LL lzmd), dynamics of the
binary black holes (Blaes et al., M), or newly discovered exoplanetary systems with
eccentric Jovian-mass planets (IL(jf_ami_Pﬁald, mﬂj; |Ka.LZ_6LaL|, |2Qll|)

Let us briefly discuss some dynamical consequences, that cannot be described by using
the quadrupole term only. First of all, we see that longitude of the ascending node does
not vanish in Eq. (L41), which implies that ¢ = ncos I is no longer constant in time, and
we lose one of the integrals of motion. Moreover, this also implies that C-level isolines,
now more complicated, are no more closed curves in (k, h) plane. Due to this, there is no
expression for a characteristic timescale of this effect, however, for small eccentricities of
the perturbing body we may assume that the characteristic timescale is similar to Tkoya;
derived from the quadrupole term only.

The most interesting dynamical consequence of the octupole term extension is a dy-
namical evolution of the inclination I of the perturbed body. During last few years many
extrasolar Jovian-mass planets were discovered, and about 25 per cent of them have a
retrograde orbit with respect to the stellar rotation (INa.szLalJ, |21)_ll|) As we learned in
previous section, the Kozai oscillations restricted to the quadrupole term cannot excite
prograde bodies over I = 90°. Also, according to [Fabrycky and Tremaine (lZDD_ﬂ) even
though the perturbations from a binary star companion can produce very high inclina-
tions, they are not able to explain the existence of retrograde orbits of the planets. Thus,
there must exist a secular perturbation that pushes the originally prograde planet to the
retrograde orbit. Katz et all (IZD_]_]J) showed that when the octupole term extension is
taken into account, the inclination may oscillate around I = 90° when specific conditions
are fulfilled (see, Fig. 2 in Katz et all, 2011, or Fig. I4). We recall, the stabilization

of the exoplanet orbits in the retrograde domain is further assisted by the tidal effects,

mainly by the eccentricity dampening (Correia. et al.|, |2ﬂlj)

1.3 Circular orbit of the target — paper A

The main goal of this and the following sections is to provide reader a more detailed
description of our theory, than it was possible in paper A (Mkrgmhlj_c]g&jjﬂ, |20_1j)
and paper B 7 icky, ). Here, we to use notation and formalism
similar to the quoted papers.

Our first step was to develop a generalization of the original work of m (M) The
configuration of the system, we investigate here, is very simple; we assume a massless
target on a circular coplanar orbit and a massless projectile on a bound heliocentric
orbit, where the motion of the target is influenced only by the mass of the Sun, while
the projectile is also influenced by gravity of the perturbing body, that is assumed to
be on an circular coplanar orbit. The orbit of the projectile lies inside the orbit of
the perturbing body and their orbits never intersect (this may occur due to the Kozai
oscillations even though the initial conditions indicated no crossing between projectile
and perturbing body). This scenario may seem very artificial and academical, however,
Sun-Earth-Jupiter and e.g., the comet 2P /Encke greatly fits our assumptions, and the
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value of its integral ¢ = 0.52 is low enough to force changes of e and I caused by Kozai
oscillations.

Our main motivation for the development of a more general method of the collisional
probability evaluation was an unresolved problem of the origin of the toroidal population
observed in the sporadic meteoroid complex. Toroidal meteors are known for their very
peculiar orbits in the Solar System. Their mean inclination is very high ~ 70°, while the
mean eccentricity is rather low, where the majority of the observed meteors has e < 0.4,
and almost all of them have semimajor axis lower than 3 AU. Due to the very high
inclinations all toroidal particles undergo Kozai-Lidov oscillations, and thus the estimates
of the original theories could provide misleading results.

1.3.1 Mathematical introduction, reference frame and notation

As the target revolves on a circular coplanar orbit at constant heliocentric distance rq
around the center of gravity, the intersection of the orbits of the target and projectile may
occur only in the orbital plane of the target (X,Y’). This determines the true anomaly f
of the projectile at intersection points, because Z coordinate of the target (e.g., pp. 307

in [Bertotti et alJ, |24)_Oj) is always zero at all intersection points

0=Z=rsin(w+ f)sin[l (1.48)

which gives two solutions: fi.qe = —w for the intersection at the ascending node and
frode = ™ — w for the descending node. These intersections occur at heliocentric distance

7( faode) thus

an? an?

1 4 ecos frode " 1+ ecosw

T(frode) = =7y, (1.49)
where the upper sign holds for the intersection at the ascending node and the lower sign for
the intersection at the descending node. It is useful to rewrite Eq. ([L49) to non-singular

variables k and h
2

(ki9>2+h2:1—a+o‘—, (1.50)
2 4

where parameter a = ro/a. This equation describes a circle with the origin at (£a/2,0)
in (k, h) plane for ascending and descending node, respectively, and the radius of the circle
equal to /1 — a + a?/4.

Now, let us investigate the orbit of the projectile near the nodal intersection points.
Introduce an orthonormal triad (e,, ey, €,) composed of three unit vectors with the origin
at ascending and descending nodes. The vector e, points to the radial direction, ey,
normal to e, both residing in the orbit plane (X,Y"), and e, is the orthonormal complement
and points along the axis Z of the inertial frame. In our definition, the radial and
longitudinal directions at the ascending node are opposite to their values at the descending
node.

Similarly to Eqs. (IL4)), (I3) and(L6) we define the heliocentric position vector r that
describes the elliptic orbit as follows

r(f)=r(f)[acos(w+ f)+bsin(w+ f)] , (1.51)
where r(f) = an®/(1+ecos f). It should be noted that Eqs. (L4) and (L51) are identical,
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but expressed in different variables. Unit vectors a and b read

cos €2
a = sinQ2 | (1.52)
0
—sinQcos
b = +cosQcosl | (1.53)
sin [

with a directed along the ascending node, and b in the orbit plane, perpendicular to a.
At the ascending node we have a = e, and b = cos ey + sin Je,, while at the descending
node we get different expression a = —e, and b = —cosIe, + sin/e,. This might be a
bit confusing at the first sight, however, as we see in following text, this representation
proves very beneficial.

We seek a representation of r(f) near the ascending and descending nodes, thus we
expand r(f) in true anomaly f, bearing in mind that r = an®/(1 + ecosw) at the nodal
intersection points (the upper sign for the ascending node). Using the Taylor series
expansion we obtain

r(f) =re,+dr =re. +rAydf + gAgde +O(df?) , (1.54)

where df = f — fuode is an infinitesimal increment of the true anomaly. The first term
with the vectorial coefficient A represents a rectilinear approximation, while the second
term with Ag describes a local curvature of the elliptic orbit. For the simplicity, we
omit terms of higher degrees, because we assume that their increments are infinitesimally
small. The expression of vectorial coefficient reads (the upper sign for the intersection at
the ascending node and the lower sign for the intersection at the descending node)

A = :;:esglwer + (cosIe, £sinle,) , (1.55)
3 n2 esinw .
Ay, = =2 [1 ~5p + ﬁ} e, —2 (£ cosle, +sinle,) | (1.56)

where P = an?/r. Using this notation we can easily express the orbital velocity of the
projectile at the nodal intersection.

A similar expansion is also necessary for the description of the motion of the target
body. Since in this section we assume the target body to be on and circular and coplanar
heliocentric orbit, its orbital elements read (we denote variables of the target body with
subscript 0); the semimajor axis a = ag, the eccentricity e = ey = 0, the inclination
I = Iy = 0, and the argument of pericenter w = wy. For the sake of simplicity and
without loss of generality let us set wy = 0. Using Eqs. (L53) and (L56]) we easily obtain
the vectorial coefficients for the target body

Ay = ey, (1.57)
A20 = —€,. (158)

Since we deal with moving bodies it is necessary to express their orbital velocity. The
orbital velocity v of the projectile at the nodal intersection is easily obtainable from the
linear term in Eq. (L54)) and from the total derivative of the true anomaly f with respect
to time ¢ that reads if p ,

an du (a)
227 _an (2 1.59
dt — r dt LAY (1.59)
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with the second term in Eq. (L59) coming from the Kepler’s equation nt = u — esinu,
where n is the mean motion of the body, and u is the eccentric anomaly of the body. If
we denote V) = ngag as a normalization of velocity, we get for the orbital velocity of the
projectile

vV = % @\/ﬁAl
" (1.60)

ao\/—{ esmw e, + (cos ey £sinle,)| ,

where the upper and lower signs correspond to the intersections at the ascending and
descending nodes respectively. For the target body the situation is really simple, because
ag = ro, Py = 1, and thus

The relative velocity vector V is easily obtained by subtracting velocity vector of the
target body vq from the projectile’s velocity vector v; note that r = ag because of the
circular orbit of the target body

V=v—-—vg=V, (\/1B [:Fesglwer + (cos ley £ sin[ez)] — e¢) , (1.62)
where the components of V read
esinw
V., = FV = Vycosbsint , 1.63
+Vo \/F 0 ( )
Vo = %(ﬁcos]—l) = Vpcosbcos? , (1.64)
V., = +VovVPsinl = Vysinb, (1.65)

where / is a longitude and b latitude of the radiant seen by the observer on the target
body (the upper sign for the intersection at the ascending node and lower sign for the
descending node). This means that ¢ and b are measured from the apex direction of
the target body and that V points toward the radiant from which the projectile impacts
the target body. We recall that Eqs. (LG3), (L64), and (L65) express in a different
notation the standard velocity components (U,, Uy, U,) introduced in ) (note
that standard velocity components are normalized, thus V) =1 in , ).

1.3.2 Collision probability estimation
Here, we follow approach presented by |Qp1k| (|l9_51|) or (Wetherill (Il%_ﬂ) who defined the

collision probability of a projectile with a target body as a combination of two mutually
independent parts: (1) the probability P, that during one secular cycle of the projectile’s
orbit its nodal crossing is close enough to the orbit of the target body, and (2) the
probability P, that the target body is in the sufficient proximity of the nodal crossing of
the projectile’s orbit. Our assumptions about the target body are satisfied in both works
by Opik or Wetherill, where Wetherill assumed more general problem of the target body
on an arbitrary elliptic orbit, thus we borrow Wetherill’s result (Eq. 15 in [Wetherill, |l9_6_'j)

for P, that expressed in our variables reads (rq = ag here)

1 / ’ [ ————— 1.
[2a9 V2 V2 V2 ' ( 66)




where V, is a velocity component of the target body directing towards instantaneous apex
(in the circular case V, = V), V2 = V2 + V7 4 V? is the square of the relative velocity at
the intersection point of the orbits, and R is the radius of the target body (the projectile is
assumed to be negligibly small, otherwise, R would be a sum of the radii of both bodies).

Evaluation of P; probability is, however, completely different story. Both m (I@i)
and Wetherill (Il%_ﬂ) assumed that the projectile keeps its values of the eccentricity e and
inclination ¢ constant and that its argument of perihelion w circulates uniformly. As we
show in Sec. it is not true even for orbits with very low inclination I and very low
eccentricity e, however, for such values it can be accepted as a meaningful approximation.
For higher values of e and I the original assumption fails, because the orbital elements
change significantly at short timescales (see Fig. [L]).

In the following text, we determine the probability P; for orbits influenced by Kozai-
Lidov oscillations we discussed in Sec. The exact intersection configurations of
the projectile and target are determined by Egs. (L27) and (L50) leading to a cubic
equation for k, (or equivalently for h,, where x symbol denotes the orbital elements at
the intersection)

(5—3aF3ak,)(3c —aFak,)+15(atak, —c*)(2k2—1+atak,)—Ca(l+k,) =0, (1.67)

which is indeed a cubic equation ask? + ask? + a1k} + ap = 0 with coefficients

a3 = £30a, (1.68)
a; = 6(3a®+5a —5c%) (1.69)
a, = Fa(36a—20—24c¢* - C), (1.70)
ap = 30c* — 20a + 18a” — 24ac® — Ca . (1.71)

We can easily obtain h, from Eq. (LA0), which gives us up to 8 possible impact configu-
rations because of the inversion symmetry h, <> —h, and the fact that the cubic equation
has always even number of roots different to +1. There is also k, <> —k, symmetry for
the impact configurations in the ascending and descending nodes of the projectile’s orbit
stemming directly from Eq. ([[67). The number of impact configurations is following:
(1) the projectile has very low e and I thus does not exhibit changes of e and I (Fig.
2 in paper A). Such configuration gives 4 impact configurations (2 in the singular case,
when h, = 0 or k, = 0). (2) projectile has sufficiently high values of e or I to undergo
Kozai oscillations (Fig. 3 in paper A). This geometry provides 8 impact configurations
(6 the in singular case). (3) the combination of orbital elements of the projectile forces

the projectile’s libration around hy = +4/1 — ¢4/5/3 (see end of Sec. for the further
reference) thus having 4 impact configurations (2 in the singular case), see Fig. 3 in paper
A.

We assume, similarly to Opik and Wetherill, that the target body is considerably
smaller than its semimajor axis R < ag. This assumption is correct for all known bodies
in the Solar System, and is even valid for the most extreme case of very close hot Jupiters
in known exoplanetary Systems (lS_ahJ.l_eLalJ, |29_0ﬂ) Since the radius of the target body R
is finite, we expect that in a close proximity of the exact intersection point (ky, h,) values
in (k, h) space exist, giving distance from the intersection point smaller than R. This also
means that there also exist the limiting values kj,, and hyy,, for which the distance from
the intersection point is equal to the radius of the target bodyﬁ R.

2We expect the target body to be a sphere with radius R. More complex shapes of the target body
would require further treatment.
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Now, we focus on finding the limiting values kyj,, and hy,. We use the same reference
system defined in Sec. [L31l The projectile’s position is close to the nodal intersection
point that is exactly at heliocentric distance ag. Using the linear part of Eq. ([LH4]) we
get for the distance of the projectile from the nodal intersection

Ar(\) = rA A+ (1 — ag)e, + O(N2) (1.72)

with A = df, where df is a small increment of true anomaly f near the ascending and
descending nodes. Similarly we express the target’s distance from the intersection point

AI‘()()\Q) = a0e¢)\o + O()\g) s (173)
where we used \g = dfy. Now, we easily obtain the square of the projectile-target distance
d*(A\ Ao) = [Ar(A) = 19(Xo)] - [Ar(A) = 10(No)]

= (r—ag)? £ 2r(r — ao)gesmw

A+ 72 — 2cos Tagh g + a2 )\?
7 o (1.74)

: 2
r\2 [esinw
+ [(—) ( 5 ) sin2[+0052[] A2
a n
and we search for its minimum value d2;  as a minimization problem in the two-dimensional
space (A, Ag). The minimization for Ay is quite simple giving

odz ;. 2 r
— 2 = 2a5\0 — 2apcos IN=0& Xg,, = Acos]— (1.75)
a)\o min ao

and then the minimization for \ reads

resinw

drzmn<)\) = (7’ — a0)2 + 27“(7’ — ao)a 7]2 (176)
2 i 2
+ T2 [(i) (6 SH;LU) )\2 +Sin2 I] )\2 , (177)
a Ui
Od3 i, (M) resinw 5 | /T\2 [esinw S 9
—N = +2r(r — ao)a e + 2r (5) < e ) +sin“I| A, (1.78)
8d2- Y r—a gesirglw
nél;( b = 06 =7 ( 0)2 —, (1.79)
T (f%) +sin? 1
a 7
thus the minimum distance finally yields
@ gin [ Psin [l
Apin = (r —a L =(r—a . 1.80
( g ( 2 VP2sin? I + e2sin’ w (1.80)

2
2 ., .
\/(%Slﬂ]) + e2sin®w

Now, let us scale d,,;, by semimajor axis a and make it equal to scaled radius of the target

body p = R/a
p = [n"—al£k)]A=Kkh), (1.81)

2 _ B2
A = U , (1.82)
(n* = c2) (L£ k)" + h2n?
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where we used sin® I = (% — ¢2)/n* and o1 £ k)) = % Since ¢ remains constant during
the Kozai cycle and is determined by the initial conditions of the projectile’s orbit, we can
find the limiting values ky,,, and Ay, by solving a set of two independent equations, namely
Egs. (L25) and (LRT)). This system of equations does not provide a simple analytical
solution. Assuming p < 1 we might search for small displacements dk and §h that give
kiim = ki + 0k and hy, = hy + dh. Using two-dimensional Taylor expansion of H(k, h)
and KC(k, h) at the point of exact intersection we get

H(k,h) = H(k,, h) + (OH/Ok),0k + (OH/Oh),6h + Ok + k)2 = C',  (1.83)
K(k,h) = K(k,, h,) + (0K /0k),0k + (9K /Oh).5h + OBk + k)2 = p.  (1.84)

Since KC(ky, hy) = 0 and H(k,, h,) = C we obtain for dk and dh following expressions
(OH/Oh),

o0k = 5 (1.85)
= O Lo
D = (0K/0h),(0MH/Ok), — (OK/Ok).(OH/Oh), , (1.87)

recall that the symbol x represents the exact intersection configuration. Obtaining the
partial derivatives of functions K(k, h) and H(k, h) is a straightforward process, thus after
a brief algebra we find

OK/Ok), = —2 <l<; + %) A, (1.88)
(0K /Oh), = —2 hA, (1.89)
(OH/Ok), = 2:;* [2(7 =3¢ — 12k + 3R2) + C] (1.90)
(OH/Oh), = 2?7}‘2* [2 (=84 12¢° + 3k} + 18h%) + C] (1.91)

Interestingly, in the linear approximation the (dk,dh) solution has also its symmetric
counterpart (—dk,—dh). Such displacements direct along the tangent to the isoline
H(k,h) = C at the point of exact intersection (ki, hy).

Now, we proceed to determination of the time interval (At), which the projectile
spends in the interval ranging from (k, — 0k, h, — 6h) to (k. + 6k, hy + dh), i.e. in the
interval where the mutual distance of projectile and target body is smaller that the radius
R of the target body. Using the Eqs. (LI0) and (LI9) we, after a brief algebra, obtain
the time differentials % and % describing the motion of the projectile in the (k, h) plane

dt
along the C' integral isoline

dk 3 51— k2) — 1

A N P 1.92
b = aran L g (1.92)
dh 3 5c*h?

o k14 28 1.
7 +5 nk[ +3 ?74] (1.93)

Our linear solution of dk and dh is assumed to have values of the order p(< 1), thus
we adopt only a linear discretization of the Egs. (L92) and (L93), namely we represent
dk — 0k, dh — 0h, and dt — (At),/2. As we mentioned before, the solution is symmetric
in dk and dh, thus we need to evaluate only one half of the collisional region. Naturally,
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Egs. (L.92) and (L93) are evaluated at the point of exact intersection (ky, hy), where both
equations provide the same results, up to the terms of the second order in p.

However, this approach might fail when the displacements dk and dh are large. Such
situation occurs when D, is very close to 0, which always occurs for intersections with
hy = 0, but also when two solutions are very close to each other in (k, h) space. In such
cases, we should not use our simple linearized approach and solve Eqs. ([.92)) and (L.93))
numerically. Our tests show that the exact value when the linear approach fails depends
on the orbital elements of both projectile and target, where the absolute value of |D| may
range from 1 x 1072 to 5 x 1072; for the purpose of our code we adopted critical value
|Dait| = 2x 1073, The determination of corresponding value of (At), /2 is then performed
by a numerical integration of the Eqs. (L92) and (L93]) from the intersection point to the
limiting value of mutual distance of projectile and target body. Such approach provide
validity for arbitrary orbits of both projectile and target body satisfying assumptions for
which our theory is valid.

Since we now know the time (At), that spend both bodies in the region where the
mutual collision is possible, the partial probability P, for a particular intersection config-
uration is then reads

(At),

TKozai

P ; (1.94)
where Tkozi comes from Eq. ([L43) and is the duration of the whole cycle of secular
evolution of the projectile along the level curve of the C' integral. Now, we can evaluate
the collisional probability P of impact per one revolution of the projectile

P=> PP=)_ ;At)*PQ(a, e, 1) (1.95)
Kozai

where the summation is performed over all possible intersection configurations for both
the ascending and descending nodes. Contrary to Opik’s approach, P, is also a function of
w, and P in our case must be evaluated for each intersection configuration independently
because we do not assume e and I to be constant in time.

It is also convenient to determine an intrinsic collision probability p per unit of time
and unit of cross sectional area, which we obtain by dividing P by the projectile’s orbital
period T}, and square of the target’s body radius R

P GM,
TowR2  2wa32R?

p= (1.96)
where G M, is the standard gravitational parameter of the Sun. For a detailed comparison
with the standard Opik’s theory, and interesting facts about Opik’s approximation, see
paper A.

1.4 Elliptic orbit of the target — paper B

Our theory for the target on the circular coplanar orbit was a good improvement to the
standard and widely used theories, providing better results and still maintaining analytical
form. However, we knew, from the very beginning, that further improvements of the
theory are needed. Impacts on Mercury, the most eccentric planet in the Solar System
with enmercury = 0.20563, provide very interesting resources for various scientific fields. A
lack of Mercury’s atmosphere, similarly to our Moon, does not provide any protection
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from incoming impactors thus leaving the unprotected surface severely bombarded (see,
e.g., Marchi et all, 2009, 2013, and references therein).

The Solar System experienced during its early stages a dynamical instability that
produced a cataclysmic cratering events seen even in the present as basins on the Mercury
or Moon. This event occurred ~ 700 Myr after the planets formed, and is known as the
Late Heavy Bombardment (LHB; Gomes et al, [ZDDE) While it is assumed that the LHB
ended about 3.7 to 3.8 Gyr ago, many craters over 300 km in diameter are known either
on the Earth or Moon (Wilhelms, 1987). Bottke et all (2012) found that the LHB lasted
much longer than previously thought, where the majority of the late impactors originated
in the E-belt. The E-belt, now largely extinct, is an extended population of the asteroid
belt between 1.7 and 2.1 au.

Even the most ambitious simulations are not able to represent the realistic abundance
of bodies producing the LHB or the later cratering events caused by the E-belt population.
Thus, only a small fraction of the original ensemble of bodies can be simulated, which
significantly decreases the impact statistics of studied problems. During the LHB many
impactors were driven to high eccentric and/or inclined orbits forcing them to experience
Kozai oscillations. Since we showed, in previous section, that even the crudest approxi-
mation of the Kozai oscillations can greatly improve the determination of the collisional
probabilities. Here, motivated mostly by findings of Bottke et all (lZQlj), we develop an
extension of our original theory for the targets on the elliptic orbits. Still, we restrict the
target to be coplanar with the plane of the reference, however, we expect that our gen-
eralization improves the determination accuracy of the collisional rates for the Mercury,
and may become an interesting tool for many exoplanetary applications.

Our theory for a target on an elliptic coplanar orbit follows the same approach we used
in Sec. [L3] thus we do not rewrite the whole theory, but we mainly focus on differences
between two theories.

We use the same reference system as in Sec. [L3.Iland since the projectile was assumed
to be on an arbitrary bound orbit, there are no changes regarding formulas describing
projectile’s motion. For now, we focus on the motion of the target body. We must modify
Eqgs. (LE7) and (L58) describing the vectorial coefficients for the target body Ajp and
Ay, since the eccentricity of the target body is not assumed to be equal to zero, while we
still assume the inclination of the target body to be equal zero Iy = 0. Thus, we obtain

€g sin
Ay = :Foifoer+e¢> (1.97)
Py
3} cosin fo
A = 2|/11l——+ =|e, —2———e,, 1.9
20 [ 2P0 + P02:| € PO ed) ( 8)

where we recall 'r]g = 1—6% and Py = aong /To. Since ey > 0, we cannot assume ag = 7o and
set arbitrary value of fy without a loss of generality. However, rq is still only a function
of fo, thus we may substitute fy in Ajg and Ay by rg using relation egsin fo = 1R+,
where

i\/(ro—ﬁ)(rz—To)

To

Ry =

, (1.99)

with 7, = ag(1—ep) and 79 = ag(1+€) standing for the perihelion and aphelion distances
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of the target body, respectively, thus the rewritten equations for Ay and Ay yield

R
Ap = e te,, (1.100)
Fo
30 no s
Ay = 212 4 Tle 9 . 1.101

The upper and lower sign in R corresponds to f; values in different parts of orbit, namely
the upper sign for interval (0, 7) and the lower sign for the interval (7, 27). Please bear in
mind that these signs must not be confused with signs denoting the impact configuration
in the ascending and descending nodes, and need to be treated separately.
Now, we express the orbital velocity vy of the target body on the elliptic orbit using
Egs. (L60) and (L97)
vo = VoF Ay =Vo(Rie, + Fey), (1.102)

with F' = ngag/ro. From Eq. (LE0) we see, that the vector pointing to the instantaneous
apex of the target’s body motion is no longer parallel to vector e;. We thus, for further
convenience, introduce a new orthonormal triad (e,, ey, e,), where e, is directed to the
instantaneous apex of the target’s motion, e, = e, X e, and e, is still pointing along the
Z axis of the inertial frame. The new triad directly results from Eq. (L60) and reads

Rier +Fe¢ Fer — Ried)
eh——F7——— = —FV— ,
NS RN T

where R% + F? = 2(ag/ry) — 1. Using the new orthonormal triad the corresponding
relative velocity components yield

(1.103)

B Vo To esinw 9 9
Vo, = \/ﬁ[ ?\/E<IFR:|: P +FCOSI)—(R:E+F) s (1.104)

o o esin w
Vo, = —/—VP F — R 1 1.105
= T Y (R - et i

V., = +VoVPsinl, (1.106)

where V, = V-e,, V, = V-.e, and V, = V -e,. The longitude ¢ and latitude b of the
radiant position seen by the observer then read

Vi
(= t — 1.107
arcan(v), (1.107)

a

V.
b = in{—] . 1.108
arcsin (V) (1.108)

0

The evaluation of the collision probability follows the same method as we presented
in Sec. [L3] thus we will point out only the main differences to the previous method.
The distance of the target Ary from the point of exact intersection is different due to the
non-zero eccentricity of the target body and in the elliptic case reads

AI’Q()\Q) = 7"0A10)\0 + O()\(Q)) s (1109)

where 7 is the heliocentric distance of the intersection point. If we compare Eqgs. (L109)
and ([L73)), the elliptic expression for Ary and its circular counterpart, we see, that unlike
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in the circular case, Ay has both radial and longitudinal components. Thus, we also must
anticipate changes in the evaluation of the minimum mutual orbital distance d,;, of the
projectile and target body near the intersection point. The square of the projectile-target
distance reads

d*(X, Ao) = [Ar(X) —ro(Xo)] - [Ar(X) —ro(Ao)]

)2 4 9 (e resinw
(r —ro) r(r ro)a 7

) ) 2
+ [<t> (esn;w) sin? I + cos® I
a n

We follow a similar approach used in Sec. [[L3] however, in this case the situation is more
complex. First, we derive the first partial derivatives with respect to both variables (A, Ag)

A+ 7% —2c0s ITgA g + T0A
(1.110)

A2

1 0d?
SN (X1 + X0\ — X3A) X + (rcos IA — roAo)r cos [
+r?sin*(I)A =0, (1.111)
1 0d?
SN — (X1 4+ XoX — X3X0) X3 — ro(rcos IA —rgAg) =0, (1.112)
0

where X7 = (r — rg), Xo = +resinw/P, and X3 = ronR+/Fy. The system of Egs.
(LI1I) and (TII12) has following solutions for (A, Ag) (using e.g., Cramer’s rule)

Xor2 — Xgrorcos I
0 370

A= X 1.113

1 A ) ( )
X3+ X I

N = X3l +A2WCOS , (1.114)

A = 2rgrXoXscosl —r’rgsin® I — 2 X3 — 2 X3 . (1.115)

The minimum distance d,;, in the case of the target on an elliptic orbit thus reads

(r —rg)sinl

V(A + 82 sin® T+ (y— BeosI)?

where 5 = roR+/(agno) and v = Fesinw/P). Eq. (LII6) is obtained straightforwardly
because terms in brackets in Eq. (LII0) give after the substitution of (A, Ag) very simple
expressions. Note that d,,;, is a function of orbital parameters of the projectile with the
nodal distance r = an?/(1 4 ecosw) and the heliocentric distance of the target ry that is
assumed to be fixed.

dmin -

(1.116)

Again, we follow the same procedure as in the circular case. The limiting impact
configuration is given by dn;, = R, where R is the radius of the target body (for a
negligible size of the projectile), thus after scaling R with the semimajor axis a of the
projectile we get

p=[n"—a(l+k)]A=Kkh), (1.117)

with

?72—02

o \/(?72 =) L+ (LK) + [y £ fe(L L k)
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Using Eqs. (L83)) — (L93]), that are the same for the target on either circular or elliptic
orbit, we obtain the probability P, which now depends also on r

(At),(ro)

TKozai

Pi(ro) = , (1.119)

thus we again express the total collisional probability P per one revolution of the projectile
as

P(rg) =Y PPy, (1.120)

where we sum over all possible impact configuration denoted by x symbol. The intrinsic
collisional probability p(rg) thus reads

P(ry)
jﬁorbR2 ’

where we again applied a normalization for the orbital period of the projectile T, and
to the cross-section factor R? we adopt definition of the intrinsic collisional probabili-
ty from (IQplkL 1951 (Wetherill, [1967; [Greenberg, |L9§j) Since the probability P(rq) is
dimensionless, the convenient units of p(ry) are au=2y .

We derived the collisional probability P, now, for the target that is on an elliptic
orbit, following the similar approach as in circular case. There are some noticeable dif-
ferences, but overall both theories look almost the same. However, so far we fixed the
heliocentric distance ro of the target body, thus we can derive using Eq. ([[I20) the
collisional probability for a particular value of rq, but the target body with non-zero e
may reside in the time of the collision on an arbitrary value of rq between the pericenter
and apocenter of the target’s orbit. In order to evaluate the final collisional probability
Phin, We thus need to consider all possible values of ry in the range (rq,72). Since the
values of o are not equally probable in time, we need to apply an appropriate weighting
to p(rp). Because the true anomaly differential df of an elliptic orbit satisfies relation
df oc dro/(r2|v - er]) o< dro/(raRy), we finally identify the weighting factor to be

p(ro) = (1.121)

U(rg _ Qo7 1 .
) T roy/(ro — r1)(ra — ro)

The constants at the right side of Eq. ([L122) are set that the integral over the range
(r1,72) satisfies the normalization

(1.122)

T2
/ \P(TQ)dTQ =1. (1123)
T1

We should note that one would expect also another weighting factor dt o dro/(|v - €;|)
expressing the time interval that the target body spends in the region (rg, 7o + dro),
however, this weighting factor is already contained in the P, probability. Hence, the final
intrinsic collisional probability pg, over all possible impact configurations reads

T2
Pfin = / @(To)pO“())dTo . (1124)
T1

The weighting factor W(rg) is apparently singular at pericenter and apocenter distance
of the target body, at both lower and upper integration boundaries. Fortunately, the
integral itself is finite, however, the numerical evaluation of pg, must be performed with
caution. In our code we use the standard method of the improper integrals calculation
(Press et aIJ, |20_O_ﬂ) More specified information can be found in the Appendix Section of
paper B.
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1.5 Implementation of our approach

Our theory provides more complicated and not easily understandable formulas for the
evaluation of the collisional probability between two bodies compared to those of
(1951), or Wetherill (1967), and readers might find the theory too complex to use it
without making a big effort, thus leaving our theory aside and keep using theories in
situations where the original assumptions are violated. One of the crucial parts of both our
papers is the comparison between the direct impacts recorded in the N—body simulation
and the estimate of the collisional probability based on our theory. We wrote a simple
code in FORTRAN 77 that provided only an intrinsic collisional probability between
target and projectile. This code was later expanded and made more versatile providing
radiant distribution of the impactors, orbital elements at the moment of impact (our
theory cannot predict values of the longitude of the ascending node {2 and mean anomaly
[ because of the averaging technique used to obtain integrals of motion), impact velocities
at infinity and influenced by gravitational focusing.

The code was later rewritten in FORTRAN 90 and was improved for the targets on
eccentric orbits. We successfully tested our code and used it in process of writing paper
(A,B and E). The most recent version of our code is presented in Appendix A and can be
found at http://sirrah.troja.mff.cuni.cz/ pokorny/Kozai/ . The code is currently
used by Gerhard Hahn who is implementing it as a part of a software package for modeling
a distribution of NEAs designated for the European Space Agency (ESA). The code
was recently used by Alessandro Morbidelli for evaluation of the collisional probabilities
between terrestrial planets and artificial population of NEAs (IGLallMik_Qt_alJ, |2_(113)

1.6 Conclusions and further work

We presented two extensions of the original works that were using assumptions contradic-
tory to observed behavior of many bodies in the Solar System. Our extensions are valid
even for high inclination and high eccentricity orbits of the projectiles. We restricted the
orbit of the target to circular coplanar orbit (paper A) and elliptic coplanar orbit (paper
B) to obtain purely analytic solution. Such solution is highly efficient because allows us
to evaluate the collisional probability between two bodies with an arbitrary precision with
almost no costs for computational time. This naturally led us to write a code providing
intrinsic collision probability, position of radiants and impact velocities base on our work.
This code is written in FORTRAN 77 and 90 (two separate versions) and is available at
http://sirrah.troja.mff.cuni.cz/ pokorny/Kozai/ .

Our approach and code was also successfully tested in a “real-life scenario” , a numerical
experiment of E-belt population evolution (paper B). We studied a dispersion of the
original population by all eight planets in the Solar System starting at the time when all
planets reached the current architecture. Using N-body code we recorded impacts of E-
belt objects on every planet and directly compared them with predictions of our collision
theory. Despite of fact that the investigated scenario incorporated far more complex
system than assumed in our theory, the direct comparison showed good performance of
our theory and fair improvement in comparison with the original theories.

Many challenging tasks are also ahead of us. A generalization to target orbits with
non-zero inclination would prove useful for implication is the Solar System as collisions
among objects in the asteroid belt and also in many exotic exoplanetary systems where
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some planets reside on inclined orbits. Another improvement would be to adopt a more
complex perturbing function P, which would allow us to consider more perturbing bodies
and allow the projectile’s orbit have close encounters with them. This would improve our
estimates e.g., collisions of the long-periodic comets with terrestrial planets.
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2. Sporadic meteoroid complex

In this chapter, we review our work on the modeling of the sporadic meteoroid complex
(SMC). We will recall crucial physical processes that influence the dynamics of the mete-
oroids in the Solar System. We focused mainly on a development of steady-state models
for various structures in the SMC. At the very end of our research we were fortunate to
obtain the whole dataset from Canadian Meteor Orbit Radar (CMOR) that, on the other
hand, could not be fully analyzed and described in presented papers. In what follows, we
present the whole dataset in some extend, describe observed structures, and also point
out the most interesting features. In total, we presented three papers, where each of them
is describing one of the most prolific sources of dust particles in the Solar System and
their contribution to the meteor flux observed on the Earth.

We would like to thank Margaret and Peter Brown, and other CMOR staff, for pro-
viding the data. Their contribution allowed us to understand CMOR observations in a
great detail, provided an essential input to our model presented in paper E, and allowed
us to explore many interesting phenomena in this thesis.

Papers reviewed in this section:

Paper C: Nesvorny, D., Vokrouhlicky, D. Pokorny, P., & Janches, D., 2011, Dynamics
of Dust Particles Released from Oort Cloud Comets and Their Contribution to Radar
Meteors, Astrophysical Journal, 743, 129.

Paper D: Nesvorny, D., Janches, D., Vokrouhlicky, D. Pokorny, P., Bottke, W. F., &
Jenniskens, P., 2011, Dynamical Model for the Zodiacal Cloud and Sporadic Meteors,
Astrophysical Journal, 743, 129.

Paper E.- Pokorny, P., Vokrouhlicky, D. Nesvorny, D., Campbell-Brown, M. D., &
Brown, P. G., 2014, Dynamical Model for the Toroidal Sporadic Meteors, Astrophysical
Journal, 789, 25

2.1 Introduction

The Solar System is a very dusty environment. Every second myriads of small micron sized
particles are released from comets, created in cometary and asteroidal breakups and also
a small portion of dust comes from the interstellar space. The Earth, passing through this
dusty environment, is constantly showered with particles. Shall the dust particle be large
enough, its deceleration in the Earth’s atmosphere may be visually seen by observers,
creating a phenomenon called meteor. The exact threshold of the detectability of the
visual meteor is a complex function of its size, composition, atmospheric entry velocity,
weather conditions and also sensitivity of a observing system. Modern visual meteor
survey like Cameras for Allsky Meteor Surveillance (CAMS:; L]_en_niskems_ﬂuaﬂ, M), or
Canadian Automated Meteor Observatory (CAMO; [Weryk et all, |2Q13) observing a large
portion of the sky are able to detect dust particles with radii s 2 5 mm (valid for the
fastest meteors). Smaller dust particles decelerating in the atmosphere are not bright
enough to be observed visually, however, during the deceleration they ablate, and thus
ionize surrounding air, which makes them visible to powerful radar systems. Radars do
not detect the particles directly, but a train of ionized air left behind the dust particle
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was found to be a very effective reflector of radio waves, which allows particles with
diameters of tens to hundreds micrometers to be detected ; |20_Oﬂ) In the
past decade, the majority of the radar meteor detections were performed by two different
radar systems; Advanced Meteor Orbit Radar (AMOR; Galligan and Baggalevl, |ZDD_4],
M), and Canadian Meteor Orbit Radar (CMOR; lJones et all, 2005). Radars have
many advantages over the visual observation systems, such as the independence on the
weather conditions, ability to observe throughout all day regardless on the position of the
Sun, and also the ability to detect much smaller particles down to hundreds or even tens
micrometers, which provides an access to much richer sample of data when compared to
the observations performed by a visual system in the same period of time. Both visual and
radar observations provide a precise determination of the radiant location and velocity of
each impacting particle, thus, in other words, provide us a complete set of the Keplerian
elements for given particle. Moreover, since these systems are able to record the whole
deceleration process of the particle in the atmosphere, we can also obtain information

about the mass of the meteor (Verniani, 1973; [Pecina and Ceplechal, 1983), which, as we

show in the following sections, is an essential piece of information for our modeling efforts.

Decades of analysis of different radar or visual observations distinguished two differ-
ent components of the Earth’s meteoroid complex: (1) particles associated with meteor
streams, and (2) particles belonging to a sporadic background. Particles belonging to
the meteor streams are concentrated in the interplanetary space and are not dynamically
evolved, thus revolve on the similar orbits to their parent body (see, e.g., |Eem_éndgj, ;
L]_enniskens], [ZDDﬂ; an_@_aﬂ, |21)Dfi [ZD_ld) These bodies impact Earth’s atmosphere at
discrete intervals of time that last typically for a few days. Many different techniques
for meteor stream recognition were developed during the past decades, mostly comparing
the orbital elements of the recorded meteors and excluding the orbits that fall outside
a threshold value of similarity (e.g., Southworth and Hawkins, [1963; .Jopek et all, 2006),
sometimes called a discriminant criteria (D) method. Since these methods compare the
orbital elements of the particles, they are used widely for both visual and radar observa-
tions. The exact values for threshold values may differ from author to author, which may
lead to discovery of a new meteor stream in one dataset, while in the different dataset the
same event may not pass the threshold value. The sporadic background is composed of
particles that are not associated with any stream. It is generally believed that the spo-
radic component of the meteoroid complex is actually a dynamically evolved population of
originally stream meteoroids, whose orbital elements due to the various dynamical effects
became less and less similar to the orbital elements of the parent body. Such dispersion
does not allow meteoroids to be distinguished individually among the various sources of
the dust particles anymore. However, there must be also some intermediate dynamical
state of the particles when they do not belong to the meteor streams due to the higher
dispersion of the orbital elements, but, on the other hand, the nodes of the particles are
still not randomly distributed, thus creating “semi-sporadic” structures in the meteoroid

complex (Brown et. all, [2010).

Since meteor showers provide a spectacular show, when hundreds of meteors are ob-
servable by a naked eye, many might guess that the majority of the meteor influx is
brought by stream meteors. This opinion was proved to be wrong by various projects

in both visual (Jones and Brown, 1993) and radar (Campbell-Brown, 2008) observations.

In fact, the sporadic meteors dominate the time-integrated flux of meteors at Earth by a

factor of ten (Brown et all, [2010).
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2.1.1 Observations of sporadic meteoroid complex

Fig. 21 shows a radiant distribution map for more than a million meteors observed by
CMOR in 2012 where all recognized meteor streams were removed from the dataset. We
can clearly distinguish five different concentrations of meteors in the radiant map. Since
CMOR is located on the northern hemisphere, its sensitivity for meteors with southern
latitudes is much lower than for those with positive latitudes. From the symmetry of the
1mpact’ we can also expect that there is another concentration of meteors located at
—60 degrees of latitude, which was, indeed, confirmed by independent observations made
by AMOR (Galligan and Baggaley, [2004).

We thus find six concentrations in the sporadic meteoroid complex, where the majority
of observed meteors belong to: (1) the helion and anti-helion sources (H/AH), (2) the
north and south apex sources (NA/SA), and finally (3) the north and south toroidal
sources (NT/ST). The exact positions and ranges of the areas defining sources differ from
author to author (e.g., \Campbell-Brownl, 2008; [Kero et al, |20_1j), however, the areas
greatly overlap and contain the majorlty of observed meteors. We define the regions
similarly to KlampbﬁlLBrm&d (IZDDS ) helion source as the rectangular region with the
center at (¢,b) = (—60°,0°), with longltudmal width 60° and latitudinal width 90°, (2)
anti-helion source is similar to helion, but with center at (¢,b) = (60°,0°), (3) north apex
source is enclosed in a semicircle with radius 40° and center at (¢,b) = (0°,0°), while (4)
south apex source is a symmetric counterpart of the north apex with respect to the ecliptic
plane, (5) north toroidal region is defined by an ellipse with center at (¢,b) = (0°,55°)
with semimajor axis equal to 28° and semiminor axis equal to 15°, and (6) south toroidal
source is again the symmetric counterpart of the north toroidal source with respect to
the ecliptic plane. Here, the longitude ¢ is measured from the apex direction, where the
apex of the Earth’s motion is at the origin (¢,b) = (0°,0°), and the latitude b is measured
from the ecliptic plane. All six sources are marked in Fig. The main features of each
source will be discussed in the following sections, namely the H/AH source in Sec. 29]
the NA/SA source in Sec. 277, and the NT/ST source in Sec. 2111

The ground-based observations provide a vast ensemble of data, however, also many
satellites and space probes were deployed in the past decades, some of which also contained
instruments with an ability to measure various characteristics of the interplanetary dust
particles. One of the most comprehensive observations of the terrestrial accretion rate
was performed by Long Term Duration Facility (LDEF) experiment. Even though the
experiment is almost thirty years old (see, e.g, and references
therein), the exact outcome of the experiment is still investigated (IQrﬁanﬁwjﬂ, lZQlj),
and may change in the future. According to ICremonese et _all (IZD_]_ﬂ) the total mass
accreted by the Earth is (7.441.0) x 10 kg yr~! for asteroidal sources and (4.240.5) x 10°
kg yr~! for cometary sources. This gives us total mass approximately 15 tons per year,
where the majority of mass is brought by particles with diameters around ~ 200 pm.

Meteoroids orbiting in the Solar System also emit an infrared light that can be mea-
sured by space probes. The first spacecraft that observed almost the whole sky in mid-
infrared (MIR) wavelengths, and became a pioneer of modern infrared astronomy, was
the Infrared Astronomical Satellite (IRAS; e.g. Sykes et alJ h%ﬂ) Followed by Cosmic
Background Explorer (COBE; e.g., Eﬁlsallﬁi_aﬂ 1998), Wide-field Infrared Survey Ex-

plorer (WISE; e.g., Kramer et all. 2012), or Planck (IElakabllabmamn_eI_aﬂ 2013),

LAs we show in Sec. [[33.0}, the impacts of the projectiles at the ascending nodes have always positive
value of latitude, while the impacts at the descending nodes have negative values of latitude
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a large amount of data was collected. Knowledge of the thermal emission in the Solar
System allows us to constrain the models for the zodiacal cloud, because we can compare
the emission from an artificial model population to the observations from different space
satellites (see, e.g., Nesvorny et all, 12006, |2Qld)

Finally, many different space probes traveled through various regions of the Solar
System. Some of them carried instruments, impact detectors, that were able to detect
impacts of particles from diameters about 20 pm like e.g. (Pioneer 10 and 11 space-
crafts (ILa.nde:raf et _all [Zﬂﬂﬂ) down to micron sizes particles observed by New Horizons
spacecraft (Poppe et al., |2Qld) Even though the statistics of such experiments are very
low compared to ground-based observations, they provide valuable information about the
dust distribution in the vast regions of the Solar System.
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Figure 2.1: Distribution of radiant positions of 1.3 million meteors measured by Canadian Meteor Orbit Radar in 2012. The color range
corresponds to the measured flux in 1° x 1° radiant bins. Longitude is measured from the apex direction, where apex is at the origin, and
latitude is measured from the ecliptic plane. CMOR is located at 43.3° northern latitude thus is not able to observe meteors coming from
souther sky (roughly radiant latitudes < —40°).
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Figure 2.2: The same as in Fig. 2] but now with highlighted six recognized sources of the sporadic meteors (areas with white dashed
borders), helion/anti-helion (H/AH) source, north/south apex source (NA/SA), and north/south toroidal source. The exact definition of

the highlighted areas used throughout this work can be found in the text.



2.1.2 Modeling of sporadic meteoroid complex and motivation

In the previous chapter, we mentioned that the time-integrated flux of visual and radar
meteors impacting the Earth is dominated by about a factor ten by sporadic meteors
@n&md.ﬂrm&d, |l9_9_§§), and that sporadic meteors come mainly from six different radi-
ants. Since the sporadic meteors are not associated with particular streams, they certainly
experienced a long dynamical evolution. Once the dust particle is released from a parent
body it at once feels effects of gravity of the planets, solar radiative forces, and also col-
lisions with other small bodies in the Solar System (we will discuss these effects in more
detail in Sec. 22). The dynamical evolution of a dust particle is, thus, a very chaotic pro-
cess where even a small change in the initial conditions can cause a completely different
outcome. The stochastic nature of the problem does not allow an analytical solution and
needs a construction of a numerical model based on simulations of thousands of particles
of various sizes originating in different parent bodies.

The first models were usually composed of simple sets of empirical equations describ-
ing the up-to-date measurements, and used only very simple assumptions for speed of
meteors or their parent bodies (see, e.g., [MQMmm_a_@jﬂ, |2£E_4L for a review of NASA
models). Divind M) model was a great improvement of the modeling efforts of the
dust environment in the Solar System. It presented five populations of interplanetary and
was supported by various data sources from ground-based telescopes and space probes.
However, neither Divine’s model, nor models of NASA (McNamara. et all, 2004), and
ESA (IDi]&alfALeIﬁlJ, lZM)AI), could precisely explain radiant and velocity distributions of
observed sporadic meteors.

[Wiegert. et all (2009) presented a study with a challenging objective to explain all six
observed sources of the sporadic meteors. Authors assumed the known populations of

asteroids and comets as the source regions of meteoroids and made a few assumptions
(e.g., they magnified Earth’s radius to 0.1 au in order to get better impact statistics)
to make their model simpler and less time demanding. Their results were interesting,
however, the general conclusion from this model contained several drawbacks. Authors
did not perform any kind of fits, thus the agreement between model and observations
is only qualitative, which is the most apparent for the toroidal concentration (Fig. 4
in (Wiegert et _al., |2md) Authors also conclude that a single body may dominate the
contribution of the dust particles for a particular radiant region. This led

) to a conclusion that the parent bodies for the north toroidal source were several
near-Earth asteroids (NEAs), which would have, however, pushed their dust ejection
activity well above any observed values.

To summarize the situation around 2010 we may say that the radar observations
recorded millions of meteors with accurate orbital elements and heliocentric velocities.
Yet, the existing models were not able to accurately explain observed structures and
orbital element distributions. Motivated by the considerable amount of precise data and
the complexity of the problem we started to investigate dynamics of particles coming from
various prolific sources of dust in the Solar System, their contribution to the sporadic
complex measured at the Earth, and validity of our models keeping in mind results of

[Wiegert. et all (2009).
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2.2 Dynamics of the dust particles in the Solar Sys-
tem

The dynamics of the small meteoroids is dominated by two different types of forces: the
gravitational effects of all massive bodies in the Solar System, and the radiative forces
caused by the Sun. In the following text, we explore the most dominant effects on the
dynamics of the dust particles caused by radiative forces, while the direct effects of the
gravitational attraction are not discussed in detail. The reason is simple. In our papers
we study motion of dust particles in a very broad region of the Solar System which extents
from the Sun up to the Oort cloud, a region thousands astronomical units far from the
Sun. Such vast region is interwoven with mean motion resonances, secular resonances,
particles may undergo close encounters with planets, and also in many cases dust par-
ticles experience influence of secular mechanisms like Kozai oscillations. Even a brief
description of all known phenomena would fill several tens of pages, thus we refer to a
few publications to provide a basic overview of the topic , |l9_9_$i;

Morbidelli, 2002; Bertotti et all, [29113) However, in our models we take into account

effects of gravitation forces from massive bodies. We use a standard numerical pack-
age SWIFT (Levison and Duncan, 1994) that is able to accurately simulate dynamical
evolution of massive bodies and test particles on very long timescales (see also Sec. [2.4)).

On the other hand, radiative forces originate only from one body, the Sun, thus we
may expect that the magnitude of their effects follow a specific power-law, or even such
forces could have the same effect regardless on the heliocentric distance of the body. A
standard reference for an introduction to radiation forces on small particles in the Solar
System is the work of Burns et all (Il&Zd) We will introduce a notation used in this work,
follow its approach, discuss several assumptions used in our numerical models based on
(ﬁndings, and also add a few interesting consequences not discussed in

).

Assume a small spherical particle of a geometrical cross-section A that absorbs light
incident on an area AQ.,s and scatters an amount of light that is equivalent to light
incident on an area AQg... We thus define absorption Q.5 and scattering Q.. coefficients
which correspond to the fraction of amount of energy that is absorbed or scattered,
respectively. For a given particle we define the radiation pressure coefficient

Qpr - Qabs + Qsca (]. — <COS Oé>) s (2].)

where (cosa) is an anisotropy parameter that can be calculated from the Mie theory
(see, e.g., [Burns et all, [1979; Horvatll, 2009, for a review and historical background). In
our models and simulations we, for simplicity, assume @),, = 1, which is equivalent to
a perfectly absorbing particle, similarly to the case originally considered by

(Eéﬁ) Such particle feels a force from the solar photon radiation that can be viewed as a
composition of two different parts: (1) a radiation pressure caused by an initial incidence
of the dust particle by a momentum of the photon beam, and (2) a Poynting-Robertson
drag caused by a reradiation of the incident energy. If we denote S as the integrated flux
density (erg cm? s71), the total amount of incident energy on the particle per second is
SA. For a moving particle in the heliocentric reference frame with velocity v relative to
the Sun, we must make a correction for the limited speed of the light ¢ ~Doppler effect—

that reads A
5/25(1—";8) , (2.2)
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where S is a corrected integrated flux density for a moving particle and S is a unit vector
in the direction of the incident beam. The force F; equal to a momentum removed per
second from the incident beam of photons is

/
F = Qpr¥s. (2.3)
Now, the absorbed energy flux is continuously reradiated by the particle. We assume
the reradiation process to be isotropic, because we are dealing with very small particles
(centimeters in size at maximum), and thus we may consider them effectively isothermal.
On the other hand, we also assume, that our theory corresponds to the geometrical optics
limit, where the particle size is much larger than the incident-light wavelength. In the
reference frame moving with the particle there is no net force, since the reradiation is
isotropic. However, in the heliocentric reference frame the particle has velocity v, and
thus the momentum flux from the particle is
/
F2 = _Qpri—QAV- (24)

The mass of the particle is conserved, thus, in fact, the particle losses its momentum and
is decelerated by force F,. The net force caused by radiation Fj.q is then the vectorial

sum of F; and F5
(1—V—éS>S—X+@], (2.5)

C C

Faa = Qb (8 - v) =, 2

where the first term is the radiation pressure and the remaining terms are usually called
Poynting-Robertson drag. Since the maximum velocities of the bodies in the Solar System
are smaller than < 100 km s™!, the last term in Eq. (23] is usually not considered.

The most of the literature finds it useful to define a ratio 5 between the gravitational
attraction Fy,y of the Sun with mass Mg at heliocentric distance r upon a spherical
particle of radius s and density p that reads

4ms3p GM,,
3 r2

Fgrav = (26)
where G gravitational constant, and the magnitude of the radiation pressure force F;

defined by Eq. (Z3) as
LA
F=Q,——7FF, 2.7
@ 4mr2e (27)
where we used S = L/4mr? for the radiation flux density at heliocentric distance r gener-
ated by the Sun with the solar luminosity L. Then the parameter 3 reads

FI‘ L T — T
- Qor _ 5710759 : (2.8)
Forav  16mGMgc ps ps

8=

where p, and s, are in units g cm ™2, and cm, respectively. With the parameter 3 the total
net force caused by solar radiation upon the dust particle may be written as

prad:MKl_V‘S)g_%er], (2.9)

r2 1 c?
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where m is the mass of the dust particle. From Eq. (2.9) we see that the radiation pressure
directly opposes a part of the gravitational attraction of the Sun, which causes the dust
particle to behave as if it were orbiting the center of gravity with mass of (1 — §)Ms.
In our simulations, we assume particles to be composed of silicates with mean density
p = 2.0 g cm™3, thus we have only one free parameter in determination of 3 from Eq.
(2.8). If we are to compare our simulations with other works where different values of p
are used, we would simply recalibrate the size of particles without losing the validity of
our results.

The radiation pressure and Poynting-Robertson draghave very interesting consequences
on the dynamical behavior of the dust particles. For particles with § > 1 the radiation
forces are strong enough to push such bodies out of the Solar System on hyperbolic orbits.
However, this occurs only for very small particles with diameters D = 2s < 0.5 pym. These
bodies called [-meteoroids are observed by different space probes (Iﬂlmm_eiuaﬂ, M),
but are too small to be observed on the Earth by either radars or ground-based optical
telescopes. Larger particles, with g < 1, feel lower gravity from the Sun than their parent
body, for which we have $ = 0, and thus their orbital elements might change at the time
of ejection from the parent body.

Let us consider a parent body at heliocentric distance » moving along an orbit with
the semimajor axis a, the eccentricity e and the inclination I. The heliocentric velocity
Viel of the parent body then reads

2 1
Vi, =GMy (= ——). 2.10
2=ono (2= 1) (2.10)
A small dust particle released from the parent body with a negligible ejection speed at
heliocentric distance r will instantly feel the effects caused by radiation pressure. Since
we neglected the ejection speed, the heliocentric velocity of the dust particle will be the
same as that of the parent body, however, with non-zero g we get

2 1
‘/11261 - g(]' - B)MQ (_ - _/) ; (211)
roa
which gives us a solution for the new semimajor axis a’ of the dust particle after ejection
/ T(l B 6)
=a—=. 2.12
¢=a 206a ( )

Since the heliocentric position ry, and velocity vectors vy, are conserved upon ejection
of the particle, the specific relative angular momentum H of the dust particle equal to
the angular momentum of the parent body

H=rxmv=my/GMa(l —e2) = m\/G(1 — B)Mpa'(1 — ¢?) . (2.13)

Combining Eqs. ([2.12) and (2.I3)), we obtain the solution for the new value of eccentricity
e’ after the ejection of the dust particle

¢ = \/1— (1= e%)(r —2Ba) (2.14)

r(l—p)?

From Eqs. (ZI2) and (ZI4) we see that if 5 > r/2a then the orbit of the ejected
particle becomes unbound and the particle will escape from the Solar System. This factor
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becomes more important for parent bodies with very large semimajor axes such as Oort
Cloud Comets having a ~ 1000 au, thus even quite large particles with diameters of tens
or hundreds of micrometers may be released on hyperbolic orbits, if the ejection occurs
very close to the Sun, even though [ is a small number. Finally, there is no change in
inclination upon the release of the dust particle from the body, because the radiation from
the Sun is emitted radially, and also since ry. and vy are conserved, the Z-component
of the specific relative angular momentum #y is also conserved, and thus

Hy=HcosI =Hcosl'=1=1". (2.15)

Now, we will investigate the dynamical consequences of the radiative forces on the
orbital elements, averaged over one orbital period. We describe the results presented
by Wyatt and Whippld (|l9£ﬂ) and [Burns et al) (Ilﬂg), that were originally obtained
by [Robertson (Il%_’Zl) The secular change of the semimajor axis due to the Poynting-

Robertson drag reads

do N (2+3€?)

dt a (1—e2)p32] (2.16)
while the change of the eccentricity is
d
c__ON_ e (2.17)

dt — 2a2(1—e2)1/2”

where N = 2.53 x 10"Q,,/ps = 4.44 x 103, with a, p, and s in units cm, g cm™3, and
cm, respectively. There is no secular change in the inclination I, thus we may formally
state that

dl

dt
For a dust particle with e = 0 we can simply integrate Eq. (ZI0) and get characteristic
orbital decay time tpgr for a particle decaying from heliocentric distance R; to distance
Ry

0. (2.18)

400
lpr = F(R% — R}, (2.19)

where the heliocentric distances R; and R, are in astronomical units and tpg is in years.
The determination of the characteristic decay times tpr for the non-zero eccentricity is
not simple, but it is obtainable by the numerical integration of Eqs. (ZI0) and (ZI7).
Figs. and 2.4 show tpgr for a wide range of initial semimajor axes a and eccentricities
e at the time of ejection for the dust particle with radius s = 100 gm and density p =2 g
cm 3. Dust particles were tracked until their heliocentric distance r reached the surface
of the Sun. We see that higher initial eccentricity greatly reduces the decay time, where
for e ~ 0.9 the particles have one order of magnitude shorter dynamical lifetimes than
the particles with initially zero eccentricity. This effect is very important for particles
released from comets that are usually observed on very eccentric orbits. We also have
to take into account the effect of radiation pressure that increases e of the dust particle
upon its ejection from the comet as described by Eq. (Z14)).

We should not neglect an effect of the solar wind that influences the dynamics of the
dust particles in the similar manner as the radiative forces from the Sun. According to
Mukai and Yamamotd (1982), the direct effect of the solar wind in the radial direction
is not negligible only for very small particles with s < 0.1 pgm, when compared to the
magnitude of the radiation pressure force. However, the transverse part of the radiation
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Figure 2.3: Values of characteristic decay times tpr (color range) for particles with radius
s = 100 pum and density p = 2 g ecm~? released with different initial orbital elements a
and e. The orbital elements of the particles were tracked until the dust particle reached
the heliocentric distance r = R, where R, = 700,000 km is the approximate radius of
the Sun. White lines represent isolines of the same value of the characteristic decay time
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Figure 2.4: The same as in Fig. 2.3, however, now for range of semimajor axes a from 1 au
up to 10,000 au. We use logarithmic scale for the semimajor axis a and the characteristic
decay time tpr. Even though the parameter § is constant, regardless to heliocentric
distance r of the dust particle, Tpr easily acquires extreme values for dust particles with
a > 100 au.
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forces, the Poynting-Robertson drag, is affected by the solar wind more effectively. In
our simulations we use a mean value of 30% increase of the magnitude of the Poynting-
Robertson drag, which is in accordance with calculations of Mukai and Yamamoto (Il})&)
that for micron to centimeter sized bodies acquired 40% increase for prograde magnetite
particles and 20% increase for retrograde magnetite particles. Again, such parameter is
transferable between different simulations by changing the size of the dust particles.

In previous paragraphs we omitted several other dynamical effects caused by radiative
forces that are important for larger bodies like Yarkovsky effect or YORP effect (see
e.g., |BJ.1msﬁ_al.|, |l9lg; Bottke et a1.|, |20Dﬂ, for excellent review of the problem), and also
effects that dominate in the close proximity of the Solar surface like differential Doppler
effect (IBJ.lms_Qt_alJ, |l9_7_g) These effects influence the dynamics of the dust particles we
study only in a negligible way.

2.3 Collisional lifetimes - theory

Collisions between dust particles and other bodies in the Solar System decrease the lifetime
of the dust particles, that may be very short, as we learned in the previous section. On
the other hand, dynamical lifetimes of larger particles may exceed billion years, thus there
must exist a mechanism that disrupts larger, dynamically stable, particles, because the
zodiacal cloud is dominated by particles with diameters D ~ 10 — 100 um (IML

). If we want to study the evolution of large populations of dust particles in the Solar
System, it is crucial to know, what the collisional lifetimes 7.,; of population members
are. The dynamical lifetime can be much longer than the collisional lifetime 7., of the
dust particles, and thus even though theoretically the particles would reach the proximity
of the Sun due to the radiative forces in finite time, in reality mutual collisions can break
them apart even very close to their parent bodies.

Most works today use two different approaches for an evaluation of the collisional
lifetime of the small bodies in the Solar System. Model from (Griin et all (1985) gives
meteoroid flux and collisional lifetimes for particles with different masses at heliocentric
distance 1 au, where the results are based on various observations from different space-
craft and Earth-based detectors. If we set a radial dependence of the meteoroid flux in
the Solar System, the knowledge of the collisional lifetimes at 1 au allows us to evalu-
ate the collisional lifetime for every particle on an arbitrary orbit (see Eqgs. (16)—(19) in
|er.in_ei_aL|, UM) We adopted Griin’s model in papers C and D (see, INesvorny et al.,

, for a more detailed description). Since this model is based on more than twen-

ty years old measurements, and more recent measurements indicate that fluxes used in

) are higher than more recent values, we introduced two free parameters

that shift the collisional model in mass of the particles and the magnitude of the flux.

These two parameters allowed us to understand the direct effects of collisional lifetimes

and supported our hypothesis that the original collisional lifetimes are much shorter than

dust particles need for their evolution from the parent bodies to the Earth and to match
the observational constrains.

The second model, published by Steel, Baggaley, and Elford (Steel and Bagga e;zl,
|l9&ﬂ; [SI&]L |l9&ﬂ; [S_t@ﬁ]_alld_Elerd, U_M), uses a slightly different approach. Instead of

evaluating the collisional lifetime at certain heliocentric distance R it uses the collisional
frequency evaluation method developed by Kessler (@), tracks every particle along its
orbit, and compute its collisional probability with the dust environment. Contrary to
Griin’s approach, it also take into account the inclination I of the studied particle, that
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may be an important factor for highly inclined dust particles.

Now, we will briefly discuss a method used in paper E based on Steel’s and Elford’s
method (lSL.eﬁlled_Elerd, h%ﬂ) Let us assume a simple model that the particles we
study orbit inside a dust cloud (zodiacal cloud in the Solar System) and represent only
a negligible fraction of the total amount of dust in the dust cloud, thus we omit can
omit mutual collisions among studied particles. A structure of the dust cloud can be
very complex, however, since our goal is to study large populations of dust particles, we
use a simpler model to decrease computational demands of our model. Supported by
various spacecraft measurements (e.g., [Leinert et all, |J_9§_1|; i iesd, |J_9§_4]) we
adopt the radial spatial density of the dust cloud proportional to R ~!3. Furthermore, we
assume that the cloud as a doughnut-shaped structure with the mean inclination iz and
eccentricity ezc. Then, we may assume that the spatial density varies with a latitude 3
with respect to the cloud as (1 —sin 3). Our simple model thus allows us to obtain spatial
density S, of the dust cloud at arbitrary position in the Solar System

Su(R,B) = S1aun(1 —sin )R 71, (2:20)

where Si,, represents the reference spatial density at 1 au. Si,, should not be considered
constant for different sizes of the dust particles, but rather as a function of the meteoroid
radius. Since the mutual velocity of the dust grains easily exceeds 10 km s™1, we expect
that the meteoroids can be disrupted by much smaller particles. We adopt a radius
ratio of 30 (see, [Sj_eﬁlmd_Elerd, |l9jid, and references therein), which we assume, for
simplicity, to be valid for meteoroids of all sizes and collisions with various impact speeds.
Our assumption thus means that a meteoroid with diameter D = 3 mm is collisionally
destroyed by a particle with D > 100 pum, where collisions with smaller particles are
omitted.

Table shows the reference spatial densities at 1 au Si,, for all particles assumed
in our model adopted from |Cremonese et all (lZD_lj), where we assumed that all particles
have the mean density p = 2 g cm™3. We evaluate Si,, as a sum of spatial density of
asteroidal dust particles Sia,,., and cometary dust particles Sia,,. at 1 au, where the
mean impact velocity for is 18.6 km s~!, and 29.0 km s~!, for asteroids, and comets,
respectively.

Using the collision probability evaluation based on Kessler M), we proceed to the
evaluation of probability that the meteoroid collides with a dust cloud with spatial den-
sity defined by Eq. (220). The meteoroid passes through the dust cloud on an elliptic
orbit with constant orbital elements ay,,em, [y, wy; the remaining orbital elements may be
omitted because of the symmetry of the problem. We divide the volume of space where
the collisions can take place into small volume elements AU. In each of these volume
elements we examine the collisions separately. Since the gravitational focusing in this
situation is negligible, and also the size of the impactors is negligible in comparison with
the size of the meteoroids, we assume the collision cross-section o = wD?/4. We recall,
that for collisions of larger bodies such as asteroid-planet collisions, the collisional cross-
section must be treated more carefully, where the gravitational focusing, and also radii of
both bodies are taken into account ; M)

Now, assume that both particles in the dust cloud and meteoroid are moving along
their orbits, then the collisional rate Pay in the volume element will be

nD?
PAU = SZSmVO'AU = TSszVAU y (221)
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Dy [pm]  Stau,., [AU_J] Staucom [AU_J] Stau [AU_J]
100 3.67 x 10%* 1.93 x 10**  5.60 x 10%*
200 1.42 x 10* 8.03 x 10% 2.22 x 10*
400 6.35 x 1023 3.14 x 10 9.49 x 10
600 3.63 x 10% 1.79 x 10  5.42 x 10%
800 2.30 x 10% 1.28 x 10*®  3.59 x 10?3
1000 1.62 x 10% 7.08 x 10%2 2.33 x 10%
1500 8.28 x 1022 3.42 x 1022 1.17 x 10%
2000 4.79 x 1022 2.05 x 102 6.84 x 10%*2
3000 1.88 x 10%2 7.62 x 10*'  2.64 x 10*
4000 8.17 x 10% 2.71 x 102 1.09 x 1022

Table 2.1: Reference spatial densities for different diameters D,, of the meteoroid at 1 au
based on measurements of LDEF where new theory of the impact evaluation was used

(IQrﬁangsm_aU, |2Q1j) The total spatial density of the dust cloud Si., is a sum of the

asteroidal Si,,,., and cometary contribution Siay,,,,-

where S, is the spatial density of the meteoroid in the particular volume element AU,
and V is the relative collisional Velocit&. The exact derivation of S, and V is obtained

directly from Kessler’s theory m, ) and can be found e.g, in Steel and Baggaley

(@) The total collisional probability between the dust cloud and the meteoroid is the
integral of Pay over the whole volume shared by both objects

D2
pP= / 8,8, VdU (2.22)
volume

where dU = 2w R? cos BdRdf3. However, for the needs of the numerical solution of P we
may assume, that for a given volume element AU the spatial densities S,, S, and the
velocity V' remain almost constant, thus we can evaluate P as a sum of mean values of
given variables in every volume element

D?
P= Z — S SmiViAU; (2.23)
J

where the mean values for every element are denoted by bars, and AU = QWR_? cos B;ARAB.
The position in orbit of the meteoroid with fixed orbital elements is, however, fully de-
scribed by its true anomaly f,,, and thus we can transform the two-dimensional integration
in dU to the one-dimensional integration in df,

2m
P = 7T(D/2)2Slau/ Su(1 —sin B)R™ V2 R? cos BOR* 03 df s, (2.24)
0

R?e,, sin f,

. 2.2
5 ‘ | (2:25)
55 oS (Wi + fim) sin Iy, (2.26)

cos 3

where 7, = /1 — e2,. The collisional lifetime 7., of the meteoroid passing through the

dust cloud is then given by
Teoll = ]-/P . (227)
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Figure 2.5: The dependence of the collisional lifetime 7., on inclination of meteoroid I,
for different values of inclinations of the zodiacal dust Izc. All curves are represented by
a meteoroid with a,, = 1 AU, e, = 0.1 and w, = 0 all particles of the dust cloud are
assumed to be on circular orbits. The diameter of the meteoroid is Dy, = 2000 pm.

Even though we used several simplifications in our model, the exact specification of the
dust cloud through its mean inclination izc and eccentricity eyc remains unknown. Fig.
shows the dependence of the collisional lifetime 7., for different values of meteoroid
orbit and dust cloud inclinations. The mean eccentricity of the dust cloud is assumed to
be zero, since due to the Poynting-Robertson drag the eccentricities of the dust particles
in the cloud are quickly decreased, and thus we may assume that all particles in the dust
cloud have circular orbits. The test meteoroid has following orbital elements: a, = 1.0
au, e, = 0.1, wy, = 0° with diameter D, = 2000 pgm, which are the same values as in
Steel and Elford (1986). We assumed four different values of I;c = 10°,30°,60° and 90°.
When the inclination of meteoroid is equal to inclination of the dust cloud the collisional
lifetime is highest because the relative velocity V' is minimal. We also see, that the
retrograde orbits are removed from the system much faster, than the prograde ones. In
paper E we use Iz = 30° since it is the observed mean inclination in the zodiacal cloud

in the Solar System (Leinert et all, [1983).

The dependence of 7., on different values of the inclination I, and the eccentricity
em of the meteoroid is shown in Fig. 26 The semimajor axis a,, = 1 au and argument of
pericenter w,, = 0° are fixed, and the mean inclination of the dust cloud is izc = 30°. The
effect of the meteoroids eccentricity ey, is evident, the collisional lifetime 7., decreases
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Figure 2.6: The dependence of the collisional lifetime 7., represented by colors, with
inclination 7, and eccentricity e, of meteoroid. The levels of the same value of 7. are
represented with white lines with 20 ky steps. All points on the map are represented by
a meteoroid with a,, =1 AU, e, = 0.1, w,, = 0 and all particles of the zodiacal cloud are
assumed to be on circular orbits with mean inclination izc = 30°. The diameter of the
meteoroid is 2,000 pm.

with increasing eccentricity. Interestingly, there is almost a plateau in 7. for higher
eccentricities around meteoroid inclinations I, ~ 70°.

We also have to mention the variation of 7., with the semimajor axis of the meteoroid
am. Perhaps unnoticed in the original work of Steel and Elford (1986), the variation can
be simply expressed as T.on o< al®. This is the direct consequence of our simplified model
of the dust cloud, where we assumed its radial variation to be proportional to R~!3, and
the speed of the mutual collisions V' oc a_%?

m .

2.4 Numerical codes

One of the essential parts of our modeling efforts is the numerical integration of the
particle orbits in the Solar System. In all presented papers all numerical simulations
were performed by swift_rmvs3 code (ILﬂLi.SLm_al]d_Dul]Qal]I, |l9_9_4|), where the authors
effectively implemented the Wisdom-Holman mapping (Ij&isdgmﬂld_ﬂglmaﬂ, |19_9_]J) The
code itself can also deal with very close encounters between test particles and planets.
All particles are considered massless in or simulations and do not influence the motion of
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planets. The effects of radiation pressure and Poynting-Robertson drag are incorporated
in our numerical code. While the effect of radiation pressure is simply adopted as a change
of the mass of the Sun M, for M (1 — f3), the effect of PR drag is added to the vectorial
acceleration components. As we discussed in Sec. the solar-wind drag force influences
particles similarly to P-R drag force, thus we included it also into the numerical code by
increasing the magnitude of the P-R drag by 30%.

Using the code, we track orbits of all particles as they evolve during their revolution
around the Sun. In papers C and D, we took into account only seven planets of the Solar
System (the Mercury was excluded and its mass was added to the mass of the Sun). In
paper E, we used all eight planets, because our computational capability improved. We
usually removed particles, as they reached heliocentric distance R < 0.05 au, for two rea-
sons. The first reason is that we used one-day time step in our numerical simulations and
orbits with smaller heliocentric distances are not properly resolved with such a timestep.
The second reason is that bodies reaching such close distances to the Sun would be heated
significantly and may vaporize (see, e.g., Nesvorny et all, 2!!115).

In our models we track dust particles with different chemical composition. It is known,
that e.g., particles released from Jupiter Family comets (JFCs) quickly lose their volatile
ice layers after their ejection. We do not model the change of chemical composition of
the particles and also we cannot model the size change of the dust particles caused by
evaporation. Particles in our models thus remain chemically and structurally invariant
during the whole simulation.

All particles in our models are tracked until they leave the Solar System on a hyperbolic
orbit, impact one of the planets, or are too close to the Sun. We thus have the complete
record of the particle dynamical state from its birth, after the ejection from the parent
body, till its final end. However, in the real Solar System dust particles collide with
each other. To incorporate these collisions we apply on the recorded ensemble of possible
pathways of the dust particles at every recorded time step the collisional theory described
in Sec. 23l Since the collisional disruption of the dust particles is a stochastic process, it
is not included in the numerical integration, but it is applied subsequently, which allows us
to test different theories and free parameters for the evaluation of the collisional lifetimes,
and also effectively adjusting the statistics of our model by applying the collisional model
with different setups of the random number generator.

Even though the computational capabilities improve every year, we are still able to
handle the evolution of tens of thousands of particles within one numerical simulation. In
our models, we study direct impacts onto the Earth and compare them with the various
radar and optical observations of meteors. The collisional probability of a particular
meteoroid with the Earth is very low, thus we usually record only units of direct impacts
in our numerical simulations. This problem has two conceptually different solutions: 1)
we can increase the number of simulated particles until we obtain reasonable statistics,
and 2) we can evaluate for each particle at each time step its collisional probability, and
determine the total collisional probability with the Earth. Since the first solution would
be extremely time demanding, and also since we are considering large populations of dust
particles, theories of collisional probability determination provide an elegant solution of
our problem. In papers C and D, we used Greenberg’s method (KML@Q, M), while
for paper E we developed our own method described in Chap. 1, and papers A and B.

One of the constrains for our models is provided by the thermal emission of the zo-
diacal cloud in the Solar System. In papers D and E, we compared our model with the
thermal emission observed by IRAS using a code named Synthetic InfraRed Telescope
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(SIRT) developed by Nesvorny et all (lZDMj) that is able to model a thermal emission

from distributions of dynamically evolving dust particles. SIRT provides IR fluxes that
are comparable to space-borne IR telescope observations considering the location, pointing
direction, and the epoch of observation of the telescope.

The last but not least, we construct a model of a synthetic ground-based telescope
that is able to simulate the observations performed by radar systems or optical telescopes.
Characterization of the sensitivity of the system is obtained through an ionization factor

m 1% 3.5
Lion = 2.2
ion 1077 kg (30 km S_l) ) ( 8)

where m is the mass of the meteoroid, and V' its apparent velocity at the Earth (composed
of the relative velocity at intersection of the particle’s heliocentric orbit with the Earth and
the planet’s velocity vector including acceleration due to gravity). For each system we set
a critical threshold I,, which means that particles with [;,, > I, are detected, while those
with [, < I, cannot be detected by a particular system. We adopted thos approach from
Wiegert et al.| (|2D_Qg where authors investigated measurements of CMOR system, but
the similar approach was also applied for the AMOR system, and should be applicable to
other systems as well. We recall that for CMOR I, ~ 1 (Ij&iﬁgﬁrj_@_alj, [ZDD_Q), for AMOR
I, ~ 0.001 — 0.01 (personal communication with Margaret Campbell-Brown), and we
expect that for optical systems like CAMO or CAMS I, ~ 100 — 1000. Another aspects
influencing observations such as longitudinal and latitudinal dependence of detectability
throughout the year, sensitivity for different radiant positions and velocities, trail echo
height ceiling effect, and many more are very specific and vary from system to system,
thus should be discussed carefully with the operating staff, which was e.g., performed in
paper E, where we investigated CMOR observations of the north toroidal source.

2.5 Steady-state model — basics

Daily observations performed by various systems around the world provide information
about meteors coming from a vast population of the bodies in the Solar System. In Sec.
2.2 we showed that the dynamical timescale of the transport from the parent body to
the Earth linearly depends on the diameter of the particle D, and for the larger par-
ticles coming from distant bodies can exceed million years. It is modeled and also ob-
served (Fernandez, 2005) that comets may disrupt or become dormant in relatively short
timescales, and thus the majority of meteors observed in the sporadic environment can
originate from bodies that are not observable today. Observations of meteors cover only a
few decades, and observations of the brightest comets cover thousand years at maximum,
which forbids us to search for specific very old and today inactive or nonexistent bodies
that could be the parent bodies of the sporadic meteoroids, we observe today. Thus, we
have no other option than to rely on dynamical models explaining the observed popu-
lations of comets and asteroids and assume that such models based on the dynamical
transfer of bodies from the e.g, Oort cloud, or Kuiper belt, are valid even when their
results are extrapolated to the distant past.

For the steady-state models, we assume that structure and composition of the par-
ent bodies remain the same. Another assumption is that the distribution of the orbital
elements of the parent bodies, namely, the semimajor axis a, the eccentricity e and the
inclination I, is constant in time. This means, that we assume the overall distribution
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of the orbital elements (a,e, I) of e.g., HT'Cs one million years ago was the same as to-
day. However, the observed population of HTCs one million years ago could be composed
of bodies with different orbital elements compared to their contemporary counterparts,
HTCs observed today. On the other hand, the remaining Euler angles, the longitude of
the ascending node €2, the argument of pericenter w, and the mean anomaly [, should be
taken randomly in the whole range of their possible values (0, 27) due to the chaotic na-
ture of the dynamical transfer from the original population, and also due to the unknown
original values of these angles M&Mjﬂ, @Dﬁ)

Our steady-state models are created in following steps: (1) we create a certain amount
of particles with orbits in accord with the modeled distribution of a particular group of
the parent bodies, (2) these particles are followed in time until the whole population
is eliminated, (3) then we determine for each particle at every timestep whether it is
destroyed, or not, in the collision with the zodiacal cloud using a comparison of the
disruption probability with a randomly generated number. However, this Monte Carlo
procedure brings a stochastic element to the model, thus we typically repeat the collisional
model 25 times and average over the results.

Since the particles of different sizes have different dynamical pathways due to the
dependence of the PR drag on the size of the particle we need to create such steady-state
models for a wide range of particle sizes. Contributions of particles of different sizes to
the general model for a given group of parent bodies are then determined by the size-
frequency distribution. Even though we usually start with thousands of the initial orbits
for a given particle size, during its pathway through the Solar System a single particle
creates thousands of imprints corresponding to every timestep with an unique set of the
orbital elements, thus the steady-state population is represented by millions of individual
orbits. For such a population, we can determine its dynamical lifetime, and consequently
estimate a mass needed to keep the model in steady state.

Such steady-state models, however, do not allow us to predict temporal variations of
the various observed features, like the well-known year variations of the north toroidal
meteor concentration, because we assume the uniform distribution of €2, w, and [. Steady-
state models cannot also predict a formation of young meteors streams because the orbital
elements (£, w,[) of such stream meteors are not distributed randomly, which is one of
the main assumptions of our steady-state models.

Thus, in general, the steady-state models can predict only a behavior of the background
population that satisfies our assumptions we presented in the previous paragraphs. As we
will see, the background population corresponds to the majority of meteors observed in all
six sources of sporadic meteors, and it is usually possible to separate the background from
the stream-like structures, thus the development of the steady-state model represents one
of the most crucial parts for the understanding sporadic meteoroid complex.

2.6 A brief overview of the 2012 CMOR dataset

Canadian Meteor Orbit Radar (CMOR) provides the most complete radar observations
available today, and we were more than fortunate to get the whole dataset of the year
2012. In this section, we will briefly discuss general characteristics of the CMOR system,
and also present general plots before, we proceed to the more detailed study of the three
pairs of observed sources. We omit a significant portion of information that would be very

similar to a comprehensive study of CMOR dataset by [Campbell-Brownl (200]). Instead,
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we would like to present new figures that were not published, or are not commonly used
in the literature, rather than mention well-known features of CMOR data.

CMOR is a radar system located in Ontario, Canada at 43.26° N, 80.77° W. It has
been in operation since 2001 as a three station system, named as CMOR, while in 2009 it
underwent a major upgrade that has expanded the system to six stations, and also doubled
its transmit power to 15 kW, where the new facility was named CMOR II (m,
2002; (Campbell-Brownl, 2008; Brown et all, 2012). The radar has three frequency systems
running at 17.45,29.85, and 38.15 MHz. Only the 29.85 MHz system is capable to derive
the orbital elements of the observed meteor, thus, in the following text, we will present only
results from this particular system. According to (Campbell-Brown (2008) the limiting
mass for CMOR is for a mean geocentric velocity 30 km s~! about 10~7 kg, which is
equivalent to i, ~ 1 (see Eq. 22§)). A detailed description of CMOR system can be
found in LJones et. all (2005).

The 2012 dataset contains more than 1.3 million orbits, where for each orbit, the
heliocentric ecliptic latitude and longitude of the radiant were calculated. The corrections
for zenith attraction, diurnal aberration, and gravity acceleration, were taken into account
in the dataset (see, Klam.p_bfﬂ, |20ﬂﬂ, for a great review of all recognized biases in for CMOR
system). All recognized meteor showers were removed from the dataset to provide the
most accurate data for the sporadic population. In order to keep radiant positions constant
with respect to the Earth, that orbits around the Sun on a slightly eccentric and inclined
orbit, the solar longitude of the Earth A at the time of meteor observation is subtracted
from the measured ecliptic longitude, which makes the coordinates Sun-centered. In our
papers C, D, E, and also here, we use a slightly different coordinates, where the apex
is located at the origin of our coordinate system, and the Sun is located at longitude
—90°. The map of the radiant distribution of the whole dataset is shown in Fig. 2.1l and
six recognized sources are marked in Fig. (see Sec. 2] for the definition of source
regions).

The fundamental piece of information is a distribution of orbital elements and geocen-
tric velocities for the observed meteors. Fig. 2.7 shows the distribution of the geocentric
speed v,, heliocentric semimajor axis a, inclination I, and eccentricity e for 1.3 million
meteors measured by CMOR in 2012. We removed all meteors on hyperbolic orbits, thus
e does not exceed unity, and v, < 72 km s, which is the hyperbolic limit in the Solar
System for the particles impacting the Earth. According to M&mkmdﬂm&d (lZDDAI),
most of the hyperbolic orbits are in fact very eccentric orbits that are, due to the a small
error, moved to the hyperbolic regime with e > 1.

Fig. 27 also shows an approximate distribution of population with an ability of
generating observed meteors. Each recorded meteor is characterized by a set of orbital
elements (a,e, I, w,l) that allows us to evaluate its collisional probability P.,; with
the Earth. We can then assign a weight oc 1/P. to each observed meteor, and thus
obtain a population of particles with an ability to generate observed meteor orbits. The
determination of the collisional probability P..y is performed by theory and code described
in Chap. [Il and papers A and B.

The v, distribution of all observed meteors has two visible peaks, one at ~ 30 km
s~! that is more dominant and is associated with the prograde meteors, and the second
one around 60 km s™! associated with meteors on retrograde orbits. The generating
population has also two peaks, but the contribution of meteors with the lowest v, is
diminished. The peak for the prograde meteors moved to 45 km s~!, while the second
peak did not change significantly, moving to 65 km s!.
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The semimajor axis a, shown in the top right panel in Fig. 2.7] is concentrated near
1 au, which is a direct consequence of the position of the detector, the Earth, which
amplifies the collisional probability of the particles with the similar a. The number of
impacts with @ > 2 au is almost negligible, which might mean, that the parent bodies
may be of an asteroidal origin. However, when we investigate the generating population,
we see completely different picture. There is a peak at a ~ 2.5 au, but the contribution of
the bodies with larger semimajor axes is not significantly lower. In fact, the slope is very
shallow and implies that the majority of observed meteors must be of cometary origin.

The inclination distribution is divided to two segments, with I < 90°, and I > 90°.
Near the I = 90° there is a significant absence of observed meteors, which is caused by
strong effect of the Kozai oscillations (see Sec. [L2) that drives particles with polar orbits
to highly eccentric modes, where these particles can be driven to heliocentric distances very
close to the Sun. Flux of the meteors is dominated by prograde meteors with a prominent
contribution of meteors with low inclinations. There is also a visible contribution of
meteors with peculiar values of inclinations with peak near I ~ 70°. For retrograde
meteors there is only one peak near I ~ 150°, however, the distribution of retrograde
meteors is almost constant. Since the collisional probability strongly depends on I the
importance of low inclined meteors in the generating population is decreased and orbits
with I ~ 70° become more prominent. This may suggest that the prograde meteors come
from two different populations.

Observed meteors have wide range of eccentricities with peak at e ~ 0.8. The total
flux is dominated by very eccentric meteors, however, the contribution of the less eccen-
tric orbits is not negligible. The generating population is dominantly composed of very
eccentric bodies. Meteoroids with very high eccentricities, and also correlated semimajor
axes, have smaller P, than meteoroids with more circularized orbits, thus to populate
the observed population of orbits a huge reservoir of very eccentric orbits must exist.

Since Fig. 2.7 represents only one-dimensional distributions of the geocentric impact
speed and orbital elements, we are not able to see correlations between these variables.
Fig. shows two-dimensional correlations between geocentric impact speed vy, semi-
major axis a, eccentricity e and inclination I, while Fig. shows the same correlations
but for the generating populations weighted by collisional probability P..; of each meteor.
There is a significant difference between Fig. and Fig. 29 where the most evident
is a drift of generating population toward larger a and higher e. This suggests, that we
have to take into account even parent bodies with a > 20 au, which not evident from
unweighed distributions.

Fig. shows the number of recorded particles in the CMOR dataset as a function
of the solar longitude A at the time of detection, we recall that all hyperbolic and stream
meteors were excluded from our dataset. In other words, Fig. represents the temporal
variations of meteoric flux detected by CMOR in 2012. During 2012 CMOR was not fully
functional for a brief period of time, which is represented by a sudden drop in the flux
near A = 150°. Many stream-like structures are visible in Fig. 2.7, and will be discussed
in the following sections where we describe in more detail the data for different sources
of sporadic meteors.

It is also very useful to plot distribution of the orbital elements with respect to the solar
longitude A (Figs. 211 and 212 for observed and generating populations, respectively).
In Fig. 211 we immediately recognize a very prominent structure near solar longitude
A~ 260°, with v, ~ 35 km s™', a ~ 1.4 au, e ~ 0.9, and I ~ 24°. Even though
all streams were removed from our dataset, we can identify this structure as a more
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evolved part of Geminids meteor stream, that has almost the same orbital elements as
the original stream (see, e.g., Brown et aIJ, [ZDLE) Further analysis shows, that these
meteors, indeed, come from the similar radiant positions as the Geminids stream, which
implies that the parent body of this structure is the asteroid 3200 Phaethon m,
@?B, ). However, since this structure is dynamically older, it is not removed from
the dataset by common techniques. The origin of Geminids dates to ~1030 AD, when an
unknown body was fragmented during a collision and left 3200 Phaethon and Geminids as
products (Ilenni&kfznsj, [ZDDﬂ), thus even the oldest particles coming from the breakup event
are not old enough to be dispersed in the sporadic background. Structure with similar
orbital elements can be seen also in Fig. .12l however, it is less prominent than in Fig.
211l One of the possible explanations is that the structure is not old enough to satisfy
assumptions of the collisional probability theory, the random distribution of longitudes
of the ascending node, and mean anomalies, thus the evaluated value P.,; might provide
less reliable results.

On the other hand, Fig. may be helpful to understand older structures evolved
enough that their observed elements are too different from their parent body. One of such
structures may be found near solar longitude A ~ 126°, with v, ~ 46 km s™', a ~ 2 — 3
au, e ~ 0.99 and I ~ 25 — 35°. The same structure is almost invisible in Fig. [ZT1] and
also the semimajor axis a of such meteors is observed near 1 au, which is given by the
position of the Earth. It is known that these meteors belong to Southern § Aquarids
complex, associated with Marsden and Kracht sungrazing comets (lS_Qka.mn.a._a.ndﬁthaéj,
2005, lJenniskens, 2006), however, without any modeling Fig. 212 gives us just a simple

hint, where we could search for the parent bodies of such meteors.

Fig. shows two-dimensional distributions of orbital elements, where color of
each bin represents the mean particle diameter, and distribution of particle diameter
for 1.3 million meteors measured by CMOR in 2012. The mean diameter of particles
is almost constant in (a,e) plane, where for large values of a the size of particles tends
to be smaller. From (a, I) plot, we see that particles with smaller semimajor axes and
low inclinations are, in average, larger, which is a consequence of mutual effect of the
ionization cutoff threshold that is more easily overcome by faster particles, and longer
collisional lifetimes (Fig. 226]). The correlation between e and [ is readily evident from
bottom left panel in Fig. It implies that the largest particles have low eccentricities
and inclinations, while meteors on retrograde orbits are much smaller, regardless on their
eccentricity. The size distribution is influenced by ionization factor I introduced in Eq.
([Z2]). Particles with D < 100 um are not detected by CMOR (we use p = 2 g cm™3, and
assume spherical particles to obtain D), the majority of detected meteors have diameters
400 < D < 800 pm, and also a fraction of meteors have D > 2000 pm.

[Wiegert et al. (IZDDQ) introduced ionization factor i, and presented the critical thresh-
old value for CMOR I, = 1. Fig. 2.14] shows distribution of I;,, for all meteors measured
by CMOR in 2012. We also plotted the black line representing [;,, = 1 to evaluate the
accuracy of I,. Only a negligible fraction is detected below I,, and we must also admit
that a small error in v, may considerably change value of ionization factor for a given
meteor. Fig. .14 also shows that the distribution is not ideal, where one would expect a
significant increase of detected meteors near I,. This might mean that Eq. ([2.28) is not
expressing the detectability correctly, however, we must also accept that the observations
have non-zero errors, and by using the approximation expressed by Eq. ([228) we do not
incorporate a significant error to the modeling. In fact, we tested different expressions
for ionization function [,,,, and also different values for I, during our research of toroidal
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sporadic meteors, and we concluded that even very complicated functions expressing [,y
do not produce a significant change to our models, when compared with rather simple

expression given by Eq. (Z28).
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Figure 2.7: Distribution of geocentric impact speed (top left), heliocentric semimajor axis
(top right), inclination (bottom left), and eccentricity (bottom right) for 1.3 million me-
teors measured by CMOR in 2012. The grey histograms correspond to the observed data
from CMOR. The unfilled black histograms approximate the distribution of the popula-
tion with an ability of generating observed meteors. The construction of the generating
population is described in Sec. The unfilled black histograms are normalized to unity.
The observed and generating distributions are significantly different, which implies strong
selection effects in the observed population caused by significant variation of the collision-
al probability of the meteoroid with the Earth for different sets of the orbital elements.
The parameters of the generating population imply that the majority of observed meteors
are of cometary origin, and the contribution of the asteroidal particles is rather low.
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Figure 2.8: Two-dimensional distributions of semimajor axis vs eccentricity (top left),
semimajor axis vs inclination (middle left), semimajor axis vs geocentric impact veloci-
ty (bottom left), eccentricity vs inclination (top right), eccentricity vs velocity (middle
right), and inclination vs geocentric impact velocity (bottom right) for 1.3 million meteors
measured by CMOR in 2012. The color scale represents number of meteors in each bin
that was normalized to unity (the bin with the highest magnitude is equal to unity).
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Figure 2.9: The same as in Fig. E.8 but now weighted for the collisional probability P..y.
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Figure 2.10: Daily impact statistics vs solar longitude A for all 1.3 million meteors recorded
by CMOR system during the year 2012, where all hyperbolic and shower meteors were
removed. The sudden drop in daily impacts statistics near A = 150° is caused by a
malfunction of the system. FEven though the streams were removed, we are still able
identify number of stream-like structures that will be discussed in the following sections.

59



80 25
70 —_
@ 60 3
§/ 50 % 15
> 40 o)
8 g
> 20 ‘% 5
10
0 0
60 120 180 240 300 360 60 120 180 240 300 360
Solar Longitude (deg) Solar Longitude (deg)
180 1
160 08
e 140 .
g 10 z .
§ 100 = :
9 Y
5 60 w
= 4 0.2
20
0 0
60 120 180 240 300 360 60 120 180 240 300 360
Solar Longitude (deg) Solar Longitude (deg)

Figure 2.11: Two-dimensional distributions of solar longitude vs geocentric impact veloc-
ity (top left), solar longitude vs semimajor axis (top right), solar longitude vs inclination
(bottom left), and solar longitude vs eccentricity (bottom right) for 1.3 million meteors
measured by CMOR in 2012. The color scale represents number of meteors in each bin
that was normalized to unity (the bin with the highest magnitude is equal to unity).
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Figure 2.12: The same as in Fig. 211l but now weighted for the collisional probability
Pcoll'
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Figure 2.13: Two-dimensional distributions of semimajor axis vs eccentricity (top left),
semimajor axis vs inclination (top right), eccentricity vs inclination (bottom left), and
distribution of particle diameter for 1.3 million meteors measured by CMOR in 2012. The
color scale in two-dimensional plots represents the mean particle diameter for each bin,
while the histogram is filled with color that is equivalent to particular value of particle
diameter.
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Figure 2.14: Distribution of ionization factor I,, for 1.3 million meteors measured by
CMOR in 2012. The black line represents Ii,, = 1, which is a critical threshold obtained
for CMOR system.
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2.7 North/south apex source - data

Now, we will discuss particular sporadic meteor sources in more detail. We start with
the apex complex that is composed from the north apex source with radiant positions
enclosed in a semicircle with radius 40° and center at (¢,b) = (0°,0°), and the south apex
source, a symmetric counterpart of the north apex with respect to the ecliptic plane.
CMOR in 2012 observed 321785 meteors, which is ~ 24.6% of all meteors detected in
2012 by CMOR.

Fig. shows distribution of v,, a, e, and I both for observed and generating
populations. Apex meteors are very fast, having a peak of the impact velocity distribution
at v, ~ 63 km s7!, with a small fraction of quite slow meteors. From the weighted part of
geocentric impact velocity plot we see that the generating population is mostly composed
from very fast meteors with speeds near to hyperbolic limit at ~ 72 km s~!. Inclinations
of apex meteors are mostly higher than 90°, which is strictly correlated with the v,
distribution. However, CMOR also observes a small fraction of prograde meteors in the
apex region. The generating population is almost strictly composed of retrograde particles
with peak near I ~ 140°. The fraction of observed meteors grows nearly linearly with
increasing eccentricity, while the generating population is evidently of cometary origin,
since the majority of generating particles have very high eccentricities e > 0.95.

Now, we will discuss the distribution of semimajor axis a. The observed population is
still concentrated at a ~ 1 au, however, the generating population is much more interest-
ing. In Fig. B.15] we see that number of generating particles is almost constant regardless
on a. We extended range of semimajor axis up to 1000 au (Fig. R.I6), to investigate this
trend for higher values of a. Even for a ~ 100 au the contribution of particular bins is
still nearly constant with a slightly decreasing trend after a ~ 150 au (bottom left panel
in Fig. 2T0). Such large semimajor axes and eccentricities imply cometary origin of apex
meteors with a high fraction of contribution from the Oort Cloud comets (OCCs). We
investigated dynamics of the dust particles released from OCCs in paper C, reviewed in
Sec.

Fig. 217 represents number of observed meteors vs solar longitude A, or, in other
words, temporal variations of the meteor flux observed by CMOR in 2012. We observe
many stream-like structures that are obviously remnants of removed streams in the apex
region, where many of them can be distinguished quite easily; Eta Aquarids at \ ~ 45°,
Orionids at A ~ 207°, or e.g., Leonids at A ~ 237° (Brown et all, 2008). Let us recall
that the correct stream identification requires more precise techniques discussed briefly in
Sec. 211 Interestingly, all streams seem to lie on a very broad Gaussian-shaped structure
with the peak near A ~ 190°. Since the sporadic background should be ideally constant
with no dependence on A, this Gaussian-shaped structure may be a remnant of an event
that produced enormous amount of dust in the past, where a possible source might be
a cometary breakup, that occurred in the recent past. A proper randomization of nodes
of the dust particles requires tens of thousands years of dynamical evolution, however, a
certain modeling effort is needed for better understanding of this phenomenon. We must
admit that we were not aware of this structure, and thus we did not investigate its origin
in paper C.

Now, we focus on two-dimensional distributions of orbital elements with respect to
solar longitude A. Observed distributions for apex region are shown in Fig. The
flux in all orbital elements is dominated by the Gaussian-shaped structure recognized in
Fig. 217, however, at least one meteor stream is visible with a naked eye without further
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processing. The Eta Aquarids stream with v, ~ 65 km s7!, a ~ 7 au, e ~ 0.92, and

I ~ 163°, may be recognized in bottom left plot, where its concentration in I is evident.
Since the observed population is concentrated near ¢ = 1 au, we are not able to obtain
a of the parent body. Fig. shows the same two-dimensional distributions but now
for the generating population that should at least partially represent the positions of the
parent bodies. The remnants of the Eta Aquarids stream are more evident in Fig. 2.19]
and also at least slight concentration near a ~ 15 au, which together with other orbital
elements directly points to a Halley-type comet. It is known that the parent body of
the Eta Aquarids stream is the comet 1P/Halley (Jenniskens, 2006) with a = 17.83 au,
e =0.967, I =162.26° for the J2000 epochﬁ.

Figs. .20 and [2.2]] represent two-dimensional distributions of v,, a, e, and I with
respect to each other, for observed and generating populations, respectively. The major-
ity of observed meteors from the apex source belong to the Gaussian-shaped structure
composed of meteors with retrograde orbits. Interestingly, the prograde meteors do not
have orbits with e < 0.5, while the orbits of their retrograde counterparts fill almost the
whole range of e. Another interesting feature of apex meteors can be found in a vs e plot
(top left panel Fig. 220), where the majority of observed meteors lie on the border of
area denoting possible impact configurations, while only a small fraction lies within this
area, contrary to distribution from all meteors observed by CMOR in 2012 (Fig. Z8).
The generating population does not provide any surprising facts. The prograde part of
meteors observed by CMOR vanish due to their much larger collisional probability with
the Earth, the contribution of slower meteors is thus negligible, and the generating pop-
ulation consists of highly eccentric, fast, retrograde dust particles with large semimajor
axes.

20rbital elements were obtained via JPL Small-Body Database Browser at JPL solar system dynamics
web site http://ssd. jpl.nasa.gov/.
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Figure 2.15: The same as in Fig. [2.7] but now for apex meteors only.
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Figure 2.16: Distribution of semimajor axis for the generating population of the apex
sporadic meteor complex for four different ranges of semimajor axis a, 0 < a < 10 au
with Aa = 0.2 au (top left), 0 < a < 100 au with Aa = 2.0 au (top right), 0 < a < 300
au with Aa = 6.0 au (bottom left), 0 < a < 1000 au with Aa = 20.0 au (bottom left),
where Aa is the width of the bin.
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Figure 2.17: The same as in Fig. 210l but now for apex meteors only.
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Figure 2.18: The same as in Fig. .11 but now for apex meteors only.
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Figure 2.19: The same as in Fig. 212 but now for apex meteors only.

70



Eccentricity

Inclination (deg)

Veocity (km/s)

1 180
S 120
0.6 S
= 90
04 =
5 60
0 0
5 10 15 20 25 0 02 04 06 08 1
Semimajor axis (au) Eccentricity
180
150 § _
(2
120 E
=
90 2
‘ 8
60 | 5
>
30
0
0O 5 10 15 20 25 0O 02 04 06 08 1
Semimajor axis (au) Eccentricity
w
€
=
2
[5)
o
T
>
0O 5 10 15 20 25 0 30 60 90 120150180
Semimajor axis (au) Inclination (deg)

Figure 2.20: The same as in Fig. 2.8 but now for apex meteors only.
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Figure 2.21: The same as in Fig. but now for apex meteors only.
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2.8 North/south apex source - model - short review
- paper C - Dynamics of Dust Particles Released
from Oort Cloud Comets and Their Contribution
to Radar Meteors

In this section, we recall basic features and results from paper C (Iﬁesﬂmmuaﬂ, M)
The main goal of our paper is a development of a model for dust particles released from
Oort Cloud Comets (OCCs), find its contribution to the sporadic meteoroid environment,
and also try to compare the modeled distributions of orbital elements with the radar
observations from AMOR and CMOR.

The Oort Cloud is a cloud of comets with a roughly spherical shape m, M)
surrounding the Solar System and extending to very large heliocentric distances r >
30,000 au. We use the Oort Cloud as a reservoir of comets that come into the inner
Solar System at a rate about 12 comets with perihelion distance ¢ < 3 au yr—3, where the
absolute magnitude of an active comet H < 10.9 (Wiegert. and Tremaind, 1999). OCCs
can be divided into two different populations based on their dynamical histories: (1)
dynamically new OCCs, comets on their first passage through the inner Solar System with
typical semimajor axis a < 10,000 au, and (2) returning OCCs, comets that previously
passed thought the inner Solar System, and due to the dynamical effects they typically
have a < 10,000 au.

Model

In our paper, we study only dust particles originating in returning OCCs with a ~ 1,000
au. We do not consider comets with a > 10,000 au, corresponding to the Oort spike
(Wiegert and Tremaind, |L9_9_$i), because the cometary disruptions that produce the largest
amounts of dust do not usually happen at very large heliocentric distance. Since we are
dealing with extreme values of a, the criterion for bound dust particles § > r/2a from
Egs. (212) and (2.I4) is very restrictive even for larger particles with D ~ 300 pm and
p = 2.0 g cm~3, where heliocentric distance must be R > 36 au to keep released particles
on bound orbits. Due to the spherical shape of the Oort Cloud we also assume that the
initial distribution of I, €2, and w, may be considered isotropic for simplicity.

Our model is built in the following steps: (1) dust particles of different diameters D
are released from OCCs, (2) their orbit dynamically evolve in the Solar System due to the
gravitational and radiation forces, (3) a fraction of particles are thermally or collisionally
destroyed, or impact one of the planets in the Solar System, (4) a small fraction of the
initial particle population is accreted by Earth, where they produce meteors in the Earth’s
atmosphere, and (5) radars observe such meteors and allow us to compare observed and
modeled distributions of the orbital elements. All processes are in more detail described

in Sec.s 2221 2.3l 2.4] and also in paper C.

Results

Dust particles ejected from OCCs follow very interesting dynamical pathways. During
their passage through the inner parts of the Solar System their semimajor axes a undergo
a random walk caused by indirect planetary perturbations, due to the giant planets,
mainly by Jupiter. This process occurs during every perihelion passage and may produce
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a significant drop in a down to 40 au, where the particles start to interact with exterior
mean motion resonances with Neptune. This process is much faster that the decrease
of semimajor axis caused by P-R drag (see Fig. 24 for reference). However, after the
particles reach a = 40 au, the dynamics of their orbits are mainly controlled by P-R
drag. Many dust particles are not able to pass through Jupiter’s barrier, where the
mutual interactions and close encounters drive dust particles to very eccentric orbits, that
end either by thermal evaporation near the Sun, or on hyperbolic orbits. Only a small
fraction of original population is, in fact, able to eventually decouple from Jupiter, and
reach aphelion distance @ < 4 au. We reported that roughly 0.8% — 1.5% of particles
with diameter D = 100 pum are able to decouple from Jupiter. This number decreases
with D and for D = 1 mm the fraction is really small ~ 0.02%.

Now, we shortly review our modeled distributions of orbital elements and radiant
positions for dust particles from OCCs. Decoupling from Jupiter is a very important
process, since we found that the main contribution to the density of OCC particles at
R =1 au comes from recently decoupled particles, which have also much higher collisional
probabilities with the Earth than their non-decoupled counterparts. Fig. 5 in paper C
shows the steady state distribution of orbital elements of OCC particles with D = 100 pm.
The peak near a = 6 — 7 au is caused by concentration of orbits in the exterior mean
motion resonances with Jupiter, which are able to protect dust particles against the
close encounters with Jupiter (IijlealJ, |l9_9_g) Eccentricity distribution almost linearly
increases towards e = 1, which is a direct consequence of P-R drag since the orbits
originally started with e > 0.995. Very interesting is a lack of orbits with I ~ 90°,
that were initially strongly populated, because we used an isotropic distribution of I.
This absence is a consequence of the Kozai oscillations that drive these polar orbits to
very high eccentricities, inevitably ending near the Sun, where the particles are thermally
destroyed.

Radiants of OCC dust particles are almost exclusively located near Earth’s apex lo-
cation. Since the retrograde particles have very high relative velocities with the Earth
(~ 60 km s7!), they fall directly from the apex radiant positions, while prograde particles
may populate much wider area. Also, the collisional probability grows significantly with
increasing relative velocity, thus, the contribution of retrograde particles tends to be high-
er than that from prograde particles (Fig. 6 in paper C). Distribution of meteor radiants
expresses a lack near the ecliptic, which is caused by absence of meteors with I ~ 180°,
and is in accordance with AMOR and CMOR observations (e.g., Fig. 2l in Sec. 2.T.T).

The distribution of v, peaks at ~ 60 km s~! (Figs. 8 and 9 in paper C), and
provides a very good match to both CMOR (Fig. in Sec. [27), and AMOR
(Galligan and Baggalﬁ;ﬂ, @Dﬂ) observations of apex meteors. Also, the semimajor axis
distributions are in a good accordance with radar observations having peak at a ~ 1 au,
and a sudden decrease with a long tail towards very high values of a. Our model also
predicts most of meteors on retrograde orbits with I ~ 100° —180°, however, the shape of
strongly depends on a size of the dust particles and is not comparable to the measurements
yet. This might be caused by small statistics in our model, which is a consequence of
strong Jupiter’s barrier, and very small probability of particle’s decoupling from Jupiter.
The most puzzling is the eccentricity distribution that does not match well the CMOR
and AMOR measurements.
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Conclusions

Our conclusion is that only a small fraction ~ 1073+ of OCC particles is able to decrease
its aphelion distances below Jupiter’s orbit. This fraction also varies with particle’s size,
where the smaller particles have higher probability to overcome Jupiter’s barrier, and
become circularized in the inner Solar System. We find that smaller particles with D ~
100 pm are able to reach Earth crossing orbits with higher probability, and also are able
to decrease their semimajor axis a down to the 1 au. Such particles have many orders of
magnitude higher collisional probabilities with the Earth, and thus dominate the observed
flux by ground-based radars.

We estimate the overall impact probability with the Earth per one particle released
from OCC to be 50 — 80 times lower than for particles released from Halley-type comets
(HTCs), and 200 —400 times lower than for particles released from Jupiter-family comets
(JFCs). Thus, only a substantial material production of OCCs will enable a significant
contribution of OCC particles to the sporadic meteoroid complex. From m,
) we roughly estimate that five returning OCCs disrupt in the Solar System every
year. This produces a mass input ~ 3 x 10® kg s~!, from which only a small fraction will
end in bound dust particles that are able to impact the Earth. For comparison, the active
JFCs produce ~ 300 kg s~* (Reach et. all, 2007).

OCC particles dominantly contribute to the apex regions with a negligible contribu-
tion to helion/anti-helion sources and other regions of the sporadic meteoroid complex.
However, the observed distributions of the orbital elements cannot be fully reproduced
only by particles originating in OCCs, thus we suggest that there must be another signif-
icant source of meteors that can populate apex regions. We, indeed, found a significant
contribution from particles coming from HTCs in paper E (Pokorny et al.|, |20_1£l]), but a
more detailed modeling for the apex population is needed. We leave a development of a
more complete model for the apex population for the future work.

Revision of our original results

For the purpose of this thesis, we performed several numerical simulations with a goal
to reproduce, and more precisely investigate, the original simulations from paper C. We
were motivated by results of our model for the toroidal source of the sporadic meteoroid
complex (see Sec. and paper E), where we found that the HTCs have an interesting
and promising contribution to the apex source. Since our model for OCC dust particles
is not perfect and is not able to precisely match observed orbital elements of meteors in
the apex source, we started to develop a new, two-component model, for which we show
the first results in the following paragraphs.

We used similar initial conditions, however, our population dust particles coming from
OCCs was four-times larger than the original one. Figs. and show distributions
of orbital elements and radiant positions for OCCs particles as seen by a radar similar to
AMOR with I, = 0.01 for particle diameter D = 100 pym, and D = 400 um, respectively.
We take into account only meteors populating the north/south apex source, while the
contributions to other regions are omittedﬁ. The distribution of geocentric impact speed
v, is dominated by faster meteors with a negligible contribution of slow meteors.

3In fact, OCC particles populate also the ring structure, and have a negligible contribution to the
helion/anti-helion source and north/south toroidal source. However, the overall flux is dominated by
apex meteors.n
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We see that 100 pum particles are able to decrease their semimajor axis to very low
values, and the majority of them are near a ~ 1 au. For particles with D = 100 um the
eccentricity distribution is puzzling. Interestingly, the particles tend to be less eccentric,
similarly to those in the original model with the peak near e = 0.3 (Fig. 8 in paper
C), however, our new simulation suggests a lack of highly eccentric meteors near e ~
1. Inclination distribution looks really promising, since it is dominated by retrograde
meteors. Larger particles, with D = 400 pm, have eccentricity distribution more similar
to particles observed by AMOR (Fig. 223)). Inclinations are dominantly retrograde with a
negligible fraction of prograde meteors, however, still not perfectly matching the observed
distributions having peak at ~ 120°, while the AMOR meteors are concentrated close
to I ~ 150°. An anomalously high contribution to one of bins (top and bottom right
panels in Fig. 223)) is caused by a single particle with a very high collisional probability
with the Earth that remained on the similar orbit for many time steps in the simulation.
Statistical significance of such effect may be decreased by increasing the total number of
simulated particles, or by a removal of that particles from the processed population.

Radar similar to CMOR with I, = 1 detects only a negligible fraction of particles with
D = 100 pum, thus we investigate modeled distributions of orbital elements and radiants
for particles with D = 400 pm (Figs. 224)), and D = 800 pm (2:25). The distributions
are overall very similar to each other, and also to distributions of D = 400 pm particles
measured by a radar similar to AMOR. Meteors produced by larger particles tend to be
more eccentric, and impact with larger vy, due to the longer P-R drag timescales, and
also their ability to overcome Jupiter’s barrier decreases with size.

These first results very promising results and provide smoother distributions of orbital
elements than those published in paper C due to the increased statistics. However, many
weeks of further work lie ahead of us. To develop a plausible two-component model com-
bining contributions of particles from HTCs and OCCs, we need to fit both observations
from AMORH and CMOR, find a reasonable ratio between HTC and OCC dust produc-
tion rates, and obtain a physically acceptable size-frequency distributions for both HTCs
and OCCs. Our modeling efforts are at the very beginning, thus a more detailed study is
left for future work.

“We are in a process of obtaining the raw data from AMOR since the published data

dG_alhg,an_am_B_aggaJﬂ;J 12004, 1201)3 do not provide any absolute numbers.
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Figure 2.22: Distribution of geocentric impact speed (top left), heliocentric semimajor
axis (top middle), eccentricity (top right), inclination (bottom left), and radiant positions
(bottom left) of modeled dust particles from Oort Cloud comets with D = 100 pm
measured by radar with detection threshold similar to AMOR I, = 0.01 in the north
apex region only.
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Figure 2.23: The same as in Fig. [2.22] but now for particles with D = 400 pm.
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Figure 2.24: The same as in Fig. 2.22] but now for particles with D = 400 pym and radar
with detection threshold similar to CMOR I, =1
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Figure 2.25: The same as in Fig. 2.24] but now for particles with D = 800 pm.
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2.9 Helion/anti-helion source - data

Helion/anti-helion sources are the prolific components of the sporadic meteoroid com-
plex. First, recognized by Hawking (|l9£ﬁ using the Jordell Bank meteor-radar sys-
tem, and later supported by visual observations of strong anti-helion component by
[Hawkins and Prenticd (|l9_5_'ﬂ)ﬁ Helion and anti-helion sources are located near ecliptic
approximately 60° in longitudinal distance from the apex (see Fig. [Z2 and Sec. 2.1] for
more detailed definition). CMOR observed 451130 meteors in 2012 in both helion and
anti-helion sources, which is more than 34.4% of the total amount of all observed meteors
in 2012.

Helion/anti-helion sporadic meteors have systematically lower geocentric impact ve-
locities v, than the apex meteors. Measured v, distribution peaks at v ~ 30 km s~!, and
has almost a Gaussian shape (Fig. 2.26). The semimajor axis peaks at a ~ 1 au with a
tail beyond 3 au. Helion/anti-helion meteors are known for their low orbital inclinations,
where the majority of meteors have I < 30°, while eccentricities are dominantly larger
e > 0.7. The generating population, however, reveals several interesting facts. At least
a fraction of helion/anti-helion meteors is retrograde, due to the large a > 8 au some
meteors originate in long-period comets, which is also reflected in extreme values of e,
and higher geocentric impact velocities. This might lead us to a preliminary conclusion,
that the helion/anti-helion source is populated by at least two different populations of
comets, where the majority of meteors come from the short period comets with low incli-
nations, and the rest is fed by long-period comets, where some of them are on retrograde
orbits. Fortunately, Jupiter-family comets and Halley-type comets, one of the most pro-
lific sources of dust in the Solar System, greatly fit into these sought categories, and thus
were the first candidates for the parent bodies of the helion/anti-helion source in paper
D reviewed in Sec. 210l

Variation of number of observed meteors with solar longitude A is almost constant
during the whole year for the helion/anti-helion source, disturbed only by three non-
sporadic structures (Fig. 2Z21). The first peak at A ~ 86° is associated with Daytime
lambda Taurids (DLT) stream, and since its width in A is about 30°, it must be a result of
an event several hundred years old. Brown et all (IZDDS) suggested, that this stream-like
structure was associated with a comet C/1733 K1 which had been observed in 1733 by
Dutch and Swedish sailors in the vicinity of the Cape of Good Hope (Ilﬁmin&kx_etjﬂ,
M) There is also contribution of the Daytime Arietids (ARI) stream that is associated
with a comet SOHO - 2002 R4 (Ian_ﬁLt_alJ, M), a sungrazing comet belonging to
the Kracht group. The second peak at A ~ 126° is mostly populated by Southern delta
Aquariids (SDA) stream. (Ifmmm_ei_aﬂ, 2008, |20_1d) found various sungrazing comets as
the parent bodies of this stream. Interestingly, many sungrazing comets are influenced
by the Kozai resonance, which significantly changes their orbital elements in time, and
subsequently their radiant positions that follow a ring structure with radius ~ 60° with a
center at the apex. Radiants of such bodies may, in several thousands years, move from
the helion/anti-helion source to the north/south toroidal source (see, e.g., Fig. 3 in paper
A). The last peak at A\ ~ 261° is a remnant of the Geminids streams (GEM) associated
with the minor planet 3200 Phaethon (Lkmli&kené, 2006; Brown et al, |2£M)ﬁ)

Figs. and .29 further confirm our stream recognition. The Geminids are the most
prominent structure in both Figs. .28 and 2.29] pointing directly at 3200 Phaethon as the

Visual systems are not able to observe the helion source because it is observable only during daytime,
and thus the Sun disallows measurements in optical wavelengths.
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possible parent body of the stream. Both DLT and ARI streams are convincingly products
of cometary activity or breakups of sungrazing comets. Their extreme eccentricities drive
these parent bodies to orbits with perihelia very close to the Sun, thus continuous erosion
process, fragmentation, and sublimation of the cometary material, allow these comets
survive only several passages through perihelion, and thus the original parent bodies of
these structures are not observable today (lS_&@aL m; Mgm, M)

Interestingly, correlations among orbital elements for helion/anti-helion meteors for
observed meteors are not completely different from the generating population (Figs.
and [Z3T]). There is a shift towards larger values of a and to extreme values of e due
to their strong effect on the value of collisional probability P..;, however, overall image
remains the same. Helion/anti-helion source is dominated by highly eccentric low inclined
meteors with orbits dominated by Jupiter. Generating population reveals a small fraction
of retrograde particles with very high eccentricities and significantly larger semimajor
axes than their prograde counterparts. This indicates that the helion/anti-helion source
is populated by a combination of two different sources of dust particles, where the most
of them originate in Jupiter-family comets and the rest is fed by Halley-type comets. Our
model for helion/anti-helion source is reviewed in the following section.
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Figure 2.26: The same as in Fig. 2.7 but now for helion/anti-helion meteors only.
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Figure 2.27: The same as in Fig. but now for helion/anti-helion meteors only.
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Figure 2.28: The same as in Fig. 2T but now for helion/anti-helion meteors only.
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Figure 2.29: The same as in Fig. 212 but now for helion/anti-helion meteors only.
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Figure 2.30: The same as in Fig. 2.8 but now for helion/anti-helion meteors only.
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Figure 2.31: The same as in Fig. 2.9 but now for helion/anti-helion meteors only.
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2.10 Helion/anti-helion source - model - short review
- paper D - Dynamical Model for the Zodiacal
Cloud and Sporadic Meteors

Here, we review a our dynamical model for the zodiacal cloud and Solar System meteoroids
producing sporadic meteors belonging mainly to the helion/anti-helion source presented
in paper D (Nesvorny et all, |2_0_]_lb|) Our model takes Jupiter Family Comets (JFCs)
as the main source of the helion/anti-helion sources in the sporadic meteoroid complex.
Using IRAS observations, we are able to accurately calibrate our model, find the total
cross section, and mass of meteoroids in the inner Solar System. We are also able to
predict mass influx onto the Earth, which is compared with LDEF measurements. y The
zodiacal cloud (ZC) is a doughnut-shaped structure in the inner parts of the Solar System
populated by small meteoroids produced by asteroid collisions and cometary activity.
Y ) (lZD_ld) developed a dynamical model for particle populations released by
asteroids and comets, and used this model to determine the ratio between asteroid and
cometary contribution to the ZC meteoroids. They found that the asteroidal particles
represent only a small fraction of the the total population of ZC, because the mid-infrared
(MIR) emission from asteroidal particles, produced by mutual collision in the asteroid belt,
is mostly confined to within latitudes b < 30° of the ecliptic. However, the ZC has a very
broad latitudinal distribution of the thermal emission, where a strong emission is also
measured in the direction to the ecliptic poles (Kelsall et all, 1998).
This model proposed that = 90% of the ZC’s emission at MIR wavelengths comes
from dust grains released from JFCs, and the rest comes from other prolific sources of
dust particles in the Solar System, the HT'Cs, OCCs, and asteroidal collisions. Moreover,

Nesvorny et al. (IZ_Ql_d) also found, that the mass input required to keep the ZC in a steadir

state exceeds the mass loss in JFCs due to their normal cometary activity

), which may be solved by feeding the dominant mass fraction needed for the stead
state of the ZC by spontaneous disruptions or fragmentation of JFCs (e.g., m:
DDDH; DL&SIQJZL&J.J, .21)119).

The model presented by INesvorny et all (IZQld) seems almost perfect, however, when
compared with the radar observations of the sporadic meteoroid background performed
by AMOR and CMOR, the model cannot fit measured distributions of orbital elements
of sporadic meteors. Thus, we tune the JFCs model with additional constrains intro-
duced by the radar meteor observations. Still, the dominant mass of the ZC is produced
by JFCs, however, we include perihelion dependent meteoroid production rate, and the
different detection efficiency of the radar systems. These additional constrains allow us
to consider a continuous size-frequency distribution (SFD) of meteoroids, and also more
precise parametrization of the collisional timescales of the meteoroids in the Solar System.

The modeling phase is very similar to that presented in paper C (Sec. 2.§). Addi-
tionally, since the mass and cross section of meteoroids from JFCs dominate the ZC, we
calibrate our model using the observations at MIR wavelengths. The model also shows
that the accretion rate of the JFC meteoroids at Earth dominates the mass influx mea-
sured by LDEF, which provides us another constraint for the model calibration.

The orbital distribution of initial orbits of JFCs was taken from [Levison and Duncanl

), who followed the orbital evolution of icy bodies originating in the Kuiper belt
from their initial scattering by ice giants, until they evolved into the inner Solar System.
We used 10 values of critical perihelion distance ¢*, equally spaced between 0.25 au and
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2.5 au, to select bodies from the simulations of [Levison and Duncan (1997), where we
selected bodies when they perihelion distance ¢ < ¢* for the first time. We also use
six different sizes of particles in our model with D = 10, 30, 100, 300, 1000 and 3000 pm,
and with constant particle density p = 2 ¢ em™. This size range covers the majority
of the observed meteors by both AMOR and CMOR, and also allows us to interpolate
a behavior of particles with intermediate diameters because the orbital dynamics of, let
us say, D = 400 um dust particle is very similar to that of D = 300 pum particle. Since
the dynamics of the dust particles (see Sec. 22)) depends on the mass of the particles,
density variations would only result in the shift in D of the particles. For each ¢* and D
we released 10000 particles, which is in total 0.6 million initial orbits.

The dust particles in our model were numerically integrated with swift_rmvs3 code
(IL_e_viSQll_a.nd_DJ.mQaﬂ, |l9_9_4|), where the effects of radiation pressure and P-R drag were
taken into account (see Sec. 2.4]). We used a system with seven planets, where the mass of
Mercury was added to the Sun, and particles were tracked until their heliocentric distance
reached 0.05 au, or the integration time reached 5 Myr. Every 1000 yr we recorded the
orbits of both particles and planets.

n [Nesvorny et al. (IZQld) the source particle distributions were parametrized by the

“fading time”, particle production rate was assumed to be g-independent, and the distri-
bution of the diameters in the population dN (D) was approximated by single size. In our
model, we consider that both dN(q) and dN (D) can be approximated by power-law func-
tions. Thus, we introduce four new free parameters. For dN(q), we assume dN(q) x ¢"dg,
where 7 is a free parameter. For dN (D), we use two-slope SFDH with dN(D) < D= for
D < D*, and dN(D) o< D=** for D > D*, where a1, s and D* are free parameters

Collisional lifetimes of meteoroids 7.y were taken from |Griin et. all (Il%d) Since the
model of Griin et. al) (IL%H ) may contain some uncertainties, we introduce a free parameter
S, so that 7.on = ST, where 77, is the collisional lifetime from |Griin et al. (Il;%iﬁ to test
the validity of the collisional model. This allows us to keep meteoroids in our simulation
longer, and thus provide them enough time for their dynamical evolution towards the
inner parts of the Solar System. See also Sec. for further details and another method
of determination of 7.

Our steady-state model is tested in two different ways. First, we compare MIR emis-
sion of the modeled meteoroids with IRAS observations, and second, we record impacting
particles on the Earth, determine their geocentric impact velocities and orbital elements,
and compare them with available data from AMOR and CMOR. All these processes are
described in Sec. 2.4], and references therein.

We performed hundreds of tests with different values of free parameters introduced
to our model. The main parameters of these tests were: (1) size frequency distribution
of JFC particles at the source, as defined by ay, ag, and D*, (2) index « of the initial
perihelion distribution of JFCs, dN(q) o ¢”dq, and (3) parameter S that adjusts the
value of collisional lifetime of particles 7.,;. Our model was then compared with meteor
observations of two radar systems AMOR and CMOR, where we tested different ionization

cutoff values for AMOR, while for CMOR we used I, = 1.

SWe may also use a single-slope power-law SFD by setting a; = as.
"See Egs. (5)-(10) in paper E (Pokorny et all, 2014) for a detailed definition of the two-slope size
frequency distribution.
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AMOR

Galligan and Baggaley (2004) states that the limiting diameter of meteor observed by

AMOR is roughly D ~ 40 pm, and thus the radar is capable of detecting particles that
are thought to be dominant in the ZC. Fig. 4 in paper D shows distributions of vy, a, e, I
of JFC meteoroids for D* = 100 ym, v = 0,5 = 1, and several values of I,. The
real distribution of particles impacting the Earth is corresponding to I, = 0, where no
cutoff is applied on impact velocity or mass. This distribution is strongly peaked towards
Earth’s escape speed and is completely different from AMOR and CMOR observations.
We assume that I, = 0.003 is roughly the limiting ionization cutoff of AMOR, for which
we obtained velocity distribution with maximum at v, ~ 25 km s~'. This illustrates
that only a small fraction of dominating mass is, in fact, detected by radar systems and
the real distribution of orbits is very different from the observed one. We, thus, cannot
reconstruct the real distribution of meteoroids at 1 au directly from the observations
without an important contribution of dynamical modeling of meteoroids.

In similar fashion, the orbits of meteors with no cutoff applied and those observed
by radars are very different. Since the geocentric impact speed distribution peaks near
vy ~ 11.2 for I, = 0, orbital elements of such meteors have consequently mostly very small
e, and I, and are strongly concentrated near a = 1 au. However, AMOR sees completely
different image, where the distribution of a is much broader with a tail to larger values of
a, eccentricity distribution has maximum at e ~ 0.8, and also I distribution is significantly
broader.

Interestingly, almost all JFC meteors with I > I, = 0.003 populate exclusively
helion/anti-helion source, while meteors without any mass cutoff, I, = 0, populate a
broad range of radiant positions (Fig. 11 in paper D). Thus, the effect of radiant cutoff
for helion/anti-helion source only has a negligible effect for I, = 0.003 (Fig. 5 in paper D).
We also find that our model for I, = 0.003 shows only a small sensitivity for variation of
parameter v (Fig. 6 in paper D). Effect of variation of D* is illustrated in Fig. 7 in paper
D. Since we usually use a steeper slope for particles with D > D* and a shallower slope
for D < D*, the majority of particles is concentrated near D*. Thus, for larger particles
with D* = 300 pm slower particles are detected, moving the maximum of v, towards 20
km s™!, while for smaller particles with D* = 30 ym the v, maximum moves up to 40 km
s~!, which consequently shifts distribution of eccentricities towards higher values.

We obtain two preferred solutions for AMOR, where both of them have essentially
unconstrained values of v and S. The first solution with D* = 50 um, oy = 2 and oy = 3.5,
better corresponds with impact experiments from Mathews et al) (|2£m_l), while the second
solution with D* = 200 pum, a; = 3.5 and as = 5, is closer to the original interpretation
of spacecraft impact experiments (Griin et all, [1985; [Love and Brownled, [1993). Fig. 10
in paper D represents our preferred model with D* = 200 um. The overall match between
model and AMOR observations is good, however, our model cannot reproduce meteors
with larger inclinations. We may thus miss a contribution from another prolific source of
dust particles. In Sec. and paper E, we show that Halley-type comets contribute to
helion /anti-helion source, and, thus, may be a solution for a missing part of meteors with
large inclinations in our model.

CMOR

As we mentioned before, CMOR with I, = 1 has the lower overall sensitivity than AMOR,
and is not able to detect particles with D < 200 gm coming from helion /anti-helion source.
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Thus, we deal with larger particles with longer dynamical decay times 7pg, which makes
them more vulnerable to collisions with other particles. Using the model of
(@) with S = 1 gives results that are at odds with observations of both AMOR and
CMOR (Fig. 12 in paper D). The major drawback is a lack of meteors with e < 0.6, and
also the distribution of semimajor axes a, where we observe a plateau in a = 1 — 3 au
region. We find that this problem can be resolved by taking significantly longer collisional
lifetimes (S > 30) than those in [Griin et all (1985) (Fig. 13 in paper D). Longer 7eon
allows the larger particles to undergo a larger decay in a, and e, due to the P-R drag, and
reach a ~ 1 au. On the other hand, our previous models for AMOR do not match the
measurements well for S 2> 30. This implies that the size dependence of the
) model may be incorrect.

Since both values of critical diameter of particles D* = 50 pm and D* = 200 um are
beyond CMOR’s detection range, we fit only parameter as. We find that our model for
JFC particles works best with ap, = 2, and S = 100 (Fig. 14 in paper D), where we were
able to fit data for helion/anti-helion source, and also data without radiant cutoff. We
recall, that fitted distributions were corrected for observing biases and mass weighted,
thus emphasizing meteors with larger sizes. Our model for helion/anti-helion source has
the v, maximum at 30 km s™!, orbits are concentrated at @ = 1 au with a tail towards
a = 3 au, inclinations are still dominated by meteors with I < 30°, and eccentricities are
rather high with maximum at e = 0.85. Radiant distributions of our preferred model for
I, = 1 have dominant concentrations in helion/anti-helion sources, and, interestingly, we
also observe a small contribution to apex source (Fig. 15 in paper D). The apex meteors
produced by our model have prograde orbits, low impact velocities, and very low a. These
impacts happen near the aphelion at 1 au, where the orbital speed of meteoroid is smaller
than the Earth’s orbital velocity. Only a small fraction (< 1%) of JFC meteoroids can
reach retrograde orbits.

IRAS

Next constrains for our model are MIR fluxes of the ZC observed by IRAS. The ZC is
almost certainly a mixture of several meteoroid populations, with a fractional contribu-
tion from asteroids and long-period comets, but, here, we present only MIR emission
from the JFC component of the ZC. Our best fits to IRAS observations are therefore
only approximate and could be modified if missing components of the ZC population are
considered.

In general, the model MIR profiles are rather insensitive to variations of free parame-
ters in our models. The ZC emission is dominated by particles with D < 200 pym that can
survive long enough to experience substantial decrease of a, and e, due to the PR drag,
even for S = 1. Also variations of the input SFD of the JFC particles have negligible
effect. The most of the MIR emission is provided by smaller particles, where all these
particles have roughly similar orbital histories, thus produce similar MIR profiles. The
model MIR profiles of our solution for AMOR with D* = 100 pm, oy = 2, ag = 5, v = 0,
and S = 1, are slightly narrower than the observed ones, but otherwise the agreement is
reasonably good (Fig. 16 in paper D). We estimate that a small, < 10%, contribution for
a source with a more isotropic distribution of inclinations, such as HTCs and/or OCCs,
would easily compensate the small difference. With v < 0 we can weight the distribution
of JFCs toward lower heliocentric distances, which results in a projection to a wider range
of ecliptic latitudes, when observed from 1 au. Contrariwise, choosing positive v leads
to narrower MIR emission due to the larger weight of particles with larger heliocentric
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distances. Our best match was achieved with v = —1.3 (Fig. 17 in paper D).

One of the most desired characteristics of the model is the absolute calibration of the
number of particles. TRAS data allows us to estimate the total observable cross section
oyc of the ZC particles, which with known SFD and density of the particles is comparable
with our model. Nesvorny et. all (2010) found ozc = (2.0 £ 0.5) x 10!, while our models
have a slightly wider spread with 1.7 x 101 < o7¢ < 3.4 x 10M km?. Our reference models
shown in Figs. 16 and 17 in paper D, however, provide the same result as Mesmmm_alj

). Mass of the ZC myc is more poorly constrained because of its strong dependency
on the SFD (Table 1 in paper D). Our preferred model estimates mzc = 3.8 —3.9 x 1019 g,
which roughly corresponds to a 33 km diameter sphere with p = 2 ¢ cm™3. Mass needed
for keeping the ZC in the steady state is roughly proportional to myc, where we expect
values between 3000 and 7000 kg s~*. Our model implies that the total mass accreted by
the Earth is (15000 4= 3000) tons yr—!, which about two times lower than value found by

).

Discussion and Conclusions

We find that meteor radars are not able to detect majority of the overall mass flux

considering only constrain posed by ionization cutoff. There are also other observing biases

that prevent radar systems to observe all particles even with I > I, (see e.g., @%@lﬂ
, Chap. 6). Thus, these systems are not suitable for estimating the overall accretion

rate. Our model provides terrestrial accretion rate comparable to

(@), however, is inconsistent with Mathews et all (2001).

To match the CMOR measurements in our model, we find 7., needs to be significantly
longer for D ~ 1 mm sized meteoroids than originally suggested by \Griin et all (IL%H)
This results can be, however, difficult to reconcile with the inferred lifetimes of meteor
streams that seem to disappear on much shorter timescales (less than a few thousand
years; e.g., LEnnisken&], |20D_g) The centimeter-sized meteoroids released from JFCs, which
dominate the visual observations of meteor streams, may be physically weaker and disrupt
in a few thousand years. The collisional cascade then produces millimeter-sized and
smaller population, that is no longer observable by visual systems, and could be more
resistant to collisions.

We show that the major problems of Nesvorny et. all (|2D_ld can be resolved if (1)
the Nesvorny et all (IZQld) model is modified to account for the detection efficiency of
meteor radars, (2) meteoroids are released from JFCs over a range of perihelion dis-
tances with at least a fraction initially having ¢ < 1 au, and (3) the collisional lifetimes
for millimeter-sized meteoroids are significantly longer (2 30) than those estimated by
Griin et all (1985).

Significantly longer collisional lifetimes are, however, incompatible with dynamics of
D ~ 100 pm meteoroids observed by AMOR. We suggest, that D ~ 100 ym and D ~ 1
mm meteoroids may have more comparable collisional lifetimes than though before. This
may suggest that the observed SFD shape from the spacecraft measurements may be more
closely related to the initial SFD of meteoroids at source.

We show that our model is able to match ITRAS observations of the ZC. We estimate
that the cross section and mass of the ZC are o7¢c = (1.7 — 3.4) x 10" km? and myc ~
4 x 10* g. The terrestrial accretion rate of JFC particles is ~ 15000 tons yr~t. To
keep the ZC in steady state JFCs must provide 103 — 10* kg s~!. This new input mass
estimate is ~ 10 times larger than the one suggested by M&mwjl] (IZD_ld), because of

shorter dynamical lifetimes of particles with low initial perihelion distances that need to be

)
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resupplied at faster rates. We suggest that the ZC is dominated by the meteoroids released
by disrupting/splitting JECs, because the observed activity of JFCs cannot provide the
needed mass input.

2.11 North/south toroidal source - data

The north toroidal source was first discovered by [Hawkins (I_L%ﬁ) as a concentration of
low eccentricity, and high inclination orbits. Its southern counterpart was recognized after
30 years by lJones and Brownl (1993), who surveyed data from the Adelaide meteor radar.
(Camphell-Browrl (2008) in a more detailed study of the north toroidal source determined
that CMOR observes ~ 10% of the total count of sporadic meteors in the north toroidal
source, which is approximately two times more than result from a previous study of
Brown and Jones (|19_9_5|) The north toroidal source is located within an ellipse with center
at (0°,55°) with semimajor axis equal to 28° and semiminor axis equal to 15°, while the
south toroidal source is a symmetric counterpart of the north toroidal source with respect
to the ecliptic plane (see Fig. and Sec. ZIlu for more detailed definition). The north
toroidal source is known for its strong seasonal variations (IQ&m;ﬂldl:Bumm_&ndMﬁ_egﬂﬂ,

), where several strong stream-like structures have yet to be recognized. CMOR
observed 109459 meteors in 2012 in the north toroidal source, which is ~ 8.4% of the
total amount of all observed meteors in 2012.

Meteors coming from the north toroidal source have almost Gaussian-shaped distri-
bution of geocentric impact velocities v, with peak at ~ 40 km s~! ranging from 11.2 km
s to 60 km s7! (grey histograms in Fig. 232)). The semimajor axis distribution has
similarly to other sources maximum at a = 1 au with a tail exceeding a > 6 au. The
main characteristic of the north toroidal source is its very specific inclination distribution
with a peak at I ~ 70°, and small fraction of retrograde orbits. Also, the eccentricity
distribution is rather peculiar since the majority of meteor orbits have small eccentricities
with maximum at e ~ 0.3, and with a decreasing abundance towards higher eccentrici-
ties. No potential group of parent bodies with orbital elements similar to the observed
distributions of the north toroidal meteors is known in the Solar System, which implies
a need of proper dynamical modeling of this peculiar concentration of meteors. Recall,
that the bodies with I > 39.2° undergo Kozai oscillations that may significantly change
e, and I, in several thousands years (see Sec. [[2).

The generating population is shifted towards higher v, with the maximum at ~ 50 km
s~! (open histograms in Fig. 232). According to the distribution of semimajor axis of
the generating population the majority of observed meteors in the north toroidal source
originates in long-period comets. A contribution of particles with low inclinations is de-
creased due to their higher collisional probability with the Earth, and thus the inclination
distribution of generating population moves to higher values with maximum at I ~ 80°.
Interestingly, we see almost no contribution of particles with e < 0.8 to the generating
population of the north toroidal source that is dominated by extremely eccentric orbits.

Fig. shows the number of recorded north toroidal meteors in 2012 as a function
of the solar longitude A at time of their detection. (Campbell-Brown and Wiegert (IZDDQ)
studied extensively the temporal variations of the north toroidal source and provide a
great reference for a more detailed description of the problem. The most prolific struc-
tures in Fig. are two strong streams, namely: (1) Quadrantids at A\ ~ 283°, and (2)
6 and ¢ Coronae Borealids at A ~ (285° —300°), that were identified as sources H and I in
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Dampb_e]l_ﬂumm_andj&ggﬁrﬂ (lZDDQ ), respectively. Next, we observe four broader, more

dispersed, stream contributions as given in (IZD_OQ) namely:
(3) Helion and Antihelion arc and Toroidal at A ~ 170, (4) ¢ Cassiopeids and « Lacertids
at A ~ 115°, (5) Toroidal A and B at A ~ 216°, and (6) an underlying Quadrantids exten-
sion consisting of the November ¢ Draconids and December o Draconids, perhaps indicat-
ing an old stream complex related to activity of the comet 96P/Machholz m
@%ﬂ) Perhaps a pure coincidence, however interestingly, (3) and (5) together with (4)
and (6) may be actually organized in two pairs with longitude difference of ~ (180°—200°),
which may point out that only two parent bodies are needed for an explanation of these
contributions. The pair (4) and (6) have a likely progenitor in the activity of comet 96P /-

Machholz several thousand years ago (e.g., |Gonezi et all, [1992: lJones and Jones, [1993;
Sekanina and Chodad, 2005; Kafiuchové and Neslusan, 2007). The pair (3) and (5) is
much broader, indicating to longer dynamical age than previous pair, thus it is perhaps a
result of a cometary splitting or disruption ~ ten thousand years ago, since no potential
parent body has not been found yet. North toroidal source is also composed of a signifi-
cant background population that remains almost constant during the whole year implying
that a large fraction of observed meteors experienced long dynamical evolution that led
to a randomization of their nodes.

)

Quadrantids (A ~ 283°) form a prominent concentration in / vs A, and v, vs A plots
(bottom panels in Fig. [234]), however, interestingly there is no visible concentration in e.
Even for generating population, we observe a broad range of eccentric orbits at the same A
as the Quadrantid stream, and a significant concentration is visible at a ~ 3 au revealing
the comet 96P/Machholz as a possible parent body of this stream (top panels in Fig.
234). We are also able to distinguish the pair (4) and (6) that has slightly higher mean
inclinations I ~ 80° than Quadrantids, perhaps due to the longer dynamical lifetime of
particles, and thus slightly different position in the Kozai cycle. This pair has also slightly
smaller ¢ than Quadrantids, which may be results of a small decrease due to the P-R drag.
Identification of the second pair (3) and (5) is far more difficult, because no significant
concentrations in semimajor axis distribution can be found. This might be a consequence
of close encounters with Jupiter that dramatically change all orbital elements, and thus
hide away traces leading to possible parent body.

Since the north toroidal meteors measured by CMOR are dominantly coming from
low eccentric orbits the generating population is very different to the observed one (Figs.
and [237). Interestingly, CMOR observes no meteors with e > 0.6 for inclinations
I < 55° which may be a result of existence of two different groups of parent bodies
populating the north toroidal source where the low inclined and low eccentric part is,
however, only a small fraction of the total number of observed meteors. The generating
population is almost exclusively composed from highly eccentric meteoroids with large
inclinations favoring a cometary origin of observed meteors. Again, we observe a strong
contribution of 96P /Machholz (e.g, middle left panel in Fig. 237, and also a significant
contribution of long-period comets with inclinations at [ ~ 80°.

We investigated contribution of Oort Cloud Comets in paper C, and contribution
of Jupiter-family Comets in paper D, and none of them could explain the existence of
the north toroidal source. This led us to reinvestigation of a contribution of Halley-
type Comets (HTCs) to the sporadic meteoroid complex. Our first tests with HTCs
were not promising, since the model distributions of orbital elements were completely
different from the observed ones, and our tests with the comet 96P/Machholz were also
unsuccessful mainly due to inability to circularize initially highly eccentric orbits e ~ 0.95
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of meteoroids. However, after a proper understanding the north toroidal source and
rigorous modeling we succeeded in a development of a plausible model for the background
population of the north toroidal complex that is reviewed in the following section.
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Figure 2.32: The same as in Fig. 27 but now for north toroidal meteors only.
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Figure 2.33: The same as in Fig. 2.10] but now for north toroidal meteors only.
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Figure 2.34: The same as in Fig. 211l but now for north toroidal meteors only.
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Figure 2.35: The same as in Fig. .12 but now for north toroidal meteors only.
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Figure 2.36: The same as in Fig. 2.8 but now for north toroidal meteors only.
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2.12 North/south toroidal source - model - short re-
view - paper E - Dynamical Model for the Toroidal
Sporadic Meteors

In this paper, we focus on the dynamically most processed meteoroid population, namely
the sporadic component of meteoroids hitting the Earth. We were able to develop reason-
able models for north /south apex source, and helion/anti-helion source, however, no plau-
sible model for the toroidal meteors has not been published. It is interesting, and to some
extend actually puzzling, that understanding the parent source for the toroidal meteors
has proved to be the most difficult of all the sporadic sources. The north toroidal par-
ticles are characteristic for their high-inclination orbits with respect to ecliptic, I ~ 70°,
with semimajor axes close to 1 au and a long tail towards larger values, and their broad
distribution of eccentricities with a maximum at e ~ 0.2 (Fig. [2Z32). Taken straight,
we do not observe any significant population of parent bodies in the Solar System with
similar orbits that could feed the north toroidal source with a observed amount of dust.

Previous studies tried to explain the existence of the north toroidal source by using
comet populations with orbits that are not observed in the Solar System, and cannot be
reproduced by modeling the potential group of parent bodies, as in Jones et all (IMJ)
More recent model of [Wiegert et all (IMQ) provides a reasonable fit for other sources of
sporadic meteors, however, their model for the north toroidal source suffers significant
drawbacks and potential degeneracies. First, the authors were not able to obtain a good
fit of the model to the observed distribution of the north toroidal meteors (Fig. 4 in
Wiegert et alJ, @QQ) A more important drawback of the model is a conclusion that the
activity of a single or several individual objects may dominantly populate the apparent
radiant source. For the north toroidal source [Wiegert. et. all (IZ_(K)Q) found that the domi-
nant contribution comes from several near-Earth asteroids. This is, however, the weakest
point of the model because there is no physical justification for significant activity from
most near-Earth asteroids. Also, CMOR sees a significant contribution from bodies with
larger a, which cannot be explained by activity of near-Earth asteroids.

Our main goal is to develop a model for the background sporadic population of the
north toroidal source based on observations of the sporadic meteoroid complex performed
by CMOR in 2012. To avoid confusion between background population and contributions
of individual sources we selected two intervals in A\ apparently devoid of stream activity:
(1) ~ (50° —90°), and (2) ~ (320° — 360°) (Fig. 2 in paper E). As a result, we consider
meteors in the first interval (1) to be our primary test sample of the background popula-
tion. Tests show, however, that orbital data observed in the second interval (2) are very
similar to those in the first interval (1), thus we feel justified in checking our results by
merging information from both intervals of time. Our restricted sample of background
north toroidal source particles contains 3550 individual particle orbits.

In our model, we use an up-to-date synthetic model of HT'Cs adopted from Levison et al

). These authors developed a steady-state model for HTCs orbital architecture,
assuming they originate in the scattered disk. Their model successfully matched the
observed distribution of HT'C orbits that are preferentially prograde with a median incli-
nation value of ~ 55° and only a small fraction of retrograde comets (Fig. 4 in paper E).
Nearly half of HT'Cs have inclination values between ~ 40° and ~ 80°, which is favorable
for populating north/south toroidal source. We ran simulations for particles of different
diameters D, namely 100 pgm, 200 pgm, 400 pgm, 600 pgm, 800 pm, 1000 pm, 1200 pm,
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1500 pm, and 2000 pm, all with constant particle density p = 2 g em™3. For each D,
we randomly generated 20, 000 orbits of particles, and propagated them in time. Most of
the runs were completed by integration time ¢ = 10 Myr, and only some of the largest
particles survived longer in our simulations. We found that trajectories of particles with
D > 2 mm in a CMOR’s observable range are essentially the same, thus the results for
particles with D = 2 mm could be extrapolated to larger values of D. On the other
hand, we omitted to study particles smaller than D = 100 pm, because they are below
the sensitivity limit of CMOR.

The dust particles in our model were numerically integrated with swift_rmvs3 code
de_mn@ﬂ, |19_9_4]), where the effects of radiation pressure and P-R drag were
taken into account (see Sec. 24]). Contrary to papers C and D, we used all eight planets
of the Solar System. Every 100 yr the orbital elements of particles and planets were
recorded, until their heliocentric distance reached 0.05 au, left the Solar System on a
hyperbolic orbit, or impacted one of the planets.

Similarly to procedure in paper D (Sec. 2.I0), we introduce several free parameters.
The starting orbits of our particles have different perihelion distances ¢ (Fig. 4 in paper
E), and we assume that comets with smaller ¢ values are generally more active, and
may be a subject to splitting/disrupting. In order to account for this bias, we introduce
a weighting factor o< ¢7, where ~ is a free parameter. In our model, we consider only
particles with ¢ < 1.3 au. We performed tests with ¢ extending to 2.6 au, extrapolating
the trend from |Levison et al. (IZ_(K)H) model, and found that the results are not sensitive
to this limit.

In our model, we implemented the collisional model of Steel and Elford (1986) that is
described in Sec. Model of Steel and Elford (1986) provides the dependence of the
collisional lifetime 7. on the orbital elements of the particles, including the inclination,
which is our largest concern in our model for the north toroidal source. However, similarly
to our experience with the model of Griin et all (|19§_5|) in paper D, we introduce a free
parameter Fi,; by which we multiply the estimated collisional lifetime. We use values of
Fon between 1 and 30 that allow us to adjust our model to match the CMOR observations.

The last set of free parameters is connected with SFD of particles in our model.
In reality, the particle SFD may be a complicated function of diameter D in principle,
however, experience shows that a two-slope (broken) power-law representation is a fairly
good approximation unless the studied range of D is too large. We determine SFD of
particles in range 200 pm< D < 3 mm, which is a consequence of CMOR detection
sensitivity, because no smaller particles are detected by CMOR in the north toroidal
source, and particles larger than D ~ 3 mm are rarely detected, or create overdense echoes
that prevent a correct determination of their orbit. We introduce four free parameters
defining SFD of particles in our model: (1) Dyq is the position of midpoint, (2) Ny
fixes the absolute number of particles with D = 3 mm, (3) « defining the slope of larger
particles with D > D4, and (4)  defining the slope of smaller particles with D < Dyiq
(Egs. 5-10 in paper E).

This makes in total six free parameters that characterize our model for HTC particles.
We found it useful to substitute for the Ny parameter a parameter Finp = Nimp/Nobss
where Ni,, is a predicted number of particles impacting in the selected interval of A, and
Nops = 3550 is a number of truly detected particles. This allows us to cope with some
imperfections of our model while keeping in mind that Fi,,, should be in a reasonable
interval around unity:.

Our fitting procedure is performed by a highly efficient Bayesian analysis search of
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the admitted solutions in the multi dimensional parameter space as described by the
multinode nested sampled method efficiently implemented by the MultiNest code (e.g.,
Ee@j, m; Feroz et al., M) A correct representation of effect imposed by variations
of parameters (7, Feon) introduces high computational demands to our model, thus we
opted to pre-compute the modeled distributions of impact speeds and orbital elements
for each of the particle sizes and a grid of (v, Fion) that was sampled uniformly. The
Markov chain walking is thus applied only to the (o, 3, Duia, Fimp) space, but we accept
this limitation for simplicity.

Model - comparison with CMOR

Before we present our final results, we start with a description of the most important global
trends found when changing principal parameters of our model. First, we investigate the
importance of proper knowledge of ionization cutoff I, for the comparison of our model
with observations. Synthetic population of north toroidal particles for D = 200 pum
observed without no limiting ionization cutoff provides a fairly good match to the observed
population (Fig. 5in paper E). The most prominent feature, the predominance of particles
on orbits with low eccentricities, and inclinations near ~ 60°, is included in the model
population. This result is, indeed, promising since a reasonable SE'D would favor smaller
particles more than larger ones. However, when the real ionization cutoff for CMOR
I, = 1 is used, the distribution of velocities and orbital elements change drastically (Fig.
6 in paper E). CMOR is able to detect only the fastest particles with D = 200 pm, and
thus in our model remain only particles with retrograde and very high eccentric orbits,
which puts a sever constraint on the slope /3 of the SFD.

Larger particles with D = 600 pm have 30 times larger masses than particles with
D = 200 pum, which grants them greater potential for a detection by the CMOR system.
Orbits of D = 600 pum match also the observed distribution fairly well, mostly having
orbits with e < 0.4 and favorable inclination distribution (Fig. 7 in paper E). However,
until now, we did not take into account collisional disruptions of the particles. Fig. 8
in paper E shows a simulation for D = 600 pum particles as observed by CMOR, but
now with collisional disruptions included. We consider a nominal collisional model by
Steel and Elford (|L9fid), and show results with varying free parameter F,, in range 1 to
10. Shorter collisional lifetimes do not allow particles to evolve significantly from their
initial orbits, pushing thus the typical eccentricities to larger values, which is incompatible
with the observed population. We find that F.,; > 10 is needed to properly match
the CMOR observations, similarly to our experience with modeling of helion/anti-helion
sources (see Sec. and paper D).

In the course of testing our fitting procedure we realized that it is more convenient,
and also more precise, to use reciprocal value of semimajor axis 1/a rather than a of
impacting particles. This parameter, equivalent to the heliocentric binding energy, allows
us to test our model more severely than using simply a distribution. We search the space
of free parameters with the limits defined in Table 1 in paper E.

Our formally best solution with the two-slope SFD was for (o, 8, Dimid, Fimps Vs Feon) =
(4.7,1.1,950 pm, 1.08,0.0,20) (Fig. 9 in paper E). Our model is able to reproduce all
observed features for the north toroidal meteors reasonably well, however, two major,
correlated, mismatches occur: our synthetic model provides an unobserved population on
high eccentric and orbits with larger semimajor axes (top right and bottom left panels
in Fig. 9 in paper E). We find that our model has only slight dependence on the free
parameter . Shorter collisional lifetimes with F_,; produce models inconsistent with
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observed data, where at minimum F.,; > 10 is needed, while values over 20 provide
statistically equivalent results. Also, our fit has somewhat puzzling shape of SFD, where
the parameter § provides a very shallow slope, and the break-point near to 1 mm has
not been reported in any of the previous analyses. The missing high eccentric population
may be result of the fact that the highest-speed particles are subject to more bias in the
CMOR observations. We thus test, how our fit changes, when we discard all orbits with
e > 0.8. The overall quality of fit improved, except for a mismatch in the inclination fit
(Fig. 10 in paper E). However, the final set of free parameters did not change significantly
(e, B, Dinid, Fimps 7s Feon) = (4.8,1.6, 750 ppm, 1.11, 0.3, 20), still having problems similar to
previous fit.

Still unsatisfied, we forced the SFD to be a single-slope power law distribution with a
single exponent «. Obviously, we lose two free parameters D,,;q, and 3, and thus we apply
the Markov chain walking only to the (a, Fiyp) space. Our best-fit model for data without
orbits with e > 0.8 having (a, Finp, 7, Feon) = (2.1,1.11,0.0, 20), is formally worse than
the broken power-law SFD fit (Fig. 10 in paper E), but the visual check of the results
we performed indicated no substantial differences. Our tests with artificial forcing the
parameter « to be closer to a more realistic values between ~ (2.8 — 3) still provide
visually acceptable, though statistically worse fits.

Model - comparison with /RAS

Once we have the SFD parameters («, 5, Diia, Fimp) determined, we can evaluate several
interesting quantities. The total mass M, (Eqs. 13 and 14 in paper E) characterize a
validity of our model with regards to the size of the parent population. For our models,
we obtain My ~ (3 — 50) x 1017 kg for particles in the size range 200 pym < D < 3
mm. Assuming a quasi-exponential decay of the population in our integrations with a
characteristic timescale of 7 ~ 2 Myr (see Sec. 3.2 in paper E for more details) we need
an average flux of F' = M /7 ~ (1.3 — 25) x 10! kg yr~! to keep our model in the
steady state. This value is an order of magnitude smaller than value estimated for JFC

population by [Nesvorny et al. (|2D_11H which is consistent with TRAS observations. The
orbit-averaged activity of large HTCs is estimated to be ~ (1 —5) x 10% kg yr¥ (e.g.,

|H1]ghfz§J h%ﬂ L]_Qnmskené Dﬂlﬂ) thus a steady-state population of tens to a hundred such
comets would, in the long term, feed interplanetary space with sufficient amount of dust.

One of the constrains of the model of Nesvorny et al. (lZQllH) was the observed cross
section of the zodiacal cloud meteoroids. Model of [Nesvorny et al. (|2_Ql_d) proposed that
2 90% of the ZC’s emission at MIR wavelengths comes from dust grains released from
JFCs, while only < 10% remains for other sources of the dust particles in the Solar System.
Our models estimate that the cross section of particles with a heliocentric distance < 5 au
is Yot (< Hau) > (0.03—0.25) x 10! km? (Egs. 16 and 17 in paper E), which is 1 —2 orders
of magnitude less compared to JFCs (Nesvorny et all, |2illlﬁ|) Hence, our model for HTC
particles is not in conflict with IRAS infrared measurements by providing inconsistently
large cross sections that would flatten latitudinal profiles of infrared emission measured

by TRAS.

Other Radiant Source Regions

So far, we have focused on the contribution of the HTC particles exclusively to the north
toroidal source. However, these particles do not strictly impact the Earth only in this
radiant zone, and their contribution is rather complex. Since we calibrated our model
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for the north toroidal source, we might also estimate the contribution of HTCs to other
radiant zones as well.

We find that a significant part of HTC particles populate an arc (or ring) structure
at about 60° angular distance from the apex direction (left panel in Fig. 12 in paper
E), which is in a good agreement with all-sky observations made by CMOR, in 2012 for
A = 50° —90° (right panel in Fig. 12 in paper E). We also find a depleted ring structure
at about 50° angular distance from the apex direction, where the orbits are efficiently
eliminated from our simulations. This is mainly because during their route to the inner
parts of the Solar System the perihelia of these particles become too close to the Sun and
are climinated from the simulation. Contrary to (Campbell-Brown (2008), who suggested
that the existence of the depleted ring is rather a consequence of collision, we find the
reason for its existence rather dynamical.

Interestingly, our model particles also contribute to the apex source, having predom-
inantly high eccentric and retrograde orbits. Even though retrograde orbits represented
only a small fraction of the total population in our initial conditions, we find the average
strength of the apex source ~ 5 to ~ 15 times larger than the strength of the north
toroidal source depending significantly on ~y. Since the fitting of the north toroidal source
was rather insensitive to ~y, further work on the relative contribution to apex source may
help in refining our model.

Discussion and Conclusions

Our findings show that the background sporadic population of toroidal meteors observed
by the CMOR system is likely provided by the activity and/or breakups of HTCs. Our
model provides a constraint on several model parameters, such as the mean comet activity
in relation to the perihelion distance, and size-frequency distribution function at the source
in the ~ 200 pm— ~ 3 mm size range.

We find that our model requires longer collisional lifetimes than predicted by standard

models (Griin et _all, [1985; [Steel and Elford, |_L9£ﬂ), however, our findings are similar to
[Nesvorny et all (IlelH) There are several possibilities to explain this difference. First,

we do not take into account collisional cascade in our model that may effectively extend
the lifetime of the meteoroids. Another solution is to incorporate a more in-depth analysis
of the solar wind interactions with the dust grains that may force particles to decay faster.
On the other hand, many measurements of the lifetime of cosmic spherules and interplane-

tary dust particles (e.g., [Raisbeck and IlQl]I |l9§g legeuLalJ |l9_9ﬂ |lethllm1&t_aL|
|_‘I.9_9_].|7 |R€zpmﬂ_&l_| |2£ﬂl| &hmmﬁu |2£Eﬂ) suggest that meteoroid collisional lifetimes

are longer than assumed by standard models.

Some of the residual mismatches between observations and our model may originate in
our simplified description of the detection limits of the CMOR radar system. Similarly to
our previous works, we used a simple ionization factor I defined in Eq. (2.28)) to character-
ize the sensitivity of the radar system. While this simplified treatment captures the most
important features of the detection process, the real situation might be more complex.
Most importantly, the instantaneous change from non-detectability to detectability of the
meteor at a single value I = I, = 1, might be too simplified. Incorporating more complex
function that is taking into account a probabilistic nature of the detection process might
improve the precision of our model.

While we succeeded in modeling of the sporadic background of the north toroidal
source, many opened issues remain, and are related to our future work. First, we shall
analyze the time-variable component of the north toroidal source (Fig. 2.33)), search for
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the possible individual sources of semi-sporadic structures, and determine, whether these
parent bodies still exits or the observed structures are remnants of the asteroidal /cometary
disruptions. Second, our finding of the contribution of HTC particles to the apex source
is a motivation for revisiting the dynamical modeling of the apex source, we performed

in paper C (Nesvorny et al.|, |2ﬂllﬁ|) Our findings suggest, that the proper model of the

apex source should consider at least two prolific groups of parent bodies, namely HTCs
and OCCs.

2.13 Conclusions and further work

The Solar System is a very dusty environment and the Earth is every second showered
with dust particles while revolving around the Sun. Many of these particles are detected
by ground-based or space-borne systems providing interesting variety of information that
allows us to model and predict behavior of various dust populations in the vast region
around the Sun. Ground-based radar and visual systems are able to accurately determine
radiant locations and velocities of impacting dust particles. Sporadic meteors, dynami-
cally evolved particles without an evident link to their parent bodies, dominate the dust
influx on the Earth, while only ~ 10% remains for the shower meteors. Decades of radar
measurements distinguished three broad classes of sporadic meteors according to their
radiant positions: the helion and anti-helion source, the north and south apex sources,
and the north and south toroidal sources (Sec. 2.T]).

Such an abundant population of meteors drew attention of many researchers who
sought dynamical model with an ability to explain the observed distribution of radiants,
velocities, and orbital elements of sporadic meteors. Despite of complexity of the dynam-
ical evolution of dust particles, time demanding simulations, and yet developing models
describing potentially rich sources of dust, many interesting results were discovered (Sec.
2.1.2). However, plausible models with an ability to explain the majority of observed
features and characteristics of the sporadic meteoroid complex had yet to be developed.

We reviewed fundamental physical processes dominating the dynamics of dust particles
in the Solar System. Except for the gravitational forces, the dynamics of the dust particles
are influenced by radiative processes, namely, the radiative pressure, Poynting-Robertson
drag, and effect of solar wind (Sec. 22). These processes force the majority of dust
particles to experience spiraling towards the inner parts of the Solar System, and their
final end in the proximity of the Sun, regardless on their initial orbital parameters.

Particles en route to the inner parts of the Solar System may collide with small me-
teoroids in the zodiacal cloud. In Sec. we discuss two standard models, presented by
\Griin et all (1985) and [Steel and Elford (1986), for the determination of the collisional
lifetime of the dust particles in the Solar System. While rather simple, these models are
one of the essential parts for development correct steady state model for the sporadic
meteoroid population.

Our goal, the development of steady-state models (Sec. 2H) for each observed source
of the sporadic meteoroid complex, cannot be accomplished without many tools and codes
we use throughout the whole development process (Sec. 24]). CMOR system is the longest
operating radar facility with over ten million observed orbits. We were fortunate to be
able to investigate a very accurate dataset recorded in 2012 by CMOR, determine its
basic characteristic, distribution of orbits, and discuss in a more detail some interesting
features observed by CMOR (Sec. 2.0)).
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North/south apex source is populated by the fastest observed meteors near to the
hyperbolic limit in the Solar System. Such meteors on mainly retrograde orbits represent
approximately one quarter of all meteors orbits (Sec. [Z7T) Our dynamical model for
the Oort Cloud Comets is able to reproduce the majority of observed features in the
north/south apex source (Sec. 2.8)). However, our most recent findings of contribution
of the Halley-type comets show that a significant amount of north/south apex meteors
originates in the Halley-type comets (Sec. [Z12)). A steady-state model taking into account
two different groups of parent bodies, and a precise determination of the ratio between
these two sources is left for the future work.

Helion/anti-helion source, the most abundant source in the sporadic meteoroid com-
plex with more than a third of the total number of observed meteors, is mainly populated
by slower and low inclination meteors (Sec. 2.9). We refined the model of
(ém) for more complex characteristics of the Jupiter-family comet orbits, size-frequency
distribution of model particles, and for more complex collisional models. Our dynami-
cal model for Jupiter-family comets is able to find a good agreement with observations of
helion/anti-helion source from AMOR and CMOR systems (Sec. 2I0)). Infrared measure-
ments of IRAS allowed us to obtain the absolute calibration for our model that provides
mass influx of dust particles onto the Earth comparable to space-borne measurements
performed by LDEF. We find that the model from [Griin et all (1985) provides collisional
lifetimes significantly lower than our model requires to fit CMOR data. The mass input
needed for keeping our model in steady state is ~ 10 times larger than the one suggested
by Nesvorny et. all (IZ_O_l_d), and we find that JFC meteoroids form 2 90% of the total
population of the zodiacal cloud. We suggest that the zodiacal cloud is dominated by the
meteoroids released by disrupting/splitting JECs, because the observed activity of JFCs
cannot provide the needed mass input.

North/south toroidal source, characteristic for its high inclination and low eccentricity
orbits of observed meteors, and strong seasonal variations, has no evident link to any pro-
lific group of dust producing bodies in the Solar System (Sec. ZI1]). Even though known
for more than 50 years, no plausible dynamical model that can explain observed distribu-
tions of impact velocities and orbital elements with radiant positions at the north/south
toroidal source has been published. In Sec. 212 q we present our new dynamical model
for the background population of the north toroidal source. Using Halley-type comets as
the parent bodies of the dust particles we succeeded in matching all observed features.
The excellent dataset of 2012 observations provided by CMOR allowed us to obtain the
absolute calibration for our model, and to a great degree find constrains for free parame-
ters in our model. We find that the best solution for our model needs collisional lifetimes
~ 20 times larger than the collisional model of [Steel and Elford (1986) predicts. We de-
termined that the contribution of HT'C particles from our model to the population of the
zodiacal cloud is 1 — 2 orders of magnitude less than the contribution of JFC particles as
found in Sec. B.10, which is compatible with /RAS measurements.

Many interesting projects were left for future work. Our model for the north/south
apex source based solely on particles from OCCs was not able to match all observed
structures, and also no absolute calibration was established. Our findings of the sig-
nificant contribution of HTC particles to the north/south apex source suggest that the
two-component model should be able to fit the observed population better, and also with
the knowledge of the absolute calibration of the HTC particle we may also seek the ra-
tio between OCC and HTC contribution to the north/south apex source, and ultimately
obtain the absolute calibration for OCC meteoroids. Once all sources of the sporadic
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meteors are calibrated, we may advance to a full-fledged model of the dust environment
in the Solar System. With a deeper understanding of the most prolific sources of the dust
particles we aspire to create a dynamical model that would match all ground-based and
space-borne measurements available to date.

Our modeling efforts has yet been focused only to the background population of the
sporadic meteoroid complex. Seasonal variations in all observed source of the sporadic
meteors, however, are still not fully understood, and many observed structures have un-
known parent bodies. Full dynamical understanding of such structures can tell us many
interesting facts about its parent bodies such as, the age of the event that caused the
significant production of the dust, the possible link of a non-existent body to a body
observed in the past, or the future of these structures in the sporadic meteoroid complex.

Evaluation of the collisional lifetimes of meteoroids in the Solar System was one of the
essential parts of our modeling process. We found that values provided by the standard
models are not compatible with our dynamical simulations and need to be adjusted to
allow our models to match observations properly. New, more advanced, and not neces-
sarily more complicated, model with an ability to determine more precisely the collisional
lifetimes among the member of the Solar System dust environment would be greeted by
the community.
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Final remarks

This thesis summarizes our almost four year lasting effort to improve theories for deter-
mination of the collisional probabilities in the Solar System, and also to knowledge of the
origin and dynamics of the sporadic meteors in the Solar System.

Our contribution to the problem the collisional probability determination may look
minor, but it already proved useful for estimating impact probabilities of the toroidal
meteoroids. Our work on this topic is not finished yet, since incorporating target bodies
on inclined orbits will further broaden applicability of our research. Moreover, changing
our rather simplified scenario with the idealized perturbing body to more complex system
with more perturbing bodies on arbitrary orbits may provide more accurate solutions. On
the other hand, the main advantages of our current approach, purely analytical solution
and consequential speed, may severely suffer during the development process.

The code providing estimates of the collisional probability for various bodies in the
Solar System based on our two papers presented in this thesis is already being used by
several colleagues.

Our work in the modeling of the sporadic meteoroid complex may seem more com-
plete. Various radar systems recognizes six concentrations in the all-sky radiant map, for
which we successfully created dynamical steady-state models based on well-known and
at least partially observed populations of comets. However, we focused only on a back-
ground sporadic populations, while measurements exhibit seasonal variations that cannot
be modeled by steady-state models. These semi-sporadic contributions to the sporadic
meteoroid complex are one of the future topics of our work.

Absolute calibration of the steady-state models of the sporadic meteoroid background
is another part of research we are really looking forward to. When the models are abso-
lutely calibrated we will obtain a distribution of the majority of micrometer to millimeter
sized particles in the whole Solar System.

Further extension of our model from the micrometer sized particles up to centimeter
sized meteoroids is what we expect to be possible in the near future. Centimeter sized
meteors are not easily detectable by radars, because of several effect such as saturation of
the signal or partial fragmentation of the detected body. However, forthcoming projects
like CAMS (Cameras for Allsky Meteor Surveillance) measuring meteors in visual spec-
trum may provide additional repository of information that will allow us to build models
for particles of these sizes.

At the very end of this thesis, I hope you enjoyed its reading, and that you find this
work worthy of level of the PhD thesis.
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Appendix A - Source code -
Determination of the collisional
probability

Here, we present the source for our code based on papers A and B where its main purpose
is a determination of the collisional probability between two bodies. See Sec. and
papers A and B for further reference. Its most recent version is available at http://
sirrah.troja.mff.cuni.cz/"pokorny/Kozai/ .

PROGRAM KOZAIOPIKPROB

Author:
Petr Pokorny

LICENCE:

put a reference into your article (reference to Vokrouhlicky et al. 2012)
or better an article with Pokorny, Vokrouhlicky 2013, where is the code cited (~_")

! Reference publication:

|

!

! Opik-type collision probability for high-inclination orbits
! Vokrouhlicky, David; Pokorny, Petr; Nesvorny, David

! Icarus, Volume 219, Issue 1, p. 150-160.
1
|
|
|

! Opik-type collision probability for high-inclination orbits: Targets on eccentric orbits
! Pokorny, Petr; Vokrouhlicky, David
Icarus, Volume 226, Issue 1, p. 682-693

! SUBROUTINE KOZAIOPIK computes impact probabilities between Target and Projectile

! The Target is assumed to be in eccentric and coplanar orbit (i = 0, 0 =< e < 1)

! The Projectile is assumed to be on bound elliptic orbit around the Sun and non-resonant with any other
planet

! The Projectile is defined by its semimajor axis (AU), eccentricity, Inclination (deg) and argument of
pericenter (deg)

/
/
/ S
* ,088888
,08888888"’
,:10:0:0000. ,8088Pd8888"
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IMPLICIT NONE

real*8 apl ! Semimajor Axis of the target [AU]
real*8 epl ! Eccentricity of the target
real*8 a Semimajor Axis of the projectile [AU]

real*8 e Eccentricity of the projectile

real*8 inc Inclination of the projectile [deg]

real*8 omega Argument of pericenter of the projectile [deg]

real*8 outres ! Total intrinsic collisional probability in au™-2 yr~-1

real*8 pi
data pi/3.141592653589793/

! write (*,*) "Semimajor axis of projectile in [AU]"
read (*,*) a

! write(*,*) "Eccentricity of projectile"
read (*,*) e

! write(*,*) "Inclination of projectile in (deg)"
read (*,*) inc

! write(*,*) "Argument of projectile pericenter (deg)"
read (*,*) omega

! Degrees to radians
inc=inc/180.d0*pi
omega=omega/180.d0*pi

! write(*,*) "Semimajor Axis of the target [AU]"
read (*,*) apl
! write(*,*) "Eccentricity of the target"

read (*,*) epl

! Calling the main subroutine
call WETKOZ(apl,epl,a,e,inc,omega,outres)

! Write an output: Total intrinsic collisional probability
write (*,*) outres

end
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SUBROUTINE WETKOZ(apl,epl,apr,e,inc,omega,outres)
IMPLICIT NONE

INTEGER n ! Counter for the number of iterations in computing of the integral

INTEGER it ! Number of steps in the integral

INTEGER j ! Loop integer

INTEGER nmax ! Maximal number of iterations in the evaluation of the integral

INTEGER coef ! Maximal number of steps used for the evaluation in all iterations - defines output
arrays

INTEGER 1 ! Counter determining the position of the element in arrays

INTEGER k ! Loop integer

INTEGER ik ! Integer 1 or 2 determining whether the true anomaly of the target is (0,180) or
(180,360) - we to investigate the whole orbit

parameter (nmax=7) ! Determines the precision of the evaluation of the integral. The value 7 seems to
give the best ratio between speed and precision
parameter (coef=2%2%(3*x(nmax-1))) ! Formula for the total number of steps of the integral

|===== INPUTS =====
real*8 apl ! Semimajor Axis of the target [AU]
real*8 epl ! Eccentricity of the target
real*8 apr ! Semimajor Axis of the projectile [AU]
real*8 e ! Eccentricity of the projectile
real*8 inc ! Inclination of the projectile [radians]
real*8 omega ! Argument of pericenter of the projectile [radians]

l===== END OF INPUTS =====

|===== QUTPUTS ======
real*8 outres ! Output: Total intrinsic collisional probability in au”™-2 yr~-1
!===== END OF OUTPUTS =====

real*8 prob(8)! Intrinsic collisional probability for 8 possible impact configurations for one r_0
of the target
real*8 probl ! Sum of prob(8), total intrinsic collisional probability for one r_0O of the target

real*8 pi

real*8 theta(8) ! Theta of the radiants for 8 possible impact configurations
real*8 phi(8) ! Phi of the radiants for 8 possible impact configurations
real*8 outk(8) ! k = excos(omega) for 8 possible impact configurations
real*8 outh(8) ! h = exsin(omega) for 8 possible impact configurations

!===== POSSIBLE OQUTPUTS =====
real*8 outR(coef) ! All heliocentric distances [AU] of the target evaluated in the integral
real*8 outP(coef,8) ! All intrinsic collisional probabilities [au”-2 yr~-1] evaluated in the
integral | 8 possible impact configurations for one r_0
real*8 outTH(coef,8) ! All theta [deg] of the radiants evaluated in the integral | 8 possible impact
configurations for one r_0
real*8 outPH(coef,8) ! All phi [deg] of the radiants evaluated in the integral | 8 possible impact
configurations for one r_0
real*8 outKK(coef,8) ! All k = e*cos(omega) evaluated in the integral | 8 possible impact
configurations for one r_0
real*8 outhh(coef,8) ! All h = e*sin(omega) evaluated in the integral | 8 possible impact
configurations for one r_0
!===== END POSSIBLE OUTPUTS =====

real*8 a ! Lower limit of the integral

real*8 b ! Upper limit of the integral

real*8 x ! r_0 in the integral

real*8 del ! Integration step (see Press et al. 1992, chap. 4.1)
real*8 ddel ! 2 * del

real*8 sl ! Intermediate sum of the first integral [a (1 -e ) , a]
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real*8 s2 ! Intermediate sum of the second integral [a , a (1 +e ) ]

real*8 aa ! Pericenter of the target

real*8 bb ! Apocenter of the target

real*8 tnm ! Number of steps in the integral - denominator in the evaluation of the integral
real*8 funl ! Function subtitution for the first integral

real*8 funu ! Function subtitution for the second integral

real*8 sum ! Intermediate sum in the evaluation of the integrals

real*8 func ! External function

EXTERNAL func
data pi/3.141592653589793/

function subtitution
funl (x) = 2.d0*x*func(aa+x**2,bb,aa)
funu(x) = 2.d0*x*func(bb-x**2,bb,aa)

Zero to variables
1=0
outres=0d0

Big loop over 2 segments of the orbit because of the true anomaly
do ik=1,2

Pericenter, apocenter and lower and upper integration limits
aa=apl*(1d0-epl)

bb=apl*(1d0+epl)

b=sqrt (apl*epl)

a=0.d0

Zeros to intermediate sums
s1=0d0
52=0d0

Loop over the consencutive iterations of the integral

FIRST INTEGRAL

do n=1,nmax

The first evaluation, the same as for the circular orbit of the target

if (n.eq.1) then

x=0.5* (a+b)

Add 1 to the counter

1=1+1

CALL KOZAIOPIK(apr,e,inc,omega,apl,epl,aa+x**2,prob,probl,theta,phi,ik,outh,outk)
outR(1)=aa+x**2

Output flush

do k=1,8

outhh (1,k)=outh (k)
outkk (1,k)=outk (k)
outP(1,k)=prob (k)
outTH(1,k)=theta (k)
outPH(1,k)=phi (k)
enddo

s1=(b-a)*funl (x)*probl

Here comes the integral
else
it=int (3d0**(n-2))
tnm=it
del=(b-a)/(3*tnm)
ddel=del+del
x=a+0.5d0*del
sum=0.d0
do 11 j=1,it
Add 1 to the counter
1=1+1
CALL KOZAIOPIK(apr,e,inc,omega,apl,epl,aa+x**2,prob,probl,theta,phi,ik,outh,outk)
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outR (1) =aa+x**2

! Output flush
do k=1,8
outhh (1,k)=outh (k)
outkk (1,k)=outk (k)
outP(1,k)=prob (k)
outTH(1,k)=theta (k)
outPH(1,k)=phi (k)
enddo

sum=sum+funl (x) *probl
x=x+ddel

! Add 1 to the counter
1=1+1
CALL KOZAIOPIK(apr,e,inc,omega,apl,epl,aa+x**2,prob,probl,theta,phi,ik,outh,outk)
outR (1) =aa+x**2

! Output flush
do k=1,8
outhh (1,k)=outh (k)
outkk (1,k)=outk (k)
outP (1,k)=prob (k)
outTH(1,k)=theta(k)
outPH(1,k)=phi (k)
enddo

sum=sum+funl (x) *probl
x=x+del
! Loop end
11 continue
s1=(s1+(b-a)*sum/tnm)/3.d0
endif
enddo

! Loop over the consencutive iterations of the integral

! SECOND INTEGRAL
do n=1,nmax

! The first evaluation, the same as for the circular orbit of the target
if (n.eq.1) then

x=0.5%(a+b)
! Add 1 to the counter
1=1+1
CALL KOZAIOPIK(apr,e,inc,omega,apl,epl,bb-x**2,prob,probl,theta,phi,ik,outh,outk)
outR (1) =bb-x**2

! Output flush
do k=1,8
outhh (1,k)=outh (k)
outkk (1,k)=outk (k)
outP(1,k)=prob (k)
outTH(1,k)=theta (k)
outPH(1,k)=phi (k)
enddo
s2=(b-a) *funu (x)*probl
else
it=int (3d0**(n-2))
tnm=it
del=(b-a)/(3.*tnm)
ddel=del+del
x=a+0.5%del
sum=0.d0
do 12 j=1,it
! Add 1 to the counter
1=1+1
CALL KOZAIOPIK(apr,e,inc,omega,apl,epl,bb-x**2,prob,probl,theta,phi,ik,outh,outk)
outR (1) =bb-x**2

! Output flush

do k=1,8
outhh (1,k)=outh (k)

121



outkk (1,k)=outk (k)
outP(1,k)=prob(k)
outTH(1,k)=theta (k)
outPH(1,k)=phi (k)
enddo
sum=sum+funu (x) *probl
x=x+ddel

Add 1 to the counter
1=1+1
CALL KOZAIOPIK(apr,e,inc,omega,apl,epl,bb-x**2,prob,probl,theta,phi,ik,outh,outk)
outR (1) =bb-x**2

Output flush
do k=1,8
outhh (1,k)=outh (k)
outkk (1,k)=outk (k)
outP(1,k)=prob(k)
outTH(1,k)=theta (k)
outPH(1,k)=phi (k)
enddo
sum=sum+funu (x) *probl
x=x+del

12 continue

s2=(s2+(b-a)*sum/tnm) /3d0
endif

enddo

outres=(s1+s2)+outres
enddo
outres=outres/2d0

SIMPLE ADDITIONAL OUTPUT EXAMPLE
write (*,*) outres
do j=1,coef
do k=1,8
if (outP(j,k).gt.(0d0)) then
write (*,*)outP(j,k),outR(j),outTH(j,k),
& outPH(j,k),outhh(j,k),outkk(j,k)
endif
enddo
enddo
END OF EXAMPLE

end

! Function \psi from the article Pokorny et al. 2013 - needed for

the total probability

REAL*8 function func(x,a,b)

real*8 x,a,b

func = 1d0/x/sqrt ((b-x)*(x-a))*sqrt (a*b)/(asin(1d0)*2)
end function

This subroutine computes a collision probability for a target on elliptic
non-inclined orbit with a projectile on bound heliocentric orbit

The subroutine itself computes a probability only for one heliocentric
distance of the target rpl, the total probability must be computed as
an integral of individual probabilities from pericenter to apocenter

SUBROUTINE KOZAIOPIK(a,e,inc,om,apl,epl,rpl,prob,probl,theta, phi,ik,outh,outk)
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IMPLICIT NONE

INPUT VARIABLES

real*8 a ! Semimajor axis of the projectile [AU]

real*8 e ! Eccentricity of the projectile

real*8 inc ! Inclination of the projectile [rad]

real*8 om ! Argument of pericenter of the projectile [rad]
real*8 apl ! Semimajor axis of the target [AU]

real*8 epl ! Eccentricity of the target

real*8 rpl ! Heliocentric distance of the target [AU]

END OF INPUT

OUTPUT VARIABLES

real*8 prob(8) ! Intrinsic collisional probabilities for all impact configurations [1D array]
real*8 probl ! Total intrinsic collisional probability = sum of prob(8)

real*8 outk(8) ! Array of all obtained k=e*cos(omega) in the impact configurations

real*8 outh(8) ! Array of all obtained h=e*sin(omega) in the impact configurations

real*8 theta(8) ! Ecliptic latitude of the impact radiants for the impact configurations
real*8 phi(8) ! Ecliptic longitude of the impact radiants for the impact configurations

END OF QUTPUT

complex*16 x(3) ! Roots of the system of equations (10) and (16) = impact configurations - cubic
equation

real*8 Ca ! Coefficients of the cubic Equation
real*8 Cb
real*8 Cc
real*8 Cd

real*8 y(4) ! Real part of the roots - maximum 8 impact configurations => 4 unique values of
k=excos (omega)

real*8 z(8) ! h=excos(omega) - from EQ (10) in Vokrouhlicky, Pokorny, Nesvorny 2012

real*8 k ! k=excos(omega) - just more convenient and readable variable without array

real*8 hh(2) ! Array of 2 possible values of h=e*sin(omega) for one unique k=excos(omega)

real*8 h ! Selected h from array hh(2)

real*8 kk ! Initial value of k=e*cos(omega) from the initial conditions
real*8 hhh ! Initial value of h=e*sin(omega) from the initial conditions

real*8 CapC ! Integral of the motion EQ (16) in Pokorny, Vokrouhlicky 2013

real*8 c ! Integral of the motion ¢ = eta * cos (inc)

real*8 eta ! \eta = \sqrt{i-e"2}

real*8 gamm ! Factor Gamma for scaling the lenght of the Lidov-Kozai cycle - see below EQ (28) in
Vokrouhlicky, Pokorny, Nesvorny 2012

real*8 dk ! Displacement in k, for an exact impact configuration point - EQ (19) in Vokrouhlicky,
Pokorny, Nesvorny 2012

real*8 dh ! Displacement in h, for an exact impact configuration point - EQ (19) in Vokrouhlicky,
Pokorny, Nesvorny 2012

real*8 dkdt ! Derivation of k=e*cos(omega) by time - EQ (27) in Vokrouhlicky, Pokorny, Nesvorny 2012

real*8 dhdt ! Derivation of h=e*sin(omega) by time - EQ (28) in Vokrouhlicky, Pokorny, Nesvorny 2012

real*8 phk ! EQ (21) in Vokrouhlicky, Pokorny, Nesvorny 2012

real*8 phh ! EQ (22) in Vokrouhlicky, Pokorny, Nesvorny 2012

real*8 psk ! EQ (23) in Vokrouhlicky, Pokorny, Nesvorny 2012

real*8 psh ! EQ (24) in Vokrouhlicky, Pokorny, Nesvorny 2012
!

real*8 den ! EQ (20) in Vokrouhlicky, Pokorny, Nesvorny 2012

real*8 Pom ! T_Kozai - The lenght of the one Lidov-Kozai cycle [yr] - see Kinoshita & Nakai 2007
real*8 P2 ! EQ (17) in Pokorny, Vokrouhlicky 2013 - Probability part 2

real*8 aph
real*8 rho2
real*8 pi

real*8 kx
real*8 hx
real*8 dkdtl
real*8 dhdtl
real*8 dist
real*8 timm
real*8 ri
real*8 r2
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real*8 aa
real*8 th
real*8 ph
real*8 Ie
real*8 Iinc
real*8 Iom

integer i
integer j
integer 1
integer m
integer m2
integer nroot
integer znk(2)
integer ddd
integer CUBIC
integer ik
data pi/3.141592653589793/

real*8 err
real*8 preci

Pericenter rl and apocenter r2 of the target
ri=apl#*(1d0-epl)
r2=apl*(1d0+epl)

Zeros to variables
theta=0d0

phi=0d0

prob=0d0
prob1=0d0

ddd=0

Determine initial k,h for the projectile
kk=e*cos (om)
hhh=e*sin (om)

Determine aplha,eta
aph=rpl/a
eta=sqrt (1d0-exe)

Evaluate integrals of motion
c=etaxcos (inc)
CapC=1./eta/eta*((2d0+3.*e*e) * (3dO*c*c-eta*eta)+15d0* (eta*eta—-c*c) * (kk*xkk-hhh*hhh) )

Gamma factor, where 0.0009546 is mass of the Jupiter in Solar Masses
and 140.954423151 - this value is not important for the collision probability.
However scales the length of Lidov-Kozai cycle

gamm=2d0*pi*0.0009546*sqrt (a**3) /140.954423151

Iteration value
1=1

Should be computed only once (CHANGE)
CALL KINOSHITA(CapC,c,eta,om,gamm,pom)

Ascending/Descending node i = 1 Ascending, i = 2 Descending
do i=1,2

Determine coefficients for the Cubic equation
Ca=(-1.)*x(i+1)*30.*aph

Cb=6.%* (3. *aph*aph+5.*aph-5.*c*c)
Cc=(-1.)**(i+1)*aph*(36.*aph-20.-24.*c*c-CapC)
Cd=18.*aph*aph-20*aph-24*aph*c*c+30*c*c-CapC*aph

Call a routine to solve the cubic equation
nroot = CUBIC(Ca, Cb, Cc, Cd, x)

Loop over the roots of the cubic equation ie. the impact configurations
do j=1, nroot
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We want only non-complex solutions

if ((aimag(x(j)).eq.(0.)).and. (abs(real(x(j))).1t.(1.))) then

Get the real part of the complex root of the equation, k=e*cos(omega)
y(1)= real(x(j))

Evaluate h=e*cos(omega) - EQ (10) in Vokrouhlicky, Pokorny, Nesvorny 2012
z(2%1-1)=sqrt (1-y (1) **2-aph* (1+(-1.) ** (i+1) *xy(1)))

z(2%1-0)=-z(2%1-1)

Check if h=e*cos(omega) can exist

if ((1-y(1)**2-aph* (1+(-1.)**(i+1)*y(1))).1t.(0d0)) then

goto 200 ! GOTO END OF THE MAIN LOOP (it should never happen, however :))
endif

Assign to more conveniet(readable) variables

k=y (1)

hh(1)=z(2%1-1)

hh(2)=z(2%1-0)

Set number of unique h=e*cos(omega)

m2=2

Look whether h=e*cos(omega) is unique, if not m2=1
if (hh(2).eq.hh(1)) m2=1

Forced oscillations - max 4 impact configurations

if (CapC.lt.(2*(3*c**2-1))) then

m2=1

hh(1)=abs(hh(1))

See, whether omega is >180, if yes then h must be < 0
if (om.gt.pi) hh(1)=-hh(1)

endif

Loop over the impact configurations
do m=1,m2

Even more readable variables

h=hh (m)

eta=sqrt (1-h**2-k*x2)

Impact eccentricity,inclination and argument of pericenter
Ie=sqrt (k¥*2+h**2)

Iinc =acos(c/eta)

Iom = acos(k/Ie)

Factor /beta from Eq (21) - see below the equation for a formula
aa=(-1.)**(ik+1)*sqrt ((rpl-r1)*(r2-rpl))/(apl*sqrt (1d0-epl**2))

Solution for the ambiquity of acos in the determination of argument of pericenter of the impact
if (h.1t.(0.0)) Iom = 2xpi - Iom

Call Radiant and P2 determination (EQ. 17) - computes also impact velocities, which may be also

interesting output

PRI

CALL RADIANT_ECC(a,Ie,Iinc,Iom,apl,epl,rpl,th,ph,P2,ik)
Outputs from radiants and also k,h for intersections to arrays
theta(1%2-2+m)=th
phi (1*2-2+m)=ph
outh (1*2-2+m)=h
outk (1*2-2+m) =k
Factor /Lambda from EQ 23 (formerly named /rho_2 thus may be misleading (TO BE CHANGED FUTURE)
rho2=sqrt( &
(etax*2 - c*xx2) / &
(&
(1d0+aa**2) * (etax*2-c**2) * (1+(-1.) **x (i+1)*k) **2 &
+ (&
(h*eta)+(-1.)**(i+1)*aaxck (1+(-1.)**(i+1)*k) &
) k%2 &
) &
)
EQ 22
dist=(eta**2-aph* (1+(-1.)**(i+1)*k))*rho2
Partial derivations of the distance EQs (21) - (24) in Vokrouhlicky, Pokorny, Nesvorny 2012

(ICARUS)

phk=2.*k*(2.%(7.-3.*c*xc+3.*hxh-12.*k*k) +CapC)
phh=2.%h*(2.%(-8.+12.*c*c+3.*k*k+18. *xh*h)+CapC)
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psk=-2.%(k+(-1.)**(i+1)*aph/2.)*rho2
psh=-2.%(h)*rho2
Denominator EQ (20) in Vokrouhlicky, Pokorny, Nesvorny 2012 (ICARUS)
den=(phh*psk-phk*psh)
And finally displacements EQ (19) in Vokrouhlicky, Pokorny, Nesvorny 2012 (ICARUS)
dk=phh/den/a

=-phk/den/a

kx=k
hx=h

timm=0

If Denominator is too small we have to compute the time in the proximity of planet numerically (it
is a bit slower, but we have quite large steps)

if (abs(den).1lt.(2E-3)) then

if (abs(den).lt.(2E-3)) then

We do not know the radius of the target, thus we set this value as an approximate value (but should
be ok for most of cases).

err=1D-9

preci=1D-7

Set zero values for a special case commented in Vokrouhlicky, Pokorny, Nesvorny 2012 (ICARUS) -
Appendix

znk (1)=0

znk (2)=0

do while (abs(dist).lt.(err))
dkdt1=-3d0/2d0*preci*gamm*etaxh* (1- &

& 5d0/2d0*kxk* (etaxeta-c*c)/(l-etaxeta)/eta/eta+ &

& 5d0/2d0* (cxc-etax*4d0) / (eta**4d0)*h*h/(1d0-etaxeta))
dhdt1=3d0/2d0*preci*gamm*eta*k* (1+5d0/2d0*h*h*c*c/eta**4d0)
k=k-dkdt1
h=h-dhdt1
eta=sqrt (1-hxh-kx*k)
dist=(etaxeta-aph* (1+(-1.)*%x(i+1)*k))* &

& sqrt ((eta**2 - c*x2) / &
& (&
& (1d0+aa**2) * (eta*x*2-c**2) * (1+(-1.) **x (i+1) ¥k) **2 &
& + (&
& (h*xeta)+(-1.)*x(i+1)*aa*xc*(1+(-1.) **x(i+1)*k) &
& k%2 &
& )
Dist should be
if (dist.ge.(0.0)) znk(1)=1
if (dist.le.(0.0)) znk(2)=1
timm=timm+preci
enddo
if ((znk(1).eq.(1)).and.(znk(2).eq.(1))) ddd=1
znk (1)=0
znk (2)=0
write(*,*) timm, "END 1", ddd
k=kx
h=hx
eta=sqrt (1-hxh-kx*k)
dist=(etaxeta-aph* (1+(-1.)%x(i+1)*k))* &
& sqrt ((etax*2 - cx*2) / &
& (&
& (1d0+aa**2) x (etax*2-c**2) *x (1+(-1.) ** (i+1) *xk) **2 &
& + (&
& (hxeta)+(-1.)**(i+1)*aa*xc*(1+(-1.) **(i+1)*k) &
& k%2 &
& )

write(*,*) dist
do while (abs(dist).lt.(err))
dkdt1=-3./2.*preci*gamm*eta*h*(1- &

& 5./2.xkxk*(etaxeta-cxc)/(1-eta*eta)/eta/eta+ &

& 5./2.%(cxc-eta**4.) /(etax*4.) xhxh/(1-eta*eta))
dhdt1=3./2.*preci*gamm*etaxk*(1+5./2.xh*h*cxc/eta**4.)
k=k+dkdt1
h=h+dhdt1
eta=sqrt (1-hxh-kx*k)
dist=(etaxeta—aph* (1+(-1.)*%*x(i+1)*k))* &
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& sqrt((eta**2 - c**2) / &

& (&

& (1d0+aa**2)* (etax*2-c**2) * (1+(=1.) **k (i+1)*xk) **2 &
& + (&

& (h*xeta)+(-1.)**(i+1)*aa*xck (1+(-1.)**x(i+1)*k) &
& I**2 &

& )

if (dist.ge.(0.0)) znk(1)=1
if (dist.le.(0.0)) znk(2)=1
timm=timm+preci

! write(*,*) dist,k,h,timm
call sleep(0)
enddo

if ((znk(1).eq.(1)).and.(znk(2).eq.(1))) ddd=1
znk (1)=0

znk (2)=0

write(#,*) timm, "END 2",ddd

k=kx

h=hx

if (ddd.eq.(1)) then

timm=timm/2d0

write (*,*) "PRESKOK DRAH", timm,abs(timm)/pom,P2
else

write(*,*) "NEPRESKOK DRAH", timm,abs(timm)/pom,P2
endif

timm=timm/err

prob(1*2-2+m) = &
& abs (timm) /pom*P2/a

1111 1/a is from R/a = rho

Denominator is 0K, so we can go straighforward as in the article
else

k=kx

h=hx

dkdt=-3./2.*gamm*eta*h*(1- &
& 5./2.xk¥k*(eta*eta-c*xc)/(1l-etaxeta)/eta/eta+ &
& 5./2.%(cxc-eta**4.)/(eta*xx4.)*h*h/(1-eta*eta))
dhdt=3./2.*gamm*etaxk*(1+5./2.xh*xh*cxc/eta**4.)
prob (1%2-2+m)=abs (dk/dkdt) *2/pom*P2
endif
probl=prob (1%2-2+m)+probl
enddo

1=1+1
endif
200 continue
enddo

enddo

END

SUBROUTINE RADIANT_ECC(a,e,inc,om,apl,epl,rpl,theta,phi,P2,k)
IMPLICIT NONE

! This subroutine computes radiants of a particle (phi,theta)
! for a eccentric coplanar target and projectile

apex of the target’s motion has theta = O, phi = 0

! theta means ecliptic latitude

! phi means ecliptic longitude

! INPUT/OUTPUT
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INPUT Variables:

1
! a ... semimajor axis of the projectile

! e ... eccentricity of the projectile

! inc ... inclination of the projectile in radians

! om ... argument of pericenter of the projectile in radians
! apl ... semimajor axis of the target

! epl ... eccentricity of the target

! rpl ... heliocentric distance of the target

real*8 a,e,inc,om,apl,epl,rpl
integer k

OUTPUT Variables:

theta ... ecliptic latitude (-pi/2,pi/2)
phi ..... ecliptic longitude (-pi,pi)
P2 ...... second term in probability calculation

real*8 theta,phi,P2

real*8 eta,etapl,asc,dsc,GM,r1,r2
real*8 vi1,v2,v3,vel,pi,rad,bigR,bigF,P,R2F2

data pi/3.141592653589793/

! GM = gravitational constat * mass of the gravitational center
! in [astronomical unit*#*3 * mean solar day ** (-2) * solar mass**(-1)
GM = 0.2959122104742908d-03
! Some initial computations
rad=pi/180.0d0
eta=sqrt (1d0-exe)
etapl=sqrt (1d0-epl**2)
ri=apl*(1d0-epl)
r2=apl*(1d0+epl)
bigR=(-1.)**(k+1)*sqrt ((rpl-r1)*(r2-rpl))/rpl
bigF=etapl*apl/rpl
P=a*eta**2/rpl
R2F2=bigR#*2+bigF+*2

asc = P/(1d0+e*cos(om))
dsc = P/(1d0-e*cos(om))

! Zeros to variables
v1=0d0
v2=0d0
v3=0d0
vel=0d40

! write(*,*) "RADS ",asc,dsc
if ((1d0-1le-4.le.asc).and.(asc.le.1d0+1le-4)) then

vl = -(sqrt(apl/rpl*P)*(bigF*cos(inc) - exsin(om)/P*bigR) &
& - R2F2) / sqrt(R2F2)

v2 = (e*sin(om)*bigF/P + bigR*cos(inc)) * sqrt(apl/rpl*P) &
& / sqrt(R2F2)

v3 = - sqrt(apl/rpl*P) * sin(inc)

vel=sqrt (v1**2+v2**2+v3**2)
theta=asin(v3/vel)
phi=atan2(v2,v1)

! write (*,*)theta/rad,phi/rad, "asc"
endif

if ((1d0-1e-4.le.dsc).and.(dsc.le.1d0+1e-4)) then

vl = -(sqrt(apl/rpl*P)*(bigF*cos(inc) + e*sin(om)/P*bigR) &

& - R2F2) / sqrt(R2F2)

v2 = ( - exsin(om)*bigF/P + bigR*cos(inc)) * sqrt(apl/rpl*P) &
& / sqrt (R2F2)

v3 = + sqrt(apl/rpl*P) * sin(inc)

vel=sqrt (v1**2+v2**2+v3**2)
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theta=asin(v3/vel)

phi=atan2(v2,v1)

endif

theta=theta/rad

phi=phi/rad
P2=1d0/apl/4d0/sqrt (R2F2) *vel/sqrt (vel**2-v1**2) /sqrt (a**3)
END

SUBROUTINE COMELP (HK,CK,CE)

Purpose: Compute complete elliptic integrals K(k)

and E(k)
Input : K --- Modulus k ( 0 ?? k 7?7 1)
Output : CK --- K(k)

CE --- E(k)

IMPLICIT NONE
real*8 PK,HK,CK,CE,AE,BE,AK,BK

PK=1.0-HK*HK
IF (HK.EQ.1.0) THEN
CK=1.0+300.
CE=1.0
ELSE
AK=(((.01451196212%PK+.03742563713) *PK &
& +.03590092383) *PK+.09666344259) *PK+ &
& 1.38629436112
BK=(((.00441787012+PK+.03328355346) *PK+ &
& .06880248576) *PK+. 12498593597) *PK+.5
CK=AK-BK*dL0G (PK)
AE=(((.01736506451*PK+.04757383546) *PK+ &

& .0626060122) *PK+.44325141463) *PK+1.0
BE=(((.00526449639%PK+.04069697526) *PK+ &
& .09200180037) *PK+.2499836831) *PK

CE=AE-BE*LOG (PK)
CK=AK-BK*dlog (PK)
ENDIF

RETURN
END

SUBROUTINE KINOSHITA(CapC,c,eta,om,gamm,pom)

Kinoshita-Nakai 2007

Input variables

CapC .. energy integral in quadrupole Kozai oscillations
[T particle’s integral of motion ¢ = eta * cos(i)
eta ... eta = (1 - e*x2)

om .... argument of pericenter of the particle

Ms/Mj = 0.0009546, aJ*x3 = 140.954423151 AU**3
gamm ... gamm=2d0*pi*0.0009546*sqrt (a*a*a)/140.954423151

implicit none
real*8 CapC,c,eta,om,gamm
Output variables
! pom .... one period of argument of pericenter in years
(if in forced libration mode we take only 1/2 of it)
real*8 pom

! Temp variables

real*8 C1,C2,x0,x1,x2,DD,tmp,a0,al,a2,HK,CK,CE,nom,pi
complex*16 xq(2)
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data pi/3.141592653589793/

a0=0d0
al1=0d0
a2=0d0
x1=0d0
x2=0d0

C1=5d0+5d0*c*c
C2=5d0*c*c/eta/etatetaxeta+5d0* (1-eta*eta) *(1-c*xc/eta/eta)* &
& cos(2%om)

x0=1d40/4d0*(C1-C2)

DD = 1d0/2d0*(C1+C2)*1d0/2d0* (C1+C2)-12d0*5d0*c*c
if (DD .ge. 0.)then
xq(1)=cmplx ((-1d0/2d0* (C1+C2)+sqrt (DD))/2./(-3d0), 0.)
xq(2)=cmplx ((-1d0/2d0*(C1+C2)-sqrt(DD))/2./(-3d0), 0.)
else
xq(1)=cmplx (-1d0/2d0*(C1+C2)/2./(-3d0), +sqrt(-DD)/2./(-3d0))
xq(2)=cmplx (-1d0/2d0* (C1+C2)/2./(-3d0), -sqrt(-DD)/2./(-3d0))
endif
if (aimag(xq(1)).eq.(0.)) xl=real(xq(1))
if (aimag(xq(2)).eq.(0.)) x2=real(xq(2))
if (x1.gt.x2) then
tmp=x1
x1=x2
x2=tmp
endif
if (x0.le.x1) then
a0=x0
al=x1
a2=x2

endif

if (x0.ge.x2) then
a0=x1

al=x2

a2=x0

endif

if ((x0.ge.x1).and.(x0.1le.x2)) then
a0=x1

al=x0

a2=x2

endif

Complete Elliptic Integral of the First Kind = CK
HK=sqrt ((a1-a0)/(a2-a0))

CALL COMELP (HK,CK,CE)

write (*,*) CK

IF (HK.NE.1.0) WRITE(*,*) HK,CK,CE

IF (HK.EQ.1.0) WRITE(x,*) HK,CE
Nom=3d0*sqrt (6d0) *pi/8d0/CK*sqrt (a2-a0) *gamm
Pom=2d0*pi/nom

Variable Pom is a period of one Kozai cycle (see Kinoshita-Nakai 2007)

if (CapC.1lt.(2%(3xc*c-1))) pom=pom/2d0

END

FUNCTION quad(a, b, c, x)
Solve a quadratic equation where a, b, and c are real.
axx*x + bxx + ¢ = 0

This function returns the number of roots

Public Variables
a, b, c ... coefficients (input)
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Vox(d) ... two complex*16 solutions (output)
! nroot ... number of roots (output)

IMPLICIT NONE
complex*16 x(2)
real*8 a,b,c,DD
integer QUAD,NROOT

if(a .eq. 0.)then
if(b .eq. 0.)then
! We have a non-equation; therefore, we have no valid solution

nroot = 0
else
! We have a linear equation with 1 root.
nroot = 1
x(1) = cmplx(-c/b, 0.)
endif
else
! We have a true quadratic equation. Apply the quadratic formula to find two roots.
nroot = 2

DD = b*b-4.*ax*c
if (DD .ge. 0.)then
x(1) = cmplx((-b+sqrt(DD))/2./a, 0.)
x(2) = cmplx((-b-sqrt(DD))/2./a, 0.)
else
x(1) = cmplx(-b/2./a, +sqrt(-DD)/2./a)
x(2) = cmplx(-b/2./a, -sqrt(-DD)/2./a)
endif
endif

! Return the number of roots
QUAD = NROOT

end

FUNCTION cubic(a, b, c, d, x)

Solve a cubic equation where a, b, c, and d are real.
a*x**3 + b*x**x2 + c*x +d =0
This function returns the number of roots

Public Variables

a, b, ¢, d ... coefficients (input)
x(1) ... three (generally) complex*16 solutions (output)
nroot ... number of roots (output)
Local Variables:
y1, y2, y3 ... three transformed solutions

Formula used are given in Tuma, "Engineering Mathematics Handbook", p7
(McGraw Hill, 1978).
Step 0: If a is 0. use the quadratic formula to avoid dividing by 0.
Step 1: Calculate p and q
p = (3xc/a - (b/a)**2 ) / 3
q = ( 2+%(b/a)**3 - 9*bxc/a/a + 27*d/a ) / 27
Step 2: Calculate discriminant D
D = (p/3)**3 + (q/2)**2
Step 3: Depending on the sign of D, we follow different strategy.
If D<O, three distinct real roots.
If D=0, three real roots of which at least two are equal.
If D>0, one real and two complex*16 roots.
Step 3a: For D>0 and D=0,
Calculate u and v
u = cubic_root(-q/2 + sqrt(D))
v = cubic_root(-q/2 - sqrt(D))
Find the three transformed roots

yl =u+v
y2 = —(u+v)/2 + i (u-v)*sqrt(3)/2
y3 = —-(utv)/2 - i (u-v)*sqrt(3)/2
Step 3b Alternately, for D<O, a trigonometric formulation is more convenient
yl = 2 * sqrt(lpl/3) * cos(phi/3)
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y2 = -2 * sqrt(Ipl/3) * cos((phi+pi)/3)
y3 = -2 * sqrt(Ipl/3) * cos((phi-pi)/3)
where phi = acos(-q/2/sqrt(|p|**3/27))
pi = 3.141592654...
Step 4 Finally, find the three roots
x =y - b/a/3

IMPLICIT NONE

Declare variables
complex*16 x(3)

real*8 DD,q,p,templ,phi,temp2,u,v,yl,y2,y3,y2r,y2i,a,b,c,d,pi

integer QUAD,NROOT,CUBIC

data pi/3.141592653589793/
Step 0: If a is O use the quadratic formula.
if(a .eq. 0.)then
nroot = QUAD(b, c, d, x)
CUBIC = NROOT
return
endif

Cubic equation with 3 roots
nroot = 3

Step 1: Calculate p and q -
p = c/a - b*b/a/a/3.
q = (2.%b*bxb/a/a/a - 9.*b*c/a/a + 27.xd/a) / 27.

Step 2: Calculate DD (discriminant) -
DD = p*p*p/27. + gq*q/4.

Step 3: Branch to different algorithms based on DD
if (DD .1t. 0.)then
Step 3b:
3 real unequal roots -- use the trigonometric formulation
phi = acos(-q/2./sqrt (abs(p*p*p)/27.))
templ=2.*sqrt (abs(p)/3.)
y1 = templ*cos(phi/3.)
y2 = -templ*cos((phi+pi)/3.)
y3 = -templx*cos((phi-pi)/3.)
else
Step 3a:
1 real root & 2 conjugate complex*16 roots OR 3 real roots (some are equal)
templ = -q/2. + sqrt(DD)
temp2 = -q/2. - sqrt(DD)
u = exp(log(abs(templ))/3.)
v = exp(log(abs(temp2))/3.)
if (templ .1t. 0.) u=-u
if (temp2 .1t. 0.) v=-v
yl =u+v
y2r = -(u+v)/2.
y2i = (u-v)*sqrt(3.)/2.
endif

Step 4: Final transformation -—=
templ = b/a/3.
y1l = yl-templ
yil=y1-(d+yl*(c+yl*(b+yl*a))) &
& /(c+ylx(2.%b+yl*3.%a))
y2 = y2-templ
y2=y2-(d+y2* (c+y2+* (b+y2+*a))) &
& /(ct+y2*(2.*b+y2+3.%a))
y3 = y3-templ
y3=y3-(d+y3* (c+y3*(b+y3*a))) &
& /(ct+y3*(2.%b+y3*3.%a))
y2r=y2r-templ
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Assign answers -
if (DD .1t. 0.)then
x(1) = cmplx( y1, 0.)
x(2) = cmplx( y2, 0.)
x(3) = cmplx( y3, 0.)
elseif (DD .eq. 0.)then
x(1) = cmplx( y1, 0.)
y2r=y2r-(d+y2r* (c+y2r* (b+y2r*a))) &
& /(ct+y2r*(2.xb+y2r*3.xa))
x(2) = cmplx(y2r, 0.)
x(3) = cmplx(y2r, 0.)
else
x(1) = cmplx( y1, 0.)
x(2) = cmplx(y2r, y2i)
x(3) = cmplx(y2r,-y2i)
endif

! Return the number of roots
CUBIC = NROOT

end
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The classical Opik theory provides an estimate of the collision probability between two bodies on bound,
heliocentric or planetocentric orbits under restrictive assumptions of: (i) constant eccentricity and incli-
nation, and (ii) uniform circulation of the longitude of node and argument of pericenter. These assump-
tions are violated whenever either of the orbits has a large inclination with respect to the local Laplace
plane or large eccentricity, and their motion is perturbed by an exterior (tidal) gravitational field of a pla-
net or the Sun. In this situation, known as the Lidov-Kozai regime, the eccentricity and inclination values
exhibit large and correlated oscillations. At the same time, the longitude of node and the argument of
pericenter may have strongly nonlinear time evolution, with the latter being even bound to a small inter-
val of values. Here we develop a new Opik-type collision probability theory which is valid even for highly
inclined and/or eccentric orbits of the projectile. We assume that the orbit of the target is circular and in
the local Laplace plane. Such a generalized setting is necessary, as an example, to correctly estimate the
terrestrial impact fluxes of sporadic micrometeoroids on high-inclination orbits (notably those from the
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toroidal source and the associated helion and anti-helion arcs).
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1. Introduction

Many problems in planetary science require to determine the
collision probability of two bodies residing on the Keplerian orbits
with the same focal point. Here we consider the important case in
which the collision probability needs to be evaluated in a statistical
sense for a large population of bodies. In this case, it is often useful
if the probability is averaged over the secular orbital timescale.

The standard theory, used and extended by many researchers,
was developed by Opik (1951) (see also Opik, 1976; Wetherill,
1967; Greenberg, 1982). In his original formulation, Opik assumed
that the target on a circular orbit is bombarded by a population of
bodies on orbits with fixed eccentricity and inclination values.

Opik’s theory was generalized to the case of an eccentric orbit of
the target by Wetherill (1967) and Greenberg (1982). A different
generalized method was developed by Kessler and Cour-Palais
(1978) (see also Kessler, 1981). This more geometrical approach
based on the evaluation of the probability density distribution
has found a number of applications in planetary science (e.g., Steel
and Baggaley, 1985; Steel and Elford, 1986; Sykes, 1990).

In these standard collisional theories, the orbital eccentricity e
and inclination i is assumed to be constant during the secular evo-
lution cycle. This is appropriate for small e and i values, where e
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and i are roughly time-invariant. However, some problems in plan-
etary science require a method that is valid for high eccentricities
and/or high inclinations, where the effects of the Lidov-Kozai res-
onance can be important (e.g., Lidov, 1961, 1962; Kozai, 1962;
Morbidelli, 2002).

For example, the dust particles released from long-period
comets can be an important component of the zodiacal cloud. If
so, it would be important to calculate their impact rates on the
Earth (and relate the results to meteor observations), Earth-bound
detectors and spacecrafts. Other applications can be found in stud-
ies of planetary impact rates in the early Solar System when small
bodies were stochastically driven to high-e and -i orbits. In these
examples, the secular evolution of orbits clearly violates the
assumption of the standard Opik theory, because e and i are
affected by the Lidov-Kozai cycles.

Here we generalize the Opik theory to account for the
Lidov-Kozai cycles of high-i and -e orbits. After mathematical pre-
liminaries in Section 2, we generalize the collisional probability
theory in Section 3. In Section 3.3, we test the generalized theory
by comparing it with direct N-body integrations of orbits. Conclu-
sions are given in Section 4.

2. Mathematical preliminaries
We start by introducing mathematical concepts and notation

that will be used throughout the paper. Assume a particle on an
elliptic heliocentric orbit described using an osculating set of
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Keplerian elements: semimajor axis a, eccentricity e, inclination i,
longitude of node €2, argument of pericenter « and true anomaly
f. The angles i, 2 and w are defined with respect to a chosen inertial
frame (X,Y,Z).! The orbit intersects the (X,Y) reference plane in
ascending and descending nodes, where f=fy=-w and
f=fo=m — w, respectively. Denote a’ the heliocentric distance at
either of the two intersections. Introduce a local reference basis
(e, e, e,) of three orthonormal vectors with the origin at the ascend-
ing or descending node, such that e, is directed in the radial direc-
tion, e, in the longitude direction and e, along the Z axis.?

The heliocentric position vector r describing the elliptic orbit of
the particle reads

r(f) =r(f)lacos(w + f) + bsin(w + f)], 1)

with r(f) = a?/(1 + ecosf), 5> =1 — €2, and unit vectors a’ = (cos 2, -
sin©,0) and b'=(—cosisin®,cosicos,sini). At the ascending
node we have a = e, and b = cosie,, + sinie,, while at the descending
node a = —e,and b = —cosie,, + sinie,. Expanding r(f) near the origin
in the local (e, e, ;) system (i.e., near the respective nodal intersec-
tion with the (X,Y) reference plane), we obtain r(f) = d'e, + dr with

dr = A df + 5 Adf? + O(df?), @)

where df is infinitesimal increment of the true anomaly with re-
spect to the intersection value f,. Eq. (2) locally describes particle’s
elliptic orbit, with df being an affine parameter having values suit-
ably close to zero. The first term is the crudest rectilinear approxi-
mation, while the second term describes the local curvature of the
elliptic orbit. The first- and second-order vectorial coefficients read
(upper sign for the ascending node intersection and lower sign for
the descending node intersection)

A =F € Slnwe, + (cosie, + sinie;), ()
3 p? esinw . L
A =2 {1 —5p+ P} e —2—5— (£cosie, +sinie), 4)

where P=an?/a’ and 1> =1 — €%

Consider now an observer moving on a circular heliocentric
orbit with radius «' in the (X,Y) reference plane. Eq. (2) may be also
used to describe its orbit near the respective nodal intersection
with the eccentric orbit, with AT™ = e, (henceforth also the apex
direction), A5" = —e, and df = df,i., a differential in the observer’s
longitude. Denote V. the orbital velocity of the observer (given by
the third Kepler law) and V the relative velocity of the particle with
respect to the observer. It is convenient to introduce a scaled value
v of the relative velocity, namely v= V|V, and parametrize the
complete relative vector v" = (, 7, ;) = { cos bsin¢,cos bcos £, sinb)
Uy v;) = Y cosbsin{,cosbcos/,sinb) with a longitude ¢ and a lati-
tude b of the radiant seen by the observer (henceforth, ¢ is mea-
sured from the apex direction and increases toward local radial
direction in our notation). We also note that our choice makes v
point toward the radiant from which the observer sees the particle
impact.

The velocity components (2, 7, 2;) may be easily obtained from
the linear term in (2), namely by using

1 /dr
v=ey—y— <E>HO =e; —AVP. (5)

We thus obtain

! We assume i 0, otherwise a non-singular set of orbital elements would be
needed. In order to keep a close similarity in notation to the works of Opik (1951) and
Wetherill (1967) we only consider the non-planar case.

2 Note that the e, and e, vectors at the descending node are opposite to their values
in the descending node, and vice versa, in our definition.

ecosw =+(P—1), (6)
esinw = +VPy,, (7)
VPcosi=1- v,, (8)
VPsini = T, 9)

where the upper sign holds for the ascending node intersection and
the lower sign for the descending node intersection. Here the first
formula (6) is simply the geometric condition of intersection at
heliocentric distance a’ (as stated above), and the next three formu-
las (7)-(9) specify the radiant location and impact velocity (in units
of Veirc). Obviously, our (v, v, v;) are closely related, in fact identical,
to the standard velocity components (U, Uy, U,) introduced in the
Opik theory (see, e.g., Opik, 1951, 1976).

Finally, it will be useful to rewrite beforehand Eq. (6) using the
non-singular variables k=ecosw and h=esinw and parameter
o = d'[a. In the (k, h) plane the nodal intersection condition (6) reads

o2

T (10)

(ki%)erhz:l—oH

which is simply an equation of a circle displaced by +«/2 on the k-
axis for the ascending, resp. descending, node and radius equal to

V1-—o+oa?/4.

3. Opik collision probability approach

In the Opik approach, the collision probability of a particle with
a target is composed of two independent parts: (i) probability P,
that during the secular cycle of the particle orbital elements its
heliocentric node is close to the target’s circular orbit (such that
their distance can be small enough), and (ii) probability P, that
the target is close to the nodal intersection of the particle orbit.
A product of these statistically independent partial probabilities
provides the total probability of impact per revolution of the parti-
cle: P = P,P,. Dividing this value by the orbital period of the particle
then yields total probability per unit of time (this is because we as-
sume an equilibrium distribution of particles along the impacting
orbit). Obviously, in this way the resulting collision probability is
a long-term averaged value or, equivalently, a population averaged
value for a large population of particles in steady-state.

Because we keep the assumption of the circular motion of the
target and the rectilinear representation of the particle motion
near the nodal configurations (first term in Eq. (2)), analysis of P,
is the same as in Opik (1951). In particular, assuming the target
with radius R on a circular heliocentric orbit with radius aj.., we
have

Pa@.et) = zam 2 —F(a,e,i)’ (1)
with
T(a,e,i) = aa +2 af_mn cosi, (12)
1]
F(a,e,i) = azrc + i.nz cos?i. (13)
CIrC

However, to compute P;, Opik’s assumed constant values of e and i
and uniform circulation of w. This is an acceptable approximation
for low inclination and low eccentricity orbits, but it fails when
either of or both these elements are large. Our goal is to extend
determination of P; for orbits with arbitrary inclination and eccen-
tricity values.
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3.1. Lidov-Kozai driven secular evolution of the particle orbit

We adopt a secular model for particle dynamics, namely assum-
ing its orbit is not resonant with any of the perturbing massive
bodies in the Solar system. For simplicity assume planets move
on circular and coplanar orbits. Within this model, the first-order
perturbations of particle dynamics are obtained by independent
averaging of the perturbing function from an arbitrary number of
planets over their mean longitude in orbit and that of the particle
(e.g., Morbidelli, 2002). Such an approximation immediately pro-
vides two integrals of motion, notably (i) the semimajor axis a of
the particle, and (ii) projection of the orbital angular momentum
on the symmetry axis of the planetary system (i.e., normal to the
Laplace plane). The latter may be most conveniently expressed
using a constant ¢ =#cosi, which implies that any variation in
eccentricity e (or #) is correlated with the corresponding variation
of the inclination i. In other words, inclination may be considered
as a dependent parameter on the eccentricity. The axial symmetry
of the secular (averaged) problem also implies that the longitude of
node Q of the particle orbit is a dummy parameter in the perturb-
ing function P, which - apart from constants - depends only on
two orbital parameters: eccentricity e and argument of pericenter
o (or their canonical analogs within a Hamiltonian theory; see,
e.g., Morbidelli, 2002). Finally, since averaging over planets’ motion
about the Sun eliminates time dependence of the perturbing func-
tion, its value itself is also an integral of motion: P(e,w;
a,c) = constant. This again shows, that any secular variation in @
is reflected in a correlated way in the respective variations of e.

In the most general situation of multiple planets with particle
orbit crossing all or some of them, the averaged perturbing func-
tion P(e, w;a, c) may be obtained only using numerical quadrature
(e.g., Bailey et al., 1992; Thomas and Morbidelli, 1996; Gronchi and
Milani, 1998, 1999; Morbidelli, 2002). It should be noted that the
problem has, aside to numerical evaluation, also subtle conceptual
(mathematical) difficulties related to averaging of perturbing func-
tion with singular points (cf., Gronchi and Milani, 1998). Our ap-
proach developed below might be applied to this case as well,
but it would require to evaluate most of the necessary functions
numerically. In order to better understand the situation we prefer
to restrict to a simpler case, in which more computations could be
developed analytically and thus more directly compared with the
traditional Opik’s theory. In particular, we assume only one per-
turbing planet (Jupiter) and a particle orbit entirely inside its orbit.
The Earth as a target is assumed massless, which is a fairly good
approximation overall. In this case, P(e, ®;a,c) may be obtained
in terms of multipole series (e.g., Kozai, 1962), of which we shall
retain only the leading quadrupole part. Unless perihelion of the
particle orbit is close to Jupiter, this is again a fairly satisfactory
assumption, at least for sake of our illustration.> Using these
approximations, a number of constant terms may be factorized from
expression of P(e, w;a,c), resulting then in an integral of motion in
the form (e.g., Kozai, 1962; Kinoshita and Nakai, 2007)
H(k,h;c) :%[(2 +3e2)(3¢ ) +15(P7 — ) (K —~h*) =C.  (14)
Here, we introduce the non-singular variables k and h from Eq. (10).
Topology of the C-conserved isolines in the (k,h) plane for various
values of ¢ and C has been extensively studied (e.g., Kozai, 1962;
Morbidelli, 2002) and we do not need to discuss it in detail. Suffice
it to say that in the limit of |c| large enough the level curves of con-
stant C are ovals about the origin of the (k,h) plane that become
near circular for |c| — 1. In this limit, both eccentricity and inclina-

3 In any case, adding higher-multipole terms in the secular perturbing function is
just a matter of more algebraic labor, but does not represent any conceptual obstacle
to our approach.

tion of the particle orbit are small and nearly conserved, matching
thus the assumptions of the original Opik collisional theory. We also
note that for a given c value, the eccentricity can take values up to a
maximum v'1 — ¢2 (more rigorous specification of the interval of e
and i value for given c and C integrals can be found, for instance,
in Kinoshita and Nakai, 2007, Egs. (31) and (32). At the critical value
c?=3/5, topology of the level curves of the C integral changes,
adapting to bifurcation of two new stationary solutions at the h axis
(i.e., with cosw = 0): (i) for C>2(3c% — 1) they still circulate about
the origin, but may take excursions to a very large eccentricity value
on the h axis, and (ii) for C < 2(3c? — 1) they circulate about the sta-
tionary points on the h axis. Examples are later seen in Figs. 3 and 4.

3.2. Crossing configurations with a target of a finite size

The exact configurations of orbital intersection with a target on
a circular heliocentric orbit with radius ag,. are determined as
roots k. and hy of Eq. (10), or equivalently Egs. (6) and (14) with
o = dgirc/a. All of them can be computed analytically, leading to a
problem of roots of a cubic equation for k4. Because of the inver-
sion symmetry h, < —hy, there is always an even number of roots
with generic number of 4 or 8 (2 and 6 are singular cases).* As a
result, there can be twice as many impact configurations for orbits
with high inclination than in the low inclination regime (only 4).
This has been known for a long time, in particular from studies of
high-inclination meteoroid streams (e.g., Babadzhanov and Obrubov,
1992). Examples are shown in the left panels of Figs. 3 and 4.

Now, the P; probability in the Opik approach stems from the
fact that the target has a small but finite radius R (R < dgrc).> This
means that also orbits with k and h values in a small neighborhood
of (ks,hy) could pass closer than distance R from the center of the
target and should be considered intersecting. The limiting configura-
tions with ki, and hy;,, values are those for which the particle orbit
is grazing at distance R from the target’s orbit.

In order to formulate such a condition, we use local description
of the particle’s elliptic orbits from Section 2, Eq. (2). Consider par-
ticle’s orbit with nodal intersection of the (X,Y) plane at a heliocen-
tric distance a close to d.® Define the (e, e, e,) reference frame
with the origin at target’s orbit at a longitude identical to particle’s
intersection point with the (X,Y) plane - see Fig. 1 for illustration.
Retaining just the linear representation in (2), the particle’s position
vector in our reference frame is given by

AT(2) = dA A+ (@ — agre)er + O(22), (15)

where we denoted 4= df; recall the values near 4= 0 describe the
particle orbit near the nodal line. The vector A, is given in Eq. (3)
with P=an?/a'. In the same way, we may locally represent target’s
orbit in the same reference frame with
AT (J) = acirceypl + O(N), (16)
where we again retained just the linear term (the target’s orbit is
thus ¢ axis in our system). The square of the target-particle distance
is simply d?(4, %) =[Ar(%) — Ar(X)] - [Ar(4) — Ar'(X)], and we seek
a minimum orbital distance d?, as a minimization problem in the

4 Apart from the mentioned symmetry, stemming from the fact that Eqs. (10) and
(14) contain only h?, there is also ky <> —k, symmetry for impact configurations in
the ascending and descending nodes of the particle orbit.

5 In fact, the geometric radius R of the target should be augmented by a factor

1+ (Vesc/V)?, where Ve is the escape velocity from the target and V is the impact
speed of the particle at a large distance from the target. This recalibration takes into
account focusing effect of the target’s gravitational field.

6 Note, we need now to distinguish particle nodal distance a’ from the target’s
heliocentric distance dir. This has to be kept in mind when consulting formulas from
Section 2.
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a target)

circ (

a’

(particle)

Fig. 1. Geometrical quantities used to represent particle and target motion near the intersection configuration. The reference frame (e,,e,,e;) has the origin at the target’s
orbit: e, in the radial direction from the Sun and e, in the apex direction of the target’s heliocentric motion (assumed circular with radius acir). The particle’s orbit has a node
at heliocentric distance a’ # agrc and its position Ar in the local frame (e, e, e;) is given by Eq. (15). We seek minimum distance dm;, of the particle from target's orbit.

two-parametric (4, 4') space.”® In the linear representations of Ar(%)

and Ar'(2') the task is simple enough and yields
Psini

VP sinti+esinf o

with @ =an?/(1 + ecosw) for the ascending and descending node

intersections. Scaling dmi, by a and making it equal to p = R/a, we
obtain for the target-grazing orbits

dmin = (a/ - acirc) (17)

}12 _ C2
2 —c2)(1£k)?+h*p2

Kk h;c)=[? —o(1+ k)]\/ 0. (18)
Here, we used the secular representation of the orbital elements
evolution, eliminating in particular inclination i using c=#cosi
integral. The kjim and hyim values are obtained by simultaneous solu-
tion of Eqs. (14) and (18). Unfortunately, this system of equations
does not have simple analytical solutions. However, given that
p <1, we may seek small displacements sk and sh such that
Kiim = kx + 6k and hy;, = hy + 6h. Linearizing our problem in 6k and
Sh we obtain

dk=—p (Wéah)*7 oh=p (8H£8k)* 7 (19)
where
Dy = (0K/0h), (0H/0k), — (0K/0k),(OH/Oh),. (20)

The symbol * here means that all derivatives have to be evaluated
using the (k,hs) values corresponding to the exact intersection
condition. After a brief algebra we find

(OH/k), = 2"’# [2 (7 S3¢ 1212+ 3hi) + C], 1)
*

(OH/0h), = 2’% [2(12c2 — 843Kk + 13hi) + c}, (22)
*

7 In our linear approximation things are simpler, and one may drop A by just
evaluating Ar(4) distance from the ¢ axis. However, the two-parametric formulation
might be important to keep in mind when higher-order approximations for Ar(1)
and/or Ar'(2') would be used.

8 Note that d?(4, /') is quadratic in A Its description using the linear approximation
(15) might look incomplete, because the corresponding quadratic term (see, e.g., Eq.
(2)) would also contribute to the quadratic term in d2. However, a closer analysis
reveals that this addition does not change our results. A more general Opik collision
theory, for instance suitable to describe impacts very close to the pericenter or
apocenter of the particle orbit (see Appendix A), would require a complete analysis
with r(2) and r’(#') represented by higher-order terms beyond the linear approxi-
mation used here (and in most previous works).

B o n3 —c?
(9K 0k), = -2 (k,, + j) /(’72* mETETRY (23)

*

7]1 B C2 (24)
% —2)(1 £ ka)* + B

(9Kc/oh), = Zh*\/

It turns out that the novel property of our approach are mainly the
(0H/0k), and (0H/0h), derivatives, because the condition (18) and
its partial derivatives remain formally the same as in the classical
Opik theory (see Appendix A, Eqs. (A7) and (A8)). Note that in the
linear approximation, the (Jk,sh) solution is accompanied with a
symmetric (—dk,—éh) solution. Obviously, such displacements are
along the tangent to the level line of the H = C integral at the
(ky,hy) point.

A second novel aspect of our approach, and a generalization of
the classical Opik theory, is that for each possible intersection
configuration (ks,hs) we determine time interval (At), it takes
the particle orbit to evolve from (k4 — ok ,hy —Sh) to (ki +
Sk,hy + oh), i.e. across the interval of values it may impact onto
the target. The partial P; probability from this intersection config-
uration is then (At)x/Tozai» Where Tyq..i i the period of whole
secular evolution along the level curve of the C integral; Tyozi
may be evaluated using a complete elliptic integral of the first
kind as shown by Kinoshita and Nakai (2007). We then define
the Opik-type collision probability of impact per revolution of
the particle

P:Z( At >*P2(a,e*,i*), (25)

Tl(ozai

which generalizes (A13) recalled in Appendix A. The summation in
(25) is performed over all intersection configurations for both
ascending and descending nodes. Note that, unlike in the Opik ap-
proach, the orbital eccentricity e, and inclination i is now different
for different crossing configurations and we need to multiply the
partial P probability with the appropriate and individual P, proba-
bility that the target is near the intersection location. Because the
semimajor axis value of the particle is constant, the intrinsic colli-
sion probability per unit of time is simply

P = P/Tony = (1/2m)(VGM/a*?)P., (26)

where Ty, is the orbital period of the particle and M is the solar
mass.

Finally, we return to the issue how to determine (At)4. The
flow along the C integral isoline is given by the differential
equations (e.g., Kozai, 1962; Morbidelli, 2002; Kinoshita and Nakai,
2007)
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dk 3. 5c2(1—k*) — i

E——jﬂ’lh 1+§T«, (27)
dh 3 5 c2h?

azjync 1+2’14} (28)

where y =n (m/M) (a/aJu,,)B/2 with n mean motion of the particle, m

mass of the Jupiter and aj,, semimajor axis of its orbit; note we
assume that the single perturber of the particle orbit is Jupiter.
Given the linear solution of sk and sh above with typical values of
the order p(<1), we found satisfactory to use a linear discretization
of the differential Eqgs. (27) and (28), namely representing dk — &k,
dh — oh, dt — (At)«/2 evaluating their right hand sides at (kx,hx)
values. Either of Egs. (27) and (28) provide the same results, up to
terms of the second order in p.

This approach only fails when the displacements dk and h are
large, a singular situation when D, is very near O; this always
occurs when h, = 0, but there might be also other cases in general.
In the Opik formalism limit this singularity happens when the par-
ticle’s perihelion or aphelion are equal to radius a,c of the target’s
orbit (see also Appendix A). For that reason, we abandon the simple
approach above in this case and we solve Eqs. (14) and (18) numer-
ically when D, < 0.05 in Eq. (20). This provides an accurate deter-
mination of all possible intersection configurations. We then
determine the corresponding (At)4 value using a numerical inte-
gration of the secular system (27) and (28) in between the grazing
configurations.

3.3. Comparison with the standard Opik’s theory

Here we test the generalized collision probability theory and
compare the results with those of the standard Opik theory (see
Appendix A for a comparison of the analytical aspects of the two
methods). In our first test case, we calculate the Earth-impact rates
for a population of particles that is perturbed by Jupiter (circular
orbit, aj,p = 5.2 AU). The Earth is assumed to have a circular orbit
with agjc =1 AU).

This is a simplified system. In reality there are more perturbing
planets, including the Earth itself, whose orbits are also evolving
due to their mutual interactions. This latter effect is especially
important, because it produces secular resonances in the planet-
crossing region (e.g., Michel and Thomas, 1996; Michel and
Froeschlé, 1997) and variations of ¢ and C. We will consider this
more complicated case later in this section.

We conducted numerical tests to compare the collision proba-
bility p from (26), which should be accurate for the high-inclina-
tion and/or high-eccentricity orbits, with the predictions of the
Opik theory, which should be only approximate in these cases.

As the secular evolution follows the H(k, h;c) = C isoline in the
(k,h) plane there are typically four or eight intersections with the
target orbit. In order to compare p with the collision probability
obtained by the Opik’s method, we determine popik(a,e,i) from
Eq. (A14) at each point of the line defined by H(k, h;c) = C,° and
compute an average value pegr as

(29)

Tkozai
Degr = /O dtpopik(a,e,i).

Tl(ozai P

Here, Txozai is the period of the Lidov-Kozai cycle. Note that evalu-
ation of (29) needs some care when either pericenter q or apocenter

9 Obviously, application of the Opik approach is not well justified for orbits with
low c value associated with significant e and i evolution; nevertheless, it has been
used even in these cases in previous works (e.g., Galligan and Baggaley, 2005;
Campbell-Brown, 2008; Nesvorny et al., 2011) and part of our work is to see a misfit
represented by this inconsistency.

Q of the particle orbit becomes equal to the radius a, of the tar-
get’s orbit. This is because

1
(acirc - Q) (Q - acirc)

DPopik X ) (30)

and in both cases Opik’s collision probability has a singularity (see,
however, discussion in Appendix A). Nevertheless, as seen from
(30), this singularity is integrable and classical numerical tools
can be used to accurately evaluate peg (see, e.g., Press et al., 2007).

3.3.1. Testing the theory: a simple setup

We first test things in the low-e and low-i limit, where the stan-
dard Opik works well. The initial orbital elements of particles were
settobe a=1.01 AU, e=0.02, i =3° and w = 0°. In this case, the Ko-
zai constant ¢ ~ 0.9984 is very close to unity. We thus expect the
eccentricity and inclination should be approximately conserved
and the secular angles w and €2 should uniformly precess. Indeed,
Fig. 2 shows that the H(k, h;c) = C isoline in the (k,h) plane devi-
ates negligibly from a small circle about the origin. As expected,
D=~ Pefr in this case. The 0.1%-difference between p and peg is of
the order of variations of popix within one secular cycle of the orbi-
tal evolution. This difference is partially due to slight variations in e
and nonlinearity of time dependence of w, but may also express a
small internal inaccuracy by which we can evaluate both p and pe.

We now move to testing the methods in the Lidov-Kozai re-
gime. We set a=14AU, e=0.2, i=65° corresponding to
c~0.414 < V0.6. Figs. 3 and 4 show the results for @ =0° and
w = 60°, respectively. The left panels show nature of the particle
orbital evolution using the #H(k, h;c) = C isoline in the (k,h) plane
and the two circles characterize nodal impact configurations with
the Earth orbit (with agc = 1 AU; see Eq. (10)); symbols at intersec-
tions of the respective curves highlight the exact impact geome-
tries that could occur for this orbit during its secular evolution.
There are eight of them in Fig. 3 and four of them in Fig. 4. The right
panels show formally computed Opik collision probability values
Popik as a function of time during a timespan of one secular cycle
Txozai Of the particle evolution. The discontinuities, when pop; for-
mally diverge, correspond to configurations of pericentric impact
to the target.!® The solid gray lines are p and p. values; note, that
in both cases pegr is about twice larger than p, indicating that using
the standard Opik theory one would overestimate the collision prob-
ability value for these orbits. The middle panels show radiant posi-
tions of the impacting particles: the symbols are real radiants
corresponding to the true intersection geometries indicated on the
left panels, while the gray line are collections of “fake radiants”.
The latter were obtained by applying assumptions of the Opik the-
ory, namely constant values of eccentricity and inclinations to the
orbit of particle at different phase of its Lidov-Kozai-driven evolu-
tion. Obviously such an approach is incorrect, but it has been used
in some previous works (e.g., Nesvorny et al., 2011). Note that the
angular distance ¢ of the fake radiants from apex direction is given
by cosd = (v-e;)/v = (1 - VPcosi)/\/3 —T(a,e,i), see Eqs. (7)-(9).
As a result, 5 depends only on the semimajor axis a and the Kozai
constant c¢ of the particle orbit, both conserved during the particle
secular evolution, and thus the fake radiants project on arcs of con-
stant angular distance from the apex direction.!” When a particle or-

10 Note, for instance, that the initial values of the orbital elements have a pericenter
q > dcire and no impact configuration is possible; it only takes a while during the
secular evolution of the particle orbit before the eccentricity increases enough to
make q = dcirc.

' This fact has actually been known and used in the meteoritics; see, e.g., Valsecchi
et al. (1999), where the secularly invariant value of ¢ (0 in the notation of this paper)
plays a crucial role in defining the similarity function for meteoroid streams.
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Fig. 2. Secular evolution and intrinsic impact probability for a particle orbit with initial semimajor axis a = 1.01 AU, eccentricity e = 0.02, inclination i = 3° and argument of
pericenter w = 0°. Left: H = C isoline in the (k,h) plane of variables (black solid curve) and nodal intersection conditions with a.i.. = 1 AU for ascending and descending nodes
(segments of gray circles; see Eq. (10)). Symbols are the four possible impact geometries. Right: Collision probability value popi(a,e,i) formally computed using the Opik
formalism for time-dependent values of e and i as given by the secular evolution of the orbit; the abscissa is time in ky during one secular cycle Tio.i, and the ordinate is the
intrinsic collision probability per AU? and yr. The horizontal lines are: (i) pe defined in Eq. (29), and (ii) the true collision probability p defined in Eq. (25).
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Fig. 3. Secular evolution and impact geometries for a particle orbit with initial semimajor axis a = 1.4 AU, eccentricity e = 0.2, inclination i = 65° and argument of pericenter
= 0°. Left: H = C isoline in the (k, h) plane of variables (solid curve) and nodal intersection conditions with ag = 1 AU for ascending and descending nodes (gray circles; see
Eq. (10)). Symbols are the eight possible impact geometries. Middle: Radiant position of the eight impacting configurations as seen by the observer on a circular heliocentric
orbit with radius aci;c = 1 AU; size of the symbol is scaled by the partial collision probability for this particular impact geometry. The gray arcs are collections of “fake radiants”
constructed for orbits with constant eccentricities and inclinations, whose values are achieved during the secular evolution of the particle orbit. The abscissa is longitude
measured from the apex direction, the ordinate is latitude (both in degrees). Right: Collision probability value popix(a,e, i) formally computed using the Opik formalism for
time-dependent values of e and i as given by the secular evolution of the orbit; the abscissa is time in ky during one secular cycle Tko.ai, and the ordinate is the intrinsic
collision probability per AU? and yr. The horizontal lines are: (i) pegr defined in Eq. (29), and (ii) the true collision probability p defined in Eq. (25).
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Fig. 4. The same as in Fig. 3 but for an orbit with initial semimajor axis a = 1.4 AU, eccentricity e = 0.2, inclination i = 65° and argument of pericenter « = 60°.

bit circulates about a stable point on the h axis, such as seen on in general (Fig. 5). We find that peg/p > 1, except if the impacts oc-
Fig. 4, the argument of pericenter is forced to oscillate about 90° cur near the pericenter or apocenter, where peg/p < 1.

or 270° values, and the radiants asymmetrically populate only one Note the unusual extension of the impact probability line in
quadrant in the longitude vs. latitude plane. The size of symbols Fig. 5 just below Q = a¢,. Such a configuration is always an end-
denoting the correct radiants is scaled by the partial collision prob- state of a sequence of impact possibilities in the Opik approach,
ability — (At/Tiozai)xP2(a,ex,ix), see Eq. (25) - for this particular im- when eccentricity of the particle orbits is assumed constant.

pact configuration. Note that the higher-latitude radiants have Fig. 6 helps to understand the situation. Shrinking the particle orbit
systematically larger collision probability (e.g., in Fig. 3 three times) semimajor axis makes o = ac/a increase and the Earth-impact cir-
than the lower-latitude radiants. This is because the particle orbit cles from Eq. (10) move toward larger k values and shrink their ra-
spends more time at the large-inclination, and low-eccentricity, dius in the (k,h) plane. This would have lead to a “nominal”
state and thus (At), is larger for the high-inclination radiants. sequence of impact geometries 3’ to 1’ with no possibility of im-

In the two cases discussed above peg > p, indicating that the true pact for the smallest a value considered in this figure; in the same
collision probability was smaller than the value given by the Opik time the impact geometry 1’ would be exactly the end-member
theory. We now consider the same parameters as those used in case with Q = ag;. When the secular evolution of the particle orbit
Fig. 3, but let the semimajor axis a change to see how peg/p varies is described by the more involved solid line H(k, h;c) = C, impact
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Fig. 5. The ratio per/p shown as a function of the semimajor axis a for orbits with
fixed initial eccentricity e=0.2, inclination i=65° and argument of pericenter
w = 0°. The target’s heliocentric distance is ac;c = 1 AU. The discontinuities occur for
initial orbits with pericenter q or apocenter Q equal to ag.. Only for orbits close to
these geometries p becomes larger than pes;, otherwise the use of Opik formulation
overestimates the collision probability with the target. The unusual feature below
the formal Q = a, limit is explained using Fig. 6 (see discussion in the text).
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Fig. 6. Conditions for impacts near the apocenter of the particle orbit in the
(k,h) = e(cosw,sinw) plane of variables. The gray curves are the descending node
impact circles from Eq. (10) for three slightly different values of o = ag/a (smaller
circle for a larger «, thus smaller a, value). The solid black curve is a part of the
H(k,h;c) = C isoline for certain values of ¢ and C integrals of motion, describing
secular evolution of a potentially impacting particle. The black symbols are impact
geometries for various values of eccentricity of the particle. The impact case labeled
1=1"with h =0, corresponding to apocenter condition Q = ag., would have been in
the Opik theory an end-member of the possible family of impacts (3’ — 1') along the
family of constant eccentricity orbits shown by the dashed circle. For the true orbit
an continuation of the impacts is possible up to the limiting case of grazing impact
2.

geometries are possible even after the apocenter geometry 1 has
been reached. For smaller a values the impact eccentricity may
again increase up to the true end-member of the impact sequence
at 2.

3.3.2. Testing the theory: a more realistic setup

We now compare the theory with the statistics of terrestrial im-
pacts as recorded by a numerical integrator. We consider two sets
of 500 massless particles having initially a=1.4 AU, e=0.2 and
i=65° The argument of pericenter w=0° in the first set and
w =60° in the second set. Nodal and orbit longitudes were taken
randomly between 0° and 360°.

We first considered an idealized planetary system consisting of
the Sun, Earth and Jupiter (both planets on circular orbits as be-
fore). The Earth was given zero mass and its radius was multiplied
by a factor of 10 to accelerate the impact rate in the numerical inte-
gration (Rgarn = 4.26 x 1074 AU).

We numerically propagated the orbits of all bodies with the
SWIFT_RMVS3 integrator,'? using a 2-day time step, and recorded
the direct impacts of particles on the Earth. Fig. 7 shows the fraction
of particles surviving in our simulation as a function of time. For
comparison, we also show the expected decay of the population
assuming it can be modelled using a Poissonian processes with cer-
tain characteristic timescale t, thus npy;s(t) = exp(—t/t). The decay-
curve labeled 1 has t1=7;~94Myr (upper panel) and

12 http://www.boulder.swri.edu/~hal/swift.html.
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Fig. 7. Fraction of particle population remaining the numerical simulation shown
by symbols vs. time t (in Myr). 500 particles were initially put on orbits with
semimajor axis a = 1.4 AU, eccentricity e = 0.2, inclination i = 65° and argument of
pericenter = 0° (upper panel) and w = 60° (bottom panel); longitude of node and
longitude in orbit were set randomly. Their orbital evolution was numerically
propagated and direct impacts onto the Earth recorded in a reduced model where
only Jupiter was considered on a circular heliocentric orbit (the Earth had zero mass
aradius R 10 times larger that the true value). The gray curves simulate results from
a Poissonian process with a characteristic timescale 7, thus exp(—t/t): (i) the curve 1
has 7 ~ 9.4 Myr (upper panel) and t ~ 13.3 Myr (bottom panel), corresponding to 1/
(pR?), and (ii) the curve 2 has 7 ~ 7.7 Myr (both panels), corresponding to 1/(pesR?).

T =177 ~ 13.3 Myr (bottom panel), while the decay-curves labeled 2
have 1 = 1, ~ 7.7 Myr (both upper and bottom panels).

We find that numerically recorded impact rate on the Earth
very nicely matches the decay curves with 7 =7,. This is because
71=1/(p R?), where p~0.586AU2y~! (upper panel) and
p~0.413 AU 2y~ (bottom panel) were determined using our
generalized collisional probability theory (see Figs. 3 and 4). The
probability p therefore gives a simple and very good approximation
for the real collisional decay. For comparison, the Opik collision
probability is  pes~0.715AU2y~! (upper panel) and
Peit = 0.716 AU 2y ! (bottom panel), and 7 = 1/(perr R?) decay in
Fig. 7. Henceforth, we verified that the standard Opik theory would
suggest a stronger decay than the actual one.

We also determined the direction of impacts in the numerical
integrations described above. We found that the simulated parti-
cles indeed hit the Earth from the two discrete radiant locations
shown in Figs. 3 and 4. The impacts from the higher-latitude radi-
ants are approximately three times more numerous than those
from the lower-latitude radiants. This is in a very good agreement
with expected number of impacts in these radiants from our new
theory.

We now consider a more realistic model of the Solar System
where we take into account the gravitational perturbations be-
tween all planets. To prevent particles from impacting the terres-
trial planets other than Earth, we set the physical radii of
Mercury, Venus and Mars to zero. The Earth’s radius is increased
by a factor of 10. We consider the same two particle populations
as before. The system was numerically integrated with
SWIFT_RMVS3.
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Now, Jupiter is not the sole perturber of particle orbits, and the
planetary orbits undergo secular variations due to mutual pertur-
bations. In addition, close approaches of particles to the terrestrial
produce a random walk in their orbits and affect the secular evolu-
tion. The evolving system is therefore more complex than the sim-
ple Lidov-Kozai model that we used in our generalized theory.

Fig. 8 shows how the fraction of the initial population remain-
ing in the simulation decreases with time for the two simulations.
Focusing first on the former case, we note that the particle popula-
tion decay follows on average the expected Poissonian curve 1
(corresponding to the characteristic collision timescale ©=1/(p
R?) ~ 9.4 Myr). However, initially the particles are being elimi-
nated slightly faster while only at later epochs the rate of their
elimination becomes slightly slower than shown by the idealized
curve 1. We believe this is partly because of the particle-orbit scat-
tering by the terrestrial planets, such that some particles are scat-
tered onto orbits with smaller semimajor axis value and have
effectively larger collision probability with the Earth, while the
remaining population of particles is biased toward somewhat lar-
ger semimajor axis values with smaller collision probability with
the Earth.

The situation is somewhat different in the bottom panel of
Fig. 8, where the particle orbits had initially @ = 60°. This is the
case, when the argument of pericenter = would circulate about a
stationary point on the h axis, making w oscillate in a limited range
of values, in the idealized Lidov-Kozai model (see the left panel on
Fig. 4). However, this particular behavior of the orbits is quickly
removed by both semimajor axis change due to scattering on
terrestrial planets and a complex set of secular perturbations. As
a result, the particle orbits more often spend their secular evolu-
tion in the mode similar to that seen in Fig. 3, with w circulating
about origin in the (k,h) plane. The collision probability with the
Earth then effectively increases and the decay rate approaches that
from the above panel (shown by the dashed gray curve).

Finally, we propagated the first set of particles (initial value
w =0°) in the case where all terrestrial planets were taken as po-
tential targets. To speed up the comparison, we increased the plan-
etary radii by a factor of 10.

We used our collision probability theory to calculate p; for each
planet (i=1 --- 4, where 1 stands for Mercury, etc.), Denoting R; the
enhanced radii of the terrestrial planets, the total collisional prob-
ability per year is IT.: = > ;p;R?. The particle population is thus
expected to decay with a characteristic timescale 7~1/
Ior ~ 3.9 Myr. At each instant, the number of impacts on each of
the terrestrial planets is weighted using their partial impact prob-
abilities, i.e., o p;R? /¢ for the ith planet. These predictions are
confronted with results from the numerical experiment in Fig. 9,
where the symbols show the recorded planetary impacts for each
of the planet and the dashed gray exponential decay curves are
the above described theoretical predictions. While generally show-
ing a good match, the solid gray decay curves slightly better ex-
press the population decrease and those have 1 ~ 3.2 Myr.

The small difference between the theory and numerical exper-
iment probably stems from the approximations in our collisional
probability approach, where complex planetary perturbations
and close encounters of particles to planets are neglected. Obvi-
ously, the whole particle population now decays faster than seen
in Fig. 8 because more targets are available to destroy them. As ex-
pected all planet impacts are fitted by roughly the same decay rate,
basically that of the whole population, and their partitioning is
roughly that expected from the theory.

Mercury received a large number of impacts, more than it could
be expected just based on its relatively small cross-section. This is
because the partial impact probability, p,R?, is increased by a large
value of p; (nearly three times larger than that of the Earth). This
can be explained by realizing that the Mercury impacts always
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Fig. 8. Fraction of particle population remaining the numerical simulation shown
by symbols vs. time t (in Myr). 500 particles were initially put on orbits with
semimajor axis a = 1.4 AU, eccentricity e = 0.2, inclination i = 65° and argument of
pericenter = 0° (upper panel) and @ = 60° (bottom panel); longitude of node and
longitude in orbit were set randomly. Their orbital evolution was numerically
propagated and direct impacts onto the Earth recorded in a model where
perturbations from all planets were taken into account; impacts on Mercury,
Venus and Mars were prevented by taking their radii zero and the Earth radius R
was 10 times larger that the true value. The gray curves simulate results from a
Poissonian process with a characteristic timescale 7, thus exp(—t/7): (i) the curve 1
has 7 ~ 9.4 Myr (upper panel) and 7 ~ 13.3 Myr (bottom panel), corresponding to 1/
(pR?), and (ii) the curve 2 has 7 ~ 7.7 Myr (both panels), corresponding to 1/(pes R?).
The dashed gray line in the bottom panel reproduces the solid line 1 from the top
panel.

occur near the pericenter of the particle orbits. Such impacts are
characterized by large impact probability.

4, Conclusions

We developed a new collision probability theory for the high
inclination and high eccentricity orbits for which the Lidov-Kozai
cycles are important. The results of this theory agree with those
of the standard Opik theory in the limit of small-eccentricity and
small-inclination orbits. For high eccentricities and high inclina-
tions, where the standard Opik theory falls short in correctly pre-
dicting the rates and radiants of the impacts, the generalized
theory produces satisfactory results when compared to numerical
experiments.

The theory developed in this paper can be generalized further,
for example, by relaxing the assumption of the circular orbit of
the target (Wetherill, 1967; Greenberg, 1982). Such a formulation
may be required, for example, to properly calculate the planetary
impact rates of during the early evolution of the Solar system
(see, e.g., Bottke et al., 2005).

Another possibility would be to relax the linear approximation
(15) and (16) for the local description of motion in the nodal refer-
ence system (e, e,,e,), for instance by using the quadratic or high-
er-order approximations. This may be of some interest for
improving the collision probability estimate in cases when the
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Fig. 9. Fraction of particles impacting the terrestrial planets in the most complete
simulation, where all planets were considered as potential targets (their radii were
increased by a factor 10 to speed up the simulation). The total number of impacts is
indicated by labels. The dashed gray decay curves were obtained by an appropriate
partitioning of the total decay of the particle population from our model, and the
solid gray decay curves were the best match of the data (see the text).

curvature of orbits becomes important (e.g., for impacts near peri-
center or apocenter of the particle orbit).
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Appendix A. Opik’s approximation

In what follows, we show that the general approach from Sec-
tion 3.2 reproduces Opik’s results for appropriate assumption
about the secular evolution of the particle orbit. In particular, the
uniform circulation of the orbit in the (k, h) plane on a circle of con-
stant eccentricity e is generated with

Hopik(k,h) = k> + > = C (A1)

that follows from (14) in the limit of small e value. When inclination
iis also small, conservation of ¢ = yycosi implies i = constant, and no-
dal circulation decouples from pericenter evolution. The condition
(18) of particle grazing the target at a distance equal to its radius
R is given by

Kopi(k,hi i) = [n* — o(1 % k)] el = p.

(A2)
h? + (1 £ k)*sin®i

where we recall p = R/a and a is the semimajor axis of particle orbit

(recall o = agjc/a with ag heliocentric distance of the target).
First, let us again seek roots of (A1) and (A2) as small displace-

ments sk and sh from exact intersection solution k, and hy, given

by (upper sign for the ascending node, lower sign for the descend-
ing node impacts)

2

1+ke :%, (A3)
and

2 1

h*:ﬁ(a—1+e)(l+e—a). (A4)

Obviously, these are just geometrical conditions of intersections of
two circles in the (k,h) plane, namely e = constant and (10). The
Sk and 6h are obtained from (19), where now

(Hopik/OK) y = 2K, s
(Mopix/h), = 2hs, o
(0K opik/Ok) , = — 2( « £ 0/2)si _ ")
\/h* + (1 £ky)?sin’i
e sini
(0K opik/Oh), = — : « Sini 7 ”
\/h* + (1 £ ky)? sin?i
and thus
D 2athy sini o

*x = F .
\/hi + (1 £ ky)?sin?i

One easily verifies, that (6k,sh) are small displacements along
tangent to the circle C = e= constant. This is because the associated
change in e is de = (kx Sk + hydh)/e = 0. In the same way, the associ-
ated change in argument of pericenter w is w = (kxdh — hxdk)[e?,
or

(A10)

Inserting k4 and hy, from (A3) and (A4) above, we have

R 2 — F(a,e,i)
" Qg sini \( 2 — F(a,e, 0)’

s (A11)

with F-function defined in Eq. (13). The total advancement Aw of
the argument of pericenter between the two extreme, target-
grazing configurations is Aw = 2dw. Because there are four equiva-

lent intersection configurations at the ascending and descending
nodes, we have

2A0 4 R 2 — F(a,e,i)
T T dgecsini\/2 - F(a,e,0)

P opik = (A12)

Combining with P, from Eq. (11), this finally provides collision
probability per revolution

1 R

T a2 sini

circ

3 —T(a,e,i)
2 — F(a,e,0)

Popix = P10pikP2 = (A13)
which is identical to results given by Opik (1951) and Wetherill
(1967), when restricted to circular orbit of the target (field body).
The intrinsic collision probability per unity of time is again

Popik = Popi/Tors = (1/27)(VGM/a*?)Pop, (A14)

where T,,, is the orbital period of the particle (compare with
Eq. (26)).

While obtaining identical result as previous authors in the limit
of assumptions matching the classical Opik theory, we finally com-
ment on one of its well-known and often repeated aspects. In par-
ticular, the denominator term in the square-root factor in Eq.
(A11), and consequently also (A12) and (A13), reads
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2 —F(a,e,0) _ (@aire = 9)(Q — deirc)

QAdcire ’ (Al 5)

where we denoted q =a(1 —e) and Q=a(1 +e), i.e., pericenter and
apocenter distance of the particle orbit. This produces a singularity
of the Opik collision probability when pericenter or apocenter dis-
tances of the particle orbit become equal to the target’s heliocentric
distance. It seems to have passed unnoticed so far that this apparent
singularity may be removed within the Opik approach by a more
thorough analysis of the impact geometries near the pericenter or
apocenter configurations. In particular, it stems only from the
linearization of small displacements about the exact impact geome-
try at (ks,hs). However, the system of Eqgs. (A1) and (A2) is simple
enough to admit exact analytic solution. In particular, the roots in k
satisfy a simple quadratic equation Ak?+2Bk+C=0, with coeffi-
cients (upper sign for the ascending node, lower sign for the
descending node)

A=o?sin’i+ p?cos?i, (A16)

B = oo — #?) — p*] sin®i, (A17)

C = (¢ — p?)*sin®i — p?(e* + sin* ). (A18)

There are obviously two solutions ki and k;

kli:qc[a(afnz)fgz_]sinziwm’ (A19)
o?sin” i+ p2 cos?i

g = Zle =) pllsin’ = pyD@ed), (A20)
o?sin” i+ p? cos? i

with

D(a,e,i) = an’F(a,e,i)sin®i + p*(1 — n* cos®i), (A21)

and F(a,e,i) from Eq. (13). To each of k; and k, we have correspond-

ing hi = \/e? — ki* and hi — 1/e2 — k; on the positive side of the h-

axis and symmetric values on the negative side of the h-axis. We
then simply determine the range Aw* of the argument of pericenter
value around ascending and descending node intersection that still
admit impact on the target with

+1,£ +p+
cos Aw* = W. (A22)
These values may be then used to compute the partial probabilities
Py opik = (Aw" + Aw™)[x. Nevertheless, even in this approach a care
must be paid to configurations when impacts occur near pericenter
or apocenter of the particle orbit. This is because in these cases one
of the values k; or k; may become larger than e, which would pre-
vent to compute the associated h value. The reason for this effect is
that the intervals Aw for the impact configurations with positive
and negative h value are no more discontinuous and join together.
An example is seen in Fig. 10, where we show

(@)2 g2 — (1 + k) sin’ i
R W’ + (1 + k) sin’i

(A23)

as a function of h near values where h ~ 0 (i.e., pericentric impacts
in the ascending node). For sake of definiteness we took e =0.2,
i=25° a¢=1AU and R equal to the Earth radius and plotted the
left hand side for three different a values of the particle orbit such
that the corresponding g value gets very close to ag.. Recall that,
for a given particle orbit, dy,;, gives a minimum orbit distance from
the target as a function of (k,h), such that dp;, < R characterize im-
pact configurations. In general, intervals of h values, which are
straightforwardly mapped onto intervals of @ values, for which
(dmin/R) < 1 are disconnected on the positive and negative sides of
the axis (light gray curves). But as one approaches the exact peri-
centric configuration, both intervals join together (black curve). In
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Fig. 10. Behavior of (dp,/R)? function near exact intersection configurations at
ascending node vs. h (the k value is constrained by a condition k? + h* = ¢? = con-
stant). We show the situation for h ~ 0, i.e. when the impacts occur very near the
pericenter of the particle orbit. Having the target orbit at aci, = 1 AU, we show three
different cases: (i) acrc — = 107 AU (light gray), (ii) agrc — g =7.5 x 107> AU (dark
gray), and (iii) agrc — =5 x 107> AU (black), all for R=4.6 x 107> AU equal to the
Earth radius. The (dmin/R)? = 0 condition is for the particle nodal distance exactly at
dgire, denoted h, in the text. The arrows indicate interval of h values near h, for
which the minimum orbit distance to the target is less than R and oblique impacts
occur. There are usually separate h (and correspondingly @) intervals for h, positive
and negative, but when agc — q is less than a critical value they merge into a single
interval (such as for the black curve).

that case, Py opix must be computed only from the common interval
of w values that overlap both impact configurations. Obviously, this
way there is no exact singularity even for the pericentric impact.

Note, however, that p ~ 5 x 107> in our example, and Aw for
near pericentric impacts is several orders of magnitude larger than
p (though not infinite). This means that the target-grazing config-
urations occur very far from the ascending node position of the ex-
act particle impact at a heliocentric distance ac;. In this situation,
the linear approximations for the particle and target orbits from
Eqgs. (15) and (16) are not justified and higher-order terms account-
ing for curvature of the local orbit would be necessary. As a result,
our comment about nonexistent singularity in Popix is rather a curi-
osity than of real importance.
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on Mercury should be roughly comparable (or only slightly larger) to that on our Moon.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Planets, accompanied with their satellites, are not alone to re-
volve about the Sun. There is a myriad of smaller bodies, ranging
from asteroids and comets down to sizes of dust particles, orbiting
the Sun. Some of them may occasionally share the same region in
space where planets move, and thus could impact on them. Living
in large populations, these smaller bodies may also hit each other.
Evaluating the small, though non-zero, probability of these events
is often an important information in planetary studies. In this
work, we do not deal with an impact probability of a specific pro-
jectile over a short timescale. Rather, we have in mind an evalua-
tion of a mean impact probability averaged over a timescale
equal or longer than that characterizing a secular evolution of
the projectile orbit.

Opik (1951) was the first to deal with this problem in the mod-
ern astronomical literature. This work assumed a target on a circu-
lar orbit fixed in space, sweeping through a population of projectiles
on bound heliocentric orbits with constant eccentricities and

* Corresponding author.
E-mail addresses: petr.pokorny@volny.cz (P. Pokorny), vokrouhl@cesnet.cz
(D. Vokrouhlicky).

0019-1035/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.icarus.2013.06.015

inclinations. Opik’s theory was later generalized for targets on
eccentric and inclined orbits by Wetherill (1967) and Greenberg
(1982) which themselves undergo a simple secular evolution, again
keeping the assumption of a long-term constant values of orbital
eccentricity and inclination. A slightly different approach was inde-
pendently proposed by Kessler (1981).

All these above mentioned approaches are frequently used to
determine a collision probability among members of a population
of small bodies or with respect to planets and their satellites. For
instance, all collisional evolution codes are based on either Wethe-
rill's or Greenberg’s variants of the method, some occasionally use
the Kessler's approach. All these standard theories assume the
orbital eccentricity e and inclination i during the secular evolution
of target and projectiles are constant. This assumption is not ex-
actly correct even for moderate values of e and i. Still, the varia-
tions of e and i are mostly small enough such that the population
average, and often other unknown parameters in the model, make
the results grossly justified. However, when either of the projectile
or the target orbits have high inclination and/or high eccentricity,
application of the traditional collision model is questionable. This
is because variations of e and i during the secular cycle may be
large, and the secular angles such as the longitude of node and
pericenter may exhibit a strongly non-linear evolution with time.
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About half a century ago elements of these dynamical phenomena
were introduced by Lidov (1961, 1962) in space geodesy and inde-
pendently by Kozai (1962) in planetary astronomy. Later, more
complex theories, allowing for instance a planet crossing, were
developed. These results were needed, because certain populations
of small bodies reside on such orbits and thus undergo the corre-
sponding orbital evolution: all classes of comets and their related
meteoroid streams, meteoroids in the sporadic complex, etc. As a
result, the traditional collision probability methods may provide
disputable results when evaluating their impact chances with the
Earth, for instance.

This situation motivated Vokrouhlicky et al. (2012) to formulate
a generalized Opik-type collision probability theory. In their model
the projectile orbit was allowed to undergo Lidov-Kozai oscilla-
tions, and with a simple generalization even more complex, secular
evolution. However, a persisting drawback was the assumption of
a circular and fixed orbit of the target. Here we extend this earlier
work and allow the target orbit be eccentric and uniformly pre-
cessing in space. While not so critical for Earth or Venus, this gen-
eralization makes our approach quite more suitable for evaluation
of impact probability on Mercury or Mars, as examples.

Mathematical preliminaries are introduced in Section 2.1. Sec-
tion 2.2 is a brief summary of the Lidov-Kozai dynamics, and the
core formulation of our collision probability model is given in Sec-
tions 2.3 and 2.4. In Section 3 we provide simple-configuration
runs which illustrate our main results and help justify our numer-
ical approach. Finally, Section 4 contains simulation motivated by
recent work of Bottke et al. (2012): projectiles originating in to-
day’s extinct extension of the main asteroid belt, known as the E-
belt, are propagated in the gravity field of the Sun and all planets.
We record direct impacts onto terrestrial planets as provided by
our numerical simulation and compare them with an estimation
from our theory. An emphasis is given to impacts on Mercury
which was not included in Bottke et al. (2012).

2. Theory
2.1. Reference frames and notation

In this section we introduce necessary mathematical concepts
and notation used throughout the paper. Obviously, both closely
follow the work of Vokrouhlicky et al. (2012), allowing now an
eccentric orbit of the target.

We start with a description of the projectile orbit near the nodal
crossings of the target plane (for sake of definiteness we assume
both are on heliocentric orbits). Assume the projectile resides on
a general elliptic orbit described with osculating Keplerian ele-
ments: the semimajor axis a, the eccentricity e, the inclination i,
the longitude of node Q, the argument of pericenter « and the true
anomaly f. The angular parameters i, £2 and w are defined with re-
spect to the inertial frame (X,Y,Z), whose reference plane (X,Y)
coincides with that of the target’s fixed orbital plane about the
Sun.! The projectile orbit intersects the (X,Y) reference plane at the
ascending node, where f= f,, = — w, and the descending node, where
f=fn=m— . The description of the orbit near the nodal intersec-
tions benefits from introduction of the reference basis (e e, e,)
composed of the three orthonormal vectors with the origin at the
ascending or descending nodes. The vectors e, and e point to the ra-
dial and longitude directions at the respective node, and the vector
e, along the Z axis of the inertial frame. Thus in our definition, the
radial and longitude directions, i.e. e, and e, vectors, at the descend-

! We assume i# 0, otherwise a non-singular set of orbital elements would be
needed. As in Vokrouhlicky et al. (2012) we keep a close similarity in notation to the
works of Opik (1951) and Wetherill (1967) and thus we only consider a non-planar
case.

ing node are opposite to their values at the ascending node.
The heliocentric position vector r describing the elliptic orbit of
the projectile generally reads

r(f) = r(f)[acos(w +f) + bsin(w + f)], M

with (f)=an?/(1+ecosf) and 1 =1 —e2. The unit vector a’=
(cos®,sinQ,0) is directed along the ascending node, and b=
(—cosisin€2,cosicos €2,sini) is in the orbital plane, normal to a.
As a result, at the ascending node we have a=e, and
b = cosie, + sinie,, while at the descending node we have a=—e,
and b= —cosie, + sinie,. Now expand r(f) near the ascending and
descending nodes, where the heliocentric distance is r=an?/
(1 £ ecosw) respectively (the upper sign for the ascending node).
Introducing an infinitesimal increment df of the true anomaly,
f=fu+df, we obtain r(f) = re, + dr, with

dr — rA, df +%A2 df> + o(df?). 2)

Eq. (2) helps to locally describe the elliptic orbit of the projectile
with df = 0 at the respective node. The first term is the crudest rec-
tilinear approximation, while the second term describes the local
curvature of the elliptic orbit. The first- and second-order vectorial
coefficients read (the upper sign for the ascending node intersection
and the lower sign for the descending node intersection)

A = ¥e 5111)1wer + (cosie, £ sinie;), (3)
3 7
A, =— |:1—ﬁ+p:|er (4)
_2¢ 5111)1 @ (£cosie, + sinie;),

where P = an?/r.

Next, we use a similar framework to describe motion of the tar-
get body. The target body is assumed to move on an elliptic helio-
centric orbit with the semimajor axis ao, the eccentricity ey and the
argument of pericenter g in the (X,Y) reference plane. Without
loss of generality we set wq =0 in our coordinate system. Choosing
a certain value fy of the true anomaly, the position vector ry of the
target can again be described as rq(f) = rpe, + drg in its orbital vicin-
ity? f=fo +df (ro is the target’s heliocentric distance for f=fy). We
now have

I

dry = roAro df +5°A20 df* + o(df?), (5)

with

A10 _ €o Sll'lﬂ) e + e¢7 (6)
- 3 7 eo sinfo

AZO_—Z{I—Z—PH-FO SIS LI )

where Py = aon3/ro and 17, = /1 —e3. For further use we shall
express coefficients in Ajg and Ayp as a function of ry rather
than fo. To that goal we have a relation egsinfo=#oR: with
Ry =4+/(ro—11)(ra —10) /10, Where r1 = ag(1 — eo) and r5 = ap(1 + eq)
stand for the perihelion and aphelion distances of the target orbit
respectively. The upper and lower sign in R. correspond to fy
values in the interval (0,7) and (7,27) respectively, and need to
be considered separately.

Previous notation also helps us to express the orbital velocity v
of the projectile at the nodal intersection and the orbital velocity vg
of the target body. Using arbitrarily V, = ngag as a velocity normal-
ization (ng is the mean motion of the target), we use the linear term

2 The unit vectors e, and e, are assumed at the point of the orbit with f= fo.
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in Eq. (2) and differentiation by time to obtain

v= vo\/%ﬁm

a esinw . .
=V ?Oﬁ {JF e, + (cosie, +sinie,)|,

8)

P

where again the upper and lower sign correspond to the ascending
and descending nodes respectively. Similarly, for the target body we
have

Vo = VoFA]o = Vo [Rier + Fed,], (9)

where F = noao/ro.
Finally, the relative velocity V = v — v, of the projectile with re-
spect to the target at the exact intersection condition

an?

ro=r=—-——
1+ecosw

(10)
can be obtained from Egs. (8) and (9). For further convenience we
shall express V in a local frame of rotated vectors (e, ey, €;), where
e, is directed to the local apex of target’s motion, e, = e, x e, and e,
always along the Z axis of the inertial frame. Henceforth

e, = e tFe (11)
R+ P
e, = Fe, —R.e, (12)

N

with also R + F* = 2(ap/ro) — 1. Thus the corresponding velocity
components V,=V.e,, V,=V.e, and V,=V-e, read

a—oﬁ(:FRin’cosi) - (Rzi +F2)

Vo [
/R2++F2 r

Vo=

P b
(13)

v,= Vo ‘lﬁﬁ(;F%—Ri cosi), (14)

V, = ivoﬁ\/ﬁsin i (15)

2.2. Secular evolution in the Lidov-Kozai model

As mentioned in Section 1, we shall use the Lidov-Kozai model
for the secular evolution of the projectile orbit. We shall only
briefly recall fundamental facts of this model studied thoroughly
in literature (e.g., Lidov, 1961, 1962; Kozai, 1962; Morbidelli,
2002).

We assume a single perturber (such as Jupiter in studies of mo-
tion of small bodies in the inner Solar System) on a circular orbit,
coplanar with the target. The target is assumed massless, such that
it leaves the orbit of perturber fixed. Vice versa, the perturber
makes the eccentric orbit of the target uniformly precess in their
common orbital plane.

The effect of the perturber on the projectile’s orbit are more
spectacular. A simple, first-order secular perturbation model, pro-
hibiting mean-motion resonances with the perturber, is obtained
by double averaging of the averaged perturbing function over the
mean longitude of the perturber and the projectile heliocentric
motions (Morbidelli, 2002). Eliminated orbital elements and sym-
metries of the problem provide three integrals of motion: (i) the
semimajor axis a of the projectile heliocentric orbit, (ii) the projec-
tion of the projectile’s orbital angular momentum on the Z axis,
and (iii) the value of the perturbing function P. The second integral

(ii) implies ¢ = V1 — e2 cosi = const., which conveniently helps to
eliminate either of the two elements, eccentricity e or inclination
i, for the latter and a conserved quantity c. The situation with the
third integral (iii) is more complicated because its efficient evalu-
ation may need numerical methods. This is especially true if the
projectile’s orbit crosses that of the perturber (e.g., Bailey et al.,
1992; Thomas and Morbidelli, 1996; Gronchi and Milani, 1998,
1999; Morbidelli, 2002). While our method might be applied in
these situations as well, most work would need to be performed
numerically. We rather opt for a semi-numerical approach in spite
of crude approximations in developing P. In particular, of the mul-
tipole series representation used by Kozai (1962) we keep only the
lowest-order quadrupole term. Generalizations to higher-order
terms are straightforward at the expense of some algebraic effort.
In our approximation (iii) above implies first integral (e.g., Kozai,
1962; Kinoshita and Nakai, 2007)

1
I
where k=ecosw and h =esinw. The topology of C-isolines in the
(k,h) space was extensively studied and does not need to be re-
minded in detail. When |c| is very close to unity the level curves
of constant C are very close to circles about the origin of (k,h) plane.
In this limit, the values of e and i are very small and they are well
conserved very during the whole Kozai cycle, which is in an accor-
dance with the assumptions of Opik’s and Wetherill's collisional
theories. Decreasing the value of |c| causes the level curves of con-
stant C to transform from circles to ovals until reaching the critical
value |c| = 1/3/5, where the topology adapts to a bifurcation of two
different stationary solutions at the h axis (i.e., k=ecosm =0): (i)
for C>2(3c% — 1) the orbits circulate about the origin, but the vari-
ations may significantly increase the values e or i leading to very
eccentric or inclined orbits, and (ii) for C < 2(3c? — 1) the orbits cir-
culate about the stationary points on the h axis. For a given c value,
the maximal values of e and cosi are limited by v/1 — c2 (for more
rigorous specification of the intervals of e and i for given ¢ and C
see, for instance, Kinoshita and Nakai (2007), Eq. (31) and Eq. (32)).

(2 +3e)(3¢> — *) + 15(n> = ) (K —h*)] = C, (16)

2.3. Evaluating collision probability: target at a given heliocentric
distance

In this Section we assume the target body at a given heliocentric
distance rg on its orbit and consider its collision probability with
the projectile. We follow the Opik-Wetherill method recalled in
some detail by Vokrouhlicky et al. (2012) (Section 3). In particular,
the collision probability IT is composed of two independent parts:
(i) the probability I1; that during one cycle of secular evolution of
the projectile’s orbit its nodal crossing is sufficiently close to the
target's orbit, and (ii) the probability IT, that the target itself is
close enough to the nodal crossing of the projectile’s orbit. Since
our assumptions about the target’s orbit are identical to those in
Wetherill, namely fixed eccentricity value eg and uniformly pre-
cessing argument of pericenter wgp, we can use Wetherill (1967) re-
sult for I1,. Put in our variables, notably using Egs. (13)-(15), we
obtain

T [ Vv
2 27
4a0\ /R + PPV V" =V,

where V? = V2 +V; +V? is the relative velocity of the projectile
and the target at the exact intersection of their orbits and 7 is the
target’s radius (we assume projectile negligibly small, otherwise t
would have been a sum of target and projectile radii). Obviously,
I1, is to be evaluated at all possible nodal crossings of the projectile
and target orbits (see below). The major modification of Wetherill’s

11, =

(17)
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approach consists now in an evaluation of IT; (see also Vokrouhlicky
et al.,, 2012). This is because we consider a more complex secular
evolution of the projectile’s orbit.

Determination of I1; is based on analysis of the orbit geometry
near the nodal crossing. This is because the target (and potentially
also the projectile) has a finite radius 7 and thus the impact occurs
not only at the exact orbit crossing expressed by Eq. (10) which we
rewrite as (upper and lower sign for the ascending and descending
node crossings)

oa(1+k)=n? (18)

with o =rp/a. Eq. (18) yield circles with a displaced center in the
(k,h) space. The orbit-intersection conditions now correspond to a
crossing of these circles with the C=const. lines from Eq. (16)
describing the secular evolution of the projectile’s orbit. This simple
quadrupole approximation of the Lidov-Kozai model yields up to
eight such crossings (as compared to maximum of four crossings
for two ellipses of fixed eccentricities, e.g. Fig. 1 in Wetherill
(1967)).

Consider the local geometry of the target and projectile orbits
near the node of the latter. Egs. (2) and (5), in which we shall retain
only linear terms, help us to describe the situation. The reference
longitude in the (X,Y) plane at which we construct the radial e,
and longitudinal e, vectors of the local reference frame (e, e,,e;)
is given by the chosen node of the projectile orbit. We, however,
displace the origin of frame to the position of the target at the same
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longitude. As a result the infinitesimal (rectilinear) arc of the target
orbit is given by

Al‘o(i/) = T()A]()]./ + O(}L/Z), (19)

where ry is the heliocentric distance of the origin and A’ parameter-
izes the orbit. Note that, unlike in Vokrouhlicky et al. (2012), Ao
from Eq. (6) has now both longitudinal and radial components. This
is due to eccentricity of the target’s orbit. Similarly, the infinitesimal
arc of the projectile’s orbit reads

Ar(2) = (r—T10) e +TA1 L + O(J2), (20)

in our reference system. Here r is the heliocentric distance of the
node crossing. Because generally r # rp, we have a radial displace-
ment of the projectile’s node expressed by the first term in Eq.
(20). Parameter /4 again serves to span different orbital locations
of the projectile. The square of the projectile-target distance is sim-
ply d*(4,2)=[Ar — Arg] - [Ar — Arg]. We seek a minimum of
d?(4,7") on the (4, /') space, a task which leads to a simple system
of two linear algebraic equations in our rectilinear approximation
for both orbits. Solving them for 4 and /' we obtain the minimum
orbital distance dnin

o (r —ro) sini
\/(1 + B sin’i + (y — peosi)’
where B =roR:/(aoho) and y = Fesinw/P. Note dp,, is a function of

assumed fixed ry and orbital parameters of the projectile with the
nodal distance r=an?/(1+ecosw). All possibilities with dpi, < 7T

d

(21)
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Fig. 1. Secular evolution, impact geometries (radiant position) and intrinsic impact probability. Massless target on Mercury-like orbit with the semimajor axis ap = 0.3871 AU
and the eccentricity ep=0.2056. Projectile has the semimajor axis a = 0.4 AU, andinitial eccentricity e=0.02, inclination i =3° and argument of pericenter « = 0°. Single
perturbing planet on a Jupiter-like orbit, coplanar with the target is assumed. Top and left: Secular evolution track of the projectile orbit is a small circle in the
(k,h) = e(cos w,sin ) plane (black curve underneath the color-coded pattern). Because the orbit of target is eccentric, true impacts are possible along the whole trajectory
characterizing the secular evolution of the projectile - suffice to independently tune the longitude of pericenter of the target. The intrinsic collision probability for that
configuration is given by our function p(ro) from Eq. (25). The color pattern with the color bar on the right gives p(ro) in (AU~2 y~1). The highly increased intrinsic collision
probability for h ~ 0 values correspond to near pericentric impacts (see Appendix of Vokrouhlicky et al., 2012). Top and right: Radiant positions of impact geometries as seen
by observer at the target body; the abscissa is the longitude ¢ measured from the apex direction, the ordinate is the latitude b (both in degrees). Even though there is an
infinite number of impact configurations, the small eccentricity of the projectile orbit makes their individual radiants collapse to merely the same position. Color coding
according to the intrinsic collision probability as in the left panel. Bottom panel: The formal collision probability pwetn (4, €.,1.; Go,€0) during a secular (Lidov-Kozai) cycle
shown in the top and left panel (black solid line; the abscissa is time in ky and the ordinate is the intrinsic collision probability in AU=? y~1!). The Lidov-Kozai cycle averaged
intrinsic collision probability from our method pg, (Eq. (28)) is the blue line, the Wetherill's method based average intrinsic collision probability peg (Eq. (29)) is the green line.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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imply an impact on the target, with the limiting configuration given
by din = T, OF

==l a1 kA, (22)

with

A_¢ _ i . (23)
1+p )(112 — CZ)(l ik) + [hn +pc(1+ k)]

Here we used the Kozai integral ¢ = r7cosi to eliminate the inclina-
tion dependence, and replaced the eccentricity e and argument of
pericenter w with the non-singular (k,h) elements. We now seek
the (k,h) values which simultaneously satisfy Eqgs. (22), (23), and
(16), or in other words those segments on the C-integral of orbital
secular evolution that provide minimum orbital distances dmin
smaller than the physical size 7 of the target. In general, there is a
number of such discontinuous segments each near the exact cross-
ing condition (18) with (16). The system of algebraic Eqs. (22), (23)
and (16) is too complex to allow an analytic solution. We thus
developed a simplified linearization method near the exact crossing
to solve them (for details see Vokrouhlicky et al. (2012) Section 3.2).
Each of such segments is crossed in time At over the secular cycle of
duration T,.j, such that the partial probability 7, of impact is gi-
ven by relative duration of this window: I1; = At/Tezai- SUMmMIng up
over all exact intersection configurations, each characterized by
(ex.ix, W) orbital elements of the projectile, we finally have

H(ro) = Z (At(ro)>*H2(a’ sy lxy Wi To).

Tl(ozai

(24)

Here we used the principle of uncorrelated partial probabilities 7,
and I, discussed above. The final expression for the collision prob-
ability per unit of time is given by division by the orbital period T
of the projectile, thus

H(ro)  p'?
Top T2  2ma3/272

11(ro), (25)

p(ro) =
where u = GM, G is the gravitational constant and M the mass of the
center (the Sun). Note p(rp) has been also normalized to the cross-
sectional factor 72 of the target, such that it expresses the intrinsic
collisional probability (see Opik, 1951; Wetherill, 1967; Greenberg,
1982). Convenient units of p(ry) are AU 2y~ ..

2.4. Evaluating collision probability: weighted composition of all
possible heliocentric distances of the target

In the previous Section we determined the projectile-target col-
lision probability for a particular heliocentric distance ry of the tar-
get. In order to evaluate the final collision probability ps,, we need
to consider all possible values of the distance ry in the range (rq,12).
This basically requires assembling p(rp) from Eq. (25) with an
appropriate weighting, which should express an uniform circula-
tion of the longitude of pericenter of the projectile’s orbit.> Observ-
ing that the true anomaly differential df of an elliptic orbit satisfies
df o dro/(r3|v - €]) o dro/(r3R.), we identify the necessary weight-
ing factor to be

¥(ro) = LMo 1

T roy/(ro—11)(r2 — To).

The explicit value of the constant in the right hand side of Eq. (26)
implies the normalization

(26)

3 See also discussion in Wetherill (1967) and Greenberg (1982). Note that the
apparently expected weighting factor dt oc dro/|v.e,|, expressing how much time the
projectile spends in the interval (ro,ro+ drp), is already contained in the IT,
probability.

r
/ W(ro)dro = 1. 27)
r
Henceforth, we obtain the final intrinsic collision probability pgn
over all possible impact configurations as
r
Pon = [ Prop(ro)dro (28)
n
Note that the weighting factor ¥(rp) is singular at pericenter and
apocenter distances, lower and upper integration bounds in Eq.
(28). While finite, numerical evaluation of pg, requires some care.

Standard methods of integrable singularity removal are briefly re-
called in the A.

3. Testing the new approach: A comparison with Wetherill's
theory and results of the N-body simulations

In this Section we test our approach against results from N-
body simulations and perform comparison with predictions of
the Wetherill's method (Wetherill, 1967). Both now allow an
eccentric orbit of the target, but the latter assumes the eccentricity
and the inclination of the projectile orbit are secularly constant, of-
ten violated. On the other hand, our approach still assumes the or-
bit of the target fixed in the inertial space, a drawback which is to
be eliminated in the future work. We expect that at least for targets
on low-inclination orbits with respect to the local Laplacian plane
our results should be meaningful. It is mainly the effects of projec-
tile’s high-inclinations and eccentricities which are tested here.

The projectile’s orbit approximately follows a trajectory de-
scribed by a C-isolevel of a function in the left hand side of Eq.
(16) in the (k,h) parameter space (see Section 2.2). As recalled by
Vokrouhlicky et al. (2012), the intersection conditions with a circu-
lar orbit of a certain radius rp, or simply at a given heliocentric dis-
tance ro, is geometrically given by the intersection of this trajectory
with two displaced circles given by Eq. (18) for both ascending and
descending node impacts. For a circular orbit of the target, ro was
fixed, and we had exquisitely four or eight intersection configura-
tions (except for singular grazing cases). Now the situation is more
complicated, because the eccentricity of the target’s orbit makes rg
change during its orbital and secular cycles, and the radii of the cir-
cles by which this is represented in the (k, h) space pulsate (as well
as their centers shift). So for a given pair target-projectile we may
have the whole set of zero, four and eight intersections over their
secular evolution cycle. Obviously, mathematically this is all built
in the formulation in Sections 2.3 and 2.4, namely properties of
the collision probability p(ro) from Eq. (25) and the integration in
Eq. (28).

A comparison with Wetherill’s approach is not a priori given,
but we follow the approach in Vokrouhlicky et al. (2012). This is
based on what in practical terms one would do without having
available our theory. Denote, as above in Eq. (24), (e,, i,, ®,) orbital
eccentricity, inclination and argument of pericenter that the pro-
jectile's orbit acquires during its secular evolution. Adding the qua-
si-constant semimajor axis a of the projectile’s orbit, and the
parameters ap and eg of the target’s orbit, one can formally deter-
mine collision probability pwetn(a,e.,i.; do,€o) as if the obits would
satisfy assumptions of the Wetherill’s theory. Performing then an
average over the projectile’s secular cycle of length Tyq,.;, thus

1

TKozai

TKozan
P =7 [ Puen(@eaisian,eo)dt (29)
one obtains a proxy for the estimated, long-term collision probabil-
ity between the projectile and the target. However, p.g may not be
equal to our value pg, from Eq. (28). In fact, it is the degree of their
difference that interests us in our tests.
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3.1. Simple validation of our approach

We first validate our new approach using the simplest possible
setup, namely considering a target body and a single projectile. For
sake of definiteness the target is on a Mercury-like orbit with
ap=0.3871 AU and e = 0.2056. To make the situation as close as
possible to the assumptions of our theory, we assume a single per-
turbing planet, a Jupiter on a circular orbit at 5.2 AU heliocentric
distance. The heliocentric orbital planes of the target body and
Jupiter are identical, and both Jupiter and the Sun are given their
true masses. We the neglect mass of the target body in this section.

In the initial run we took the projectile orbit having the semi-
major axis a=0.4 AU, eccentricity 0.02, inclination 3° and argu-
ment of pericenter 0°, implying ¢ = 0.99843 and C = 3.98436. Such
a low-eccentricity and low-inclination orbit will undergo only very
limited variations due to Jupiter’s perturbation, whose major effect
will be near steady circulation of the orbital pericenter and node.
Indeed, as shown in the upper left panel of Fig. 1 the secular track
of the projectile orbit in the (k,h) plane is basically a small circle
around the center. The simple secular evolution makes the Wethe-
rill’s approach fully applicable and we expect a good correspon-
dence between our results and those based on Wetherill’s theory.
Fig. 1 confirms this conclusion since pg, ~ pesr (bottom panel).
Their ~0.01% difference basically reflects the numerical accuracy
with which we evaluate both quantities (less so the very small
variations of orbital eccentricity and inclination of the projectile’s
orbit).

Next, we test a configuration where the orbit of the projectile
undergoes one of the possible evolutionary regimes described by
the Lidov-Kozai theory. In particular, we set the semimajor axis
a=0.9 AU. We then consider an orbit with starting eccentricity
e =0.1, inclination i = 55° and argument of pericenter w = 0°, alto-
gether implying c=0.5707 and C=0.07446 constants. Since
¢ < V0.6, the secular evolution of the projectile’s orbit is character-
ized by large oscillations of both e and i as seen on the left top pa-
nel of Fig. 2. In this case the argument of pericenter circulates
about the origin. A more extreme situation occurs for e=0.6,
i=55° and w = 70° choice with c = 0.45886 and C= —2.80648, our
second choice of the initial orbit of the projectile. The secular evo-
lutionary track of this orbit is shown in the left top panel of Fig. 3.
Here the argument of pericenter oscillates in a limited interval of
values about 90° which defines a possible stationary point of the
Lidov-Kozai model.

Returning to the first choice of the initial orbit for the projectile,
we now focus on Fig. 2. The left top panel shows, apart from the
secular track of the projectile’s orbit (black curve), also intersection
conditions defined by Eq. (18) for all possible values of ry in be-
tween the pericenter and apocenter of the target’s orbit. Each of
them is a gray circle, which altogether merge into a 2-D gray area.
Unlike in the case of a circular target’s orbit, where we have only
maximum of 8 intersection configurations, here we formally have
an infinite number of them. This is because rg ranges a finite inter-
val of values and for each of them we have up to 8 intersections.
Some correspond to the grazing configurations for which 8 inter-
sections degenerate to only 4. However, as also discussed by Vok-
rouhlicky et al. (2012), these situations are characterized by a
formally large impact probability. This is shown by the color-coded
symbols at the top panels of Fig. 2. The top right panel shows loca-
tion of impact radiants as seen by an observer on the target body
(zero longitude fixed at local apex direction). Again, while only a
finite number of 8 radiants exist for a circular orbit of the target,
we now have an infinity of possibilities (shown by the black rings).
Some of them, however, have higher impact probability since they
correspond to the grazing configurations of the target-impactor or-
bits and those are marked by red and yellow symbols. Finally, the
bottom panel shows pwem(t) during one Lidov-Kozai cycle

spanning little more than 250 ky (black symbols). These values
are computed by Wetherill’s approach, assigning formally projec-
tile’s orbital elements (a,e,,i,) acquired during the orbital evolution
along the trajectory shown on the top left panel. These values are
sometimes zero for the cases when e, drops below a critical limit
such that the pericenter of the projectile’s orbit is above the apo-
center of the target’s orbit and no intersection configurations exist.
The Lidov-Kozai averaged collision probabilities defined by Egs.
(28) and (29) are pa,~2.58 AU 2y~ ! and per~2.16 AU2y !,
showing only a minor difference in this situation. This is because
even in the Lidov-Kozai regime the impacts are possible only over
a limited interval of secular evolution cycle, during which eccen-
tricity and inclination values do not change significantly (Fig. 2).
A larger difference of the two approaches is exhibited by the appar-
ent impact radiants in the top right panel. The red dots correspond
formally to those obtained by Wetherill’s theory, the same way as
Pwetn(t) is computed. These apparent, but fake, radiants span a
quite larger region on the local sky of the observer moving together
with the target than the true radiants shown by the black loops.

Fig. 3 shows the similar data for the second chosen initial orbit
of the projectile. In this case, the orbital argument of pericenter @
oscillates about the 90° stationary point of the Lidov-Kozai model,
so apparently assumptions of the Wetherill’s approach are strongly
violated. The three panels show again evolution of the projectile
orbit and intersection conditions in the (k,h) plane, radiant loca-
tions with respect to the apex system of the target and pwetn(t)
during one Lidov-Kozai cycle. The restricted evolution @ makes
now only two radiant locations appear, though formally there is
again a continuum of possible radiants distributed along the
loop-like region. The averaged collision probabilities are pgp, -
~6.54 AU2y ! and pesr~5.72 AU 2y~'. Again, their difference
is not large, essentially reflecting only small variations of eccentric-
ity and inclination values for impact configurations.

3.2. Comparison with N-body simulations

We further validate conclusions from the previous Section by
performing a comparison between the expected number of im-
pacts, based on the collision probability calculation, and their di-
rect record performed by numerical integration. We keep the
setup described above, namely considering the Sun and Jupiter as
massive bodies and a massless target on a Mercury-like orbit,
coplanar with that of Jupiter. In order to accelerate the impact rate
in our simple experiment, we assumed the target has ten times lar-
ger radius then Mercury (i.e., T~ 1.63 x 107% AU). We considered
two sets of projectiles, each consisting of 500 test particles. Instead
of starting them from very nearby orbits, we distributed them
evenly during the Lidov-Kozai secular cycle of orbits shown in
Figs. 2 and 3 (top left panels). The initial data were actually created
with the help of integration described in Section 3.1, making an
output of orbital elements (e,,i,,w,) (recall a=0.9 AU is secularly
constant). All integrations were performed using the SWIFT_RMVS3
package,? that is able to record direct impacts onto the target. We
used 0.5 day integration timestep to resolve fast motion of the Mer-
cury-like target planet.

In our simplified model there are no other sinks of test particles
other than the impact on the target. Since the impacts are probabi-
listic, Poisson process, we have a simple estimator of the cumula-
tive impactor time profile: Nimp(t) =No[1 — exp (—t/T)] (No=500
in our case). Here, T is a characteristic timescale, given by T=1/
(t2p), where p is the collision probability. We have three alterna-
tive formulations of p, namely pg, from our theory, peg from the
formal application of the Wetherill’s theory and also we introduce

4 http://www.boulder.swri.edu/~hal/swift.html (Levisonand Duncan, 1994).
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Fig. 2. The same as Fig. 1, but now for the projectile with the semimajor axis a = 0.9 AU, the initial eccentricity e = 0.1, inclination I = 55° and argument of pericenter w = 0°.
Top and left: The evolution trajectory during one secular, Lidov-Kozai cycle (black line), defined by the P(k, h;c) = C integral from Eq. (16)), is now different from a simple
circle. Exact impact condition with the target body is graphically shown by the set of gray circles (both ascending and descending nodes) and they correspond to solutions of
Eq. (18) for all possible target heliocentric distances ro. Impacts are possible only in the region of black line crossing with gray circles. The color coding corresponds to the
individual values of collision probability p(ro) (see also the bar on the right). Maxima are for the pericentric configurations. Top and right: Radiant position in the apex
coordinate system - larger eccentricity of the projectile orbits makes the radiants span four loop-like regions on the local sky of the target-based observer. The set of red dots
are fake radiants formally constructed by Wetherill's approach and combinations of (a,e.,i,) orbital elements of the projectile and (ao,eo) orbital elements of the target.
Bottom panel: The formal collision probability pwetn(a, e., i.; G0, €0) during a secular (Lidov-Kozai) cycle shown in the top and left panel (black solid line). Zero values for no
crossing conditions between the projectile and target orbits. The Lidov-Kozai cycle averaged intrinsic collision probability from our method psy, (Eq. (28)) is the blue line, the
Wetherill's method based average intrinsic collision probability peg (Eq. (29)) is the green line. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Peirc for the circular orbit of the target based on Vokrouhlicky et al.
(2012), so that we can compare the three estimators of the decay
timescale Tpgy = 1/(t°Pfin)s Twetn = 1/(T°perr) and Typn = 1/(TPeirc)
with the numerically determined value, where p. is computed
formally as if the target had semimajor axis ao and zero
eccentricity.

Fig. 4 shows results for projectiles on orbits similar to that of
Fig. 2. Our estimated decay timescale is Tpgy ~ 14.63 Myr and
Tweth ~ 17.63 Myr. In case of the circular target there are no possi-
ble impacts, thus Typy is formally infinite since pi,c = 0. The corre-
sponding Nimp(t) profiles (gray curves) are shown on the left panel
and compared with the recorded sequence of impacts (dark sym-
bols). An eye-based comparison would favor results from our re-
cent theory. Indeed, fitting the real impact record with the
Nimp(t) law would yield Tg;; = 15.46 + 0.03 Myr. Additional support
for our conclusions comes from comparison of the predicted
impactor radiants and those determined from the numerical simu-
lation. This is shown on the right panel of Fig. 4. Our predicted
loop-like radiant distribution is indeed very well matched by the
location of numerically recorded radiants (black symbols).

Fig. 5 shows the same for projectiles on orbits similar to that of
Fig. 3. Since the collision probabilities were larger now, the decay
time constant is shorter and the population fades faster. We obtain
Tpgv =~ 5.79 Myr, Tweth ~ 6.62 Myr and Typy = 2.64 Myr, while the
fit to numerically-determined Ninp(t) provides Ty =5.65+0.01 -
Myr. Again, the radiant distribution shown on the right panel of
Fig. 5 indicates an excellent correspondence between the theory
prediction and the numerically recorded impacts. Both situations

provide a good illustration of differences between new and previ-
ous formalisms.

4. A real life application: Impactors from the E-belt

The examples discussed in the previous Section indicated valid-
ity of our results, as well as their numerical implementation in our
code, but what does it say about their “real-life” applicability. After
all, these cases were highly simplified: we used only one disturbing
planet in a fixed elliptic orbit, a coplanar massless target, which
implied that the particles (projectiles) conserved their initial Li-
dov-Kozai integrals ¢ and C. In reality, though, the situation is dif-
ferent. All planets are massive and interacting, which complicates
the secular evolution of the projectile orbits. Moreover, as the pro-
jectile interact with the planets in a short-range close approaches,
their orbital semimajor axis is not conserved. Some may be
brought close to mean motion resonances with the target orbit.
All these effects invalidate, strictly speaking, assumptions of both
Wetherill's and ours approaches. Still, we may be interested to
know how they perform in such a complex case.

Our “real-life case” is based on the recent work of Bottke et al.
(2012) who examined a decay of a putative past extension of the
main asteroid belt toward smaller heliocentric distances, bounded
basically by the outermost terrestrial planet. Bottke et al. (2012)
called this extension the E-belt and found several intriguing facts
in favor of this population out of which we mention two outstand-
ing: (i) the E-belt is a natural source of projectiles that impacted
terrestrial planets and the Moon during the Archaean period and

157



P. Pokorny, D. Vokrouhlicky / Icarus 226 (2013) 682-693 689

l T T T 90 T T T T T T T T T T T 180
160
=~ -
05 L i 140
30 b 120
100
oot b 0f .
80
30 | 1 K
05 F ] 40
-60 -
: 20
_l 1 1 1 _90 1 1 1 1 1 1 1 1 1 1 1
405 0 05 1 -180-150-120 90 -60 -30 0 30 60 90 120 150 180
k ¢

Collisional probability

1 1 1 1 1
0 10 20 30 40 50 60
Time (kyr)

Fig. 3. The same as in Fig. 2, but now for the projectile’s orbit with semimajor axis a = 0.9 AU, initial eccentricity e = 0.6, inclination i = 55° and argument of pericenter @ = 70°.
Top and left: The argument of pericenter  now circulates about the stationary solution offset from the center in the (k,h) plane and thus acquires values from a limited
interval of values around 90°. Top and right: Absence of « values near 180° makes number of radiant locations reduced to two, loop-like structures. Bottom panel: The
behavior of the secular-evolution trajectory, black line on the top and left panel, makes the Lidov-Kozai cycle be effectively half of that seen on Fig. 2. Hence, the
Pwetn(a, €., 1.; Ao, €0) values resemble those from the first part of the bottom panel on Fig. 2. Systematically higher eccentricity e, offers more chance for the impact
configurations, and thus the pwer (a,e.,1.; ao,€0) = 0 interval is shorter. Consequently, also the values pwer and peg are larger.
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Fig. 4. Impact conditions for a population of No = 500 test particles distributed evenly along the secular-cycle trajectory shown by the black line on the top and left panel of
Fig. 2. Massless target body on a Mercury-like orbit with ao = 0.3871 AU and e = 0.2056, and radius 7 ~ 1.63 x 10* AU (about ten times larger than that of Mercury). A single,
Jupiter-like planet feeds the secular evolution of the projectile population. Left: Cumulative number of impacts onto the target body as a function of time t since the beginning
of the numerical simulation. Blue symbols directly from the numerical run, while the black and gray lines are estimators from the collision impact approaches developed here
and the Wetherill's method, i.e., Nimp(t) =N [1 — exp (—t/T)] with some T timescale. Our method gives Tpgy = 14.63 Myr, Wetherill’s approach yields Tyee = 17.43 Myr. In
absence of other sinks all projectiles eventually hit the target. For the circular orbit of the target, there are no possible impact configurations. Right: Comparison of radiant
position as recorded directly from the numerical simulation (red symbols) and predicted from our approach (black lines, see also top and left panel on Fig. 2). The abscissa is
the longitude measured from the apex direction as seen by an observer on the target body, the ordinate is latitude in the same system (both in degrees). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

dominantly contributed to what is known as the Late Heavy Bom- so we do not need to develop the model in such a detail as Bottke
bardment (LHB), and (ii) the E-belt provides a natural source of to- et al. (2012). For instance, we omit the pre-LHB evolution of the E-
days small population of Hungaria asteroids. belt objects. Luckily, Bottke et al. (2012) have shown that this

Similarly to Bottke et al. (2012) we thus considered a popula- phase has only limited effects on both number of objects and their
tion of particles initially located in the E-belt and numerically inte- orbital distribution in the E-belt. So our starting orbits of the E-belt

grated the post-LHB evolutionary phase. This means planets are particles had a uniform distribution of semimajor axes between
assumed to have acquired their current orbits. On the contrary to 1.7 AU and 2.1 AU, eccentricities e and inclinations i distributed
the work of Bottke et al. (2012), where planet Mercury was ne- using a Maxwellian distribution with the peak values of 0.15, and
glected, we include it in our current simulation. We thus need to 8.5° respectively, and the standard deviation values of 0.07, and
use a considerably shorter integration timestep of 0.5 days. On 7° respectively. We eliminated bodies that would initially cross
the other hand, the purpose of our simulation is rather illustrative, the orbit of Mars, an expected result of the pre-LHB orbital
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Fig. 5. The same as in Fig. 4 but for a population of particles distributed evenly along the secular-cycle trajectory shown by the black line on the top and left panel of Fig. 3.
Left: Because of the larger pr, and pesr values, the characteristic timescale of projectile elimination is shorter now: Tpgy = 5.79 Myr and Ty, = 6.62 Myr. While both are
similar, our value slightly better expresses the real track of the impacts (blue symbols). The formal result for the theory where the orbit of the target is circular is represented
by dark-gray line with the characteristic timescale Tpgy = 2.64 Myr. In this case it represents the worst estimate of the impact dynamics. Right: As expected, radiants of
impacting particles are now fewer and located in only two quadrants on the sky. Directly recorded radiants (red symbols) correspond to their predicted locations (black loops)
quite well. The limited number of 4 impact configurations for the circular orbit of the target (dark-gray crosses) cannot express the exact structure of recorded radiants,
however it can provide approximate their position. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

evolution. Longitudes of node and pericenter, as well as the mean 100 years, providing us a clue about their orbital evolution. In or-
anomaly, were distributed randomly between 0° and 360°. Alto- der to resolve orbital behavior near the Sun, and thus not to miss
gether we started 5000 E-belt particles. Initial values of osculating possible Mercury impacts, we set the minimum heliocentric dis-
(a,e,i) are shown on the leftmost panel of Fig. 6. All planets were tance 0.01 AU, about two solar radii. While some projectiles may
given their masses and initial orbits as of J2000.0 epoch. In order survive even closer approaches to the Sun, many would tidally or

to speed up the simulation, we multiplied planetary radii by a fac- thermally disintegrate.

tor 5, increasing thus their geometric cross-section by a factor 25. Thanks to the increased planetary radii in our numerical exper-
We used sSWIFT_RMVS3 package to propagate orbits of planets and iment we have recorded enough impacts onto terrestrial planets
particles for 500 Myr and recorded their fate. Few particles sur- directly from the numerical simulation. This information is consid-

vived in heliocentric motion, while majority reached some of the ered as a ground truth, which is to be compared with predictions
possible end-states: either impacted one of the planets or the from either of the two approaches discussed above. This is to be
Sun, or was pushed onto Jupiter-crossing orbits and was ejected done as follows. The projectile population N(t) decays with time t
from the Solar System. We output state vectors of all bodies every according to

Initial conditions 50 Myr 500 Myr
60 T T T T T T LN =T T T T

30

Inclination (deg)

06 +
04 | +

02 +
0 I I I A I I I

1.0 1.2 14 16 18 20 22 10 1.2 14 1.6 1.8 20 22 10 12 14 1.6 1.8 20 22 24

Semimajor axis (AU)

Eccentricity

Fig. 6. Post LHB dispersal of the E-belt population. Upper panels show semimajor axis vs inclination, bottom panels show semimajor axis vs eccentricity of the numerically
propagated orbits. Left: Initial data of 5000 particles in our simulation. Semimajor axis was distributed uniformly in between 1.6 AU and 2.1 AU. Eccentricity and inclinations
had Maxwellian distribution with maxima at 0.15 and 8.5°, and standard deviation of 0.07 and 7°, respectively. All particles having initially Mars-crossing orbits were
eliminated (bottom panel). Middle: Population at 50 Myr. Planetary perturbations make the population dispersed. Because of the predominant high inclinations and low
eccentricities the characteristic decay timescale is long. At this moment still 46% of particles survive. The remaining were eliminated by several possible orbital end-states:
impact on the Sun or the planets, or ejection from the Solar System. Right: Population at 500 Myr has seen depletion at lower inclinations and higher eccentricities (some 10%
particles still survived). The surviving orbits converge to what is today observed as the Hungaria population.
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Table 1

A summary of cumulative number of impacts on terrestrial planets at the end of
simulation, T = 500 Myr, obtained by different methods: (i) Ngirec: denotes number of
direct impacts recorded by SWIFT code, (ii) Npy is a cumulative number of impacts
based on evaluation of intrinsic collisional probability at each time step using our
theory (Eq. (31)), (iii) Nwetn is the same as Npy but using Wetherill’s theory, and (iv)
Nypy is the same as Npy but using only the circular orbit of the target.

Planet Ndirect Npy Nweth Nvpn
Mercury 64 58.03 43.65 55.82
Venus 491 491.04 493.09 482.03
Earth 765 808.78 826.69 787.77
Mars 818 884.88 547.99 793.28
dN = —(Piot + P’)dt (30)

Here Py (t) = >;pk, (t)T? is the estimate of the composite proba-
bility per unit of time to impact one of the terrestrial planets
(hence the summation index goes from 1 to 4 spanning Mercury
to Mars). The total intrinsic collision probability with respect to
the specific target planet pi (t) is itself given as a population
sum over the projectiles, i.e. pj, (t) = Y1} pk,;, where the summa-
tion here goes over all projectile particles. Their individual intrin-
sic collision probabilities p}inj with the target planet i are
computed by using Eq. (28) with their current osculating orbital
elements (a,e,i,w). Obviously, due to a more complex long-term
orbital evolution of the particles than described in Section 2.2 this
is only an approximation. Moreover, the right hand side of Eq.
(30) contains also a second part of the probability for particle
elimination, namely P. This is because in our simulation there
are now more sinks than impacts on terrestrial planets. First,
there is a possibility to impact the Sun, but also some orbits
may be pushed to larger heliocentric distance, impact giant plan-
ets or be ejected from the Solar System. All these processes are
collectively described by P. However, since we do not dispose
with an appropriate formulation of P, we do not solve the Eq.
(30), rather we take its solution N(t) as directly given by the
SWIFT propagation. Still, we can estimate cumulative number of
planetary impacts until time T using (for the ith planet).
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Niy(T) = / dee2p, (1), (31)

and similarly N, (T) by replacing pi (t) with Wetherill’s direct
estimator Plyey, = Sy Piveny» ad Nypy(T) for the circular orbit of
the target with p.,. ().

Fig. 6 shows snapshots of the projectile osculating orbits at
epochs 0 Myr, 50 Myr and 500 Myr. As expected from Bottke et al.
(2012), the E-belt particles are swiftly dispersed with longest lived
ones pushed on low-eccentricity orbits with high inclination. Even-
tually, a tiny residual of such a population survives till now as Hun-
garia asteroids. In course of Gys though, the remaining part of the E-
belt was eliminated. For instance, at 50 Myr (middle panel of Fig. 6)
only 46% of particles survived, and at 500 Myr (right panel of Fig. 6)
only 10% of particles survived. Most of the eliminated particles im-
pact the Sun, as typical for terrestrial planet crossing orbits, but
some hit the planets. Fig. 7 shows the cumulative record of planetary
impacts as obtained from our numerical experiment (symbols). We
also show the computed functions Nb, (T) for our theory (green line),
Nwetn(T) for Wetherill's theory (red line) and N;.(T) for circular orbit
of the target (blue line), and make them compared with the true im-
pacts. In spite of minor drawbacks both Ni,,(T) and Ni,(T) match
the real impacts better than Nwewm(T), especially for Mercury and
Mars. Earth and Venus impact record is equally well reproduced
by Nby(T),Nipn(T) and Nye(T). The good coincidence between
Ni,(T) and N, (T) in the case of these two planets is no surprise be-
cause of their very low eccentricity. It is somewhat more surprising
that N, (T) still represents well the impact record on Mars and Mer-
cury (in the Mars case even better than N.,(T)). This is obviously
only formal to a certain degree, because - as we discuss below —
the individual particle orbits evolve in a very complicated way
which does not satisfy assumptions of any of the approaches. The
good performance of the Vokrouhlicky et al. (2012) approach is,
however, promising, because of much lower CPU requirements than
the current theory. A summary of cumulatiive number of impacts on
terrestrial planets at the end of the simulation, T =500 Myr, obtained
by different methods is shown in Table 1.
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Fig. 7. Cumulative number of E-belt particles impacting terrestrial planets. Time origin at the reconfiguration of giant planets (start of the LHB Bottke et al., 2012). Terrestrial
planet had their radii multiplied by a factor 5 in our simulation, so the absolute number of impacts is larger than in reality; their ratio - if corrected for small focusing effects —
is however correct. Symbols are directly recorded impacts in our numerical simulation. Green line is prediction Ni, (T) from our theory, red line is prediction Niy,,, (T) from
Wetherill's approach, and blue line is prediction N{,PN (T) for the circular orbit of the targets (see the text). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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Interestingly, Mercury and Venus have the majority of E-belt
impact events skewed toward earlier epochs after LHB than Earth
and especially Mars. In quantitative terms, 50% of Mercury impacts
occur within the first 25 Myr, while 50% of Mars impacts extend
over 75 Myr after LHB. In total, Earth receives about 12 times more
impacts than Mercury. The ratio of geometric cross section of the
Earth and Moon is ~13.5 and since the post-LHB impact velocities
of the E-belt projectiles for Earth are ~20kms~! (Bottke et al.,
2012), the focusing factor plays a minor role in increasing flux on
the Earth with respect to the Moon. In reality, this factor would
have been about 1.5, but in our simulation the Earth radius was in-
creased such that the focusation plays virtually no role. From this
we infer that Mercury should obtain about the same number of
E-belt impacts as the Moon (maybe only 10-20% more). Obviously,
since the impact velocity on Mercury is larger - median value of
~42 km s~! (Marchi et al., 2009) - equal size projectile would cre-
ate somewhat larger craters on Mercury than on the Moon. The ex-
act factor obviously depends on the scaling law used, but it could
be ~ +/2. Assuming a collisionally evolved population of impactors,
there would be about ~ v2°° ~ 2.5 more E-belt produced craters
of a given size on Mercury than on the Moon. However, if rescaled
to the crater density, one has to take into account an about twice
larger surface area of the Mercury, the equal-size E-belt produced
craters would have only slightly larger density on Mercury than on
the Moon.

We find the Mars impact record interesting, since it has the
longest-lived tail of the E-belt bombardment. This is in fact
understandable, being just next to the E-belt population. We find
also interesting that here the formal application of the Wethe-
rill's approach fails, while results from our theory — while not
being perfect — match the data better. This is perhaps because
the longer-lived orbits keep having high inclination and low
eccentricity, such that impacts on Mars are often nearly pericen-
tric. This increases the collision probability. Another planet,
where we observer largest difference between prediction from
our model and Wetherill’s approach is Mercury. Here again, imp-
actors that make it to Mercury’s heliocentric distance likely keep
having high-orbital inclination, a situation better described by
our approach.

5. Conclusions

We extended the collision probability theory for the high incli-
nation and high eccentricity projectile orbits presented in our pre-
vious paper Vokrouhlicky et al. (2012). In particular, our present
form can handle the target on an elliptic orbit with uniform preces-
sion in space. Generalization to target orbits with non-zero inclina-
tion and regular node precession, sweeping thus a final volume in
space, is left for future work.

We tested our approach using simple projectile-target configu-
rations, mainly to demonstrate the principal phenomena and to
verify performance of our numerical code. We also ran a simplified
numerical experiment (planetary radii 5 times inflated) of the E-
belt population dispersal after planets acquired their final architec-
ture. A full-fledged planetary system, including planet Mercury
was used. This allowed us to compare directly recorded planetary
impacts with prediction of our collision theory even for this inner-
most planet. Surprisingly, even that the orbital evolution of the
individual E-belt particles is well beyond (and far more complex)
the assumptions about secular evolution in our approach, we note
rather fair performance of our theory.

The code providing intrinsic collision probability, position of
radiants and impact velocities based on our approach written in
FORTRAN 77 language is available at http://sirrah.
troja.mff.cuni.cz/~pokorny/Kozai/.
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Appendix A. A comment on numerical evaluation of Eq. (28)

Numerical evaluation of several integrals introduced in Sec-
tion 2 require specific care. This is because while finite, functions
in their integrands may be singular. For instance, the weighting
function ¥(rp) in the integrand of Eq. (28) diverges when ro=r,
and ro=r3, the limits of the integration. Obviously, in this case
the situation is simple and a standard parameter transformation
helps to remove the singularities (see Press et al., 1992, Chapter
4.4). We first split the integral into two pieces, integrating once
from r; to ag and next from ag to . In the former case we use
the following substitution

p(ro)dro Wt 2p(ry + 2)dt (A1)
Toy/(fo — 11 (rzfro 0 (r + )W —r — 2 '
while in the latter case, we have
() _f2
TO dro 2p(r2 t )dt (AZ)

a Toy/(ro —11)(r2 — o) 0 (rzftz)\/rzfrlftz

We adopted Romberg’s method for evaluation of these definite
integrals.

The main difficulty now resides in the a priori unknown and
potentially ill-behaved course of a function p(rp), while the rest
of the integral is easily evaluated using even a small number of
iterations of the Romberg scheme. The potential problems are
due to grazing pericentric or apocentric impact configurations for
a fixed impactor orbit and varied ry value. These situations are typ-
ically badly behaved in the linear approximation of the two orbits
and result in singularity of apparent p(ry) (see, e.g., Appendix of
Vokrouhlicky et al. (2012)). At this moment, we did not optimize
our code to deal in detail with all these caveat. Rather, we adopted
a pragmatic deal between efficiency and precision of the code. This
may degrade its performance at some singular configurations, but
overall provides useful tool for most of the situations.
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ABSTRACT

The Oort Cloud Comets (OCCs), exemplified by the Great Comet of 1997 (Hale-Bopp), are occasional visitors
from the heatless periphery of the solar system. Previous works hypothesized that a great majority of OCCs must
physically disrupt after one or two passages through the inner solar system, where strong thermal gradients can
cause phase transitions or volatile pressure buildup. Here we study the fate of small debris particles produced by
OCC disruptions to determine whether the imprints of a hypothetical population of OCC meteoroids can be found
in the existing meteor radar data. We find that OCC particles with diameters D < 10 um are blown out from the
solar system by radiation pressure, while those with D 2 1 mm have a very low Earth-impact probability. The
intermediate particle sizes, D ~ 100 um, represent a sweet spot. About 1% of these particles orbitally evolve by
Poynting—Robertson drag to reach orbits with semimajor axis a ~ 1 AU. They are expected to produce meteors
with radiants near the apex of Earth’s orbital motion. We find that the model distributions of their impact speeds and
orbits provide a good match to radar observations of apex meteors, except for the eccentricity distribution, which
is more skewed toward e ~ 1 in our model. Finally, we propose an explanation for the long-standing problem in
meteor science related to the relative strength of apex and helion/antihelion sources. As we show in detail, the
observed trend, with the apex meteors being more prominent in observations of highly sensitive radars, can be

related to orbital dynamics of particles released on the long-period orbits.

Key words: meteorites, meteors, meteoroids — zodiacal dust

1. INTRODUCTION

The Oort Cloud is a roughly spherical cloud of comets
(Oort 1950), which surrounds the solar system and extends to
heliocentric distances larger than 100,000 AU. The Oort Cloud
is currently feeding comets into the inner solar system at a rate
of about 12 comets with ¢ < 3 AU yr~! with an active comet
absolute magnitude Hp < 10.9 (Wiegert & Tremaine 1999;
q is the perihelion distance and H)j is a distance-independent
measure of the active comet brightness that includes the coma).
The Oort Cloud Comets (hereafter OCCs) can be divided
into two populations based on their dynamical histories: (1)
dynamically new OCCs, which are on their first passage through
the inner solar system and typically have a > 10,000 AU and
(2) returning OCCs which have previously passed through the
inner solar system and typically have a < 10,000 AU.*

The dynamical models of the orbital evolution of new OCCs
into returning OCCs predict many times more returning comets
than are observed (Wiegert & Tremaine 1999). This is the so-
called fading problem, which is thought to be related to the
physical evolution of OCCs. To resolve this problem, Levison
et al. (2002, hereafter L02) proposed that OCCs must physically
disrupt as they evolve inward from the Oort Cloud. Specifically,
L02 estimated that, when an OCC becomes inactive, it has
only ~ 1% chance of becoming dormant, and ~99% chance
of being disrupted. If more OCCs would become dormant,
L02 argued, the modern surveys of near-Earth objects would
discover a greater number of dormant OCCs passing through
perihelion each year than they do. Strong thermal gradients,
phase transitions, and volatile pressure buildup experienced by

4 See Dybczyniski (2001) for an alternative definition.
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OCCs during their approaches to the Sun are thought to be
responsible for disruptions.

If these results are correct, the disrupted OCCs must be a
prodigious source of dust particles and larger fragments that
may further disintegrate. In particular, the dust production rate
from OCC disruptions should be vastly larger than that of
active OCCs. On the other hand, the smallest dust particles
produced in these disruption events may be lost from the
solar system due to the effects of radiation pressure, while
the large fragments should be dispersed over enormous radial
distances. It is therefore not clear whether the disrupted OCCs
can supply a significant amount of material to the inner zodiacal
cloud, and whether they could represent a significant source of
interplanetary dust particles accreted by the Earth.

Given their large speeds relative to the Earth, the OCC
particles plunging into the upper atmosphere could produce
meteor phenomena and be detected by optical and radar meteor
surveys (e.g., see Steel 1996 for a review). Here we consider the
radar meteors. The modern meteor radar surveys produced vast
data sets including millions of high-quality orbits covering both
the northern and southern hemispheres (e.g., Jones & Brown
1993; Taylor & Elford 1998; Galligan & Baggaley 2004, 2005;
Janches et al. 2003; Janches & Chau 2005; Chau et al. 2007;
Campbell-Brown 2008). Moreover, the sensitivity of meteor
observations broke new grounds with routine measurements of
meteor echoes using HPLA radars such as the Arecibo (AO)
radar, which is capable of detecting ~50 pum particles down
to ~20 km s~! (e.g., Janches et al. 2003, 2006; Fentzke et al.
2009). It is natural to ask whether some of these observations
can be linked to the particle populations from disrupted OCCs.

5 High Power and Large Aperture.
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Meteors are produced by small interplanetary particles, also
known as the meteoroids, that interact with air molecules upon
atmospheric entry. Based on meteor data, the meteoroids can
be divided into two groups: sporadic meteoroids and meteoroid
streams. The meteoroid streams are prominent concentrations of
particles with similar orbits (Whipple & Gossner 1949; Whipple
1951). They are thought to be produced by particles released
by active and recently (< few thousand years ago) disrupted
comets (e.g., Jenniskens 2008). Sporadic meteoroids are those
particles that have evolved significantly from their parent body
so that they are no longer easily linked to that parent, or to other
meteoroids from the same parent. Notably, the time-integrated
flux of meteors at Earth is dominated by about a factor of ~ 10
by sporadics (Jones & Brown 1993).

The radiant distribution of sporadic meteors shows several
concentrations on the sky, known as the helion/antihelion,
north/south apex, and north/south toroidal sources (e.g.,
Younger et al. 2009, and references therein). Wiegert et al.
(2009, hereafter W09) developed a dynamical model to explain
these concentrations. Their main results concern the prominent
helion/antihelion sources for which the particles released by
Jupiter-family comets (JFCs) such as 2P/Encke provide the
best match, in agreement with previous studies (e.g., Jones et al.
2001). As for the north/south apex source, W09 pointed out the
potential importance of retrograde Halley-type comets (HTCs)
such as 55P/Tempel-Tuttle (or an orbitally similar lost comet).
The case for the retrograde HTC particles is compelling, be-
cause three prominent retrograde HTCs, namely, 1P/Halley,
55P/Tempel-Tuttle, and 109P/Swift-Tuttle, all have associated
streams, known as Orionids/n Aquarids, Leonids, and Perseids,
respectively. The sporadic meteoroids with the north/south apex
radiants can thus plausibly be a dynamically old component of
HTC particles.

Here we consider the possibility that at least some part of the
meteoroid complex is produced by disrupting OCCs (L02; see
also Jones et al. 2001). We study the effects of radiation pressure
on particles released from the highly eccentric OCC orbits,
and their dynamical evolution under gravitational perturbations
from planets and Poynting—Robertson (P-R) drag (see Section 2
for our model). We show that a significant contribution of
OCC particles to the inner zodiacal cloud and meteor record is
somewhat problematic, because most small OCC particles are
blown out from the solar system by radiation pressure, while
most large ones get scattered by planets and never make it into
the inner solar system (Section 3). Still, we find that there is a
sweet spot at particle sizes ~ 100-300 pm. Our modeling work
shows that the orbits and impact speeds of these intermediate-
size OCC particles can match those derived from the meteor
radar data for apex meteoroids. Furthermore, we find that the
preponderance of fast apex meteors in HPLA radar observations
(e.g., AO, ALTAIR, Jicamarca) can be linked to the competing
effects of P-R drag and Jupiter perturbations, which act as a size
filter on populations of the long-period meteoroids (Section 4).

2. MODEL

We studied the following sequence of events: (1) particles of
different sizes were released from OCCs (Section 2.1), (2) their
orbits evolved under the influence of gravitational and radiation
forces (Section 2.2), (3) some particles were thermally or
collisionally destroyed (Section 2.3), and (4) a small fraction of
the initial particle population was accreted by Earth, producing
meteors (Section 2.4). We describe our model for (1)—(4) below.
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2.1. Initial Orbits

According to Francis (2005), OCCs have dN(q) « (1 +
J/q)dq for g < 2 AU. For g > 2 AU, Francis’ result predicts
dN(q) being flat or declining, while we would expect the
perihelion distribution to increase with g. It probably just shows
that the distribution is not well constrained for ¢ > 2 AU. We
used dN(q) x 2.41(q/2)Y dq for g > 2 AU, with 0 < y < 1.
The initial values of ¢ in our numerical integrations were set
to be uniformly random between 0 and 5 AU, because particles
starting with ¢ > 5 AU do not reach 1 AU (see Section 3.1),
where they could contribute to the Earth-impact record. The
results for different dN(q) were obtained by assigning the
appropriate weight to particles starting with different gs (i.e.,
instead of 1 we counted each particle as dN(g)/dq).

Upon its release from a larger object, a small particle will
feel the effects of radiation pressure. These effects can be best
described by replacing the mass of the Sun, mg, by mg(1 — B),
with B given by

B=57x10"° %,

ps

e))

where radius s and density p of the particle are in cgs units.
Pressure coefficient Oy, can be determined using the Mie theory
(Burns et al. 1979). We set Q) = 1, which corresponds to
the geometrical optics limit, where s is much larger than the
incident-light wavelength. We used particles with D = 2s = 10,
30, 100, 300, 1000 pwm, which should cover the interesting range
of sizes, and p = 2.0 gcm 3.

For large eccentricity e of the parent object and/or for large
B, the released particle may become unbound and escape to
interstellar space. To stay bound, the heliocentric distance, R, of
the released particle must fulfill the following condition (e.g.,
Kresak 1976; Liou et al. 1999):

R > R* =28a. 2)
This condition shows that all particles with B released at the
orbit’s perihelion will be removed, if 28 > 1 — e. The new
OCCs have 1 — e < 1074, It follows that particles produced by
a new OCC near its perihelion will become unbound for sizes
up to D ~ 1 cm. The usual near-perihelion activity of OCCs
therefore cannot be a major source of small dust particles in the
inner solar system.

Motivated by the LO2 results, we now consider OCCs dis-
ruptions. Interestingly, observations of the disruption events
of comets show that there does not seem to be any correla-
tion between the time of disruption and the orbital phase of
the parent object. Many comets were seen to disrupt (or suffer
outburst/splitting events) at large heliocentric distances. For ex-
ample, 174P/Echeclus showed an outburst with R &~ 13 AU,
more than 6 AU beyond its perihelion distance (Choi et al. 2006).
It may therefore be possible that OCCs could disrupt at relatively
large R and produce particles that, according to Equation (2),
will stay on bound orbits.

We release particles with R > R* in our model. For example,
a D = 100 um particle with p = 2.0 g cm™> ejected from
the parent comet with @ = 10> AU will have 8 ~ 0.006 and
R* = 12 AU. We thus release these particles with R > 12 AU.
In addition, we only study particles ejected from orbits similar
to those of the returning OCCs with a ~ 10° AU. We do
not consider orbits with @ > 10* AU, corresponding to the
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Oort spike,® because we believe it unlikely that disruptions
could happen at the very large heliocentric distance implied
by Equation (2) for @ > 10* AU. For example, a D = 300 um
particle with p = 2.0 g cm™3, released from a parent orbit with
a = 10* AU, would become unbound, unless R > 36 AU.

The particle populations studied here have bound initial
orbits. They represent only a fraction of all particles released
from OCCs. This fraction, denoted f; in Section 4, is difficult
to estimate, because we do not have a detailed understanding
of the processes, and their dependence on R, that govern comet
disruptions. We will return to this issue in Section 4. The initial
distribution of orbital inclination vectors was set to be isotropic.
To simplify things, we neglected the ejection velocities of dust
particles from their parent objects (see Jones et al. 2001) and
assumed that they will initially follow the parent comet’s orbit
modified by radiation pressure.

For reference, we also followed meteoroids from 1P/Halley,
2P/Encke, and 55P/Tempel-Tuttle. These comets were sug-
gested to be important sources of the sporadic meteors by W09.
The comet’s orbits were obtained from the JPL Horizons site.
Particles of different sizes were released from the parent orbits
and tracked into future. We applied the same procedures/criteria
to them that we used for the OCC particles.

2.2. Orbit Integration

The orbits of small particles in the interplanetary space are
subject to gravitational perturbations of planets and radiation

forces (Robertson 1937; Burns et al. 1979). The acceleration F

due to radiation forces is
- mo R I_é ‘7
F=G—2|(1-=)=-—].
p R? |:< c) R c:|

where R is the heliocentric position vector of particle, V is its
velocity, G is the gravitational constant, m, is the mass of the
Sun, c is the speed of light, and R = dR/dt. The acceleration
Equation (3) consists of the radiation pressure and the velocity-
dependent P-R term. Parameter B is related to the radiation
pressure coefficient Oy, by Equation (1).

The particle orbits were numerically integrated with the
swift_rmvs3 code (Levison & Duncan 1994), which is an
efficient implementation of the Wisdom—Holman map (Wisdom
& Holman 1991) and which, in addition, can deal with close
encounters between particles and planets. The radiation pressure
and drag forces were inserted into the Keplerian and kick parts
of the integrator, respectively. The change to the Keplerian
part was trivially done by substituting mg by mg(1 — B). The
swift_rmvs3integrator is stable even for near-parabolic orbits,
and thus well suited for the integrations that we carried out here.

The code tracks the orbital evolution of a particle that revolves
around the Sun and is subject to the gravitational perturbations
of seven planets (Venus to Neptune; the mass of Mercury was

3

6 The semimajor axis values of most OCCs are 10* <a <5 x 10* AU,
which is known as the Oort spike (e.g., Wiegert & Tremaine 1999). Comets in
the spike are mostly dynamically new comets, on their first passage into the
inner planetary system from the Oort Cloud. A comet that passes through the
planetary system receives a gravitational kick from the planets. The typical
energy kick, Ax, depends strongly on the perihelion distance of the comet’s
orbit. According to Wiegert & Tremaine (1999), Ax ~ 10~3 AU~! forg <6
AU, while comets in the Oort spike have x = 1/a < 10~* AU™!. Depending
on the sign of the kick, they will either leave the planetary system on unbound
orbit, never to return, or be thrown onto a more tightly bound orbit with

a < 10° AU.
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added to the Sun) until the particle impacts a planet, is ejected
from the solar system or evolves to within 0.05 AU from the Sun.
We removed particles that evolved to R < 0.05 AU because the
orbital period for R < 0.05 AU was not properly resolved by
our 1 day integration time step.

Several thousand particles were followed for each D. Their
orbital elements were defined with respect to the barycenter of
the solar system. The barycentric elements are similar to the
heliocentric elements for R < 5 AU, but differ for large R,
where the Sun’s orbital speed about the barycenter of the solar
system is not negligible relative to the orbital speed of a particle.

All orbits were followed from the present epoch into the
future. Each particle’s orbital elements were stored at 10% yr
intervals. We used the output to construct a steady state
distribution of OCC particles in the inner solar system. This
approach differs from that of Nesvorny et al. (2006) and
W09, who started particles at many different past epochs and
used these integrations to determine the present distribution
of particles. The two distributions are expected to be slightly
different, expressing mainly the difference between the present
configuration of planets, with each planet having a specific
secular phase, and the time-averaged system, where all phases
are mixed. Since this difference is small, however, we can use
the steady state distribution, which is easier to obtain, as a
reasonable approximation.

2.3. Physical Effects

Solar system micrometeoroids can be destroyed by collisions
with other particles and by solar heating, that can lead to
sublimation and vaporization of minerals. Here we describe
how we parameterize these processes in our model.

2.3.1. Thermal Destruction

Thermal alteration of grains in the interplanetary grains is
a complex process. The OCC particles evolving into the inner
solar system will first lose their volatile ices, which will rapidly
sublimate once the grains are heated to a critical temperature.
We do not model the volatile loss in detail. Instead, we crudely
assume that the grains have lost ~50% of their mass/volume
when reaching R < 5 AU. We do not include the orbital effects
of mass loss in orbital modeling because it should produce only
a relatively small perturbation on orbits for large particles that
we consider here. The remaining grains will be primarily com-
posed from amorphous silicates and will survive down to very
small R.

According to Duschl et al. (1996), silicates are thermally
altered at temperatures 7 ~ 900-1600 K, and start to vaporize
for T > 1600 K. As an example of thermal alteration, Kasuga
et al. (2006; see also Capek & Borovicka 2009) studied
the thermal desorption of alkali minerals and concluded that
micrometeoroids should show evidence of thermal desorption
of metals, Na in particular, for ¢ < 0.1 AU. Following
Moro-Martin & Malhotra (2002), Kessler-Silacci et al. (2007),
and others, we adopt a simple criterion for the silicate grain
destruction. We will assume that they are destroyed when the
grain temperature reaches 7 = 1500 K.

The temperature of a small, fast spinning grain in interplan-
etary space is set by an equilibrium between the absorbed and
re-radiated energy fluxes. While the absorbed flux is a simple
function of the particle’s size, albedo and heliocentric distance,
the re-radiated flux depends on the particle’s emissivity, which
in turn is a function of the particle’s size, shape, and material



THE ASTROPHYSICAL JOURNAL, 743:37 (12pp), 2011 December 10

properties. Using the optical constants of amorphous pyroxene
of approximately cosmic composition (Henning & Mutschke
1997), we find that a dark D 2> 100um grain at R has
the equilibrium temperature within 10 K of a blackbody,
T(R) ~ 275/~/R K. According to our simple destruction cri-
terion, T(R) > 1500 K, the silicate grains should thus be re-
moved when reaching R < 0.03 AU. On the other hand, the
smallest particles considered in this work, D = 10 um, will
reach T(R) = 1500 K for R ~ 0.05 AU. Thus, we opted for
using a very simple (and conservative) criterion where particles
of all sizes were destroyed, and not considered for statistics,
if they ever reached R < 0.05 AU. Note that, by design, this
limit is the same as the one imposed by the integration time step
(Section 2.2).

2.3.2. Disruptive Collisions

The collisional lifetime of meteoroids, .o, was taken from
Griin et al. (1985, hereafter G85). It was assumed to be a function
of particle mass, m, and orbital parameters, mainly a and e.
We neglected the effect of orbital inclination on 7., because
the results discussed in Steel & Elford (1986) suggest that the
inclinations should affect 7., only up to a factor of ~2-5,
which is not overly significant in the context of our work. We
assumed that the mass and orbital dependencies of 7., can be
decoupled, so that

Teon (M, a,e) = ®(m)¥(a,e), “)
where ®(m) and W(a, ¢) are discussed below.

As for ®(m), we used the G85 model based on measurements
of various spacecraft and Earth-based detectors. We found that
the model can be approximated by a simple empirical fit.
Specifically, between 107%* g and 10'? g, we adopted the
quadratic function

&)

with (cy, ¢1, ¢2) = (4.021, 0.300, 0.083), where the values of ¢y,
c1, and ¢ were set to fit the G85 collision lifetime for circular
orbits at the reference distance Ry = 1 AU. A linear relation
between log @ (m) and log m was used outside the quoted mass
range to approximate the G85 model down tom = 1078 g. ®(m)
has a minimum for m =~ 0.01 g, corresponding to s >~ 1 mm for
o =2 g cm™ (Figure 1). The collisional lifetime of ~ 1 mm
particles in the G85 model is very short, roughly 5000 yr at
1 AU.

Y(a, e) is assumed to drop as a power law with R. From
Equation (18) in G85 we have

log ® (m) = ¢, (log m)? + ¢ (logm) + co,

v (B)
RO Ucirc (R)

where v(R) and v..(R) are the particle and circular speeds at
R, respectively, and o =~ 1.8. The velocity-dependent factor
provides an appropriate scaling of 7., for eccentric orbits.

Averaging Equation (6) over a Keplerian orbit with semimajor
axis a and eccentricity e, we obtain

(6)

a o
‘P(a,e)=<RO> J (e, (N
where .
1 ™ (1—ecosu)™
= — dy———o-—=— 8
T 7T/0 ! V1+ecosu ®
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Figure 1. Mass dependence, ®(m), of the adopted model for the collisional
lifetime of particles. The plot shows ®(m) for a particle on the circular orbit at
the reference heliocentric distance Ry = 1 AU. Two parameters of the collisional
model, S; and S», were used to test the sensitivity of our results to modifications
of ®(m).

can be written as a series in e with good convergence. Note that
J =~ 1 for e >~ 0, as required in Equation (7), but can become
> 1 for very eccentric orbits.

The G85 model was calibrated to match the impact fluxes
of particles as measured prior to 1985. The more recent
measurements indicate lower fluxes (e.g., Dikarev et al. 2005;
Drolshagen et al. 2008). Also, to estimate 7., assumptions
needed to be made in G85 about the strength of particles, and
their impact speeds. As a result, T proposed by G85 may
have a significant uncertainty. To test different possibilities, we
introduced two free parameters in our model, S; and S5, that were
used to shift the @(m) function in log m and log @, respectively
(as indicated by arrows in Figure 1). For example, the positive
S, values increase .o relative to the standard G85 model, as
expected, for example, if particles were stronger than assumed
in G853, or if the fluxes were lower.

Collisional disruption of particles was taken into account
during processing the output from the numerical integration
described in Section 2.2. To account for the stochastic nature
of breakups, we determined the breakup probability peon =
1 — exp(—h/tcon), where i = 1000yr is the output interval
and 7.y was computed individually for each particle’s orbit.
The code then generated a random number 0 < x < 1, and
eliminated the particle if x < peoy-

We caution that our procedure does not take into account the
small debris fragments that are generated by disruptions of larger
particles. Instead, all fragments are removed from the system.
This is an important approximation, whose validity needs to be
tested in the future.

2.4. Model for Meteor Radar Observations

We used the Opik theory (Opik 1951) to estimate the expected
terrestrial accretion rate of OCC particles in our model. Wetherill
(1967), and later Greenberg (1982), improved the theory by
extending it more rigorously to the case of two eccentric orbits.
Here we used the Fortran program written by W. F. Bottke
(see, e.g., Bottke et al. 1994), which employs the Greenberg
formalism.

We modified the code to compute the radiants of the impacting
bodies. The radiants were expressed in the coordinate system,
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where longitude / was measured from Earth’s apex in the
counterclockwise direction along Earth’s orbit and latitude b
was measured relative to Earth’s orbital plane. Note that our
definition of longitude is different from the one more commonly
used for radar meteors, where the longitude is measured from
the helion direction. The radiants were calculated before the
effects of gravitational focusing were applied.

The longitude and latitude values of radiants were binned
into 1 deg” area segments. For each radiant bin, the code gives
information about the distribution of geocentric impact speeds,
vg, and heliocentric orbits prior to the impact, as defined by a, e,
and i. Here, v, is defined as v, = (v, +v2.)"/?, where vy, is the
relative velocity “in infinity” and v is the escape speed from
Earth’s surface. The orbital elements, on the other hand, are the
orbital elements that the particle would have in the absence of
the gravitational focusing by the Earth. The radiant distribution,
Vg, a, e, and i will be compared to meteor radar observations in
Section 3.3.

To compare our model with observations, we need to include
the meteor radar detection efficiency. This is a difficult problem
because the meteor phenomenon itself and radar detection of
it involve complex physics. For example, the specular meteor
radars (SMRs), such as the Canadian Meteor Orbit Radar
(CMOR; Campbell-Brown 2008) and Advanced Meteor Orbit
Radar (AMOR; Galligan & Baggaley 2004, 2005), detect the
specular reflection of the meteor trail (the plasma formed by the
meteoroid’s passage). The meteoroid velocities are then derived
from the detection of the Fresnel diffraction patterns of the
developing trail, or are determined by measuring the time of
flight between stations.

The detection efficiency of a meteor should mainly be a func-
tion of the particle size and speed, but it also depends on a num-
ber of other parameters discussed, for example, in Janches et al.
(2008). Following W09, we opt for a simple parameterization
of radar sensitivity function, where the detection is represented
by an ionization function

( )3.5

All meteors with I(m, v,) > I* are assumed to be detected
in our model, while all meteors with I(m, v,) < I* are not
detected (see Fentzke et al. 2009 for a similar method applied
to head echo radars). The ionization cutoff 7* is different for
different SMRs. For example, 7* ~ 1 for CMOR (Campbell-
Brown 2008) and I* ~ 0.001-0.01 for AMOR (Galligan &
Baggaley 2004, 2005). For reference, an OCC particle with
vy = 60km s landm = 107 g, corresponding to s ~ 100 um,
will have I(m, v,) 2 0.1, i.e., a value intermediate between the
two thresholds. These meteoroids would thus be detected by
AMOR, according to our definition, but not by CMOR. We will
discuss these issues in more detail in Section 3.3.

m
104g¢

Ug

I(m, vg) = 30kms |

(©))

3. RESULTS
3.1. Orbital Evolution of OCC Particles

Wyatt & Whipple (1950) identified the following constant of
motion of P-R drag

(1—e?
o5

C=a (10)
where a and e are the particle’s semimajor axis and eccentricity

(see also Breiter & Jackson 1998). This constant is independent
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Figure 2. Effects of P-R drag on the highly eccentric orbits of OCC particles.
(a) Evolution tracks of particles evolving by P-R drag in semimajor axis and
perihelion distance. Particles with ¢ =~ 1 evolve from right to left along the
lines of constant perihelion distance. The shaded area is inaccessible to orbits.
(b) Evolution timescale for particles with D = 100 um and p = 2 g cm™3.
Contours show the time of fall, tg,y, from the initial orbit with a and ¢ to the
Sun. According to Equation (11), 7 scales linearly with D (and p), so that,
for example, the 1 Myr contour for D = 100 um is the 10 Myr contour for
D =1 mm.

of the particle properties such as its size. The orbit path of any
particle in a and e can thus be obtained by calculating C for the
initial orbit, and requiring that Equation (10) holds at all times
(Figure 2(a)). For e ~ 1, the orbit trajectories follow the lines
of constant g, because C =~ 2¢g for e >~ 1. The semimajor axis
of orbits shrinks until reaching a value only several times larger
than g. At that point, a more familiar form of P-R drag takes
place with both a and ¢ converging to zero.

The timescale of orbital evolution is as follows. For an initial
orbit with @, ¢, and ¢ = a(1 — e), the total time of fall to the Sun
is (Wyatt & Whipple 1950)

s o
Tfall = 20 MyI‘ ( > (
lcm

2gem—3

q
1 AU

2
) fo. an
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Figure 3. Orbit history of a particle with D = 100 um, initial @ = 10% AU, and ¢ = 1.53 AU. After 1.7 Myr, the orbit decouples from Jupiter and moves to a ~ 1
AU. The particle ends up having a < 0.1 AU, and sublimates upon reaching R < 0.05 AU.

where
(1+e)? 35

‘ U
/0 R
Figure 2(b) shows tg, for orbits relevant to OCC particles.

Interestingly, the timescale for large a can be relatively short
if g is small. For example, an OCC particle with D = 100 um,
a = 10* AU, and ¢ = 1 AU takes about 20 Myr to fall to the
Sun. This is only about 20 orbital periods for a = 10* AU.
According to Equation (11), Ty scales linearly with particle
size. Thus, a D = 10 um particle with the same initial orbit has
Tranl = 2 Myr.

One important aspect that cannot be captured by the analytical
results discussed above is the effect of planetary perturbations
on drifting orbits of OCC particles. To evaluate this effect, as
described in Section 2.2, we numerically integrated the orbits
of OCC particles as they evolve from large a and interact with
the planets.

Figure 3 shows the orbital history of a particle, whose orbit
evolved all the way down into the inner solar system. Initially,
the particle’s semimajor axis underwent a random walk caused
by indirect planetary perturbations, mainly from Jupiter, during
each perihelion passage (Wiegert & Tremaine 1999). Then, at
time ¢ ~ 5 x 10° yr, a single perihelion passage produced a
significant drop of a from 150 to 40 AU, where the particle
started to interact with the exterior mean motion resonances
with Neptune. The following evolution was mainly controlled by
P-R drag. Eventually, the orbit decoupled from Jupiter, reached
a ~ 1 AU, and kept shrinking further toward the Sun, where the
particle was thermally destroyed. The large oscillations of ¢ for
0.9 <t < 1.7 Myr, correlated with those in i, were produced
by Kozai dynamics (e.g., Kozai 1962).

The orbit history shown in Figure 3 is typical for an OCC
particle that is able to make it into the inner solar system.
These particles, however, represent a relatively small fraction
of the initial population, with most particles being ejected from
the solar system by planetary perturbations. Using d N(q) with
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0 <y < 1(Section2.1),a ~ 103 AU and isotropic distribution
of inclination vectors, roughly 0.8%-1.5% of particles with
D = 100 um evolve down into the inner solar system and
decouple from Jupiter (as defined by the aphelion distance
Q = a(l +e) < 4 AU), without being disrupted by an
impact (with standard S} = S, = 0; Section 2.3) or ever
having ¢ < 0.05 AU (to avoid sublimation). These particles
can potentially be important for the terrestrial impact record
and interpretation of the meteor radar data. The bulk of OCC
particles that do not reach @ ~ 1 AU, do not significantly
contribute to Earth’s accretion, because these particles spend
most of their lifetimes at R > 1 AU.

The fraction of OCC particles reaching a ~ 1 AU, fi,
normalized to the number of particles whose orbits were
initially bound (see Section 2.1), is sensitive to particle size.
For D = 10 um, dN(q) described in Section 2.1, and initial
a ~ 10° AU, f; ~ 0.15-0.2. For D = 300 um, on the other
hand, f1 ~ 2 x 1073, Moreover, for D = 1 mm, only one
particle out of the total of 5000 reached @ ~ 1 AU. This trend,
with the larger particles having progressively smaller f; values,
has interesting implications for the observations of sporadic
meteors (Section 4),

The above estimates used 7., as described in Section 2.3.2.
Collisional disruption, however, turned out to have only a
modest effect for the standard G85 7.y (S1 = S, = 0) and
the particle sizes considered here. For example, only ~2% of
particles with D = 100 um that reached a ~ 1 AU in our
numerical integration have disrupted prior to decoupling from
Jupiter, as detected in post-processing of the integration output,
with the standard G85 7. A great majority of particles with
D = 300 um also survived. The effect of disruptive collisions
becomes more significant for D ~ 1 mm, for which 7. is
significantly shorter (Section 2.3.2) and P-R drag is weaker.

The thermal effects discussed in Section 2.3.1 turned out
to be very important for all particle sizes considered here.
For example, 75 out of 122 particles (i.e., over 60%) with
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Figure 4. Radial distribution of OCC particles that we obtained in our model.
The number density was normalized to the input flux of one particle released
on bound orbit per year. We used D = 100 um here. The distribution with
D = 300 pum looks similar for R > 5 AU, but is depleted below 5 AU, relative
to the one shown here, because fewer particles with D = 300 um are able to
decouple from Jupiter. Particles were released on orbits with a ~ 103 AU and
uniformly random sini. The initial distribution d N(g) was set as described in
Section 2.1 with y = 0.5 (the results are not sensitive to ).
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D = 100 um that ever reached O < 4 AU, previously had
qg < 0.05 AU, which is our crude threshold for the thermal
destruction of particles. Also, 68 out of 74 D = 300 um
particles (over 90%) reaching Q < 4 AU previously had
g < 0.05 AU. The thermally destroyed particles are removed
and the orbital histories after their disruption are not used for
our analysis.

These fractions are a direct consequence of the relative
importance of planetary perturbations and P-R drag on particles
with different D and ¢. The orbital evolution of a large particle
on the OCC-like orbit is primarily controlled by planetary
perturbations. Sooner or later, the planets will eject the particle
from the solar system, unless the orbit shrinks and decouples
from Jupiter. To achieve this, g of the particle’s orbit must be
very low, so that the P-R drag timescale is short (see Figure 2(b)).
But if ¢ is low, it may easily drop below ¢ < 0.05 AU, where
the particle is removed, thus explaining why most large particles
reaching O < 4 AU previously have ¢ < 0.05 AU.

Interestingly, the fraction of particles with D ~ 100-300 um
reaching a ~ 1 AU is not overly sensitive to the initial perihelion
distance, as far as ¢ < 5 AU. This is because it is more likely
to decouple if ¢ is low, because P-R drag is stronger, but this
trend is nearly canceled, because particles with very low ¢ tend
to drop below ¢ = 0.05 AU and sublimate before they can
decouple. Particles with D ~ 100-300 um and ¢ > 5 AU, on
the other hand, tend to have very long P-R drag timescales (e.g.,
Tran > 50 Myr for initial @ = 10° AU; Figure 2(b)), and are
scattered by planets from the solar system.

3.2. Orbital and Spatial Distributions

Here we discuss the expected distribution of OCC particles
in the inner solar system. Figure 4 shows the number density of
OCC particles as a function of R. As expected, the particle
density increases toward the Sun. The radial distribution of
D = 100 um particles can be approximated by a power law,
dN(R) x R™dR, where o >~ 1.5 for R <5 AU, and o >~ 2.0
for R > 10 AU. Both these radial dependencies are significantly
steeper than dN(R) o« R~ 'dR, expected for distribution of
particles on nearly circular orbits (see, e.g., Dermott et al. 2001).

The relatively steep radial distribution is a consequence of
Keplerian motion of particles with e ~ 1. For R < a, the time
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Figure 5. Steady state distribution of orbital elements of particles with
D = 100 um: (a) dN(a), (b) dN(e), and (c) dN(i). The distributions shown
here ignore particles with R > 5 AU. They therefore represent the steady state
distribution of orbits in the inner solar system, which is relevant for observations
of the inner zodiacal cloud and sporadic meteors.

spent by a particle on the Keplerian orbit between R and R+d R is
dt « R%5dR. This leads to d N(R) o< R~15dR, if the expected
number of particles, which is proportional to dt, is divided by
volume 47 R?d R. For R > a, on the other hand, appropriate for
large radial distances, dt ~ const. and d N(R) « R2dR. Thus,
o =~ 1.5-2 is expected for e ~ 1 (see also Liou et al. 1999).

We find that the number density of OCC particles at R ~
1 AU is mainly contributed by the particles that orbitally
decoupled from Jupiter. This shows the importance of orbital
decoupling for the distribution of OCC particles in the inner
solar system, and their accretion by the Earth. Specifically,
most OCC particles accreted by the Earth are expected to have
a(l + e) < 4 AU despite the fact that their orbits started with
a > 103 AU.

Figure 5 shows the distributions of orbital elements for OCC
particles with D = 100 um and R < 5 AU. The semimajor axis
distribution, d N (a), has a broad maximum centered at 0.5-2 AU
with @ ~ 2 AU being the most common. dN(a) decreases
toward larger a, because particles with a > 3 AU are coupled
to Jupiter, have short dynamical lifetimes, and do not spend



THE ASTROPHYSICAL JOURNAL, 743:37 (12pp), 2011 December 10

much time at R < 5 AU. The peak of dN(a) at a = 6-7 AU
is produced by orbits in the exterior mean motion resonances
with Jupiter, which prolong the dynamical lifetime of particles
by phase protecting them against encounters with Jupiter (Liou
et al. 1999).

The eccentricity distribution d N(e) increases toward e ~ 1,
which is expected because all orbits started with e > 0.995. The
tail extending to the moderate- and low-eccentricity values is due
to the dynamically long-lived particles, whose orbits decouple
from Jupiter and become circularized by P-R drag.

The inclination distribution is also interesting as it signif-
icantly deviates from the initial distribution with dN(i)
sin(i)di (Figure 5(c)). The retrograde orbits are more common
than the prograde ones. The preference for retrograde orbits is
probably caused by gravitational perturbations from Jupiter that
are more effective on prograde orbits, because the encounter
speeds are lower, and thus AV's are larger. The prograde parti-
cles should therefore have shorter dynamical lifetimes than the
retrograde particles, which would explain their relative paucity
in a steady state d N (i) for R < 5 AU. Interestingly, however,
the particles that decouple from Jupiter and reach a ~ 1 AU by
P-R drag do not show a strong preference for retrograde orbits.

In addition, the steady state d N (i) lacks orbits with i ~ 90°.
We believe that this is a consequence of Kozai dynamics (e.g.,
Kozai 1962). It is well known that the initially near-polar orbits
will suffer large oscillations of ¢ driven by variations of the
orbital angular momentum vector. Most of these orbits can
therefore reach very low ¢ values, where the particles will be
destroyed by thermal effects. Indeed, by studying the orbital
histories of particles that started with i ~ 90°, we found
that most of these orbits had g < 0.05 AU prior to reaching
0 <4 AU.

The steady state distribution of orbital elements of D =
300 pum particles is similar to the one discussed above. Instead
of having a single peak at a = 6-7 AU, however, d N(a) for
a > 5 AU is more irregular showing many peaks and dips.
Apparently, since the larger D = 300 um particles drift more
slowly by P-R drag, they are more susceptible to capture in
a large number of resonances (Liou et al. 1999). The second
difference concerns dN(e), which is slightly more clumped
toward e ~ 1 for D = 300 um than for D = 100 pum.

3.3. Radiants and Orbits of Particles Accreted by the Earth

The radiants of OCC particles are located near Earth’s apex
(Figure 6). This is logical because the retrograde OCC particles,
which come from the apex direction, have much higher velocity
relative to the Earth (~ 60 km s~') than particles on prograde
orbits. The retrograde particles therefore also have, according
to the usual no v rule, rather large impact probabilities with the
Earth. In addition, the ionization cutoff used here (Equation (9))
poses a rather strict limit on the mass of meteoroids that can be
detected by SMRs at low speeds. For example, a D = 100 um
particle with m = 10® g and v, = 30 km s~ ! has 7 = 0.01,
which is near or slightly above the detection limit of AMOR,
and way below the detection limit of CMOR.

The model radiants form the south and north apex concentra-
tions, just as observed (e.g., Jones & Brown 1993; Galligan &
Baggaley 2005; Campbell-Brown 2008). The lack of radiants
within ~ 10° about the ecliptic is due to near absence of OCC
meteoroids with i >~ 180° (see Figure 5(c)). The lack of radiants
with b > 50° (or b < —50°) is the consequence of the inclina-
tion distribution shown in Figure 5(c) that is depleted in orbits
with i ~ 90°.
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Figure 6. Radiants of OCC meteoroids determined in our model with 7* = 0.01:
(@) D = 100 um and (b) D = 300 ;«m. The north and south apex sources are
clearly visible. In addition, the radiant distribution in panel (b) shows a ring
structure centered at (I, b) = (0, 0) and extending to ~60° in / and b. The
high-frequency fluctuation of radiant density between neighbor bins is due to
insufficient statistics and should be disregarded. The units of the side bar are
arbitrary.

Most north (south) radiants fall into an area on the north
(south) hemisphere that has the characteristic triangular or
half-disk shape. For D = 100 um, the centers of radiant
concentrations are at b >~ £20°. For D = 300 um, the centers
are at b >~ £25°, This reflects the differences in d N (i) between
the populations of particles with D = 100 yum and D = 300 um
that we obtained in the model. For comparison, observations
indicate that b >~ +15° (e.g., Galligan & Baggaley 2005; Chau
et al. 2007; Campbell-Brown 2008). In addition, the apex
sources that we obtained in our model tend to be more stretched
in both / and b than the observed ones.

While more modeling work will be needed to test things with
a better statistic, the issues discussed above may indicate that
a better fit to observations could be obtained if the retrograde
source had inclinations closer to 180° than the bulk of OCC
particles with 100° < i < 160°. It is not clear how this could
be achieved by tweaking the parameters of our model. Instead,
clues such as these seem to highlight the importance of known
HTCs. Indeed, the two prominent active HTCs, 1P/Halley and
55P/Tempel-Tuttle, both have i ~ 162°. They would therefore
be expected to produce apex sources closer to the ecliptic than
the bulk of retrograde OCC particles (Figure 7).

An interesting feature in Figure 6(b) is the presence of a ring
that stretches to £60° in longitude and latitude. A similar ring
has been noted in Campbell-Brown (2008), who suggested that
the region inside the ring can be depleted in meteor radiants,
except for apex sources, because the retrograde meteoroids
with radiants inside the ring would have shorter collisional
lifetimes. Our simple collisional model cannot reproduce this
effect because oy is independent of i (see Section 2.3.2). In
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Figure 7. Same as Figure 6 but for D = 100 um particles released from
1P/Halley. The results for 55P/Tempel-Tuttle are similar.

addition, W09 suggested that the origin of the ring can be
traced back to Kozai dynamics, which confines the allowed
radiants of particles on high-inclination orbits. Here we confirm
the WOO result by isolating particles that contribute to the ring,
and checking on their orbital behavior.

The impact speed of OCC particles peaks at v, ~ 60 km s
(Figure 8 for D = 100 um and Figure 9 for D = 300 pm),
which is a nice match to observations of apex meteors (Galligan
& Baggaley 2005; Campbell-Brown 2008).” The width of
the peak also looks good (see Figure 13 in Campbell-Brown
2008). In comparison, using a population of meteoroids from
1P/Halley and 55P/Tempel-Tuttle, W09 obtained a peak at
v, = 70 km s~!, which is expected for large particles that
have not evolved far from their parent comet orbit.

Figures 8 and 9 also show the model distributions of orbital
elements of OCC meteoroids. Distributions d N (a), now heavily
weighted by the collision probability (see Figure 5), peak at
a ~ 1 AU and show a tail extending to a > 2 AU. The

7 Note that observations by HPLA radars, such as AO or ALTAIR, measure
the apex peak speed at ~ 55 km s~ 1.
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meteoroids in the peak have orbits that have strongly evolved
by P-R drag. The model distributions for D = 100 um and
D = 300 um are similar, except for a few wiggles produced
by statistical fluctuations. Both provide a good match to the
observed semimajor axis distribution of apex meteors (see
Figure 11 in Galligan & Baggaley 2005).

According to our model, most apex meteors should have
inclinations between i ~ 100° and 180° (Figures 8(c) and 9(c)),
which is also the range indicated by observations. Unlike d N (i)
measured by radars, which shows a broad peak centered at
i ~ 150°-160°, our model dN (i) is more spread and noisy.
While part of this discrepancy could be blamed on insufficient
statistics in our model, it may also point to a more fundamental
problem.

The eccentricity distribution is puzzling. For both D =
100 yum and D = 300 pum, we obtained d N (e) that raises toward
e ~ 1. This trend is slightly more pronounced for D = 300 um
(Figure 9(d)) than for D = 100 um (Figure 8(d)). W09, using
selected HTCs for parent bodies of apex meteors, obtained
d N (e) that also peaked toward e ~ 1. In contrast, the observed
apex meteors have nearly flat dN(e) at 0.2 < e < 1, and show
a slight depletion for e < 0.1 (Figure 13 in Campbell-Brown
2008).

The cause of these differences is unclear. To obtain lower
values of e in our model, the orbits would need to become more
circularized by P-R drag before arrivingtoa ~ 1 AU. This could
be achieved, for example, if more weight is given to particles
starting with ¢ > 1 AU. We confirm this by using y > 1, but a
detailed match to the observed eccentricity distribution remains
elusive. A detailed analysis of this problem is left for future
studies.

4. RELATIVE IMPORTANCE OF HELION/ANTIHELION
AND APEX SOURCES

The observations of sporadic meteors show that the relative
importance of helion/antihelion and apex sources depends on
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Figure 8. Orbital element distribution of model apex meteoroids: (a) vg, (b) a, (c) i, and (d) e. Here we used OCC particles with D = 100 um and 7* = 0.01. The
apex meteoroids were selected by using the following radiant cutoffs: —40° < / < 40° and —40° < b < 40°.
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Figure 9. Same as Figure 8 but for D = 300 um OCC particles.

the sensitivity of the radar that is used to carry out such
observations. The less sensitive SMRs with 7* ~ 1, such as
the Harvard Radar Meteor Project (HRMP; Jones & Brown
1993; Taylor & Elford 1998) or CMOR, detect ~ 3-10 times
more helion/antihelion meteors then apex meteors (see, e.g.,
Campbell-Brown 2008 for comparison of different radars). The
more sensitive radars, such as AMOR with /* ~ 0.001-0.01, on
the other hand, detect a relatively larger number of apex meteors.
Finally, the apex meteors are predominant in observations by the
highly sensitive AO radar (e.g., Janches et al. 2003) because of
their ability to detect small particles (Fentzke & Janches 2008;
Fentzke et al. 2009).

This trend can be explained if the size frequency distribution
(SFD) of apex meteoroids is steeper (i.e., if the number of
meteoroids increases more sharply with decreasing size) than
that of the helion/antihelion meteoroids because radars that are
capable of detecting smaller meteoroids would then be expected
to see many more apex meteors (Fentzke & Janches 2008). For
example, the initial SFD of particles produced by disrupted
OCCs (or HTCs) could be steeper than the one produced by the
sources of the helion/antihelion meteoroids (presumably active
and disrupted JFCs; W09; Nesvorny et al. 2010). While this is
a possibility that cannot be ruled out by the existing data, there
are also no indications that this might be true (McDonnell et al.
1987; Griin et al. 2001; Green et al. 2004; Reach et al. 2007).

We propose that the predominance of apex meteors in AO
observations is caused by orbital dynamics of particles released
from OCCs (or HTCs). Let us assume that the initial SFD
of particles released from OCCs (or HTCs) is dNyo(D) =
NoD~¢dD. The SFD of meteoroids accreted by the Earth will
then be

dN(D) = fyP.NoD %dD, (13)
where fj is the fraction of particles that remain on bound orbits
(see Section 2.1) and P; is the impact probability of these
particles on the Earth. Factor f; expresses the removal of small
particles by radiation pressure (see Section 2.1). Thus, the size
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dependence of fj is such that it cannot increase the number of
small particles relative to the large ones.®

Table 1 lists P; and vy, for various sources. For example, the
OCC particles with D = 30 um and D = 300 um have P; =
2 x 107% and P, = 5 x 1077, respectively. This indicates that
dN (D) should have a steeper slope than d No(D). Specifically, if
d No(D) can be approximated by D~¢d D for D ~ 30-300 um,
where ¢ is a constant, we find that dN (D) o« D~¢*)d D, where
& ~ 0.6 for OCCs. This estimate was obtained with 0 < y < 1,
S~ 8 ~ 0, g" = 0.05 AU, and initial a ~ 103 AU. The
results for S, = 1, applicable if 7., were ~ 10 times longer
than in G85, and for HTCs are similar.

For comparison, W09 suggested that comet 2P/Encke
(or an orbitally similar lost comet) is the main source of
helion/antihelion meteors. We find that particles released from
comet 2P/Encke have P, = 6 x 107 for D = 30 um and
P, =23 x 107 for D = 300 wm (Table 1). If these estimates
are representative for the sources of the helion/antihelion mete-
ors, they suggest that the slope of d N(D) should be shallower
than that of d No(D) (6 ~ —0.6).

We therefore find that d N(D) of apex meteoroids is expected
to be steeper than that of helion/antihelion meteoroids, even
if the initial SFD of particles released from the respective
sources—JFCs and OCCs/HTCs—were similar. This effect is
produced by orbital dynamics of particles starting on different
initial orbits. As we discussed in Section 3.1, the Earth-impact
record of OCC particles is mainly contributed by those particle
that decouple from Jupiter. Since the decoupling efficiency,
described by factor f; in Section 3.1, ramps up toward smaller
D, the population of small OCC (or HTC) particles is enhanced,
relative to large ones. This effect is weaker for JFC meteoroids,
for which the correlation between f; and P; is not as extreme.
In the JFC case, the population of small particles accreted by

8 Factor fy(D) could presumably be approximated by a step function with
fo(D) =0for D < D* and fo(D) = 1 for D > D*, where D* is the critical
diameter implied by Equation (2).
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Table 1
The Earth Impact Probability, P;, and Mean Impact Speed, (voc),
of Particles Released on Different Orbits

D P; (Voo )
(um) (1079 (kms™h
OCCs

10 4.6 (4.6) 52 (52)
30 1.9 (1.9) 47 (47)
100 1.0 (1.4) 46 (46)
300 0.5 (0.6) 55 (54)
1000 0.2 (0.3) 58 (58)
1P/Halley (HTC)

10 57 (57) 60 (60)
30 100 (110) 59 (59)
100 80 (110) 59 (59)
300 24 (46) 65 (61)
1000 17 (22) 67 (67)
55P/Tempel-Tuttle (HTC)

10 53 (53) 60 (60)
30 120 (120) 59 (59)
100 80 (120) 60 (59)
300 27 (51) 66 (61)
1000 16 (23) 68 (66)
2P/Encke (JEC)

10 17 (17) 18.0 (18.0)
30 60 (60) 18.5 (18.5)
100 210 (220) 18.7 (18.4)
300 230 (340) 23.6 (22.0)
1000 120 (300) 30.5 (27.0)

Notes. For each particle’s diameter, D, we give our best estimate values for
the standard G85 t¢on (S1 = S2 = 0), and for §; = 0 and S» = 1 (values in
parenthesis). The longer collisional lifetime in the later case leads to the larger
P; values. The effect of disruptive collisions is significant for D 2 300 jm.

the Earth is suppressed by their short P-R drag timescale, and
consequently, lower P;.

The magnitude of the SFD effects discussed above is just
right to explain observations. If the ionization threshold 7* of
AMOR is ~ 100 times lower than that of CMOR/HRMP, these
more sensitive instruments are expected to detect meteoroids
that are ~ 35 times smaller in size. If they detect 3—-10 times
more apex meteors than the helion/antihelion meteors (e.g.,
Campbell-Brown 2008), this would suggest that the SFD slope
index difference between apex and helion/antihelion meteors
is § ~ 0.7-1.4. We found § ~ 1.2 above, in good agreement
with observations. Figure 10 illustrates the relative strength of
sporadic meteor sources expected from our model.

5. CONCLUSIONS

We found that only a very small fraction, f; < 1074,
of D 2 1 mm OCC particles can ever make it into the
inner solar system. The relevance of these very large OCC
particles to observations of sporadic meteors is therefore not
obvious. The situation looks more favorable for OCC particles
with D ~ 100-300 pum. These particles should survive the
effects of radiation pressure, if released from returning OCCs
at R 2 4-12 AU. Moreover, about 0.2%-1.5% avoid being
collisionally disrupted or thermally destroyed, decouple from
Jupiter, and finally spiral down to a ~ 1 AU, where their Earth-
impact probability is increased by orders of magnitude.

We estimated that the overall probability of Earth impact per
one particle released on bound orbit from the returning OCC
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Figure 10. Expected relative strength of the apex and helion/antihelion sources
as a function of particle size. The triangles (diamonds) show the result for OCC
(1P/Halley) particles. We calculated the relative strength by dividing Pi(D)
listed in Table 1 for OCC (1P/Halley) particles (assumed here to represent the
apex source) by P;(D) of 2P/Encke particles (assumed to represent the helion/
antihelion source; W09). The P;(D) ratio is a proxy for the relative strength of
meteor sources if d No(D) of different initial populations had roughly the same
shape. We arbitrarily normalized the ratio to 1 for particles with D = 100 pm.
As more sensitive radars detect smaller particles, they are expected see more
apex meteors, because P;(D) of OCC (1P/Halley) particles increases while that
of JEC particles drops.

is P, ~ 0.5-1 x 107% for D ~ 100-300 pm. This is 50-80
times lower than P; expected for particles released from HTCs
such as 1P/Halley and 55P/Tempel-Tuttle, and 200400 times
lower than P; expected for JECs such as 1P/Encke. The OCC
particles will therefore significantly contribute to the sporadic
meteor complex only if the mass of material produced by
disrupting OCCs is large enough to compensate for these factors.
From L02, we can roughly estimate that ~ 5 returning OCCs
disrupt per year producing the mass input of perhaps as much
as ~ 10" g yr=!, or 3 x 10% kg s~'. Only a small fraction of
this mass will end in bound particles with D ~ 100-300 pm.
For comparison, the active JECs produce ~ 300 kg s~ (Reach
et al. 2007).

We found that the SFD of apex meteoroids, presumably
starting on highly eccentric orbits, is expected to be steeper
than those of helion/antihelion meteoroids, even if their initial
SFDs were similar. The steepening of the SFD slope of apex
meteoroids results from the efficiency with which OCC/HTC
meteoroids of different sizes decouple from Jupiter. This result
has interesting implications for observations of sporadic meteors
because it can explain why the north/south apex sources are
more represented in observations of highly sensitive radars that
are capable of detecting smaller meteoroids.
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Czech Grant Agency (grant 205/08/0064) and the Research
Program MSMO0021620860 of the Czech Ministry of Education.
The work of D.J. was partially supported by NSF Award AST
0908118. We thank W. F. Bottke for sharing with us his Opik
code, M. Campbell-Brown for useful discussions, and Tadeusz
Jopek for a very helpful review of this article.
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ABSTRACT

The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except
that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by
Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth
(and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and
use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source
of the prominent concentrations of meteors arriving at the Earth from the helion and antihelion directions. To
match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced
Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate
when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be
longer (>10° yr at 1 AU) than postulated in the standard collisional models (~10* yr at 1 AU), perhaps because
these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical
Satellite to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar
system are (1.7-3.5) x 10'! km? and ~4 x 10'° g, respectively, in a good agreement with previous studies. The
mass input required to keep the zodiacal cloud in a steady state is estimated to be ~10%°~10° kg s~'. The input
is up to ~10 times larger than found previously, mainly because particles released closer to the Sun have shorter
collisional lifetimes and need to be supplied at a faster rate. The total mass accreted by the Earth in particles between
diameters D = 5 ym and 1 cm is found to be ~15,000 tons yr—' (factor of two uncertainty), which is a large share
of the accretion flux measured by the Long Term Duration Facility. The majority of JFC particles plunge into the
upper atmosphere at <15 km s~ speeds, should survive the atmospheric entry, and can produce micrometeorite
falls. This could explain the compositional similarity of samples collected in the Antarctic ice and stratosphere, and
those brought from comet Wild 2 by the Stardust spacecraft. Meteor radars such as CMOR and AMOR see only a
fraction of the accretion flux (~1%—-10% and ~10%-50%, respectively), because small particles impacting at low

speeds produce ionization levels that are below these radars’ detection capabilities.

Key words: comets: general — meteorites, meteors, meteoroids — zodiacal dust

1. INTRODUCTION

The zodiacal cloud (ZC) is a circumsolar disk of small debris
particles produced by asteroid collisions and comets. Nesvorny
et al. (2010, hereafter N10) developed a dynamical model for
particle populations released by asteroids and comets, and used
the model to determine the relative contribution of asteroid and
cometary material to the ZC. They found that the mid-infrared
(MIR) emission from particles produced in the asteroid belt is
mostly confined to within latitudes b < 30° of the ecliptic.
Conversely, the ZC has a broad latitudinal distribution so that
strong thermal emission is observed even in the direction to
the ecliptic poles (e.g., Hauser et al. 1984; Kelsall et al. 1998).
This shows that asteroidal particles can represent only a small
fraction of the ZC.

Based on a comparison of the model with observations of
the Infrared Astronomical Satellite (IRAS), N10 proposed that
290% of the ZC’s emission at MIR wavelengths comes from
dust grains released by Jupiter Family Comets (JFCs), and
<10% comes from the Oort Cloud Comets (OCCs), Halley-
Type Comets (HTCs), and/or asteroid collisions. In addition, it
was found that the mass input required to keep the ZC in a steady
state largely exceeds the mass loss in JECs due to their normal
activity (e.g., Reach et al. 2007). To resolve this problem, N10
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suggested that the dominant mass fraction is supplied to the ZC
by spontaneous disruptions/splittings of JFCs (e.g., Ferndndez
2005; Di Sisto et al. 2009).

N10’s model implies that the orbits of small meteoroids
(diameters D < 100 um) released by JFECs become significantly
circularized by Poynting—Robertson (P-R) drag before they can
reach a ~ 1 AU and contribute to the Earth impact record.
These particles, at the time of their accretion by the Earth,
should thus have relatively low impact speeds (v < 20 km s~1),
low eccentricities, and a ~ 1 AU. The large JFC particles
(D 2 1 mm), on the other hand, should have a broader
distribution of impact speeds, large eccentricities, and a ~
2-4 AU, mainly because they have presumably short collisional
lifetimes (Grun et al. 1985, hereafter G85), and disrupt before
they can significantly evolve by P-R drag. As we discuss below,
these results appear to be at odds with the observations of
sporadic meteors.

Meteors are produced by small interplanetary particles also
known as the meteoroids. Based on meteor data, the meteoroids
can be divided into two groups: sporadic meteoroids and me-
teoroid streams. The meteoroid streams are prominent concen-
trations of particles with similar orbits (Whipple 1951). They
are thought to be produced by particles released by active and
recently (less than a few thousand years ago) disrupted comets
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Figure 1. Distributions of impact speeds and orbits of prograde antihelion meteors measured by the Advanced Meteor Orbit Radar (AMOR). According to Galligan
& Baggaley (2005), the antihelion meteors were selected using a broad radiant cutoff (20° < [ < 120°, in our definition of longitude—see Section 2.6— and no
condition on b). The squares label the raw distributions obtained by AMOR. The distributions labeled by triangles were corrected for the atmospheric interference and
Faraday rotation. The helion meteors, not shown here, have corrected distributions very similar to those plotted here. The impact speeds in panel (a) include effects of
the gravitational focusing by Earth. The heliocentric orbital elements shown in panels (b), (c), and (d) do not include these effects. All distributions were normalized
to reach 1 at their maximum. Adapted from Figure 8 in Galligan & Baggaley (2005).

(Jenniskens 2008). Sporadic meteoroids are those particles that
have evolved significantly from their parent body so that they
are no longer easily linked to that parent, or to other meteoroids
from the same parent. Notably, the time-integrated flux of mete-
ors at Earth is dominated by about a factor of ~10 by sporadics
(Jones & Brown 1993).

The radiant distribution of sporadic meteors shows several
concentrations on the sky known as the helion/antihelion,
north/south apex, and north/south toroidal sources (e.g.,
Campbell-Brown 2008, and the references therein). The promi-
nent helion/antihelion source is the concentration of meteors
near the helion and antihelion directions. These meteors are be-
lieved to originate from the same population of meteoroids. The
two groups differ in impact direction because some particles will
impact before their perihelion passage, thus producing meteors
with the antihelion radiants, while others will impact after their
perihelion passage, producing meteors with the helion radiants.

The helion/antihelion meteoroids have a measured impact
speed distribution that peaks at v ~ 20-30 km s~!, ¢ ~ 1 AU
with a tail to 3 AU and beyond, e > 0.3, and low inclinations
(Figure 1). Wiegert et al. (2009, hereafter W09) developed a
dynamical model to explain these observations. They found that
particles released by JFCs, mainly by 2P/Encke, provide the
best match to the observed properties of the helion/antihelion
source (see also Jones et al. 2001).5

Comet 2P/Encke has an orbit that is quite unique among JFCs
(@ =22AU,e = 0.85,i = 1198), because its aphelion distance
lies well within Jupiter’s orbit (Q = a(l + ¢) = 4.1 AU). The
orbit is relatively stable as it is not affected by close encounters

5 The north/south apex meteors are most likely produced by meteoroids
released from retrograde HTCs and/or OCCs (Jones et al. 2001; WQ9;
Nesvorny et al. 2011). The origin of the toroidal source is unknown.
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with Jupiter.® In addition, the comet has a very low perihelion
distance (g a(l —e) = 0.34 AU) and is expected to fall
into the Sun in 105-10° years (Levison & Duncan 1994), if it
physically survived that long. Finally, 2P/Encke is the source
of several meteor streams known as Taurids (Whipple 1939),
suggesting, as argued in W09, that it can also be an important
source of sporadic meteoroids at 1 AU.

The difference between W09 and N10 lies, in part, in different
assumptions on the initial distribution of meteoroids. In W09,
the meteoroids launched from 2P/Encke initially had a low
perihelion distance so that even after having evolved by P-R drag
to a ~ 1 AU, they still retained a relatively large eccentricity.
In N10, on the other hand, most meteoroids were released with
q ~ 2.5 AU, and greater effects of P-R drag were thus required
for particles to reach 1 AU. In addition, N10 did not properly
include the detection efficiency of meteor radars in their model.
This is a central issue, because most meteor radars are only
capable of detecting the relatively large and/or fast meteoroids,
and may thus produce measurements of the Earth accretion flux
that are heavily biased by their detection capabilities.

The agreement between the W09 model and observations
of helion/antihelion meteors is not perfect. For example, the
W09 model produced tightly clustered distributions of v and e
about v = 30 km s~! and e = 0.85, and lacked orbits with
a 2 2.5 AU (Figure 2 in W09). The observed speeds and
eccentricities have larger spreads, perhaps indicating that the
helion/antihelion meteors are produced not by one, but many
parent comets with a broad distribution of orbits, including those
with a 2 2.5 AU. The inclination distribution produced in W09

The dynamical origin of 2P/Encke has yet to be explained, but probably
requires non-gravitational forces produced by jets of material escaping from
the comet’s surface, and gravitational perturbations from the terrestrial planets
(Valsecchi 1999).
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Figure 2. Mean ZC profiles obtained by JRAS in 12, 25, and 60 um wavelengths.
To make these profiles, the selected /RAS scans obtained with the ~ 90° solar
elongation were centered at the ecliptic, smoothed by a low-pass filter, and
combined together (see N10 for details). The gray rectangles at b < —78° and
40° < b < 70° block the latitude range where the mean fluxes were significantly
affected by the galactic plane emission. We do not use the excluded range in
this work. The uncertainties of the mean flux values are not shown here; they
are too small to clearly appear in the plot. IRAS observations at 100 «m, not
shown here, are less useful for probing the thermal radiation of dust particles in
the inner solar system, because of the strong interference with the galactic and
extragalactic emission at these wavelenghts.

does not have the resolution needed for a careful comparison
with data, but it also seems to be narrower than the observed
distribution.

While 2P/Encke, or orbitally similar comets, can be
an important source for helion/antihelion meteors, comet
2P/Encke itself cannot be a single dominant source of the ZC.
This is because studies of the ZC indicate that ~1000 kg s~
of material need to be injected into interplanetary space to keep
the ZC in a steady state (e.g., Leinert et al. 1983, N10). Also,
according to N10, the present mass of the inner ZC at <5 AU is
~1-2 x 10" g, which is roughly equivalent to that of a 25 km
diameter body. For comparison, the mass loss in comet
2P/Encke is only ~26 kg s~!, based on observations of its
dust trail (Reach et al. 2007), and the diameter of the nucleus is
~4.8 km (Fernandez et al. 2000; Boehnhardt et al. 2008).

According to N10, the dominant mass fraction is supplied
to the ZC by spontaneous disruptions/splittings of JFCs. Since
meteoroids in the ZC are also expected to produce meteors,
the meteor observations discussed above can place important
constraints on the ZC’s origin. To take advantage of these
constraints, and motivated by the results discussed above,
we modify N10’s model to include a g-dependent meteoroid
production rate,” and account for the detection efficiency of
meteor surveys. We also improve N10’s model to consider a

7 Direct evidence for JFC disruptions at small heliocentric distances comes
from the comparison of dynamical models of JFCs, which follow their
transport from the trans-Neptunian region to the inner solar system, with
observations (e.g., Levison & Duncan 1997; Di Sisto et al. 2009). If the radial
density of JFCs expected from the dynamical model, assuming no disruptions,
is normalized so that it matches the observed (complete) sample of active
comets with ¢ >~ 1.5 AU, it becomes apparent that the model density profile
drops far too slowly for ¢ < 1.5 AU to match observations. This means that
the comets with small g values must disappear, due to physical effects, more
quickly than those with large ¢ values. To match the observed profile, Di Sisto
et al. (2009) suggested that the disruption probability of JFCs scales with g as
g%, where ¢ ~0.5-1.
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continuous Size Frequency Distribution (SFD) of particles, and
more precisely parameterize their collisional disruption in space.
We show that, with these modifications of the N10 model, the
results match available constraints. We describe the new model
in Section 2. The results are reported in Section 3. We estimate
the ZC’s cross section and mass, meteoroid production rate
required to keep the ZC in a steady state, and the terrestrial
accretion rate of interplanetary dust.

2. MODEL

Our model includes the following parts: (1) particles of dif-
ferent sizes are released from JFCs (Section 2.1), (2) their or-
bits evolve under the influence of gravitational and radiation
forces (Section 2.2), (3) some particles are thermally or colli-
sionally destroyed (Section 2.3), (4) while in space, particles
emit thermal radiation (Section 2.4), which (5) is detected by
a telescope observing at MIR wavelengths (Section 2.5), and
(6) a small fraction of the initial particle population is accreted
by the Earth, producing meteors (Section 2.6). We describe
components (1)-(6) below.

Procedures described in Sections 2.5 and 2.6 are mainly
required because the raw particle distributions obtained from
our numerical integrations of orbits in Section 2.2 do not have a
sufficient resolution. We use analytical methods to enhance the
resolution in a way that is suitable for (5) and (6).

2.1. Initial Orbits

We only consider JFCs in this paper, because previous works
showed that they are the main source of the ZC particles and
helion/antihelion meteors (e.g., Jones et al. 2001; W09; N10).
The asteroid meteoroids have low impact speeds and are not
detected by meteor radars. The meteoroids released from long-
period comets contribute to apex meteors and are not modeled
here (see Nesvorny et al. 2011 for a discussion of apex meteors).

The orbital distribution of JFCs was taken from Levison
& Duncan (1997, hereafter LD97), who followed the orbital
evolution of bodies originating in the Kuiper belt as they
are scattered by planets, and evolve in small fractions into
the inner solar system. For each critical perihelion distance,
q*, we selected bodies from LD97’s simulations when they
reached g < ¢* for the first time. Particles were released from
these source orbits.® We used 10 values of ¢* equally spaced
between 0.25 AU and 2.5 AU, particles with D = 10, 30, 100,
300, 1000, and 3000 wm, which should cover the interesting
range of sizes, and particle density p = 2 g cm3. Our tests
show that this size resolution is adequate because the orbital
dynamics of, say, a D = 150 um particle is similar to that of
a D = 100 um particle. The results for a continuous range of
sizes were obtained by interpolation. Varying particle density
has only a small effect on their orbital dynamics. Ten thousand
particles were released for each g* and D for the total of
0.6 million of the initial orbits.

Upon their release from the parent object, particles will feel
the effects of radiation pressure. These effects can be best
described by replacing the mass of the Sun, mg, by mg(1 — B),

8 Note that this method does not properly account for the possibility that
JFCs lose mass gradually by recurrent splitting events. For example, Di Sisto
et al. (2009) assumed that the splitting events occur with certain frequency,
considered to be a free parameter, and that a fixed mass fraction, also a free
parameter, is lost in each event. Such a model may be physically more
appropriate, but has more free parameters.
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where the particle’s radius s = D/2 and p are in cgs units.
Pressure coefficient Qp, can be determined using the Mie theory
(Burns et al. 1979). We set Q) = 1, which corresponds to
the geometrical optics limit, where s is much larger than the
incident-light wavelength. Note that all particles considered here
are large enough to stay on bound heliocentric orbits after their
release (see, e.g., Nesvorny et al. 2011).

In Section 3, we combine the results obtained with different
g* and D to mimic the continuous distributions dN(g) and
dN(D). This is different from N10 where the source particle
distributions were parameterized by the “fading time,” particle
production rate was assumed to be g-independent, and dN(D)
was approximated by single size. Here we consider dN(g) and
dN(D) that can be approximated by simple power laws. For
dN(q), wethushave dN(q) « q¥dgq, where y is a free parameter.
For dN(D), we have dN(D) = NoD~%dD, where N is a
normalization constant and « is the usual slope index (at source).
Alternatively, we use the two-slope SFD with dN(D) o« D~“'dD
for D < D* and dN(D) «x D~*2dD for D > D*, where a1, o>,
and D* are free parameters.

Parameter y can be inferred from the number of JFCs found
at each ¢, and their disruption probability as a function of g. If
the former can be approximated by g%, where £ ~ 0.5 (LD97;
Di Sisto et al. 2009), and the latter is proportional to g ¢, where
¢ =~ 0.5-1 (Di Sisto et al. 2009), it would be expected that
y =& —¢ ~ —0.5-0. We use y = 0 as our starting value,
and test the sensitivity of results for y < 0 and y > 0. As for
dN(D), we set « ~ 4 for the whole size range, as motivated
by meteor radar observations (e.g., Galligan & Baggaley 2004),
or D* ~ 100 um, oy < 3 and o, > 4, as motivated by space
impact experiments (e.g., Love & Brownlee 1993). Given the
various uncertainties of these measurements (see, e.g., Mathews
et al. 2001), we also test D* < 100 um and D* > 100 pm.

2.2. Orbit Integration

The particle orbits were numerically integrated with the
swift_rmvs3 code (Levison & Duncan 1994), which is an
efficient implementation of the Wisdom—Holman map (Wisdom
& Holman 1991) and which, in addition, can deal with close
encounters between particles and planets. The radiation pressure
and P-R drag forces were inserted into the Keplerian and kick
parts of the integrator, respectively. The change to the Keplerian
part was trivially done by substituting mq by mg(1 — ). We
assumed that the solar-wind drag force has the same functional
form as the P-R term and contributes by 30% to the total drag
intensity.

The code tracks the orbital evolution of a particle that revolves
around the Sun and is subject to the gravitational perturbations
of seven planets (Venus to Neptune; the mass of Mercury
was added to the Sun) until the particle impacts a planet, is
ejected from the solar system, evolves to within 0.05 AU from
the Sun, or the integration time reaches 5 Myr. We removed
particles that evolved to R < 0.05 AU, because the orbital
period for R < 0.05 AU was not properly resolved by our one-
day integration time step.’ The particle orbits were recorded at
1000 yr time intervals to be used for further analysis.

9 We tested an integration time step of 0.3 day. The results were essentially
identical to those obtained with the one-day time step.
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2.3. Physical Effects

The solar system meteoroids can be destroyed by collisions
with other particles and by solar heating that can lead to
sublimation and vaporization of minerals. Here we explain how
we parameterize these processes in our model.

The JFC particles will rapidly lose their volatile ices. We
do not model the volatile loss here. The remaining grains
will be primarily composed from amorphous silicates and will
survive down to very small heliocentric distances. Following
Moro-Martin & Malhotra (2002), Kessler-Silacci et al. (2007),
and others, we adopt a simple criterion for the silicate grain
destruction. We assume that they are thermally destroyed
(sublimate, vaporize) when the grain temperature reaches 7 >
1500 K.

Using the optical constants of amorphous pyroxene of approx-
imately cosmic composition (Henning & Mutschke 1997), we
find that a dark D 2 100 pm grain at R has the equilibrium tem-
perature within 10 K of a black body, T ~ 280/~/R K. Accord-
ing to our simple destruction criterion, 7 > 1500 K, the silicate
grains should thus be removed when reaching R < 0.035 AU.
On the other hand, the smallest particles considered in this work
(D = 10 um) have T = 1500 K at R ~ 0.05 AU. Thus, we
opted for a simple criterion where particles of all sizes were
instantly destroyed and were not considered for statistics, when
they reached R < 0.05 AU. Note that, by design, this limit
is the same as the one imposed by the integration time step
(Section 2.2).

The collisional lifetime of meteoroids, 7., was taken from
G85. It was assumed to be a function of particle mass, m, and
orbital parameters, mainly a and e. For example, for a circular
orbit at 1 AU, particles with D = 100 um and 1 mm have
t¥, = 1.5 x 10° yr and 7.3 x 10? yr, respectively, where %,
denotes the collisional lifetime from G85. Also, ;) increases
with a. To cope with the uncertainty of the G85’s model, we
introduced a free parameter, S, so that 7,y = StJ,. Values
S > 1 increase o relative to 77, as expected, for example, if
particles were stronger than assumed in G835, or if the measured
impact fluxes were lower (e.g., Dikarev et al. 2005; Drolshagen
et al. 2008). See Nesvorny et al. (2011) for a fuller description.

Collisional disruption of particles was taken into account
during processing the output from the numerical integration
described in Section 2.2. To account for the stochastic nature
of breakups, we determined the breakup probability peon =
1 — exp(—h/teon), where & = 1000yr is the output interval,
and 7. was computed individually for each particle’s orbit.
The code then generated a random number 0 < x < 1 and
eliminated the particle if x < p¢o-

We caution that our procedure does not take into account the
small debris fragments that are generated by disruptions of larger
particles. Instead, all fragments are removed from the system.
This is an important approximation whose validity needs to be
tested in the future.

2.4. Thermal Emission of Particles

Meteoroids were assumed to be isothermal, rapidly rotating
spheres. The absorption was assumed to occur into an effective
cross section 7s2, and emission out of 47 s2. The infrared flux
density (per wavelength interval d)) per unit surface area at
distance r from a thermally radiating particle with radius s is

2

F, = e(h, $)B(L, T)j—z )
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where € is the emissivity and B(A, T) is the energy flux at
(A, A +dX) per surface area from a black body at temperature 7:
27hc? _

5C [€I1C/AkT _ 1] 1 .

B\, T)= 3)

In this equation, 1 = 6.6262 x 1073 J s is the Planck constant,
c 2.99792458 x 108 m s7! is the speed of light, and
k = 1.3807 x 1072} J K~! is the Boltzmann constant.

Since our model does not include detailed emissivity proper-
ties of dust grains at different wavelengths, we set the emissivity
at 25 um to be 1 and fit for the emissivities at 12 and 60 um. We
found that the relative emissivities at 12 and 60 xm that match
the data best are 0.70-0.75 and 0.95-1, respectively. Such a
variability of MIR emissivity values at different wavelengths is
expected for small silicate particles with some carbon content.
T (R) was set to be 280/«/? K, as expected for dark D 2 10 um
particles. See Nesvorny et al. (2006) for a more precise treat-
ment of €(A, s) and T(R) for dust grains composed of different
materials.

2.5. MIR Observations

To compare our results with IRAS observations illustrated in
Figure 2,'" we developed a code that models thermal emission
from distributions of orbitally evolving particles and produces
infrared fluxes that a space-borne telescope would detect de-
pending on its location, pointing direction and wavelength. See
Nesvorny et al. (2006) for a detailed description of the code.

In brief, we define the brightness integral along the line of
sight of an infrared telescope (defined by fixed longitude / and
latitude b of the pointing direction) as

o0
/ dadedi/ dr r2/ dD F,(D,r)N(D; a, e, i))K(R, L, B)
a,e,i 0 D
4

where r is the distance from the telescope, F;(D,r) is the
infrared flux (evaluated at the effective wavelength of the
telescope’s system) per unit surface area at distance r from
a thermally radiating particle with diameter D. K(R, L, B)
defines the spatial density of particles in the Sun-centered
coordinates as a function of R, ecliptic longitude, L, and latitude,
B. N(D,a,e,i) is the number of particles having effective
diameter D and orbits with a, e, and i.

We evaluate the integral in Equation (4) by numerical renor-
malization (see Nesvorny et al. 2006). F;(D, r) is calculated
as described in Section 2.4. N(D, a, e, i) is obtained from our
numerical simulations (Section 2.2). K(R, L, B) uses analytic
expressions for the spatial distribution of particles with fixed a,
e, and i, and randomized orbital longitudes (Kessler 1981).

We assume that the telescope is located at (x, = rycos ¢, yr =
resingyg, z¢ = 0) in the Sun-centered reference frame with
re = 1 AU. Its viewing direction is defined by a unit vector with
components (xy, Vv, zy). In Equation (4), the pointing vector
can be also conveniently defined by longitude / and latitude b of
the pointing direction, where x, = cosb cos/, y, = cos bsin/,
and z, = sinb. We fix the solar elongation /5 = 90°, so that

10 We use IRAS because it is the data set we are best familiar with (see
Nesvorny et al. 2006; N10). Other, more modern MIR surveys such as the
Cosmic Background Explorer (COBE; e.g., Kelsall et al. 1998) have better
precision and resolution, but their results do not differ in important ways from
those obtained by /RAS. The COBE measurements of the extended MIR
emission were used to calibrate the IRAS fluxes as described in Nesvorny et al.
(2006).
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I = ¢¢ +90°, and calculate the thermal flux of various particle
populations as a function of » and wavelength. The model
brightness profiles at 12, 25, and 60 um are then compared
with the mean IRAS profiles shown in Figure 2.

2.6. Model for Meteor Radar Observations

We used the Opik theory (Opik 1951) to estimate the expected
terrestrial accretion rate of JFC particles in our model. Wetherill
(1967), and later Greenberg (1982), improved the theory by
extending it more rigorously to the case of two eccentric
orbits. Here we used a computer code that employs Greenberg’s
formalism (Bottke et al. 1994).!!

We modified the code to compute the radiants of the impacting
particles. In doing so we properly accounted for all impact
configurations and weighted the results by the probability
with which each individual configuration occurs, including
focusing. The radiants were expressed in the coordinate system,
where longitude / was measured from the Earth’s apex in
counterclockwise direction along the Earth’s orbit, and latitude b
was measured relative to the Earth’s orbital plane. Note that our
definition of longitude differs from the one more commonly
used for radar meteors, where the longitude is measured from
the helion direction. The radiants were calculated before the
effects of gravitational focusing were applied.

The meteor radars use different detection methods (i.e., trail
versus echo)'? and have different sensitivities. Their detection
efficiency is mainly a function of the particle’s mass and speed,
but it also depends on a number of other parameters discussed,
for example, in Janches et al. (2008). Following W09, we opt
for a simple parameterization of the radar sensitivity function,
where the detection is represented by the ionization function

()

All meteors with I(m, v) > I'* are assumed to be detected in our
model, while all meteors with I(m, v) < I'* are notdetected. The
ionization cutoff 7* is taken to be different for different radars.
For example, I* ~ 1 for the Canadian Meteor Orbit Radar
(CMOR; Campbell-Brown 2008) and I* ~ 0.01-0.001 for
Advanced Meteor Orbit Radar (AMOR; Galligan & Baggaley
2004, 2005). For reference, a JEC particle with v = 30 km g1
and m = 107° g, corresponding to D ~ 100um with
p=2g cm ™, has I(m, v) = 0.01, i.e., a value intermediate
between the two thresholds. These meteoroids would thus be
detected by AMOR, according to our definition, but not by
CMOR. The particle size detection threshold is shown, as a
function of v, in Figure 3.

To study the orbital properties of different meteor sources,
these sources need to be isolated. This is typically done by
selecting meteors with specific radiants. To test how the radiant
cutoff affects the results, we select the helion meteors with
—90° < | < —45° and —30° < b < 30°, and antihelion
meteors with 45° < [ < 90° and —30° < b < 30°. Since our
code computes the same impact speed and orbit distributions for

m
10~4¢g

v
30kms—!

I(m,v) = &)

11 The Opik theory cannot properly account for the capture of particles in
orbital resonances (e.g., Dermott et al. 1994; Sidlichovsky & Nesvorny 1994).
Testing the effect of orbital resonances on particles released by JFCs is left for
future work.

12 Note that the parameterization described here applies to the specular meteor
radars, which detect the meteor trails. A similar parameterization can be
developed, however, for the more sensitive High Power and Large Aperture
(HPLA) Radars (Fentzke & Janches 2008; Fentzke et al. 2009) that detect
meteor head echoes.
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Figure 3. Detection size threshold as a function of the meteor impact speed.
All particles above the solid lines are assumed to be detected. The thresholds
are I* ~ 1 for CMOR and 7* =~ 0.003 for AMOR. Meteors occur to
the right from the dashed vertical line that denotes the Earth’s escape speed
(Vese = 11.2km s™1).

the helion and antihelion sources, we combine the results from
the two radiant cutoffs together. Note, therefore, that our method
cannot capture the suspected asymmetry between the helion and
antihelion sources (see, e.g., W09, and the references therein).

3. RESULTS

We performed hundreds of tests with the model described
in Section 2. The main parameters of these tests were the
(1) size distribution of JFC particles at the source, as defined
by D*, «; and oy, (2) power index of the initial perihelion
distribution, dN(q) o g¥dg, and (3) collisional lifetime of

NESVORNY ET AL.

particles, t... To compare our model with meteor observations,
we specified the appropriate ionization threshold and applied the
usual x? statistics (see, e.g., Nesvorny et al. 2006). To simplify
the presentation of results, we first discuss selected cases that
illustrate the trends with different parameters. These cases are
generally representative for a wide range of parameter values,
as explained in the following text.

3.1. AMOR

We start by discussing the results relevant to AMOR, because
AMOR is capable of detecting particles with D ~ 100 um
(Figure 3), and can thus provide constraints on the particle
sizes that are thought to be dominant in the ZC. Figure 4
shows the distributions of impact speeds and orbits of JFC
meteoroids for D* = 100um, y = 0, § = 1, and several
values of the ionization cutoff. With I* = 0, corresponding to
no cutoff on mass or impact speed, the impact speed distribution,
dN(v), is strongly peaked toward the Earth’s escape speed
(Vese = 11.2 km s~'). When I* = 0.003 cutoff is applied,
as roughly expected for the AMOR detections, dN(v) has a
maximum at v 2~ 25 km s~'. This illustrates the crucial
importance of the ionization cutoff for the interpretation of
meteor radar observations.

Given the strong effect of the ionization cutoff it is difficult
to imagine how the radar observations can be correctly “de-
biased,” based solely on the measurements, corrections, and
considerations of the Earth-impact probability of different or-
bits (e.g., Taylor & McBride 1997; Galligan & Baggaley 2004;
Campbell-Brown 2008), to obtain the real distribution of mete-
oroids at 1 AU. As shown in Figure 4, the real distribution can
be very different from the observed one; although meteors at
low speeds may dominate the real distribution, only a tiny frac-
tion are detected. This highlights the importance of dynamical
modeling.
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Figure 4. Effect of the ionization cutoff. Different lines show the results for 7* = 0 (dotted), I* = 0.001 (dot-dashed), I* = 0.003 (solid), and I* = 0.01 (dashed).
As the ionization cutoff increases, the peak of dN(v) shifts to larger values. Here we used D* = 100 um, «; =2, p = 5, y = 0, and S = 1. Most meteoroids
accreted by Earth have v < 15 km s~!, while most meteoroids detected by AMOR have v > 15 km s~'. No radiant cutoff was applied here. The drop of dN(a) near
a = 2.5 AU corresponds to the gap in the distribution of orbits produced as particles drifting by P-R drag jump over the 3:1 mean motion resonance with Jupiter. All

distributions were normalized to reach 1 at their maximum.
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In a similar fashion, the observed eccentricity distribution,
dN(e), is strongly biased toward large values by the ionization
cutoff, while the underlying distribution has more small and
moderate values (Figure 4(d)). This explains, at least in part, why
N10 were unable to obtain meteor-like dN(e), because they did
not model the meteor detection in detail. The model semimajor
axis and inclination distributions, dN(a) and dN(i), are also
strongly affected by the ionization cutoft. With 7* = 0.003, both
distributions become significantly broader than those computed
for I'* = 0 (Figures 4(b) and (c)).

The distribution of impact speeds obtained in our model
has a peak value of v = 20 km s~ for /* = 0.001 and
v = 30 km s7! for I* = 0.01, in good agreement with
the AMOR measurements of helion/antihelion meteors that
show a peak at v = 20-25 km s~!. The spread of model
dN(v) (Figure 4(a)), however, is slightly narrower than the one
indicated by observations (Figure 1(a)). We will discuss this
difference later in this section and show that it can be related to
the initial SFD of particles produced by JFCs.

Figure 5 illustrates the effect of the radiant cutoff for 7*
0.003 and the case described above. The radiant cutoff, as
defined in Section 2.6, moves dN(v) to slightly larger values
(Figure 5(a)) and leads to narrower distributions of a, e, and
i. More aggressive radiant selection criteria, such as the ones
used in Campbell-Brown (2008) to define the helion/antihelion
sources, would produce a slightly larger effect. On the other
hand, Galligan & Baggaley (2005) adopted a very broad radiant
cutoff (—120° < I < —30° and 20° < I < 120°, respectively,
for our definition of /, and no condition on b). According to our
tests, these broad selection criteria give results that are similar
to those with no radiant cutoff.

The effect of the radial distribution of initial orbits is illus-
trated in Figure 6. As expected, y < 0 produces dN(v) that
peaks at larger values, and dN(e) that is more skewed toward
e = 1. This is because more particles are produced with small ¢
values in this case, and these particles tend to have larger v and
e values when they impact. The effects of y > 0 are opposite
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to those of ¥ < 0. Interestingly, dN(a) and dN(i) obtained with
I* = 0.003 are not very sensitive to changes of y.

Together with Figure 4, these results show that it can be
difficult to constrain the value of y from the fits to the AMOR
measurements alone, because the effects of y are similar to
those produced by slight changes in the detection efficiency,
and can be confused with them. A detailed knowledge of the
instrument sensitivity, that goes beyond the simple concept of
the ionization cutoff described in Section 2.6, will be required
for a more constrained modeling (see, e.g., Fentzke & Janches
2008; Fentzke et al. 2009).

The effects of initial dN(D) of particles, as discussed below,
are in many ways similar to those produced by changes of y
and I*. Figure 7 illustrates the effect of D*. Again, dN(v) and
dN(e) show more variation than dN(a) and dN(i). While for
D* = 30 pum, the velocity peak shifts to v >~ 30 km 7Lt
moves to v ~ 20km s~ for D* = 300 m. This variation can be
linked to the ionization cutoff. For example, with D* = 30 pm,
particles tend to be smaller and will be detected with 7* = 0.003
only if their speeds are larger.

The distributions dN(v) shown in Figures 4(a)-7(a) are all
slightly narrower than the one indicated by observations (see
Figure 1(a)). This difference cannot be resolved by varying y, S,
or I'*. Instead, to resolve this problem, we needed to assume that
the power index of dN(D) is 3 < « < 4, atleast in the size range
relevant to AMOR observations. To illustrate this case, Figure 8
shows the distributions for « = a1 = @y = 3.5. While dN(a),
dN(e) and dN(i) have not changed much relative to Figure 4, the
new distribution dN(v) with I* = 0.01-0.001 becomes broader,
thus better mimicking the AMOR measurements.

This trend can be easily understood. With a sharp SFD break
at D* ~ 100 um, the particles that produce most meteors with
I > 0.01-0.001 are those with D ~ 100 um. These particles
have similar orbital histories and produce a relatively narrow
dN(v). With @) = ap ~ 3.5, on the other hand, the size range of
particles significantly contributing to AMOR meteors increases,
relative to the previous case, producing a larger variability in
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orbital histories, and thus also a larger spread in v. Figure 9
illustrates these trends.

By experimenting with different SFDs, we found that the
best matches to AMOR observations can be obtained with
D* <50 umand @y = 3.5, or with D* 2 200pum and oy = 3.5,
while the values of y and S are essentially unconstrained (but
see Section 3.2 for a discussion of the collisional model). We
opt for D* = 200 um in Figure 10, which illustrates one of
our preferred models, because the original interpretation of
spacecraft impact experiments indicates a change of slope at
D ~ 200 pum (e.g., G85; Love & Brownlee 1993). The solutions
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= 30 um (dashed), and D* = 300 um (dot-dashed). As in Figure 5, we used

with D* < 50 um and o, = 3.5, which would better correspond
to the reinterpretation of the impact experiments by Mathews
et al. (2001), are also plausible. We will discuss this issue in
Section 4.

While our models dN(v), dN(a), and dN(e) in Figure 10
match observations reasonably well, the model dN (i) is slightly
narrower than the one measured by AMOR. This indicates
that we may be missing sources with larger inclinations. For
example, as discussed in Section 2.1, our model for the initial
inclinations of JFC particles can be inappropriate if JFCs lose
mass gradually by recurrent splitting events (e.g., LD97; Di Sisto
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100 um, o) = 2, ap = 5 and (b) @; = ap = 3.5. The input distributions, shown by dashed lines, correspond to

those used in Figures 4 and 8. They were normalized to 1 particle with D > 100 um. The upper solid line in each panel shows the SFD of particles accreted by the
Earth (I* = 0). Accreted particles show a slightly steeper slope than the input SFD for D 2> 100 wm, because of the effects of disruptive collisions, which eliminate
large particles in the G85 model, and a shallower slope for D < 100 2m, because small JFC particles have smaller Earth-accretion probabilities than the larger ones
due to their shorter P-R drag lifetimes. The other solid lines show the expected meteor SFD for AMOR (three lines corresponding, from left to right, to I* = 0.001,

0.003, and 0.01) and CMOR (/* = 1).

et al. 2009; N10). It is also possible, however, that the radiant
cutoff of Galligan & Baggaley (2004, 2005) is not sufficiently
restrictive to pick up JFC meteoroids only, as hinted on by
Figure 1(c), where dN(i) seems to follow different trends for
i < 30°and i > 30°. Note that Campbell-Brown (2008), using
a more restrictive radiant cutoff, obtained a relatively narrow
dN(i) of helion/antihelion meteors.

Figure 11 shows the radiant distributions for our preferred
model shown in Figure 10. With I* = 0, the radiants fill the
whole sky and show broad concentrations around I = —90°,
[ = 90°, and b = 0°. With I'* = 0.003, however, the radiants
become tightly clustered about / = —70°, 1 = 70°, and b = 0°.
This highlights the importance of the ionization cutoff. For a
comparison, Galligan & Baggaley (2005) found that the helion
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and antihelion sources are centered at / = £70° and their full
widths are ~20° in both / and b. The location and spread of our
model radiants very closely match these measurements.

3.2. CMOR

The results discussed in Section 3.1 were obtained with the
standard G85 model for the collisional disruption of particles. In
G835, the large, millimeter-sized particles have very short physi-
cal lifetimes (~10% yr) and disrupt before they can significantly
evolve by P-R drag. Small particles, on the other hand, have
long collisional lifetimes and evolve faster by P-R drag. The
G85 model therefore implies different orbital histories of small
and large particles and, as we found here, produces significantly
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different distributions of impact speeds and heliocentric orbits
for I* = 0.003 and 7* = 1. Figure 12 illustrates the case of
I* = 1. These results are at odds with observations, because
the distributions measured by AMOR and CMOR are not that
different.

10

To resolve this problem, we needed to assume that 7oy for
D ~ 1 mm is significantly longer than in G85 (S 2 30).
Figure 13 shows the results for S = 100. The main improvement
with respect to Figure 12 is that dN(a) now peaks ata ~ 1 AU.
This is a direct consequence of longer t.,y, which allows
the large particles to accumulate larger P-R drifts and reach
a ~ 1 AU. On the other hand, models with § = 30 and
I* = 0.01-0.001 do not match the AMOR measurements. This
shows that the size dependence of the G85 collisional model
may be incorrect. Taken together, if S 2 30 is needed to match
CMOR, while § ~ 1isneeded to match AMOR, t.o;(D) should
be more constant over the relevant size range, D ~ 30-1000 um
according to Figure 9, than suggested by G85.

We performed a search in parameter space to see whether
we can obtain the impact speed and orbit distributions with
S = 100 that would closely resemble those measured by CMOR
(Figure 10— 12 in Campbell-Brown 2008). We found that the
model results with & ~ 2 work best. With o ~ 2, at least locally
near D ~ 500 um, which are the most important sizes for
CMOR, the model distributions have the characteristic shapes
measured by CMOR (Figure 14). When no radiant cutoff is
used, dN(v) has the maximum just below v = 20 km s1, and
dN(e) peaks at e ~ 0.7. When the radiant cutoff is applied,
dN(v) has the maximum just below v = 30 km s~1, and dN(e)
peaks at e ~ 0.8. These trends correspond very well to those in
Figures 10 and 12 in Campbell-Brown (2008).

The model dN(a) with radiant cutoff becomes more tightly
clustered at a ~ 1 AU than in the case without cutoff, in a nice
correspondence to the CMOR measurements (Figure 14(b)).
Our dN(i) with radiant cutoff is slightly broader than the CMOR
distribution (Figure 14(c)), which is logical because the radiant
cutoff used by Campbell-Brown (2008) is more restrictive than
the one used here. Overall, the agreement between the model
and observations is very good.

While the meteoroid SFD can be wavy (e.g., Ceplecha et al.
1998), with @« ~ 3.5 at D ~ 100 um (see Section 3.1) and
o ~ 2 at D ~ 500 um, these slope determinations can also
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Figure 13. Same as Figure 12 but for S = 100.

be artificially imposed on the results by our simple treatment
of the radar’s detection efficiency.' In addition, it is not clear

13 The SFD constraints established here were obtained with the simple
parameterization of the radar’s detection efficiency described in Section 2.6. In
reality, the detection efficiency should be a more complex function of the
meteoroid mass and speed, other impact parameters, and observing conditions.
It is plausible, for example, that the detection probability of a meteor, D(7),
goes smoothly from ~O for I < I < I* to~1for I > I} > I*, and attains
some intermediate values from 15‘ to I} If so, this could broaden the size
range of particles that contribute to detections and potentially resolve the
problem with the width of dN(v), without the need to resorting to a relatively
shallow SFD slope.

11

to us whether it is appropriate to compare our results for the
helion/antihelion meteors to Figures 10 and 12 in Campbell-
Brown (2008), because their Figure 10 shows the CMOR
distributions for all sporadic sources, and the distributions in
Figure 12 were weighted to a constant limiting mass, a correction
that is not needed for a comparison with our model.

Finally, Figure 15 shows the CMOR radiant distributions
for models illustrated in Figures 12 and 13. With longer .y,
the radiants are slightly more spread around the helion and
antihelion directions. Interestingly, Figure 15 indicates that
the JFC meteoroids are capable of producing apex meteors.
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These apex particles have prograde orbits, low impact speeds,
and very low semimajor axes. They impact from the apex
direction because their orbital speed near the aphelion at 1 AU
is smaller that the Earth’s orbital speed. The contribution of
JFC meteoroids to apex meteors should be small, however,
relative to those produced by the retrograde HTC and/or OCC
meteoroids. We verified that only a small fraction (<1%) of the
JFC meteoroids can reach retrograde orbits.

3.3. IRAS

Using the methods described in Sections 2.4 and 2.5, we
computed the MIR fluxes for all models considered in the
previous section. Here we illustrate these results and compare
them with those obtained by /RAS. Before we do so, however,
we want to emphasize that the ZC is in all likelihood a mixture
of several particle populations, including contribution from
asteroids and long-period comets (see, e.g., N10), while here
we only model the JFC component. The best fits obtained to
IRAS observations in this work are therefore only approximate
and could be modified if other components of the ZC were
considered.

Figure 16 shows our results for D* 100 um, o 2,
ap = 5,y = 0, and § = 1, corresponding to Figures 4
and 5. The model MIR profiles are slightly narrower than the
observed ones, but otherwise correspond to /RAS measurements
reasonably well. For example, a small, <10% contribution from
a source with a more isotropic distribution of inclinations, such
as HTCs and/or OCCs, would easily compensate for the small
difference. See N10 for a discussion of additional sources that
were not modeled here.

A different way to bring the model and observations into a
closer agreement is to assume that y < 0. With y < 0, the
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Figure 16. MIR profiles at (a) 12 um, (b) 25 um, (c) 60 xm, and (d) 100 xm
wavelengths. The dashed line shows the mean IRAS profiles for [ = 90°.
The upper solid curves show the model results for the same wavelength and
elongation. The bottom lines show the residual flux obtained by subtracting

the model flux from the mean /RAS profile. Here we used the same model
parameters as in Figure 4: D* = 100 um, o1 =2, =5,y =0and § = 1.

distribution of JFC particles is weighted toward low R and is
projected to a wider range of b when observed from R = 1 AU.
If y > 0, on the other hand, the distribution is weighted toward
large R and is seen closer to the ecliptic. We tested a continuous
range of y values and found that y >~ —1.3 provided the best
match to the /RAS observations (Figure 17).

The effects of additional sources and ¥ #* 0 on the MIR
profiles are to some degree degenerate in the /RAS model.
They would be difficult to separate, based solely on model-
ing of the IRAS observations, if we included additional sources
in the present work. For example, as discussed above, the
MIR profiles become broader, and more similar to the IRAS
measurements, if y < 0 and/or if sources with a more
isotropic inclination distribution are included (N10). On the
other hand, a small asteroid contribution at the ~5%—-10%
level (Nesvorny et al. 2006) would produce slightly nar-
rower profiles than those obtained with the JFCs alone (N10).
A two-source model with JFCs and asteroids would thus
require y < 0.

The MIR profiles obtained in our model are not overly
sensitive to the assumptions on the collisional lifetimes of
particles. For example, increasing the collisional lifetime of
millimeter-sized particles relative to the G85 model, which may
be needed to match CMOR observations (Section 3.2), does not
affect the results obtained here, because the ZC’s cross section
is mainly in D < 200 um particles (N10).

In addition, the model profiles are also insensitive to the input
SFED of the JFC particles. This is because the JFC particles with
D < 200 pwm have .oy that exceeds their P-R drag lifetimes. All
these particles therefore have roughly similar orbital histories
and produce similar MIR profiles. This explains why we obtain
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Figure 17. Same as Figure 16, but with y = —1.3. The radial distribution
obtained with y = —1.3 leads to the best fit to JRAS observations, at least for

the input SFD assumed here. The MIR profiles, however, are not overly sensitive
to the assumed SFD.

nearly identical results for all D* < 200 um.'* The effects of
o1 and a are also minor.

3.4. ZC Mass and Cross Section, and Mass Influx on Earth

The comparison of our model with the /RAS data is important
because it allows us to obtain the absolute calibration of the
number of particles in the ZC (or, more precisely, their total
cross section). This calibration can then be used to estimate the
rate of the terrestrial accretion of interplanetary material, both
with and without the ionization cutoff, with the former estimate
being relevant to radar observations. Note that it is more difficult
to derive the overall terrestrial accretion rate from the meteor
radar measurements alone, because different radar instruments
have different detection sensitivities, and some, such as the
less sensitive CMOR, do not detect the very small and/or slow
meteoroids (see discussion in Section 4).

Unless we specify otherwise, all estimates quoted below were
obtained for the full size range of particles between D = 5 um
and D = 1 cm (1071 gto 1 g for p = 2 g cm™3). These
estimates need to be considered with caution because they were
obtained with approximate initial SFDs. In reality, the number
of particles released by JFCs can be a complicated function
of D and should also depend on the circumstances of the
splitting/disruption events.

We start by discussing the total cross-section area (ozc) and
mass (myzc) of particles in the ZC. For the sake of simplicity, we
will assume that 30 < D* < 300 um, «; < 3 and ap > 4, so
that particles with sizes below 30 um and above 300 wm do not
strongly contribute to the cross section or mass, as suggested

14 We note that the model profiles obtained for y ~ —1.3 and D* = 10 um
are slightly narrower than those shown in Figure 17 for D* = 100 um,
because small particles drift faster and their inclinations are disturbed to a
lesser degree by planets and planetary resonances.
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Table 1
A Summary of Different Models

D*

aj a y ozc mzc 1mzc 1o 110,003 my
(pum) (10" km?) (10" g) (kg s7h (tons yr’l) (tons yr’l) (tons yr’l)
100 2 5 0 2.1 3.8 4200 15,000 4200 240
100 2.9 4.1 0 2.1 4.6 6200 12,000 4100 860
100 2 5 -1 2.0 3.8 5200 15,000 6100 480
100 2 5 —-1.3 2.0 39 5800 16,000 7000 590
100 2 5 1 2.3 4.0 4000 14,000 3100 130
30 2 5 0 1.8 1.2 1600 7700 500 27
300 2 5 0 34 15 19,000 26,000 19,000 3300
50 2 3.5 0 2.5 12 25,000 18,000 9300 4100
50* 2 3.5 0 2.5 11 13,000 17,000 8500 3300
200 35 5.0 0 1.9 2.0 2400 12,000 2900 230
200* 35 5.0 0 2.1 3.0 3400 11,000 2,900 220

Notes. See the main text for the definition of parameters shown here. The asterisks denote the cases, where only particles between D =

and D = 3 mm were considered.

by the spectral observations of the ZC (e.g., Reach et al. 2003),
and various other measurements (see, e.g., Ceplecha et al. 1998,
and the references therein).

With these assumptions we find that 1.7 x 10'! < oz7c <
3.5 x 10'"' km?, where the larger values correspond to D* =
300 um. This estimate is in a good agreement with N10 who
found that o7 = (2.0£0.5) x 10'" km?. The uncertainty in ozc
mainly stems from the uncertainty in D*, with y producing only
a minor effect. For a reference, the models shown in Figures 16
and 17 have o7c = 2.1 x 10'! and 2.0 x 10! km?, respectively
(Table 1).

Mass myzc is more poorly constrained then ozc. For 30 <
D* < 300um, o < 3, o > 4 and p 2 g cm™
we estimate that 10" < mzc < 1.5 x 10%° g, with larger
values corresponding to D* = 300 um. For a more restrictive
assumption with D* ~ 100 um, we find that 3 x 10" < mzc <
5 x 10" g, where the exact value depends on a;, ay, and y.
For a reference, the models shown in Figures 16 and 17 have

=3.8x 1019 and 3.9 x 10'° g, which roughly corresponds
to a 33 km diameter sphere with p =2 g cm™>

These results compare well with those reported in N10, where
it was found that 2.6 x 10" < mzc < 5.2 x 10" g, under the
assumption that the continuous SFD can be approximated by a
population of the same-size particles with D = 100-200 pum.

N10 estimated that the input mass rate of miyc
1000-1500 kg s~! is needed to keep the ZC in a steady state.
Here we obtain larger values, mainly because the population of
particles released with low g has shorter lifetimes and needs to
be resupplied at a higher rate. If D* < 100 um, mzc ranges
between 3000 and 7000 kg s~!, with the largest values corre-
sponding to ¥y = —1.3 in the model illustrated in Figure 17.
Input rate myc is also sensitive to D*, roughly in the same pro-
portion as myc. For example, niz¢ ~ 1600 and 19,000 kg s~! for
D* =30 um and D* = 300 um, respectively. These estimates
are valid for @; < 3 and o, > 4. The required input rates can
be somewhat smaller or larger if ; ~ 3.5 and/or a; ~ 3.5 (see
Table 1).

Finally, we consider the terrestrial accretion rate, 1+, where
my~ denotes the rate for I > I*. We consider cases with
I* 0, I* 0.003, and I* 1, with the latter two
roughly corresponding to our expectations for AMOR and
CMOR, respectively. Using the IRAS calibration, we find that
our standard model with D* ~ 100um, oy < 3, ap > 4
implies that ng (15,000 = 3000) tons yr’l, 10.003
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Figure 18. Terrestrial accretion rate of JFC particles as a function of D* obtained
in our model for y = 0 and S = 1. Different lines denote the results for 7* = 0
(solid), 7* = 0.003 (dashed), and I* = 1 (dotted). The two lines for each

I were computed for different values of «; and «p. The more horizontal lines
correspond to «; = 3 and ax = 4. The more inclined lines correspond to o} = 2
and @y = 5. For D* ~ 100 um, the overall terrestrial accretion rate for I* = 0
is ~1-2 x 10* tons yr—!

(5000 + 2000) tons yr~!, and s, = (500 =+ 400) tons yr—,
where a large part of the quoted uncertainty comes from the
poorly constrained y. Note that the values for /* = 0.003 and
I'* = 1 do not include any radiant cutoff.

The uncertainty becomes larger if D* is allowed to vary
(Figure 18). For example, with ) =2, p = 5, and y = 0, we
obtain moy = 26,000 tons yr’l, moooz = 19,000 tons yr",
and 71, 3300 tons yr~' for D* 300 um, and ry =
7700 tons yr’l, mo.003 = 500 tons yr’l, and m; = 27 tons yr’1
for D* = 30um. Also, our preferred model for the AMOR
meteors illustrated in Figure 10 gives rizg = 12,000 tons yr—!,
Mmooz = 2900 tons yr’l, and m; = 230 tons yr". Similarly,
the model with D* = 50 um, oy = 2, and o, = 3.5 gives
mo = 18,000 tons yr=', rgoz = 9300 tons yr—', and
niry = 4100, 0r g = 17,000 tons yr~!, 710,003 = 8500 tons yr—!,
and m; = 3300, tons yr’l, if the size range of the contributing
particles is restricted to 10 < D < 3000 um (Table 1).

The above estimates with /* = 0 are a factor of several
lower than those found by N10. This difference probably stems
from some of the crude approximations used by N10. For
example, N10 did not use a continuous SFD of particles and
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approximated dN(D) by delta functions. Their initial particle
orbits had (almost exclusively) ¢ > 1.5 AU, and did not take
into account the fact that many JFCs can split and/or disrupt
with ¢ < 1.5 AU. Moreover, N10 did not properly include the
collisional lifetimes of JFC particles in their model. The results
presented here, which include all these components, and which
were validated on meteor observations, can be more trusted and
should supersede those reported in N10.

4. DISCUSSION

The results reported in Section 3.4 show that the low-sensitive
meteor radars such as CMOR can only detect a few percent of
the overall mass flux. It may therefore be difficult to estimate
the terrestrial accretion rate from these measurements alone. The
more sensitive meteor radars such as AMOR, on the other
hand, should detect 10%—50% of the flux, with the exact value
mainly depending on the SFD assumptions (Table 1). These
more sensitive measurements, especially those obtained with
the HPLA radars, are therefore better suited for estimating the
overall accretion rate.

The terrestrial accretion rate found here is comparable to
that originally inferred by Love & Brownlee (1993) from the
Long Term Duration Facility (LDEF) experiment, and much
larger than the one suggested by Mathews et al. (2001) from the
Arecibo Observatory (AO) measurements of meteor fluxes. As
pointed out by Mathews et al. (2001), the difference between
the AO and LDEF measurements could be resolved if LDEF
data were recalibrated to v ~ 50 km s~', which is the prevailing
meteor speed as seen at Arecibo (see Janches et al. 2003, 2006;
Fentzke et al. 2009).

We found that dN(v) for I* = 0 peaks at v ~ Ve, =
11.2kms™ ! (see, e.g., Figures 4, 8, and 10). The only parameter
choices that we were able to identify, where this was not the
case, were those where it was assumed that essentially all dust
was produced with ¢ < 0.5 AU, and that D* 2 100 um
for § = 1. Such an extreme ¢ dependence seems unlikely,
because not many solar system objects—potential parent bodies
of meteoroids—ever reach g < 0.5 AU. (Comet 2P/Encke has
q = 0.34 AU, but as we discussed in the Section 1, the measured
mass loss in comet 2P/Encke is far too low to be dominant.)

The case described above could potentially be interesting,
because it could help to explain why the meteor observations
at AO, albeit being much more sensitive than AMOR, do not
detect a significant population of meteors with v < 15 km s~
(e.g., Janches et al. 2008). To allow for D* < 100 um in this
case, and bring our results to a closer agreement with Mathews
et al. (2001), teon of D < 100 um particles, mainly for orbits
with ¢ < 0.5 AU, would need to be significantly shorter than
suggested by G85.

To match the CMOR measurements in our model, the col-
lisional lifetime of meteoroids with D ~ 1 mm needs to be
significantly longer than suggested by G85. Such a long life-
time, of order of a few times 10° yr for a circular orbit at 1 AU,
can be difficult to reconcile with the inferred lifetimes of meteor
streams that seem to disappear on a much shorter timescale (less
than a few thousand years; e.g., Jenniskens 2008). Possibly, the
centimeter-sized particles released from JFCs, which appear to
be dominant in the visual observations of the meteor streams,
are physically weak and disrupt in a few thousand years. They
could produce a population of millimeter-sized and smaller par-
ticles that, according to our work, could be more resistant to
collisions.
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As explained in Section 2.3, our model neglects small frag-
ments produced by disruptions of larger particles, because it
is difficult to account for numerous debris particles in the
N-body code. Since the fragments are small and should be
released on the orbits already evolved by P-R drag, we may
speculate that this could lead to a steeper SFD of particles with
low perihelion distances. To compensate for that, our preferred
model for the source population of particles would need to be
adjusted. Itis unclear, however, if the effect of the collisional cas-
cade is important. Future work will need to address this problem.

5. CONCLUSIONS

The radar observations of sporadic meteors reveal an impor-
tant population of meteoroids that impact Earth from the helion
and antihelion directions. Typically, these particles have helio-
centric orbits with a ~ 1 AU, e > 0.3, i < 30° and dive
into the upper atmosphere at speeds v ~ 20-30 km s~!. These
results were seemingly inconsistent with the model of the cir-
cumsolar meteoroid complex developed in N10, which has been
calibrated on the /RAS’s MIR observations of the ZC’s thermal
emission.

The N10 model implied that particles impacting Earth from
the helion/antihelion directions should either have a ~ 1 AU
and ¢ < 0.3, or a ~ 2-4 AU and ¢ 2 0.6. The former case
corresponds to D < 100 um meteoroids, whose orbits evolved
by P-R drag. The latter cases are the large, D 2> 1 mm particles
that were assumed in N10 to be collisionally disrupted before
their orbits could significantly evolve by P-R drag. The different
orbital histories of small and large meteoroids in the N10 model
would mean that the meteor radars with different detection
thresholds should measure very different distributions of the
impact speeds and orbits. This is not the case.

Here we showed that the above problem can be resolved
if (1) the N10 model is modified to account for the detection
efficiency of meteor radars, (2) meteoroids are released from
JFCs over a range of perihelion distances with at least some
fraction initially having ¢ < 1 AU, and (3) D ~ 1 mm particles
have significantly longer (=30 times) collisional lifetimes than
those estimated in G85. With these modifications of the N10
model, the results match meteor constraints.

We also found, using the AMOR observations as a constraint,
that D ~ 100-um particles cannot have much longer collisional
lifetimes than proposed in G85. Together with (3), these results
therefore suggest that D ~ 100 um and D ~ 1 mm meteoroids
may have more comparable collisional lifetimes (a few times
10° yr for a circular orbit at 1 AU) than thought before. If so,
the SFD shape inferred from the measurements of the spacecraft
impact detectors (such as, e.g., Ulysses, Galileo, LDEF; G85,
Love & Brownlee 1993) may be more closely related to the
initial SFD of particles released at sources then to the collisional
destruction of particles in space.

We showed that the modified N10 model can successfully
match the telescopic observations of the ZC. Using IRAS to
calibrate the model, we estimated that the cross section and mass
of the ZC are o7¢ = (1.7-3.5) x 10" km? and mzc ~ 4x 10" g.
The terrestrial accretion rate of JFC particles was found to be
~15,000 tons yr—', of which only a few percent should be
detected by CMOR, and 10-50% should be detected by the
more sensitive AMOR.

Moreover, some 10°~10* kg s~! of material must be provided
by JFCs to keep the ZC in a steady state. This new input mass
estimate is up to ~10 times larger than the one suggested by
N10 (see also Leinert et al. 1983), because particles starting
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with low g have shorter lifetimes, and need to be resupplied at
a faster rate. This new estimate resonates with the N10 model
in which the ZC is dominated by the meteoroids released by
disrupting/splitting JFCs, because the observed activity of JFCs
cannot provide the needed input.
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ABSTRACT

More than a decade of radar operations by the Canadian Meteor Orbit Radar have allowed both young and
moderately old streams to be distinguished from the dispersed sporadic background component. The latter has been
categorized according to broad radiant regions visible to Earth-based observers into three broad classes: the helion
and anti-helion source, the north and south apex sources, and the north and south toroidal sources (and a related arc
structure). The first two are populated mainly by dust released from Jupiter-family comets and new comets. Proper
modeling of the toroidal sources has not to date been accomplished. Here, we develop a steady-state model for the
toroidal source of the sporadic meteoroid complex, compare our model with the available radar measurements, and
investigate a contribution of dust particles from our model to the whole population of sporadic meteoroids. We find
that the long-term stable part of the toroidal particles is mainly fed by dust released by Halley type (long period)
comets (HTCs). Our synthetic model reproduces most of the observed features of the toroidal particles, including
the most troublesome low-eccentricity component, which is due to a combination of two effects: particles’ ability
to decouple from Jupiter and circularize by the Poynting—Robertson effect, and large collision probability for orbits
similar to that of the Earth. Our calibrated model also allows us to estimate the total mass of the HTC-released dust

in space and check the flux necessary to maintain the cloud in a steady state.

Key words: interplanetary medium — meteorites, meteors, meteoroids — zodiacal dust

1. INTRODUCTION

The Earth is permanently showered with dust particles born
in space. Cometary activity and both cometary and asteroidal
breakup events are the natural source processes for these
meteoroids. Particles with sizes in the tens of microns to
millimeter range are most efficiently detected with powerful
radar systems (e.g., Jones et al. 2005). The specular meteor
radars (SMRs), such as the Canadian Meteor Orbit Radar
(CMOR) and the Advanced Meteor Orbit Radar (AMOR),
have provided the most complete information so far in terms
of raw numbers of individual orbits for meteoroids impacting
the Earth. This is because their observations cover long and
often continuous time intervals, and their measurements are
able to resolve both the radiant location and velocity of each
impacting particle. If properly understood, such observations
may tell us much about the source populations of meteoroids,
and particularly constrain the overall strength of cometary
activity and/or the pace of their breakups.

Analysis of SMR observation data sets allows two compo-
nents of Earth-impacting meteoroids to be readily distinguished:
(1) particles associated with streams concentrated in interplan-
etary space (e.g., Jenniskens 2006, 2008a, 2008b; Brown et al.
2008, 2010), thus impacting the Earth at discrete and well-
defined time windows lasting typically days, and (2) particles
belonging to a sporadic background (e.g., Jones & Brown 1993)
for an excellent data compilation and a historic perspective). It
is believed that the sporadic component is actually composed of
particles which originated in streams, which over the course of
time have dispersed and become interwoven so much with other
sources that they cannot be individually distinguished anymore.
Indeed, fine analysis of high-quality data (e.g, Brown et al. 2008,
2010; Campbell-Brown & Wiegert 2009), has allowed an inter-
mediate evolutionary stage between the stream and sporadic
components to be identified, namely very broad radiants of long
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duration, which are still recognizable, particle showers. In this
case, the activity from a large but coherent radiant zone in the
sky can last up to several months.

In this paper, we focus on the dynamically most processed
meteoroid population, namely the sporadic component of mete-
oroids hitting the Earth. In spite of the fact that sporadic mete-
oroids impact the Earth from various directions on the sky during
the whole year, the geometry of their flux, as seen from Earth,
is not isotropic (e.g., Jones & Brown 1993; Campbell-Brown
2008). Rather, they are grouped into certain concentrations of
radiants and impact with specific ranges of speeds. This is due
to a limited number of source populations for the sporadic par-
ticles, combined with Earth’s heliocentric motion. Thus, most
of the particles observable at the Earth in the sporadic complex
belong to one of the three groups: (1) the helion and anti-helion
sources, (2) the north and south apex sources, and (3) the north
and south toroidal (NT/ST) sources.

The helion and anti-helion sources are the dominant mass flux
and therefore they were first to be discovered (e.g., Hawkins
1956). Their radiant concentrations peak on the ecliptic some
£70° away from the apex direction, hence nearly pointing to-
ward and away from the Sun. This component has been con-
vincingly interpreted as particles released from the population
of Jupiter-family comets (JFCs; e.g., Jones et al. 2001; Wiegert
et al. 2009; Nesvorny et al. 2011a). This is only natural, since
JFCs are the closest vast population of solar system bodies
with significant dust production. It has also been shown that the
JFC-produced dust particles contribute dominantly to the ther-
mal flux from the zodiacal cloud as seen by space surveys such
as the InfraRed Astronomical Satellite (IRAS) or Cosmic Back-
ground Explorer spacecraft (e.g., Nesvorny et al. 2010, 201 1a).

The apex source radiants are located at ecliptic latitude
~ 420° north and south from the apex direction. These particles
have been associated with some long-period comets (HTCs) or
even new (Oort cloud) comets (OCCs; e.g., Jones et al. 2001;
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Wiegert et al. 2009; Nesvorny etal. 201 1b; and Section 4.3 here).
This is also unsurprising, because both HTCs and OCCs—while
being more distant from the Earth—are also very prolific sources
of dust in the solar system.

In what follows, we consider the third of the source regions
for sporadic meteoroids, namely the toroidal particles. The north
toroidal source was first discovered and fully described in the
early 1960s from the analysis of Harvard Radio Meteor Project
(Hawkins 1962, 1963), with hints coming from earlier projects
such as at Jodrell Bank (e.g., Davies 1957; Davies & Gill 1960).
Its counterpart, the south toroidal source was confirmed in a
study of meteor orbit surveys by Jones & Brown (1993), and
later in the more detailed study of AMOR data by Galligan &
Baggaley (2005), or Jicamarca high-power large-aperture radar
by Chau et al. (2007). The most detailed study of the north
toroidal complex so far was presented by Campbell-Brown &
Wiegert (2009). An optical component of the north toroidal
source was also identified (see, e.g., Hashimoto et al. 2011).

It is interesting, and to some extent actually puzzling, that
understanding the parent source for the toroidal particles has
proved to be the most difficult of all the sporadic sources. Their
apparent source zone on the sky is characterized by high-latitude
radiants of >~ +(55°-60°), both north and south from the apex
direction. The toroidal particles impact the Earth with a typical
velocity of ~35 km s~!. When translated to the parameters of
the pre-atmospheric heliocentric orbits, the toroidal particles
seen by radars reside on high-inclination orbits with respect to
the ecliptic (=70°), have semimajor axes close to 1 au, but with
a long tail to larger values, and have a broad distribution of
eccentricities with a maximum at ~0.2 (e.g., Campbell-Brown
& Wiegert 2009 and Figure 3 below). Taken straight, there is
clearly no significant population of solar system bodies with
similar orbits that could provide a significant amount of dust.

Hence, this made previous workers to speculate that either
(1) the toroidal particles may come from a single or few, unusual
source(s), some of which may be presently extinct, or (2) to
conclude that the observed toroidal particle orbits must have
significantly evolved from their source regions. The latter might
make the source identification somewhat problematic, but there
is no a priori reason to believe that the problem should be more
complicated than for the helion/anti-helion or apex sources. We
shall see in Section 2.1 that an important step before further
tracking the zone of origin for the toroidal particles is to apply a
proper debiasing, specifically to take into account the collision
probability with the Earth for particles on different heliocentric
orbits.

1.1. Previous Models

As far as modeling efforts for the origin of toroidal particles
are concerned, we note that Jones et al. (2001), in a short but
interesting conference paper, assumed the source of the toroidal
particles could be interpreted as a high-inclination tail of the
JFC-released particles. To prove the concept, they modeled a
simple analytic Poynting—Robertson (PR) drag driven evolution
from JFC population, but noted that in order to obtain toroidal-
source particles they need to significantly push the initial
inclination values of this comet population. In particular, instead
of having a Gaussian inclination distribution with a standard
deviation of ~11.8° (observed), they needed to unrealistically
increase this value to ~28° so that the toroidal concentration
of radiants would appear in their simulation. While interesting,
there is no real physical justification for such a large inclination
component among JFCs. Interestingly though, what they started
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with is roughly an evolutionary phase in our simulations below
that identify the starting orbits of the toroidal particles with
the HTCs.

Wiegert et al. (2009) presented an effort to explain all
major sources of sporadic meteoroids. As far as the toroidal
component is concerned, they considered both long-period
comets and near-Earth asteroids (NEAs) with high-inclination
orbits as potential (immediate) source bodies. Even though
interesting, the conclusion from this model suffers significant
drawbacks and potential degeneracies. First, the authors did
not perform any quantitative fit to the data and hence the
modeled orbital distribution of the toroidal particles did not
match the observations except in a broad qualitative manner
(Figure 4 in Wiegert et al. 2009). More importantly, though,
the authors were led to conclude—in contradiction with their
initial assumptions—that activity of a single or a few individual
objects may dominantly contribute to either of the apparent
radiant source regions of meteoroids on the sky. In the case of
the NT source region they in fact preferred contribution from
several NEAs. This is, however, the weakest point of their model
because there is no justification for significant activity from most
NEAs as far particle production is concerned (even in the most
famous case of 3200 Phaeton, for which a solid evidence of
the dust production has been found, e.g., Jewitt et al. 2013,
the contemporary amount of dust produced is far too small to
account for the associated Geminid stream and in Phaeton’s case
only occurs because of its unusually small perihelion distance).

In an earlier work, Wiegert (2008) studied the orbital evolu-
tion of faint streams with radiants located in the arc structures
connecting the toroidal region on the sky with the north and
south apex regions (see also Brown et al. 2010). By perform-
ing backward integration in time for several of such streams,
Wiegert (2008) was able to track their evolution to JFC-like
orbits with high inclinations affected by the Kozai-Lidov os-
cillations. When running forward simulations for particles from
such starting orbits (somewhat similar to simpler modeling work
of Jones et al. 2001), he concluded that some of them were also
capable of populating the toroidal source regions. However,
sparse sampling of the initial orbits and/or unavailability of a
more advanced collision probability scheme made him conclude
that the observed and modeled eccentricity distribution in the
NT source still do not match perfectly.

In our work, we revisit the problem of the ultimate source of
background particles seen in the toroidal source regions. We are
simply returning to the idea qualitatively outlined by Davies &
Gill (1960) but equipped with modern observations and better
computational speed. These authors hypothesized that the high-
inclination and low-eccentricity sporadic NT component ulti-
mately originates from long-period comets. Particles released
from them would have a higher chance of overcoming Jupiter’s
barrier at larger inclinations and would thus be able to migrate
into the inner parts of the solar system. Along the way, their
orbits would have been circularized by the effects of PR drag.
Once on orbits close to the Earth, their collision probability
would be so high that they would overwhelm the contribution
of their sister particles still residing on high-eccentricity orbits
having much longer orbital periods.

1.2. Paper Outline

Our goal is to create a theoretical steady-state model that
provides a distribution of orbital elements and velocities of
meteors in agreement with observations from CMOR (a brief
overview and introductory data analysis is presented in
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Section 2). Our numerical model tracks the dynamical evolution
of thousands of dust particles in the 100 zm to mm size range
released from a synthetic population of HTCs (Section 3.1). We
include both gravitational perturbations by planets and relevant
non-gravitational effects, namely direct radiation pressure and
PR drag. The particle evolution is followed for millions of years
until particles reach end of their life, either by being scattered
from the solar system by giant planets (mostly Jupiter), hitting
one of the terrestrial planets, or evolving too close to the Sun.

The main assumptions and features of the dynamical-
evolution model are presented in Section 3.2. Particles in our
simulation can also be destroyed because of a collision with
other particles of the zodiacal cloud (a simple model is de-
scribed in Section 3.3). Confining the radiant zone to the NT
source as defined by previous studies (e.g., Campbell-Brown
2008), we attempt to adjust free parameters in our model, in-
cluding the size distribution of the particles at their source (see
Section 3.4), to match the observations.

We also attempt to use the CMOR data to absolutely calibrate
the population of our modeled particles from HTCs, though
we find that this can be presently done only within an order
of magnitude (see Section 4). We finally relax the restriction
in the model to test particles having to occur in the toroidal-
source radiant zone and check the contribution of our modeled
HTC dust population to the other source radiant regions on the
sky, in particular the north and south apex sources and the arc
structure connecting the toroidal sources to the north and south
apex sources (Section 4.3). We also check that our estimate of
the absolute number of particles from HTCs in interplanetary
space does not violate constraints from thermal observations
by IRAS spacecraft (Section 4.4). General conclusions and an
outlook for future work are in the final Section 5.

We note that the architecture of our approach most closely
matches the work of Nesvorny et al. (2011a), who consid-
ered particles released from JFCs in an attempt to model
the helion/anti-helion meteoroid sources, and Nesvorny et al.
(2011b), who considered particles released from OCCs in an
attempt to model the north and south apex sources.

We should also note that the sporadic toroidal source is
known to have the largest temporal variability (even upon
removal of the obvious meteor streams; e.g., Campbell-Brown
& Wiegert 2009). What we aim to model here is the long-term,
time invariant background part of the source, acknowledging
that the variable parts need contributions from one or few
individual dust-producing bodies (such as the unusual comet
96P/Machholz). Analysis of the time-variable part of the NT
source is left to future work. While our model is compared here
with data from the CMOR system that can see only the NT
source, we believe our results apply equally to the ST source.
Consequently, by combining CMOR data with a more sensitive
survey, which can also observe the ST sky region (such as the
AMOR system), one could potentially improve our results in
the future.

2. OBSERVATIONS

We use data recorded in 2012 by the CMOR system (e.g.,
Jones et al. 2005; upgrades described in Brown et al. 2012),
where a filter to remove major meteor showers was applied.
We selected radiant and speed information about particles
emanating from the NT source, which we define here in
accordance with Campbell-Brown (2008), namely, a region
centered at 57° north of the apex direction width 15° with in the
ecliptic longitude and 9° width in the ecliptic latitude. While
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there might be slight differences in definition of the NT location
across the literature, we believe this is not important for our
work provided we use a consistent definition for the data and the
model in our analysis. More importantly, our definition clearly
separates our sample of NT orbits from the other important
sporadic source zones on the sky.

Having made this selection, we are left with a little more
than one hundred thousand recorded particles in the NT source
by CMOR in 2012. However, to be conservative, we opted to
discard all inputs that have (1) geocentric velocity uncertainty
>4 km s~! and (2) radiant position uncertainty >2°. Here the
individual radiant and speed uncertainties are found using a
Monte Carlo procedure described in Weryk & Brown (2012).

Using this quality filter, the sample dropped by roughly one
half to 56,898 meteors detected during the calendar year 2012.
Most of the discarded particles had low signal-to-noise ratios
and were at the edge of detectability of the CMOR system
(generally small particles). In order to characterize the detection
sensitivity of the system, Wiegert et al. (2009) introduced an
ionization factor

( > 35

where m is the particle mass and V its apparent velocity at
the Earth (composed of the relative velocity at intersection of
the particle’s heliocentric orbit with the Earth and the planet’s
velocity vector including acceleration due to gravity). Particles
with I larger than some critical threshold I, are detected, while
those with 7 smaller than 7, produce too little ionization in
the atmosphere to be detected by the radar. While necessarily
approximate, the ionization factor-based detection criterion is a
useful tool for our modeling work in order to select modeled
impacting particles that could be recorded by the system. We
note that /, actually varies over the sky, being a function of echo
range and position in the CMOR antenna beam pattern—here
we refer to the absolute minimum Z,, which for CMOR occurs at
the zenith. The numerical constants in (1) have been purposely
chosen such that 7, >~ 1 for the CMOR system. While upgrades
may decrease somewhat this value a little, we observe that
the ionization factor values of the selected NT particles that
passed our tightened criterion on radiant and impact velocity
uncertainties sharply drop at ~~1. This confirms that the limiting
value 7, =~ 1 is appropriate for our work.

Figure 1 shows a correlation between the size D of the
detected NT particles and their apparent impact velocity V. We
assumed a bulk density of 2 g cm™ to convert the reported
masses m to effective particle sizes. Masses are computed by
calculating the electron-line density g of the echo based on
its received power, location in the radar beam and range. The
mass—velocity—ionization relation of Verniani (1973) is then
used to convert from ¢ to m. Particles smaller than ~200 um
were not detected in the NT source because their typical impact
speeds make the ionization factor I smaller than /.. Indeed,
we observe a strong D versus V correlation whose low-end
closely follows the I =~ [, ~ 1 limit. This prevents small
particles with D < 500 um traveling at low speeds, from being
detected. The recorded data does not show any signs of an upper
ionization cutoff, which indicates that CMOR detects large and
fast particles as well.

Figure 2 shows the number of recorded NT particles in our
sample as a function of the solar longitude A at detection, or
equivalently, the temporal flux of the NT particles in 2012.
Previous studies (e.g., Campbell-Brown & Wiegert 2009 and
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Figure 1. Selected north toroidal source particles recorded by the CMOR system during the year 2012: effective size D (in um) vs. impact velocity V (in km s~ ).
Isoline of a constant ionization factor (Equation (1)) for I = I, = 1, shown by the solid line, roughly delimit the range of detected particles. The discontinuity in
apparent numbers running parallel to the /, = 1 line represents the approximate transition point between underdense and overdense echoes.
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Figure 2. Selected north toroidal source particles recorded by the CMOR system during the year 2012: daily impact statistics vs. solar longitude A. The solid black
line, composed of a constant—background—term and four broad Gaussian contributions, depict an envelope model for activity in the NT source (compact streams
such as Quadrantids at A >~ 283°, and 0 and & Coronae Borealids at A >~ (285°-300°) are not considered in this fit). The intervals labeled I and II, delimited by dashed
lines, are our primary representation of the background, steady-state component in the source.

references therein) noticed and characterized significant vari-
ability in the source which is also immediately seen in this fig-
ure. However, in this work, we shall not study fine details of the
source variability. Our assumption is that the source has its own
permanent (steady-state) activity over which contributions from
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individual source(s) overlays. In this work we plan to model the
primary, presumably long-term stable, component. Obviously,
it is not easy (if even possible) to rigorously separate the steady
and variable components. Here we take a simple approach and
proceed as follows.
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Figure 3. Distribution of geocentric impact speed (top left), eccentricity (top right), inclination (bottom and left), and heliocentric semimajor axis (bottom right)
for 3550 selected particles of the background population of NT particles. The gray histograms correspond to the observed data from CMOR. The unfilled black
histograms were constructed using the methods described in Section 2.1 and approximate the distribution of the population with an ability of generating observed NT
particles normalized to unity. The raw and generating distributions are significantly different, implying there are strong selection effects in the observed population.
The parameters of the generating population led us to choose HTCs as the most promising source of NT particles.

First, we recognize that there are two principal strong stream
contributions in the NT source, namely: (1) Quadrantids at A =~
283°, and (2) 6 and & Coronae Borealids at A =~ (285°-300°).
These are the sources H and I described in Campbell-Brown &
Wiegert (2009). Next, there are roughly four broader, more dis-
persed stream contributions named Helion and Antihelion Arc
and B as given in Campbell-Brown & Wiegert (2009) through-
out the course of the year. In our data (Figure 2) we can see them
as roughly Gaussian features at solar longitude of ~17°, ~115°,
~216° and ~280° (the last has been also described by Brown
etal. 2010, as an underlying Quadrantids extension consisting of
the November ¢ Draconids and December « Draconids, perhaps
indicating an old stream complex related to activity of the comet
96P/Machholz). The total duration of this complex is one to two
months. We find it interesting that these four broad features may
actually be organized in two pairs with longitude difference of
~(180°-200°). Hence at least two different individual sources
are needed, out of which the pair consisting of the toroidal D
stream and the Quadrantid broad underlying stream have a likely
progenitor in the activity of comet 96P/Machholz several thou-
sand years ago (e.g., Gonczi et al. 1992; Jones & Jones 1993;
Sekanina & Chodas 2005; Kariuchova & Neslusan 2007). We
shall address this issue in a forthcoming study.

To avoid confusion between background and individual
sources we are then left with two longitude intervals ap-
parently devoid of stream activity: (1) ~(50°-90°), and
(2) ~(320°-360°). Campbell-Brown & Wiegert (2009) describe
a weak and very broad toroidal source C in the latter inter-
val, while no recognizable individual source is seen in the
first interval. As a result, we shall consider NT particles in
the first interval (1) to be our primary test sample of background
population. Tests show, however, that orbital data for particles in
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the second interval (2) are very similar to those in the first inter-
val (1), so we feel justified in checking our results by merging
information from both intervals of time. Our restricted sam-
ple of background NT-source particles contains 3550 individual
meteoroid orbits, roughly 90 particles hitting the Earth per day.

Figure 3 (gray histogram) shows the distribution of the appar-
ent impact speed of the selected NT particles and distributions
of the orbital elements, namely semimajor axis, eccentricity and
inclination. Our results are very similar to those of Campbell-
Brown (2008) or Campbell-Brown & Wiegert (2009). The most
distinct features are: (1) semimajor axis distribution peaked at
1 au, (2) broad eccentricity distribution with a predominance of
low-eccentricity orbits (eccentricities smaller than ~0.4), and
(3) characteristic inclinations between 60° and 70° with a tail
to retrograde orbits (correlated with a velocity-distribution tail
to values larger than ~45 km s~!). Data in the second interval
(2) described above show only a very small excess of larger-
eccentricity orbits relative to period (1). A more detailed study
of the data set may be found in the Appendix.

2.1. Searching for the Generating Population

Before we formulate our model and compare its results
with the observations of the background NT particles, we first
perform a simple analysis of the observed NT meteoroid sample
selected in the previous section.

Our first step is to debias the observed population for
impact probability with the Earth. This is an important factor
because a body on a given heliocentric orbit with semimajor
axis a, eccentricity e and inclination i has a mean collision
probability P.oy with the Earth that strongly depends on these
parameters. Since we aim to model the steady-state, background
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population, we can use collision probability values averaged
over a long-enough time interval (characteristic of the variation
of the orbital longitudes of node and pericenter—typically
of order 10* yr for NT particles). Obviously, an underlying
hierarchy in the orbital time evolution is assumed here, notably
that the secular angles change faster than the semimajor axis
changes due to radiation drag. While this may not always be
satisfied for individual particle orbits, such an assumption holds
population-wise. i

Traditionally, workers adopted Opik-type theory for Py
(e.g., Opik 1951), or equivalent variants that only allow for slight
eccentricity of the target planet (e.g., Wetherill 1967; Greenberg
1982). However, the dynamics of the high-inclination orbits
which dominate in the NT source violate the assumptions of all
these approaches by being strongly affected by the Kozai-Lidov
cycles (e.g., Kozai 1962). This motivated us to formulate a new
secular collisional probability approach that takes into account
at least the fundamental elements of the Kozai-Lidov effect
(Vokrouhlicky et al. 2012; Pokorny & Vokrouhlicky 2013).
While still approximate (it does not take into account the orbit’s
ability to be scattered by Jupiter if close encounters to that
planets are possible), the new theory represents an important
improvement over previous ones. Not only is a refined value
of P obtained, which for some sets of orbital elements may
be similar to unrefined value and for another set the difference
may be higher than an order of magnitude, but also a correct
representation of the radiant position at intersection with the
Earth is calculated.

For that reason we always use our new formulation of Py
in this paper. In fact, a faster variant from Vokrouhlicky et al.
(2012), where the target planet is assumed to be on a circular
orbit, is fully sufficient for our work.

We can now debias the population of particles observed from
the NT source by representing a single input of each particle
seen to impact from a heliocentric orbit with (a, ¢, i) elements
with a weight o«1/P, and obtain a population of particles
with an ability to generate observed NT orbits. Figure 3 (black
open histograms) shows the results. The generating population is
very different from the observed one. The semimajor axis values
distribution is basically flat up to Jupiter’s heliocentric distance
of ~5 au, followed by a slow decrease in numbers at larger
values. There is still a fair contribution of orbits with a beyond
10 au, though both noise (due to few observed orbits with those
values of a) and imperfection in P,y determination affect the
distribution trend. In the same way, the generating eccentricity
steadily increases to large values, indicating the low-eccentricity
population is just a minor part of the whole distribution. The
inclinations, while constrained by the relatively tight radiant
zone on the sky, are also slightly shifted to larger values,
now having a higher contribution of retrograde orbits. This is
also reflected in systematically larger impact velocities for the
generating population. All these findings point to a cometary
origin of the NT particles. Since JFC orbital parameters are
not compatible with the orbital elements of generating particles
seen in Figure 3, especially as far as the semimajor axis and
inclination are concerned, we are left with the long-period comet
population. The contribution of the new comets has been studied
by Nesvorny et al. (2011b), who showed that the isotropic and
more distant initial orbits preferentially led the dust particles
impacting in the apex sources. We thus suggest that the prime
candidate source population for the NT particles are HTCs. In
Sections 3 and 4 we explore this hypothesis with a detailed
numerical model.
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3. MODEL: THEORETICAL BASIS

Our model contains the following elements. We start with
a description of the assumed ultimate population of source
bodies from which the NT particles are initially released.
To that end we use an up-to-date synthetic model of HTCs
(Section 3.1). The orbital evolution of particles with different
sizes is numerically propagated until it reaches one of several
possible end-states (ejection from the solar system or impact on
the Sun or planets; Section 3.2). The integrator accounts for both
gravitational perturbations due to planets and radiative effects
(direct solar radiation pressure and PR drag). Evolutionary
paths for all particles are stored and used for further analysis.
The effects of collisional destruction by impacts of other
zodiacal cloud particles are modeled separately using a Monte
Carlo probabilistic scheme (Section 3.3). Proper weighting
of the contribution from particles with different sizes is also
needed (Section 3.4). Merging the data together to simulate the
synthetic impact population at NT source and comparison with
observations is covered in Section 4.

3.1. HTC Model: Initial Particle Orbits

We adopt results from Levison et al. (2006). These authors
developed a steady-state model for HTC orbital architecture,
assuming they originate in the scattered disk. Tracking the
orbital evolution of a large number of test particles, their model
was able to successfully match the observed distribution of
HTC orbital elements, including the most problematic case of
the inclination distribution that was not reproduced in previous
efforts. This is because the observed inclination distribution
of HTCs contains preferentially prograde orbits with a median
inclination value of ~55° and only a small fraction of comets
on retrograde orbits (Figure 4). In relation to the HTC dust it
is thus interesting to note that previous works, such as Wiegert
et al. (2009), appeared to focus on the role of famously known
long-period comets such as 1P/Halley or 55P/Tempel-Tuttle,
whose orbits are actually outliers in their group. We also note
that nearly half of HTCs have inclination values between ~40°
and ~80°, which additionally favors them as a source for NT
(and ST) particles.

The starting orbits for our particles are those of the synthetic,
steady-state population of HTCs from Levison et al. (2000).
Since we take into account radiation forces, including direct
radiation pressure and PR drag, in the particle dynamics, the
osculating orbits upon release from the parent comet change
(e.g., Dermott et al. 2001). This is because radiation pressure
effectively changes the solar mass M to M (1 — ), with

Opr
pD’
for a particle of a bulk density p (in g cm™) and size D (in
um). Details of the radiation interaction with the particle are
included in the pressure coefficient Q. In all our simulations
below we take p = 2 g cm™ and set Q,,, = 1 for simplicity.
One of the solar mass recalibration aspects is that particle orbits
may become unbound when released from a high-eccentricity
cometary orbit (Figure 4). To stay initially bound in the solar
system, a particle with a beta factor § must be released at
heliocentric distance R

R > R*=28a, (3)

for a cometary orbit with a semimajor axis a (e.g., Dermott
et al. 2001). Since the particles of interest for us have typically

B =1.15 )
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Figure 4. Distribution of the heliocentric orbital elements of the synthetic population of HTCs: semimajor axis a (left), eccentricity e (second from left), perihelion
distance g (second from right), and inclination i (right). Most notably, the inclination is unevenly distributed about 90°: the median inclination of HTCs is ~55° and
only ~20% of orbits have inclination larger than 90°. This favorably directs particles surviving the Jupiter barrier to the toroidal source zone.

D > 200 pm, as suggested by Figure 1, the condition (3) is not
very restrictive (it only prohibits release very near perihelion
for comets with the largest a and our smallest particles). To
keep things simple, since our model contains enough free
parameters of more importance, we release particles uniformly
in mean longitude along the cometary orbits (not seeking thus
an additional parameterization to model their ejection as more
concentrated toward perihelion). We also give the particles zero
ejection velocity with respect to the comet, accounting only for
the radiation pressure effects mentioned above.

The starting orbits of our particles have different perihelion
distances ¢ in accord with the distribution shown on the third
panel in Figure 4. Comets with smaller g values are generally
more active and may deliver more dust particles to interplanetary
space. In order to account for this bias, we introduce a weighting
factor W,, assigned to each of the particles as

Wa=q7. “)
Here g is in astronomical units and y is an adjustable parameter
of our model. We nominally set y = 0, but test the sensitivity
of the results to adopting positive y values.

It is also important to note that we consider a population
of starting orbits with perihelion ¢ up to a maximum value
of 1.3 au (Figure 4). However, selecting a limited number of
particle sizes, we also tested a solutions with ¢ extending to
2.6 au, extrapolating the trend from the Levison et al. (2006)
model. We found that the results are not sensitive to this limit and
are comparable to our main results. For that reason we believe
that the limitation of ¢ < 1.3 au does not represent a limitation
of our model.

3.2. Orbital Evolution Propagator and
Results of Particle Integrations

The particle orbits were numerically propagated using
the swift_rmvs3 code (e.g., Levison & Duncan 1994;
http://www.boulder.swri.edu/~hal/swift.html) which allows an
efficient long-term integration of test bodies in the solar sys-
tem. Gravitational perturbations from all planets, whose initial
orbits were obtained from the JPL DE405 ephemerides, were
taken into account. The radiation forces were implemented in
two steps upon evaluation of the 8-factor for particles of a spec-
ified size (Equation (2)): (1) the direct radiation pressure was
represented as the appropriate recalibration of the solar mass,
and (2) the PR drag was introduced as a perturbation like the
gravitational effects of planets. The code was tested and suc-
cessfully used in previous studies (e.g., Nesvorny et al. 2006,
2010, 2011a, 2011b). We also take into account the drag effect
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of the solar wind which is, on average, believed to increase the
PR drag by some 30% (e.g., Dermott et al. 2001).

Since we aim to model a steady-state population of HTC-
related particles in interplanetary space, once started on their
initial orbits, the particles were followed until the whole pop-
ulation was eliminated. There were several orbital end-states
in our simulations. Close encounter with giant planets, mainly
Jupiter, could eject the particles from the solar system (we con-
sider this condition to be when the heliocentric distance of the
particle becomes larger than 10,000 au). Particles may also hit
the Sun or its immediate vicinity. We eliminate them when the
heliocentric distance becomes smaller than 0.05 au, roughly ten
solar radii. Below that distance the effective temperature of the
particles exceeds ~1300 K and the particles are deemed to evap-
orate or be torn by thermal stresses (e.g., Capek & Vokrouhlicky
2010). Some particles may even hit a planet, including the Earth,
but the likelihood is small given a limited number of integrated
bodies. We do not make use of the directly simulated Earth
impacts in our analysis.

Since all planets, including Mercury, are propagated together
with the dust particles in our simulations, we use a short timestep
of 1 day. In order to prevent disk overflow, the particle orbits
are exported, and used for further analysis, once every 100 yr in
all our simulations. We ran simulations for particles of different
sizes D, namely, 100 um, 200 m, 400 wm, 600 m, 800 pm,
1000 pm, 1200 pwm, 1500 pwm, and 2000 m. Each time, we had
20, 000 randomly generated orbits of particles, giving altogether
nearly 200,000 propagated particles. Most of the runs were
completed by ¢+ = 10 Myr, and only some of the largest particles
lasted longer in our simulations. We found that the dynamics
of particles in our two largest-size bins is sufficiently similar
to bin them together. This means trajectories of our largest
particles, 2 mm in size, could be taken as a good template
for dynamics of any other particles with larger size. Data shown
in Figure 1 indicate that we do not need to integrate orbits for
particles with sizes smaller than 100 pm for this project as this
is below the sensitivity limit for CMOR. With our choice, and
computer-power limitations, we believe we sufficiently covered
the necessary interval of particle sizes for the population size
distribution analysis (Section 3.4).

In the zero approximation, the population depletion with
time ¢ in our runs may be matched by an exponential law
o exp(—t/t), where 7 is some characteristic timescale. For our
smallest particles of 100 um and 200 pum we found 7 =~ 0.67
Myr and t =~ 1.07 Myr, respectively. For all larger particles, the
T value ranged between ~1.48 Myr and ~1.85 Myr, quickly
approaching a limiting value of ~1.9 Myr. This information
is necessary when estimating the production rate of HTC
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particles at the source to maintain a steady-state situation (see
Section 4).

Another interesting piece of information that we obtain from
our simulations relates to the particles ability to decouple from
the gravitational influence of Jupiter and migrate inward to the
terrestrial planet zone. We find that ~25% particles of 200 um
size decouple from Jupiter, while only ~5% of 1 mm particles
are able to do so. These percentages are large and promising
for the modeling of the toroidal sources. Note that similar
integrations for particles released from the Oort cloud comets
revealed that less than ~0.1%-0.5% of particles decouple from
Jupiter in this size range (e.g., Nesvorny et al. 2011b). This is
more than a factor of 10 fewer particles than in our simulations
of HTC-born particles.

3.3. A Simple Implementation of the Particle
Collisional Lifetime

Particles may also be removed on their way toward the in-
ner solar system because of a collision with another particle in
the interplanetary space. This effect is not directly modeled in
our numerical simulations and must be considered separately.
Indeed, the estimated collisional lifetime for particles in the rel-
evant size range (Figure 1) may be shorter than the characteristic
dynamical lifetime mentioned above, especially when particles
move to inside part of the Jupiter’s orbit. For reference, a D ~ 1
mm particle on @ ~ 1 au orbit, typical for the NT source zone
(Figure 3), has an estimated collisional lifetime <10° yr (e.g.,
Steel & Elford 1986; Griin et al. 1985). This may be up to an
order of magnitude shorter than the dynamical transport time
from its initial, HTC-like orbit.

Similarly to Wiegert et al. (2009), we used the collisional
model of Steel & Elford (1986, hereafter SE86), first checking
that similar results would also have been obtained with the
model by Griin et al. (1985) that has been used by Nesvorny
et al. (2011a, 2011b). Conveniently, the SE86 model provides
the dependence of the collisional lifetime on the orbital elements
of the particle, including the inclination value, which was our
largest concern in this study. In order to estimate the collisional
lifetime of a particle, SE86 use a technique of volume integration
of partial space—density distribution functions of (1) the zodiacal
cloud model, and (2) that of particle-orbits swept during one
secular cycle of node and pericenter longitudes (see Kessler
1981). There are obviously large approximations taken both in
(1) and (2). As far as (1) is concerned, SE86 use a very simple
density distribution model of the zodiacal cloud (Equation (2)
in SE86). We adopt this model as well. As far as (2) is
concerned, SE86 assume constant eccentricity and inclination
values during the secular cycle. This is particularly violated for
the high-eccentricity and high-inclination orbits studied here,
and thus we have slightly modified the SE86 technique. In
particular, we evaluate an instantaneous collision probability
of the particle orbit with the zodiacal cloud performing simply a
one-dimensional averaging orbit revolution about the Sun (some
details are given in Supplementary materials). This result better
suits our model, because we can now fully account for non-
trivial secular variations of the particle orbit as provided by
our numerical integrator. Moreover, we model the collisional
dynamics of the particles using a Monte Carlo model with a
timestep shorter than the orbital secular cycle, so the estimate
of a collisional lifetime for the instantaneous orbit would be
needed anyway. As far as the size dependence of the collisional
lifetime is concerned, we assumed that projectile capable of
breaking a given particle is one ~30 times smaller in size (SE86)
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and used the zodiacal cloud size distribution from Griin et al.
(1985). Obviously, all these assumptions are grossly simplified.
For that reason we also used an empirical factor F.o; by which
we multiply the estimated collisional lifetime. Values of Fo
between 1 and 30 are allowed in our procedure and adjusted to
obtain the best match between the observations and the model
(Section 4; Nesvorny et al. 2011a, 2011b have used a similar
scheme of extending the canonical collisional lifetime values).

We implement the effects of a finite collisional lifetime in the
following way. Our numerical integration of the particle-orbital
evolution treats them as indestructible bodies and outputs the
state vectors once every d¢t = 100 yr. In the modeling phase, we
load these orbital histories and follow the particles anew. At this
phase, though, we assume a finite collisional lifetime . and at
each timestep dt we consider a probability 1 — exp(—dt/t.)
that the particle collisionally disrupts. At each timestep we
thus consider a randomly generated number, compare it with
the disruption probability and decide whether the particle is to
be eliminated from further analysis. Since such a Monte Carlo
procedure brings a stochastic element in our work, and computer
power allows only a small number of particles to be analyzed,
we typically repeat the analysis 25 times and average over the
results.

‘We should also point out that in this work, as well in all previ-
ous works, the particles deemed to collisionally disrupt are fully
eliminated. In reality, though, disruption events form fragments
that themselves continue orbital evolution and eventually may
contribute to the observed signal at the Earth. We believe that
the F.on > 1 values which best suit in our model (Section 4) ef-
fectively account for the fragment contribution at the zero level.
In other words, the Fo; > 1 values might not be in great conflict
with the 7 values estimated by SE86 and Griin et al. (1985).

3.4. Assumptions About the Size Distribution of
Particles at Their Source

Particles of different size D may take different orbital evolu-
tion paths and thus contribute in an uneven way to our results.
We thus need to run our simulations for a set of different sizes
and then combine the data. The underlying weighting proce-
dure has to account for the size frequency distribution (SFD) of
the particle population. Except for Section 2.1, we always work
in this paper with the SFD at the ultimate source in the solar
system, i.e., corresponding to the particle population freshly re-
leased from the parent comets. The source SFD reported here is
not equal to that of the Earth-impacting particles that is affected
by both dynamical (PR drag) and physical (collisions) effects.
Our model takes these alterations into account.

While the particle SFD may be a complicated function of
D in principle, experience shows that a broken power-law
representation is a fairly good approximation unless the size
range (Dmin, Dmax) 18 too large. Figure 1 provides guidance
for the selection of these limits. Namely, we consider Dy, =~
200 pm, because basically no smaller particles are recorded in
our sample due to the ionization factor cutoff 7 > I, described
above. Similarly, we take Dy.x =~ 3 mm, because particles
larger than this value are rarely detected by CMOR or have
long-duration echo characteristics which do not allow automatic
orbit determination by CMOR in the NT source.

The most general SFD we test in our work allows a break-
point between piece-wise power laws at a midpoint*Dy,q €

4 We may also use a single-slope power-law SFD by setting « = f in all
formulas in Sections 3.4 and 4.2; one easily verifies that Dy,q is either
arbitrary or drops out of the equations in that case.
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(Dmin, Dmax)- In particular, at larger sizes (Dpid, Dmax) W€
assume a power law with a differential size distribution exponent

Dinax > * dD
D Dmax

while at smaller sizes (Dyin, Dmid) We assume a power law with
a differential size distribution exponent 3:

)ﬂ dD

Dmid ’
To ensure continuity in population statistics we must choose
Ng = Ng (DmaX/D,nid)“". Cumulative SFD functions, com-

patible with differential distribution laws from Equations (5)
and (6), are given by

AN = N, ( , 5)

Dpig
D

dN = Ny ( (6)

a—1
N(> D)= Ny | == , 7
(> D) 0 ( D > N
for D € (Dmids Dmax) and
Ng [ Dmia\"™!
NeDy=—2-(22)  4¢, (8)
B—1 D
for D € (Dnjin, Dmid). Here we introduced a constant
Nﬂ ,3 -
Ci=—— , 9
Rl B )]

and additionally made a choice N, = Ny (e — 1) with a free
parameter Ny in Equation (9). One convenience of doing so
is good behavior of the cumulative SFD at D = Dy,x. The
SFD model is three-parameter, with adjustable constants being
(1) Ny, fixing the absolute number of particles with D = Dy,
and (2) exponents o and 8. We only require (and expect) both
« and B be larger than unity, with an expected value between 3
and 4. A starting point for these values come both from direct
comet observations (see, e.g., compilation of data by Fulle 2004)
and mass—index calculations for the core of young meteoroid
streams (e.g, Blaauw et al. 2011). The total number of particles
Niot in the specified range of sizes reads Ny = C; + Cp, with
Ng

M)

While the above formulation enforces continuity of the cumula-
tive SFD across the whole range of sizes, the finite range of the
two intervals (Dmin, Dmid) and (Dmid, Dmax) produce boundary
effects. In particular, performing a least squares fit of the single
power-law exponent in each of the intervals may not result in
either o of B values, which formally define our broken power-
law SFD. The effective power-law exponent may be steeper
or shallower, and the boundary effect is larger for a smaller
range of sizes (and example of the phenomenon is discussed in
the Supplementary materials). We shall bear this in mind when
commenting on our formal solutions for « and § in Section 4.
In our procedure, we follow the orbital evolution of a set
of sizes (D;,i = 1,...,n) € (D, Dimax).> The population
weight assigned to each of the sizes is determined as follows:
(1) we divide intervals between the neighbor sizes in half, taking
a logarithmic size scale, and (2) use the cumulative SFD in (7)

Diig

&)
Dmin

10)

5 Inour case, n = 9 and the individual sizes D; were listed in Section 3.2.
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and (8) to determine the number of population particles N; in the
interval centered at the chosen size D;. Were we able to integrate
a large number of sizes, and the SFD were just a single power
law with and index o, we would have N; D,-] ~% (compare with
Wiegert et al. 2009, Section 2.2.1). The finite number of sizes
D;, and the assumed broken power law of SFD, may change
this simple dependence. The estimated population number N; is
used in our fitting procedure as a weighting factor Wy assigned
to each of the particles of a given size D;: Wy = N;.

3.5. Particle Weighting Together and Fitting Model Parameters

Summarizing the information above, a total weight W is
assigned to each particle in our simulation, composed of three
partial terms:

W=W,W.W,. (11)

The first contribution, W,, represents the activity of the source
comet in terms of particle production (Section 3.1). The second
contribution, W, is the collision probability of the particle
orbit at a given time with respect to the Earth. We take
W, = P.on, where P is from Vokrouhlicky et al. (2012). The
last contribution, Wy, expresses the increasing number of small
particles in the population through the SFD modeling described
in Section 3.4. Recall that the fitted SFD is representative of the
source population of particles released from HTC.

We assume that our modeled particle population from HTC
is in an approximate steady state. This allows us to neglect the
time evolution of the individual particles in our simulation since
any time should be equally representative of the population
state. Rather, we just perform a direct summation of the particle
contributions to the impacting population onto the Earth over
all computer-stored orbital states of all particles.

Our goal is to examine the hypothesis that the particles
released from HTCs represent a viable explanation of the
background population of NT meteoroids as seen by the CMOR
system. To that end we match the observed particle population,
as described in Section 2, to the synthetic population, as
obtained with our model in Section 3. In doing so we adjust
several free parameters introduced above, namely, (1) SFD slope
parameters o and B, break-point location Dp,q and number
Ny of particles with the largest size Dp,x = 3 mm (if fitting
only a single-slope power-law SFD we adjust @ and Ny),
(2) particle production slope parameter y from Equation (4),
and (3) empirical adjustment parameter F, of the collisional
lifetime of particles in the interplanetary space (Section 3.3).
This makes in total six free parameters at most (fewer if we
decide, for instance, to use just a single-slope power-law SFD
representation). We also found it useful to substitute for the
No parameter a parameter Fj,, defined as follows. Having
chosen a set of the above mentioned parameters we predict Nimp
particles impacting in the selected interval of solar longitudes
(Section 2) and being detected by CMOR (more of the detection
sensitivity in Section 4.2). Ideally, Ny should assure Nj, equals
number of truly detected particles Nops = 3550 (Section 2).
However, to cope with small imperfections of the model and our
simplifications in fully modeling the CMOR system response
function, we introduce a scaling factor Finp = Nimp/Nops and
allow its values to range in some reasonable interval around
unity.

Our target function may be either one (or a combination) of
the orbital element or velocity distributions shown on Figure 3.
Denoting R; the observed data and S; the modeled data, we use
of a chi-square function
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Figure 5. Synthetic NT population of particles with D = 200 um from the sole dynamical transport of HTC-like orbits at origin: infinite collisional lifetime are
assumed and no lower cutoff in the ionization factor 7 at impact (i.e., effectively 7, = 0). Distribution of geocentric impact speed V (top left), eccentricity e (top right),
and inclination (bottom left) at impact, all weighted by the collision probability P.oy. Distribution of radiant locations restricted to the NT and ST zones (bottom and
right). Only meteors in two elliptical regions in the bottom and right panel are taken into account. The grid shows the radiant locations that were not considered. PR
drag makes the orbital eccentricity decrease significantly from the initial values, and orbits with larger than ~80° inclination typically impact the Sun on their way to

the inner solar system due to the Kozai-Lidov effect.
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to evaluate the similarity of the observed and modeled data (see
also Press et al. 2007). The goodness of fit is best represented
with £2 normalized by N — m, where N is number of data (bins)
and m is the number of fitted parameters. Generally, values
& < 1 indicate a statistically good fit. However, because of
possible uncertainty in both the observations and the model
(such as data selection by the simplified ionization function I;
see Section 2.1), we accept values slightly larger than unity as
reasonable.

We use the highly efficient Bayesian analysis search of the
admitted solutions in the parameter space as described by the
multimode nested sampled method efficiently implemented by
the MultiNest code (e.g., Feroz 2008; Feroz et al. 2009). The
different nature of the adjustable parameters in our model adds
a slight complication in our effort. This is because while the
SFD parameters («, 8, Dmig, No) and the particle production
parameter y project onto the results in a deterministic way, the
effect of the collisional lifetime adjustment parameter Fo is
statistical in nature. As mentioned in Section 3.3, the collisional
breakup of the particles is a random process. A single simulation
has stochastic variations, so we always perform 25 different
runs for the same F and average the results. This part is
computationally demanding, because it needs to follow the
orbital evolution of hundreds of thousands of particles from
our integration output files. In fact, we opted to pre-compute the
modeled distributions of impact speeds and orbital elements for
each of the particle sizes and a grid of (y, F.on) values. These
results are then combined in the fitting model when trying to
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constrain the SFD parameter. In this way the SFD parameters are
analyzed separately from the (y, F.on). While the Markov chain
walking is applied to the («, B, Dmida, No) parameter space, or
alternately (o, B, Dpid, Fimp), the grid of (y, Feop) is sampled
uniformly within some preset values. The inconvenience is that
no correlation of (y, Fo) with the four SFD parameters is
obtained, but we accept this limitation for simplicity.

4. MODEL: SYNTHETIC DATA AND COMPARISON
WITH THE AVAILABLE OBSERVATIONS

4.1. Testing the Parameter Dependence of the Results

Before we present of our final results, we describe the
most important global trends found when changing principal
parameters. This helps better understand the problems and the
parameter dependencies.

First, we consider separately runs with particles of a different
size D and observe how they potentially contribute to the NT
source. Figure 5 shows the synthetic population of NT particles
for D = 200 um when no limiting cutoff of the ionization
factor I is assumed (i.e., I, = 0). No collisional disruptions
were modeled in this test. This reveals the potential impacting
population of particles from HTCs as if the instrument had
infinite sensitivity and the particles were indestructible (limited
only by the dynamical transport from their ultimate source).
To the zero order, the results match the observed population of
NT particles (Figure 3), including the most prominent feature,
the predominance of particles on orbits with low eccentricities.
This is caused by a combination of the particle-orbits’ ability to
decouple from Jupiter (Section 3.2), and efficient circularization
by PR drag. Since a reasonable SFD would favor small particles
more than large ones, we consider the result to be promising.
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Figure 6. Same as in Figure 5, but now the lower cutoff of the ionization factor / is set to unity (/, = 1). Only a negligible tail population of particles impacting
the Earth satisfy the ionization cutoff criterion / > I,, namely atypical orbits with high e and i values (both implying high impact speeds). Because of required
high-inclination orbits, the radiants are shifted to lower latitudes. None of these features is compatible with the parameters of the observed NT particles (Figure 3).

However, the limited instrument sensitivity—as expressed
here by the minimum ionization factor needed for detection—
complicates these first results. Figure 6 is similar to Figure 5
but now takes into account the 7, = 1 limit. Small masses and
predominantly low impact velocity made most of the particles
contributing to the signal in Figure 5 undetectable with this
ionization factor cutoff. What remains is just the high-speed
tail of particles impacting from retrograde and high-eccentricity
orbits, which are not typical in the population. Moreover,
the signal seen in Figure 6 is now not compatible with the
observations and this leads to a potential problem. If the SFD of
the impacting particles steeply increased toward small sizes (i.e.,
the weighting factor Wy large enough for <200 um particles),
even the tail contribution would corrupt the model. This puts a
severe constraint on the slope 8 of the SFD (see Section 2.1 for
some hints).

Figure 7 shows the same exercise but now for larger particles
with D = 600 um. Their nearly 30 times larger mass makes
them overcome the 7, = 1 cutoff, and all particles are potentially
detected by the CMOR system. It is still very promising that
even the D = 600 um particles decouple from Jupiter for
the most part and circularize their orbits to e < 0.4 values.
Interestingly, the eccentricity range between ~0.5 and ~0.8 is
underpopulated. We believe this is a result of the Kozai—Lidov
effect, which makes eccentricity and inclination oscillate in a
correlated way. The NT zone requires high orbital inclination
values, and this requires the eccentricities to be smaller. Above
e ~ 0.8 the eccentricity distribution again slightly increases,
which is the contribution of the population of particles freshly
released from the parent HTCs and those lately scattered by
Jupiter.

Next, we probe the importance of collisional disruptions of the
particles. Figure 8 shows a simulation for D = 600 pm particles
exceeding the I, = 1 cutoff (as in Figure 7), but now their
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losses due to breakups on the way to the Earth are included. We
consider a nominal collisional model by Steel & Elford (1986),
and also extended particle lifetimes with Fo; = 1 to 10. As
expected, shorter lifetimes do not allow particles to evolve much
from their initial orbits, pushing thus the typical eccentricities to
large values. The inclination values are also discordant with the
observations (being systematically larger), indicating that more
dynamical evolution is needed to extend their range. This is
likely due to scattering by Jupiter and effects of multiple secular
resonances in the intra-Jovian region. Clearly, F, > 10 values
are needed to match the observations (see also a similar results
from Nesvorny et al. 2011b).

4.2. Fitting the Model to the Observations

We now attempt to estimate parameters of the synthetic
model that would best match the selected observations shown in
Figure 3. Before doing so, it is useful to comment on the special
status of the population parameter Ny (Section 3.4, alternately,
the F,, parameter). Having the absolute daily number of
observed meteoroids, we may in principle, estimate the total
population of HTC particles (thus Ny). However, there is a suite
of additional factors which bias the observations, and each of
them may add some uncertainty.

First, we selected data from only a ~1/9 fraction of the
2012 year. The collision probability W, in the synthetic model
normalized estimate is effectively to a year in length, so we
have to account for this selection. Second, there is a visibility
bias of the source zone on the sky as seen by CMOR (e.g.,
Campbell-Brown 2008). Luckily, the northern location of the
NT source means it is nearly always visible from Canada. We
ran a simple simulator of the observations, taking into account
the latitude of the CMOR system, the location of the NT source
on the sky, and Earth’s revolution about the Sun, and found
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Figure 7. Same as in Figure 6, but now for particles of size D = 600 um. The corresponding figure for 7, = 0 looks basically the same, indicating that virtually all
600 pm particle pass the ionization cutoff criterion for their typical impact speed of 30—40 km s~ . The gross features of the distributions are now compatible with the

parameters of the observed NT particles (Figure 3).
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Figure 8. Same as in Figure 7, but now finite collisional lifetime of the particles is also modeled. The black line is for the nominal value of the collisional lifetime as
given by the Steel & Elford (1986) model (i.e., Fcon = 1). The sequence of gray lines assume longer collisional lifetime values than nominal by factors Fion = 1-10

from darker to lighter.

that the NT source region receives ~40% visibility in the time
interval we are using. We also used an actual collecting area for
CMOR taking into account the true gain pattern of CMOR with
mass index equal to 2. Most importantly, CMOR can effectively
collect data from a limited surface area on the Earth (e.g., Brown
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& Jones 1995), while again the particle weighting W, referred
to impacts on the whole Earth surface. We estimate the ratio of
the instantaneous surface area having detectable NT meteoroids
ablating in the atmosphere as seen by CMOR and that of the
Earth to be ~6 x 10”7, where the uncertainty of our estimate
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Figure 9. Comparison of the selected data set of NT meteoroids (gray histograms) with the results of our synthetic model (solid line) for the following set of parameters
(broken power-law SFD model allowed): (a, B, Dmid. Fimp) = (4.7, 1.1,950 um, 1.08), y = 0.0 (comet activity parameter, Equation (4)), and Fcon = 20 (fudge
factor, by which we have to stretch the nominal values of the particle collisional lifetimes). The dark-gray filled histogram shows a difference between the observed
and modeled signal in the particular bin. From this figure on, the semimajor axis a distribution has been replaced with a distribution of 1/a that contains a more

detailed information.

is about an order of magnitude. We also apply a correction for
echo height ceiling effect by multiplying our results by a factor
of 2.5; according to (Section 6.5 in Campbell 2002) the NT
meteors are detected with 35%—40% efficiency. Putting these
factors together, CMOR can see in the spring months selected
only 6.5 x 10~% of the yearly load on the whole Earth. Therefore,
we must apply this factor to recalibrate the fitted Ny parameter
in order to obtain information about the whole population of
HTC particles.

In the course of testing our fitting procedure we also realized
that it is not convenient, nor actually correct, to use semimajor
axis distribution (see, e.g., Figure 3) of the impacting particles
as aequal-weight data set. This is because the information in this
parameter is too concentrated to the few bins around the 1-1.4 au
range, while in other parameters, such as eccentricity, inclination
and impact speed, the information is fairly distributed over a
large range of values and thus data-bins. After experimenting
with the data and model, we decided to fit 1/a rather than a of
the impacting particles (see Figure 9, right and top panels). With
that parameter, equivalent to the heliocentric binding energy, the
information contained in the data expands and the model is, in
fact, tested quite more severely than using simply the semimajor
axis distribution.

We used a numerical code to search a parameter space with the
limits® given in Table 1. As mentioned above, the (o, 8, Dmnid,
Fimp) subspace was efficiently scanned by the Bayesian statis-
tics procedure used by the MultiNest code, while the (y, Feon)
parameters were sampled with steps 0.1 and 5.

% For completeness we mention that we also probed an extended range for the
B parameter down to negative values of —4 and found local minima of the x>
function for negative B values. Here we discard them, though, for lack of
physical justification.
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Table 1
Parameter Range in the Fitting Runs
Parameter Minimum Maximum
o 2.0 5.0
B 0.5 4.0
Dmid 200 p©m 1800 pum
Fimp 0.8 1.2
y 0.0 1.6
Feonl 1 30

Notes. In the case of y and F,) parameters, for which we do not
use the MultiNest search, we sample their values with 0.1 and 5
equal steps. Runs for each F,) value were performed 25 times and
results averaged to avoid flukes.

Our formally best solution with a broken power-law SFD
was for (a, B, Dmid, Fimp) = (4.7, 1.1, 950 pum, 1.08), y = 0.0
and F.n = 20. The match to the data is shown in Figure 9.
Overall, the fit is reasonable, matching the major features
observed for NT meteoroids, there are, however, two major,
and correlated, mismatches: our synthetic model provides an
unobserved population of high-eccentricity and large semimajor
axis orbits. Clearly, this is a population of freshly ejected
particles that has still not evolved far from the HTC source orbits.
Additionally, we find that the results only very weakly depend
on the y parameter but do depend on the Fiq. As discussed
above, values of F.o < 5 yield a synthetic model inconsistent
with the data (Figure 8); F.o; = 10 is needed, while values over
20 provide statistically equivalent results. Finally, our formal fit
has a shallow SFD slope at the small-size end of the spectrum
(i.e., B). The later seems somewhat puzzling, though hints are
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Figure 10. Same as in Figure 9, but now for the data set where all particles with observed heliocentric eccentricity values larger than 0.8 were eliminated. The best-fit
parameters are («, B, Dmid» Fimp) = (4.8, 1.6, 750 um, 1.11), y = 0.3 and Feop = 20.

already contained in the nature of the data set (see Section 2.1),
and it is difficult to get around. The SFD break-point near to
1 mm and its shallow branch below this value has not been
reported in any of the previous analyses.

While a “long collisional lifetime” of the particles is a re-
quired condition of satisfactory fits, we shall now test the sen-
sitivity of the results with regards to two effects: (1) “selective-
subjective” removal of the possibly undetected high-eccentricity
orbits, and (2) necessity of the broken power-law SFD.

First, we note that the highest-speed particles are subject to
more bias in the CMOR observations than the lower-speed par-
ticles (Section 6.5 in Campbell 2002). It may thus happen, that
the “missing population” of the toroidal particles in the CMOR
data, that we would predict from our synthetic model in Figure 9
(i.e., large-a and large-e heliocentric orbits), were removed (or
were not detected) in the CMOR data and are not thus present in
our final data set. To test this possibility, we rerun our fit on the
data, where we artificially discarded all data with heliocentric
eccentricity larger than 0.8 (where the data and models start
to diverge in Figure 9). By doing this we obtained the results
shown in Figure 10. The quality of fit improved, except for a
small mismatch in the inclination fit (more lower-inclination
particles predicted than observed and vice versa). From this test
we conclude that the e > (.8 particles may be incompletely
detected, since the model otherwise fits the data well.

Now, we examine how much we can relax the shallowness
of the particle SFD for small particles before the fit becomes
worse. To that end we force the SFD be a single-slope power-law
distribution with the exponent « in the range 1-5. Obviously,
in this attempt we do not have the break-point size Dp;q and
the only fitted parameters, except for y and F, are (o, Fimp)
(the latter again standing for Np). We used the CMOR data
set where all particles with e > 0.8 were excluded as above.
The best-fit model, («, Fimp) = (2.1, 1.11) with y = 0 and
Feon = 20, is formally worse in terms of %2 value than with
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the broken power-law SFD, but the visual check of the results
we performed indicated no substantial differences. The top two
panels in Figure 11 show the posterior distribution in Bayesian
statistics of the a and Fjy,, parameters as determined by the
MultiNest code. We also note the lack of correlation of the two
parameters. Even when forcing « to be closer to a more realistic
value between ~(2.8-3), we still get visually acceptable, though
statistically worse fits. We recall that, given the simple nature
of our treatment of the CMOR biases (such as a more complete
understanding of the detection probability as a function of
the ionization factor 7 and a complete treatment of the radar
response function), a nominally statistically imperfect data fit
may still be physically quite acceptable.

4.2.1. Total Mass of the Particle Population

With the population parameters estimated, we can now
evaluate several interesting quantities. For instance, having the
calibrated SFD parameters (Ny, «, B8, Dniq) available, we can
evaluate the total mass M, of the particles in the (Dmin, Dmax)
range as (assuming both o and 8 smaller than 4)

_ N o a — /3 Dmid
Mmax

4—a
- 4—a[1_ 4—B (Dma)
) Ge) ]
. (13)

- 4— ,B Dmax Dmid

We have assumed both « and 8 are smaller than a critical value
of 4, and introduced mass My.x = nprmX /6 of the largest
particles with size Dp,x and bulk density p. Obviously, we may
only expect to get an order of magnitude estimate because of
several factors. First, the obtained parameters (No, o, 8, Dmid)
have large, and not fully established, uncertainties. Second, for
slope exponents sufficiently smaller than 4, the largest particles
dominate the mass, hence My ~ MmaxNy/(4 — o). However,

Mo
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Figure 11. Posterior distribution of four parameters used in our model. Panels in the upper two lines show the fitted parameters o (SFD slope, top) and Fimp (population
fudge factor, second line), with fixed values of y = 0 and Fcoin = 20. Histograms in the outer plots show a distribution of statistically equivalent solutions, while the plot
inside the triangular structure show projection of these solutions onto a two-dimensional planes of two selected parameters, where levels of gray scale represent density
of solutions. This representation helps to understand possible correlations between the parameters. The bottom two rows show computed (using Equations (13)—(17)),
not fitted, parameters discussed in Sections 4.2.1 and 4.2.2: (1) estimated mass M, of the steady-state HTC particle population in the interplanetary space within the
fitted range (Din. Dmax) = (200 um, 3 mm) (in 10'7 kg; third row), and (2) estimated cross-section X (<5au) of the steady-state HTC particle population in the
interplanetary space within the 5 au heliocentric distance (in 10'! km?; bottom row).

these particles only weakly contributed to the model fit because
of their small number. On the other hand, this approximation
shows that the break-point location Dy,iq and the slope exponent
B at smaller sizes only weakly influence the estimated mass
M. This is well understood, because for shallow SFDs, the
largest particles and the local slope of the SFD dominate the
mass determination.

Since our formal solutions also admit @ > 4, we give here
the population mass in this case (still assuming g < 4):

Mtol _ NDI (Dmax>a_l |:Ol—ﬂ
Mmia o —4 \ Dnmig 4-p

(Dmid>ot4 a—4 (Dmin>4ﬂ] (14)
Dmax 4— /3 Dmid '
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with the mass of particles at the SFD break-point size now
Mpiqa = erDfnid/6 (obviously, the scaling uses the mass of the
particles dominating the total mass of the population). The case
a = 4 would have to be treated separately, but we do not give
the result here because of its singular nature in the o parameter
solution.

Running formulas (13) and (14) through our solutions, we
obtain M, >~ (3-50) x 10'7 kg in our fitted particle size range
between 200 um and 3 mm. The third-row panel in Figure 11
gives the computed values of My in the case where we fitted a
single-slope power-law SFD. We note M, is anti-correlated
with the slope parameter o, such that steeper-slope SFDs
would yield smaller total particle mass My. This is easily
understood because of by conservation of the number of
impacting particles at the Earth.
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With this order-of-magnitude estimate of HTC particle mass
in interplanetary space, we can now attempt to constrain the
long-term mass flux from HTCs needed to sustain the assumed
steady-state population (for concepts of the flux computation
see, e.g., Bottke et al. 2002, Section 4.3.1). Assuming a quasi-
exponential decay of the population in our integrations with a
characteristic timescale of T >~ 2 Myr (Section 3.2), we need an
average flux of

o Mo

~ (1.3-25) x 10" kgyr ', (15)
about an order of magnitude smaller than the mass influx
estimated for the JFC population by Nesvorny et al. (2011a).
This finding seems justifiable, since Nesvorny et al. (2010)
found from the analysis of IRAS infrared observations of the
zodiacal cloud that HTCs contribute about an order of magnitude
less than JFCs at most. Similarly, the orbit-averaged activity of
large HTCs is estimated to be ~(1-5) x 10° kg yr! (e.g.,
Hughes 1985; Jenniskens 2002). A steady-state population of
several tens to a hundred of such comets would, in the long term,
feed interplanetary space with sufficient dust for our findings.
Additionally, modeling of direct dust detections beyond Jupiter
requires a contribution from HTCs of about the same order
of magnitude (e.g., Landgraf et al. 2002). These independent
studies support our results and validate our approach.

4.2.2. Total Cross-section of the Particle Population

In a similar way, we may also estimate the total cross-section
of the HTC-released population of particles in space. Assuming
a particular case of « > 3 and 8 < 3, we obtain

Dmax

a—1
Ot—3<Dmid> |:3—/3
Dmid>a_3 a—3

3-p
_(Dmax _3_:3 ( > ] ’ (16)

where we have introduced X, = frDrzInid /4, the cross-section
of the particles at the break-point of the SFD. The assumed
arrangement of the slope indexes for D > Dpjg and D <
Dpig makes these particles dominate the total cross-section.
In fact, an order of magnitude estimate is given by Xy ~
ZmidNo(Dmax/Dmia)? ™' /(@ — 3), and it is weakly sensitive to
both extreme sizes, Dpin and Dy« in the spectrum.

Again, we formally need a total cross-section solution for
o < 3 (with 8 < 3), which reads

z“tOt

Znid

Ny oa—pB

D min
D mid

2:tot — Ny 1— o — ﬂ Duia e (17)
z:max 3—«a 3- ﬂ Dmax
3—«a (Dmid )3—01 (Dmin>3_ﬂi|
3 — ﬂ Dmax Dmid '
with Z = 7wD2, /4. The critical value case @ = 3 is

effectively not needed.

To compare our result to Nesvorny et al. (2010, 2011a) we
also restricted the cross-section analysis to the population of
particles with a heliocentric distance <5 au. For that purpose
we went through the record of steady-state particle orbits used
in our fitting procedure, and for each of them, evaluated a
fraction of the orbit where the heliocentric distance was <5
au, and applied this factor to each individual orbit with an
appropriate weight with which it contributes to the whole
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population. With that scheme our fitted particle populations
provided T (< Sau) ~ (0.03-0.25) x 10" km?, which is 1-2
orders of magnitude less compared to JFCs (Nesvorny et al.
2011a). The last-row panel in Figure 11 gives X (< Sau) in the
fitting run with a single-slope SFD model.

4.3. HTC Contribution to Other Radiant Source Regions

So far, we have focused on the contribution of the HTC
particles to the NT zone. However, these particles do not
impact the Earth only in this radiant zone on the sky; rather,
they contribute to other zones as well. Having calibrated our
model, we can now estimate the contribution of HTC particles
elsewhere.

Ithas long been suggested that the particles whose radiants are
arranged in arc (or ring) structures at about 50° angular distance
from the apex direction are related to the toroidal source (e.g.,
Wiegert 2008; Wiegert et al. 2009; Campbell-Brown & Wiegert
2009; Brown et al. 2010). These authors also noted that the
structure is formed with the help of the Kozai-Lidov mechanism
perturbing heliocentric orbits of the impacting particles. Indeed,
assuming the Earth heliocentric orbit has zero eccentricity (and
unitary radius) and denoting with § the angular distance from
the apex of a radiant for an impacting particle, we have

1 — 4/ac
V3=T(a, o)

Here, we define ¢ = cosi~/1 —e? and T(a,c) = (1/a) +
2./a c with a, e and i being the heliocentric semimajor axis,
eccentricity and inclination of the impacting particle orbit. Note
that both ¢ and T are conserved parameters of the Kozai—Lidov
model (e.g., Kozai 1962). Obviously, a given orbit intersects
the Earth at only a specific (and finite in number) radiants,
but considering a set of orbits with slightly evolving a and ¢
values, such as by the PR drag, the radiants will fill an arc
structure characterized by a limited range of § values.” Because
the impact speed at infinity V = /3 — T(a, c) is also nearly
Kozai-Lidov-preserved, the observed impact speeds for the arc-
radiant orbits are expected to be close to those observed in the
NT source region. On the other hand, the individual orbital
elements, especially eccentricity and inclination, undergo large
variations and they are expected to have different distributions.

We have plotted the radiant distribution for all our modeled
HTC particles and found a significant part of them populates the
arc structure. Our model arc ensemble ranges from apex angular
distances between § >~ 55° and about § >~ 65° bf (left panel in
Figure 12), and is in a good agreement with all-sky observations
made by CMOR in 2012 for solar longitudes between 50°-90°
(right panel in Figure 12). Summarized all-sky observations
were presented for instance, in Campbell-Brown (2008; see
also Campbell-Brown & Wiegert 2009; Brown et al. 2010). We
find that the depletion for § smaller than our minimum value,
described by Campbell-Brown (2008) as the depleted ring, is
also due to the Kozai-Lidov mechanism. Equation (18) indicates
that polar orbits with semimajor axis values between 1 and 2 au,
which are most likely to hit the Earth, would have their radiants
at =~ (45°-50°). However, these orbits are efficiently eliminated
from our simulations en route to the inner solar system because

coséd =

(18)

7 We note that the Wyatt & Whipple (1950) integral for PR-evolving orbits
implies that for a small ¢ value a leading order relation reads a o ¢~2. This
means that § changes only very moderately even if the orbits undergo large
evolution driven by the PR drag.
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Figure 12. Distribution of radiant positions of our modeled population of micrometeoroids released from HTCs (left panel) and distribution of radiant positions of
CMOR 2012 observations restricted to 50°-90° solar longitude (right panel); ecliptic longitude measured from the apex direction at the abscissa and ecliptic latitude
at the ordinate. Gray-scale corresponds to the synthetic/observed particle flux. The oval zone centered at 57° ecliptic latitude indicates the NT region. We used our
visibility simulator to compute a fraction of the year by which each of the latitude—longitude bin is observable from CMOR. This coefficient has been used to multiply
the synthetic particle flux in each of the bins. The bottom solid curve delimits sky region that is not visible from CMOR at any time.

their perihelia would become too close to the Sun. In this way,
our explanation for the depleted ring is mainly of a dynamical,
rather than collisional, origin (see Campbell-Brown 2008). The
few orbits whose radiants are seen in the zone of the depleted
ring are prograde in nature and have mainly semimajor axis
values smaller than 1 au and small eccentricities. They represent
an unusual end-state, not efficiently fed by any evolutionary path
and, obviously, they also have short collisional lifetimes. This is,
however, only a secondary aspect of the depletion, the primary
being dynamical origin.

While the impact speed distribution of arc orbits resembles
that of the NT orbits (Figure 3), we see very different e and
i distributions: (1) the median inclination is ~45° and extends
from nearly zero to ~110°, and (2) the eccentricity distribution
steadily increases to a value of ~0.8-0.9. The latter confirms
our previous finding that very low e values in the NT source
are the result of a selection effect: NT radiants simply require
high inclination and the Kozai—Lidov dynamics then makes the
eccentricity small. When the radiant-location is relaxed from
the NT zone, the arc orbits have inclination distribution similar to
the HTC orbits, with only slight preference for lower inclinations
because of the higher collision probability with the Earth. The
lower latitude radiants imply higher eccentricity values (e.g.,
Vokrouhlicky et al. 2012).

We find that the HTC-released particles also contribute to
the apex sources. Having § < 30°, they require predominantly
retrograde or high eccentricity orbits. The first represents a
minority of cases among our starting conditions for HTC-
released dust particles, but retrograde orbits may be produced
during their orbital evolution by scattering off Jupiter and/or the
effects of secular resonances. With their larger impact speeds
(median value ~55 km s~! and a tail up to 70 km s~ 1), the apex
zone may see somewhat smaller particles than the NT zone.
For instance, we find that particles between 100 and 200 um
contribute to the apex, while their input into the NT zone was
negligible (Figure 1). For this reason it is problematic to use our
calibrated population of the HTC particles and compute their
exact flux at the apex zone (unless an uncertain extrapolation
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to smaller sizes is used). Since the impact speed, semimajor
axis, eccentricity and inclination distributions from our 100 and
200 um synthetic population resembles closely the observed
data (see, e.g., Campbell-Brown 2008), we find it promising
that our model predicts the HTC particles are contributors to
the apex zone too. Additionally, our simulations show that the
average strength of the apex source is ~5 to ~15 times larger
than the NT source and depends, among other factors, also on
the y exponent of the cometary dust production function (4).
Since the NT signal is largely insensitive to y, further work on
how the HTC dust contributes both in NT and apex sources may
help in refining our model. Re-evaluation of the relative weight
at which this dust component and dust from new (Oort cloud)
comets contribute at apex (as advocated by Nesvorny et al.
2011b), however, needs a separate, dedicated study. It would
be advantageous to combine CMOR data with other radars that
have different limiting sensitivity for instance the AMOR system
(e.g., Galligan & Baggaley 2005) or the MU system (e.g., Kero
etal. 2012).

4.4. Contribution to IR Flux of the Zodiacal Cloud

Nesvorny et al. (2010, 2011a) have calibrated the zodiacal
cloud parameters using a combination of a dynamical model and
infrared measurements from the /RAS spacecraft. In particular,
they found that the total cross-section of the cloud inside
Jupiter’s orbit (heliocentric distances <5 au) is ~ (1-2) x
10" km?, with the dominant contribution from particles in the
100-200 um size range. This is because they also used a broken
power-law SFD with a Dy,iq value in this size interval.

Nesvorny et al. (2010) also included a model of the HTC dust
contribution in the zodiacal cloud. Their HTC model, though
somewhat simpler, was comparable to ours. They estimated that
HTC dust contributes less than 10% in the quoted total cross-
section. Because it is calibrated by an entirely different data set,
it is interesting to check our solution for the HTC dust yields
with their constraints. Note that this comparison is somewhat
problematic, because out data are insensitive to the smallest
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possible sizes contributing to the zodiacal cross-section. If
anything, the cross-sectional estimate from our population must
be even smaller than the mentioned 10% value.

In Section 4.2.2 we determined that our HTC particle
populations that generally match the toroidal source provide
Tot(<5au) 2~ (0.03-0.25) x 10" km?. This is indeed at most
10% of the JFC particle population cross-section found by
Nesvorny et al. (2010). Hence our HTC particles should not
cause a conflict in fitting the /RAS infrared measurements by
providing inconsistently large cross-sections that would flatten
latitudinal profiles of IR emission measured by /RAS. A more
detailed modeling of the HTC dust contribution to the thermal
emission of the zodiacal cloud is left for future work.

5. DISCUSSION AND CONCLUSIONS

We have shown that the steady-state population of toroidal
meteoroids as observed by the CMOR radar is likely provided
by the activity or breakups of HTCs. The model provides
a constraint on several parameters, such as the mean comet
activity in relation to the perihelion distance and parameters of
the particle size distribution at the source in the ~200 pum-—
~3 mm size range.

A stronger constraint is imposed on the collisional lifetime
of particles in the millimeter size range. In order to dynamically
transport particles to the vicinity of the Earth, we find that our
model requires a longer lifetime than predicted by standard
models (e.g., Griin et al. 1985). We think there are several
possibilities to explain this difference. For example, we do not
take into account fragments from collisional disruptions of the
particles on their way toward the inner parts of the solar system.
The resulting collisional cascade may effectively extend the
lifetimes of their parent particles.

Another possible solution is to accelerate the dynamical
evolution of the particle orbits. For instance, we assumed particle
bulk density of 2 g cm ™3, but if the cometary dust has a lower
value the orbits would evolve faster. It is also possible that
a more in-depth analysis of the solar wind interaction with
microscopic particles at large heliocentric distances may exceed
this canonical value and contribute thus to faster orbital decay.

Finally, we note that several measurements of the lifetime
of cosmic spherules and interplanetary dust particles (e.g.,
Raisbeck & Yiou 1989; Olinger et al. 1990; Nishiizumi et al.
1991; Pepin et al. 2001; Kehm et al. 2006) suggest the ultimate
resolution to this dilemma may simply be that meteoroid
collisional lifetimes are longer than previously assumed. Some
of the residual mismatches between the observed data and
our model may also originate in our ability to describe the
detection limits of the radar system. In this work, similar
to previous workers, we used the simple ionization factor /
defined in Equation (1) to characterize the detectability of the
modeled impacting particles. This captures the most important
features, such as the particle’s ability to ionize the atmospheric
constituents, but may disregard others. Most importantly, we
suspect that the instantaneous change from non-detectability
to detectability at a single value I, = 1 is too simplified. In
reality, there should be a range of 7 values about this critical
limit where a particle detection should be a probabilistic event
with the probability slowly increasing from zero (at small
D) to unity (at large I). We believe that having the ability
to properly model this feature would also improve fits with
single power-law SFD, since the SFD break and small 8 values
formally found in Section 4.2 is just another face of the same
problem. Additionally, the need to disregard high-eccentricity
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orbits (e > 0.8) in our best fits is likely related to preferential
rejection of those inputs from the data set.

Our next efforts will focus on two projects related to this
work. First, we shall analyze the time-variable component in the
NT source (Figure 2) searching for possible individual sources
(if they still exist and are known in our catalogs). The prime
candidate for some, but not all, is the activity of the peculiar
comet 96P/Machholz and the complex of related objects (e.g.,
Sekanina & Chodas 2005). Second, the results of this paper
motivate us to revisit dynamical modeling of the origin of apex
source particles. Nesvorny et al. (201 1b) found that dustreleased
from new (Oort cloud) comets may contribute to this region.
Unsurprisingly, we find that this is so for the dust released from
HTCs as well. The exact proportion of these two potentially
contributing source populations of dust is, however, yet to be
determined.
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APPENDIX
PRELIMINARY ANALYSIS OF CMOR DATA SET

In order to gain more understanding of the data, and to set
the stage for construction of the full model in Section 3, we
additionally performed the following simple test. We randomly
sampled the NT radiant sky zone and associated with it an
impacting particle with a speed modeled by a Gaussian dis-
tribution (no correlation between the radiant and the impact
speed was assumed). The Gaussian distribution was character-
ized with two parameters, namely, (1) a mean value V;, and
(2) a standard deviation §V,. Having chosen the radiant and
impact speed, we easily obtain the necessary heliocentric or-
bital elements for computation of the related impact probability
Peon of this synthetic impactor (e.g., Vokrouhlicky et al. 2012).
Next we characterized the impactor population with a broken
power-law SFD described in Section 3.4 below in the size range
(Dmin, Dmax) = (200, 3000) wm. This brings another three pa-
rameters, notably (1) size Dpmig € (Dmin, Dmax) at which the
power-law index changes, and (2) power-law indexes « and 8 of
the two slopes (parameter Ny from SFD definition in Section 3.4
is fixed by the absolute number 3550 of selected background-
population NT particles). With this simple model we fit (1) the
observed velocity distribution from Figure 3, and (2) the ob-
served size distribution of the NT-impacting particles (note that
this is different from the SFD fitting in Section 3 where we con-
sider parameters at the source rather than those of the impacting
population on the Earth). In fact, the latter was computed from
the reported mass distribution using a constant bulk density of
2 g cm 3. Obviously, the (Vg, §V,) adjustment basically follows
from the velocity-distribution fit and (Dmig, @, B) adjustment
basically follows from the size distribution fit, but the fitting
procedure is not uncorrelated. This is because we only accept
particles that could have been detected by CMOR, by constrain-
ing the ionization factor 7 of the impacting synthetic particle to
be higher than the 7, limit described above.
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Figure 13. Results from a simple, five-parameter fitting analysis described in Section 2.1: gray histograms are for 3550 observed particles from the background
population of NT particles, black line is the adjusted model. Left panels show the fitted data, size distribution of the particles (top), and geocentric impact speed
(bottom). Both are matched very well by the model. The top right panel shows a comparison of the data and the model for the ionization factor I; here a slight mismatch
is seen at low 7 values. The bottom right panel shows the observed particles (black symbols) and modeled particles (gray symbols) projected onto the size vs. velocity

plane.

The results are shown in Figure 13. Unsurprisingly, the
velocity fit is fairly good with only a small mismatch due
to a large-velocity tail in the observed distribution (related to
a small contribution of retrograde impactors from Figure 3).
The adjusted values read V, = 31.8 0.3 km s~! and 8V, =
9.240.3 km s~'. The fit of the observed size distribution is also
rather good (the normalized x? parameter from Equation (12)
is ~0.8). The formal solution of the adjusted parameters is
Dpig = (750 £20) pum, ¢ =3.0£ 0.1 and B = 1.0 £ 0.2. Of
these values, only o matches the expected value (see references
in Section 3.4), while the value § is quite shallow and the
break-point at ~750 um has not been reported in the literature.
Recall that the observed-population SFD maps to the source-
population SFD in a non-trivial way due to size-dependent
dynamical (PR drag) and physical (collisional lifetime) effects.
However, understanding of some elements of the model may not
be entirely correct, as indicated by the poor match between the
distribution of the observed and modeled ionization factor (top
left panel on Figure 13). This may be due to an unmodeled
correlation between the radiant position and impact speed
(which is, however, not strongly seen in the data). The problem
may, however, also be deeper and indicate that (1) either the
ionization factor from (1) is just too simplified, and does not
accurately capture all the fine details of particle detections, or
(2) the sharp transition from non-detected to detected particles
as I crosses the critical value I, = 1 is unrealistic. The latter
issue (2) is an especially important factor in our opinion. In
fact, there should be some interval of ionization factor values,
say between 1 and 3-5, where particles are detected with a
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probability smaller than unity (increasing toward the larger /
values). This may well explain why we are forced to assume the
shallow distribution below the break-point D4 in our simple
test. However, at this moment we do not have available an in-
depth analysis of detection efficiency as a function of 7 near the
critical value I,, nor areplacement of / with another quantity that
would more realistically capture the particle detectability. With
such warnings we thus proceed toward the full numerical model
for the background population of the NT particles. We should
note, that the break-point may be related to the simplified nature
of the mass determination, in particular in the intermediate
scattering region between underdense and overdense echoes
that are treated as a step function rather than through a full-
wave model approach such as Poulter & Baggaley (1978).
Refinements in the radar mass scale in future may change the
results, but the general mechanics of our model should not be
significantly affected.
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