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Supervisor: PhDr. Jozef Baruńık, Ph.D.
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Abstract

Most of the literature on Value at Risk concentrates on the unconditional non-

parametric or parametric approach to VaR estimation and much less on the

direct modeling of conditional quantiles. This thesis focuses on the direct condi-

tional VaR modeling, using the flexible quantile regression and hence imposing

no restrictions on the return distribution. We apply semiparametric Condi-

tional Autoregressive Value at Risk (CAViaR) models that allow time-variation

of the conditional distribution of returns and also different time-variation for

different quantiles on four stock price indices: Czech PX, Hungarian BUX,

German DAX and U.S. S&P 500. The objective is to investigate how the

introduction of dynamics impacts VaR accuracy. The main contribution lies

firstly in the primary application of this approach on Central European stock

market and secondly in the fact that we investigate the impact on VaR accuracy

during the pre-crisis period and also the period covering the global financial

crisis. Our results show that CAViaR models perform very well in describing

the evolution of the quantiles, both in absolute terms and relative to the bench-

mark parametric models. Not only do they provide generally a better fit, they

are also able to produce accurate forecasts. CAViaR models may be therefore

used as a suitable tool for VaR estimation in practical risk management.
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Abstrakt

Prevažná čast’ literatúry na tému Value at Risk (VaR) sa zameriava na nepod-

mienené neparametrické alebo parametrické pŕıstupy k jeho odhadovaniu, ovel’a

menšia čast’ na priame modelovanie podmienených kvantilov. Táto práca sa

sústred’uje na priame modelovanie podmieneného VaRu, za pomoci flexibilnej

kvantilovej regresie, a teda nekladie žiadne obmedzenia na rozdelenie výnosov.

Na štyri cenové indexy, a to český PX, mad’arský BUX, nemecký DAX a am-

erický S&P 500, aplikujeme semiparametrické podmienené autoregresné Value

at Risk (CAViaR) modely, ktoré umožňujú variáciu podmieneného rozdelenia

výnosov v čase a takisto rôznu časovú variáciu pre rôzne kvantily. Hlavným

ciel’om práce je skúmat’ ako zavedenie dynamiky ovplyvňuje presnost’ VaR

odhadov. Hlavný pŕınos práce spoč́ıva v tom, že sa jedná o prvú aplikáciu

tohto pŕıstupu na stredoeurópsky akciový trh a po druhé, že skúmame vplyv

na presnost’ VaR odhadov v obdob́ı pred kŕızou, a takisto počas kŕızy. Výsledky

dokazujú, že CAViaR modely vel’mi dobre popisujú vývoj kvantilov v čase, či už

z hl’adiska absolútneho alebo relat́ıvneho v porovnańı s parametrickými mod-

elmi. Nielen že poskytujú všeobecne lepšie odhady, ale prinášajú aj presné pred-

povede. Tieto modely preto môžu slúžit’ ako vhodný nástroj na odhadovanie

VaRu pri praktickom riadeńı riźık.

Klasifikace JEL C14, C22, C52, G11, G17

Kĺıčová slova VaR, GARCH, CAViaR, podmienené
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Chapter 1

Introduction

Financial institutions are exposed to various kinds of risk that reflect the level

of uncertainty regarding the future returns. In this thesis we concentrate on

the market risk, which represents the potential loss due to unexpected price

movements and changes in market conditions, hence significant especially for

traders. Substantial increase in financial uncertainty in the 1990s has led to

intensive study of price volatility (as a measure of riskiness) in the stock markets

and search for precise and more efficient tools for its estimation. Also recent

global financial crisis of 2008/2009 has stressed that effective risk management

and accurate risk measures are of great importance for financial institutions,

as these are used for their key decisions and should therefore respond properly

to the changing nature of risks and overall market development.

The exposure to market risk is measured by Value at Risk (VaR), which has

become a standard tool among risk managers, financial analysts and regulators,

such as the Basel Committee on Banking Supervision via The Basel II Accord.

VaR represents the potential loss in the asset or portfolio value over a given

time horizon, for a given confidence level. It was pioneered by J.P. Morgan in

1996 as the RiskMetrics system and has gained on popularity mostly due to its

simple concept. Various methods have been since developed for its calculation.

Most of the literature focuses either on the methods that model VaR in an un-

conditional sense or parametric (location-scale) methods that retrieve VaR from

conditional volatility forecasts. Even though the latter model the volatility con-

ditionally and hence capture the phenomenon of volatility clustering, they are

restricted to a certain distribution of return innovations that is not assumed to

be changing over time, which is their main drawback. These methods involve

mostly the well-known generalized autoregressive conditional heteroskedastic
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(GARCH) volatility models of Engle (1982) and Bollerslev (1986) with various

error distributions and their subsequent modifications and have been in fact

widely applied in the sense of VaR estimation among researchers, for example

by Angelidis et al. (2004), Kuester et al. (2006), Bams et al. (2005) or Mittnik

et al. (2000). However, much less literature concentrates on the direct modeling

of conditional quantiles. This is actually crucial, since VaR represents a par-

ticular quantile of future portfolio returns conditional on current information.

Inspired by the stylized facts about financial return data and the changing

nature of return distributions, semiparametric methods based on the flexible

quantile regression (see Koenker & Bassett (1978), Chernozhukov & Umantsev

(2001)) have been proposed, such as Conditional Autoregressive Value at Risk

(CAViaR) of Engle & Manganelli (2004) and its recent extensions of Jeon &

Taylor (2013), Gerlach et al. (2011) or Chen et al. (2012). This approach is

very attractive since it aims to derive VaR directly, imposes no distributional

restrictions and hence allows time-variation of the conditional return distribu-

tion and also different time-variation for different quantiles.

The objective of this thesis is to investigate how the introduction of dy-

namics to VaR estimation using the quantile regression impacts VaR accuracy.

We apply semiparametric Conditional Autoregressive Value at Risk (CAViaR)

of Engle & Manganelli (2004) and model conditional quantiles directly on four

stock price indices: Czech PX, Hungarian BUX, German DAX and U.S. S&P

500. Few empirical applications of this method focus mainly on American and

Asian stock markets. In this respect, our first contribution to the existent liter-

ature lies in the application of this approach on Central European stock market

indices. To the best of our knowledge, this study presents the primary results

for this region. Another contribution lies in the fact that we investigate the

impact on VaR accuracy during the pre-crisis period and also the period cov-

ering the global financial crisis. In our empirical analysis, we also compare this

approach to the parametric GARCH approach that serves as the benchmark.

Our results for four stock price indices between January 2003 and December

2012 suggest that the dynamic approach seems to improve VaR accuracy. As

a group, CAViaR models perform very well in describing the evolution of the

quantiles, both in absolute terms and relative to the benchmark parametric

models. On one hand, they generally provide a better fit, also further in the

left tail and even in the crisis period, and on the other hand are able to produce

accurate forecasts as well.

The rest of the thesis is structured as follows. Chapter 2 provides an
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overview of Value at Risk concept and various approaches to its calculation,

their advantages and shortcomings. Chapter 3 introduces CAViaR and de-

scribes its different specifications in detail. Chapter 4 is dedicated to the fore-

cast evaluation and backtesting methods. In Chapter 5 we present an empiri-

cal application of GARCH and CAViaR models with the summary of results.

Chapter 6 concludes.



Chapter 2

Value at Risk

Starting with the theory of Value at Risk (VaR), in this chapter we first pro-

vide the reader with its basic notion from practical and statistical point of

view. Further, we continue with approaches to its calculation and describe in

detail those commonly used, pointing at their advantages as well as limita-

tions. Finally, we present briefly several shortcomings of VaR in general as a

risk measure.

Foundations of the Value at Risk approach as a measurement of market

risk go back to 1990s. This concept, which is very easily understood and

implemented in practice, was developed to evaluate the cost of positions in

terms of risk and therefore enable managament of many financial institutions

to allocate the underlying risk effectively. It serves not only financial and

risk managers, but also regulators. As a part of The Basel II Accord, VaR

methodology is used by the Basel Committee on Banking Supervision (1996)

at the Bank for International Settlements for capital requirements of various

financial institutions and investment firms in order to cover their exposures to

market risk. The objective is clear: estimate the underlying risk as precisely

as possible in order to avoid maintaining too high or low levels of capital,

which could eventually lead to very inaccurate investment or other decisions.

Both underestimation or overestimation of the underlying risk could potentially

result in substantial losses, whereas in case of the latter the loss refers to the

opportunity costs, to be more precise. VaR was first implemented by Morgan

Corporation in 1996, known as RiskMetrics system.

Jorion (1996) formally defines VaR as ‘the worst expected loss over a target

horizon within a given confidence interval’. Nice feature of this measure is that

the information about the exposure to risk and the associated probability is
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summarized in just a single number, which is expressed in the same units as the

bottom line (for example returns on indices, commodities or foreign exchange

rates).

We want to find VaR such that

Pr (yt < −V aRt|Ft) = α, (2.1)

where yt denotes return of an asset or portfolio at time t = 1, . . . , T , Ft rep-

resents the information set available at time t and α is the probability level

referring to the risk.1 The purpose of VaR measure is to define an upper bound

on losses, thus forecast a value each period that will be exceeded with only a

small probability α, which is usually 1 % or 5 %.

From statistical point of view, VaR is understood as a particular quantile

of future portfolio returns conditional on current information. Formally, given

some probability α ∈ (0, 1) and conditional on the information available at

time t, VaR for time t + h at confidence level 1 − α is defined as the negative

α-quantile of the conditional return distribution, that is

V aRt+h,α = −qα(yt+h|Ft) = − inf {x ∈ R : Pr(yt+h ≤ x|Ft) ≥ α} (2.2)

where q(·) denotes the quantile function (the inverse cumulative distribution

function (CDF) of yt).
2

According to Engle & Manganelli (2004), appropriate method for VaR cal-

culation should fulfil certain features that can be summarized in the following

points:

� providing a formula for V aRt calculation as a function of variables known

at time t− 1

� providing a set of unknown parameters that have to be estimated

� providing a procedure for estimation of these unknown parameters (loss

function and some optimization algorithm)

� providing a test for the estimate evaluation.

Developing a suitable model for VaR forecasting is still an ongoing and very

challenging research. In the further text we go through several approaches to

VaR calculation, as well as their stronger and weaker points.

1The confidence level is therefore 1− α.
2For more rigorous background see for example McNeil et al. (2005).
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2.1 VaR approaches

Since the concept of VaR has become very popular over the last 20 years, it

has also become a subject of intestive research among academics. Thus, there

exist many different approaches for its computation, but there is no universal

method providing perfectly satisfactory results. Despite certain distinctions

between them, accoding to Engle & Manganelli (2001), they all share three

common features: (1) daily marking-to-market of the portfolio, (2) estimating

the distribution of portfolio returns and finally (3) computing the VaR of this

portfolio. The second point here is related to the estimation of possible price

changes of the asset or portfolio and is in fact the reason why there are many

different approches to VaR forecasting. All of these methods are designed to

capture and incorporate some or all of the well known characteristics of finan-

cial data, which have been summarized by Mandelbrot (1963) and Fama (1965).

These include non-normality of return distribution, as returns commonly ex-

hibit heavier tails and higher kurtosis (therefore their distribution is rather

leptokurtic), negative skeweness and significant autocorrelation of squared re-

turns, which results in volatility clustering (volatility of assets evolves over

time, it is stable in the short period, but can change in the long period).

From the extensive literature concentrating on VaR and its calculation

methods, in this thesis we use the classification of the existing VaR models

according to Engle & Manganelli (2001), since they consider also recently de-

veloped and less common methodologies. They divide these methods into three

broad categories:

� Nonparametric methods

� Parametric methods

� Semiparametric methods

We describe each category in the following subsections.

2.1.1 Nonparametric methods

Nonparametric methods involve for example Historical Simulation (HS), Hybrid

model or Monte Carlo simulation. All of these methods are relatively non-

restrictive.

HS is a very common method substantially simplifying VaR calculations as

there are no assumptions about the distribution of the portfolio returns. It is
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based on a simple concept of rolling windows. This means that a window con-

sisting of observations of the most recent periods is chosen and current VaR is

estimated as the quantile of the empirical distribution of historical returns from

this window. By moving the window one observation forward, one obtains VaR

forecast for the following day. Any return within the window is equally likely,

but returns outside this window have zero probability of occuring. Implicit

assumption about the return distribution is that it does not change over time.

Hence, the risk of the portfolio is related to its historical experience. There are

several problems referring to this method. One of them is inconsistency of the

empirical quantile estimator (to be consistent, the size of the window has to go

to infinity). Another one is related to the size (length) of the moving window.

On one hand, the number of observations in the window has to be large enough

to avoid large sampling errors, but on the other hand not too large in order to

adapt accurately to dynamics in the true distribution. By choosing too large

window we risk combining the periods with high and low volatility and con-

sequently obtaining biased VaR estimates. Another issue associated with this

method is the effect of extreme observations. VaR estimates may be jumping

upward whenever a large observation is included in the window and downward

when it drops out of the rolling window. Therefore this method is not cosidered

to provide very reliable results, especially for the extreme quantiles (Engle &

Manganelli (2001)).

To overcome some of these drawbacks, Boudoukh et al. (1998) proposed

the hybrid method, which is basically a combination of historical simulation

and RiskMetrics. In comparison with HS, where each observation has the same

weight, this method applies exponentially declining weights to the past portfolio

returns.

Monte Carlo simulation is a general and very flexible method based on

simulations, widely applicable in finance, but more demanding. To compute

VaR with this method, return processes are simulated according to a certain

type of distribution and VaR is then calculated using a particular quantile from

these simulated processes.

2.1.2 Parametric methods

These include RiskMetrics by J.P.Morgan & Reuters (1996), GARCH models

of Bollerslev (1986), or Stochastic Volatility (SV) methods of Taylor (1986).

The basic intuition behind these models is the parametrization of the behavior
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of prices. This means that we assume a certain type of the distribution of

returns and the model of dynamics (conditional volatility forecast), which are

then employed together to estimate conditional quantiles. The advantage of

the parametric approach is that under each model, this is done simply by

multiplying the estimated standard deviation and a particular quantile of the

error distribution from the corresponding model of dynamics. Formally, the

general formula for the parametric one-step-ahead VaR at confidence level (1−
α) has the following form:

V aRt = µ+
√
htqα(D), (2.3)

where µ is the mean of the distribution D,
√
ht its standard deviation and qα(D)

is the α-quantile of this distribution. When applying all sorts of parametric

models, the task is to estimate
√
ht and then retrieve V aRt at confidence level

1− α.

To compute variance and consequently the standard deviation under Risk-

Metrics approach, Exponentially Weighted Moving Average (EWMA) method

is used. First, we consider series of returns yt for t = 1, ..., T , such that

yt = zt
√
ht zt

iid∼ N(0, 1), (2.4)

where ht is the conditional variance of yt. If the conditional mean of yt is

assumed to be 0, the variance equation is defined as

ht = λht−1 + (1− λ) y2t−1 (2.5)

where λ is usually set to 0.94 for daily data.3 EWMA is a special case of

GARCH. Since GARCH models are a benchmark in our comparative study, we

discuss them separately in more detail in the further text of this chapter.

Focusing on the GARCH type models in the sense of VaR estimation, apart

from the specification of the variance equation, these rely also on the assump-

tion that the errors are i.i.d and require specification of their distribution (such

as Gaussian, Student-t, skewed Student-t or Generalized error distribution).

After choosing a certain type of error distribution it is possible to estimate

the unknown parameters. When applying this approach, several problems may

arise, such as the misspecification of the variance equation or the distribu-

tion used for log-likelihood function, or the fact that the errors may not be

3For more details see J.P.Morgan & Reuters (1996).
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i.i.d. Their performance can be improved by avoiding the assumption about

the normality of errors and employing alternative distributions, which are more

consistent with the empirical findings about the behavior of financial returns.

In general, the normality assumption (in GARCH or RiskMetrics) leads

to underestimation of the risk, as has been shown in vast empirical research.

GARCH type models with various probability distributions in VaR estima-

tion have been applied for example by Angelidis et al. (2004), who find that

leptokurtic distributions provide more accurate one-step-ahead VaR forecasts.

According to Kuester et al. (2006), the performance of parametric VaR may

be considerably improved by employing the skewed Student-t distribution that

accounts for both skeweness and heavier tails. Another empirical applications

involve for example Bams et al. (2005) or Mittnik et al. (2000).

To demonstrate that the choice of the distribution of the standardised resid-

uals is of great importance when estimating VaR parametrically, in this thesis

we consider two different distributions: normal (Gaussian) distribution, which

serves as a benchmark and Student-t distribution, which is more in accord with

the characteristics of financial returns we already discussed. The cumulative

distribution function (CDF) of Student-t distribution has the following form:

D(x) =

∫ x

−∞

Γ
(
ν+1
2

)
Γ
(
ν
2

)√
νπ
(
1 + t2

ν

) ν+1
2

dt, (2.6)

where ν denotes the degrees of freedom - a parameter that describes the heav-

iness of tails and needs to be estimated. Γ(·) denotes the gamma function,

where Γ (ν) =
∫∞
0
xν−1e−xdx for ν > 0.The distribution is symmetric around

zero, bell-shaped and with growing ν approaches the normal distribution with

mean 0 and variance 1.

GARCH models

Now we turn to the description of the well known and very popular approach

to volatility modeling, Generalized Autoregressive Conditional Heteroskedas-

ticity (GARCH), which we apply to obtain volatility forecast in our empirical

research. GARCH model was proposed by Bollerslev (1986) as the extension

of the ARCH process introduced by Engle (1982). As opposed to conventional

econometric models, the ARCH process does not consider a constant condi-

tional variance, but allows the conditional variance to be time-varying (as a

function of past errors), while the unconditional variance remains constant.
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However, based on the empirical evidence, relatively high order of lags in the

conditional variance equation of ARCH(q) process was needed for accurate

variance estimation.4 This led to the search for a model that would have on

one hand reasonable lag structure and on the other hand relatively long mem-

ory. Whereas in the ARCH(q) process the conditional variance is specified

only as a linear function of past sample variances, GARCH models were devel-

oped to consider also the effect of the past conditional variance on the current

conditional variance by using its own lagged values as some sort of ‘adaptive

mechanism’. The extension of the ARCH class models to GARCH type models

corresponds to the extension of an AR process to an ARMA process.

As the name already suggests, GARCH models allow for heteroskedasticity

in the data and enable modeling of changing variance. However, one possible

drawback that is worth mentioning is that the basic GARCH model does not al-

low for leverage effect. This means that both positive and negative returns have

the same effect on volatility, since only the magnitude of return matters, not

the sign. To capture this feature and also other empirically found properties of

the financial data, numerous modifications of the original GARCH model and

the variance equation have been proposed since the pioneering works of Engle

(1982) and Bollerslev (1986). Extensions accounting for the different response

to positive and negative returns and asymmetry in the data include for exam-

ple Threshold GARCH (TGARCH) of Zakoian (1994), Exponential GARCH

(EGARCH) of Nelson (1991) or Non-linear asymmetric GARCH (NGARCH)

of Engle & Ng (1993), whereas Asymmetric power ARCH (A-PARCH) of Ding

et al. (1993) and Fractionally integrated GARCH (FIGARCH) by Baillie et al.

(1996) address also a long memory property of stock market returns.

Having introduced the background of GARCH type models, we now proceed

with the fundamentals of the basic GARCH(p,q) process. Following Bollerslev

(1986), εt denotes a real-valued discrete time stochastic process and Ft denotes

the information available at time t. GARCH(p,q) process is then defined as:

εt =
√
htzt (2.7)

εt|Ft−1 ∼ N(0, ht) (2.8)

ht = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjht−j, (2.9)

4See Bollerslev (1986) for the list of empirical applications.
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where

p ≥ 0, q ≥ 0

α0 > 0, αi ≥ 0, i = 1, . . . , q

βj ≥ 0, j = 1, . . . , p.

In this context, εt represents mean corrected return εt = yt − µ, ht is its con-

ditional variance (positive and time-varying) and zt is assumed to be i.i.d.

random variable. Conditions α0 > 0, αi ≥ 0 for i = 1, ..., q and βj ≥ 0 for

j = 1, ..., p ensure the stationarity of conditional variance.

Restriction
max(p,q)∑
i=1

(αi + βi) < 1 (2.10)

ensures the second-order stationarity of GARCH(p,q) process, which means

that the unconditional variance is finite and the conditional variance ht changes

over time. The conditions for wide-sense stationarity are summarized in the

following proposition:

Proposition 2.1. (Bollerslev (1986)) The GARCH (p,q) process as defined in

(2.7), (2.8) and (2.9) is wide-sense stationary with E (εt) = 0, var (εt) =

α0/(1−
∑max(p,q)

i=1 (αi + βi)) and cov (εt, εs) = 0 for t 6= s iff
∑q

i=1 αi+
∑p

j=1 βj <

1.5

In GARCH(p,q) model, α0, αi and βj are the parameters to be estimated.

If p = 0 we obtain the ARCH(q) process and if also q = 0, εt is white noise.

The restricted version of GARCH(p,q) model, in which
∑max(p,q)

i=1 (αi + βi) = 1,

is known as Integrated GARCH (IGARCH). The restriction property implies

that there is a unit-root in the process indicating that past squared shocks

are persistent. Obviously, Exponentially Weighted Moving Average (EWMA)

model, which we described in Subsection 2.1.2, is a special case of GARCH

model as it corresponds to the Integrated GARCH(1,1).

Estimation of the GARCH regression model

(G)ARCH regression models are often estimated using Maximum Likelihood

Estimator (MLE). Generally, assuming i.i.d. innovations zt with density func-

5For proof see the appendix in the paper of Bollerslev (1986).
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tion D(zt; ν)6, the log-likelihood function of yt(θ) for t = 1, . . . , T has the

following form

lT ({yt} ; θ) =
T∑
t=1

[
ln [D (zt (θ) ; ν)]− 1

2
ln (ht (θ))

]
, (2.11)

where θ is a vector of parameters to be estimated for the conditional mean,

variance and density function, and zt(θ) = εt(θ)√
ht(θ)

. Estimated parameters θ̂

are obtained as a solution to the maximization of the log-likelihood function

given by Equation 2.11 with respect to parameters. As we assume normal and

Student-t distribution in this thesis, we provide the reader with the form of

the log-likelihood function for this particular distributions. For the normal

distribution of zt, the log-likelihood function takes on the form

lT ({yt} ; θ) = −1

2

[
T ln(2π) +

T∑
t=1

z2t +
T∑
t=1

ln(ht)

]
, (2.12)

whereas for the t-distributed zt the log-likelihood function is as follows

lT ({yt} ; θ) = T

[
ln Γ

(
ν + 1

2

)
− ln Γ

(ν
2

)
− 1

2
ln [π (ν − 2)]

]
− 1

2

T∑
t=1

[
ln (ht) + (1 + ν) ln

(
1 +

z2t
ν − 2

)]
.

(2.13)

More details regarding other distributions can be found in Angelidis et al.

(2004).

2.1.3 Semiparametric methods

Semiparametric methods are relatively recently introduced methodology and

include for example applications of Extreme Value Theory (EVT) (see for ex-

ample Danielsson & de Vries (2000)) that concentrates on the tail of the return

distribution, rather than the whole distribution and is generally more suitable

for very low (extreme) probability levels.7 Further, these methods involve also

quasi-maximum likelihood GARCH models (see Bollerslev & Woolridge (1992)

or McNeil & Frey (2000)) and methods based on quantile regression (see Cher-

6While Engle (1982) assumed normal distribution of zt in ARCH(q) process, Bollerslev
(1986) introduced t-distribution with ν > 2 in GARCH(p,q).

7For rigorous review of advantages and disadvantages of EVT see for example Diebold
et al. (1998).
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nozhukov & Umantsev (2001)), such as the CAViAR models proposed by Engle

& Manganelli (2004). As the center point of this thesis is to examine the per-

formance of the CAViaR models, we give them special attention and describe

them in detail in Chapter 4.

2.2 Shortcomings of VaR as a risk measure

Having mentioned several shortcomings of individual methodologies commonly

used for VaR calculation in the previous section, we now briefly mention some

drawbacks of VaR as a risk measure.

These drawbacks are nicely summarized and described for example in Dowd

(2002). We start with the ones that refer not only to VaR individually, but

also to other risk measures in general. Obviously, VaR estimates can often be

subject to errors, which stem especially from relying on inaccurate assumptions

within the models that are implemented for risk calculation, or the implemen-

tation itself, which can result in quite different and imprecise results of similar

models. Turning to those that are characteristic for VaR itself, we continue

with three main drawbacks. The first one is that VaR is uninformative of tail

losses, meaning that it provides information only about the potential expected

loss and the associated probability with which this will not be exceeded (sets

an upper bound on losses), but it does not specify how much we lose (lower

bound), when the violation of VaR (tail event) really occurs. Hence, this may

create a deceptive image about the relative riskiness of various positions with

the same VaR at some confidence level. However, this problem may be pos-

sibly resolved by estimating VaR at various confidence levels, especially high

levels. Another drawback refers to the portfolio diversification. When looking

at VaR, the diversification of risks can be noticeably discouraged, as the VaR

of the diversified portfolio is greater than the VaR of undiversified portfolio. As

pointed out by Artzner et al. (1999), probably the most striking limitation is

that VaR is not a coherent risk measure, since it does not satisfy the property

of sub-additivity. Formally, a risk measure ρ(·) is sub-additive if

ρ(A+B) ≤ ρ(A) + ρ(B), (2.14)

i.e. the risk of the sum of positions A and B is less than or equal to the sum

of the risk of the individual positions alone. This property implies that the

overall risk does not increase when the individual risks are aggregated. This
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is generally desirable for any risk measure, especially because of the reporting

conservatism. A measure with this feature always gives an overestimate of

aggregated risk.

Nevertheless, VaR is still a common and popular measure used in risk man-

agement. We disregard the above mentioned limitations, since the scope of this

thesis is not to assess the suitability of VaR measure as such, but to assess the

accuracy of methodologies developed for its calculation. Moreover, in case of

conditional VaR estimation, which is our main focus, the last drawback does

not concern us. In the further text, we proceed with the theoretical background

of conditional, dynamic approach to VaR modeling.



Chapter 3

CAViaR

Having described widely used methods for VaR estimation in previous chapter,

either in an unconditional sense or with the restriction to a certain distribu-

tion, we now turn to the theoretical framework that imposes no distributional

restrictions and comfortably enables us to model VaR conditionally, since VaR

represents a particular quantile of future portfolio returns conditional on cur-

rent information.

To allow dynamics in the VaR modeling, Engle & Manganelli (2004) propose

a new approach to quantile estimation, the so-called Conditional Autoregressive

Value at Risk (CAViaR). Contrary to the methods that are based on modeling

of the whole distribution and then recovering its quantile, CAViaR aims to

derive the evolution of the quantile directly. This is a very strong point of

these models, as they allow time-variation of the conditional distribution of

returns and also different time-variation for different quantiles. The approach is

inspired by the well known fact that volatilities of market returns exhibit certain

dynamics and clustering over time, meaning that they possess autocorrelated

structure. Since VaR is linked to the standard deviation of the distribution

of returns, it should be designed to follow a similar pattern. To do so, it is

reasonable to use some sort of autoregressive process, for example conditional

autoregressive specification as proposed by Engle & Manganelli (2004), which

we present in the following section.

3.1 CAViaR specifications

Following Engle & Manganelli (2004), we start with several assumptions and

notations: yt denotes return of an asset or portfolio at time t = 1, . . . , T , α
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denotes the probability level associated with VaR, xt a vector of variables ob-

servable at time t (which represent the information set at time t) and θα a vector

of unknown parameters to be estimated. Then the time t α-quantile of the dis-

tribution of returns formed at time t − 1 is denoted as qt (θ) ≡ qt (xt−1, θα).

The α subscript has been dropped for simplicity reasons.

Generally, CAViaR specification is then defined as follows:

qt (θ) = β0 +
s∑
i=1

βiqt−i (θ) +
r+s+1∑
j=s+1

βjl (xt−j), (3.1)

where l is a function of a finite number of lagged values of observable variables

and θ is a vector of βs to be estimated and has the dimension of p = s+ r+ 1.

Vector xt−j is usually chosen as a vector of lagged returns. The second term in

Equation 3.1,
∑s

i=1 βiqt−i (θ), is autoregressive and enables smooth transition

of the quantile over time. Function l (xt−j) is there to tie the quatile qt (θ) to

observable variables in the information set.

The authors suggest that the dependence of VaR on lagged returns |yt−1|
could be symmetrical. That is, if the return yt−1 reaches very negative value,

one could anticipate that the VaR will increase, because the probability of bad

day happening again increases. But on the other hand, very positive returns

could increase VaR as well (as suggested by volatility models).

As the main objective is to specify the l function in various alternatives,

Engle & Manganelli (2004) propose four different CAViaR specifications:

1. Adaptive

qt(θ) = qt−1(θ) + β1
{

[1 + exp (G [yt−1 − qt−1(θ)])]−1 − α
}

(3.2)

2. Symmetric Absolute Value (SAV)

qt(θ) = β0 + β1qt−1(θ) + β2|yt−1| (3.3)

3. Asymmetric Slope (AS)

qt(θ) = β0 + β1qt−1(θ) + β2(yt−1)
+ + β3(yt−1)

− (3.4)

where (yt−1)
+ = ytI(yt ≥ 0) and (yt−1)

− = ytI(yt < 0).
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4. Indirect GARCH(1,1)

qt(θ) = (β0 + β1q
2
t−1(θ) + β2y

2
t−1)

1/2 (3.5)

In Adaptive model, G is a positive finite number and as it approaches

infinity, the last term in Equation 3.2 converges to β1[I(yt−1 ≤ qt−1(θ)) − α],

where I(·) is the indicator function. The idea of this model specification is to

increase VaR immediately as it is exceeded and decrease it moderately in the

cases when it is not exceeded. This leads to the reduction of the probability of

observing sequence of hits, but on the other hand ensures that some hits will

occur. As the authors point out, the model does not distinguish the magnitude

by which VaR is exceeded. When it is exceeded by a large margin, VaR is simply

increased by the same amount as it would be exceeded by a small margin.

The following three models are similar in structure to GARCH models.

In these the coefficient of the lagged VaR is not constrained to equal 1, which

means that they are mean-reverting. As the name already suggests, Symmetric

Absolute Value model responds symmetrically to past returns. On the other

hand, Asymmetric slope model allows for leverage effect of past returns. In

the fourth specification, Indirect GARCH(1,1), the response to past returns

is again symmetrical. This model is correctly specified if the data follow a

true GARCH(1,1) process with i.i.d. errors. Contrary to typical GARCH(1,1),

this model differs in estimation technique. It is not estimated using MLE, but

quantile regression which we describe in Section 3.2. Overall, the important

feature is that compared to GARCH models, CAViaR models are more general

as they may be employed also in the cases when the error distributions are not

i.i.d., or volatilities or error distributions are subject to a change.

Recently, there have been some contributions made in the area of CAViaR

that appear to improve its predictive ability. Jeon & Taylor (2013) extend

these models by utilizing implied volatility, Yu et al. (2010) propose thresh-

old and mixture type indirect-GARCH CAViaR models, while Gerlach et al.

(2011) propose nonlinear threshold CAViaR model. Chen et al. (2012) intro-

duce range-based CAViaR models that incorporate intra-day high-low price

range data. Huang et al. (2010) propose the so called index-exciting CAViAR

model, in which the parameters are allowed to be driven by the market index

return as these are designed as its time-varying functions.

In this thesis, we employ approach of Engle & Manganelli (2004). Similarly

to Huang et al. (2010) or Barunik & Zikes (2013), in our empirical application
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on Central European stock market data we estimate two among four different

CAViaR specifications, Symmetric Absolute Value (SAV) that adapts VaR to

the size of the returns and Asymmetric Slope (AS) that allows also for the

leverage effect of returns.

3.2 Regression quantiles

In this section we focus on the regression quantile framework of Koenker &

Bassett (1978) that is used to estimate the unknown parameters in the CAViaR

models.1 The aim is to minimize the regression quantile loss function as we

proceed to show formally.

Following Engle & Manganelli (2004), we first consider a sample of return

observations yt for t = 1, . . . , T that are generated by the model:

yt = x
′

tθ
0 + εαt Qα(εαt|xt) = 0, (3.6)

where xt is a vector of p regressors and Qα(εαt|xt) is the α-quantile of εαt

conditional on xt. We also define qt(θ) ≡ xtθ. Within this framework, the

α-regression quantile is then determined by any θ̂ that solves the following

minimization problem:

min
θ

1

T

T∑
t=1

[α− I (yt < qt(θ))] [yt − qt(θ)], (3.7)

where I(·) is the indicator function.

Over the years, regression quantile framework has been extended variously.

Some extensions are based on the different assumptions about the errors, for

example Koenker & Bassett (1982) consider heteroskedastic errors, Portnoy

(1991) nonstationary dependent errors. Also, a number of alternative linear

models have been developed, such as time series models, simultaneous equation

models, censored regression models or the most recent autoregressive quantiles.2

Furthermore, there are some extensions regarding the non-linear regression

quantiles, as well as in the context of time series (for example White (1994),

1See Koenker & Bassett (1978) for the extension of a sample quantile concept to a linear
regression model. To see how a linear quantile regression is applied to VaR estimation, we
refer the reader to Chernozhukov & Umantsev (2001).

2See Engle & Manganelli (2004) for the list of the relevant literature.
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who provides proofs that the regression quantile estimates for the i.i.d. and

stationary cases are consistent).

We point out that Engle & Manganelli (2004) consider a non-linear regres-

sion quantile estimator θ̂. The advantage of their regression quantile model is

that there is no need for specification of the whole distribution of the errors,

the only requirement is to specify the quantile process properly. However, the

authors note that even if this specification is not correct, the minimization

procedure still provides estimates satisfying the Kullback-Leibler Information

Criterion. In their paper, they also establish the consistency and asymptotical

normality of this estimator, provide a consistent estimator of the variance-

covariance matrix and derive the asymptotic distribution of the estimator,

which is necessary for hypothesis testing of the quantile models.3

3For technicalities, such as theorems and proofs, we refer the interested reader to the
original paper of Engle & Manganelli (2004).



Chapter 4

Forecast evaluation

Crucial part when estimating and forecasting various economic variables is gen-

erally model validation and forecast evaluation. Value at Risk is no exception,

therefore we dedicate this chapter to the backtesting methods that serve to

assess the accuracy of its estimates and forecasts. Assessing correctness of VaR

is actually a huge part of the literature on this topic. Over the years, various

tests have been developed to assess its predictive accuracy. Nice summary of

numerous backtesting and forecast evaluation procedures can be found for ex-

ample in Campbell (2007), Dowd (2002) or Berkowitz et al. (2011). Commonly

used statistical backtests for VaR accuracy employ transformation of VaR and

realized returns, such as sequence of violations, and test for certain properties

of these transformations. Many of these tests are developed in an uncondi-

tional setting, but since we focus on conditional VaR modeling in this thesis,

it is important to assess if VaR models are correctly specified and perform well

in a conditional sense. From various procedures we therefore focus not only on

unconditional, but also conditional methods that serve to assess the absolute

performance and lead us to either accept or reject considered models. To find

out which models perform best, we also employ methods that serve to assess

the relative performance of competing models.

4.1 Evaluation of absolute performance

First, to evaluate the absolute performance of the models under study, we use

the unconditional coverage test of Kupiec (1995), test of independence and

conditional coverage of Christoffersen (1998) and dynamic quantile (DQ) test

of Engle & Manganelli (2004).
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Before we go further, let us first define violation of VaR forecast by realized

return (also called tail loss) as I(yt < −V aRt), where I(·) is the indicator

function. {I(yt < −V aRt)}Tt=1 = {It}Tt=1 then denotes sequence of violations,

where T is the number of observations. As suggested by Christoffersen (1998),

accurate VaR model should result in such a sequence of violations that satisfies

both of the following properties:

1. proportion (percentage) of violations is close to the risk level α, formally:

Pr(It = 1) = E[It] = α

2. violations do not exhibit clustering (they are independent).

Test of unconditional coverage

Unconditional Coverage test proposed by Kupiec (1995), also known as Pro-

portion of Failures (PoF)1 test, focuses on the first property we mention above.

It tests for the correct number of violations - whether the actual number of vio-

lations is consistent with the frequency predicted by the model. Under the null

hypothesis that the model is accurate (consistent with the data), the number

of violations follows a binomial distribution with probability α:

Pr (x|n, α) =

(
n

x

)
αx(1− α)n−x, (4.1)

where x is the number of VaR violations, n is the total number of observations

and α is the frequency of violations (tail losses) predicted by the model. Note

that α = (1−confidence level). The null hypothesis is tested using likelihood-

ratio test statistic LRuc. Under the null hypothesis H0 : α = x
n
, the model

predicts nα violations and for LRuc it holds that

LRuc = −2ln
[
(1− α)n−xαx

]
+ 2ln

[
(1− x

n
)n−x(

x

n
)x
]

asy∼ χ2
(1). (4.2)

The unconditional coverage test rejects the null hypothesis if the proportion of

VaR violations statistically differs from the risk level α.

Test of independence

For a particular VaR model to be accurate, it is important that this is not

only correct on average (satisfies the unconditional coverage property), but

1PoF is defined as a number of violations x to the total number of observations n.
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also accounts for temporal volatility dependence, meaning that it results in

an independet sequence of violations. Independence can be tested by various

tests, for example runs test or Ljung-Box test of Ljung & Box (1978). Under

the null hypothesis, the probability of the next observation violating VaR is not

influenced by the previous VaR violations. To test independence, Christoffersen

(1998) employs a two-state Markov process and models It as a binary first-order

Markov chain, with transition probability matrix

Π =

1− π01 π01

1− π11 π11


where πij = Pr(It = j|It−1 = i), i and j refer to states of violations/non-

violations. Under the null hypothesis of independence, for the likelihood test

statistic LRind it holds that

LRind = 2ln

[
(1− π̂01)n00 π̂n01

01 (1− π̂11)n10 π̂n11
11

(1− π̂)n00+n10 π̂n01+n11

]
asy∼ χ2

(1), (4.3)

where nij =
∑n

t=1 I(It = i|It−1 = j) denotes the number of transitions from

state i to state j and

π̂01 =
n01

n00 + n01

, π̂11 =
n11

n10 + n11

and π̂ =
n01 + n11

n00 + n01 + n10 + n11

.

Test of conditional coverage

Since Equation 4.3 does not account for correct unconditional coverage, Christof-

fersen (1998) proposes to combine Equation 4.2 and Equation 4.3 to test for

a joint property E[It|Ft−1] = α, which is referred to as correct conditional

coverage. Formally, under the null hypothesis:

LRcc = LRuc + LRind
asy∼ χ2

(2). (4.4)

In the thesis, we calculate the test statistics for both unconditional coverage

and independence separately and jointly as conditional coverage. The reason

is to detect which property is violated, if any, as the joint test has a reduced

statistical power in detecting violation of a particular property.
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Dynamic quantile test

Since the independence test of Christoffersen (1998) is limited to the first-

order dependence, Engle & Manganelli (2004) propose a linear regression test

for correct dynamic specification, the so-called Dynamic Quantile (DQ) test.

This test is more strict as it enables to test for higher-order dependences in the

sequence of violations. Its main advantage is the ability to incorporate a wide

range of alternative specifications by making a simple extension. Following

Engle & Manganelli (2004), we first define the Hitt(θ) variable as de-meaned

indicator function. Formally,

Hitt(θ) = I(yt < qt(θ))− α, (4.5)

where Hitt(θ) takes on value (1−α) when yt exceeds the quantile and value −α
otherwise. The expected value of Hitt(θ) equals zero as well as the conditional

expectation of Hitt(θ) given an information set at time t − 1, based on the

definition of the quantile equation. This property indicates that Hitt(θ) has

to be uncorrelated with its own lags and also with qt(θ) and its expected value

has to be zero. Every property mentioned above being satisfied, the hits will

not be autocorrelated, the number of violations will be correct and there will

be no measurement error.

Engle & Manganelli (2004) suggest to regress Hitt(θ) on a set of explanatory

variables, for example in the following form

Hitt(θ) = α0 +
m∑
i=1

wiHitt−i(θ) + wm+1qt(θ) + ut, (4.6)

where wi for i = 1, ..,m + 1 are the parameters to be estimated and ut = −α
with probability 1 − α or 1 − α with probability α. Following Kuester et al.

(2006) notation, we have

H− α1 = Xw + u, (4.7)

where 1 is a vector of ones and w0 = α0 − α.

Under the null hypothesis, α0 = α, wi = 0 for i = 1, ..,m+ 1 and

ŵ =
(
X

′
X
)−1

X
′
(H− α1)

asy∼ N
(

0, (X
′
X)−1α(1− α)

)
, (4.8)
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from which Engle & Manganelli (2004) derive the test statistic

DQ =
ŵ

′
X

′
Xŵ

α(1− α)

asy∼ χ2
(m+2). (4.9)

Engle & Manganelli (2004) derive two separate test statistics: in-sample

DQ test and out-of-sample DQ test.2 As suggested, the first one can serve for

selection of a particular CAViaR model among various alternative specifications

and the latter can be utilized by regulators or risk managers in order to assess

the accuracy of the VaR estimates provided by financial institutions. The test

is not dependent on the procedure used for estimation, it requires only a series

of VaR forecasts and series of actual returns to obtain the result, so it is easily

implemented in practice.

Berkowitz et al. (2011) modify the DQ test of Engle & Manganelli (2004)

and refer to this test as the CAViaR test of Engle and Manganelli. They define

the Hitt(θ) as

Hitt(θ) = I(yt < qt(θ)) (4.10)

where Hitt(θ) is equal to 1 when the quantile is exceeded and 0 otherwise.

Hitt(θ)|Ft−1
iid∼ Ber(α) if the conditional quantiles are correctly specified. As

Hitt(θ) is a binary variable, Berkowitz et al. (2011) suggest to estimate the

following m-th order autoregression as a logit model

Hitt(θ) = c+
m∑
i=1

β1iHitt−i(θ) +
m∑
i=1

β2iqα(yt−i+1|Ft−i) + ut (4.11)

where ut is assumed to have logistic distribution. The authors setm = 1. Under

the null hypothesis, β coefficients are zero and Pr(Hitt(θ) = 1) = ec/(1+ec) =

α. To test for the null hypothesis, the likelihood-ratio is used.

In our empirical analysis, we consider the original version of Engle & Man-

ganelli (2004) to make our results comparable to the literature.

4.2 Evaluation of relative performance

Further, to compare the performance of competing models, we focus on the

loss function as suggested by Giacomini & Komunjer (2005). Precisely, they

employ so called ‘tick’ loss function Tα, which is the asymmetric linear loss

2For the detailed derivations of in-sample and out-of-sample distributions of the DQ test
see their original paper.
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function of order α defined as

Tα(et+1) = (α− I(et+1 < 0)) et+1, (4.12)

where et+1 = yt+1 − qα(yt+1|Ft) and I(·) denotes the indicator function. This

particular form of the loss function is chosen as the object of the interest in

their paper is the conditional α-quantile of the distribution of yt+1. This is

indeed the case of this thesis, therefore we make use of this functional form as

well.

To test for equal predictive ability of competing models, we use Diebold &

Mariano (1995) test, which is based on the loss differential. The loss differential

is defined as

d = e21 − e22, (4.13)

where e1 is a vector of the forecast errors from the first model and e2 is a vector

of the forecast errors from the second model. In this thesis, as forecast errors

we use loss as defined in Equation 4.12. In each case, we use the loss from the

benchmark model as e2. Under the null hypothesis H0 : E[d] = 0, for the test

statistic it holds that

DM =
d√
var(d)
n

asy∼ N(0, 1), (4.14)

where n is the number of observations, d and var(d) are the unconditional

mean and the unconditional variance of d respectively. In case of the multi-

step-ahead forecasts, Diebold-Mariano test uses Newey-West estimator of the

variance to account for autocorrelation of forecast errors. However, since we

work only with the one-step-ahead forecasts, this does not concern us. Having

concluded the theoretical part of this thesis, we now continue with the empirical

research.



Chapter 5

Empirical application

After introducing the underlying theory of Value at Risk in previous chap-

ters, we proceed with the most essential part of this thesis, our own empirical

research. In this chapter we present empirical application of semiparametric

CAViaR models and parametric GARCH models to calculate VaR on Cen-

tral European, U.S. and German stock market data and consequently evaluate

their performance using several backtesting methods, which we described in

Chapter 4. In our empirical research, we investigate whether the introduc-

tion of dynamics to VaR modeling using CAViaR approach provides us with

more accurate results, thus if its performance is superior to the commonly used

parametric approach, focusing also on the crisis period.

We examine the performance of these approaches during two different time

periods, the period before the crisis and the other covering the time of global

financial crisis (GFC). In each period, the analysis is performed on two subsets

of data, in-sample and out-of-sample, in order to obtain as reliable assessment

of the performance of the models under study as possible. In all cases, we

estimate VaR for two confidence levels, 95% and 99% as these are the most

common in literature and also in practice.

It is important to point out that for both the parametric and the semi-

parametric method of VaR calculation, we consider static forecasting approach

instead of rolling sample approach, which means that we keep the parameters

of models constant throughout the period for which they are estimated.1 The

reason behind the static approach is very simple: appropriate model for fore-

1Our argumentation and choice of the estimation period length of 4 years and forecast
period of one year is similar to Huang et al. (2010), who use the rolling sample of 1000 days
and keep the parameters constant for the following 250 days. In our case, accounting for
different characteristics of the data within the total time span of 10 years (2003 - 2012) is to
some extent resolved by dividing the data into two different time periods.
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casting should be designed in such a way that it is able to capture the dynamics

of the data for some time before it is necessary to re-estimate it, which means

that its parameters should not change very quickly and the model should be

able to deliver satisfactory out-of-sample results. In practice, it is highly desired

that the models do not need to be re-estimated very often as it may be very

demanding, time-consuming or not feasible, especially when considering large

portfolios. This is indeed the case of CAViaR models, which we investigate in

this thesis.

This chapter is organized as follows. In the first section, we provide the

reader with a thorough analysis of the corresponding market data. Secondly,

we perform estimation procedures - we fit the GARCH model with normally

and t-distributed errors to forecast volatility in both periods and after that

we calculate VaR parametrically. As for the semiparametric CAViaR models,

we calculate VaR directly. Further, we perform backtesting to evaluate the

competing approaches. In the last section, we summarize the results and discuss

the overall performance of our investigated models.

5.1 Data analysis

We will analyze the stock market data consisting of Central European, German

and U.S. indices. For the purpose of this thesis, we use four different value-

weighted indices: PX, BUX, DAX and S&P 500 representing Czech, Hungarian,

German and U.S. stock markets respectively. The closing prices of the first two,

representing Central European stock market, were obtained from Prague Stock

Exchange and Budapest Stock Exchange. The closing prices of DAX and S&P

500, which serve as benchmarks, were obtained from Yahoo Finance.

For each index, the dataset is divided into two subsets, the first one cov-

ers the period of 2003 - 2007 and the second one the period of 2008 - 2012.

Furthermore, each period is then split into two subsamples: in-sample consist-

ing of observations from the first four years in the sample, and out-of-sample

consisting of the remaining observations that cover the last year in each pe-

riod. Overall, that gives us around 1000 observations in the in-sample and

approximately 250 observations in the out-of-sample. In-sample will be used

for estimations of unknown parameters for all models in question and also for

forecast evaluation, while out-of-sample will be used just for forecast evalua-

tion. The backtesting results referring to the out-of-sample will therefore be

more conclusive and decisive about the investigated models.
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In the first subset, models will be estimated on the stable period. The

second subset will demonstrate how and if the time of economic turmoil impacts

the performance of the models as this one covers the period of the 08/09 global

financial crisis. This division will also allow us to investige the differences and

regional characteristics across the stock markets under study.

First, we use the closing prices Pt to construct the series of daily percentage

retuns as 100 times the difference of log of the prices: yt = 100× ln(Pt/Pt−1).

These returns will then be employed for in-sample estimation of all VaR models

under study. Plots of all closing prices and the corresponding percentage log

returns can be found in Appendix B. As we can see on the plots, the second

period is generally more volatile compared to the first one, due to the 08/09

GFC. Volatility clustering is clearly observable, especially around year 2009.

This is also supported by descriptive statistics of log returns of all indices,

which we present in Table 5.1 and Table 5.2 for the full samples. Descriptive

statistics for in-sample and out-of-sample separately within each period can be

found in Appendix A.

Table 5.1: Descriptive Statistics: full sample, first period

Statistics PX BUX DAX S&P 500

Observations 1256 1253 1273 1257

Mean 0.1084 0.0956 0.0750 0.0381

Median 0.1662 0.1285 0.12025 0.0808

Std. dev. 1.0801 1.2935 1.1954 0.8285

Minimum -6.1250 -5.6027 -6.3360 -3.5867

Maximum 7.0482 4.8660 6.6446 3.4814

Skewness -0.6145 -0.2203 -0.1935 -0.1749

Ex. kurtosis 4.5678 1.1008 3.2352 1.6893

Jarque-Bera test

p-value 5.36335e-255 1.15079e-016 5.27328e-123 1.41377e-034

test statistic 1170.9600 73.4018 563.1110 155.8830

ADF test

p-value 2.125e-011 5.641e-013 3.819e-012 3.6e-011

test statistic -7.6804 -8.1610 -7.9113 -7.6082

Source: Author’s computations.

In general, the second period exhibits higher maximum and minimum val-

ues for all indices, which results in higher standard deviations throughout the

subset. Compared to the first period, standard deviations of indices are approx-

imately twice higher, which indicates that the stocks are much more volatile
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Table 5.2: Descriptive Statistics: full sample, second period

Statistics PX BUX DAX S&P 500

Observations 1257 1253 1281 1258

Mean -0.0441 -0.0282 -0.0034 -0.0012

Median -0.0088 -0.0353 0.0411 0.0702

Std. dev. 1.9007 2.0126 1.7242 1.6596

Minimum -16.1850 -12.6490 -7.4335 -9.4695

Maximum 12.3600 13.1780 10.7970 10.9570

Skewness -0.4311 -0.0025 0.1293 -0.2449

Ex. kurtosis 11.1420 5.5617 5.0155 6.9764

Jarque-Bera test

p-value 0 0 4.71304e-293 0

test statistic 6540.95 1614.93 1346.21 2563.71

ADF test

p-value 6.463e-005 1.248e-006 1.768e-007 1.038e-007

test statistic -5.2234 -5.9870 -6.3250 -6.4136

Source: Author’s computations.

here. According to unconditional standard deviation, S&P 500 appears to be

generally less volatile than Central European indices.

In the first period, the returns of all indices are negatively skewed. That

is also the case of the second period with the exception of DAX index, where

the skewness is only slightly positive. Excess kurtosis always suggests higher

peaks for all indices, especially in the second period, where its values are much

higher compared to the first period (for PX more than twice higher, for S&P

500 more than three times higher). This adds to the assumption about non-

normality of our time series in both time periods. Formally, we test the data

for normality using the Jarque-Bera (JB) test. Based on the results, normality

of daily returns is strongly rejected at all significance levels for all the indices

in the first and also in the second period. Therefore, we can conclude that the

distribution of daily returns is rather leptokurtic, which is in accord with the

stylized facts about the financial data. As we work with the time series in our

analysis, it is important to test the data for stationarity as well. This was done

using Augmented Dickey-Fuller (ADF) test. Based on the p-values, the null

hypothesis of unit root is rejected for all indices in both periods, therefore we

consider all of our series to be stationary. Having described our stock market

data, we proceed with the estimation procedures and VaR calculation.
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5.2 Estimation and VaR calculation

Firstly, to estimate VaR parametrically, we estimate two GARCH models for

volatility for all indices in both periods - GARCH with normally distributed

errors and GARCH with Student t-distributed errors, to which we also refer in

our analysis only as GARCH and GARCH-t respectively. As for the functional

form of GARCH(p,q), we use the simplest model - GARCH (1,1) in all cases.

Our decision is supported by Akaike Information Criteria (AIC), which we

present in Appendix A. Even though the AIC is not the lowest in all cases for

GARCH(1,1), the differences among various combinations of p and q, where

p, q = {1, 2}, are insignificant. Therefore, we consider the parsimony rule and

estimate the simplest model possible. For both GARCH(1,1) and GARCH(1,1)-

t, the estimates were obtained using MLE. In case of GARCH with normal

errors, we estimate α0, α1 and β1 and for GARCH with t-distributed errors we

report also estimate of the degrees of freedom ν. The results of the estimations

for the first period are presented in Table 5.3 and for the second one in Table 5.4.

Apart from the constant, all the parameters are always significant at 5%

significance level and very similar for both models within each period. Volatility

clustering seems to be well captured. Based on the estimated parameter for

lagged conditional variance, it is obvious that this term has the strongest impact

on volatility forecast as the value of β1 ranges approximately from 0.83 to 0.93

across indices in the first period and from 0.82 to 0.9 in the second period.

As for the estimated degrees of freedom of error distribution in GARCH-t, in

the first period the values of ν vary from 5 to 15 for PX, BUX and DAX,

which supports the assumption about the heavy tailedness of the distribution.

S&P 500 is presented with the value of 31, which is closest to the normal

distribution among all indices. This could suggest that in this particular case

there might not be a distinct difference between GARCH and GARCH-t in the

sense of VaR estimation. In the second period, the estimated values of ν are

approximately around 8 for PX, BUX and DAX, suggesting a bit heavier tails

for BUX and DAX compared to the pre-crisis period. Interestingly, for PX this

result suggests that the distribution is a bit closer to normal here as the value

of ν was previously somewhat lower. The result for S&P 500 presents quite a

different picture compared to that obtained in the first period, since the value

of ν is considerably lower here (ν = 6), which indicates much heavier tails in

this time horizon. In general, the results regarding the degrees of freedom are

not surprising, due to the presence of more extreme observations, especially
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Table 5.3: MLE parameter estimates for GARCH and GARCH-t,
first period

The left-hand side panel reports results for GARCH(1,1) with nor-
mally distributed errors (GARCH) and the right-hand side panel re-
ports results for GARCH(1,1) with t-distributed errors (GARCH-t).
Estimated parameters are reported with standard errors (s.e) and p-
values. Significant coefficients at 5 % confidence level are formatted
in bold. For each model we report the value of log-likelihood function
(LL) and Bayesian Information Criterion (BIC).

GARCH GARCH-t

PX BUX DAX S&P 500 PX BUX DAX S&P 500

α0 0.0639 0.0714 0.0173 0.0079 0.0645 0.0706 0.0141 0.0075

s.e. 0.0211 0.0239 0.0070 0.0042 0.0204 0.0241 0.0067 0.0042

p-value 0.0025 0.0029 0.0136 0.0608 0.0016 0.0035 0.0346 0.0776

α1 0.1098 0.0771 0.0767 0.0499 0.1076 0.0721 0.0744 0.0493

s.e. 0.0290 0.0168 0.0155 0.0123 0.0255 0.0162 0.0152 0.0124

p-value 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β1 0.8372 0.8819 0.9086 0.9347 0.8389 0.8869 0.9144 0.9362

s.e. 0.0293 0.0219 0.0165 0.0156 0.0299 0.0229 0.0157 0.0156

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ν 5.2100 15.9940 10.4029 31.3391

s.e. 0.7607 6.9305 3.2816 27.3235

p-value 0.0000 0.0210 0.0015 0.2514

LL -1432.99 -1671.11 -1497.83 -1110.15 -1392.53 -1667.60 -1492.11 -1109.60

BIC 2893.65 3369.88 3023.39 2247.95 2819.64 3369.79 3018.87 2253.77

Source: Author’s computations.
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Table 5.4: MLE parameter estimates for GARCH and GARCH-t, sec-
ond period

The left-hand side panel reports results for GARCH(1,1) with nor-
mally distributed errors (GARCH) and the right-hand side panel re-
ports results for GARCH(1,1) with t-distributed errors (GARCH-t).
Estimated parameters are reported with standard errors (s.e) and p-
values. Significant coefficients at 5 % confidence level are formatted
in bold. For each model we report the value of log-likelihood function
(LL) and Bayesian Information Criterion (BIC).

GARCH GARCH-t

PX BUX DAX S&P 500 PX BUX DAX S&P 500

α0 0.0426 0.0936 0.0280 0.0266 0.0477 0.0669 0.0300 0.0186

s.e. 0.0207 0.0465 0.0136 0.0109 0.0205 0.0333 0.0152 0.0106

p-value 0.0393 0.0442 0.0387 0.0150 0.0198 0.0443 0.0473 0.0811

α1 0.1732 0.1222 0.0889 0.1103 0.1454 0.1122 0.0861 0.1051

s.e. 0.0353 0.0304 0.0200 0.0201 0.0315 0.0270 0.0196 0.0205

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β1 0.8281 0.8591 0.9043 0.8831 0.8469 0.8761 0.9073 0.8952

s.e. 0.0285 0.0310 0.0193 0.0167 0.0284 0.0269 0.0187 0.0167

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ν 8.6265 8.7602 7.9015 6.1212

s.e. 1.8819 2.2041 2.1129 1.2244

p-value 0.0000 0.0000 0.0002 0.0000

LL -1876.02 -2057.24 -1909.56 -1775.83 -1863.95 -2045.36 -1898.55 -1761.51

BIC 3779.71 4142.15 3846.87 3579.33 3762.48 4125.31 3831.78 3557.60

Source: Author’s computations.



5. Empirical application 33

around year 2009.

Further, we report the value of log-likelihood function (LL) and Bayesian

Information Criterion (BIC), which allow us to assess the relative fit of GARCH

and GARCH-t. Our results suggest that GARCH-t is uniformly a better fit, for

all the indices in both first and second period. The only exception is observed

for S&P 500 in the first period, where GARCH appears to a better fit.

Having estimated the parameters and assessed the relative fit of the models,

we proceed with the volatility forecast. As we have already mentioned at the

beginning of this chapter, for both periods we do not allow the parameters to

change over time and use the estimates for the corresponding period. After

obtaining the standard deviation forecasts from both GARCH and GARCH-t,

we calculatee one-step-ahead parametric VaR for both 95% and 99% confidence

levels, according to Equation 2.3 provided in Chapter 2.

Turning to the semiparametric CAViaR models, we employ the estimation

procedure of Engle & Manganelli (2004) and focus on modeling VaR as 1%

and 5% quantile of the return distribution directly.2 To compute series of one-

step-ahead VaR forecasts, we follow Engle & Manganelli (2004) and set q1(θ)

to the empirical quantile of the first 300 observations. In case of SAV, we

estimate the constant β1, the lagged conditional quantile coefficient β2 and the

lagged absolute return parameter β3. For AS, we also report an estimate of

the lagged negative return coefficient β4. The estimated parameters for both

specifications for the first period are presented in Table 5.5 and Table 5.6 for

the second period, where the upper panel reports the results for 1% quantile

and the lower panel reports the results for 5% quantile.

In analogy with Engle & Manganelli (2004) or Kouretas & Zarangas (2005),

we obtain qualitatively similar results regarding the coefficient of autoregres-

sive term, β2. The parameter is close to one and highly statistically significant

in case of 99% and also 95% VaR, across all indices in both time periods, which

suggests that the well known fact about volatility clustering is also revelant

when focusing on the tails of the return distribution. The value of the param-

eter ranges from 0.84 to 0.96 for both 99% and 95% VaR in the first period,

somewhat lower values are only demostrated in case of AS for PX. In the sec-

ond period, the results come out very similar, only the range is slightly wider,

the coefficient value varies between 0.8 and 0.97 across indices, model spec-

ifications and confidence levels. The conditional quantile parameter exhibits

much higher values compared to the parameters corresponding to the other

2We are gratuful to Simone Manganelli for providing the Matlab code.
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Table 5.5: Estimation results for CAViaR, first period

The left-hand side panel reports results for SAV and the right-hand
side panel reports results for AS. Estimated parameters are reported
with standard errors (s.e) and p-values, RQ is the value of regression
quantile objective function. Significant coefficients at 5 % confidence
level are formatted in bold.

Symmetric Absolute Value Asymmetric Slope

PX BUX DAX S&P 500 PX BUX DAX S&P 500

99% VaR

β1 0.3245 0.2107 0.0621 0.0687 1.1073 -0.0322 0.0592 0.0190

s.e. 0.3536 0.2108 0.0545 0.0154 0.2724 0.1012 0.0415 0.0199

p-value 0.1794 0.1588 0.1274 0.0000 0.0000 0.3751 0.0768 0.1697

β2 0.8496 0.8779 0.9624 0.9400 0.5630 0.8876 0.9307 0.9495

s.e. 0.1302 0.0878 0.0475 0.0212 0.1830 0.0278 0.0369 0.0264

p-value 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000

β3 0.3999 0.2592 0.0988 0.1865 -0.5592 0.4513 0.1394 0.1241

s.e. 0.2525 0.0704 0.0944 0.0532 0.0610 0.1653 0.1119 0.0831

p-value 0.0566 0.0001 0.1477 0.0002 0.0000 0.0032 0.1063 0.0678

β4 1.2000 0.3089 0.1841 0.1179

s.e. 1.3709 0.1296 0.0930 0.0611

p-value 0.1907 0.0086 0.0238 0.0268

RQ 40.4641 40.9730 34.3095 19.9587 34.7222 40.0865 34.0075 20.4480

95% VaR

β1 0.0900 0.1684 0.0550 0.1449 0.3114 0.1635 0.0365 0.0166

s.e. 0.0361 0.0564 0.0169 0.0372 0.1947 0.0996 0.0132 0.0229

p-value 0.0063 0.0014 0.0006 0.0000 0.0548 0.0504 0.0030 0.2347

β2 0.8889 0.8571 0.9383 0.8483 0.7135 0.8162 0.9505 0.9665

s.e. 0.0364 0.0512 0.0249 0.0553 0.1336 0.0860 0.0224 0.0391

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β3 0.2022 0.1968 0.1162 0.1862 -0.0712 0.1227 -0.0189 0.0107

s.e. 0.0832 0.0580 0.0573 0.0742 0.1097 0.0964 0.0429 0.0579

p-value 0.0076 0.0003 0.0212 0.0060 0.2582 0.1016 0.3296 0.4267

β4 0.5567 0.2890 0.1566 0.0705

s.e. 0.2139 0.1145 0.0568 0.0347

p-value 0.0046 0.0058 0.0029 0.0210

RQ 129.6511 139.4371 132.6544 79.2464 123.9350 137.8244 129.9458 79.3107

Source: Author’s computations.
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Table 5.6: Estimation results for CAViaR, second period

The left-hand side panel reports results for SAV and the right-hand
side panel reports results for AS. Estimated parameters are reported
with standard errors (s.e) and p-values, RQ is the value of regression
quantile objective function. Significant coefficients at 5 % confidence
level are formatted in bold.

Symmetric Absolute Value Asymmetric Slope

PX BUX DAX S&P 500 PX BUX DAX S&P 500

99% VaR

β1 0.4648 0.4337 0.1901 0.2556 0.0965 0.1583 0.0410 0.1351

s.e. 0.0846 0.1680 0.0642 0.0596 0.1585 0.1590 0.0201 0.0496

p-value 0.0000 0.0049 0.0015 0.0000 0.2714 0.1596 0.0205 0.0032

β2 0.7997 0.8370 0.8988 0.8801 0.8535 0.8702 0.9699 0.8981

s.e. 0.0643 0.0422 0.0270 0.0300 0.0662 0.0617 0.0156 0.0506

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β3 0.5182 0.4155 0.2638 0.2740 0.2465 0.1689 -0.0443 0.0683

s.e. 0.2449 0.1113 0.0410 0.0604 0.1455 0.1519 0.0536 0.1623

p-value 0.0172 0.0001 0.0000 0.0000 0.0451 0.1332 0.2039 0.3368

β4 0.6914 0.4998 0.1705 0.3941

s.e. 0.3288 0.1486 0.0248 0.2283

p-value 0.0177 0.0004 0.0000 0.0422

RQ 63.3490 61.7005 49.9293 50.7525 58.7019 58.2166 47.0342 49.2272

95% VaR

β1 0.1544 0.1046 0.1860 0.1607 0.0871 0.0202 0.0831 0.0882

s.e. 0.0976 0.0252 0.0542 0.0654 0.1727 0.0413 0.0706 0.0274

p-value 0.0569 0.0000 0.0003 0.0070 0.3071 0.3123 0.1198 0.0006

β2 0.8606 0.8967 0.8695 0.8856 0.8373 0.8899 0.8913 0.9178

s.e. 0.1045 0.0306 0.0499 0.0381 0.1308 0.0232 0.0620 0.0221

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

β3 0.2657 0.2199 0.2500 0.2138 0.1605 0.1348 0.0745 -0.0018

s.e. 0.2001 0.0760 0.1106 0.0651 0.1558 0.0808 0.1175 0.0591

p-value 0.0922 0.0019 0.0119 0.0005 0.1515 0.0476 0.2631 0.4878

β4 0.3859 0.2796 0.2982 0.2269

s.e. 0.1950 0.0598 0.0867 0.0534

p-value 0.0239 0.0000 0.0003 0.0000

RQ 205.1004 217.5601 193.9097 188.4962 201.1709 215.7554 186.7689 184.1124

Source: Author’s computations.
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terms in CAViaR regression equations and hence impacts the future quantile

most substantially. Another similarity to the previous empirical research refers

to the parameter of lagged absolute return, β3, in SAV specification and the

parameter corresponding to the lagged negative return, β4, in AS specification.

The parameter of lagged absolute return comes out relatively smaller compared

to β2, but it also is highly significant in most cases. However, when focusing

on the coefficient β3 in AS specification, where this only refers to the positive

part of the lagged returns, the results present a different picture. We find that

the parameter of the lagged negative return, β4, is always strongly statisti-

cally significant (with only one exception), while the coefficient associated with

positive returns (β3) in many cases comes out insignificant. This implies that

the impact of the lagged returns on VaR forecasts is often asymmetric. Fig-

ure 5.1 depicts one-step-ahead VaR forecasts of AS specification for the first

(pre-crisis) period and Figure 5.2 for the second (crisis) period. Figures for

SAV specification can be found in Appendix B.
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Figure 5.1: AS CAViaR at 95% confidence level, first period

Returns and one-step-ahead VaR forecasts of Asymmetric Slope
CAViaR at 95% confidence level. In-sample covers the period of
01/2003 - 12/2006, out-of-sample the year of 2007.
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Source: Author’s computations.
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Figure 5.2: AS CAViaR at 95% confidence level, second period

Returns and one-step-ahead VaR forecasts of Asymmetric Slope
CAViaR at 95% confidence level. In-sample covers the period of
01/2008 - 12/2011, out-of-sample the year of 2012.
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Source: Author’s computations.
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5.3 Evaluation of performance

Having discussed the results from both parametric and semiparametric esti-

mations, we proceed with the evaluation of in-sample and out-of-sample per-

formance of all four models for VaR calculation under study. The results are

reported separately for the first (pre-crisis) period and the second (crisis) pe-

riod. To save space, in the text we only present the tables with backtesting

results for PX as a representative of Central European market, which is the

main focus of this thesis. Tables with the results for BUX and other indices

used as benchmarks can be found in Appendix A.

For each VaR and model, we evaluate the absolute performance using the

methods characterized in Section 4.1 and report the actual proportion of fail-

ures (PoF ), p-value of unconditional coverage test (p−LRuc), p-value of inde-

pendence test (p− LRind), p-value of conditional coverage test (p− LRcc) and

p-value of the dynamic quantile (DQ) test of Engle & Manganelli (2004) for

correct dynamic specification (p −DQ). Similarly to Kuester et al. (2006) or

Huang et al. (2010), we use such a specification of DQ test, where the regression

matrix X contains constant and four lagged hits, Hitt−1(θ), .., Hitt−4(θ). Fur-

thermore, we evaluate the relative performance of the models as described in

Section 4.2 and report the value of tick-loss function (Tα) and Diebold-Mariano

(DM) test statistic for equal predictive accuracy with GARCH model with nor-

mally distributed errors serving as the benchmark. For Diebold-Mariano test,

we consider two-sided test and 5% significance level. We therefore reject the

null hypothesis of equal predictive ability of models when the absolute value

of DM test statistic is higher than 1.96. To choose the best performing model,

we first consider the absolute performance indicators and after that we decide

possibly between more models based on the results of the relative performance

indicators.

5.3.1 First (pre-crisis) period

In-sample fit

Starting with PX index, for which we report the backtesting results in the

left-hand side panel of Table 5.7, we find that both CAViaR specifications

perform very well, having the proportion of violations very close to the nominal

levels in case of 99% and 95% VaR as well. On the other hand, in terms of

unconditional coverage our benchmark GARCH models do not deliver such
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accurate results. Compared to GARCH models, the unconditional coverage of

CAViaR is especially better for 95% VaR. For 99% confidence level, GARCH

seems to underestime VaR, while GARCH-t appears to do just the opposite,

as could be expected since we move further in the left tail of the distribution.

Table 5.7: Backtesting for PX, first period

Absolute and relative performance of GARCH and CAViaR models
for daily PX returns. The left-hand side panel reports results for
in-sample performance and the right-hand side panel reports results
for out-of-sample performance. For each VaR we report the actual
proportion of failures (PoF ), p-value of unconditional coverage test
(p−LRuc), p-value of independence test (p−LRind), p-value of con-
ditional coverage test (p − LRcc), p-value of DQ test of Engle &
Manganelli (2004) (p−DQ), the value of tick-loss function (Tα) and
Diebold-Mariano (DM) test statistic for equal predictive accuracy
with GARCH model with normal errors serving as the benchmark.

in-sample out-of-sample

GARCH GARCH-t SAV AS GARCH GARCH-t SAV AS

99% VaR

PoF (%) 2.0854 0.5958 1.0924 1.1917 0.8032 0.8032 0.8032 1.2048

p− LRuc 0.0025 0.1633 0.7716 0.5530 0.7466 0.7466 0.7466 0.7530

p− LRind 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p− LRcc 0.0104 0.3785 0.9587 0.8386 0.9491 0.9491 0.9491 0.9517

p−DQ 0.0192 0.0025 0.0009 0.0001 0.7602 0.7602 0.7602 0.2170

Tα 0.0436 0.0404 0.0402 0.0345 0.0437 0.0449 0.0432 0.0436

DM -2.3602 -2.5496 -2.0368 -1.3462 -1.3611 -1.1170

95% VaR

PoF (%) 3.7736 2.6812 4.9652 4.8659 4.8193 2.0080 8.4337 5.2209

p− LRuc 0.0624 0.0002 0.9596 0.8446 0.8953 0.0142 0.0230 0.8738

p− LRind 0.6425 1.0000 0.7385 0.2905 0.5964 0.0761 0.4928 1.0000

p− LRcc 0.1583 0.0011 0.9446 0.5611 0.8617 0.0103 0.0596 0.9874

p−DQ 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0881 0.0185

Tα 0.1296 0.1352 0.1287 0.1231 0.1233 0.1293 0.1294 0.1239

DM -3.2434 3.6771 -1.6672 -1.3570 2.4243 -0.7798

Source: Author’s computations.

In case of 95% VaR, for normal GARCH the proportion of violations is

less than 4 %. GARCH-t produced around 2.7 % violations, not passing the

unconditional coverage test. Based on the p-values of independence test, all
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of the models considered manage to produce cluster-free violations. Evalu-

ating the models more generally with conditional coverage test, we find that

all models for both levels pass the test at 1% siginificance level, except for

GARCH-t for 95% VaR, whereas the normal GARCH for 99% VaR passes the

test only marginally. However, the DQ test clearly rejects the null hypothe-

sis of correct dynamic specification for all the models at 1% significance level,

excluding 99% GARCH VaR. This could be attributed to the fact that unlike

conditional coverage test, this one tests the sequence of violations for much

higher-order dependencies. Having assessed the absolute performance, we con-

clude that both SAV and AS are the most precise by the definition and turn

to the evaluation of the relative performance. While CAViaR models manage

to be correct on average, as the results show they also produce the smallest

loss for both levels and provide statistically more accurate forecasts for 99%

VaR at 5% significance level, as indicated by DM test statistic. In terms of

unconditional coverage and loss, AS appears to be the best model for PX.

The results for BUX are summarized in Table A.7. In this case, we observe

very similar performance of all models for 95 % VaR as for PX. CAViaR models

again outperform GARCH and GARCH-t, delivering the number of violations

very close to 5 % and comfortably passing the unconditional coverage test.

As for normal GARCH, this passes the test only marginally and GARCH-t is

strongly rejected. Focusing on the 99% VaR, all the models seem to be correct

on average according to the p-value of the unconditional coverage test. How-

ever, the results come out best for GARCH and SAV, having the proportion

of failures almost equal to 1 %. While the independence test suggests inde-

pendent sequence of violations for all models, the DQ test indicates dynamic

misspecification. To decide between GARCH and SAV for 99% VaR, we look

at the value of the tick-loss function, which is slightly lower for GARCH. Also

DM test statistic suggests superior performance of GARCH, therefore we con-

sider this one to be the best fit. As for 95% VaR, the smallest average loss is

produced by AS, yet statistically indistinguishable from benchmark GARCH

model. We consider AS to be the best model as it delivers the proportion of

violations closest to 5 % and lowest tick-loss at the same time.

Turning to DAX index, we report the corresponding results in Table A.8. All

the models considered perform adequately at all levels with regard to uncondi-

tional coverage, comfortably passing the unconditional coverage, independence

and conditional coverage test. Only GARCH seems to underestimate VaR for

99% confidence level and GARCH-t somewhat overestimate it for 95 % con-
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fidence level. DQ test again signals significant misspecification almost for all

cases, except for 99% GARCH VaR. In terms of relative performance, we find

that compared to GARCH models, CAViaR specifications deliver the lower

tick-loss for both confidence levels, with AS being the absolute winner again

for 95% VaR and 99% as well, where its superior performance is even supported

with the DM test statistic.

Finally, we summarize the backtesting results for S&P 500 in Table A.9.

Generally, both GARCH and CAViaR models do a good job describing the

evolution of the left tail for both levels. Nevertheless, CAViaR specifications

seem to be more accurate as their proportion of failures is closer to either 1

% or 5%, depending on the corresponding VaR confidence level. Turning to

the information in the sequence of violations, all the models for both levels

manage to produce cluster-free violations, as indicated by the p-value of the

independence test. However, the DQ test suggests dynamic misspecifiaction as

the null hypothesis is rejected at 1% significance level in most cases. Only 99%

GARCH, GARCH-t and AS do not seem to suffer from any misspecification.

Having discussed the absolute performance, we now proceed with the evaluation

of the relative performance. Here we find that CAViaR specifications appear to

perform on par with GARCH in a statistical sense (DM test statistic), though

they deliver lower values of the tick-loss function. Both SAV and AS come

out similarly for 99% and 95% VaR, however, in case of S&P 500 index SAV

specification seems to be more precise for a change.

Out-of-sample performance

Now we assess the accuracy of models out-of-sample. The backtesting results

are reported in the right-hand side panel of Table 5.7 for PX, Table A.7 for

BUX, Table A.8 for DAX and Table A.9 for S&P 500.

Turnig to PX first, we find that all the models under study deliver simi-

lar results for 99% VaR in terms of the absolute performance, producing the

proportion of violations close to 1 % and all being accepted by unconditional

coverage, independence, conditional coverage and even DQ test. As for the

relative performance, DM test statistic does not indicate any statistical dif-

ference from the benchmark GARCH. However, judging by the value of the

tick-loss function, CAViaR specification SAV appears to be slightly more pre-

cise compared to AS and GARCH. Turning to the 5% quantile, we observe

different performance. Two models come out most accurate by the definition



5. Empirical application 43

- GARCH with normally distributed erros and CAViaR specification AS with

PoF very close to the nominal level. GARCH-t clearly overestimates the risk,

producing around 2 % of violations, whereas SAV tends to underestimate it

as the proportion of violations reaches almost 8.5 %. Despite that, even these

two models pass the unconditional coverage test. The sequences of violations

appear to be cluster-free, all passing the independence test. In case of GARCH

type models, DQ test indicates some misspecification, CAViaR specifications

seem to be correctly specified at 1% significance level. In terms of loss, GARCH

model appears to be best choice, though the difference in comparison with AS

is statistically insignificant (DM test statistic).

In case of BUX index, GARCH-t seems to perform best for the 99% VaR,

having the proportion of failures closest to the nominal level, though GARCH

and SAV perform quite good as well. AS does not seem to do a good job and

tends to underestimate VaR as it delivers nearly 3 % of violations, almost being

rejected by the unconditional coverage test at 1% significance level. Moving

to the 95% VaR, the most precise unconditional coverage is observed for SAV,

delivering around 4.5 % of violations and the least precise for GARCH-t with

3 % of violations, but still passing the unconditional coverage test. Turning

to the independence property of the sequence of violations, this is not rejected

by the indepence test for all the models at both levels. According to the

conditional coverage test, all the models are correct, though AS for 99% VaR

passes only marginally. However, the DQ test rejects the correct specification

in all cases. Assessing the relative performance, we find that for 99% VaR

GARCH-t produces the lowest value of the tick-loss function, therefore we

consider it the best choice. As for 95% VaR, CAViaR models perform better

in terms of loss, though not statistically different from the benchmark. By

the definition, SAV appears to be the best fit as it delivers the most precise

unconditional coverage and yet produces quite low tick-loss.

As for DAX index, all the models perform very well for 99% VaR with

regard to the unconditional coverage, independence, conditional coverage and

dynamic specification. For 95% VaR, all perform adequately, with GARCH-t

slightly overestimating and SAV underestimating VaR, but passing the uncon-

ditional coverage test and satisfying the independence property according to

the independence test. Nevertheless, the most accurate proportion of failures

(approximately 5.2 %) is delivered by GARCH, followed by AS with almost 4.4

% of violations. To choose the best fit for both levels, we look at the relative

performance statistics. For 99% VaR, forecasts are statistically indistinguish-
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able (DM test statistic) compared to the benchmark GARCH model, though

AS delivers the lowest value of the tick-loss. For 95% VaR, our conclusions are

very similar. We find GARCH and AS to be the best performing models in

terms of average loss, providing similar forecasts in a statistival sense.

Results for S&P 500 present quite a different picture. All the models provide

very poor performance out-of-sample, resulting in too many VaR violations and

noticeably underestimating VaR. The results are especially inferior further in

the left tail (99% VaR), where the proportion of failures is approximately four

times higher than the nominal level. Here all the models are strongly rejected

by all the tests. In case of 95% VaR, GARCH, GARCH-t and SAV pass at 1%

significance level, only AS is formally rejected by the unconditional coverage

test (producing 10.4 % of violations). Possibly the best fit here is GARCH-t

with PoF of 6.8 %, also producing the lowest value of the tick-loss function

and performing superiorly compared to the benchmark. Considerably worse

out-of-sample performance of both GARCH type and CAViaR models for S&P

500 in comparison with other indices can be probably explained by the earlier

kick-off of the GFC in the U.S., resulting in more extremely negative returns

and hence causing more violations.

5.3.2 Second (crisis) period

In-sample fit

Now we evaluate the performance of our investigated models in the crisis period

and proceed in the same manner as for the first (pre-crisis) period. Starting

with PX index again, the backtesting results are summarized in Table 5.8.

Similarly to the first period, we find that both CAViaR specifications do a

very good job describing the evolution of the left tail, having the proportion

of violations very close to either 1 % or 5 %, depending on the corresponding

confidence level. For 99% VaR, GARCH-t seems to slightly overestimate the

risk, while GARCH with normally distributed errors appears to do just the op-

posite, but this is again not surprising given the fact that we focus on the more

extreme quantile of the distribution. Still, all the models pass the conditional

coverage test, hence satisfying jointly the unconditional coverage and indepen-

dence properties. Though, the DQ test suggests dynamic misspecification for

all of them except for GARCH. In case of the 95% VaR, we observe the same

unconditional coverage for GARCH, SAV and AS (approximately 5 % of viola-

tions). GARCH-t delivers around 3.7 % of violations, thus overstating the risk,
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but passing the unconditional coverage test. However, turning to the indepence

property of the sequence of violations, only AS manages to produce cluster-free

violations, whereas the rest of the models are rejected at 5% significance level.

Table 5.8: Backtesting for PX, second period

Absolute and relative performance of GARCH and CAViaR models
for daily PX returns. The left-hand side panel reports results for
in-sample performance and the right-hand side panel reports results
for out-of-sample performance. For each VaR we report the actual
proportion of failures (PoF ), p-value of unconditional coverage test
(p−LRuc), p-value of independence test (p−LRind), p-value of con-
ditional coverage test (p − LRcc), p-value of DQ test of Engle &
Manganelli (2004) (p−DQ), the value of tick-loss function (Tα) and
Diebold-Mariano (DM) test statistic for equal predictive accuracy
with GARCH model with normal errors serving as the benchmark.
NA is reported in case of no violation.

in-sample out-of-sample

GARCH GARCH-t SAV AS GARCH GARCH-t SAV AS

99% VaR

PoF (%) 1.5889 0.7944 0.9930 0.9930 2.8000 0.0000 0.0000 0.8000

p− LRuc 0.0837 0.4965 0.9823 0.9823 0.0190 NA NA 0.7419

p− LRind 1.0000 1.0000 1.0000 1.0000 1.0000 NA NA 1.0000

p− LRcc 0.2240 0.7935 0.9997 0.9997 0.0640 NA NA 0.9474

p−DQ 0.5392 0.0002 0.0010 0.0010 0.0796 NA NA 0.5523

Tα 0.0634 0.0608 0.0629 0.0583 0.0322 0.0328 0.0339 0.0333

DM -1.6536 0.5133 -1.5168 -1.3360 -1.2283 -1.2693

95% VaR

PoF (%) 5.0645 3.6743 5.0645 5.0645 4.4000 4.0000 4.4000 4.4000

p− LRuc 0.9253 0.0432 0.9253 0.9253 0.6571 0.4529 0.6571 0.6571

p− LRind 0.0146 0.0107 0.0007 0.1555 1.0000 1.0000 1.0000 1.0000

p− LRcc 0.0504 0.0050 0.0033 0.3631 0.9061 0.7545 0.9061 0.9061

p−DQ 0.0000 0.0000 0.0000 0.0000 0.0025 0.0008 0.0025 0.0025

Tα 0.2015 0.2039 0.2037 0.1998 0.1255 0.1272 0.1230 0.1264

DM -2.5252 1.4902 0.2991 -2.3007 -1.3575 0.4972

Source: Author’s computations.

Evaluating the models more generally with conditional coverage test, apart

from AS, GARCH model passes as well, but only marginally. Not surprisingly,

the DQ test for correct specification rejects all the models. Moving on to
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the relative performance, we find AS to be the best performing model as it

produces the lowest value of the tick-loss function at both levels, though DM

test statistic does not indicate statistically significant difference in forecast

accuracy compared to the benchmark. In spite of that, we consider it the best

fit given the very precise unconditional coverage and independent violations (as

the only model for 95% confidence level).

Now we turn to BUX index, for which we present the results in Table A.10.

Here we observe very similar pattern as for PX, with CAViaR models being

more precise in terms of unconditional coverage at both levels. For 99% VaR,

GARCH and GARCH-t exhibit the same tendency, the former slightly under-

stating and the latter overstating the risk, but along with CAViaR comfortably

passing unconditional coverage, independence, conditional coverage and even

DQ test for correct specification (except for GARCH-t). Focusing on the 95%

VaR, the proportions of failures are very accurate for GARCH, SAV and AS,

with GARCH-t slightly overestimating VaR with almost 3.5 % of violations. All

the models satisfy the correct conditional coverage as suggested by the p-values

of the test. However, the DQ test rejects the correct dynamic specification for

all of them. To decide between the models with the best absolute performance,

we look at the the value of the tick-loss function and DM test statistic. As for

99% CAViaR, the average loss is more in favour of AS, whereas SAV manages

to deliver quite low loss as well while having the most precise unconditional

coverage at the same time. As suggested by DM test, performance of both

CAViaR specifications is statistically superior to the benchmark, therefore we

consider both of them to be a very good fit for BUX at this level. Even though

the CAViaR forecasts do not seem to be different from the benchmark in a

statistical sense at 95% confidence level, the results referring to the average

loss come out similarly, with AS appearing to the best choice here.

Moving on to DAX index, we report the corresponding results in Table A.11.

CAViaR models do a good job at both levels with regard to the unconditional

coverage, passing also the independence, conditional coverage test and DQ test

at 1% significance level. The forecasting tendencies of GARCH type models ob-

served in case of PX and BUX are apparent also here, especially for GARCH-t

(resulting in 0.3 % of violations). As for 95% VaR, all the models deliver similar

proportion of failures, coming close to 5 %, except for GARCH. This produces

6.5 % of violations, resulting in the underestimatoin of the underlying risk and

not passing the conditional coverage test. DQ test again signals significant

misspecification for all the models at this level. In terms of the relative perfor-
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mance, we find that CAViaR specifications deliver the lower tick-loss for both

confidence levels, also providing statistically more accurate forecasts compared

to the benchmark for 5% quantile (DM test statistic), with AS to be producing

absolutely the lowest value of the tick-loss function.

Last but not least, we summarize the results for S&P 500 in Table A.12. In

this case, we come to the same conclusions as before. CAViaR models perform

very well at both levels with regard to the unconditional coverage. GARCH

type models follow similar pattern as for PX, BUX and DAX. Turning to the

information in the sequence of violations, all the models for both confidence

levels manage to produce cluster-free violations, as indicated by the p-value

of the independence test. Apart from 99% GARCH VaR, all the models also

have the correct conditional coverage. However, the DQ test suggests dynamic

misspecifiaction as the null hypothesis is rejected at 5% significance level in

all cases. Having discussed the absolute performance, we now proceed with

the evalution of the relative performance, where we try to decide for a possible

winner. Again, we observe the best performance of CAViaR specifications in

terms of the average loss at both levels, especially for 1% quantile, with AS

proving to be the best choice for both 99% and 95% VaR, even though in the

second case there is no significant difference from the benchmark.

Out-of-sample performance

As before, we assess the accuracy of the models also out-of-sample. The back-

testing results are reported in the right-hand side panel of Table 5.8 for PX,

Table A.10 for BUX, Table A.11 for DAX and Table A.12 for S&P 500.

Turnig to PX first, we find quite different results for the 1% quantile com-

pared to the pre-crisis period. Two of four models, namely GARCH-t and SAV,

fail to produce any violation and hence are rejected by all the tests referring

to the absolute performance. GARCH clearly understates the risk, resulting in

too many VaR violations (2.8 %), but still marginally passing the unconditional

coverage test at 1% significance level. The only model producing proportion of

failures closest to the nominal level is AS, with 0.8 % of violations, having also

the correct condtitional coverage and dynamic specification. For 95% VaR,

all the models perform adequately, delivering cluster-free volations and PoF

around 4 %, all unambiguously passing the more general conditional coverage

test. Though, according to the DQ test, the models do not seem to be cor-

rectly specified at this level. To choose between three possibilies with the most
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precise conditional coverage, we turn to the evaluation of the relative perfor-

mance. Even though the DM test does not suggest statistically more accurate

forecasts of either SAV or AS compared to the benchmark GARCH, in this case

we consider SAV to be the best fit, as it manages to produce the most precise

PoF and the lowest value of the tick-loss function at the same time.

Continuing with BUX index, we observe similar results at 99% confidence

level as for PX, but here only GARCH results in some violations, not being

rejected by the unconditional coverage, independence, conditional coverage and

DQ test. The rest of the models clearly overestimate the risk as they fail to

produce any violation. Turning to the 5% quantile, we find CAViaR specifica-

tions to be more aacurate, delivering around 4 % and 6.1 % of violations (SAV

and AS respectively), whereas GARCH type models produce PoF below 3 %,

but still passing the unconditional coverage test. All of the models are not

rejected by the independence test. DQ test however again indicates misspecifi-

cation, only except for AS, which eventually favours this CAViaR specification.

Looking at the value of the tick-loss function, the previous conclusion about

the AS accuracy is supported as this succeeds in producing the lowest average

loss.

Similarly to BUX, also in case of S&P 500 we observe very poor out-of-

sample performance of three out of four models at 99% confidence level, de-

livering no violations and hence being rejected by all the tests regarding the

absolute performance. Again, the only good fit is GARCH, with 1.2 % of vio-

lations, also producing independent violations according to the p-value of the

independence test, comfortably passing both conditional coverage and DQ test

for correct dynamic specification and having the lowest value of the tick-loss

function at the same time. As for 95% VaR, we find that all the models con-

sidered tend to overestimate the risk, resulting in less violations. Here again

GARCH seems to be the best choice by the definition and also in relative terms,

having the unconditional coverage of 3.6 % and passing also independence and

conditional coverage test. However, it is strongly rejected by the DQ test at

this level. Despite that, we consider it the best choice for S&P 500.

For DAX index, the results are generally better than for the previous indices,

especially for 1% quantile. All the models do quite a good job describing the

evolution of the left tail, where GARCH and SAV deliver the same and the most

precise results with respect to all the absolute performance tests. The remaining

two models pass as well, though they are less precise by the definition. In case

of the 95% VaR, the most precise model in terms of unconditional coverage
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is GARCH with normally distributed errors (4.3 % of violations), followed by

SAV (3.5% of violations). The models again pass the tests, except for the DQ

test that suggest misspecification for all of them. To choose the best fit, we

turn to the evaluation of the relative performance. According to the DM test

statistic, the forecsts of all the models are not statistically different from the

benchmark at both levels. Though deciding between GARCH and SAV, the

value of the tick-loss function is slightly lower for GARCH. Considering that

it delivers more precise unconditional coverage for 95% VaR, we can conclude

that this model comes out best at both confidence levels.

5.4 Summary and discussion of the results

Having described the backtesting results for all the indices in detail, we now

proceed with the summary and discussion of the overall performance. First

we focus on each period separately, since we want to examine also how the

performance of the investigated models is influenced by the inclusion of the

GFC in the sample and then we try to draw some general conclusion.

In the first (pre-crisis) period, CAViaR models perform very well in-sample

for all indices at both 99% and 95% confidence levels in terms of the absolute

performance, having the unconditional coverage generally closest to the nom-

inal level (either 1 % or 5 %). At the same time, these models also succeed

in producing the lowest value of the tick-loss function, which means that their

adaptation to the returns is more flexible in time, unlike GARCH models that

generally exhibit relatively long memory. The precision of both Symmetric Ab-

solute Value (SAV) and Asymmetric Slope (AS) CAViaR specifications is not

suprising, due to the design of the RQ objective function. GARCH type models

often perform less adequately in-sample, delivering very poor results in some

cases. As the results suggest, AS appears to be the best choice in most cases,

followed by SAV that works somewhat better for S&P 500 at both confidence

levels. The only exception is presented for 99% VaR in case of BUX, where

GARCH could possibly come out as a winner in comparison with SAV, based

on the value of the tick-loss function and DM test statistic for equal predictive

ability. However, out-of-sample does not present such definite conclusions in

favour of CAViaR models as in the in-sample. Having evaluated the perfor-

mance also out-of-sample, we find that at least one GARCH specification is

always able to do comparably good job as some CAViaR specification, if not

better, depending on the confidence level. Only in case of S&P 500, the results
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show poor performance of both GARCH and CAViaR models, especially for

the lower left tail. For 5% quantile, GARCH-t performs best. This could be

possibly attributed to the fact that the model considers heavier tails and unlike

the remaining models it is able to deal with the sudden spur of volatility and

occurrence of more extreme observations caused by the forthcoming financial

crisis, which is already covered in the out-of-sample for this index.

Turning to the second period covering the 08/09 GFC, as a group, CAViaR

models again perform uniformly better in-sample than GARCH models at both

confidence levels for all the indices, delivering the most precise unconditional

and conditional coverage and being able to produce the lowest average tick-loss

at the same time. Even though DM test does not always indicate significantly

more accurate forecats, AS specification again seems to be generally the best

choice across indices and confidence levels due to the lowest value of the tick-

loss function. However, the performance of all the models out-of-sample is

again commonly worse than in-sample. As could be expected, compared to

the pre-crisis period, we observe generally poorer out-of-sample performance,

with the unconditional coverage mostly below the nominal levels. The results

come out inferior especially further in the left tail. For 1% quantile, in case

of BUX and S&P 500, GARCH-t, SAV and AS produce no violations at all,

hence highly overstate the risk. Only GARCH with normally distributed errors

results in some VaR violations, being the only possible fit by the definition for

these indices at this level. GARCH and also SAV seem to perform adequately

for DAX, while AS manages to do quite a good job describing the evolution

of the left tail for PX. At the 95% confidence level, CAViaR models provide

relatively accurate forecasts in terms of the unconditional coverage and the

average loss for PX (SAV) and BUX (AS), while GARCH appears to be more

precise for S&P 500 and possibly DAX. Not surprisingly, worse performance of

the models might be explained by the fact that their parameters were estimated

on the sample that comprises highly volatile years, which consequently leads to

the overestimation of the risk out-of-sample. In particular, for GARCH-t this

resulted in quite low values of the degrees of freedom (ν) across indices, which

did not necessarily coincide with the observations in the out-of-sample within

this period.

Generally, as a group, CAViaR models manage to deliver very accurate,

often superior, in-sample performance with respect to the unconditional and

conditional coverage, and the average loss, though they are often rejected by

the DQ test for correct dynamic specification. However, as this tests for much
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higher-order dependencies in the data, it is much stricter compared to the

others.3 Very accurate in-sample performance of CAViaR in terms of condi-

tional coverage and loss, even in the crisis period, leads us to believe that this

approach may be generally a suitable tool for VaR estimation, avoiding the

restrictive assumptions about the distribution of return innovations being its

greatest advantage. We suppose that even better overall performance would

be achieved having estimated the one-step-ahead VaR as the rolling sample, as

commonly done in practice, and possibly on the larger sample. Furthermore,

we suppose that the performance of this approach on Central European stock

market data could be likely improved by extending the quantile regressions

with variables that incorporate more information about the financial returns,

such as implied volatility etc., as has been mentioned in Chapter 3. However,

we leave this for further research.

3Our results referring to the DQ test are consistent with other works, for example Kuester
et al. (2006).



Chapter 6

Conclusion

The thesis concentrates on the direct conditional Value at Risk modeling, apply-

ing the flexible quantile regression and hence avoiding making strict assump-

tions about the distribution of return innovations. We investigate how the

introduction of dynamics to VaR estimation using semiparametric Conditional

Autoregressive Value at Risk (CAViaR) models of Engle & Manganelli (2004)

impacts VaR performance and predictive ability. In our empirical application,

we compare this semiparametric method for VaR calculation to the more com-

mon parametric approach that serves as the benchmark. More precisely, we

compare our key CAViaR models to the GARCH models with two different

error distributions: normal and also Student t-distribution as this is more in

accord with the characteristics of financial data. Among four different CAViaR

specifications, we estimate two, namely Symmetric Absolute Value (SAV) and

Asymmetric Slope (AS). Our first main contribution stems from the fact that

we examine the performance of these models on Central European stock price

indices. Using ten years of data from January 2003 to December 2012 and

dividing the dataset into two time periods (01/2003 - 12/2007 and 01/2008

- 12/2012) also enables us to study how the performance of these models is

affected by the 08/09 GFC, which is another contribution.

In the first part of the thesis, we present the theoretical background for

Value at Risk concept, where we describe the common methods for its calcu-

lation, with their stronger and weaker points. Further, we focus of the funda-

mentals of GARCH and CAViaR models and their estimation techniques. We

conclude the theoretical part with the methods used for forecast evaluation of

the absolute as well as the relative performance.

In the empirical part, we start with the analysis of the corresponding market
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data and proceed with the estimation of considered VaR models. Then we turn

to the evaluation of their performance, where we focus on each period separately

(as well as the in-sample fit and the out-of-sample performance) and describe

the results for all the indices in detail. Finally, we provide the summary and

discussion of the results.

The results indicate that the CAViaR models perform better in-sample,

delivering very accurate unconditional and conditional coverage and lower loss

at the same time, compared to the parametric GARCH models. Very precise

estimates are obtained in the first (pre-crisis) period and also the second (crisis)

period. The results are generally much less the same for all the indices. GARCH

with normally distributed errors often tends to underestimate the risk, while

the assumption of t-distributed errors leads to its overestimation, especially

further in the left tail. From all the models, AS CAViaR seems to be the best

fit in most cases, with regard to the unconditional and conditional coverage and

the average loss. As for the predictive ability, CAViaR specifications provide

also accurate out-of-sample forecasts. As expected, better results are obtained

in the first period. The forecasts are accurate at both 99% and 95% confidence

levels, especially for PX and DAX. In case of S&P 500 we obtain uniformly

inferior results, which can be explained by the earlier kick-off of the GFC in

the U.S. Out-of-sample performance in the second period generally comes out

poorer. This is not surprising since the in-sample within this period comprises

two highly volatile years and exhibits quite different characteristics compared

to the data in the out-of-sample. However, CAViaR models still manage to do

quite a good job, especially in case of PX at both levels, BUX at 95% level or

DAX at 99% level.

In conclusion, we showed that the direct modeling of conditional quantiles

is a reasonable approach to VaR estimation, which improves VaR accuracy.

Precise performance of the CAViaR models as a group, even in the crisis period,

leads us to believe that this approach may be very useful as a risk management

tool. As we considered the basic CAViaR in our application, it might be of

interest to examine the performance of its extended versions that could possibly

deliver even better results. We see this as a base for future work.
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A. Tables II

Table A.1: Descriptive Statistics: in-sample, first period

Statistics PX BUX DAX S&P 500

Observations 1007 1009 1022 1007

Mean 0.1221 0.1135 0.0738 0.0442

Median 0.1756 0.1385 0.1199 0.0807

Std. dev. 1.0811 1.3200 1.2437 0.7774

Minimum -6.1250 -5.6027 -6.3360 -3.5867

Maximum 7.0482 4.8660 6.6446 3.4814

Skewness -0.5519 -0.2436 -0.1753 0.0198

Ex. kurtosis 4.9091 1.0641 3.3232 1.3918

Jarque-Bera test

p-value 3.57639e-231 3.21794e-013 6.97703e-104 2.25864e-018

test statistic 1061.2500 57.5297 475.0520 81.2635

ADF test

p-value 4.904e-009 8.931e-011 7.931e-009 4.404e-015

test statistic -6.8967 -7.4819 -6.8236 -8.7650

Source: Author’s computations.

Table A.2: Descriptive Statistics: out-of-sample, first period

Statistics PX BUX DAX S&P 500

Observations 249 244 251 250

Mean 0.0461 0.0229 0.0751 0.0144

Median 0.1091 0.0993 0.1203 0.0813

Std. dev. 1.0722 1.1800 0.9766 1.0112

Minimum -5.6732 -4.3649 -3.0036 -3.5343

Maximum 2.7433 3.3440 2.5214 2.8790

Skewness -0.8876 -0.1324 -0.3134 -0.4947

Ex. kurtosis 3.1820 1.1716 0.3611 1.4321

Jarque-Bera test

p-value 1.22753e-030 0.000653091 0.0648523 1.40127e-007

test statistic 137.7450 14.6676 5.47129 31.5614

ADF test

p-value 8.921e-012 0.0324 4.496e-028 0.0228

test statistic -7.7979 -3.5703 -15.6394 -3.6923

Source: Author’s computations.
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Table A.3: Descriptive Statistics: in-sample, second period

Statistics PX BUX DAX S&P 500

Observations 1007 1009 1026 1009

Mean -0.0682 -0.0419 -0.0291 -0.0139

Median -0.0516 -0.0334 0.0292 0.0903

Std. dev. 2.0585 2.1599 1.8320 1.8104

Minimum -16.1850 -12.6490 -7.4335 -9.4695

Maximum 12.3640 13.1780 10.7970 10.9570

Skewness -0.3945 -0.0030 0.1583 -0.2193

Ex. kurtosis 9.7730 4.9324 4.6612 5.7526

Jarque-Bera test

p-value 0 1.30899e-222 3.75849e-203 2.74216e-304

test statistic 4029.5800 1021.8100 932.2020 1397.9500

ADF test

p-value 0.0008392 8.823e-005 2.279e-006 5.849e-006

test statistic -4.6394 -5.1571 -5.8782 -5.7030

Source: Author’s computations.

Table A.4: Descriptive Statistics: out-of-sample, second period

Statistics PX BUX DAX S&P 500

Observations 250 244 255 249

Mean 0.0469 0.0239 0.0826 0.0444

Median 0.0814 -0.0797 0.1126 0.0195

Std. dev. 1.0496 1.2367 1.1669 0.7997

Minimum -3.4715 -3.1675 -3.4773 -2.4951

Maximum 3.3581 4.1324 4.2401 2.4615

Skewness -0.1065 0.3000 -0.1513 0.0350

Ex. kurtosis 0.4053 0.5600 1.2879 0.8694

Jarque-Bera test

p-value 0.335571 0.0326188 9.16231e-005 0.0193327

test statistic 2.1838 6.8457 18.5957 7.8919

ADF test

p-value 0.01203 1.363e-025 2.148e-016 2.101e-016

test statistic -3.9005 -14.3260 -9.1228 -9.1254

Source: Author’s computations.



A. Tables IV

Table A.5: Akaike Information Criteria for GARCH(p,q), first period

GARCH GARCH-t

(p,q) PX BUX DAX S&P 500 PX BUX DAX S&P 500

(1,1) 2874.0 2869.4 2870.9 2871.3 2795.1 2795.9 2870.9 2871.3

(1,2) 3350.2 3347.6 3343.8 3342.4 3345.2 3342.6 3340.5 3339.1

(2,1) 3003.7 3003.0 3004.1 3004.8 2994.2 2992.6 2994.3 2994.5

(2,2) 2228.3 2223.3 2226.2 2224.9 2229.2 2223.8 2227.1 2225.4

Source: Author’s computations.

Table A.6: Akaike Information Criteria for GARCH(p,q), second pe-
riod

GARCH GARCH-t

(p,q) PX BUX DAX S&P 500 PX BUX DAX S&P 500

(1,1) 3760.1 3761.4 3761.0 3763.0 3737.9 3739.6 3739.6 3735.5

(1,2) 4122.5 4124.5 4124.5 4126.4 4100.7 4102.7 4102.7 4104.6

(2,1) 3827.1 3821.5 3827.3 3823.0 3807.1 3794.9 3805.9 3796.6

(2,2) 3559.7 3535.7 3544.9 3536.9 3533.0 3513.5 3522.0 3514.0

Source: Author’s computations.
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Table A.7: Backtesting for BUX, first period

Absolute and relative performance of GARCH and CAViaR models
for daily BUX returns. The left-hand side panel reports results for
in-sample performance and the right-hand side panel reports results
for out-of-sample performance. For each VaR we report the actual
proportion of failures (PoF ), p-value of unconditional coverage test
(p−LRuc), p-value of independence test (p−LRind), p-value of con-
ditional coverage test (p − LRcc), p-value of DQ test of Engle &
Manganelli (2004) (p−DQ), the value of tick-loss function (Tα) and
Diebold-Mariano (DM) test statistic for equal predictive accuracy
with GARCH model with normal errors serving as the benchmark.

in-sample out-of-sample

GARCH GARCH-t SAV AS GARCH GARCH-t SAV AS

99% VaR

PoF (%) 0.9911 0.5946 0.9911 0.8920 1.6393 1.2295 1.6393 2.8689

p− LRuc 0.9772 0.1616 0.9772 0.7253 0.3581 0.7280 0.3581 0.0168

p− LRind 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p− LRcc 0.9995 0.3754 0.9995 0.9401 0.6555 0.9412 0.6555 0.0572

p−DQ 0.0038 0.0024 0.0009 0.0001 0.0007 0.0000 0.0007 0.0030

Tα 0.0392 0.0397 0.0406 0.0397 0.0406 0.0391 0.0402 0.0474

DM -2.1214 2.1777 -1.2051 -1.4883 -0.8979 1.0489

95% VaR

PoF (%) 3.3697 2.6759 4.8563 4.9554 3.6885 2.8689 4.5082 3.6885

p− LRuc 0.0118 0.0002 0.8333 0.9481 0.3251 0.0980 0.7202 0.3251

p− LRind 1.0000 1.0000 0.6846 0.2660 1.0000 1.0000 1.0000 1.0000

p− LRcc 0.0418 0.0010 0.5375 0.9007 0.6162 0.2543 0.9378 0.6162

p−DQ 0.0000 0.0000 0.0000 0.0000 0.0013 0.0001 0.0107 0.0013

Tα 0.1375 0.1402 0.1382 0.1366 0.1291 0.1315 0.1280 0.1273

DM -2.7605 3.0272 1.6776 -1.5805 0.9793 -0.8144

Source: Author’s computations.
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Table A.8: Backtesting for DAX, first period

Absolute and relative performance of GARCH and CAViaR models
for daily DAX returns. The left-hand side panel reports results for
in-sample performance and the right-hand side panel reports results
for out-of-sample performance. For each VaR we report the actual
proportion of failures (PoF ), p-value of unconditional coverage test
(p−LRuc), p-value of independence test (p−LRind), p-value of con-
ditional coverage test (p − LRcc), p-value of DQ test of Engle &
Manganelli (2004) (p−DQ), the value of tick-loss function (Tα) and
Diebold-Mariano (DM) test statistic for equal predictive accuracy
with GARCH model with normal errors serving as the benchmark.

in-sample out-of-sample

GARCH GARCH-t SAV AS GARCH GARCH-t SAV AS

99% VaR

PoF (%) 1.8591 0.9785 0.9785 1.0763 1.1952 0.7968 1.1952 1.1952

p− LRuc 0.0137 0.9447 0.9447 0.8086 0.7630 0.7373 0.7630 0.7630

p− LRind 0.3616 0.0826 0.0826 0.1035 1.0000 1.0000 1.0000 1.0000

p− LRcc 0.0316 0.2211 0.2211 0.2581 0.9555 0.9453 0.9555 0.9555

p−DQ 0.2988 0.0012 0.0000 0.0007 0.2291 0.7802 0.2291 0.2290

Tα 0.0366 0.0352 0.0336 0.0333 0.0325 0.0328 0.0323 0.0321

DM -2.8414 -2.6966 -2.7720 -1.3090 -1.1522 -1.2346

95% VaR

PoF (%) 5.4795 3.9139 5.1859 5.0881 5.1793 3.5857 6.3745 4.3825

p− LRuc 0.4883 0.0982 0.7863 0.8975 0.8969 0.2799 0.3370 0.6468

p− LRind 0.1509 0.6152 0.2056 0.2268 1.0000 1.0000 0.9797 1.0000

p− LRcc 0.2803 0.2246 0.4326 0.4778 0.9916 0.5577 0.6305 0.9003

p−DQ 0.0000 0.0000 0.0000 0.0000 0.0085 0.0010 0.0020 0.0023

Tα 0.1316 0.1323 0.1298 0.1271 0.1112 0.1126 0.1121 0.1083

DM -3.7377 -1.0983 -0.8611 -2.0003 2.0213 -0.5282

Source: Author’s computations.



A. Tables VII

Table A.9: Backtesting for S&P 500, first period

Absolute and relative performance of GARCH and CAViaR models
for daily S&P 500 returns. The left-hand side panel reports results
for in-sample performance and the right-hand side panel reports re-
sults for out-of-sample performance. For each VaR we report the
actual proportion of failures (PoF ), p-value of unconditional cover-
age test (p−LRuc), p-value of independence test (p−LRind), p-value
of conditional coverage test (p−LRcc), p-value of DQ test of Engle &
Manganelli (2004) (p−DQ), the value of tick-loss function (Tα) and
Diebold-Mariano (DM) test statistic for equal predictive accuracy
with GARCH model with normal errors serving as the benchmark.

in-sample out-of-sample

GARCH GARCH-t SAV AS GARCH GARCH-t SAV AS

99% VaR

PoF (%) 1.2910 0.8937 1.0924 1.0924 4.4000 3.6000 3.6000 4.4000

p− LRuc 0.3745 0.7300 0.7716 0.7716 0.0001 0.0014 0.0014 0.0001

p− LRind 1.0000 1.0000 0.1053 1.0000 1.0000 1.0000 1.0000 1.0000

p− LRcc 0.6741 0.9421 0.2582 0.9587 0.0003 0.0060 0.0060 0.0003

p−DQ 0.6222 0.0544 0.0009 0.0219 0.0000 0.0000 0.0052 0.0000

Tα 0.0205 0.0203 0.0198 0.0203 0.0451 0.0420 0.0440 0.0466

DM -2.1048 -0.9976 -1.1677 -2.5399 -0.6327 1.1980

95% VaR

PoF (%) 4.4687 4.0715 4.9652 5.2632 8.0000 6.8000 7.6000 10.4000

p− LRuc 0.4312 0.1630 0.9596 0.7039 0.0444 0.2146 0.0787 0.0006

p− LRind 0.1909 0.1060 0.7385 0.2041 0.5801 1.0000 1.0000 0.1931

p− LRcc 0.3119 0.1024 0.9446 0.4153 0.1139 0.4629 0.2132 0.0011

p−DQ 0.0000 0.0000 0.0000 0.0000 0.5284 0.1900 0.1450 0.5500

Tα 0.0798 0.0802 0.0787 0.0788 0.1305 0.1296 0.1310 0.1367

DM -3.2046 0.5253 0.8015 -3.2635 0.9634 2.7513

Source: Author’s computations.



A. Tables VIII

Table A.10: Backtesting for BUX, second period

Absolute and relative performance of GARCH and CAViaR models
for daily BUX returns. The left-hand side panel reports results for
in-sample performance and the right-hand side panel reports results
for out-of-sample performance. For each VaR we report the actual
proportion of failures (PoF ), p-value of unconditional coverage test
(p−LRuc), p-value of independence test (p−LRind), p-value of con-
ditional coverage test (p − LRcc), p-value of DQ test of Engle &
Manganelli (2004) (p−DQ), the value of tick-loss function (Tα) and
Diebold-Mariano (DM) test statistic for equal predictive accuracy
with GARCH model with normal errors serving as the benchmark.
NA is reported in case of no violation.

in-sample out-of-sample

GARCH GARCH-t SAV AS GARCH GARCH-t SAV AS

99% VaR

PoF (%) 1.3875 0.6938 0.9911 1.1893 0.4098 0.0000 0.0000 0.0000

p− LRuc 0.2426 0.3008 0.9772 0.5573 0.2933 NA NA NA

p− LRind 1.0000 1.0000 1.0000 1.0000 1.0000 NA NA NA

p− LRcc 0.5051 0.5854 0.9995 0.8418 0.5756 NA NA NA

p−DQ 0.1887 0.0076 0.0214 0.0214 0.5962 NA NA NA

Tα 0.0645 0.0644 0.0612 0.0577 0.0337 0.0391 0.0405 0.0373

DM -2.6540 -2.6471 -2.4832 1.1356 1.6598 0.5423

95% VaR

PoF (%) 4.7572 3.4688 4.9554 4.9554 2.8689 2.0492 4.0984 6.1475

p− LRuc 0.7213 0.0184 0.9481 0.9481 0.0980 0.0170 0.5053 0.4265

p− LRind 0.6345 0.8350 0.0426 0.7407 1.0000 1.0000 0.4116 0.9353

p− LRcc 0.8381 0.0609 0.1278 0.9447 0.2543 0.0578 0.5718 0.7265

p−DQ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 0.1025

Tα 0.2168 0.2201 0.2156 0.2138 0.1299 0.1356 0.1307 0.1265

DM -2.9143 -1.1900 -0.1426 -0.6226 1.7444 1.1552

Source: Author’s computations.



A. Tables IX

Table A.11: Backtesting for DAX, second period

Absolute and relative performance of GARCH and CAViaR models
for daily DAX returns. The left-hand side panel reports results for
in-sample performance and the right-hand side panel reports results
for out-of-sample performance. For each VaR we report the actual
proportion of failures (PoF ), p-value of unconditional coverage test
(p−LRuc), p-value of independence test (p−LRind), p-value of con-
ditional coverage test (p − LRcc), p-value of DQ test of Engle &
Manganelli (2004) (p−DQ), the value of tick-loss function (Tα) and
Diebold-Mariano (DM) test statistic for equal predictive accuracy
with GARCH model with normal errors serving as the benchmark.

in-sample out-of-sample

GARCH GARCH-t SAV AS GARCH GARCH-t SAV AS

99% VaR

PoF (%) 1.4620 0.2924 0.9747 1.0721 0.7843 0.3922 0.7843 0.3922

p− LRuc 0.1641 0.0073 0.9347 0.8185 0.7190 0.2660 0.7190 0.2660

p− LRind 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p− LRcc 0.3798 0.0274 0.9966 0.9739 0.9373 0.5386 0.9373 0.5386

p−DQ 0.9891 0.0000 0.0960 0.0427 0.8202 0.5194 0.8202 0.5194

Tα 0.0498 0.0537 0.0487 0.0458 0.0371 0.0405 0.0377 0.0356

DM -1.5293 -1.0778 -1.1426 -1.0489 -1.2052 -1.1946

95% VaR

PoF (%) 6.5302 4.7758 4.7758 4.8733 4.3137 3.1373 3.5294 3.1373

p− LRuc 0.0314 0.7400 0.7400 0.8517 0.2646 0.1440 0.2564 0.1440

p− LRind 0.1787 1.0000 1.0000 0.2767 1.0000 1.0000 1.0000 1.0000

p− LRcc 0.0399 0.9464 0.9464 0.5438 0.8760 0.3438 0.5251 0.3438

p−DQ 0.0000 0.0000 0.0000 0.0000 0.0002 0.0045 0.0007 0.0002

Tα 0.1891 0.1886 0.1890 0.1820 0.1390 0.1434 0.1392 0.1340

DM -3.7892 -2.8192 -2.1476 -1.7261 -1.8808 -1.8778

Source: Author’s computations.



A. Tables X

Table A.12: Backtesting for S&P 500, second period

Absolute and relative performance of GARCH and CAViaR models
for daily S&P 500 returns. The left-hand side panel reports results
for in-sample performance and the right-hand side panel reports re-
sults for out-of-sample performance. For each VaR we report the
actual proportion of failures (PoF ), p-value of unconditional cover-
age test (p−LRuc), p-value of independence test (p−LRind), p-value
of conditional coverage test (p−LRcc), p-value of DQ test of Engle &
Manganelli (2004) (p−DQ), the value of tick-loss function (Tα) and
Diebold-Mariano (DM) test statistic for equal predictive accuracy
with GARCH model with normal errors serving as the benchmark.
NA is reported in case of no violation.

in-sample out-of-sample

GARCH GARCH-t SAV AS GARCH GARCH-t SAV AS

99% VaR

PoF (%) 2.1804 0.4955 1.1893 1.0902 1.2048 0.0000 0.0000 0.0000

p− LRuc 0.0011 0.0743 0.5573 0.7766 0.7530 NA NA NA

p− LRind 1.0000 1.0000 1.0000 1.0000 1.0000 NA NA NA

p− LRcc 0.0049 0.2034 0.8418 0.9605 0.9517 NA NA NA

p−DQ 0.0356 0.0000 0.0009 0.0009 0.2170 NA NA NA

Tα 0.0520 0.0523 0.0503 0.0488 0.0245 0.0277 0.0270 0.0265

DM -1.7970 0.5309 -2.0883 -0.8956 -0.9724 -0.9912

95% VaR

PoF (%) 6.1447 4.2616 4.8563 5.0545 3.6145 2.8112 2.0080 2.0080

p− LRuc 0.1067 0.2701 0.8333 0.9368 0.2923 0.0852 0.0142 0.0142

p− LRind 0.2813 0.4841 0.2918 1.0000 1.0000 1.0000 1.0000 1.0000

p− LRcc 0.1523 0.4261 0.5611 0.9968 0.5743 0.2272 0.0495 0.0495

p−DQ 0.0000 0.0000 0.0000 0.0000 0.0008 0.0001 0.0000 0.0000

Tα 0.1862 0.1864 0.1868 0.1825 0.0934 0.0984 0.0991 0.0988

DM -3.2593 -2.0466 -0.6972 -1.3101 -1.3301 -1.2630

Source: Author’s computations.
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B. Figures XII

Figure B.1: Closing prices of all indices, first period

In-sample covers the period of 01/2003 - 12/2006, out-of-sample the
year of 2007.
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B. Figures XIII

Figure B.2: Log returns of all indices, first period

In-sample covers the period of 01/2003 - 12/2006, out-of-sample the
year of 2007.
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B. Figures XIV

Figure B.3: Closing prices of all indices, second period

In-sample covers the period of 01/2008 - 12/2011, out-of-sample the
year of 2012.
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B. Figures XV

Figure B.4: Log returns of all indices, second period

In-sample covers the period of 01/2008 - 12/2011, out-of-sample the
year of 2012.
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B. Figures XVI

Figure B.5: SAV CAViaR at 95% confidence level, first period

Returns and one-step-ahead VaR forecasts of Symmetric Absolute
Value CAViaR at 95% confidence level. In-sample covers the period
of 01/2003 - 12/2006, out-of-sample the year of 2007.
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B. Figures XVII

Figure B.6: SAV CAViaR at 95% confidence level, second period

Returns and one-step-ahead VaR forecasts of Symmetric Absolute
Value CAViaR at 95% confidence level. In-sample covers the period
of 01/2008 - 12/2011, out-of-sample the year of 2012.
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