<u>**Příloha č. 1:**</u> Willisův tepenný okruh Fig. 548. Obrázek dostupný z: http://commons.wikimedia.org/wiki/File:Sobo\_1909\_3\_548.png # Příloha č. 2: Wernickeovo-Mannovo držení – vadné držení těla vlivem patologického rozložení svalového tonu (charakteristické pro CMP při uzávěru a.cerebri media) (Pfeiffer, 2007) ## Příloha č. 3: Anatomie horní končetiny Obr. 1: cévní a nervové zásobení horní končetiny, Obr. 2: svaly horní končetiny Obr. 1 dostupný z: http://www.bartleby.com/107/illus816.html Obr. 2 dostupný z: http://medicine.academic.ru/5376/Muscle ## Příloha č. 4: Mechanika robotického systému Obr. 1: exoskeleton, Obr. 2: end-effector Obr. 1 dostupný z: http://www.tremorjournal.org/index.php/tremor/article/view/77/html Obr. 2 dostupný z: http://www.jneuroengrehab.com/content/5/1/15/figure/F1?hiG # Příloha č. 5: Přehled elektromechanických a roboticky-asistujících systémů zaměřených na HK podle Patrizia Poli (2013). | Devices | Characteristics | |-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | InMotion robot | 3 active degrees of freedom (DOFs) wrist robot mounted at the tip of a companion planar robot (MIT-MANUS), allowing 5 active DOFs at the shoulder, the elbow, and the wrist. | | Mirror Image Movement Enhancer | 6 DOFs robot manipulator; the treatment focused on shoulder and elbow function; unilateral or bilateral upper limb training. | | Bi-Manu-Track | 1 DOF system to train forearm pronation/supination and wrist flexion/extension; bilateral training in passive or active mode; no feedback to the patient. | | Gentle/S | 3 DOFs robot manipulator (HapticMaster, FCS Robotics, The Netherlands) with an extra 3DOF passive gimbal mechanism (allows for pronation/supination of the elbow as well as flexion and extension of the wrist), an exercise table, computer screen, overhead frame and chair. | | Arm robot ARMin | Semiexoskeleton for movement of the shoulder (3DOFs), the elbow (1DOF), the forearm (1DOF), and the wrist (1DOF); matched with an audio-visual display used to illustrate the movement task to the patient. | | Assisted Rehabilitation and Measurement Guide | 4 DOFs robotic device provides arm reaching therapy for patients with chronic hemiparesis; it gives patient a real time visual feedback of the location of the arm. | | REHAROBTherapeutic System | Firstly for rehabilitation robotics, uses standard industrial robots, not modified, but equipped with extra safety systems and a special instrumented orthotic, developed for fixing the patient's limb it provides passive shoulder and elbow physiotherapy. limb; it provides passive shoulder and elbow physiotherapy. | | NeuroRehabilitation Robot | 3 DOFs robot, based on direct-drive wire actuation; it gives patient visual and auditory feedbacks; easily transportable | Příloha č. 6: Přehled robotických systémů zaměřených na HK dle Pawela Maciejasze (Maciejasz, 2014) | System name,references | DOF | Supported movements | Main control inputs | Actuators | Type; field of application | Stage of development<br>additional information | |-----------------------------------------|-----|------------------------|------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------| | | | | Systems assisting : | shoulder movements | | | | Kiguchi [114] | 2 | Shoulder – FE, AA | sEMG | DC motors (x2) | Stationary system (exoskeleton-based); power assistance | C0 study: 1 hs | | | | | Systems assisting | elbow movements | | 7 | | Cheng [9] | 1 | Elbow – FE | sEMG | DC motor | Stationary system;<br>physical therapy | Cl study: 5 stroke + 5 hs | | Cozens [10] | 1 | Elbow – FE | Joint angle | Electric servo-<br>motor | Stationary system;<br>physical therapy | CI study: 10 stroke + MS | | Kiguchi [170] | 1 | Elbow – FE | sEMG | DC motor | Stationary system<br>(exoskeleton-based);<br>physical therapy | C0 study: 2 hs | | MARIONET, Sulzer<br>[142] | 1 | Elbow – FE | Joint angle | AC servomotor<br>(SEA) | Stationary system<br>(end-effector-based);<br>physical therapy | C0 study: 6 hs | | Mavroidis [11] | 1 | Elbow – FE | Force/torque | DC motor | Portable orthosis<br>(continuous passive<br>motion device);<br>physical therapy | Prototype | | MEM-MRB, Oda [104] | [1] | [Elbow – flexion] | Joint angular velocity, torque | MRF brake | Stationary system; physical therapy | C0 study: 1 hs | | Myomo e100, Myomo,<br>Inc.; Stein [172] | 1 | Elbow – FE | sEMG | DC motor (x1) | Portable orthosis;<br>physical therapy | Commercial system (FD/<br>clearance); CI study: 8 cS | | Ögce [171] | 1 | Elbow – FE | sEMG | DC step motor | Wearable shoulder-<br>elbow orthosis;<br>physical therapy | Cl study: 2 traumatic<br>brachial plexus injury | | Pylatiuk [153] | 1 | Elbow – FE | sEMG | Hydraulic | Wearable orthosis;<br>physical therapy | First prototype | | Rosen [169] | 1 | Elbow – FE | sEMG | DC motor (x1) | Stationary system (exoskeleton-based); power assistance | C0 study: 1 hs; predecessor of CADEN-7 | | Song [12] | 1 | Elbow – FE | sEMG | AC servo motor | Stationary system<br>(end-effector-based);<br>physical therapy | CI studies: 8 cS [12], 7 c<br>[13], 3 cS [14] | | Vanderniepen [143] | 1 | Elbow – FE | Joint angle | Electric motors (x2)<br>(SEA) | Wearable orthosis;<br>orthopedic physical<br>therapy | Prototype | | | | | Systems assisting | forearm movements | | | | Kung [15] | 1 | Forearm – PS | Joint angle,<br>torque | AC servomotor (1) | Stationary system;<br>physical therapy | CI study: 7 cS + 8 hs [16] | | | | | Systems assistin | g wrist movements | | | | ASSIST, Sasaki [146] | 1 | Wrist – flexion | Joint angle | Rotary-type<br>pneumatic<br>actuators (x2) | Wearable orthosis;<br>power assistance | C0 study: 5 hs | | Colombo [17] | 1 | Wrist – FE | Torque | Not specified | Stationary system;<br>physical therapy | CII study: 20(8) cS | | Hu [18] | 1 | Wrist – FE | sEMG | Electric motor | Stationary system<br>(end-effector-based);<br>physical therapy | CI study: 15 cS | | Loureiro [100] | [1] | [Wrist – FE] | Hand motion<br>(tremor) | MRF brake | Wearable orthosis;<br>tremor suppression | CI study: 1 ET | | PolyJbot, Song [175] | 1 | Wrist – FE | sEMG, joint<br>angle and<br>torque | DC servomotor (x1) | Stationary system;<br>physical therapy | CII study: 27(15) cS [19] | | | | | Systems assisting | finger(s) movements | | | | Amadeo, tyromotion<br>GmbH | 5 | Fingers (each) –<br>FE | End-point<br>position<br>and force | Electric motors | Stationary system<br>(end-effector-based);<br>physical therapy | Commercial system; Cl<br>study: 7 aS [20] | | Chen [21] | 5 | Independent<br>linear movement<br>of each finger | Fingers<br>positions and<br>forces, sEMG | DC linear motors<br>(x5) | Stationary system<br>(end-effector-based);<br>physical therapy | C0 study: 1 hs | |----------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------|------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------| | CyberGrasp,<br>CyberGlove Systems<br>LLC; Turner [22] | [5] | [Resistive force to each finger] | Joint angles<br>(CyberGlove) | DC motors (x5) | Force-feedback<br>glove; interactions<br>with virtual<br>environment | Commercial system for<br>other applications, used in<br>some clinical studies e.g.<br>[191,192] | | Ertas [23] | 1 | Concurrent FE of<br>3 joints of a single<br>finger | Joint angles | DC motor (x1) | Finger exoskeleton<br>(underactuated<br>mechanism); tendon<br>physical therapy | C0 study: 4 hs | | Fuxiang [24] | 4 | Index finger– FE<br>(x3), AA | Joint positions and toques | Linear stepping<br>motors | Modular-finger<br>exoskeleton<br>(continuous passive<br>motion device);<br>physical therapy | C0 study: 3 hs | | Gloreha, Idrogenet srl | 5 | Independent<br>passive movement<br>of each finger | Fingers<br>positions | Electric motors (x5) | Portable (Gloreha<br>Lite)/Movable<br>(Gloreha<br>Professional) (end-<br>effector-based,<br>cable-driven);<br>physical therapy | Commercial system (CE mark); CII study: 10(5) sS [25], CI studies: 9 stroke + 3 other diseases [26], 4 cS [27] | | Hand of Hope,<br>Rehab-Robotics<br>Comp. Ltd., Ho [28] | 5 | Each finger<br>separately - FE | sEMG | DC linear motors<br>(x5) | Portable system<br>(orthosis);<br>physical therapy | Commercial system (CE<br>Mark), CI study: 8 cS | | HandCARE, Dovat<br>[113] | 5 | Independent<br>linear movement<br>of each finger (1<br>at a time) | Fingers<br>positions and<br>forces | DC motor (x1!) | Stationary system<br>(end-effector-<br>based, cable-driven);<br>physical therapy | CI study: 5 cS + 8 hs | | HEXORR, Schabowsky<br>[29] | 2 | Thumb – FE,<br>other fingers<br>together – FE | Fingers<br>positions and<br>forces | DC motor (x1), AC motor (x1) | Stationary system<br>(end-effector-<br>based, cable-driven);<br>physical therapy | CI study: 5 cS + 9 hs | | HIFE, Mali [183] | 2 | 1 finger – FE | End-point<br>position | DC motors | Haptic interface<br>(end-effector-based);<br>physical therapy | Prototype | | InMotion HAND,<br>previous name<br>InMotion 5.0,<br>Interactive Motion<br>Tech., Inc.; Masia [165] | 1 | All fingers<br>together – GR | Not specified | DC brushless motor | Add-on module for<br>InMotion ARM;<br>physical therapy | Commercial system | | Kline [30] | 1 | All fingers<br>together –<br>extension | Joint angles,<br>sEMG | Pneumatic | Wearable glove;<br>physical therapy | CI study: 1 stroke + hs (np) | | Lucas [147] | 1 | Index finger –<br>flexion (passive<br>extension) | sEMG | Pneumatic (x2) | Wearable orthosis;<br>grasp assistance | Cl study: 1 SCl | | MR_CHIROD v.2,<br>Khanicheh [158] | [1] | [All fingers<br>together – GR] | Finger position and torque | ERF brake | Exercising device (handle-like); physical therapy | C0 study: hs (np);<br>fMRI compatible | | MRAGES, Winter [157] | [5] | [Fingers (each) – FE] | Finger positions and torques | MRF brakes (5) | Force-feedback<br>glove; physical<br>therapy | Prototype | | Mulas [31] | 2 | Thumb – FE,<br>other fingers<br>together – FE | sEMG, pulleys<br>position | DC servo motors<br>(x2) | Wearable orthosis;<br>physical therapy | Cl study: 1 sS | | Nathan [167] | 1 1 | All fingers<br>together – grasp<br>(passive release) | Hand-held<br>trigger, index and<br>thumb fingers<br>joint angles | Elbow movements | Wearable orthosis<br>(glove); physical<br>therapy | CI study: 2 stroke + 1 hs | | PowerGrip, Broaden<br>Horizons, Inc. | 1 | Thumb, index<br>and middle finger<br>together – GR | Switches<br>or sEMG | DC motor (1) | Wearable orthosis;<br>grasp assistance | Commercial system | | Reha-Digit,<br>Reha-Stim;<br>Hesse [32] | 1 | 4 fingers (except<br>the thumb)<br>together – FE | None | DC motor | Portable system (rotating handle); physical therapy | Commercial system (C<br>mark); CII study: 8(4) s:<br>CI study: 1 cS | |---------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------| | Rosati [144] | 1 | 4 fingers (except<br>the thumb)<br>together – FE | Not<br>selected yet | DC motor (SEA) | Wearable orthosis;<br>physical therapy | Design | | Rotella [33] | 4 | Index finger<br>flexion (x2)<br>(passive<br>extension),<br>thumb –<br>flexion, other<br>fingers together –<br>flexion | Not specified | Electric motors | Wearable orthosis;<br>grasp assistance | Design | | Rutgers Master II-ND,<br>Bouzit [184] | 4 | Thumb, index,<br>middle, and ring<br>finger – FE | Actuator<br>translation and<br>inclination | Pneumatic (x4) | Force-feedback<br>glove; interactions<br>with virtual<br>environment | Research device;<br>often used for<br>hand therapy<br>(e.g. [185-187]) | | Salford Hand<br>Exoskeleton,<br>Sarakoglou [34] | 7 | Index, middle, and<br>ring finger – FE<br>(x2), thumb – FE | Joint angles and end-point force | DC motors | Wearable orthosis<br>(exoskeleton);<br>physical therapy | C0 study: hs (np) | | Tong [35] | 10 | Each finger – FE<br>(x2) | sEMG | Electric linear<br>motors (x10) | Portable system<br>(wearable orthosis);<br>physical therapy | CI study: 2 cS | | TU Berlin Finger<br>Exoskeleton, Wege [36] | 4 | 1 finger – FE (x3),<br>AA | Joint angles | DC motors (x4) | Finger exoskeleton;<br>physical therapy | C0 study: 1 hs | | TU Berlin Hand<br>Exoskeleton, Fleischer<br>[117] | 20 | FE and AA of all<br>major joints of<br>each finger | Joint angles,<br>end-point force,<br>sEMG | DC motors | Wearable orthosis<br>(exoskeleton);<br>physical therapy | Prototype | | Worsnopp [37] | 3 | Index finger –<br>FE (x3) | Joint angles and torques | DC brushless ser-<br>vomotors (x6) | Finger exoskeleton;<br>physical therapy | Prototype | | Xing [38] | 2 | Thumb – FE,<br>other fingers<br>together – FE | Position, force | Pneumatic<br>(PAMs) (x2) | Wearable orthosis;<br>physical therapy | C0 study: 3 hs | | | | System | ns assisting should | er and elbow move | ments | | | ACRE, Schoone [108] | 5 | Shoulder * elbow | Joint angles | Electrical motors<br>(x5) | Stationary system<br>(end-effector-based);<br>physical<br>therapy | CI: 10 sS | | ACT <sup>3D</sup> , Ellis [39] | 3 | Shoulder*elbow | End-point<br>torque,<br>position and<br>velocity<br>(HapticMaster) | DC brushed<br>motors<br>(HapticMaster) | Stationary system<br>(end-effector-based);<br>physical therapy<br>and assessment of<br>therapy results | CI study: 6 stroke | | <i>RC-MIME,</i> Lum [137] | 1+[2] | Shoulder * elbow<br>(longitudinal<br>movements of<br>the forearm)<br>[forearm's eleva-<br>tion and yaw] | Forearm<br>position and<br>torque | DC motor (x1),<br>magnetic particle<br>brakes (x2) | Stationary system<br>(end-effector-based);<br>physical<br>therapy | An attempt to<br>commercialize; CI study: 4<br>cS; merges concepts from<br>MIME and ARM Guide | | RM Guide,<br>einkensmeyer [136] | 1+[2] | Shoulder * elbow<br>(longitudinal<br>movements of<br>the forearm)<br>[forearm's eleva-<br>tion and yaw] | Forearm<br>position and<br>torque | DC motor (x1),<br>magnetic particle<br>brakes (x2) | Stationary system<br>(end-effector-based);<br>physical<br>therapy | Cll study: 19(10) cS [40]; see also: ARC-MIME | | FIAMT, Chang [41] | 2 | Shoulder * elbow<br>(bilateral longitu-<br>dinal movements<br>of the forearms) | End point position and torque | DC servomotor<br>(x2), magnetic<br>particle brakes<br>(x2) | Stationary system<br>(end-effector-based);<br>physical<br>therapy | CI study: 20 cS<br>[41] | | ONES, Klein [118] | 4 | Shoulder – FE, AA,<br>RT, elbow – FE | Joint angles,<br>cylinder<br>pressure | Pneumatic (x5) | Stationary system<br>(parallel robot +<br>exoskeleton-based<br>distal part); physical<br>therapy | Prototype; see also:<br>Supinator extender (SUE) | | Dampace, Stienen | [4] | [Shoulder – FE, | Joint angles | Hydraulic brake | Stationary system | CI study: stroke (np); | |--------------------------------------------------------------------------------|-------|---------------------------------------------------|---------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------| | [154] | | AA, RT, elbow –<br>FE] | and torques | actuators (SEA) | (exoskeleton-based);<br>physical therapy | see also Limpact | | Freeman [163] | 2 | Shoulder * elbow<br>(in the plane) | Handle torque and position | DC brusheless<br>servomotors (x2),<br>FES | Stationary system (end-effector-based); physical therapy | C0 study: 18 hs | | InMotion ARM, | 2+[1] | Shoulder * | Joint positions, | DC brushless | Stationary system | Commercial system, | | previous name<br>InMotion 2.0,<br>Interactive Motion<br>Tech., Inc.; based on: | 5 | elbow (in the<br>plane + gravity<br>compensation) | angular velocity<br>and torque | motors | (end-effector-based);<br>physical therapy | CIII/CIV studies: 127(49) ct<br>[203], CII studies: 56(30) at<br>[42], 30(10) aS [43] and<br>others | | MIT Manus, Krebs<br>[107] | | | | | | | | Ju [44] | 2 | Shoulder * elbow | Handle torque | AC motors (x2) | Stationary system | CI study: stroke (np) | | RM Guide,<br>leinkensmeyer [136] | 1+[2] | (in the plane) | and position | magnetic particle | (end-effector-based; physical therapy | also: ARC-MIME | | Kiguchi [45] | 3 | Shoulder – FE, AA,<br>elbow – FE | sEMG | DC motors | Wheelchair mounted<br>system (exoskeleton-<br>based); power | CO study: hs (np); see<br>also: shoulder, elbow and<br>shoulder-elbow-forearm | | | | | | brakes (x2) | assistance | orthoses developed by<br>Kiguchi and SUEFUL-7 | | Kobayashi [149] | 4 | Shoulder – FE, AA,<br>RT, elbow – FE | Joint angle | Pneumatic (PAMs)<br>(x10) | Wearable (but not<br>portable) orthosis<br>("muscle suit"); power<br>assistance | C0 study: 5 hs | | Limpact, Stienen [155] | 4 | Shoulder – FE, AA,<br>RT, elbow – FE | Joint angles and torques | Rotational<br>hydroelastic<br>actuator (SEA) | Stationary system (exoskeleton-based); physical therapy | Design; based on<br>Dampace | | MariBot, Rosati [46] | 5 | Shoulder * elbow | Motor positions | DC frameless | Stationary system | Prototype; successor of | | | | | | brushless motors | (end-effector-based,<br>cable-driven robot);<br>physical therapy | NeReBot | | MEMOS, Micera [132] | 2 | Shoulder * elbow<br>(in the plane) | Torque and handle position | DC motors (x2) | Stationary system<br>(end-effector-based);<br>physical therapy | Cll study: 20(12) cS [17],<br>Cl study: 18 cS [47] | | MIME, Burgar [120] | 6 | Shoulder * elbow | Forearm<br>position,<br>orientation,<br>torque | DC brushed<br>servomotors<br>(PUMA 560 robot) | Stationary system<br>(end-effector-based);<br>physical therapy | CII studies: 27(13) cS<br>[48] and 30(24) sS [49],<br>CI study: 13 cS [50];<br>see also ARC-MIME | | Moubarak [51] | 4 | Shoulder – FE, AA, | Joint position, | DC brushless | Wheelchair- | Prototype | | | | RT, elbow – FE | velocity and torques | motors (x4) | mounted system<br>(exoskeleton-based);<br>physical therapy | | | NeReBot, Rosati [111] | 3 | Shoulder * elbow | Motor positions | DC motors (x3) | Stationary system<br>(end-effector-based,<br>cable-driven robot);<br>physical therapy | Cll studies: 24(12) sS<br>[111], 35 (17) aS [52], 21(11<br>sS [53]; predecessor of<br><i>MariBot</i> | | DELIADOR Tests [125] | 12 | Chaulder * albau. | Fad maint | Flactrical motors | | | | REHAROB, Toth [125] | 12 | Shoulder * elbow | End-point<br>torques | Electrical motors<br>(ABB IRB 140 and IRB<br>1400H robots) | Stationary system<br>(2 modified industrial robots); physical | CII study: 22 (13) stroke +<br>8(2) TBI [54], CI study:<br>6 cS + 2 sS + 4 hs [125] | | ouzit [184] | | middle, and ring | translation and | <u> </u> | therapy | often used for | | | | | | rm and wrist moveme | | | | Bi-Manu-Track,<br>Reha-Stim; Hesse [55] | 1 | Forearm – PS<br>* wrist – FE | Not specified | Not specified | Stationary system<br>(end-effector-based);<br>physical therapy | Commercial system, Cll<br>study: 44 (22) sA [56], Cl<br>study: 12 cS [55] | | CRAMER, Spencer<br>[109] | 3 | Forearm – PS,<br>wrist – FE, AA | Hand accelera-<br>tions (Nintendo<br>Wii console) | Digital servomotors<br>(x4) | Stationary system<br>(parallel robot);<br>physical therapy | Prototype | | InMotion WRIST,<br>previous name<br>InMotion 3.0,<br>Interactive Motion | 3 | Forearm – PS,<br>wrist – FE * AA | Joint angles | DC brushless<br>motors (x3) | Stationary system,<br>may be used as an<br>add-on for <i>InMotion</i><br><i>ARM</i> ; physical | Commercial system | | Tech., Inc.; Krebs [138] | | | | | therapy | | | RiceWrist, Gupta [119] | 4 | Forearm – PS,<br>wrist – FE * AA | Joint angles and forces | Frameless DC brushless motors | Wearable orthosis;<br>physical therapy | Prototype; extension for MIME, see also: MAHI | |------------------------------------------------------------|-------|---------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------| | Supinator extender<br>(SUE), Allington [57] | 2 | Forearm – PS,<br>wrist – FE | Joint angles and forces | Pneumatic | Wearable orthosis;<br>physical therapy | CI study: 8 cS; extension for BONES and ArmeoSpring | | Takaiwa [110] | 3 | Forearm – PS,<br>wrist – FE, AA | Torque | Pneumatic (x6) | Stationary system<br>(parallel robot);<br>physical therapy | Prototype | | W-EXOS, Gopura [174] | 3 | Forearm – PS,<br>wrist – FE, AA | sEMG, hand<br>force, forearm<br>torque | DC motors (x3) | Stationary system<br>(exoskeleton-based);<br>power assistance | C0 study: 2hs; see also:<br>SUEFUL-7 | | | | Syst | ems assisting wrist | and fingers moveme | nts | | | AMES, Cordo [58] | 1 | wrist and MCP<br>joints of 4 fingers<br>(coupled<br>together) | Flexion/Extension<br>torque, sEMG<br>(optional) | Electric motor +<br>2 vibrators (for<br>flexor and extensor<br>tendons) | Stationary system<br>(with desktop<br>mounted orthosis),<br>physical therapy (at<br>home) | FDA clearance; CI study;<br>20(11) cS; a modified<br>version of the system<br>is used for ankle<br>rehabilitation | | Hand Mentor™,<br>Kinematic Muscles,<br>Inc.; Koeneman [59] | 1 | Wrist and 4 fingers (except the thumb) extension | Wrist angle,<br>flexion torque | Pneumatic (PAM)<br>(x1) | Wearable orthosis;<br>physical therapy | Commercial system (FDA Class I Device); CII study: 21(11) sS [60], CI studies: 1 cS [61], 1 cS [62] | | HWARD, Takahashi<br>[130] | 3 | Wrist – FE,<br>thumb – FE,<br>other fingers<br>together – FE | Joint angles<br>and torques | Pneumatic (x3) | Stationary system<br>(with desktop<br>mounted orthosis);<br>physical therapy | CII study: 13(13) cS | | My Scrivener, Obslap<br>Reseach, LLC; Palsbo<br>[190] | 3 | Wrist * fingers | End-point<br>position and<br>torque ( <i>Novint</i><br>Falcon) | Electric motors<br>(Novint Falcon) | Stationary system<br>(end-effector-based,<br>using haptic device);<br>fine motor hand<br>therapy | CI study: 18 children with<br>weak handwriting skills | | | | Systems as | ssisting shoulder, e | elbow and forearm mo | ovements | BB ENE | | ADLER, Johnson [63] | 3+{3} | Shoulder * elbow<br>* forearm | End-point<br>torque, position<br>and velocity<br>(HapticMaster) | DC brushed motors<br>(HapticMaster) | Stationary system<br>(end-effector-based);<br>physical therapy | C0 study: 8 hs [64] | | ARAMIS, Pignolo [65] | 6x2 | Shoulder – FE, AA,<br>RT, elbow – FE,<br>forearm – PS | Joint angles and torques | DC brushed<br>motors (x6 per<br>exoskeleton) | Stationary system<br>(2 exoskeletons);<br>physical therapy | CI study: 14 sS | | Gentle/S,<br>Amirabdollahian [121] | 3+{3} | Shoulder * elbow<br>* forearm | End-point<br>torque, position<br>and velocity<br>(HapticMaster) | DC brushed motors<br>(HapticMaster) | Stationary system<br>(end-effector-based);<br>physical therapy | Cll study: 31(31) sS + cS<br>[66]; predecessor of<br>Gentle/G | | iPAM, Culmer [67] | 6 | Shoulder * elbow<br>* forearm | Joint torques | Pneumatic | Stationary system<br>(2 robotic arms);<br>physical therapy | CI study: 16 cS | | Kiguchi [68] | 4 | Shoulder – FE, AA,<br>elbow – FE,<br>forearm – AA | sEMG | DC motors | Wheelchair mounted<br>system (exoskeleton-<br>based); power assis-<br>tance | C0 study: 1 hs; see also:<br>shoulder, elbow and<br>shoulder-elbow orthoses<br>developed by Kiguchi and<br>SUEFUL-7 | | L-Exos, Frisoli [197] | 4 | Shoulder – FE, AA,<br>RT, elbow – FE<br>{forearm – PS} | Joint angles | Electric motors (x4) | Stationary system<br>(exoskeleton-based);<br>physical therapy | CI study: 9 cS [69] | | MGA, Carignan [70] | 5 | Shoulder – FE, AA,<br>RT, VD, elbow –<br>FE, {forearm – PS} | Joint torques | DC brushless<br>motors (x5) | Stationary system<br>(exoskeleton-based);<br>physical therapy | Prototype | | MULOS, Johnson [168] | 5 | Shoulder – FE, AA,<br>RT, elbow – FE,<br>forearm – PS | Joystick (4 DOF) | Electric motors (x5) | Wheelchair-<br>mounted system<br>(exoskeleton-based);<br>power assistance<br>and physical therapy | C0 study: 1 hs | | NJIT-RAVR, Fluet [71] | 3+{3} | Shoulder *<br>elbow * forearm | End-point<br>torque, position<br>and velocity<br>(HapticMaster) | DC brushed motors<br>(HapticMaster) | Stationary system<br>(end-effector-based);<br>physical therapy<br>of children | CI study: 8 CP | |--------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------| | RehabExos, Vertechy [131] | 4 | Shoulder – FE, AA,<br>RT, elbow – FE<br>{forearm – PS} | Joint torques | Custom-made<br>frameless brushless<br>motor (x3), DC<br>motor (x1) | Stationary system<br>(exoskeleton-based);<br>physical therapy | First prototype | | | | Systems a | ssisting shoulder, | elbow and fingers mo | vements | | | Pneu-WREX,<br>Wolbrecht [145] | 4+{1} | Shoulder – FE, AA,<br>HD, elbow – FE,<br>{fingers – GR} | Joint angles,<br>grasp force,<br>cylinder<br>pressure | Pneumatic (x4) | Stationary system<br>(exoskeleton-based);<br>physical therapy | Cl study: 11 cS [72];<br>see also: T-WREX and<br>ArmeoSpring | | T-WREX, Sanchez [106] | <b>(5)</b> | {Shoulder – FE,<br>AA, RT, elbow –<br>FE, fingers – GR} | Joint angles,<br>grasp force | None | Wheelchair mounted<br>gravity balancing<br>orthosis; physical<br>therapy | Cll studies: 23(11) cS [73<br>28(14) cS [74], Cl studie:<br>9cS + 5cS (2 studies) [75<br>see also: Pneu-WREX and<br>ArmeoSpring | | | | Systems | assisting elbow, fo | orearm and wrist mov | ements | | | Ding [179] | 4 | Elbow – FE,<br>forearm – PS,<br>wrist – FE, AA | Joint angles<br>(a Motion<br>Capture System<br>is used) | Pneumatic (x8) | Wearable (but not<br>portable) orthosis;<br>power assistance for<br>explicitly specified<br>muscles | C0 study: 6 hs | | MAHI, Gupta [76] | 5 | Elbow – FE,<br>forearm – PS,<br>wrist – FE * AA | Joint angles | Frameless DC<br>brushless motors | Wearable orthosis<br>(force-feedback<br>exoskeleton);<br>physical therapy | Prototype; extension for<br>MIME; see also: RiceWrist | | WOTAS, Rocon [99] | [3] | [Elbow – FE,<br>forearm – PS,<br>wrist – FE] | Angular<br>velocity,<br>torques | DC motors (x3) | Wearable orthosis;<br>tremor suppression | CI study: 10 mainly ET | | | | Systems | assisting forearm, | wrist and fingers mov | ements | | | <i>Haptic Knob,</i><br>Lambercy [77] | 2 | Forearm –<br>PS * wrist – FE,<br>fingers – GR | Position, torque | DC brushed motors<br>(x2) | Stationary system<br>(2 parallelograms);<br>physical therapy | CI study: 3 cS | | Hasegawa [98] | 11 | Forearm – PS,<br>wrist – FE, AA,<br>thumb – FE (x2),<br>index finger –<br>FE (x3), other<br>fingers together –<br>FE (x3) | sEMG | DC motors (x11) | Wearable orthosis;<br>grasp assistance | C0 study: 1 hs | | Kawasaki [178] | 18 | Forearm – PS,<br>wrist – FE, thumb –<br>FE (x3), AA,<br>other fingers –<br>FE (x2), AA | Joint angles of<br>healthy hand | Servo motors (x22) | Stationary system<br>(exoskeleton-based);<br>physical therapy | C0 study: 1 hs | | Scherer [156] | [1] | [Forearm and<br>fingers twisting<br>movements *<br>wrist – FE] | Position, torque | Magnetic particle<br>brake | Stationary system<br>(end-effector-based,<br>rotating handle);<br>physical therapy | CI study: 2 stroke +<br>1 MS | | | | Systems assis | ting shoulder, elbo | w, forearm and wrist | | | | Braccio di Ferro,<br>Casadio [134] | 2 | Shoulder * elbow * (forearm) * wrist (in the horizonatal or vertical plane) | Device joint<br>angles, end-<br>point force | AC brushless<br>servomotors (x2) | Stationary system<br>(end-effector-based);<br>physical therapy | Cl studies: 10 cS + 4 hs [78]<br>7 MS + 9 hs [79], 11 MS +<br>11 hs [80], 8 MS [81] | | CADEN-7, Perry [97] | 2x7 | Shoulder – FE,<br>AA, RT, elbow –<br>FE, forearm – PS,<br>wrist – FE, AA | sEMG, joint<br>angles, angular<br>velocities and<br>forces/torques | DC brushed motors<br>(2x7) | Stationary system<br>(exoskeleton-based),<br>2 robotic arms;<br>power assistance | C0 study: 1 hs | | Denève [82] | 3 | Shoulder * elbow<br>* (forearm) * wrist | Device joint angles, end-point force | AC brushless<br>motors (x3) | Stationary system<br>(end-effector-based);<br>physical therapy | Prototype | |-------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------| | EMUL, Furusho [159] | 3 | Shoulder * elbow* (forearm) * wrist | End-point position | Electric motors +<br>ERF clutches | Stationary system<br>(end-effector-based);<br>physical therapy | CI study: 6 stroke;<br>predecessor of PLEMO, see<br>also: Robotherapist | | ESTEC exoskeleton,<br>Schiele [115] | 9 | Shoulder – FE,<br>AA, RT, VD, HD,<br>elbow – FE,<br>forearm – PS,<br>wrist – FE, AA | Joint angles | Not selected yet | Wearable system<br>(exoskeleton-based);<br>physical therapy | First prototype | | Furuhashi [83] | 3 | Shoulder * elbow *<br>(forearm) * wrist | End-point<br>torque | DC motors (x3) | Stationary system<br>(end-effector-based);<br>physical therapy | Prototype | | <i>Hybrid-PLEMO</i> , Kikuchi<br>[135] | 2 | Shoulder * elbow * (forearm) * wrist (in the adjustable plane) | Device joint<br>angles, end-<br>point force | DC servomotors<br>(x2) + ERF<br>clutches/brakes<br>(x4) | Stationary system<br>(end-effector-based);<br>physical therapy | Prototype; based on<br>PLEMO | | Lam [180] | (forearm) * wrist<br>(in the plane) | | End-point<br>position, abnor-<br>mal trunk posi-<br>tion detection | Not specified | Stationary system<br>(end-effector-based);<br>physical therapy | C0 study: 8 hs | | Li [176] | 5 | Shoulder – FE,<br>AA, elbow – FE,<br>forearm – PS,<br>wrist – FE | sEMG signals<br>from not<br>affected arm | AC (x3) and DC (x2) servo motors | Wearable system<br>(exoskeleton-based);<br>physical therapy | Prototype | | MACARM, Beer [112] | 6 | Shoulder *<br>elbow * forearm *<br>wrist | End-point posi-<br>tion and force | Electric motors (x8) | Stationary system<br>(end-effector-based,<br>cable-driven robot);<br>physical therapy | CI study: 5 cS | | Mathai [84] | 3 | Shoulder *<br>elbow * forearm *<br>wrist | End-point<br>torque, position<br>and velocity<br>( <i>HapticMaster</i> ) | DC brushed motors<br>(HapticMaster) | Stationary system<br>(end-effector-based);<br>physical therapy | CI study: 4 cS | | MIME-RiceWrist, Gupta<br>[119] | 10 | Shoulder *<br>elbow * forearm *<br>wrist | See separate<br>information for<br>MIME and<br>RiceWrist<br>system | See separate<br>information for<br>MIME and RiceWrist<br>system | Stationary system<br>(robotic arm +<br>orthosis); physical<br>therapy | CI study: stroke (np) | | PLEMO, Kikuchi [105] | [2] | [Shoulder*elbow*<br>(forearm) * wrist]<br>(in the adjustable<br>plane) | Device joint<br>angles, end-<br>point force | ERF brakes | Stationary system<br>(end-effector-based);<br>physical therapy | CI study: 6 stroke +<br>27 hs [85]; successor of<br>EMUL, predecessor of<br>Hybrid-PLEMO | | Robotherapist,<br>Furusho [160] | 6 | Shoulder *<br>elbow * forearm *<br>wrist | End-point position | Electric motors +<br>ERF clutches | Stationary system<br>(end-effector-based);<br>physical therapy | Prototype; see also:<br>EMUL | | RUPERT IV,<br>Balasubrama- nian<br>[151] | 5 | Shoulder – AA,<br>RT, elbow – FE,<br>forearm – PS,<br>wrist – FE | Joint torques<br>and actuators<br>pressure | Pneumatic (PAMs) | Wearable system<br>(exoskeleton-based);<br>physical therapy | CI study: 6 cS [86] | | Salford Arm<br>Rehabilitation<br>Exoskeleton,<br>Tsagarakis [148] | 7 | Shoulder – FE,<br>AA, RT, elbow –<br>FE, forearm – PS,<br>wrist – FE, AA | Joint positions and torques | Linear pneumatic<br>actuators (PAMs)<br>(x14) | Stationary system<br>(exoskeleton-based);<br>physical therapy | Prototype | | Sophia-3, Rosati [87] | 2 | Shoulder *<br>elbow * (forearm) *<br>wrist (in the<br>plane) | End-point posi-<br>tion and force | AC motors | Stationary system<br>(end-effector-based,<br>planar cable-driven<br>robot); physical<br>therapy | First prototype; see also: Sophia-4 | | Sophia-4, Rosati [87] | 2 | Shoulder *<br>elbow * (forearm) *<br>wrist (in the<br>plane) | End-point<br>position and<br>force | DC motors | Stationary system<br>(end-effector-based,<br>planar cable-driven<br>robot); physical<br>therapy | Prototype; see also:<br>Sophia-3 | | SUEFUL-7, Gopura<br>[166] | 7 | Shoulder – FE,<br>AA, RT, elbow –<br>FE, forearm – PS,<br>wrist – FE, AA | sEMG/joint<br>forces/torques | DC servo motors<br>(x7) | Stationary system<br>(exoskeleton-based);<br>power assistance | C0 study: 2 hs; shoulder-<br>elbow orthosis integrated<br>with W-EXOS system | |---------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------| | Takahashi [182] | 2 | Shoulder * elbow * (forearm) * wrist (in the plane) | End point position | Electric<br>servomotors (x2) | Stationary system<br>(end-effector-based);<br>physical therapy | CI study: 5 stroke +<br>2 Guillain-Bare syndrome | | Tanaka [88] | 2 | Shoulder *<br>elbow * (forearm) *<br>wrist (in the<br>plane) | End-point force<br>and position | AC linear motor (x2) | Stationary system<br>(end-effector-based);<br>physical therapy | C0 study: 6 hs | | UHD, Oblak [139] | 2 | 3 configurations<br>possible: 1)<br>shoulder * elbow,<br>2) forearm – PS,<br>wrist – FE, 3)<br>forearm – PS,<br>wrist – AA | Torque and handle position | DC motors (x2),<br>(SEA) | Stationary system<br>(end-effector-based);<br>physical therapy | CI study: 1 cS;<br>reconfigurable robot | | Umemura [152] | 7 | Shoulder – FE,<br>AA, RT, elbow –<br>FE, forearm – PS,<br>wrist – FE, AA | Actuators<br>pressure | Hydraulic | Stationary system<br>(end-effector-based);<br>physical therapy | Prototype | | UMH, Morales [127] | 6 | Shoulder * elbow * forearm * wrist | Joint torques | Pneumatic | Stationary system<br>(two robotic arms);<br>physical therapy | C0 study: hs (np) | | Xiu-Feng [89] | 2 | Shoulder * elbow * (forearm) * wrist (in the plane) | Device joint<br>angles, end-<br>point force | AC servomotors<br>(x2) | Stationary system<br>(end-effector-based);<br>physical therapy | CI study: 30 stroke | | | Sys | tems assisting shoul | der, elbow, forear | m, wrist and finger mo | ovements (whole arm) | | | <i>ArmeoPower</i> , Hocoma<br>AG; based on: <i>ARMin</i><br>III, Nef [90] | 6{+1} | Shoulder – FE,<br>AA, RT, elbow –<br>FE, forearm –<br>PS, wrist – FE,<br>{fingers – GR} | Joint angles,<br>grasp force | DC motors (x6) | Stationary system<br>(exoskeleton-based);<br>physical therapy | Commercial system; CI<br>studies: 3 cS (ARMin I)<br>[91], 4 cS (ARMin II) [92] | | ArmeoSpring, Hocoma<br>AG; based on: T-WREX,<br>Sanchez [106] | {7} | {Shoulder – FE,<br>AA, RT, elbow –<br>FE, forearm –<br>PS, wrist – FE,<br>fingers – GR} | Joint angles,<br>grasp force | None | Stationary system<br>(exoskeleton-based);<br>physical therapy | Commercial system (CE<br>Mark, FDA clearance);<br>CI study: 10 MS [93]; see<br>also: <i>T-WREX</i> | | ARMOR, Mayr [177] | 8 | Shoulder – FE, AA,<br>RT, elbow – FE,<br>forearm – PS,<br>wrist – FE,<br>thumb – FE,<br>other fingers<br>together – FE | Joint angles<br>of the master<br>hand | Electric motor | Stationary master-<br>slave system<br>(exoskeleton-based);<br>physical therapy | CII study: 8(8) sS | | Gentle/G, Loureiro<br>[123] | 6{+3} | Shoulder * elbow (3 DOF, HapticMastei), {forearm – PS, wrist – FE, AA}, thumb – FE, other fingers together – FE (x2) (grasp robot) | End-point<br>torque, position<br>and velocity<br>( <i>HapticMaster</i> )<br>joint angels and<br>end-point force<br>(grasp robot) | DC brushed<br>motors<br>( <i>HapticMaster</i> and<br>grasp robot) | Stationary system<br>(robotic arm +<br>orthosis); physical<br>therapy | CII study: 4(4) sS [94];<br>based on <i>Gentle/</i> S | | HEnRiE, Mihelj [124] | 4{+2} | Shoulder * elbow<br>(3 DOF, Haptic-<br>Master), {wrist –<br>FE, AA}, thumb,<br>middle and index<br>finger together –<br>GR | End-point<br>torque, position<br>and velocity<br>( <i>HapticMaster</i> )<br>joint angels and<br>end-point force | DC brushed<br>motors<br>( <i>HapticMaster</i> )<br>electric motors<br>(grasping device) | Stationary system<br>(robotic arm +<br>orthosis); physical<br>therapy | Prototype (with spring instead of an actuator in the hand part); CO study: hs; based on <i>Gentle/S</i> | | IntelliArm, Ren [116] | 8{+2} | Shoulder – FE, AA,<br>RT, VD, {HD (x2)},<br>elbow – FE, fore-<br>arm – PS, wrist<br>– FE, all fingers<br>together – GR | Joint angles<br>and torques | Not specified | Stationary system<br>(exoskeleton-<br>based); physical<br>therapy | CI study: stroke (np) | |---------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------| | MUNDUS, Pedrocchi<br>[101] | [3]+{2}+1 | [Shoulder – FE,<br>AA, elbow – FE],<br>optional: forearm –<br>PS, wrist – FE<br>(shoulder-elbow-<br>wrist exoskeleton),<br>optional: all<br>fingers together –<br>GR (hand orthosis) | sEMG, button,<br>eye-movement<br>or Bran Computer<br>Interface; object<br>labels – radio<br>frequency<br>identification | elastic elements<br>or DC brakes<br>(shoulder-<br>elbow-wrist<br>exoskeleton), FES<br>(optional), DC<br>motor (optional<br>hand orthosis) | Modular<br>wheelchair-<br>mounted system<br>(exoskeleton-<br>based);<br>movement<br>assistance | CI study: 3 SCI + 2 MS | | ReoGo, Motorica<br>Medical Inc. | 2+{1} | Shoulder * elbow;<br>also {* wrist} or<br>{fingers - FE} if<br>special handle<br>used | End-point posi-<br>tion | Electric motors<br>(x4) | Portable system<br>(end-effector-<br>based) with<br>various handles;<br>physical therapy | Commercial system;<br>CIII/CIV study: 60(np) :<br>[198], CI studies: 14 cS [95]<br>10 sS [96] | All the systems in the following table are grouped according to the joint movement they support. For the sake of convenience, we consider the shoulder complex, the forearm and the hand (fingers) as single joints. Thus, we distinguish the following "joints": shoulder, elbow, forearm, wrist and fingers. Devices assisting movements of only one "joint" (starting from shoulder and ending with fingers) are described first followed by devices assisting movement of two, three and four joints (in that order). The end of the table presents systems assisting movement of the whole arm. For some systems it was difficult to classify them into a particular group. One of such cases includes the end-effector-based systems with a splint. A specific classification to particular group may depend on the joints constrained in particular case by the splint. Furthermore, some devices allow for movements in some joints only in a limited range. In some cases the same system may appear multiple times in the table on various stages of development. We have accepted such occurrences only if, in our opinion, the difference between two versions of the system justified considering them as two various systems. Otherwise, information included in the table includes only the most recent version of the system available at the time of this publication. System names are provided in italics. Whenever possible, the first column of the table provides the system name and reference (including the name of the first author) to the publication in which the system is described. We only provide the appropriate reference for systems without a name. The names of commercial systems are followed by their producer names. Appropriate information is provided following a semicolon for commercial systems based on systems being described in scientific publication before commercialization. Except one case, i.e. ArmeoSpring based on T-WREX system, the description of the predecessors is not provided elsewhere in the table because we found no significant differences between the predecessors and their commercial versions. The last column contains information about the current stage of system development, clinical trials performed using the system and some additional information are provided. If the system has undergone clinical evaluation, information about the category of the trial, number of participants enrolled and their condition, as well as reference to the paper presenting results of the study is also provided. We distinguish four categories of the studies marked as C0, CI, CII, CIII/CIV. For a description, see Table 7. Categories CII and CIII/CIV provide two numbers of subjects. The first number indicates the total number of participants enrolled in the study. The number in parenthesis indicates number of participants undergoing therapy using the particular system. We made this distinction because there is often a control group undergoing other form of therapy in the CII and CIII/CIV studies. If both numbers are equal, all participants underwent therapy using the specified system but other parameter of the study varied between the groups (e.g. training intensity, device control strategy, or order in which various forms of therapy were applied). No reference after the number and condition of participants indicates that the reference is the same as the one provided in the first column. Information about predecessors or successors is also provided, if available. We use the following symbols and abbreviations: - for degrees of freedom of the device (DOF) and supported movements (second and third column of the table respectively): [] indicates passive (i.e. exerting only resistive force) and {}-indicates not-actuated degrees of freedom or movements, otherwise active. - for supported movements (third column): (joint name) indicates that range of movements for that joint is limited to a very small range, AA adduction/abduction, FE – flexion/extension, GR – grasp and release, PS – pronation/supination, RT – internal/external rotation, HD - horizonatal displacement, VD - vertical displacement (both in the shoulder girdle), MCP – metacarpophalangeal joint, \* - indicates that the direction of the movement of the device does not correspond to the direction of any of basic anatomical movements (e.g. pronation/supination, flexion/extension, rotation) but is a combination of many, (x number) - indicates that a few particular movements are possible (e.g. flexion in a few joints of one finger), (in the plane) - indicates that the end effector of the device moves only in a specified plane; for the explanation of anatomical terms of motion see Figure 2. - for main control inputs and actuators (fourth and fifth column respectively): (commercial system name) indicates that the particular commercial device (usually robot or haptic interface) is incorporated in the described system and that the particular sensors or actuators are part of that commercial system. - for main control (forth column): sEMG surface electromyography. - for actuators (fifth column): AC alternating current, DC direct current, ERF electrorheological fluid based, FES functional electrical stimulation, MRF magnetorheological fluid based, PAM - pneumatic artificial muscle, SEA - series elastic actuator, (x number) - number of particular actuators being used (provided only if such an information was available). - for clinical studies (last column): C0, CI, CII, CIII/CIV category of the study: 0, I, II and III/IV, respectively (for category descriptions see the subsection Clinical studies of the survey); subject condition: aS - acute stroke, CP - cerebral palsy, cS - chronic stroke, ET - essential tremor, hs - healthy subject(s), MS - multiple sclerosis, SCI - spinal cord injury, sS - subacute stroke, TBI - traumatic brain injury; np - number of subjects is not provided. #### Příloha č. 7: Kritéria pro výběr pacientů po CMP do výzkumu pod vedením DR. Vereny Klamroth-Margansky (Marganska, 2014) #### Panel 1. Final eligibility criteria - Diagnosis of one, first ever cerebrovascular accident verified by brain imaging (MRI or CT) - Chronic impairment after stroke (minimum 6 months) - Moderate to severe arm paresis, as indicated by a score of 8–38 on arm section of Fugl-Meyer assessment (which has a maximum of 66 points) - Aged ≥18 years - Stable recovery stage - · Able to sit in a chair without any additional support and without leaning on the back rest - Passive range of motion in the shoulder as assessed with the neutral zero method: anteversion/retroversion $80^\circ/0^\circ/20^\circ$ , abduction/adduction $60^\circ/0^\circ/10^\circ$ , inner and outer rotation $20^\circ/0^\circ/20^\circ$ - $\bullet$ Passive range of motion in the elbow as assessed with the neutral zero method: flexion/extension $100^\circ\!/40^\circ\!/40^\circ$ - No excessive spasticity of the aff ected arm (modifi ed Ashworth Scale ≤3) - No serious medical or psychiatric disorder as assessed by their physician - No participation in any clinical investigation within previous 4 weeks - No participation in any therapeutic treatment (apart from assigned therapy) done with the paretic arm during the therapy phase of the study - No anticipated need for any major surgery during the study - No pregnancy or breastfeeding in women - No orthopaedic, rheumatological, or other disease restricting movements of the paretic arm - No shoulder subluxation (palpation < 2 fingers) - · No skin ulcerations at the paretic arm - Ability to communicate effectively with the examiner such that the validity of the patient's data could not be compromised - No cybersickness (eg, nausea when looking at a screen or playing computer games) - No pacemaker or other implanted electric devices - Bodyweight <120 kg - No serious cognitive defects or aphasia preventing effective use of ARMin # Příloha č. 8: Fugl-Meyerův test u pacientky Z. N. prováděný pří vstupním vyšetření 7.3.2014 | | | Rehabilitation Medi | cine, Univ | ersity of Goth | nenbu | | |-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|-------|--| | FUOL MEVED A | OFCOME | NT ID OU | | | | | | FUGL-MEYER AS | | | | | | | | UPPER EXTREM Assessment of s | | | Din | | | | | | | | | | . , | | | Fugl-Meyer AR, Jaasko L, Ley performance. Scand J Rehabil | | Steglind S: The post-stroke hemiplegic patient. A method<br>31. | l for evalu | iation of phy | sical | | | A. UPPER EXTREM | JPPER EXTREMITY, sitting position | | | | | | | I. Reflex activity | | | none | can be e | licit | | | Flexors: biceps and fing | er flexors | A STATE OF THE STA | 0 | (3 | 3 | | | Extensors: triceps | pesiu bonit. | Cultitate I I ( () | 0 | (3 | _ | | | | | Subtotal I (max 4) | | 4 | | | | | | synergies, without gravitational help | none | partial | fu | | | Flexor synergy: Hand fr | | Shoulder retraction | 0 | Q, | 2 | | | contralateral knee to ipsi<br>From extensor synergy ( | | elevation<br>abduction (90°) | 0 | a | 2 | | | adduction/ internal rotation | | external rotation | 0 | a | 2 | | | extension, forearm prona | | Elbow flexion | 0 | 1 | 12 | | | synergy (shoulder abduct | | Forearm supination | 0 | 1 | (4 | | | rotation, elbow flexion, fo | rearm | Shoulder adduction/internal rotation | 0 | 1, | 0 | | | supination). Extensor synergy: Han | d from | Elbow extension | 0 | 0 | 2 | | | ipsilateral ear to the cont | | Forearm pronation | 0 | 1 | 3 | | | cosogn Maus cologs | es decemble | Subtotal II (max 18) | 99 19 | 13 | | | | III Valitianal mayor | nont mivin | g synergies, without compensation | none | partial | fu | | | Hand to lumbar spine | cannot | be performed, hand in front of SIAS | 0 | partial | 10 | | | riana to lumbar spine | | ehind of SIAS (without compensation) | | (1) | | | | Sente (suspen) su mor | | lumbar spine (without compensation) | H OF | | 2 | | | Shoulder flexion 0°-90° | | ate abduction or elbow flexion | 0 | 0 | | | | elbow at 0° pronation-supination 0° | | ion or elbow flexion during movement<br>te flexion 90°, maintains 0° in elbow | | (I) | 2 | | | Pronation-supination | | nation/supination, starting position impossible | 0 | | | | | elbow at 90° | limited | pronation/supination, maintains position | P - 8 | 1_ | 1 778 | | | shoulder at 0° | comple | te pronation/supination, maintains position | | | (2 | | | J J L Ld J | 1 1 1 1 1 | Subtotal III (max 6) | had all | 4 | dB | | | IV. Volitional move | nent with I | ittle or no synergy | none | partial | fu | | | Shoulder abduction 0 - | 90° immed | iate supination or elbow flexion | 0 | | | | | elbow at 0° | | tion or elbow flexion during movement | | 1 | | | | forearm pronated | | ion 90°, maintains extension and pronation | (0) | | 2 | | | Shoulder flexion 90°- 1 elbow at 0° | | iate abduction or elbow flexion ion or elbow flexion during movement | 0 | 1 | | | | pronation-supination 0° | | ete flexion, maintains 0° in elbow | isca. | | 2 | | | Pronation/supination | no proi | nation/supination, starting position impossible | 0 | Co | | | | elbow at 0° | | pronation/supination, maintains extension | | 1 | - | | | shoulder at 30°-90° flexion | on full pro | nation/supination, maintains elbow extension<br>Subtotal IV (max 6) | | | 2 | | | | | Subtotar IV (max 0) | | 2 | | | | V. Normal reflex ac | | ted only if full score of 6 points achieved on pa | rt IV | | | | | biceps, triceps, | 0 points on p | art IV or 2 of 3 reflexes markedly hyperactive | 0 | | | | | finger flexors | | edly hyperactive or at least 2 reflexes lively | | 1 | 1 | | | | maximum of | 1 reflex lively, none hyperactive<br>Subtotal V (max 2) | | | (3 | | | | | Gubtotal v (max 2) | | 2 | | | | | The same of sa | Total A (max 36) | | 25 | | | | B. WRIST support may be provided at support at wrist, check the passive range | the elbow to take or hold the position, no e of motion prior testing | none | partial | full | |-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------|---------|------| | Stability at 15° dorsiflexion<br>elbow at 90°, forearm pronated<br>shoulder at 0° | less than 15° active dorsiflexion<br>dorsiflexion 15°, no resistance is taken<br>maintains position against resistance | 0 | 0 | 2 | | Repeated dorsifexion / volar flexion<br>elbow at 90°, forearm pronated<br>shoulder at 0°, slight finger flexion | cannot perform volitionally<br>limited active range of motion<br>full active range of motion, smoothly | 0 | O | 2 | | Stability at 15° dorsiflexion<br>elbow at 0°, forearm pronated<br>slight shoulder flexion/abduction | less than 15° active dorsiflexion<br>dorsiflexion 15°, no resistance is taken<br>maintains position against resistance | 07 | 1 | 2 | | Repeated dorsifexion / volar flexion<br>elbow at 0°, forearm pronated<br>slight shoulder flexion/abduction | cannot perform volitionally limited active range of motion full active range of motion, smoothly | 0 | 0 | 2 | | Circumduction | cannot perform volitionally<br>jerky movement or incomplete<br>complete and smooth circumduction | 0 | 0 | 2 | | racion più chi cr | Total B (max 10) | | Ч | | | C. HAND support may be provided at the the wrist, compare with unaffected hand, to | ne elbow to keep 90° flexion, no support at the objects are interposed, active grasp | none | partial | full | |----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------|---------|------| | Mass flexion from full active or passive extension | | 0 | 1 | (2) | | Mass extension from full active or passive flexion | 6 CO 180 | 0 | 1 | (3) | | GRASP | | | | | | A – flexion in PIP and DIP (digits II-V) extension in MCP II-V | cannot be performed<br>can hold position but weak<br>maintains position against resistance | 0 | 1 | (2) | | B – thumb adduction<br>1-st CMC, MCP, IP at 0°, scrap of paper<br>between thumb and 2-nd MCP joint | cannot be performed<br>can hold paper but not against tug<br>can hold paper against a tug | 0 | 1 | (2) | | C - opposition pulpa of the thumb<br>against the pulpa of 2-nd finger,<br>pencil, tug upward | cannot be performed can hold pencil but not against tug can hold pencil against a tug | 0 | 0 | 2 | | D – cylinder grip cylinder shaped object (small can) tug upward, opposition in digits I and II | cannot be performed<br>can hold cylinder but not against tug<br>can hold cylinder against a tug | 0 | -1 | (2) | | E – spherical grip<br>fingers in abduction/flexion, thumb<br>opposed, tennis ball | cannot be performed<br>can hold ball but not against tug<br>can hold ball against a tug | 0 | (1) | 2 | | | Total C (max 14) | | 12 | | | D. COORDINATION/SPEED after one trial with both arms, blind-folded, tip of the index finger from knee to nose, 5 times as fast as possible | | | slight | none | |--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------|--------|------| | Tremor | Streets are really from | 0 | 1 | (2/ | | Dysmetria | pronounced or unsystematic<br>slight and systematic<br>no dysmetria | 0 | 0 | 2 | | | | > 5s | 2 - 5s | <1s | | Time | more than 5 seconds slower than unaffected side<br>2-5 seconds slower than unaffected side<br>maximum difference of 1 second between sides | 0 | 0 | 2 | | | Total D (max 6) | | Ч | | | TOTAL A-D (r | max 66) | |--------------|---------| | | | Approved by Fugl-Meyer AR 2010 2 2/3 | H. SENSATION, up<br>blind-folded, compared | | anesthesia | hypoesthesia<br>dysesthesia | normal | |--------------------------------------------|-----------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------------| | Light touch | upper arm, forearm palmar surface of the hand | 0 | G<br>G | 2 2 | | | | absence<br>less than 3/4<br>correct | 3/4 correct considerable difference | correct 100%<br>little or no<br>difference | | Position | shoulder | 0 | 1 | 2 | | small alterations in the | elbow | 0 | 1 | (2) | | position | wrist | 0 | 1 | 2 | | | thumb (IP-joint) | 0 | 1 | (2) | | | | | Total H (max12) | 10 | | J. PASSIVE JOIN | NT MOTION, up | per extremit | у | J. JOINT PAIN duri<br>motion, upper extre | | Э | |-------------------------------------------------------------------|-------------------------------------------------------|--------------|-------------------|-----------------------------------------------------------------|--------------|------------| | Sitting position,<br>compare with<br>unaffected side | only few<br>degrees (less<br>than 10° in<br>shoulder) | decreased | normal | pronounced constant<br>pain during or at the<br>end of movement | some<br>pain | no<br>pain | | Shoulder Flexion (0° - 180°) Abduction (0°-90°) External rotation | 0<br>0<br>0 | 1 15 5 | (2)<br>(2)<br>(2) | 0<br>0<br>0 | 999 | 2 2 2 2 | | Internal rotation Elbow Flexion | 0 | 1948) | | 0 | 1 | | | Extension<br>Forearm | 0 | | 2 | o o | <u>i</u> | 2 | | Pronation<br>Supination | 0 | 1 | 3 | 0 | 1 | 2) | | Wrist<br>Flexion<br>Extension | 0 | 1 | 2 | 0 | 1 | 2 | | Fingers<br>Flexion | BOK | 1 | 2 | | -1 | (2) | | Total (max 24) | 0 | 1 | 24 | Total (max 24) | 20 | (2) | | A. UPPER EXTREMITY | 25 /36 | |----------------------------|--------| | B. WRIST | ц /10 | | C. HAND | 12 /14 | | D. COORDINATION / SPEED | પ /6 | | TOTAL A-D (motor function) | 45 /66 | | H. SENSATION | 10 | /12 | |-------------------------|----|-----| | J. PASSIVE JOINT MOTION | 29 | /24 | | J. JOINT PAIN | 20 | /24 | 99 6. Approved by Fugl-Meyer AR 2010 ## Příloha č. 9: Vyšetření jemné motoriky u pacientky Z. N. při vstupním vyšetření 7. 3. 2014 – kreslení geometrických tvarů # Příloha č. 10: Fugl-Meyerův test u pacientky Z. N. Při kontrolním vyšetření 11. 4. 2014 | FUGL-MEYER ASS | ESSME | Rehabilitation Medic | cine, Unive | ersity of Goth | nenburg | |-----------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------|----------------|----------------|--------------| | | | | | | | | UPPER EXTREMIT | | Date: William | ~~ M | | | | Assessment of ser | sorimo | tor function Examiner: Power | MAN | | | | | | teglind S: The post-stroke hemiplegic patient. A method | l for evalu | ation of phy | esical | | performance. Scand J Rehabil Med | | | | | | | A. UPPER EXTREMIT | , sitting po | sition | | | | | I. Reflex activity | | | none | can be e | | | Flexors: biceps and finger f | exors | obsymbleging programadus 2000 PC SHORT dis | 0 | (2) | | | Extensors: triceps | avaraj E.S., S.O. | ambity setting yelligible out, remineate yies, live, at successive | 0 | (2 | | | | | Subtotal I (max 4) | 1917 261 | 4 | SECTION S | | II Valitianal massan | 4 million | cunoraios, with ant are stational hala | none | partial | full | | II. Volitional movemer<br>Flexor synergy: Hand from | | synergies, without gravitational help Shoulder retraction | none<br>0 | partiai<br>1 | (2) | | contralateral knee to ipsilate | | elevation | 0 | 1 | (2) | | From extensor synergy (sho | | abduction (90°) | 0 | 1 | 2 | | adduction/ internal rotation, | elbow | external rotation | 0 | 1 | 0 | | extension, forearm pronation | n) to flexor | Elbow flexion | 0 | 1 | 2 | | synergy (shoulder abduction | | Forearm supination | 0 | 1 | 2 | | rotation, elbow flexion, forea<br>supination). | 1111 | Shoulder adduction/internal rotation | 0 | 1 | 2 | | Extensor synergy: Hand fr | om | Elbow extension Forearm pronation | 0 | 1 | 2 | | ipsilateral ear to the contrala | | | 0 | | | | | | Subtotal II (max 18) | | | 18 | | III. Validianal massara | nt malada - | evnorales without some species | none | partial | full | | III. Volitional moveme<br>Hand to lumbar spine | | synergies, without compensation performed, hand in front of SIAS | none | partial | Tull | | nand to lumbar spine | | chind of SIAS (without compensation) | | 1 | | | | hand to | lumbar spine (without compensation) | 20 ,eve | | (2 | | Shoulder flexion 0°-90° | | ate abduction or elbow flexion | 0 | | | | elbow at 0° | | on or elbow flexion during movement | | 1 | 2 | | pronation-supination 0° Pronation-supination | | e flexion 90°, maintains 0° in elbow ation/supination, starting position impossible | 0 | | - | | elbow at 90° | | pronation/supination, maintains position | general region | 1 | S Designed S | | shoulder at 0° | | e pronation/supination, maintains position | | land. | (2) | | | 1111 | Subtotal III (max 6) | L. L. | ulla ullan | 6 | | | | | | | | | IV. Volitional moveme | | | none | partial | full | | Shoulder abduction 0 - 90 elbow at 0° | | ate supination or elbow flexion on or elbow flexion during movement | 0 | 1 | | | forearm pronated | | on 90°, maintains extension and pronation | | 0 | 2 | | Shoulder flexion 90°- 180° | | ate abduction or elbow flexion | 0 | | | | elbow at 0° | abducti | on or elbow flexion during movement | | 0 | | | pronation-supination 0° | | te flexion, maintains 0° in elbow | 0 | | 2 | | Pronation/supination elbow at 0° | | ation/supination, starting position impossible pronation/supination, maintains extension | 0 | 1 | | | shoulder at 30°-90° flexion | | nation/supination, maintains extension | | | (2) | | | | Subtotal IV (max 6) | | | 4 | | | | | | | 1 | | V. Normal reflex activ | ity evaluat | ed only if full score of 6 points achieved on pa | | T | | | | points on pa | art IV or 2 of 3 reflexes markedly hyperactive edly hyperactive or at least 2 reflexes lively | 0 | 1 | | | | | reflex lively, none hyperactive | | | 2 | | 1113 | ANITIUM OF | Subtotal V (max 2) | | 2 | | | | | | | 2 | | | | | Total A (max 36) | | 34 | | | | | | | | | | B. WRIST support may be provided at support at wrist, check the passive range | the elbow to take or hold the position, no | none | partial | full | |-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------|---------|------| | Stability at 15° dorsifiexion<br>elbow at 90°, forearm pronated<br>shoulder at 0° | less than 15° active dorsiflexion<br>dorsiflexion 15°, no resistance is taken<br>maintains position against resistance | 0 | 0 | 2 | | Repeated dorsifexion / volar flexion<br>elbow at 90°, forearm pronated<br>shoulder at 0°, slight finger flexion | cannot perform volitionally<br>limited active range of motion<br>full active range of motion, smoothly | 0 | 1 | a | | Stability at 15° dorsifiexion<br>elbow at 0°, forearm pronated<br>slight shoulder flexion/abduction | less than 15° active dorsiflexion<br>dorsiflexion 15°, no resistance is taken<br>maintains position against resistance | 0 | O | 2 | | Repeated dorsifexion / volar flexion<br>elbow at 0°, forearm pronated<br>slight shoulder flexion/abduction | cannot perform volitionally limited active range of motion full active range of motion, smoothly | 0 | 0 | 2 | | Circumduction | cannot perform volitionally<br>jerky movement or incomplete<br>complete and smooth circumduction | 0 | 1 | (2) | | | Total B (max 10) | | - | 7 | | C. HAND support may be provided at the wrist, compare with unaffected hand, | ne elbow to keep 90° flexion, no support at the objects are interposed, active grasp | none | partial | full | |----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|------------| | Mass flexion from full active or passive extension | | 0 | 1 | (3) | | Mass extension from full active or passive flexion | ASSERT ASSERTANCE OF THE CONSTRUCTION C | 0 | 1 | 0 | | GRASP | | | | | | A – flexion in PIP and DIP (digits II-V) extension in MCP II-V | cannot be performed can hold position but weak maintains position against resistance | 0 | 1 | (2) | | B – thumb adduction<br>1-st CMC, MCP, IP at 0°, scrap of paper<br>between thumb and 2-nd MCP joint | cannot be performed<br>can hold paper but not against tug<br>can hold paper against a tug | 0 | 1 | (2) | | C - opposition pulpa of the thumb<br>against the pulpa of 2-nd finger,<br>pencil, tug upward | cannot be performed<br>can hold pencil but not against tug<br>can hold pencil against a tug | 0 | <b>3</b> | 2 | | D – cylinder grip cylinder shaped object (small can) tug upward, opposition in digits I and II | cannot be performed<br>can hold cylinder but not against tug<br>can hold cylinder against a tug | 0 | 1 | (2 | | E – spherical grip<br>fingers in abduction/flexion, thumb<br>opposed, tennis ball | cannot be performed<br>can hold ball but not against tug<br>can hold ball against a tug | 0 | 1 | 6 | | PORTS NA CHOIC AND | Total C (max 14) | 1960511.5 | 13 | With Grand | | | TION/SPEED after one trial with both arms, blind-folded, er from knee to nose, 5 times as fast as possible | marked | slight | none | |-----------|-------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|------| | Tremor | | 0 | 1 | (2) | | Dysmetria | pronounced or unsystematic<br>slight and systematic<br>no dysmetria | 0 | 0 | 2 | | | | > 5s | 2 - 5s | < 1s | | Time | more than 5 seconds slower than unaffected side<br>2-5 seconds slower than unaffected side<br>maximum difference of1 second between sides | 0 | 0 | 2 | | | Total D (max 6) | | | 4 | | TOTAL A-D (max 66) | 52 | |--------------------|----| | TOTAL A-D (Max 00) | 30 | Approved by Fugl-Meyer AR 2010 | H. SENSATION, up<br>blind-folded, compared | | anesthesia | hypoesthesia<br>dysesthesia | normal | |--------------------------------------------|-----------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------------| | Light touch | upper arm, forearm palmar surface of the hand | 0 | 1 | (2)<br>(2) | | | | absence<br>less than 3/4<br>correct | 3/4 correct considerable difference | correct 100%<br>little or no<br>difference | | Position | shoulder | 0 | a talkin yeer in 1 class of the | (2) | | small alterations in the | elbow | 0 | 1 | 2 | | position | wrist | 0 | 1 | 2 | | | thumb (IP-joint) | 0 | 1 | 2 | | | | | Total H (max12) | 12 | | J. PASSIVE JOIN | J. PASSIVE JOINT MOTION, upper extremity | | | | ing passive<br>mity | 9 | |------------------------------------------------------|-------------------------------------------------------|-----------|---------------|-----------------------------------------------------------------|---------------------|----------------------| | Sitting position,<br>compare with<br>unaffected side | only few<br>degrees (less<br>than 10° in<br>shoulder) | decreased | normal | pronounced constant<br>pain during or at the<br>end of movement | some<br>pain | no<br>pain | | Shoulder | | | 0. | | | 1 | | Flexion (0° - 180°) | 0 | 1 | (2) | 0 | 1 | (2) (2) (2) | | Abduction (0°-90°) | 0 | 1 1 G | (2) | 0 | 1 | (2) | | External rotation | 0 | /13 | (2) | 0 | 1 | (2) | | Internal rotation | 0 | / 1 | (2) | 0 | 1 | (2) | | Elbow | | | | | | | | Flexion | 0 | 1 | 0 | 0 | 1 | (2) | | Extension | 0 | 1 | 2 | 0 | 1 | (2) | | Forearm | | | 11 1/2 | 7 | | rink a | | Pronation | 0 | 1 | (2) | 0 | 1 | (2) | | Supination | 0 | 1 7 | (2) | 0 | 1 | (27 | | Wrist | | | Market Street | | | The same of the same | | Flexion | 0 | 1 | (2) | 0 | 1 | (2) | | Extension | 0 | 1 - | (2) | 0 | _ 1 | (2) | | Fingers<br>Flexion | BOK | 1 | (2) | LVEK | - 1 | (2) | | Extension | 0 | 1 | 2 | 0 | 1 | (2) | | Total (max 24) | | | 24 | Total (max 24) | 2 | 9 | | A. UPPER EXTREMITY | 34 | /36 | |----------------------------|----|-----| | B. WRIST | 7 | /10 | | C. HAND | 13 | /14 | | D. COORDINATION / SPEED | 4 | /6 | | TOTAL A-D (motor function) | 58 | /66 | | H. SENSATION | 12 | /12 | |-------------------------|----|-----| | J. PASSIVE JOINT MOTION | 29 | /24 | | J. JOINT PAIN | 24 | /24 | 118 b. Approved by Fugl-Meyer AR 2010 <u>Příloha č. 11:</u> Vyšetření jemné motoriky u pacientky Z. N. při kontrolním vyšetření 11. 4. 2014 ### Příloha č. 12: Výsledky 3 hodnotících cvičení ze softwaru systému Armeo®Spring (pacientka Z. N.) Obr. 1: vertikální chytání, obr. 2: horizontální chytání, obr. 3: čas reakce Obr. 1 Obr. 3 # Příloha č. 13: Fugl-Meyerův test u pacientky M. T. prováděný pří vstupním vyšetření 25.3.2014 | | | Rehabilitation Medicit | , 011176 | . Dity Or Court | | |------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------|------------|-----------------|---------| | FUGL-MEYER ASSE | SSME | NT ID: Y.T. | | | | | UPPER EXTREMITY | | | | | | | Assessment of sens | (I INIX | | no | | | | | | | | | | | Fugl-Meyer AR, Jaasko L, Leyman I, | Olsson S, S | teglind S: The post-stroke hemiplegic patient. A method | for evalue | ation of phys | ncal | | performance. Scand J Rehabil Med 1 | | | | | | | A. UPPER EXTREMITY, | sitting pos | sition | | can be e | licitod | | I. Reflex activity | | | none<br>0 | 2 | | | Flexors: biceps and finger flex | ors | | 0 | 2 | | | Extensors: triceps | | Subtotal I (max 4) | | | | | | | Subtotal I (IIIax 4) | | | | | II Volitional movement | within | synergies, without gravitational help | none | partial | full | | Flexor synergy: Hand from | | Shoulder retraction | 0 | 1 | 2 | | contralateral knee to ipsilatera | l ear. | elevation | 0 | D | 2 | | From extensor synergy (should | der | abduction (90°) | 0 | 0 | 2 2 | | adduction/ internal rotation, ell | | external rotation | 0 | 1 | (3) | | extension, forearm pronation) synergy (shoulder abduction) | oxternal | Elbow flexion Forearm supination | 0 | 1 | 2 | | rotation, elbow flexion, forearn | | Forearm supination Shoulder adduction/internal rotation | 0 | P | 2 | | supination). | | Elbow extension | 0 | 1 | 2 (2) | | Extensor synergy: Hand from | | Forearm pronation | 0 | 1 | (2) | | ipsilateral ear to the contralate | ral knee | Subtotal II (max 18) | | | | | | | 13/23/01 | | | | | III. Volitional movement | mixing | synergies, without compensation | none | partial | full | | Hand to lumbar spine | cannot | be performed, hand in front of SIAS | 0 | | | | | hand be | ehind of SIAS (without compensation) | | 1 | 2 | | 0 | hand to | lumbar spine (without compensation) ate abduction or elbow flexion | (0) | | | | Shoulder flexion 0°-90° elbow at 0° | | on or elbow flexion during movement | | 1 | | | pronation-supination 0° | comple | te flexion 90°, maintains 0° in elbow | | | 2 | | Pronation-supination | no pror | ation/supination, starting position impossible | 0 | 0 | | | elbow at 90° | limited | pronation/supination, maintains position te pronation/supination, maintains position | CIT | 4 | 2 | | shoulder at 0° | comple | Subtotal III (max 6) | Di | | | | | | | | | | | IV. Volitional movemen | t with li | ttle or no synergy | none | partial | full | | Shoulder abduction 0 - 90° | immedi | ate supination or elbow flexion | 0 | | | | elbow at 0° | supinal | ion or elbow flexion during movement | | 1 | 2 | | forearm pronated | abduct | on 90°, maintains extension and pronation attemption attemption attemption are abduction or elbow flexion | (0) | | - | | Shoulder flexion 90°- 180° elbow at 0° | | on or elbow flexion during movement | 0 | 1 | | | pronation-supination 0° | comple | te flexion, maintains 0° in elbow | 100 | | 2 | | Pronation/supination | no prot | nation/supination, starting position impossible | 0 | | | | elbow at 0° | limited | pronation/supination, maintains extension | | 1 | 2 | | shoulder at 30°-90° flexion | full pro | nation/supination, maintains elbow extension<br>Subtotal IV (max 6) | | | _ | | | | Oddictar (max o) | | | | | V. Normal reflex activit | v evalua | ted only if full score of 6 points achieved on pa | rt IV | | | | hicens tricens 0 no | oints on p | art IV or 2 of 3 reflexes markedly hyperactive | 0 | | | | finger flexors 1 re | flex mark | edly hyperactive or at least 2 reflexes lively | | 1 | 2 | | max | kimum of | 1 reflex lively, none hyperactive<br>Subtotal V (max 2) | | | | | | | Subtotal v (max 2) | | | | | | | Total A ( | | ΛŢ | | | | | Total A (max 36) | | 11+ | | | B. WRIST support may be provided at support at wrist, check the passive range | none | partial | full | | |-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------|------|-----| | Stability at 15° dorsiflexion<br>elbow at 90°, forearm pronated<br>shoulder at 0° | less than 15° active dorsiflexion<br>dorsiflexion 15°, no resistance is taken<br>maintains position against resistance | 0 | 0 | 2 | | Repeated dorsifexion / volar flexion<br>elbow at 90°, forearm pronated<br>shoulder at 0°, slight finger flexion | cannot perform volitionally limited active range of motion full active range of motion, smoothly | 0 | (F) | 2 | | Stability at 15° dorsifiexion<br>elbow at 0°, forearm pronated<br>slight shoulder flexion/abduction | less than 15° active dorsiflexion<br>dorsiflexion 15°, no resistance is taken<br>maintains position against resistance | 0 | 1 | 2 | | Repeated dorsifexion / volar flexion<br>elbow at 0°, forearm pronated<br>slight shoulder flexion/abduction | cannot perform volitionally<br>limited active range of motion<br>full active range of motion, smoothly | 0) | 1 | 2 | | Circumduction | cannot perform volitionally<br>jerky movement or incomplete<br>complete and smooth circumduction | 0 | 1 | (2) | | The Appendix Section | Total B (max 10) | | 4 | | | C. HAND support may be provided at the wrist, compare with unaffected hand, | ne elbow to keep 90° flexion, no support at the objects are interposed, active grasp | none | partial | full | |----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------|---------|------| | Mass flexion from full active or passive extension | | 0 | 0 | 2 | | Mass extension from full active or passive flexion | 163-33 RON | 0 | 1 | 2) | | GRASP | | | | | | A – flexion in PIP and DIP (digits II-V) extension in MCP II-V | cannot be performed<br>can hold position but weak<br>maintains position against resistance | 0 | Û | 2 | | B – thumb adduction<br>1-st CMC, MCP, IP at 0°, scrap of paper<br>between thumb and 2-nd MCP joint | cannot be performed<br>can hold paper but not against tug<br>can hold paper against a tug | 0 | 1 | 2 | | C - opposition pulpa of the thumb<br>against the pulpa of 2-nd finger,<br>pencil, tug upward | cannot be performed<br>can hold pencil but not against tug<br>can hold pencil against a tug | 0 | 0 | 2 | | D – cylinder grip cylinder shaped object (small can) tug upward, opposition in digits I and II | cannot be performed<br>can hold cylinder but not against tug<br>can hold cylinder against a tug | 0 | 0 | 2 | | E – spherical grip<br>fingers in abduction/flexion, thumb<br>opposed, tennis ball | cannot be performed<br>can hold ball but not against tug<br>can hold ball against a tug | 0 | 0 | 2 | | A SPACE CONTRACT | Total C (max 14) | | 8 | | | | <b>FION/SPEED</b> after one trial with both arms, blind-folded, er from knee to nose, 5 times as fast as possible | marked | slight | none | |-------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|------| | Tremor | 景子編 送到 | 0, | 1 | 2 | | Dysmetria | pronounced or unsystematic<br>slight and systematic<br>no dysmetria | (9) | 1 | 2 | | | | > 5s | 2 - 5s | < 1s | | Time | more than 5 seconds slower than unaffected side<br>2-5 seconds slower than unaffected side<br>maximum difference of1 second between sides | 0 | 1 | 2 | | 3.1000 8.25 | Total D (max 6) | | 0 | | | T | OTAL A-D (max 66) | 12 | |---|-------------------|----| | | | | Approved by Fugl-Meyer AR 2010 | H. SENSATION, up blind-folded, compared | | anesthesia | hypoesthesia<br>dysesthesia | normal | |-----------------------------------------|-----------------------------------------------|-------------------------------------|-------------------------------------------|--------------------------------------------| | Light touch | upper arm, forearm palmar surface of the hand | 0 | 1 | (2) | | | | absence<br>less than 3/4<br>correct | 3/4 correct<br>considerable<br>difference | correct 100%<br>little or no<br>difference | | Position | shoulder | 0 | 9 | 2 | | small alterations in the | elbow | 0 | | 2 | | position | wrist | 0 | (1) | 2 | | | thumb (IP-joint) | 0 | 1 | 2 | | | | | Total H (max12) | 3 | | J. PASSIVE JOIN | J. PASSIVE JOINT MOTION, upper extremity | | | J. JOINT PAIN dur<br>motion, upper extre | | Э | |------------------------------------------------------|-------------------------------------------------------|-----------|--------|-----------------------------------------------------------------|--------------|------------| | Sitting position,<br>compare with<br>unaffected side | only few<br>degrees (less<br>than 10° in<br>shoulder) | decreased | normal | pronounced constant<br>pain during or at the<br>end of movement | some<br>pain | no<br>pain | | Shoulder<br>Flexion (0° - 180°) | 0 | 1 | 9 | 0 | 0 | 2 | | Abduction (0°-90°) | 0 | 1,000,000 | Olimon | 0 | 0 | 2 | | External rotation | 0 | 19 | 2 | 0 | 1 | 2) | | Internal rotation | 0 | 1/51/ | 2 2 | 0 | 1 | 2 | | Elbow | | | 7.3 | | | | | Flexion | 0 | 1 | (2) | 0 | 1 | 2 | | Extension | 0 | 1 | 2) | 0 | 1 | 2 | | Forearm | | | 150 | | | 6 | | Pronation | 0 | 1 | (2) | 0 | 1 | 2 | | Supination | 0 | 1 1 | (2) | 0 | 1 | (2) | | Wrist | | | 6 | | | (0) | | Flexion | 0 | 1 | (2 | 0 | | 2 | | Extension | 0 | 1 | (2) | - Was and the second | and the same | 2 | | Fingers<br>Flexion | DOK | JA | 3 | 1 0 1 | 1 | 2 | | Extension | 0 | 1 | (2) | 0 | 1 | 2 | | Total (max 24) | 24 | | | Total (max 24) | 22 | | | A. UPPER EXTREMITY | 17 /36 | |----------------------------|--------| | B. WRIST | 4 /10 | | C. HAND | ₺ /14 | | D. COORDINATION / SPEED | 0 /6 | | TOTAL A-D (motor function) | 29 /66 | | H. SENSATION | 9 | /12 | |-------------------------|----|-----| | J. PASSIVE JOINT MOTION | 24 | /24 | | J. JOINT PAIN | 22 | /24 | Approved by Fugl-Meyer AR 2010 ## Příloha č. 14: Vyšetření jemné motoriky u pacientky M. T. při vstupním vyšetření 25. 3. 2014 – kreslení geometrických tvarů # Příloha č. 15: Fugl-Meyerův test u pacientky M. T. při kontrolním vyšetření 17. 4. 2014 | Assessment of ser | | | | Examiner: Poker | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------| | Fugl-Meyer AR, Jaasko L, Leyma<br>performance. Scand J Rehabil Me | | | post-stroke hem | tiplegic patient. A method | d for evalu | ation of phy | sical | | A. UPPER EXTREMIT | Y, sitting po | sition | | | | | | | I. Reflex activity | | | | | none | can be | | | Flexors: biceps and finger f<br>Extensors: triceps | lexors | April e sloven i<br>Distributato sia | (Sulfae Pations II<br>ofingerson at 52s | Subtotal I (max 4) | 0 | (2) | ) | | | | | | Subtotal I (max 4) | | | H | | II. Volitional movemen | | | | vitational help | none | partial | full | | Flexor synergy: Hand from contralateral knee to ipsilate From extensor synergy (sho adduction/ internal rotation, extension, forearm pronatio synergy (shoulder abduction rotation, elbow flexion, foreas supination). | eral ear. bulder elbow n) to flexor n/ external | Elbow<br>Forearm<br>Shoulder<br>Elbow | retraction elevation abduction external ro flexion supination adduction/ extension | tation | 0<br>0<br>0<br>0<br>0<br>0 | A D 1 1 1 1 1 1 1 1 | 2 2 2 2 2 2 2 2 2 2 2 2 | | Extensor synergy: Hand fr<br>ipsilateral ear to the contrals | | Forearm | pronation | | 0 | 1 | (2) | | | | (55) | 107 | Subtotal II (max 18) | | | 15 | | III. Volitional moveme | nt miving | n syneraje | s without co | ompensation | none | partial | full | | Hand to lumbar spine | cannot hand be | be performe<br>ehind of SIAS | d, hand in fro<br>S (without con<br>e (without co | nt of SIAS<br>mpensation) | 0 | 0 | 2 | | Shoulder flexion 0°-90°<br>elbow at 0°<br>pronation-supination 0° | immedi<br>abducti<br>comple | ate abductio<br>on or elbow<br>te flexion 90 | n or elbow fle<br>flexion during<br>°, maintains ( | exion<br>y movement<br>o° in elbow | 0 | D | 2 | | Pronation-supination<br>elbow at 90°<br>shoulder at 0° | limited | pronation/su | pination, mai | position impossible<br>ntains position<br>naintains position | 0 | Ø | 2 | | The state of s | The state of the state of | inch saskales j | olagab prodig | Subtotal III (max 6) | The state of s | actions collins | 3 | | IV. Volitional moveme | | | | | none | partial | full | | Shoulder abduction 0 - 90 elbow at 0° forearm pronated | supinat | ion or elbow | on or elbow fle<br>flexion during | | 0 | 0 | 2 | | Shoulder flexion 90°- 180° elbow at 0° pronation-supination 0° | immedi<br>abducti | ate abductio<br>on or elbow | n or elbow fle<br>flexion during<br>aintains 0° ir | exion<br>g movement | 0 | 1 | 2 | | Pronation/supination<br>elbow at 0°<br>shoulder at 30°-90° flexion | no pron<br>limited | nation/supina<br>pronation/su | ition, starting<br>pination, mai | position impossible<br>ntains extension<br>ns elbow extension | 0 | a | 2 | | SHOULDER AT 30 -90 HEXION | Tuli proi | iauoii/supilia | auon, maintai | Subtotal IV (max 6) | | , | 2 | | V Normal - Constitution | idea - L | -1 -1 -1 -1 -1 | | data sabia da la companya da la comp | -+ IV | | | | finger flexors 1 | points on pare | art IV or 2 of edly hyperac | 3 reflexes ma<br>tive or at leas | arkedly hyperactive at 2 reflexes lively | 0 | 1 | | | m | aximum of 1 | 1 reflex lively | , none hypera | Subtotal V (max 2) | | | 2 | | | | | | Total A (max 36) | | 24 | | | <b>B. WRIST</b> support may be provided at support at wrist, check the passive range | the elbow to take or hold the position, no e of motion prior testing | none | partial | full | |-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------|---------|------| | Stability at 15° dorsiflexion<br>elbow at 90°, forearm pronated<br>shoulder at 0° | less than 15° active dorsiflexion<br>dorsiflexion 15°, no resistance is taken<br>maintains position against resistance | 0 | 0 | 2 | | Repeated dorsifexion / volar flexion<br>elbow at 90°, forearm pronated<br>shoulder at 0°, slight finger flexion | cannot perform volitionally<br>limited active range of motion<br>full active range of motion, smoothly | 0 | 1 | 2 | | Stability at 15° dorsiflexion<br>elbow at 0°, forearm pronated<br>slight shoulder flexion/abduction | less than 15° active dorsiflexion<br>dorsiflexion 15°, no resistance is taken<br>maintains position against resistance | 0 | 0 | 2 | | Repeated dorsifexion / volar flexion<br>elbow at 0°, forearm pronated<br>slight shoulder flexion/abduction | cannot perform volitionally limited active range of motion full active range of motion, smoothly | 0 | 1 | 2 | | Circumduction | cannot perform volitionally jerky movement or incomplete complete and smooth circumduction | 0 | 1 | (2) | | | Total B (max 10) | | 6 | | | C. HAND support may be provided at the the wrist, compare with unaffected hand, to | ne elbow to keep 90° flexion, no support at the objects are interposed, active grasp | none | partial | full | |----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------|---------|------| | Mass flexion from full active or passive extension | | 0 | 1 | 3 | | Mass extension from full active or passive flexion | 165-30 TO | 0 | 1 | (2) | | GRASP | | | | | | A – flexion in PIP and DIP (digits II-V) extension in MCP II-V | cannot be performed<br>can hold position but weak<br>maintains position against resistance | 0 | 0 | 2 | | B – thumb adduction<br>1-st CMC, MCP, IP at 0°, scrap of paper<br>between thumb and 2-nd MCP joint | cannot be performed<br>can hold paper but not against tug<br>can hold paper against a tug | 0 | G | 2 | | C - opposition pulpa of the thumb<br>against the pulpa of 2-nd finger,<br>pencil, tug upward | cannot be performed<br>can hold pencil but not against tug<br>can hold pencil against a tug | 0 | Œ | 2 | | D – cylinder grip cylinder shaped object (small can) tug upward, opposition in digits I and II | cannot be performed<br>can hold cylinder but not against tug<br>can hold cylinder against a tug | 0 | 0 | 2 | | E – spherical grip<br>fingers in abduction/flexion, thumb<br>opposed, tennis ball | cannot be performed<br>can hold ball but not against tug<br>can hold ball against a tug | 0 | 1. | (2 | | | Total C (max 14) | 1 | 10 | | | | FION/SPEED after one trial with both arms, blind-folded, er from knee to nose, 5 times as fast as possible | marked | slight | none | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|------| | Tremor | | 0 | (1) | 2 | | Dysmetria | pronounced or unsystematic<br>slight and systematic<br>no dysmetria | 0 | 1 | 2 | | | | > 5s | 2 - 5s | <1s | | Time | more than 5 seconds slower than unaffected side<br>2-5 seconds slower than unaffected side<br>maximum difference of 1 second between sides | 0 | 1 | 2 | | | Total D (max 6) | | 1 | | | TOTAL A-D (max 66) | 17 | |--------------------|----| | | | Approved by Fugl-Meyer AR 2010 | H. SENSATION, upper extremity blind-folded, compared with unaffected side | | anesthesia | hypoesthesia<br>dysesthesia | normal | |---------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------------| | Light touch | upper arm, forearm palmar surface of the hand | 0 | 1 | 2 | | | | absence<br>less than 3/4<br>correct | 3/4 correct considerable difference | correct 100%<br>little or no<br>difference | | Position small alterations in the | shoulder<br>elbow | 0 | 2 | 2 | | position | wrist | 0 | 0 | 2 | | | thumb (IP-joint) | 0 | 1 | 2/ | | | | | Total H (max12) | 3 | | J. PASSIVE JOIN | J. PASSIVE JOINT MOTION, upper extremity | | | | J. JOINT PAIN during passive motion, upper extremity | | | |------------------------------------------------------|-------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|------------|--| | Sitting position,<br>compare with<br>unaffected side | only few<br>degrees (less<br>than 10° in<br>shoulder) | decreased | normal | pronounced constant<br>pain during or at the<br>end of movement | some<br>pain | no<br>pain | | | Shoulder<br>Flexion (0° - 180°) | 0 | 1 | (2) | And Saladaya walvag Jaha Saladaya | n varuutevaev<br>1 | 0 | | | Abduction (0°-90°) | 0 | 1 | the same of sa | 0 | 1 | (2) | | | External rotation | 0 | 15.40 | 3 | 0 | 1 | (2) | | | Internal rotation | 0 | 1/4/1/ | 202 | 0 | 1 | 2222 | | | Elbow | 0 | 16/083 | 15 | | | 12 | | | Flexion | 0 | 1 1 | 2 | 0 | 1 | (2 | | | Extension | 0 | 1 | 2 | 0 | 1 | 2 | | | Forearm | | BENTH | 77/ | 1 | | 0 | | | Pronation | 0 | 1 | (2 | 0 | 1 | 2 | | | Supination | 0 | 1 | (2) | 0 | 1 | (2) | | | Wrist | | | a especialists | | | | | | Flexion | 0 | 1 | (2) | 0 | 1 | (2) | | | Extension | 0 | 1-1 | (2) | 0 | 1 1 | 2 | | | Fingers<br>Flexion | BOX | 1 | 23 | 1 V 5 K | 1 | (2 | | | Extension | 0 | 1 | 9 | 0 | 1 | (2 | | | Total (max 24) | | c | 24 | Total (max 24) | ( | 24 | | | A. UPPER EXTREMITY | 24 | /36 | |----------------------------|----|-----| | B. WRIST | 6 | /10 | | C. HAND | 10 | /14 | | D. COORDINATION / SPEED | 1 | /6 | | TOTAL A-D (motor function) | 41 | /66 | | H. SENSATION | 9 | /12 | |-------------------------|----|-----| | J. PASSIVE JOINT MOTION | 24 | /24 | | J. JOINT PAIN | 24 | /24 | 986. Approved by Fugl-Meyer AR 2010 <u>**Příloha č. 16:**</u> Vyšetření jemné motoriky u pacientky M. T. při kontrolním vyšetření 25. 4. 2014 ## Příloha č. 17: Výsledky 3 hodnotících cvičení ze softwaru systému Armeo®Spring Obr. 1: vertikální chytání, obr. 2: horizontální chytání, obr. 3: čas reakce Obr. 1 Obr. 2 Obr. 3 #### Příloha č. 18: Informovaný souhlas pacientky Z. N. ### INFORMOVANÝ SOUHLAS V souladu se Zákonem o péči o zdraví lidu (§ 23 odst. 2 zákona č. 20/1966 Sb.) s Úmluvou o lidských právech a biomedicíně č. 96/2001 Sb. m. s. Vás žádám o souhlas k vyšetření a následné terapii. Dále Vás žádám o souhlas k nahlížení do Vaší dokumentace osobou získávající způsobilost k výkonu zdravotnického povolání v rámci praktické výuky a s uveřejněním výsledků terapie v rámci bakalářské práce na FTVS UK. Osobní data v této studii nebudou uvedena. Dnešního dne jsem byla odborným pracovníkem poučena o plánovaném vyšetření a následné terapii. Prohlašuji a svým dále uvedeným vlastnoručním podpisem potvrzuji, že odborný pracovník, který mi poskytl poučení, mi osobně vysvětlil vše, co je obsahem tohoto písemného informovaného souhlasu, a měla jsem možnost klást mu otázky, na které mi řádně odpověděl. Prohlašuji, že jsem shora uvedenému poučení plně porozuměla a výslovně souhlasím s provedením vyšetření a následnou terapií. Souhlasím s nahlížením níže jmenované osoby do mé dokumentace a s uveřejněním výsledků terapie v rámci studie. | Datum: 7.3.2514 | |-------------------------------------------------| | Osoba, která provedla poučení: BARBORA POKORNÁ | | Podpis osoby, která provedla poučení: | | Vlastnoruční podpis pacienta: Nedvi kera Idenka | #### Příloha č. 19: Informovaný souhlas pacientky M. T. ### INFORMOVANÝ SOUHLAS V souladu se Zákonem o péči o zdraví lidu (§ 23 odst. 2 zákona č. 20/1966 Sb.) s Úmluvou o lidských právech a biomedicíně č. 96/2001 Sb. m. s. Vás žádám o souhlas k vyšetření a následné terapii. Dále Vás žádám o souhlas k nahlížení do Vaší dokumentace osobou získávající způsobilost k výkonu zdravotnického povolání v rámci praktické výuky a s uveřejněním výsledků terapie v rámci bakalářské práce na FTVS UK. Osobní data v této studii nebudou uvedena. Dnešního dne jsem byla odborným pracovníkem poučena o plánovaném vyšetření a následné terapii. Prohlašuji a svým dále uvedeným vlastnoručním podpisem potvrzuji, že odborný pracovník, který mi poskytl poučení, mi osobně vysvětlil vše, co je obsahem tohoto písemného informovaného souhlasu, a měla jsem možnost klást mu otázky, na které mi řádně odpověděl. Prohlašuji, že jsem shora uvedenému poučení plně porozuměla a výslovně souhlasím s provedením vyšetření a následnou terapií. Souhlasím s nahlížením níže jmenované osoby do mé dokumentace a s uveřejněním výsledků terapie v rámci studie. | Datum: 25.3.60/14 | |--------------------------------------------------------| | Osoba, která provedla poučení: BARBORA POKORNA | | Podpis osoby, která provedla poučení: MARCELA TRUICOVA | | Vlastnoruční podpis pacienta: Allalalalalala |