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List of Notations

R, N, Z Sets of real, natural and whole numbers

x ≡ y x equals y, x is defined as y

x ≈ y x approximately equals y

x� y x is much greater than y

x→ y x tends to y

t mod p t modulo p

x+ Positive part of x, i.e. x+ ≡ max(0, x)

bxc Integer part of real number x

A,v Matrix, column vector

A′,v′ Matrix and vector transposition

Diag(·) Diagonal matrix with given elements

A−1 Matrix inversion

detA Determinant of square matrix A

N(µ, σ2) Normal distribution with mean µ and variance σ2

Nn(0,R) n-dimensional normal distribution with mean 0 and covariance R

uθ θ-quantile of N(0, 1)

U Uniform distribution

δx Dirac measure at point x

t Time

εt ∼ iid (L) εt are independent and identically distributed (with distribution L)

εt, µt, πt, ηt, θt iid disturbances (innovations) at time t

tn Time of the nth observation of irregular time series

q Average time spacing of time series

yt Observation of time series y at time t

∆yt, ∆2yt First and second difference of time series y at time t

B Backshift time series operator, Byt = yt−1
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ŷt Smoothed value of time series y at time t

ŷt+τ (t) Forecast of value yt+τ , τ > 0, from time t

τ Forecasting horizon

p Period length of time series

t⊕ τ Latest time not later than t which is congruent with t+ τ mod p

et One-step-ahead forecasting error at time t

vt Forecast variance factor at time t

Lt, Tt Level and slope of time series at time t

St Seasonal component of time series at time t

Ct Autocorrelated component of time series at time t

S
[i]
t ith order smoothing statistics at time t

α, γ, δ Smoothing constants

αH , γH Smoothing constants (for level and slope) of Holt method

αHW , γHW , δHW Smoothing constants of Holt-Winters method

αtn , γtn Smoothing coefficients for level and slope at time tn

δtn , δ
k
tn Smoothing coefficients for seasonal component at time tn

ϕ Damping constant

β Discount factor

ν Parameter controlling smoothness of seasonal pattern

fk Real valued pk-periodic function on R

K Number of periodic functions fk in seasonal component

F n Regression design matrix up to time n

Dn Diagonal discounting matrix up to time n

Ak, Akt Amplitude of fk in seasonal component of time series (at time t)

W k
t Exponential weighted average of squared values of function fk

fk ◦ fl Discounted scalar product of functions fk and fl

f2
k Average squared value of fk over available observation times

o Time origin of interpolated seasonal indices

h Number of full harmonics in Holt-Winters method
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Preface

This doctoral thesis summarizes my research as a Ph.D. student at Charles

University in Prague, Department of Probability and Mathematical Statistics,

in the period 2007-2014.

I would like to thank to my supervisor Prof. Tomáš Cipra, inter alia, for his

valuable contribution to my research and thus to this thesis. However, all the

potential errors and deficiencies of it must be attributed solely to me personally.

The topic of my dissertation focusing on irregular time series follows the

topic of my diploma thesis Decomposition methods for time series with irregular

observations written under the supervision of Prof. Cipra in the period 2005-

2007 at the same university, see Hanzák (2007). The elements of this diploma

thesis were then published in Hanzák and Cipra (2008). In the dissertation this

is mentioned in Sections 2.2 and 2.3 of the existing methods survey.

A substantial part of the original material in this dissertation (covered

by Chapters 3 and 4) has been published already, see Hanzák (2008) and Hanzák

(2012). The content of Chapters 5 and 6 has not been published so far.

One should start to read the thesis ideally with Introduction and Chapters 1

and 2 containing the topic overview and the state of the art. The later Chapters

3, 4, 5 and 6, containing the author’s own contribution to the topic, are mostly

thematically independent and can be read without any problems in an arbitrary

order.

The software implementation of majority of the methods suggested was done

by the author. The application is called DMITS (Decomposition Methods for

Irregular Time Series) and it is an extended version of the application originally

developed as a part of author’s diploma thesis, see Chapter 7. The application is

included as an electronic attachment to the thesis.

The electronic attachment further includes the real and simulated time series

data used in Sections 3.5, 3.6, 4.5 and 6.5, all the figures of the thesis as source

PNG files and all the tables in XLS file.

In Prague, 31st March 2014

Mgr. Tomáš Hanzák
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Introduction

An amount of data available for statistical analysis is growing over time both

in terms of data volumes and number of different kinds of data sources. This

process is nowadays driven mainly by a rapid development of information

technology and its penetration to real lives of millions of people.

It is definitely unnecessary to prove and illustrate the obvious fact that time

series is a type of statistical data largely occurring in almost every scientific

discipline or field of human activity. Simply said, almost every data can be

ordered and aggregated to form a time series. And since we live in an era

of constant changes, it is usually useful to do so.

The information technologies not just bring new data to us but it also offer

a database and computational power to handle and analyze them. There is

a remarkable development in time series analysis as a field of econometrics and

in time series software available as well. It shows that a proper understanding

(both factual and statistical) and analytical skills of the data owners/users are

the natural most limiting factors.

Real time series sometimes exhibit various types of ”irregularities”: missing

observations, observations collected not regularly over time or outlying

observations. This dissertation primarily focuses on time series smoothing

and forecasting methods modified for usage with such ”irregular” time series.

We restrict ourselves to univariate real-valued time series with emphasis

on periodic time series. The methods considered can all be called as variants

of exponential smoothing, i.e. they are of a decomposition, adaptive and recursive

nature.

Some of the classical exponential smoothing methods like those of Holt and

Winters (see Winters (1960) or Holt (2004)) were already extended for application

in the context of irregular time series, see Wright (1986), Aldrin and Damsleth

(1989), Cipra et al. (1995), Ratinger (1996), Cipra (2006), Hanzák and Cipra

(2008), Croux et al. (2008) and Gelper et al. (2010). However, some combinations

of irregularity types and methods to be applied were still not covered or the

extended methods available suffer from certain defects in their performance.

The goal of this dissertation is to fill some of these gaps and suggest additional

methods usable for these cases. All the suggested methods are illustrated and

compared with the existing ones using real data examples and/or simulation

studies.
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The text of the thesis is organized as follows:

Chapter 1 more closely describes various types of time series irregularities

and difficulties they bring to us. Special attention is paid to time series

with observations irregularly spanned over time, with missing observations as

its special case. Periodicity in time series is then discussed in light of these

irregularities.

Chapter 2 is a state of the art - an overview of existing methods of exponential

smoothing (or similar) modified for irregular time series. This includes simple

exponential smoothing (SES) and Holt method by Wright (1986), Holt-Winters

methods by Cipra et al. (1995), double exponential smoothing (DES) from

Cipra (2006) and exponential smoothing of order m from Hanzák and Cipra

(2008). Methods derived from assuming the fully observed series to follow

a certain ARIMA or SARIMA model are reviewed, see Aldrin and Damsleth

(1989), Ratinger (1996) and Hanzák and Cipra (2008). State space modeling

and Kalman filter is mentioned as a general powerful tool for filtering, smoothing

and forecasting in time series. Some robust exponential smoothing methods are

mentioned as well.

The following chapters 3, 4, 5, 6 and 7 contain the author’s own contributions

to the dissertation topic.

An improvement of Holt method for irregular observation times by Wright

(1986) that is robust to a problem of time-close observations (two subsequent

observations with time distance much shorter than in average) is provided

in Chapter 3. If this situation occurs in time series when using the original

Wright’s formulas, one can obtain seriously wrong results. A real data example

and a simulation study is provided to compare the performance of the original and

modified method. The content of this chapter was published in Hanzák (2008).

Chapter 4 suggests a generalization of Holt-Winters method for seasonal time

series. The general concept of seasonality modeling is introduced both for the

additive and multiplicative case. Several special cases are discussed, including

a linear interpolation of seasonal indices and a usage of trigonometric functions

(both applicable for time series with irregular observations). A simulation study

and real data examples compare the suggested methods with the classical one.

The content of this chapter was published in Hanzák (2012).

In Chapter 5 we investigate a possibility of Discounted Least Squares (DLS)

estimation of linear regression with linear trend and seasonal dummies. It is

shown that this leads approximately to a certain special case of Holt-Winters

method with additive seasonality. Analytical formulas expressing the respective

8



Holt-Winters smoothing constants in the terms of the discount factor used and

period length of the series are derived, visualized and commented.

Chapter 6 considers an autocorrelated component added to the decomposition

schemes of classical exponential smoothing type methods. It is a semi-

systematical component responsible for autocorrelated variation around the series

trend. The extended version of simple exponential smoothing (also applicable for

irregular time series) is introduced in detail, the case of a general method is then

provided as well. A numerical example of the application of the extended method

is provided.

Author’s software application DMITS (Decomposition Methods for Irregular

Time Series), implementing most of the existing and newly suggested methods,

is described in Chapter 7. The application itself is contained in the electronic

attachment to the thesis.
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Chapter 1

Problem properties of time series

In this chapter the topic of the dissertation is outlined from the point of view

of the various time series irregularities and the challenges for time series methods

caused by them. Particular existing methods are reviewed in Chapter 2.

In Section 1.1 the problem of time series observations spread irregularly over

time is introduced. Section 1.2 focuses on periodicity in time series. Section 1.3

mentions time series with outliers.

1.1 Time series with irregular observations

There are many more or less different ways how a time series can be formed:

• A series of equally time spaced measurements of a variable which is

defined in continuous time. E.g. a daily time series of total TV audience

(% of people watching TV) in 4+ target group at 8 p.m.

• A series of aggregated volumes of a certain activity within regularly spaced

equally long time intervals. E.g. a weekly time series of counts of advertising

spots broadcasted on a particular TV channel.

• A result of a different type of aggregation which is not a simple ”summing”.

E.g. a daily time series of number of viewers of a particular TV channel

(so called daily reach of a TV channel).

• A series of observed numerical characteristic of a periodically occurring

phenomenon. E.g. a daily time series of number of viewers of main news

program of a particular TV channel.

However, in all the cases above the time series observations can be naturally

attributed to a regular (equally spaced) time grid, so these are all classical regular

time series. Since this happens in most cases in practise, the vast majority

of methods of time series analysis are designed for regular time series only.
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Nevertheless, there are situations where we have a time series formed from

values observed at irregularly spaced times, i.e. the observation times can form

a general increasing sequence, not just an arithmetic one. We are talking about

a time series with irregular observations or briefly about an irregular time series.

Regular time series can be viewed as a special case of irregular time series.

Sometimes the irregularity is just very slight, for example caused by a different

length of calendar months. Or the irregularity occurs very few times in the

analyzed time series. In such cases we can simply neglect the time irregularity

of the series and we won’t get results significantly affected.

Time series with missing observations (certain amount of observations

of a regular time series are not available) form a kind of intermediate stage

between regular and irregular time series. A necessary condition to talk about

time series with missing observations is that all observation time steps (difference

of consecutive observation times) are multiples of a basic time step. So there

exist irregular time series that cannot be interpreted as series with missing

observations. Analogously there are models and methods that are applicable

to the case of missing observations but not to the general case of irregular time

series.

If the missing observations occur sparsely in a times series, we can try

to fill in the missing observations somehow (by expert estimates or using some

sort of interpolation) and then apply a method suitable for regular time series.

In time series with missing observations, the time steps are always integer

(or multiples of a basic time step). Especially the time step cannot be arbitrarily

small. The same holds also for the forecasting horizons we are interested in. When

having a general irregular time series, the time step is an arbitrary positive real

number which can be arbitrarily small. This can cause problems to some methods,

see Chapter 3.

Seasonality in time series is often modeled by so called seasonal indices, i.e.

a set of seasonal dummies. This becomes non-trivial when there is a general time

irregularity in the time series. See Sections 1.2 and 2.1 and Chapter 4 for details.

Various examples of time series with irregular observations can be found

in Wright (1986):

• Change in reporting frequency. When a statistical office or other

institution increases the frequency of publication of a variable, e.g. from

annual to quarterly, the resulted overall time series has irregular observation

times.
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• Irregular measurements. Sometimes due to objective reasons it is

impossible or expensive to guarantee regularly spaced measurements times.

Or the observations come from more different sources with different

observation frequency.

• Observation times driven by the series itself. E.g. cumulative counts

of occurrences of a disease in a given area (observation time = occurrence

date). Or a time series of men world record times for 1 mile (observation

time = date of establishing a new world record), see Section 3.5.

An example of the second type comes from establishment/calibration survey

of Czech TV audience measurement project 2007-2012. This survey was

organized in 10 ”monthly” waves per year. There was no wave in December

due to Christmas (households not available for interviewing) and there was one

summer wave taking place in July and August (due to summer holidays). Results

of a particular question (e.g. penetration of home internet connection or digital

terrestrial TV reception) from individual waves formed an irregular times series.

Qing et al. (2010) employed, among others, the methods from Wright (1986)

to construct short-term traffic forecasts using data irregularly collected from GPS

devices placed in a sample of 480 taxis in Hong Kong.

To end up the section, we will look at examples of time series where it is not

so clear whether we should treat them as regular or as irregular time series:

• A times series of daily closing prices of a stock title on a stock exchange

where only working days are trading days. The resulting time series looks

like a typical series with missing observations (weekends and holidays).

But these missing values have never existed, not that they were just not

measured.

• A time series of consecutive waiting times for a certain event to occur again

and again, e.g. a bet placed through an online betting system by a customer.

1.2 Periodicity in time series

Lot of time series from practise are of seasonal (periodic) character. Seasonal

component is characterized by a fixed period length after which a similar

pattern repeats itself over time. This is in contrast to a cyclical component

(e.g. in a macroeconomic variable) where the variation does not have a fixed

period length.
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Annual seasonality is primarily caused by alternation of seasons, annual

festivals and holidays or legislation. Weekly seasonality naturally comes

from alternating of weekdays and weekends. Daily seasonality is caused

by a regular switch between day and night time, regular working or opening hours

etc. We distinguish between additive and multiplicative seasonality depending

on in which manner the seasonal component is composed with the trend.

The exact period is known in most cases. Sometimes one time series

has multiple seasonal components with different periods. E.g. Taylor (2003)

considered a time series of half-hour electricity consumptions which has at least

a daily and weekly periodicity. Similarly TV audience rating has daily (prime time

vs. off time), weekly (weekdays vs. weekends) and yearly (changing of weather

and daylight) periodicity. Moreover, these different seasonal components often

interact with each other: e.g. daily TV audience pattern is different on weekdays

and weekends. Thus forecasting a time series with such a complex seasonality

demands always a lot of effort to find a method with reasonably low number

of seasonality parameters (components) but capturing the seasonal pattern in its

whole complexity.

Two basis approaches are used to deal with seasonality, i.e. to help us

to detect (test), model, smooth and forecast seasonality or adjust for it. These are

seasonal indices and trigonometric functions. They both have their advantages

and disadvantages.

Seasonal indices are easy to implement and interpret. Any seasonal pattern

(even a very non-smooth, with sharp falls, peaks etc.) can be modeled in this

way. However, large number of seasonal indices is needed when the period length

is large (danger of over-parametrization, problems with statistical significance).

Trigonometric functions are more difficult to implement and interpret.

They can still usually form a sufficiently rich class of seasonal patterns using

a lower number of parameters (better statistical significance). However, they

typically fail to model very non-smooth seasonal patterns.

Irregularity of observation time grid brings specific problems to seasonality

modeling. Intermediate case of time series with missing observations can still

be handled in a quite similar way as regular time series. In regular time series,

each observation could be assigned to exactly one of the finite number of seasons

(January, February etc. in the case of annual seasonality). This doesn’t work

anymore for irregular time series. Here an observation can occur whenever in the

seasonal period, i.e. even somewhere ”between” the two seasons (if any ”seasons”

are defined at all). Here it seems that trigonometric functions have the advantage

of a continuous seasonal pattern they form.
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In fact the time series analyzed does not even need to be irregular - it suffices

that the series period length is not a multiple of its basic observation time step.

As an example, consider a weekly time series with annual seasonality. Since one

year does not have a whole number of weeks, this situation cannot be solved

by seasonal indices in a straightforward way.

1.3 Outliers in time series

Outliers in time series are an example of defect or irregularity in time series data.

By an ”outlier” in time series it is possible to call several slightly different things:

• An absolutely outlying observation due to bug in data processing. These

are maybe rather academical examples. In practice, such bugs should be

primarily avoided, not managed by the smoothing and forecasting methods

applied to data.

• A correct observation which is however quite far away from the remaining

data bulk or trend. Result of an occasional extreme event in the measured

reality (catastrophe, political intervention, panic at the market etc.).

• An observation that is by chance lying little bit ”outside”. The underlying

distribution can have fat tail(s).

Most of time series methods like regression fitting or exponential smoothing

are linear in the sense that the smoothed values and forecasts are conditional

expectations estimated by linear functions of the available observations. So such

methods are sensitive to presence of outliers in the analyzed time series which

can have negative impact on smoothing and forecasting results.

In case of outliers’ presence in the analyzed time series, one can proceed

in several ways:

• To identify and remove these outlying observations. Treat the remaining

data as a time series with missing observations.

• To identify outliers and to replace them by values interpolated from the

remaining ”inlying” values. Then apply the classical method on the new

time series.

• To make the classical method somehow robust against outliers.
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Chapter 2

Survey of existing methods

In this chapter some methods for coping with irregular time series, existing prior

to those suggested in my dissertation, are briefly described. This serves as a ”state

of the art” overview and also forms a basis for describing the newly suggested

methods since they are often modifications or extensions of these already existing

methods.

Most of the methods described here belongs to the broad family of exponential

smoothing. This in the simplest case means that they put weights decreasing

exponentially into past to the observations of the series. This makes the methods

adaptive, i.e. they are able to track a changing level, slope and/or seasonal

pattern of the series. Taking the weights as exponential function of time also

enables the method to be formulated in terms of relatively simple recursive

formulas. This makes them easy to implement and understand. An explanatory

introduction to the idea of exponential smoothing can be found in Hanzák (2007).

A comprehensive overview of exponential smoothing methods for regular time

series is provided by Gardner (1985, 2006).

Some natural extensions of these exponential smoothing methods to the

case of irregular time series or time series with missing observations have been

presented in past. As well as the original methods, these extensions are often

based on ad hoc idea of exponential weighting which proves its relevance by good

empirical performance of the methods.

Alternatively, stochastic models were specified for which the original methods

are optimal and following this line, methods for time series with missing

observations were derived. This represents a model-based approach.

Which approach is the ”right” one is not clear and it depends on several

circumstances and preferences of the analyst. Model-based methods have

an advantage of a deeper theoretical background, useful e.g. for calculation

of prediction errors and prediction intervals construction. On the other hand,

ad hoc extensions of the original methods have maybe a better chance to be

accepted by practitioners - especially when they need to implement the method
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by themselves. When the forecasting accuracy is concerned, usually the both

approaches seem to be comparable.

The methods briefly described in this chapter are:

• Section 2.1: Simple exponential smoothing (SES) and Holt method for

irregular time series by Wright (1986).

• Section 2.1: Holt-Winters method for time series with missing observations

by Cipra et al. (1995).

• Section 2.1: Holt method with exponential or damped linear trend for

irregular time series by Cipra (2006).

• Section 2.2: Double exponential smoothing (DES) for irregular time series

by Cipra (2006).

• Section 2.2: Exponential smoothing of order m for irregular time series

by Hanzák and Cipra (2008).

• Section 2.3: SES, Holt method and DES by Aldrin and Damsleth (1989)

for the case of a single gap in observations, assuming the series to be driven

by ARIMA(0, 1, 1) and ARIMA(0, 2, 2) models.

• Section 2.3: Holt-Winters method for the case of a single gap in observations

by Ratinger (1996), assuming the series to be driven by appropriate

SARIMA model.

• Section 2.3: SES for irregular time series by Hanzák and Cipra (2008).

ARIMA(0, 1, 1) model is assumed to derive the optimal smoothing

coefficient for each time step.

• Section 2.4: State space models accompanied by Kalman filter as a powerful

general tool for smoothing and forecasting time series.

• Section 2.5: Robust exponential smoothing methods: Exponential

smoothing in L1 norm and M-estimation by Cipra (1992), general approach

of error truncation, see Gelper et al. (2010) or Cipra and Hanzák (2011).

In the following sections, we will consider either a regular time series

{yt, t ∈ Z} or an irregular time series {ytn , n ∈ Z} with observation times

tn+1 > tn, n ∈ Z. By ŷt we will denote the smoothed value of the series y

at time t and by ŷt+τ (t) the forecast of yt+τ constructed at time t (τ > 0 is

the forecasting horizon). Finally let us denote et+1 = yt+1 − ŷt+1(t) the one-

step-ahead forecasting error at time t+ 1 (from time t). Analogous notation will

be used also for irregular time series.
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2.1 Simple exponential smoothing, Holt and

Holt-Winters method

Classical methods nowadays referred to as exponential smoothing were developed

in the late 50s to predict future sale volumes of goods for the optimal management

of their production and storage. The idea of using the concept of exponential

weighting to estimate not just the level of the time series but its trend and seasonal

components as well, was published first by American Charles C. Holt in 1957 in his

memorandum to the Office of Naval Research, see Holt (2004). The suggested

methods together with the application context can be found in Winters (1960).

Simple exponential smoothing (SES) is the simplest exponential smoothing

method and it is in some sense a basic building block for the more complex

methods. It is designed for time series with locally constant trend. The level

of the series at time t is denoted as Lt.

Classical SES for regular time series consists of following smoothing,

forecasting and recursive updating equations:

ŷt = ŷt+τ (t) = Lt, τ > 0 , (2.1)

Lt+1 = (1− α)Lt + αyt+1 = Lt + αet+1 , (2.2)

where α ∈ (0, 1) is a fixed smoothing constant. The second form of (2.2) is

called an error correction form. An initial value of L must be chosen to start

the recursion, usually as an average (possibly weighted) of a couple of initial

observations of the series. Value of α ∈ (0, 1) is usually tuned to optimize certain

in-sample forecasting accuracy criterion like Root Mean Square Error (the same

holds analogously for the next two method described, Holt and Holt-Winters

method).

Wright (1986) suggested an extension of this method for the case of time series

observed at irregular time intervals:

ŷtn = ŷtn+τ (tn) = Ltn , τ > 0 , (2.3)

Ltn+1 = (1− αtn+1)Ltn + αtn+1ytn+1 = Ltn + αtn+1etn+1 , (2.4)

αtn+1 =
αtn

αtn + (1− α)tn+1−tn . (2.5)

Here αtn is a time varying smoothing coefficient reflecting the structure

of observation times and still α ∈ (0, 1). Initial value of αtn is taken as fixed
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point of formula (2.5) with tn+1− tn = q, where q > 0 is the average time spacing

of time series y:

αt0 = 1− (1− α)q . (2.6)

Holt method is an exponentially smoothing method designed for time series

with locally linear trend proposed by Holt (2004) and Winters (1960). It considers

its level Lt and slope Tt at time t. There are two smoothing constants, α ∈ (0, 1)

for level and γ ∈ (0, 1) for slope.

Classical Holt method for regular time series consists of the following formulas:

ŷt = Lt , (2.7)

ŷt+τ (t) = Lt + τTt , (2.8)

Lt+1 = (1− α)(Lt + Tt) + αyt+1 = Lt + Tt + αet+1 , (2.9)

Tt+1 = (1− γ)Tt + γ(Lt+1 − Lt) = Tt + γαet+1 . (2.10)

Initial values of L and T are chosen e.g. as regression line coefficients fitted

through a couple of initial observations of the series (DLS estimation can be used

to put more weight to the observations at the very beginning of the series).

Wright (1986) suggested an extension of this method for irregular time series:

ŷtn = Ltn , (2.11)

ŷtn+τ (tn) = Ltn + τTtn , (2.12)

Ltn+1 = (1− αtn+1) [Ltn + (tn+1 − tn)Ttn ] + αtn+1ytn+1 , (2.13)

Ttn+1 = (1− γtn+1)Ttn + γtn+1

Ltn+1 − Ltn
tn+1 − tn

. (2.14)

Time varying smoothing coefficients αtn and γtn are initialized and updated in the

same way as in the case of Wright’s SES:

αtn+1 =
αtn

αtn + (1− α)tn+1−tn and γtn+1 =
γtn

γtn + (1− γ)tn+1−tn . (2.15)

Initial values of L and T are constructed in the same way as in the regular case.

Holt method with exponential trend is a modification of the original Holt

method with (locally) linear trend, see e.g. Gardner (1985). For many economic

time series this is a more natural choice: in short term horizon rather the relative

differences are stable than the absolute ones.

18



Cipra (2006) followed the idea of Wright (1986) and formulated Holt method

with exponential trend for irregular time series:

ŷtn+τ (tn) = LtnT
τ
tn , (2.16)

Ltn+1 = (1− αtn+1)LtnT
tn+1−tn
tn + αtn+1ytn+1 , (2.17)

Ttn+1 = (1− γtn+1)Ttn + γtn+1

(
Ltn+1

Ltn

)1/(tn+1−tn)

. (2.18)

Time varying smoothing coefficients αtn and γtn remain the same, see (2.15).

The method for regular time series is easily obtained as a special case for regular

observation times tn. Similar (but not equivalent) results can be obtained via

applying the classical Holt method to the series of logarithms and then apply

exponential transformation to the results.

Holt method with damped linear trend is another modification of the

original Holt method invited by Gardner (1985). It follows the idea that the

current trend slope is usually damped in future. The modification anticipates

this and thus provides more conservative forecasts in middle and long term.

Slope decay is supposed to be exponential with damping parameter ϕ ∈ (0, 1).

The version of this method for irregular time series was presented by Cipra (2006):

ŷtn+τ (tn) = Ltn + g(τ)Ttn , (2.19)

Ltn+1 = (1− αtn+1) [Ltn + g(tn+1 − tn)Ttn ] + αtn+1ytn+1 , (2.20)

Ttn+1 = ϕtn+1−tn
[
(1− γtn+1)Ttn + γtn+1

Ltn+1 − Ltn
g(tn+1 − tn)

]
, (2.21)

where we have denoted g(x) ≡ ϕ1−ϕx
1−ϕ for x > 0. It is g(k) =

∑k
i=1 ϕ

i for

k ∈ N, i.e. g(x) expresses the accumulation of slope being damped over time.

The coefficients αtn and γtn again remain the same as in (2.15).

It would not be a problem to formulate Holt method with damped exponential

trend as well. However, Holt method with damped linear trend together with the

logarithm-exponential transformation will do a very similar job.

Holt-Winters method is Holt method enriched with seasonal indices St

to reflect a seasonal pattern of period p in the series, being either additive or

multiplicative. Let us start with the additive case for regular series. It is

ŷt+τ (t) = Lt + τTt + St⊕τ , (2.22)
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where t⊕τ = t+1−p+[(τ − 1) mod p]. After the new observation yt+1 becomes

available, the level, slope and seasonal index are updated:

Lt+1 = (1− α)(Lt + Tt) + α(yt+1 − St+1−p) , (2.23)

Tt+1 = (1− γ)Tt + γ(Lt+1 − Lt) , (2.24)

St+1 = (1− δ)St+1−p + δ(yt+1 − Lt+1) , (2.25)

where α, γ, δ ∈ (0, 1) are smoothing constants for level, slope and seasonal

indices. Equations (2.23)-(2.25) are again often rewritten to their equivalent

error-correction form, see e.g. Gardner (1985, 2006):

Lt+1 = Lt + Tt + αet+1 , (2.26)

Tt+1 = Tt + γαet+1 , (2.27)

St+1 = St+1−p + δ(1− α)et+1 . (2.28)

Version with multiplicative seasonality differs in these formulas:

ŷt+τ (t) = (Lt + τTt)St⊕τ , (2.29)

Lt+1 = (1− α)(Lt + Tt) + αyt+1/St+1−p , (2.30)

St+1 = (1− δ)St+1−p + δyt+1/Lt+1 . (2.31)

An extension of the method for time series with missing observations was provided

by Cipra et al. (1995). Its additive variant consists of

Ltn+1 = (1− αtn+1) [Ltn + (tn+1 − tn)Ttn ] + αtn+1(ytn+1 − St∗n+1
) , (2.32)

Ttn+1 = (1− γtn+1)Ttn + γtn+1

Ltn+1 − Ltn
tn+1 − tn

, (2.33)

Stn+1 = (1− δtn+1)St∗n+1
+ δtn+1(ytn+1 − Ltn+1) , (2.34)

where t∗n+1 is the largest value among tn, tn−1, . . . such that t∗n+1 belongs to the

same season as tn+1. Time varying smoothing coefficients αtn and γtn remain the

same, see (2.15). Seasonal smoothing coefficient δtn+1 is updated as

δtn+1 =
δt∗n+1

δt∗n+1
+ (1− δ)(tn+1−t∗n+1)/p

. (2.35)
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The forecasts are of the form

ŷtn+τ (tn) = Ltn + τTtn + S(tn+τ)∗ , (2.36)

where (tn+ τ)∗ is the largest value among tn, tn−1, . . . such that (tn+ τ)∗ belongs

to the same season as tn + τ . The multiplicative case differs in these formulas:

ŷtn+τ (tn) = (Ltn + τTtn)S(tn+τ)∗ , (2.37)

Ltn+1 = (1− αtn+1) [Ltn + (tn+1 − tn)Ttn ] + αtn+1ytn+1/St∗n+1
, (2.38)

Stn+1 = (1− δtn+1)St∗n+1
+ δtn+1ytn+1/Ltn+1 . (2.39)

The method works for time series with missing observations but not for general

irregular time series due to the need to assign each observation to exactly one

of p seasons. Holt-Winters method applicable for irregular time series is suggested

in Chapter 4.

2.2 Double exponential smoothing and

smoothing of order m

Double exponential smoothing (DES, also known as Brown method) is

an alternative to Holt method: it fits a regression line through the time series

observations using Discounted Least Squares (DLS) estimation with discount

factor β = 1 − α ∈ (0, 1) (α ∈ (0, 1) is a smoothing constant). When we

consider a time series with infinite history observed, the two regression parameters

(intercept and slope) can be expressed as a fixed linear combinations of so called

first and second smoothing statistics of the series:

S
[1]
t = α

∞∑
j=0

yt−jβ
j and S

[2]
t = α

∞∑
j=0

S
[1]
t−jβ

j . (2.40)

And what is important, the two smoothing statistics can be calculated recursively:

S
[1]
t+1 = (1− α)S

[1]
t + αyt+1 and S

[2]
t+1 = (1− α)S

[2]
t + αS

[1]
t+1 . (2.41)

DES with smoothing constant α ∈ (0, 1) is in fact equivalent to Holt method with

smoothing constants αH and γH given by

αH = α(2− α) and γH =
α

2− α
, (2.42)
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see Mikulka (2008) for the derivation of this relation. So the DES is less flexible

than Holt method (αH and γH are tight together) but on other hand, the one-

dimensional selection of α is easier and ”safer” than the two-dimensional selection

of αH and γH . See Mikulka (2008) for further results regarding the relation of the

two methods.

Double exponential smoothing for irregular time series was provided

by Cipra (2006). Smoothing statistics S[1] and S[2] are defined for irregular time

series in the same manner as SES was extended for irregular time series by Wright

(1986). Besides smoothing coefficient αtn , one has to recalculate recursively

additional two statistics.

The method can be derived in this way. Consider the values of S[1] and S[2]

at the time of the last available observation of the series as values of two different

linear operators applied to the series. The goal is to find a linear fit to the time

series such that this fit gives the same values of S[1] and S[2] as the series itself.

This is a system of two linear equations for two parameters (intercept and slope),

an analogue to the system of two normal equations in DLS regression.

For regular time grid, matching the values of first two smoothing statistics

is equivalent to DLS regression with β = 1 − α. For irregular time grid this

equivalence does not hold exactly so there are two different ways how to generalize

Brown method for irregular times series. However, these two methods are still

pretty similar when both computational complexity and empirical performance

are concerned. A third possibility (equivalent to none of the two mentioned

already) would be to use Holt method by (Wright, 1986) with smoothing constants

αH and γH tight according to (2.42).

Exponential smoothing or order m for irregular time series was

described in Hanzák and Cipra (2008). Is is a straightforward extension of the

above described approach to the case of polynomial fit of order m to the series.

Again, this can be done by using DLS regression or fitting the values of the first

m + 1 smoothing statistics S[p] (S[p+1] is obtained by smoothing S[p]). Both

variants result in a system of m+ 1 equations for m+ 1 parameters of the fitted

polynomial. Again, for regular time series the two variants are equivalent but for

irregular time series in general not.

The computational demand of these methods is naturally growing with higher

orders m. However for m = 0, 1, 2 the formulas are still quite simple and easy

to implement. The case m = 0 corresponds to the Wright’s SES (here the both

approaches coincide). The case m = 1 leads to the DES by Cipra (2006) or
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similar DLS method. The case m = 2 which is the last one with some practical

importance is a triple exponential smoothing for time series with locally quadratic

trend.

2.3 Irregularly observed ARIMA and SARIMA

processes

Classical exponential smoothing methods (simple exponential smoothing, Holt

method, Holt-Winters method) are MSE-optimal for certain ARIMA/SARIMA

models. These models can be taken as a basis for model-based approach

to construction of extensions of these methods for time series with missing

observations. This section reviews several methods obtained using this approach.

Simple exponential smoothing with a single gap in observations was

studied by Aldrin and Damsleth (1989). When

yt+1 = Lt + et+1 , (2.43)

Lt+1 = (1− α)Lt + α yt+1 (2.44)

and the one-step-ahead forecasting errors {et, t ∈ Z} form a white noise (with

variance σ2 > 0) then

∆yt = et + (α− 1)et−1 , (2.45)

i.e. series {yt, t ∈ Z} follows an invertible ARIMA(0, 1, 1) process parameterized

by α ∈ (0, 1), the optimal smoothing constant for the regular time series.

Aldrin and Damsleth (1989) assumed this ARIMA(0, 1, 1) model to hold and

for such a case derived the value of optimal smoothing coefficient to be used

instead of α after a gap in observations. They came to

αtn+1 =
α2(tn+1 − tn − 1) + α

α2(tn+1 − tn − 1) + 1
, (2.46)

where tn+1 is the current observation time and tn is the previous one. It is

αtn+1 = α for tn+1 = tn + 1 and αtn+1 → 1 for tn+1 − tn →∞.

According to Aldrin and Damsleth (1989), their method works better than

simple exponential smoothing without adjusting the smoothing constant and

comparably to the SES by Wright (1986).
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ARIMA(0, 1, 1) model with missing observations was studied by Hanzák

and Cipra (2008). It is an extension of Aldrin and Damsleth (1989), taking a time

structure of the whole series history into account. Let Lt be still the ”true” level

of the series and L̃t the level received by applying the smoothing method to the

series with missing observations. Let us denote

vt ≡
var(Lt − L̃t)

σ2
. (2.47)

Then the optimal smoothing coefficient is

αtn+1 =
vtn + α2(tn+1 − tn − 1) + α

vtn + α2(tn+1 − tn − 1) + 1
(2.48)

and the variance factor vt is updated by

vtn+1 = (1− αtn+1)2[vtn + α2(tn+1 − tn − 1)] + (α− αtn+1)2 . (2.49)

When vtn = 0, (2.48) reduces itself to (2.46). From (2.48) it can be seen that

αtn+1 ≥ α and αtn+1 is an increasing function of arguments vtn , α and tn+1 − tn
which is consistent with our intuitive view. For α→ 1, tn+1−tn →∞ or vtn →∞
we have αtn+1 → 1. If vtn = 0 and tn+1 − tn = 1 then αtn+1 = α.

Variance of the forecasting error etn+τ (tn) = ytn+τ − L̃tn is

var [etn+τ (tn)] = σ2
[
vtn + α2(τ − 1) + 1

]
. (2.50)

Although this method has been explicitly derived only for time series with missing

observations, it can be used in practice for general irregular time series (never

mind that tn+1 − tn is not integer). The method’s forecasting accuracy is

comparable to that of Wright (1986), see Hanzák and Cipra (2008).

Holt method with a single gap in observations was studied by Aldrin

and Damsleth (1989). It is based on the fact that Holt method with smoothing

constants α and γ is optimal for a time series driven by ARIMA(0, 2, 2) model

∆2yt = et + (α + γα− 2)et−1 + (1− α)et−2 . (2.51)
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After a single gap in observations, the optimal smoothing coefficients are

αtn+1 =
α2(∆t− 1)G+ α

α2(∆t− 1)G+ 1
, (2.52)

γtn+1 =
γ∆t [1 + α(∆t− 1)(1 + γ∆t/2)]

α(∆t− 1)G+ 1
, (2.53)

where

G = 1 + γ∆t

[
1 +

γ(2∆t− 1)

6

]
and ∆t = tn+1 − tn . (2.54)

If ∆t = 1 then αtn+1 = α and γtn+1 = γ. If γ = 0 then γtn+1 = 0 and (2.52)

reduces to (2.46). As ∆t→∞, αtn+1 → 1 and γtn+1 → 1.5. Limit of γtn+1 higher

than 1 looks strange at the first moment but it is logically interpreted by the

authors1.

The method performs comparably well in relation to that of Wright (1986).

DES as a special case of Holt method is also covered by formulas (2.52) and (2.53).

These results could be extended for the general case of missing observations

analogously to Hanzák and Cipra (2008) for the case of SES. However, the

formulas would be rather complicated and we do not expect the resulted method

to offer any practical advantage over the methods already mentioned.

Holt-Winters method with a single gap in observations was studied

by Ratinger (1996). It is an extension of the approach undertaken by Aldrin and

Damsleth (1989) for SES and Holt method. It can be shown that a series for which

the Holt-Winters method with additive seasonality of period p with smoothing

constants α, γ and δ is optimal is driven by certain SARIMA model. More

specifically, (1−B)(1−Bp)yt follows certain MA(p+1) model which parameters

can be expressed in terms of α, γ and δ.

Optimal smoothing coefficients αtn+1 , γtn+1 and δtn+1 to be used at time tn+1

after a single gap in observations were derived by Ratinger (1996). The formulas

for αtn+1 and γtn+1 are rather complicated, involving also the forecasting horizon

for which the next forecast should be optimal. Formula for δtn+1 is much simpler

and it is similar to (2.46):

δtn+1 =
δ2(1− α)b∆t−1

p c+ δ

δ2(1− α)b∆t−1
p c+ 1

, (2.55)

where bxc denotes the integer part of x. Again γtn+1 → 1.5 as ∆t→∞.

1The mean slope between tn and tn+1 could be expected to lie inside the interval determined
by the two slopes at tn and tn+1.
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This method is an alternative to Holt-Winters method for time series with

missing observations suggested by Cipra et al. (1995). Only the case of additive

seasonality is described by Ratinger (1996) but one can try using the same

smoothing coefficients also together with a multiplicative seasonality. Both

methods are still not possible to apply on a general irregular time series due

to usage of seasonal indices. Holt-Winters method applicable for irregular time

series is suggested in Chapter 4.

2.4 State space models and Kalman filter

Many of the methods described already can be approached as special cases

of linear state space model. The components of the series form the state

vector, its evolution over time is specified (including random innovations) and

the observations of the time series are functions of the state vectors and random

observation errors.

Let us consider a simple discrete time linear state space model of the form1

St+1 = AtSt + at+1 , at ∼ iid Nn(0,Rt) , (2.56)

yt = h′tSt + εt , εt ∼ iid N(0, r2
t ) , (2.57)

where St is the n-dimensional state vector of the system (do not confuse with

the seasonal component or smoothing statistics), {yt} is the one-dimensional

observation process, {εt} is the observation noise, {at} is the n-dimensional

innovation noise process, At is n × n deterministic matrix, ht is n-dimensional

deterministic vector andRt and r2
t > 0 describe the variance-covariance structure

of at and εt, see e. g. Abraham and Ledolter (1983) or Cipra (2008), p. 462–465.

The simple exponential smoothing method relates to the following state space

model (so called random walk plus noise):

yt = Lt + εt , εt ∼ iid N(0, σ2
ε) , (2.58)

Lt = Lt−1 + ηt , ηt ∼ iid N(0, σ2
η) (2.59)

with εt and ηt mutually independent. Here St = Lt, At = 1, ht = 1, Rt = σ2
η

and r2
t = σ2

ε .

1Matrices and vectors are printed in bold. Vectors are always column vectors.
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Holt method relates to the local linear trend model of the form

yt = Lt + εt , εt ∼ iid N(0, σ2
ε) , (2.60)

Lt = Lt−1 + Tt−1 + ηt , ηt ∼ iid N(0, σ2
η) , (2.61)

Tt = Tt−1 + θt , θt ∼ iid N(0, σ2
θ) . (2.62)

Innovation terms ηt and θt are mutually independent and also independent of the

noise term εt. It is St =

(
Lt

Tt

)
, At =

(
1 1

0 1

)
, ht =

(
1

0

)
, Rt =

(
σ2
η 0

0 σ2
θ

)
and

r2
t = σ2

ε .

The updating equations referred to as Kalman filter are

Ŝt+1|t = AtŜt|t , (2.63)

P t+1|t = AtP t|tA
′
t +Rt , (2.64)

Ŝt+1|t+1 = Ŝt+1|t + kt+1

(
yt+1 − h′t+1Ŝt+1|t

)
, (2.65)

P t+1|t+1 = P t+1|t − kt+1h
′
t+1P t+1|t , (2.66)

kt+1 =
P t+1|tht+1

h′t+1P t+1|tht+1 + r2
t

, (2.67)

where Ŝr|s is an estimate of Sr based on the observations of y up to time s, P r|s
is its estimation error covariance matrix and kt+1 is called gain vector. Since the

one-step-ahead prediction of yt+1 from time t is naturally ŷt+1|t = h′t+1Ŝt+1|t,

see (2.57), one can rewrite (2.65) to the form

Ŝt+1|t+1 = Ŝt+1|t + kt+1(yt+1 − ŷt+1|t) = Ŝt+1|t + kt+1et+1 , (2.68)

where et+1 = yt+1 − ŷt+1|t are the corresponding prediction errors. The estimates

and predictions delivered by this Kalman filter are optimal in the MSE sense.

The models for SES and Holt methods presented above are so called multi

source of error since they contain several independent innovation and observation

error terms. However, the error-correction formulas of exponential smoothing

methods contain just one error term, the one-step-ahead prediction error, whose

different multiples account for the stochastic dynamics of each model equation

(both state and observation). See e.g. Hyndman et al. (2002) or De Livera et al.

(2011) for details regarding single source of error state space models.
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Missing observations in time series can be handled in several way when using

state space models:

• When observation yt is missing, define ht = 0 and yt = 0. So the artificial

observation yt does not provide any information about the state vector and

so it has no impact.

• When observation yt is missing, set r2 = ∞ (very large positive number)

and yt equal to its forecast constructed at the previous time step. Since the

observation yt is supposed to be contaminated by an infinite observation

error, its value has no impact.

• For irregular time series, try to reformulate the state evolution matrix At

and the innovations covariance matrix Rt to reflect the length of the time

step.

2.5 Robust exponential smoothing

Problem of outliers presence in time series was already mentioned in Section 1.3.

All the exponential smoothing methods in their classical variants are either

based on Discounted Least Squares (DLS), presented ad hoc directly in the

form of Exponentially Weighted Moving Averages (EWMA) or equivalently

based on a recursive application of convex linear combinations of old and new

information. So these methods are naturally sensitive to presence of outliers

in the analyzed time series.

In Section 1.3 we have also outlined some basic approaches how to deal with

outliers. Several robustifications of classical exponential smoothing methods have

been suggested in literature.

Exponential smoothing in L1 norm uses discounted medians (simple

exponential smoothing) or discounted regression medians (double exponential

smoothing) instead of means, see Cipra (1992). I.e., the minimized criterion is

not a discounted sum of squared deviations (L2 norm) but a discounted sum

of absolute deviations (L1 norm). This makes the method robust to outliers,

paying a little loss of efficiency for normally distributed data and a higher

computational effort.

Exponential smoothing using M-estimation instead of Least Squares

was suggested by Cipra (1992) and further developed by Croux et al. (2008).
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Both the simple and double exponential smoothing follow the same idea

of discounted M-estimation provided by Iteratively Reweighted Least Squares

(IRLS) algorithm. This is a favorite iterative estimation technique transferring

a general minimization problem (e.g. M-estimation) into the Weighted Least

Squares (WLS) problem using the weights depending on the parameter’s

estimates from the previous iteration.

To keep the exponential smoothing methods recursive and computationally

simple (with no need for multiple iterations), the IRLS algorithm is followed only

approximately. In each iteration, instead of recalculation of all the weights, a new

observation is included and its weight is assigned based on the trend fitted in the

previous time step. The remaining weights are not recalculated, just discounted

in time.

The symmetric quasi-convex loss function ρ and the discount factor β ∈ (0, 1)

must be specified. The weight wt+1 assigned to observation yt+1 (classical non-

robust method is obtained by taking wt ≡ 1) is calculated as

wt+1 =
st · ψ

[
yt+1−ŷt+1(t)

st

]
yt+1 − ŷt+1(t)

, (2.69)

where ψ(x) = ρ′(x) and st is a scale estimate for the one-step-ahead forecasting

error et+1 = yt+1 − ŷt+1(t).

Truncation of the prediction errors is used by Gelper et al. (2010) and

Cipra and Hanzák (2011). This approach is generally applicable and easily

interpreted. Huber ψ-function

ψ(x) =

{
x if |x| ≤ u1−θ/2
sign(x) · u1−θ/2 otherwise

(2.70)

(u1−θ/2 is the normal (1 − θ/2)-quantile) is used to truncate the normalized

prediction errors. By means of the value θ ∈ (0, 1) the level of robustness of the

method can be tuned.

Various robustifications of Kalman filter represent a possible way how to derive

robust smoothing and forecasting methods, see Ruckdeschel et al. (2014) for

similar approach to Cipra and Hanzák (2011).
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Chapter 3

Holt method and problem

of time close observations

3.1 Introduction

At the end of 50’s, C. C. Holt and P. R. Winters proposed an ad hoc

method for smoothing and forecasting time series with locally linear trend,

see Winters (1960), nowadays referred usually as Holt method. They employed

the exponentially weighted moving average approach to estimate the level and

newly also the slope of the time series. The extension of this method for the case

of seasonal time series (Holt-Winters method) was provided at the same time1.

Holt method has achieved a broad popularity among forecasters due to its

simplicity and good performance. Several modifications of this original method

have appeared in literature and are used in practice. For example, the version

with damped linear trend by Gardner and McKenzie (1985) is said to give better

results in longer forecasting horizons. All the above mentioned methods were

already briefly described in Section 2.1.

Wright (1986) has suggested a straightforward generalization of Holt method

for the case of time series observed at irregular time intervals. He has extended

the original smoothing formulas to this situation (see also Section 2.1) and has

tested his method on several real time series. The formulas of the extended

version of Holt method by Wright (1986) are in detail reminded in Section 3.2.

Concerning time series with missing observations, the time distance between

two consequent observations is bounded from below by the concerned time unit.

This bound is not dramatically lower than the average time spacing in the

series. In contrast to this, if a general time irregularity is allowed, we can

come to a situation which we call as a problem of time-close observations : two

1Sometimes both the methods are referred as Holt-Winters method plus telling whether its
non-seasonal or seasonal version is considered.
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consequent observations have much shorter time distance compared to the average

time spacing in the series.

Using Wright’s extension of Holt method, this phenomenon can easily cause

a rapid shift of slope estimate and consequently a bias in forecasts for a quite

long time period. Detailed discussion of this impact is provided in Section 3.3.

In Section 3.4 we suggest a reasonable modification of Wright’s formulas

to overcome these difficulties. This modification is not less intuitive or easy

to understand than the original method. In author’s opinion it has even a better

interpretation. Moreover, as far as the resulting formulas are concerned, the

modification means just adding one term in an updating formula for slope

smoothing coefficient.

Section 3.5 contains one real data example (one mile run men world record

time series) illustrating the impact of the time-close observations on the original

and modified Holt method (DES and DLS linear trend are examined as well).

In Section 3.6 a simulation study is provided to further evaluate the impact

of the suggested modification empirically. Several settings of time series

generating scheme are employed to find out how the improvement depends on the

configuration of time-close observations in the data. Section 3.7 brings the

conclusions of the chapter.

3.2 Holt method by Wright

Both the classical Holt method and the version for irregular time series were

described briefly in Section 2.1. Remind that we work with the level Lt and the

slope Tt of the series at time t. For a regular time series {yt, t ∈ Z} the updating

formulas are

Lt+1 = (1− α)(Lt + Tt) + αyt+1 , (3.1)

Tt+1 = (1− γ)Tt + γ(Lt+1 − Lt) , (3.2)

where α ∈ (0, 1) is a smoothing constant for level and γ ∈ (0, 1) is a smoothing

constant for slope. Formula (2.10) is a recurrent version of the exponential

weighting

Tt = γ
∞∑
j=0

(1− γ)jT̃t−j , (3.3)

where T̃k = Lk − Lk−1 is the one-step slope from time k − 1 to k.
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Extension of this method for the case of time series observed at irregular time

intervals was suggested by Wright (1986). He followed the idea of exponential

weighting and generalized formulas (2.9) and (2.10) into

Ltn+1 = (1− αtn+1) [Ltn + (tn+1 − tn)Ttn ] + αtn+1ytn+1 , (3.4)

Ttn+1 = (1− γtn+1)Ttn + γtn+1

Ltn+1 − Ltn
tn+1 − tn

, (3.5)

where variable smoothing coefficients αtn and γtn are updated in a recurrent way

αtn+1 =
αtn

αtn + (1− α)tn+1−tn and γtn+1 =
γtn

γtn + (1− γ)tn+1−tn . (3.6)

Again, formula (3.5) is a recurrent version of the underlying exponential weighting

Ttn = γtn

∞∑
j=0

(1− γ)tn−tn−j T̃tn−j , (3.7)

where

γtn =
[∑∞

j=0
(1− γ)tn−tn−j

]−1
(3.8)

plays the role of a normalizing factor and

T̃tk =
Ltk − Ltk−1

tk − tk−1
(3.9)

is again the one-step slope from time tk−1 to tk.

3.3 Problem of time-close observations

As was already stressed in Section 3.1, time step tn+1 − tn can be sometimes much

shorter than the average time spacing q. But even if tn+1 − tn is approaching zero,

the difference ytn+1 − ytn or Ltn+1 − Ltn can be significantly non-zero. Wright

(1986) used several examples of irregular time series, one of them was the time

series of men world record times in one mile run, being a good example of a time

series with time-close observations, see Section 3.5.

It is good to note that what really matters is not the absolute distance between

the two observations. When the time axis is re-scaled so that all the time steps are

multiplied by a certain scaling factor ω > 0, the method just adjusts its smoothing

constants from α and γ to 1− (1− α)1/ω and 1− (1− γ)1/ω and the method
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provides exactly the same results. So the time steps can be arbitrarily short

without a negative impact on the method. What matters is the length of the

given time step relative to the others.

Let us look in detail how the presence of time-close observations affects results

obtained by Wright’s version of Holt method. From formulas (2.12)-(2.14) one

can easily derive the following error-correction form of (2.14):

Ttn+1 = Ttn +
γtn+1αtn+1

tn+1 − tn
etn+1 , (3.10)

where

etn+1 = ytn+1 − ŷtn+1(tn) = ytn+1 − [Ltn + (tn+1 − tn)Ttn ] (3.11)

is the forecasting error from time tn to time tn+1. For tn+1 → tn+ (n and tn

being fixed), it is

αtn+1 →
αtn

αtn + 1
> 0 and γtn+1 →

γtn
γtn + 1

> 0 , (3.12)

see (2.15), and so
γtn+1αtn+1

tn+1 − tn
→∞ . (3.13)

Together with the fact that the forecasting error etn+1 in (3.10) is not in any sense

restricted to tend to 0 when tn+1 → tn+, it is possible that the difference between

the original slope estimate Ttn and the new one Ttn+1 can be arbitrarily large.

It is obvious that such a sudden extreme shift in slope estimate will negatively

influence the forecasts for a quite long time period ahead.

The intensity of the effect naturally depends on several factors:

• How close is the time step tn+1 − tn to zero.

• Which are the values of αtn and γtn . This is determined by the values of α

and γ and the time structure of the series y from tn back to its history.

• Which is the value of the forecasting error etn+1 .

When using Holt method in practice, one usually chooses the values

of smoothing constants α and γ as those minimizing certain criterion like Mean

Square Error (MSE). When the problem of time-close observations is present

in the analyzed time series, searching for the optimal combination of α and γ can

be reduced to searching for such a combination that eliminates the impact of time-

close observations. It will usually happen that very small value of γ together with

slightly higher value of α are optimal. But these values are probably not optimal
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for the rest of the series so a significantly worse overall predictive performance

of the method can be expected. See Sections 3.5 and 3.6 for a real data example

and a simulation study.

Let us notice that the other methods for irregular time series with locally

linear trend are not sensitive to time-close observations in data as the Wright’s

extension of Holt method is. We mean the DES for irregular data, see Cipra

(2006) or Section 2.1, and the method based on the DLS estimation of linear

trend, see Hanzák and Cipra (2008) or Section 2.1. But these methods are less

flexible since they use only one smoothing constant instead of two as Holt method

does. So it is worth to look for a version of Holt method which would be applicable

to irregular time series without sensitivity to time-close observations.

3.4 Suggested solution

In the previous section we have explained how exactly does the presence of time-

close observations affect the results obtained by Wright’s extension of Holt

method. In this section we will give an appropriate solution to this problem.

The first possibility is to modify somehow the analyzed time series before we

apply the forecasting method to it. One could go through the series and find all

pairs of time-close observations in it (certain threshold on the time step length

must be set). For such a pair, a reasonable solution is to transform it to one

single observation with its time and value taken as the arithmetic average of the

individual times and values (geometrically, the segment is replaced by its middle).

Such a preliminary data modification can be made in an automatic way.

If there is a measurement noise in our time series, the solution suggested above

has one disadvantage. The measurement noise variance of the constructed joint

observation is approximately just a half of its usual value. So correctly done,

a double weight should be given to this observation in exponentially weighting

formulas.

In the rest of this section we will suggest a modification of Wright’s version

of Holt method which will make it robust to time-close observations in the

series. From the technical point of view, the problem is in formula (3.10) where

the forecasting error etn+1 is multiplied by the potentially infinite expression

γtn+1αtn+1/(tn+1 − tn), see (3.13).

But the problem can be seen also from the point of view of the weighting

formula (3.7). Individual one-step slopes T̃tk are weighted here only according

to the position of tk on the time axis. But one can expect that the reliability
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of T̃tk depends also on the length of the underlying time step tk − tk−1. As this

time distance is approaching 0, the value of T̃tk is determined more by random

effects than by the true change in the time series level. So the weight given to T̃tk
in (3.7) should be decreasing with decreasing value of tk − tk−1.

We suggest this weight to be equal to

tk − tk−1

tn − tn−1
(1− γ)tn−tk (3.14)

(the weight for k = n is still equal to 1) so the formula (3.7) will be replaced by

Ttn = γtn

∞∑
j=0

tn−j − tn−j−1

tn − tn−1
(1− γ)tn−tn−j T̃tn−j , (3.15)

where now, in contrast to (3.8),

γtn =

 ∞∑
j=0

tn−j − tn−j−1

tn − tn−1
(1− γ)tn−tn−j

−1

. (3.16)

It is obvious that the recurrent formula (3.5) for the slope T remains unchanged.

Only a different smoothing coefficient γtn is used here, see (3.16). A recurrent

formula for γtn+1 analogous to that in (3.6) can be derived as well:

γtn+1 =
γtn

γtn + tn−tn−1
tn+1−tn (1− γ)tn+1−tn

. (3.17)

So the whole suggested modification of the method relies just on adding the term
tn−tn−1
tn+1−tn into the formula (2.15) to change it into (3.17). The initial value for γtn ,

following the Wright’s concept of a fixed point, is the same as in (2.6):

γt0 = 1− (1− γ)q . (3.18)

None of other parts of a practical implementation of the method is affected.

Looking at formula (3.17), we see that for regular time series, our modified method

turns into classical Holt method as well as the Wright’s original version does.

Let us have a look at formula (3.10) again. Now for tn+1 → tn+, it is

γtn+1αtn+1

tn+1 − tn
→ γtnαtn

(tn − tn−1)(αtn + 1)
<∞ (3.19)
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so there is no more problem of rapidly shifted Ttn+1 .

The weights suggested in (3.15) can be justified in the following way. Let us

take γ = 0 and only a finite versions of our smoothing formulas (j = 0, . . . , J) for

a moment. Then formula (3.15) (using also appropriate finite version of (3.16))

will turn into

Ttn =
Ltn − Ltn−J−1

tn − tn−J−1
(3.20)

which seems to be more reasonable than the analogous finite version of (3.7):

Ttn =
1

J + 1

J∑
j=0

Ltn−j − Ltn−j−1

tn−j − tn−j−1
. (3.21)

The slope is no more estimated as a simple arithmetic average of the individual

one-step slopes. Now it is calculated as the ”overall” slope which can be expressed

as a weighted average of the one-step slopes, the weight being the corresponding

time step. Adding an exponential weighting to this weighted average, we come

to the suggested modification of slope estimation for Holt method.

It is possible to modify all other methods familiar with Wright’s version of Holt

method exactly in the same way. It relates to Holt method with damped linear

trend or exponential trend for irregular time series, see Cipra (2006) or Section 2.1,

and Holt-Winters method for time series with missing observations, see Cipra

et al. (1995) or Section 2.1.

With exponential trend we can use exactly the same modified formula (3.17)

as well. But now we are loosing the justification provided by (3.20) which works

exactly in the case of classical linear trend only (unless we change the slope

estimation from arithmetic to geometric weighted average).

In the case of damped linear trend formula (3.17) is replaced by its analogue

γtn+1 =
γtn

γtn + g(tn−tn−1)
g(tn+1−tn)(1− γ)tn+1−tn

, (3.22)

where g(x) = ϕ1−ϕx
1−ϕ , x > 0, and ϕ ∈ (0, 1) is the damping constant used.

Seasonality in Holt-Winters method, either additive or multiplicative, has no

impact on slope updating and so the suggested modification needs no special

comments. It is used inside Holt-Winters in Chapter 4.
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3.5 Real data example

The real data example used in this section is inspired by Wright (1986) who used

a time series of men world record times for 1 mile run appr. from 1860 to 1970.

The observation time was the year in which the record was established. When

a new record time was established multiple times during one calendar year, just

the final (best) time was considered.

We will use a similar time series with the difference that the observation times

are recorded with a day by day precision. It covers the IAAF era, starting with

time 4:14.4 by John Paul Jones (USA) run on 31st May 1913 in Allston. The latest

record time is 3:43.13 by Hicham El Guerrouj (Morocco) run on 7th July 1999

in Rome1. Totaly the series contains 32 observations with average time spacing

of 2.78 years. The observation times are expressed in years (as fractional numbers)

and the record times in seconds (with precision of 0.1 and later 0.01 second).

Primarily we will apply the Holt method by Wright (1986) and its modified

version suggested in Section 3.4 to smooth and forecast this time series. Fixed

smoothing constants α = 0.2 and γ = 0.02 have been used. Low value of γ has

been used to reflect the relatively stable linear trend.

The initial values L0 and T0 have been constructed by fitting a linear regression

through the first 10 observations of the series. DLS with weights decreasing

towards future with discount factor 1−√α γ have been used, see Hanzák (2007).

In addition to this, the DES and the method of DLS linear trend described

in Section 2.2 will be applied. Here the smoothing constant α will be optimized

according to RMSE of one-step-ahead forecasting errors. All the computations

were done in author’s own application DMITS, see Chapter 7.

The results are as follows. DES and DLS liner trend achieved RMSE of 1.2626

and 1.2680 respectively, with optimal α of 0.0994 and 0.1111 respectively.

The modified Holt method achieved RMSE of 1.2552, i.e. it slightly outperformed

the first two methods. It has an advantage of two independent smoothing

constants (even that they were not optimized but set fixed) so it can smooth

the series slope more than its level.

The original version of Holt method provided by Wright (1986) absolutely

failed - it achieved RSME of 2.8470, i.e. more than twice higher than all the

previous three tested methods. And this happened despite the fact that we

chose very small γ value which should mitigate the potential impact of time-close

observations.
1http://en.wikipedia.org/wiki/Mile run world record progression.
Accessed on 9th February 2014.
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Figure 3.1: One mile run men world record times [M:SS], 1913-1999. Holt method
with fixed α = 0.2, γ = 0.02 (original method - red, modified method - green).

Let us have a look in detail on Figure 3.1 what happens in comparison of the

two versions of Holt method. The version by Wright (1986) is plotted in red color,

our modified version in green. We can see two serious problems of the original

method. The first one due to the record time 4:06.2 run equally on 1 July 1942 and

on 10 July 1942. This deviated the slope estimate upwards and caused significant

forecasting errors in the following period (then it turned slightly in the opposite

direction on 21 June 1954). The second problem occurred due to the record times

3:48.53, 3:48.40 and 3:47.33 run between 19 and 28 August 1981. This deviated

the slope estimate downwards and caused significant forecasting errors for the

remaining part of the series.

Slope smoothing coefficient γtn ranged from 0.045 to 0.066 over time in the

original version of the method, with variation coefficient just of 9 %. In the

modified method, γtn ranged from 0.00011 to 0.17 over time, with variation

coefficient of 97 %. It shows how big the influence of the modification of formula

for γtn is when the time steps are very variable (they have variation coefficient

of 101 % in this case).

3.6 Simulation study

In this section we will evaluate what is the improvement of a forecasting accuracy

due to the suggested modification of Holt method using a simulation study.

Both the original and modified Holt method were implemented in author’s own

application DMITS, see Chapter 7.
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We will evaluate this improvement depending on the intensity of time-close

observations presence in data. This intensity means

1. frequency of the time-close observations in data, i.e. how often the problem

occurs in the series,

2. closeness of the time-close observations, i.e. how dramatic the problem is.

In addition we try three levels of smoothness of the series. Totaly we use

21 different simulated time series.

First we generated a regular time series by a certain ARIMA(0, 2, 2) model

(which is a reasonable theoretical model for time series treated by Holt method).

Then we made a sampling from this time series by taking individual time steps

of newly created irregular time series as realizations of a certain integer-valued

random variable, see Table 3.1. Finally we normalized the time axis of the

resulting irregular time series so that its average time spacing q is equal to 1.

Closeness Frequency Time step distribution Q

- - U{1, 2, 3, 4} 2.5
low low 0.04 δ1 + 0.32 δ5 + 0.32 δ10 + 0.32 δ15 10

medium low 0.04 δ1 + 0.32 δ10 + 0.32 δ20 + 0.32 δ30 19.6
high low 0.04 δ1 + 0.32 δ20 + 0.32 δ40 + 0.32 δ60 38.8
low high 0.1 δ1 + 0.3 δ5 + 0.3 δ10 + 0.3 δ15 9.1

medium high 0.1 δ1 + 0.3 δ10 + 0.3 δ20 + 0.3 δ30 18.1
high high 0.1 δ1 + 0.3 δ20 + 0.3 δ40 + 0.3 δ60 36.1

Table 3.1: Used time step distributions. U is a discrete uniform distribution and
δx is the Dirac measure at point x.

We will use the more understandable parametrization of Holt method

to describe the concrete settings of ARIMA(0, 2, 2) generating models. We always

started with L0 = T0 = 0 and the one-step-ahead forecasting errors were

independent identically distributed with N(0, 1). All the generated irregular time

series have 2000 observations1.

The parameters of ARIMA(0, 2, 2) model, in Holt method parametrization,

were taken as α∗ = 1 − (1 − α)1/Q and γ∗ = 1 − (1 − γ)1/Q where α and γ

are 0.2 and 0.1 (low smoothness), 0.4 and 0.25 (medium smoothness) and 0.6

and 0.4 (high smoothness) respectively. Q is the expected value from Table 3.1,

depending on the selected time step distribution. Using α∗ and γ∗ instead of α

and γ to generate the regular series should guarantee similar optimal values

of smoothing constants used for the sampled irregular time series.

1Using very long time series is used here as an alternative to generating multiple series from
the same scheme.
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As far as the implementation of both Wright’s original method and the

modified one is concerned, the initial values of L and T have been constructed

using the estimate of a linear regression through the first 10 observations of the

series (discounted least squares with weights decreasing towards future with

discount factor 1 − √α γ have been used again) and the minimal MSE values

of smoothing constants α and γ have been used (do not mix with the generating

parameters!). These optimal smoothing constants and the achieved minimal

RMSE =
√

MSE are presented for each of 21 time series and both the original

and modified method, see Table 3.2.

Original method Modified method
Freq. Closeness Smooth. α γ RMSE α γ RMSE

- - low 0.1587 0.0494 1.0525 0.1559 0.0743 1.0503
- - medium 0.3791 0.1342 1.1129 0.3488 0.2006 1.0991
- - high 0.5326 0.2784 1.2202 0.5041 0.3589 1.1994

low low low 0.1304 0.0269 1.0654 0.1054 0.0599 1.0511
low low medium 0.3129 0.0684 1.1385 0.2412 0.1683 1.1035
low low high 0.4478 0.1473 1.2853 0.3781 0.2866 1.2256
low medium low 0.1461 0.0104 1.0798 0.1229 0.0500 1.0657
low medium medium 0.3295 0.0223 1.1690 0.2245 0.1277 1.1004
low medium high 0.4661 0.0585 1.3312 0.3467 0.2339 1.2187
low high low 0.1527 0.0059 1.0686 0.1092 0.0657 1.0411
low high medium 0.3268 0.0120 1.2137 0.2085 0.1089 1.0967
low high high 0.5319 0.0318 1.4497 0.3233 0.2145 1.2130
high low low 0.1376 0.0242 1.0242 0.1162 0.0738 1.0188
high low medium 0.3464 0.0536 1.1732 0.2647 0.1657 1.1311
high low high 0.5250 0.1043 1.3414 0.4482 0.2551 1.2495
high medium low 0.1662 0.0057 1.0859 0.1147 0.0591 1.0568
high medium medium 0.3229 0.0321 1.2119 0.2355 0.1441 1.1169
high medium high 0.5174 0.0456 1.4134 0.3576 0.2456 1.2243
high high low 0.1251 0.0044 1.0894 0.0865 0.0425 1.0498
high high medium 0.2666 0.0122 1.2148 0.2015 0.1223 1.1157
high high high 0.4989 0.0161 1.4289 0.3299 0.1900 1.2136

Table 3.2: Optimal α and γ values and the achieved RMSE for all 21 simulated
time series, for both the original and the modified method.

From Table 3.2 we can see that the modified method has achieved a lower

RMSE than the original one in all 21 cases. Also in all 21 cases the original

method used higher α value and lower γ value than the modified one. This

means that the original method tried to prevent a negative impact of time-close

observations by choosing very low γ value and compensated this by choosing

a higher α value. This difference between compared methods is more significant

in cases of higher closeness and frequency of time-close observations. Generally,

in contrast to the original method, the results from the modified one are not much

dependent on which of 21 time series we take.

If we used γ = 0.05 or γ = 0.1 in cases where the original method has

much lower values of γ as its optimum, we would usually obtain seriously wrong
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results characterized by high RMSE, high positive autocorrelation of forecasting

errors (0.2–0.8) and high kurtosis of these errors (they have a heavy tailed sample

distribution). Visual inspection would usually discover quite crazy patterns

in forecasts: at a time of time-close observations the slope estimate is changed

rapidly so the following forecasts are totaly out of the mainstream of observations.

Then it takes a certain time to join it again. Sometimes another time-close

observations effect occurs which shoots the forecasts rapidly to the other direction.

This can repeat several times and create a spurious oscillation in forecasts.

Figure 3.2: Illustration of Holt method with fixed α = 0.3 and γ = 0.1 applied
to a simulated time series (original method - red, modified method - green).

See Figure 3.2 for illustration of this phenomenon. There is a detail of one

of 21 used simulated time series (that one with high frequency, high closeness and

medium smoothness; it is the second one from bottom in Table 3.2). Forecasts

obtained by both the methods are plotted, both using fixed α = 0.3 and γ = 0.1

which is a usual expert guess combination of smoothing constant values, see e.g.

Cipra (2008), p. 306. While the forecasts from the modified method are without

problems (green line), those from the original one (red line) oscillates wildly.

3.7 Conclusion

Modification of Wright’s version of Holt method for irregular time series suggested

in this chapter has proved to be a reasonable way to eliminate the impact of time-

close observations. Only one formula needs to be modified by adding one term

to it. Modified method has a better forecasting accuracy when compared with

the original one by Wright. This improvement is just slight when the problem

of time-close observations is not present and becomes substantial when time-close

observations are present with higher intensity. Any special or extended version

of Holt method (e.g. Holt method with damped trend, Holt-Winters method etc.)
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in its form for irregular time series can be improved just in the same way. There

are no arguments against the usage of the suggested modification.
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Chapter 4

Holt-Winters method with

general seasonality

4.1 Introduction

Holt-Winters method employs p seasonal indices (additive or multiplicative)

to model the seasonal pattern of length p, see e.g. Holt (2004), Winters (1960)

or Section 2.1. However, this brings couple of limitations. To use the seasonal

indices, we must be able to assign each observation to exactly one of p calendar

units forming the complete period (e.g. January, February etc. for monthly

observations with annual seasonality, p = 12). Especially this means that the

number of observations per one period must be integer.

The calendar assignment is still possible in a time series with missing

observations, see Cipra et al. (1995) or Section 2.1 for such an extension of Holt-

Winters method. However, it is not possible in a general irregular time series

and so there was no Holt-Winters method available for this case (see Bessa and

Matos (2011)).

Time series with p � 0, i.e. with many observations per one period, are

also not favorable for the classical Holt-Winter method since we need to carry

out enormous number of seasonal indices to form the seasonal pattern. This is

unpleasant especially when the seasonal pattern is relatively smooth.

The above mentioned issues can be overcome by using a different or extended

seasonality modeling. Holt-Winters method with general seasonality modeling is

therefore suggested in this chapter. The goal is to offer a broader spectrum

of possibilities for seasonality treatment while staying in the widely known

and accepted framework of Holt-Winters method. The suggested methods are

applicable also for irregular time series and both additive and multiplicative

seasonality is offered.

Model-based approach to exponential smoothing (various ARIMA, SARIMA

and state space models) was often applied, see e.g. Aldrin and Damsleth (1989),
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Ratinger (1996), Hyndman et al. (2002), Hanzák and Cipra (2008) or De Livera

et al. (2011). In contrast to that, the method suggested in this chapter can be

viewed as ad hoc, following the tradition of exponential weighting idea from Holt

(2004), Winters (1960), Wright (1986), Cipra et al. (1995) or Hanzák (2008).

This hopefully supports the understandability of the method while it does not

harm its smoothing and forecasting performance; Aldrin and Damsleth (1989)

and Hanzák and Cipra (2008) showed that the performance of ad hoc methods is

fairly comparable with that of the optimal model-based ones.

In Section 4.2 Holt-Winters method with a general seasonality modeling (in its

additive and multiplicative variants) is presented. The properties of this method

are discussed, its theoretical justification based on Discounted Least Squares

(DLS) estimation is given and the implementation details are outlined here.

In Section 4.3 we discuss particular methods useful in practice, including linearly

interpolated seasonal indices and trigonometric functions. Sections 4.4 and 4.5

compare the suggested methods numerically with the classical one on simulated

and real data, respectively. Section 4.6 brings the conclusions of the chapter.

4.2 General seasonality modeling

in Holt-Winters method

Seasonality can be generally modeled using K ≥ 1 different real-valued functions

f1, f2, . . . , fK , all defined on R. Each fk is supposed to be periodic with a specific

period pk ∈ (0,+∞). The seasonal pattern S is formed as a linear combination

of fk as in a linear regression:

S(t) =
∑K

k=1
Akfk(t) , (4.1)

where t ∈ R is the time and Ak ∈ R are the appropriate amplitudes.

In the case of an additive seasonality, this S(t) is then added to the time series

level Lt to form the smoothed value:

ŷt = Lt + S(t) (4.2)

while to get a multiplicative seasonality, Lt is multiplied by the exponential

of S(t):

ŷt = Lt · exp[S(t)] . (4.3)
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We suppose fk just to be bounded. One can take functions fk centered around

0 in a certain sense. It is also reasonable (but not necessary) for fk to be linearly

independent, see (4.1).

Method formulation. Now we will incorporate the above described general

seasonality modeling concept into Holt-Winters method. Let {ytn , n ∈ Z},
tn+1 > tn, be an irregular seasonal time series with locally linear trend (the other

trend types can be considered as well) and additive seasonality (the multiplicative

case will be described later). We consider its level Ltn , slope Ttn and seasonal

component

Stn(t) =
∑K

k=1
Aktnfk(t) (4.4)

at time tn. Here Aktn are adaptive amplitudes valid at time tn. We must correctly

distinguish between the two different times t and tn here.

The forecast ŷtn+τ (tn) and the smoothed value ŷtn are analogous to (2.22):

ŷtn+τ (tn) = Ltn + τTtn + Stn(tn + τ) , (4.5)

ŷtn = Ltn + Stn(tn) . (4.6)

After a new observation ytn+1 becomes available, the level L, slope T and the

K seasonal amplitudes Ak, k = 1, . . . , K, are updated using error-correction

formulas analogous to (2.32)-(2.34):

Ltn+1 = Ltn + (tn+1 − tn)Ttn + αtn+1etn+1 , (4.7)

Ttn+1 = Ttn + γtn+1αtn+1etn+1/(tn+1 − tn) , (4.8)

Aktn+1
= Aktn + δktn+1

(1− αtn+1)etn+1/fk(tn+1) , (4.9)

where etn+1 = ytn+1 − ŷtn+1(tn) and we take 0/0 = 0 by definition in (4.9).

Formulas (4.7) and (4.8) are equivalent to those in Wright (1986) and Cipra et al.

(1995), see (2.32) and (2.33). The factor δktn+1
(1 − αtn+1) in (4.9) expresses the

portion of etn+1 which is absorbed to the kth seasonal component Aktn+1
fk(tn+1).

The division by fk(tn+1) in (4.9) is due to (4.4) and it does not contradict to the

additive seasonality used.

Smoothing coefficient αtn ∈ (0, 1) for level in (4.7) is updated in a recursive

way, following the basic idea of exponential weighting, exactly as in Wright (1986)

and Cipra et al. (1995):

αtn+1 =
αtn

αtn + (1− α)tn+1−tn , (4.10)
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where α ∈ (0, 1) is a smoothing constant for level, see (2.5).

For the smoothing coefficient γtn ∈ (0, 1) for slope in (4.8), we will use

a modified updating formula (3.17) from Chapter 3:

γtn+1 =
γtn

γtn + tn−tn−1
tn+1−tn (1− γ)tn+1−tn

, (4.11)

where γ ∈ (0, 1) is a smoothing constant for slope. The modified coefficient γtn+1

defined by (4.11) makes the slope estimate Ttn+1 in (4.8) safe from a negative

impact of the time distance tn+1 − tn being close to zero.

Smoothing coefficients δktn , k = 1, . . . , K, for the seasonal amplitudes in (4.9)

are also updated in a recursive way. We consider K generally different smoothing

constants δk ∈ (0, 1) belonging to each of the functions fk (but we can take δk ≡ δ

as a special case). For k = 1, . . . , K let us denote

W k
tn ≡

∑+∞

j=0
(1− δk)tn−tn−jf2

k (tn−j) . (4.12)

Obviously W k can be easily updated recursively over time as

W k
tn+1

= (1− δk)tn+1−tnW k
tn + f2

k (tn+1) . (4.13)

For k = 1, . . . , K, let us further denote the dimensionless quantities

∆k
tn+1
≡ f2

k (tn+1) /W k
tn+1

(4.14)

(we take again 0/0 = 0). Since according to (4.12) it is 0 ≤ f2
k (tn+1) ≤ W k

tn+1
,

we have ∆k
tn+1
∈ [0, 1]. This is declared to be the ideal value for δktn+1

in the case

that K = 1, i.e. if there was no competition between individual fk’s.

Formula (4.14) is consistent with the fundamental idea of exponential

weighting, see Wright (1986) for simple exponential smoothing. In (4.12)

together with (4.14), besides the observation time tn−j , we measure the relevance

of a particular observation ytn−j with respect to Ak also by the magnitude

f2
k (tn−j). This respects the fact that if fk(tn−j) ≈ 0 then the observation at time

tn−j contains very little information about the value of Ak. Later we will give

additional justification for the choice in (4.12) and (4.14).

However, if K > 1 (which is typically the case), it can happen that∑K
k=1 ∆k

tn+1
is greater than 1 which implies that the total portion of the error

absorbed would exceed 100 % if one used δktn+1
= ∆k

tn+1
. So it is necessary
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to normalize ∆k
tn+1

in a suitable way to get the final coefficients δktn+1
. We let

∆tn+1 ≡ 1−
∏K

k=1

(
1−∆k

tn+1

)
∈ [0, 1] (4.15)

be the total portion of the error absorbed instead of

Dtn+1 ≡
∑K

k=1
∆k
tn+1

≥ 0 . (4.16)

To achieve this, let us take the final smoothing coefficients δktn+1
as

δktn+1
≡

∆tn+1

Dtn+1

∆k
tn+1

∈ [0, 1] , k = 1, . . . , K (4.17)

(again take 0/0 = 0). The motivating interpretation of (4.15) vs. (4.16) is that

we rather imagine independence than disjointness of the k events of absorbtion

with probabilities ∆k
tn+1

.

Let us summarize that the suggested Holt-Winters method with general

seasonality consists of formulas (4.7)-(4.11) and (4.13)-(4.17). In total, one needs

to keep 4+2K numerical variables in memory which are updated over time by the

above listed recursive formulas. The computational complexity of the method is

comparable with that from Cipra et al. (1995) and is reduced with lower number

K of seasonal functions fk or when some of them are repeatedly equal to 0 (see

Section 4.3 for concrete examples).

Method’s properties and theoretical justification. The smoothing

coefficients δktn+1
as defined in (4.12)-(4.17) have reasonable properties:

• By Aktn+1
update we move from ŷtn+1(tn) closer to ytn+1 . Summing the k

movements, we come to Stn+1(tn+1) = Stn(tn+1) + ∆tn+1(1 − αtn+1)etn+1 ,

see (4.4), (4.9) and (4.15)-(4.17). Thus the total portion of etn+1 absorbed

by seasonals is ∆tn+1(1− αtn+1) ∈ [0, 1]. Compare this with (2.34).

• The error etn+1 is absorbed more to fk with higher δk (i.e. it has really the

meaning of a smoothing constant) and with f2
k (tn+1) larger compared to its

recent values, see (4.12) and (4.14).

• If fk(tn+1) → 0 then (ceteris paribus) δktn+1
/fk(tn+1) → 0. This means

that we do not need to worry about values of fk near to 0, see the division

in (4.9).
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To justify the concrete choice in (4.12) and (4.14) for δk ≡ δ, let us consider

a Discounted Least Squares (DLS) estimation of K parameters Ak in the linear

regression model

yt ≈
∑K

k=1
Ak fk(t) (4.18)

with discount factor 1 − δ ∈ (0, 1). The minimized criterion based on infinite

series history up to time tn is

Σn(A) ≡
∞∑
j=0

[
ytn−j −

∑K

k=1
Ak fk(tn−j)

]2

(1− δ)tn−tn−j , (4.19)

where we denoted A = (A1, . . . , AK)′. Let us stress that we do not consider the

level-trend component L+ t T in (4.18) since we focus on the seasonal smoothing

coefficients δtn here (we can think of y here as being after a trend elimination).

Denote by Atn the argument of minima of Σn(A). It is

Atn = (F ′nDnF n)−1F ′nDnYn , (4.20)

where

F n = {fk(tn−j)}k=1,...,K
j=0,1,2,... (4.21)

is the regression design matrix, Dn = Diag{1, (1− δ)tn−tn−1 , (1− δ)tn−tn−2 , . . .}
is the diagonal discounting matrix and Yn = (ytn , ytn−1 , ytn−2 , . . .)

′1.

Further denote

ŷtn+1(tn) =
∑K

k=1
Aktn fk(tn+1) (4.22)

the regression prediction of ytn+1 using the estimate Atn and

etn+1 = ytn+1 − ŷtn+1(tn) (4.23)

the corresponding prediction error. Since it is

Σn+1(A) = (1− δ)tn+1−tnΣn(A) +
[
ytn+1 − ŷtn+1(tn+1)

]2
, (4.24)

ytn+1 = ŷtn+1(tn) implies Atn+1 = Atn
2. This fact together with (4.20) gives us

Atn+1 = Atn + (F ′n+1Dn+1F n+1)−1{fk(tn+1)}k=1,...,Ketn+1 , (4.25)

1The infinite dimension of the matrices F n, Dn and Yn just turns the scalar products from
finite sums to series sums convergent due to exponential decay of (1− δ)tn−tn−j .

2Atn makes Σn(A) minimal and the second summand 0 due to ŷtn+1(tn+1) = ŷtn+1(tn) = ytn+1 .
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where {fk(tn+1)}k=1,...,K is the first column (j = 0) of matrix F ′n+1.

Given that K ×K matrix F ′n+1Dn+1F n+1 is diagonal, i.e. the regressors fk

are orthogonal in the sense that

fk ◦ fl ≡
∑+∞

j=0
(1− δ)tn+1−tn+1−jfk(tn+1−j)fl(tn+1−j) = 0 (4.26)

for all k 6= l, we get

Aktn+1
= Aktn +

fk(tn+1)

W k
tn+1

etn+1 = Aktn + ∆k
tn+1

etn+1/fk(tn+1) , (4.27)

whereW k
tn+1

and ∆k
tn+1

are defined in the same way as before. This result supports

the definition of ∆k
tn+1

in (4.14).

Ignoring the possible non-zero off-diagonal elements of matrix

F ′n+1Dn+1F n+1 is the reason why we need to do the normalization in (4.17).

If we solved correctly K×K matrix inversion in (4.25), we would receive directly

reasonable values for δktn+1
with no additional normalization needed.

Since K is typically quite large (e.g. 12), we prefer the simplified approach

of (4.12)-(4.17) based on the diagonality assumption. If the functions fk are

approximately orthogonal (i.e. their scalar products fk ◦ fl for k 6= l are almost

zero when compared to fk◦fk = W k
tn+1

) then this is an acceptable approximation.

Another possible approach, not using the ideas of Holt-Winters method

at all, would be to regress y on the regressors {1, t, f1(t), . . . , fK(t)}
using DLS estimation method with a certain discount factor. However, even

if it is not necessary to invert (K + 2)× (K + 2) matrices, we lose the important

flexibility of having three independent smoothing constants as in Holt-Winters

method. See Chapter 5 for more details on this topic.

Multiplicative seasonality. Up to now we have considered only the case

of an additive seasonality. To get a multiplicative seasonality, one has to replace

the additive prediction and smoothing formulas (4.5) and (4.6) with

ŷtn+τ (tn) = (Ltn + τTtn) exp [Stn(tn + τ)] , (4.28)

ŷtn = Ltn exp [Stn(tn)] . (4.29)

The recursive formula (4.9) for the amplitudes update is simply changed to

Aktn+1
= Aktn + δktn+1

(1− αtn+1)
[
ln ytn+1 − ln ŷtn+1(tn)

]
. (4.30)
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By taking the natural logarithm of the multiplicative forecasting error

ytn+1/ŷtn+1(tn) we simply convert it from the multiplicative world of y to the

additive world of fk and Ak. In (4.28) and (4.29) we do the reverse conversion

from additive to multiplicative.

Practical implementation. To apply successfully the above described

smoothing and forecasting method, one must necessarily deal with the following

tasks:

• To choose suitable seasonality modeling functions fk, specially their

number K, depending on the nature of the seasonal pattern.

The standardized choices are suggested in Section 4.3. Generally

with higher K we are able to model more precisely even complicated

patterns but we must beware of over-fitting. See Sections 4.4 and 4.5 for

practical experiences.

• To choose the values ofK+2 smoothing constants α, γ and δk, k = 1, . . . , K.

It seems reasonable to reduce the number of parameters by taking δk ≡ δ.

The three constants α, γ and δ can be searched numerically over the unit

cube (0, 1]3 as in the case of the classical Holt-Winters method.

• To set up the initial values L0, T0, α0, δ0, Ak0 and W k
0 before running

the recursive computation. We recommend using the general approach

of backcasting (backward forecasting, see Chatfield and Yar (1988) for a brief

explanation). To initialize the backcasting itself we can put simply Ak0 = 0

and W k
0 based on a rough approximation of (4.12)

W k
0 ≈

+∞∑
j=0

(1− δk)jq f2
k =

f2
k

1− (1− δk)q
, (4.31)

where f2
k is the average squared value of fk over the available observation

times and q is the average time spacing of the series.

4.3 Useful special cases

Classical Holt-Winters method. To get the classical Holt-Winters method

(for regular time series) with p seasonal indices and period p ≥ 2, see (2.22)-(2.25),

we simply take K = p and

fk(t) =

{
1 if (t mod p) = k ,

0 otherwise .
(4.32)
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So fk are the indicators of individual calendar units, it is pk ≡ p and fk are

perfectly orthogonal (it is even fk(t)fl(t) = 0 for all k 6= l and t ∈ R). Further

take δk ≡ δ. The seasonal smoothing coefficients are of a trivial form:

δkt =

{
1− (1− δ)p if (t mod p) = k ,

0 otherwise .
(4.33)

So only one amplitude Ak (belonging to the actual calendar unit of t) is

updated in one time step, the remaining ones stay unchanged. It is f2
k = 1/p.

Notice that δkt = 1 − (1 − δ)p 6= δ due to the p time steps between the two

consecutive observations from the same calendar unit. But this is just a different

parametrization of the method, see also Cipra et al. (1995).

However, for multiplicative seasonality we get a slightly different smoothing

formulas for the seasonal indices. The classical method additively averages

the old and the new values of the seasonal index while our method does this

mixing in terms of a weighted geometric mean. This multiplicative treatment

of multiplicative seasonal indices seems to be more reasonable and theoretically

consistent, however the practical impact on the results is not significant due

to local linearity of exponential and logarithm functions.

Normalized seasonal indices. In Chatfield and Yar (1988) the possibility

to normalize the seasonal indices in Holt-Winters method to ensure that they

always sum up to 0 is mentioned. This is a reasonable normalizing condition

which helps us to strictly separate the level and the seasonal component. We can

employ such a normalizing in our general seasonality concept. Just replace (4.32)

with

fk(t) =

{
1 if (t mod p) = k ,

−1/(p− 1) otherwise .
(4.34)

The functions fk(t) are now centered around 0 and so the whole seasonal

component S(t) defined in (4.4) is as well. They remain linearly independent

and approximately orthogonal for p� 0. Now always all the amplitudes Ak are

updated in a single time step.

Missing observations. By taking K, fk and δk the same as for the classical

Holt-Winters method and just allowing the analyzed time series y to have missing

observations (so the calendar assignment is still possible), we come to the method

from Cipra et al. (1995)1. Again only the single amplitude Ak belonging to the

1We just use the modified slope update robust to time-close observations.
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actual calendar unit of t is updated in a single time step. However, the non-zero

smoothing coefficient δkt varies step by step, depending on the value of W k which

contains the information about the time structure of the series when the current

calendar unit is concerned.

Restricted seasonal indices. Let us still consider a regular time series or

at worst a time series with missing observation. For a particular real time series,

there is sometimes a good reason to assume that the p seasonal amplitudes are not

independent of each other but there are some logical linear restrictions between

them. Taking this into account we can reduce the number of seasonal parameters

used and eventually obtain a better out-of-sample forecasting accuracy thanks

to more robust estimation.

The restrictions can have various forms, for example:

• two (neighboring or not) seasonal amplitudes are equal,

• certain seasonal amplitude is an average of the two surrounding ones,

• certain seasonal amplitude is exactly half of another etc.

All these restrictions can be simply imposed on the seasonal pattern of Holt-

Winters method by reducing the number K of seasonal functions fk used,

analogously as in linear regression models.

The examples of real situations where such seasonal restrictions could make

sense can be found easily. E.g. some monthly time series with annual seasonality

can have the same seasonal amplitude in July and August due to school holidays

located in these two months. Or a time series of daily TV channel’s audience

shares can exhibit the same values on two different weekdays due to the same

programming scheme of the respective TV channel (consider Tuesdays and

Thursdays of Czech TV Nova).

Sometimes we observe historically that at a certain seasonal unit the seasonal

pattern is linear and so the respective amplitude can be set equal to the average

of the two neighboring ones (i.e. linearly interpolated by them). This means

in fact using the same idea as in sparse seasonal indices introduced later in this

section.

Sometimes the seasonal deviation in two consecutive months is caused by the

same factor which effect is spread over these two months. Historically we can

estimate the ratio between the two months and assume it to be constant over

time. Then just the overall strength of the effect is estimated as one parameter

driving the seasonal pattern in the both months.
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Interpolated seasonal indices. To cover the inter-calendar observations

and/or to reduce the number of seasonal indices used, it is possible to interpolate

linearly the neighboring indices. We will describe this directly for the number

K ≥ 2 of the seasonal indices used independently of the period length p ∈ (0,+∞)

and with a general time axis origin o ∈ R. Let us define

fk(t) =

{
1−min

j∈Z

∣∣∣∣K(t− o)
p

− (jK + k)

∣∣∣∣}+

. (4.35)

Each of fk has the form of p-periodic sequence of identical isosceles triangles with

the basis length of 2p/K and the height of 1. The neighboring fk’s are shifted

by p/K to each other and it is fK(o) = 1. See Figure 4.1 for illustration.

Figure 4.1: Interpolated seasonal indices with K = 4, p = 4 and o = 0.

By setting the amplitudes Ak we can form any p-periodic continuous

K−piecewise linear seasonal pattern. The amplitudes Ak will appear as the

pattern values at the K equidistant break points.

Functions fk, k = 1, . . . , K on [0, p] interval are a special case of so called

B-splines (basis splines). In particular, they are the second order and the

first degree B-splines, meaning that each function fk is formed piecewise

by two polynomials of the first degree (i.e. straight lines) and the connection

is continuous, see Craig (2004). Higher order and degree B-splines are multiple

piecewise polynomial curves of higher degrees with higher order of continuity

(higher derivatives are continuous).

The functions fk(t) are still linearly independent. But they are not perfectly

orthogonal since the neighboring triangles always overlap by one half of their

bases. We can take routinely f2
k = 1/K or f2

k = (2/3)/K depending on the

layout of the observation times. In a single time step, only one (if fk(t) = 1 for
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some k) or two (otherwise) amplitudes are updated. In the later case, the two

updated amplitudes belong to the two indices surrounding the observation time

t.

The practical choice of K and o should reflect the smoothness of the seasonal

pattern and the layout of observation times. For example, the following three

settings can be tested in practice for time series with period p ∈ N (see Sections 4.4

and 4.5):

• Classical method: K = p and o = 0. It is an extension of the method for

missing observations from Cipra et al. (1995).

• Shifted seasonal indices: K = p and o = 0.5. All the observations

are shifted by 0.5 so they are all treated as inter-calendar. Always the

two surrounding indices are composed (by their simple arithmetic average)

to form the corresponding seasonal component.

• Sparse seasonal indices: K = p/2 together with o = 0 or o = 1. This is

suitable for large p and relatively smooth seasonal pattern.

Of course we must beware of interpolating observation at peak or low point

of the seasonal pattern.

When one wants the formed seasonal pattern to be smooth (with continuous

first derivative), the third order and the second degree B-splines can be used

(instead of the second order and the first degree ones). These consist of 3

quadratic polynomials connected with continuous first derivative. The price one

has to pay for this higher order continuity is that always two or three seasonal

amplitudes are updated in each time step (not just one or two as in the lower

order/degree case).

Trigonometric functions. As an alternative to the seasonal indices, we can

use trigonometric functions of time to model the seasonality. The seasonal pattern

will be composed from several harmonic curves of different periods. Since usually

both the amplitude and phase shift of the harmonic curve are unknown (and/or

variable during time) we will always involve sine and cosine functions of the same

period. The individual periods pk will be taken as p, p/2, p/3, . . . where p is the

period length of the series. For example, when K = 4 (only even values of K are

used now), we define

f1(t) = sin
2πt

p
, f2(t) = cos

2πt

p
, f3(t) = sin

4πt

p
, f4(t) = cos

4πt

p
. (4.36)
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The user just has to specify the value of h = K/2, i.e. the number of full

harmonics to be included. Sometimes even h = 1 can give good results, the

values h = 2, 3 or 4 are applicable in most cases. It should always be 2h ≤ p/q

to prevent over-fitting.

Let us notice that the trigonometric functions fk are centered to 0, linearly

independent and approximately orthogonal (exact orthogonality holds for δ = 0

and defining the scalar product in a continuous way as fk · fl =
∫ p

0 fk(t)fl(t)dt).

Since the sine and cosine functions are equal to 0 only at isolated time points,

usually all the seasonal amplitudes are updated in each time step. Since

sin2 t+ cos2 t ≡ 1, we can take routinely f2
k ≡ 1/2.

Multiple seasonality. Half hourly electricity demand time series contains two

different seasonalities: daily (period 48) and weekly (period 7 · 48 = 336).

To construct forecasts, Taylor (2003) used a double seasonal Holt-Winters method

with two sets of seasonal indices (48 and 336 indices for the daily and weekly

seasonality, respectively). Another application of such methods can be found e.g.

in Taylor (2008).

Such a multiple seasonality can be obtained as a special case of our general

concept. We simply take two sets of indicator functions fk as in (4.32),

with pk = 48 for the daily set and pk = 336 for the weekly one.

Non-periodic functions fk. Although the Holt-Winters method traditionally

deals with seasonality, the general concept suggested in this chapter can be used

even to cope with non-seasonal variations in time series values. It is enough that

the variation can be attributed to a certain ”regressor” function f quantifying

certain factor influencing the time series values. Function f must be defined

(observed) at the observation points of the analyzed time series y. It does not

need to be periodic, yet it can be used within Holt-Winters method as suggested

with no problems (the periodicity is not required by formulas (4.7)-(4.11) and

(4.13)-(4.17)). To be eligible for predicting future values of the series y, values of f

just must be known in advance for the future we are interested in. For example

certain calendar effects can be captured by f or anything that is planned for sure

into future (TV channel’s programming scheme, dates of holding major sport

events etc.)
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4.4 Simulation study

In this section we will test the classical Holt-Winters method, the method

with shifted seasonal indices and the method with trigonometric functions

(see Section 4.3) on the simulated regular time series with locally constant trend

and additive seasonality with period length p = 7, 12 and 24. All the three

methods were implemented in author’s own application DMITS, see Chapter 7.

The time series generating model used is

yt = Lt + St + εt , εt ∼ iid N(0, 1) , (4.37)

Lt = Lt−1 + µt , µt ∼ iid N(0, 0.12) (4.38)

with εt and µt mutually independent. The seasonal component St used in (4.37)

follows

St = (1− ν)(St−1 +St−p−St−p−1)− ν
t−1∑

j=t−p+1

Sj +πt , πt ∼ iid N(0, 1) , (4.39)

i.e. a special AR(p+1) process. Seasonal innovations {πt} are independent of {µt}
and {εt}. The parameter ν ∈ [0, 1] rules the normalization of S to sum up to 0

and the smoothness of the seasonal pattern (lower ν creates a smoother pattern).

We initialize (4.37)-(4.39) by L0 = 0 and Sj = 0 for j = −p, . . . , 0.

In SARIMA or state space models (see e.g. Ratinger (1996), Hyndman et al.

(2002) or De Livera et al. (2011)) the seasonal component for each calendar

unit usually follows a random walk (i.e. the whole {St} follows AR(p) process

St = St−p +πt). This means that the seasonal indices for different calendar units

are independent and the corresponding seasonal pattern is not autocorrelated or

smooth at all. But such a situation is rather rare in reality and thus the model

(4.39) is more realistic in our opinion.

For a given p, we simulate time series of length 21p, i.e. 21 complete periods.

The first 10 periods are thrown away to eliminate the impact of initialization

by S ≡ 0 in (4.39). The next 10 periods are used to initialize the methods and

to optimize the smoothing constants α and δ in order to minimize RMSE (Root

Mean Square Error) of one-step-ahead forecasting errors (we use γ = 0.05 fixed).

The number h of full harmonics is also optimized when needed. We try h = 2, 3

for p = 7, h = 2, 3, 4, 5 for p = 12 and h = 4, 5, 6, 7, 8 for p = 24.

The last period is used to evaluate the out-of-sample forecasting accuracy.

We calculate RMSE from all the possible combinations of forecasting times from
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20p to 21p−1 and forecasting horizons from 1 to p, i.e. from p(p+1)/2 forecasting

errors totally.

For each p we use ν = 0.05, 0.1 and 0.2 in (4.39) and for each combination

of p and ν we simulate 100 time series. This means that totally 5100-times

the constants α and δ are optimized. We use a locally constant trend (instead

of locally linear), see (4.37) and (4.38), and a low fixed value of γ = 0.05 purposely

to prevent from three-dimensional smoothing constants optimization.

Classical H-W Shifted indices Trigonometric
p ν RMSE ranking RMSE ranking RMSE ranking

7 0.05 2.910 1.88 2.786 1.94 2.932 2.17
7 0.1 2.761 1.91 2.624 1.85 2.785 2.24
7 0.2 2.195 2.01 2.185 2.17 2.119 1.82
12 0.05 3.626 2.11 3.347 1.77 3.579 2.12
12 0.1 3.551 2.04 3.180 1.95 3.120 2.01
12 0.2 2.291 1.86 2.243 1.80 2.361 2.34
24 0.05 7.294 2.21 3.246 1.45 4.402 2.34
24 0.1 4.023 2.12 2.870 1.46 3.788 2.42
24 0.2 2.189 1.48 2.222 1.76 2.635 2.76

Table 4.1: Average out-of-sample RMSE and average ranking of the three
methods tested on nine different simulation setups.

The average out-of-sample RMSE and the average ranking of the methods

(1 = best, 3 = worst) are presented in Table 4.1. All the three methods seem

to be relevant competitors and can be recommended for testing in practice.

The ”shifted indices” method is the best one in our simulation in most

cases. However, also the classical Holt-Winters method and the method with

trigonometric functions generally work reasonably. Surprisingly the results do not

depend much on the parameter ν (except the case of p = 24).

One must beware that the results of the simulation study are probably far

determined by the particular generating model for the seasonal component,

see (4.39). It is easy to generate time series for which the particular method is

optimal and to illustrate the lack of performance of the remaining ones. However,

it is non-trivial to set up a neutral generating model useful for the comparison

of the methods.

4.5 Real data examples

Now we will illustrate the methods on real time series data. For this purpose,

we have downloaded five regular monthly time series (i.e. containing annual

seasonality, p = 12) from Hyndman (2010):
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1. AIR - International airline passengers, monthly totals in thousands, 1949-

1960 (144 observations);

2. TEMP - New York City monthly average temperatures, 1946-1959

(168 observations);

3. GAS - Monthly residential gas usage in Iowa, 1971-1979 (106 observations);

4. LEVEL - Lake Erie, monthly levels, 1921-1970 (600 observations);

5. FLOW - Tree River, mean monthly flows, 1969-1976 (96 observations).

In addition to Section 4.4, we will test also the ”sparse indices” method,

see Section 4.3. For AIR, GAS and FLOW we use a multiplicative seasonality,

for TEMP and LEVEL the additive seasonality is used in all four methods.

All the methods were implemented in author’s application DMITS, see Chapter 7.

The smoothing constants α, γ and δ and (if needed) the number h of full

harmonics are optimized with respect to RMSE based on the one-step-ahead

forecasting errors through the whole series. The same in-sample RMSE values

are reported in Table 4.2, together with the sample first order autocorrelation

coefficients ρe of the forecasting errors. The table also contains the optimal value

of h for each series.

Classical H-W Shifted indices Sparse indices Trigonometric
Series RMSE ρe RMSE ρe RMSE ρe h RMSE ρe
AIR 10.69 .237 10.25 -.124 16.44 -.126 5 10.41 .203

TEMP 0.740 .180 0.693 .114 0.799 -.181 1 0.713 -.121
GAS 18.58 .385 16.99 .359 19.53 .168 3 16.92 .350

LEVEL 0.445 .333 0.424 .243 0.465 .100 2 0.440 .440
FLOW 15.02 .453 13.31 .200 14.85 .155 3 13.39 .314

Table 4.2: Achieved minimal in-sample RMSE and autocorrelation ρe for five real
time series and four methods tested.

”Shifted indices” method is the best one for all the time series except the GAS

series. The ”sparse indices” method is the worst one in most cases. The classical

Holt-Winters method is always less accurate than the method with harmonics.

The optimal number h of full harmonics differs among the individual series.

TEMP series suffices with h = 1 (it is an optimal value) since the monthly

average temperature follows a simple sinusoidal curve. On the other hand, for

AIR series the RMSE gradually goes down as higher values of h are used. This

decline stops at the optimal value h = 5. It reflects the more complicated

seasonal pattern of the series (there is a major peak in summer but also another

smaller one around Christmas and New Year and also in March, see Figure 4.2).

The remaining three series have h = 2 or 3 as their optimum.
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Figure 4.2: AIR series: multiplicative Holt-Winters method with five full
harmonics.

See Figures 4.2, 4.3 and 4.4 for the original data, smoothed values and point

predictions for AIR, FLOW and TEMP series obtained by the method with

trigonometric functions (only the last four periods of data and one future period

are displayed). We can see that the method works reasonably - the prediction

curves nicely extrapolate the data. Even using h = 5 full harmonics for AIR

series did not lead us to over-parametrization.

Figure 4.3: FLOW series: multiplicative Holt-Winters method with three full
harmonics.
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Figure 4.4: TEMP series: additive Holt-Winters method with one full harmonic.

4.6 Conclusion

General seasonality modeling concept was suggested in the framework of Holt-

Winters method, both with additive and multiplicative seasonality. Several

particular settings of seasonal functions used were suggested. General irregular

time series can be handled, not just those with missing observations.

Interpolated seasonal indices can be used routinely to handle general irregular

time series. They can also be used to reduce the number of seasonal indices

used or to improve the forecasting accuracy by a certain shift of the time axis.

Alternatively trigonometric functions (h full harmonics) can be used. This is

automatically applicable also for irregular time series and even for regular series

it provides a relevant competitor to the classical Holt-Winters method.

The suggested methods were successfully tested via simulation study and

on real data. In general, seasonal indices outperform trigonometric functions

where seasonal jumps, peaks and dips are present. On the other hand, in the

case of a smooth seasonal pattern, trigonometric functions (with suitable h) can

do better. Sometimes even h = 1 can give good results, usually h = 2 or 3 is

optimal. One should be cautious using values h � 5. Anyway, it usually turns

out that the seasonal indices are better choice when the optimal value of h tends

to be too large.

In the context of Holt-Winters method the more general and complex model

of seasonality does not automatically bring better accuracy even of in-sample

forecasts (out-of-sample forecasts do not surprise us). This is caused by the
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adaptivity of the seasonal amplitudes. If we make use of a specific shape of the

seasonal pattern (e.g. when it is a sinusoidal curve), we can anticipate the next

future seasonal component based on the last observed one. This can help us

to improve our forecasts.

For an example of a practical application of the suggested methods for

irregular time series (forecasting electricity prices within an optimization models

for electricity market agents), see Bessa and Matos (2012, 2014).
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Chapter 5

DLS estimation and

Holt-Winters method

5.1 Introduction

In Section 2.2 we presented Double Exponential Smoothing (DES, or Brown

method) as a special case of Holt method. DES is derived via fitting a linear

trend using a Discounted Least Squares (DLS) estimation with discount factor

β ∈ (0, 1). Choice of a smoothing constant of DES, α = 1 − β, restricts us

on a one-dimensional curve inside the unit square of Holt method smoothing

constants αH and γH , where it holds

αH = α(2− α) and γH =
α

2− α
. (5.1)

Holt-Winters method is an extension of Holt method adding a seasonal component

to it. Thus it works with three smoothing constants αHW , γHW and δHW .

Analogously as in the case of DES, we could try to estimate linear trend with

seasonal dummies by DLS. This could possibly lead to a special case of Holt-

Winters method with additive1 seasonality, being again parameterized just by one

smoothing constant α = 1− β.

The purpose of this chapter is to investigate this possibility, i.e. derive the

DLS method for seasonal time series, express the smoothing constants αHW ,

γHW and δHW as functions of α and judge a practical usability of this method.

Comparison with DES will be also done in terms of comparing relations between

αH and γH on one side and αHW and γHW on the other side.

In the following text we will consider a regular time series y with locally linear

trend and additive seasonality with period p ≥ 2. The observations of y will be

denoted as . . . , yn−1, yn, yn+1, i.e. we assume an infinite history of y (similarly as

1Holt-Winters method with multiplicative seasonality of course can not be achieved by such
a linear regression approach.

62



in the derivation of DES) up to time n + 1. The smoothing constants notation

will be used as in the paragraphs above.

5.2 DLS estimation of linear trend with

seasonal dummies

Derivations in this section will start in an analogous way to Section 4.2 when we

were finding a theoretical justification for the formulas of Holt-Winters method

with general seasonality by assuming a DLS regression estimation.

Now we consider a linear regression model containing a linear trend and p

seasonal dummies (indicators) I1, I2, . . . , Ip:

yt ≈ T [t− (n+ 1)] +
∑p

k=1
σkIk(t) . (5.2)

The unknown regression parameters are T (trend slope) and σ1, σ2, . . . , σp

(seasonal levels). We replaced the intercept by putting all p (not just p − 1)

seasonal dummies into the regression formula. Let us suppose without loss

of generality that the observation time n+1 belongs to the first seasonal dummy,

i.e. that I1(n+ 1) = 1.

The model parameters will be estimated using DLS with discount factor

β ∈ (0, 1). The minimized DLS criterion based on the observations of y up to time

n is

Σn(T,σ) ≡
∞∑
j=0

[
yn−j + T (j + 1)−

p∑
k=1

σkIk(n− j)

]2

(1− β)j , (5.3)

where we denoted (T,σ) ≡ (T, σ1, σ2, . . . , σp)′. Denote the argument of minima

of Σn by (Tn,σn) ≡ (Tn, σ
1
n, σ

2
n, . . . , σ

p
n)′ . It is

(Tn,σn) = (F ′nDnF n)−1F ′nDnYn , (5.4)

where

F n =


−1 I1(n) I2(n) . . . Ip(n)

−2 I1(n− 1) I2(n− 1) . . . Ip(n− 1)

−3 I1(n− 2) I2(n− 2) . . . Ip(n− 2)
...

...
...

. . .
...

 (5.5)

is the regression design matrix (with p+ 1 columns and infinite number of rows),
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Dn = Diag{1, β, β2, . . .} is an infinite dimensional diagonal discounting matrix

and Yn = (yn, yn−1, yn−2, . . .)
′ is an infinite dimensional column vector. Notice

that the elements of F n, Dn and Yn are stacked in the opposite order than

usually, i.e. from the latest observation time n back into the history. The infinite

dimensions of the matrices F n, Dn and Yn turns the scalar products from

finite sums to series sums which are (or can be assumed to be) convergent due

to exponential decay of Dn elements.

Elements of a (p+1)-dimensional column vector F ′nDnYn could be expressed

using values of smoothing statistics of y in a similar way as in the case of DES.

The first and second smoothing statistics S[1] and S[2] are the same as in (2.41).

In addition we need to record also the seasonal pattern of the series. This can be

done by using ”seasonal” smoothing statistics S1, S2, . . . , Sp defined in a similar

way as S[1] but always using just observations of y from the corresponding seasonal

unit.

Now let us denote

ŷn+1(n) =
∑p

k=1
σknIk(n+ 1) (5.6)

the regression prediction of yn+1 using the estimate (Tn,σn) and

en+1 = yn+1 − ŷn+1(n) (5.7)

the corresponding prediction error. DLS criterion Σn+1(T,σ) can be decomposed

as

Σn+1(T,σ) = βΣn(T,σ) + [yn+1 − ŷn+1(n+ 1)]2 . (5.8)

In case that yn+1 = ŷn+1(n) (i.e. the prediction error en+1 is 0), it

is ŷn+1(n+ 1) = ŷn+1(n) and (Tn+1,σn+1) = (Tn,σn), i.e. the regression

parameters do not change after a new observation yn+1 is incorporated into the

estimation ((Tn,σn) minimizes both summands on the right hand side of (5.8)).

This fact together with (5.4) gives us

(Tn+1,σn+1) = (Tn,σn) + (F ′n+1Dn+1F n+1)−1(0, en+1, 0, . . . , 0)′ (5.9)

(we used the assumed fact that I1(n+ 1) = 1). Thus all the estimates T and

σ1, σ2, . . . , σp are updated by certain multiples of the prediction error en+1 and

the corresponding coefficients are rowed in the second column (or row) of the

symmetric matrix (F ′n+1Dn+1F n+1)−1.

All the elements of the symmetric matrix F ′n+1Dn+1F n+1 are sums of infinite
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geometric, arithmetico-geometric or ”quadratico-geometric” series so it is possible

to express them explicitly. We make use of the following well known formulas

∞∑
j=0

βj =
1

1− β
,

∞∑
j=0

jβj =
β

(1− β)2
and

∞∑
j=0

j2βj =
β(1 + β)

(1− β)3
(5.10)

and express the (p+ 1)× (p+ 1) matrix F ′n+1Dn+1F n+1 as



β(1+β)
(1−β)3

−pβp

(1−βp)2 −β (p−1)βp+1
(1−βp)2 . . . −βp−2 2βp+p−2

(1−βp)2 −βp−1 β
p+p−1

(1−βp)2

−pβp

(1−βp)2
1

1−βp 0 . . . 0 0

−β (p−1)βp+1
(1−βp)2 0 β

1−βp

. . . 0 0
...

...
. . .

. . .
. . .

...

−βp−2 2βp+p−2
(1−βp)2 0 0

. . . βp−2

1−βp 0

−βp−1 β
p+p−1

(1−βp)2 0 0 . . . 0 βp−1

1−βp


. (5.11)

The matrix contains zeros in all cells except the first row, first column and main

diagonal; it is co called (symmetric) arrowhead matrix. To calculate its inverse,

we make use of the following lemma (formulation and proof by the author):

Lemma (symmetric arrowhead matrix inversion): Let

A =



a1 a2 a3 . . . an−1 an

a2 b2 0 . . . 0 0

a3 0 b3
. . . 0 0

...
...

. . . . . . . . .
...

an−1 0 0
. . . bn−1 0

an 0 0 . . . 0 bn


(5.12)

be a real-valued symmetric arrowhead n× n matrix with bk 6= 0 for all

k = 2, 3, . . . , n.

Then it holds

detA = m1

n∏
k=2

bk , (5.13)

where

m1 ≡ a1 −
n∑
k=2

a2
k

bk
. (5.14)

If A is regular, i.e. m1 6= 0, then it is

A−1 = L′M−1L , (5.15)
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where matrices L and M are defined as

L =



1 −a2b2 −a3b3 . . . −an−1
bn−1

−anbn
0 1 0 . . . 0 0

0 0 1
. . . 0 0

...
...

. . . . . . . . .
...

0 0 0
. . . 1 0

0 0 0 . . . 0 1


(5.16)

and M = Diag
(
m1,

1
b2
, 1
b3
, . . . , 1

bn−1
, 1
bn

)
. The second row of matrix A−1 is

(
− a2

b2m1
,

1

b2
+

a2
2

b22m1
,
a2a3

b2b3m1
, . . . ,

a2an−1

b2bn−1m1
,
a2an
b2bnm1

)
. (5.17)

Proof: Determinant of A is expressed directly following the definition of matrix

determinant, benefiting from the fact that A is a sparse matrix.

Matrix L expresses the row operations done with A (and the same operations

done also with its columns) that transform matrix A to a diagonal matrix M ,

i.e. it is LAL′ = M (this can be verified directly). So it is A = L−1ML′−1 and

thus A−1 = L′M−1L. The second row of matrix A−1 can be directly calculated

now. �

Let us denote the second column of matrix (F ′n+1Dn+1F n+1)−1

by
(
∆T ,∆1,∆2, . . . ,∆p

)′
. Using this notation, according to (5.9) we have

Tn+1 = Tn + ∆T en+1 , (5.18)

σkn+1 = σkn + ∆ken+1 , k = 1, 2, . . . , p . (5.19)

Using the above stated Lemma, we can express
(
∆T ,∆1,∆2, . . . ,∆p

)′
in terms

of p and β. The most complicated part of the calculation is to express the

auxiliary quantity m1. During its calculation one needs to use formulas for finite

sums of geometric, arithmetico-geometric or ”quadratico-geometric” series:

n∑
k=0

βk =
1− βn+1

1− β
, (5.20)

n∑
k=1

kβk = β
1− (n+ 1)βn + nβn+1

(1− β)2
, (5.21)

n∑
k=1

k2βk = β
1 + β − (n+ 1)2βn + (2n2 + 2n− 1)βn+1 − n2βn+2

(1− β)3
. (5.22)
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After certain algebraic manipulations we get

m1 =
p2βp

(1− β)(1− βp)2
. (5.23)

Obviously m1>0 and so according to the Lemma, the matrix (F ′n+1Dn+1F n+1)

is regular (what does not surprise us). Formulas for
(
∆T ,∆1,∆2, . . . ,∆p

)′
now

follow relatively easily:

∆T =
(1− β)(1− βp)

p
, (5.24)

∆1 = 1− βp+1 , (5.25)

∆k =

[
(p+ 1− k)βk + k − 1

]
(1− β)

p
for k = 2, . . . , p . (5.26)

We can see that all these quantities lie in (0, 1) interval which confirms their

meaning as proportions of prediction error en+1 being absorbed by individual

regression parameters.

5.3 Smoothing constants of Holt-Winters

via DLS

In this section we proceed to express the relation of the DLS regression method

elaborated in previous Section 5.2 to the Holt-Winters method with additive

seasonality. This means:

1. Answer the question whether the DLS approach leads to a special case

of Holt-Winters method or not.

2. If so (at least approximately), express the values of corresponding

smoothing constants αHW , γHW and δHW in terms of p and β.

One can see from (5.24)-(5.26) that not just the slope estimate T , overall

series level and seasonal index belonging to observation yn+1 (i.e. σ1) are updated

when moving from time n to time n+ 1. Also all the remaining seasonal indices

σ2, . . . , σp change their values relatively to each other (it is not ∆2 = . . . = ∆p).

So strictly speaking, DLS estimation does not lead to a special case of additive

Holt-Winters method. However, the differences among ∆2, . . . ,∆p are relatively

small when compared to ∆1. Therefore approximately this method can be viewed

as a special case of additive Holt-Winters method.
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Holt-Winters method with additive seasonality can be formulated in its error-

correction form as

Ln+1 = Ln + Tn + αHW en+1 , (5.27)

Tn+1 = Tn + γHWαHW en+1 , (5.28)

Sn+1 = Sn+1−p + δHW (1− αHW )en+1 , (5.29)

where Ln is level, Tn slope and Sn the seasonal index of the series y at time n,

αHW , γHW , δHW ∈ (0, 1) are the respective smoothing constants and en+1 is still

the one-step-ahead forecasting error.

We want first to express the smoothing constants αHW , γHW and δHW

in terms of ∆T ,∆1,∆2, . . . ,∆p, based on a comparison of (5.18) and (5.19) with

(5.27)-(5.29).

Since L is a series level, its change corresponds to an average change of p− 1

seasonal dummies σk, k = 2, . . . , p. This means that we take

αHW =
1

p− 1

∑p

k=2
∆k . (5.30)

Situation regarding T is clear - it must be

γHW = ∆T /αHW . (5.31)

Change of S in Holt-Winters method can be viewed as a change of the

corresponding seasonal index when compared to the average of the remaining

p− 1 seasonal indices (being not updated at the moment). So we should take

δHW =
∆1 − αHW
1− αHW

. (5.32)

Now let us substitute (5.24)-(5.26) into (5.30)-(5.32) receiving

αHW =
(1 + βp)(1− β)

2
=
α

2
[1 + (1− α)p] , (5.33)

γHW =
2

p
· 1− βp

1 + βp
=

2

p
· 1− (1− α)p

1 + (1− α)p
, (5.34)

δHW =
1− βp

1− βp(1−β)
1+β

=
1− (1− α)p

1− α(1−α)p

2−α

, (5.35)

where α = 1−β. Even though expressing αHW , γHW and δHW in terms of p and

α (instead of β) leads to slightly longer formulas, it is more convenient to do so
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because αHW , γHW and δHW are increasing functions of α which is more natural

to plot and comment. Let us now look in more detail at formulas (5.33)-(5.35).

Figure 5.1: Additive Holt-Winters method by DLS regression: the dependence
of smoothing constant αHW on α = 1− β and period length p.

Figure 5.1 shows how αHW depends on α and p according to (5.33). Naturally

αHW is an increasing function of α. However, αHW → 0.5 as α→ 1, so αHW is

limited from above by 0.5, not by 1 as in Holt method. This is caused by the

seasonal component which also absorbs part of the prediction error. The larger

value of p, the higher portion of the error is absorbed by seasonal component

(since there is longer time gap between neighboring observations from the same

calendar unit) and the smaller αHW is. But the dependency of αHW on p is

not extremely strong. For very small α, it is αHW ≈ α (the slope of the curve

at α = 0 is 1), for larger α, it is αHW ≈ α/2 (the slope of the curve at α = 1

is 0.5). In all cases it is αHW ∈ [α/2, α]. As p→∞, αHW → α/2 uniformly.
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Figure 5.2: Additive Holt-Winters method by DLS regression: the dependence
of smoothing constant γHW on α = 1− β and period length p.

Figure 5.2 shows how γHW depends on α and p according to (5.34). Again,

γHW is naturally an increasing function of α. The dependency is concave with

horizontal asymptotic upper bound in the top right part of the graph. For small

α, it is δHW ≈ α (the slope of the curve at α = 0 is 1) and so especially it does

not depend on p much. As α→ 1, it is γHW → 2/p. So again, γHW is limited

from above not by 1 as in Holt method but by an upper bound lower then 1 which

now depends strongly on p.
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Figure 5.3: Additive Holt-Winters method by DLS regression: the dependence
of smoothing constant δHW on α = 1− β and period length p.

Figure 5.3 shows how δHW depends on α and p according to (5.35). Still δHW

is an increasing and concave function of α. As α→ 1, it is δHW → 1. This means

that αHW + (1− αHW )δHW → 1 and so the whole prediction error is absorbed

into the smoothed value of y as α→ 1 (which clearly must be the case). There is

a strong dependency of δHW on p - as was already explained, seasonal absorbtion

is naturally higher for higher p. It holds

δHW =
1− (1− α)p

1− α(1−α)p

2−α

≈ 1− (1− α)p (5.36)

approximately for all α and p and it is δHW
1−(1−α)p → 1 as α→ 0 or α→ 1. This

expresses the natural exponential dependency of the effective seasonal smoothing

constant on the period length p and the smoothing constant α per one time unit.

See also (2.15) and (4.33) for similar δ conversions.

Notice the very high values of δHW . These are much higher than the ones

usually used in practise: the seasonal pattern is typically quite stable over time

(compared to the level or slope) so lower values of δHW use to be optimal.

But the DLS regression estimation does not reflect this and makes quite significant
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updates of the seasonal parameters. This is the reason why DLS method for

seasonal time series would provide typically significantly worse forecasting results

than the general Holt-Winters method.

Figure 5.4: Additive Holt-Winters method by DLS regression: the dependence
of smoothing constant γHW on smoothing constant αHW and period length p.

Finally Figure 5.4 shows how γHW depends on αHW and p. For comparison,

the curve of dependency of γH on αH in Holt method being restricted to DES

(see (5.1)) was added to the same figure. As in Holt method, γHW is an increasing

function of αHW . The dependency is convex-concave with horizontal ”asymptote”

in the top right part of the graph. For very small αHW , it is γHW ≈ αHW (and

so especially it does not depend on p much). For moderate αHW values (around

0.1), it is δHW ≈ 1.4 · αHW . As αHW → 0.5, it is γHW → 2/p.

For small αHW (up to 0.15), Holt-Winters method via DLS uses for a given

value of αHW appr. 4 to 5.5 times higher value of γHW than γH in Holt method

with αH = αHW (the ratio tends to 4 as αHW = αH → 0, see (5.1)).
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5.4 Conclusion

We showed that the DLS estimation of linear regression with linear trend and

seasonal dummies is approximately equivalent to a certain special case of Holt-

Winters method with additive seasonality. The dependency of the respective

smoothing constants on α = 1 − β (β being the discount factor) and p (period

length) was derived analytically, visualized and commented. Attainable values

of αHW are limited by 0.5 from above. In comparison to DES as to a special case

of Holt method, larger values of γHW are implied for the given value of αHW .

Moreover, very high values of δHW , strongly depending on p, are implied.

So the smoothing constant combinations attainable by the DLS approach are

quite non-standard in light what typically gives the best results or is recommended

as a routine fixed choice, see e.g. Chatfield and Yar (1988) or Cipra (2008),

p. 306. Thus we do not expect this DLS approach to have large practical

importance where the general Holt-Winters method is used. However, in some

specific situations it could be used and then it is good to understand its relation

to the general Holt-Winters method (which was the purpose of this chapter).
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Chapter 6

Autocorrelated component

in time series decomposition

6.1 Introduction

In this chapter we suggest extending the classical exponential smoothing type

methods (SES, Holt and Holt-Winters method) by adding an autocorrelated

component to their decomposition schemes. The autocorrelated component which

causes a short-term autocorrelated variation around the trend can be considered

as a compromise between long-term trend on one side and uncorrelated residual

component on the other side.

By incorporating the autocorrelated component explicitly in the exponential

smoothing method, we obtain a more complex method with some more

parameters to be specified. In some situations we can gain an extra forecasting

accuracy by doing so, preventing us from some common problems, e.g. from

strongly positively autocorrelated forecasting errors. The importance of assuming

an autocorrelated component could be higher in the case of data observed with

higher frequency or in the case of irregularly observed data where the time step

length is generally not limited from below.

In Section 6.2 the nature of an autocorrelated component is described

in context of decomposition methods for smoothing and forecasting time

series. Examples of real time series where the autocorrelated component could

play an important role are mentioned. The impacts of ignoring presence

of autocorrelated component and using classical methods are discussed.

In Section 6.3 the idea how to represent the autocorrelated component is

introduced on the example of simple exponential smoothing. The relation of this

extended method to Holt method with damped linear trend is noted. The version

of the method for irregular time series is presented.

In Section 6.4 the way how to incorporate the autocorrelated component into
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general exponential smoothing type method is described. The possible choice

between additive and multiplicative autocorrelated component is discussed.

Section 6.5 presents a numerical example of applyiing SES with and without

autocorrelated component to a real time series (namely to the series of daily

maximum temperatures in Sofia). Section 6.6 brings the conclusions of the

chapter.

6.2 Autocorrelated component of time series

Decomposition time series methods. All exponential smoothing type

methods are classical decomposition methods which means that they try

to decompose the observed data into individual components with characteristic

properties (usually trend, seasonal component and residual component). Based

on a concrete decomposition scheme applied, smoothed values and forecasts are

then constructed in an intuitive way.

There are various different decomposition schemes determined by presence or

absence of individual components (e.g. seasonal or non-seasonal methods), by the

way in which they are put together (e.g. additive or multiplicative decomposition)

or just by the way in which individual components are modeled (e.g. linear

or exponential trend; seasonality modeled by seasonal indices or trigonometric

functions), see Section 2.1.

Trend and seasonal component are called systematic components and are used

to construct smoothed values and forecasts. The rest of the observed data is called

residual (irregular, error, noise) component and is treated as non-systematic part

of the observed time series, usually assumed to be a realization of white noise

process. This means specially that the values of residual component are not

correlated in time.

Autocorrelated component as a semi-systematic one. There are some

situations in reality when the residual component of the series is really

uncorrelated in time. An example is the measurement error which can happen

e.g. when the true value of a variable is estimated repeatedly over time via surveys

using different samples from the whole concerned population. However, in most

situations, beside the truly uncorrelated component (if such exists at all), there

is an autocorrelated component which causes a short-term variation around the

trend in a positively autocorrelated way. This variation has not a fixed period

length as the seasonal one and also its pattern can change in time. We can

alternatively call it a cyclical component.
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A nice example is a time series of daily measured average temperature

at a given place. There is a natural annual seasonality in such a series

and the trend component can be thought as a constant determined by the

local climate. When we subtract the seasonal component (which is very close

to sinusoidal curve) we obtain ”residuals” which are definitely not uncorrelated.

We can observe a strongly positively autocorrelated cyclical variation caused

by alternating of warm and cold waves usually after one or two weeks. The truly

residual component plays not so important role here (if there is any), see

Section 6.5.

In real numerical examples, while trying to construct forecasts of future

unknown observations, it is sometimes difficult to distinguish the autocorrelated

component from the trend component plus seasonal component on one side and

the truly residual component on the other side. We can think about it as a semi-

systematic component which is a compromise between the two ones mentioned

above. While the uncorrelated residual component is ”forgotten” after each new

observation and so it has no time duration, the trend (plus seasonal) component

are systematic which means that they last from now into future (of course with

possible random innovations). The autocorrelated component preserves itself

just in short-term horizons and is almost unpredictable concerning longer time

horizons.

It is useful to admit that the adjectives systematic or uncorrelated are

not absolute but are relative to the frequency in which the observations are

taken. With a high observation frequency everything seams to be correlated

and systematic and probably nearby nothing will remain as a true residual

component. But with a low frequency some components of the series will appear

to be uncorrelated in time, i.e. non-systematic.

This can be illustrated using an AR(1) process with the autoregressive

parameter ϕ ∈ (0, 1). When we sample it regularly with time step m, we obtain

an AR(1) process with parameter ϕm. Therefore when the observation frequency

is low, the autocorrelation becomes negligible. On the other hand some real

time series which has been created by regular sampling of some continuous-

time variable can appear to be a realization of white noise process. However,

if we increase the observation frequency, we will probably discover a significant

autocorrelation in the observed values.

When we would use classical exponential smoothing methods which do

not take the autocorrelated component into account we can face serious

problems. There are two basic extreme ways how such a method can handle

the autocorrelated component. It is either supposed to be a part of the residual

component or it is added to the trend component. In the first case we will
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produce short-term forecasts with strongly autocorrelated forecasting errors while

the long-term forecasts will be unaffected. In the second case the short-term

forecasts are sufficiently accurate while the long-term forecasts are not. Of course

that in reality we will probably face to some mixture of these two basic impacts.

6.3 Simple exponential smoothing

Simple exponential smoothing (SES) is the simplest exponential smoothing

method. It assumes just a locally constant trend and a residual component.

Only one parameter, smoothing constant α, has to be specified. Its optimal

value reflects the ratio between the residual component variance and the

variance of trend innovations. It can be approximately linked to the first order

autocorrelation of the first differences of the series, see Hanzák (2007).

Inspiration by AR(1) process. Forecasts made at a fixed time for different

time horizons form a horizontal straight line at the level of the latest smoothed

value of the series. The difference between the last observation and this smoothed

value is assumed to be a truly residual component with no effect for forecasts

construction, not depending on the time horizon concerned. But it seams

reasonable for the shorter horizon forecasts to be closer to the last observed

value while longer horizon forecasts should tend to a certain limit.

It is known to forecasters that using a lower α value than optimal leads

to a positive autocorrelation of forecasting errors and vice versa. Usually the value

which is optimal in the sense of minimal MSE produces also almost uncorrelated

forecasting errors. But this may not be the rule. If the series is generated

by AR(1) process with parameter ϕ ∈ (0, 1) then the MSE-optimal value of α

and the value which would produce uncorrelated forecasts are different (concretely

the second one is higher). So even if we use the MSE-optimal value of smoothing

constant, our forecasting errors are positively correlated. This is a signal that

the classical SES is not an optimal forecasting method for time series generated

by stationary AR(1) processes.

In fact it is not surprising since the AR(1) process has different structure than

one assumed by the method. There is a stable constant long-term trend, the

centralized series can be thought as an autocorrelated component and there is no

residual component at all. The optimal forecast of a future unknown observation

yt+τ made from time t is ŷt+τ (t) = ϕτyt. So the short-term forecasts are close

to yt which is also the smoothed value at time t while the forecasts tend to the

(long-term) trend of 0 as τ →∞.
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Thus these forecasts have exactly the properties which those by SES lack of.

Real non-seasonal time series with locally constant trend can be thought as

a mixture of the ARIMA(0, 1, 1) model (for which SES is optimal) and the

AR(1) process. They have a changing trend, autocorrelated cyclical component

and uncorrelated truly residual component as well.

Model-based approach could consist in adding an AR(1) component to so

called basic structural model (random walk plus noise) and applying the Kalman

filter to construct smoothed values and forecasts in this extended state space

model. But here we will follow the ad hoc approach typical for the original

introduction of exponential smoothing methods.

Method formulation. Let us consider a univariate regular time series

. . . , yt−1, yt, yt+1, . . .. We assume the following decomposition scheme:

yt = Lt + Ct + εt , (6.1)

where Lt is the level at time t, Ct is the newly concerned autocorrelated component

value at time t and εt is the residual component at time t. Besides the

future random innovations, the trend L is constant in future, the autocorrelated

component C decays exponentially to 0 with a discount factor (damping constant)

ϕ ∈ (0, 1) and the residual ε has no effect. This together implies the following

forecasting formula:

ŷt+τ (t) = Lt + ϕτCt . (6.2)

In particular, the smoothed value at time t is

ŷt = Lt + Ct (6.3)

with the rest supposed to be a residual component:

εt = yt − ŷt . (6.4)

Now we will set up recurrent formulas for the update of individual components

when moving from time t to time t+1 and after receiving the new observation yt+1.

We will follow the idea of error-correction formulas of classical exponential

smoothing. Let us again denote

et+1 = e(t)t+1 = yt+1 − ŷt+1(t) (6.5)

the one-step-ahead forecasting error from time t. Let α ∈ (0, 1) be a smoothing

constant for level and γ ∈ [0, 1] a smoothing constant for the autocorrelated
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component. The level L is updated in the same way as in the classical method,

see (2.2):

Lt+1 = Lt + αet+1 . (6.6)

The autocorrelated component C will be updated similarly as the seasonal

component in Holt-Winters method, see (2.28), respecting its damping

Ct+1 = ϕCt + γ(1− α)et+1 . (6.7)

This guaranties us that the smoothed value ŷt+1 is always a convex linear

combination of the forecast ŷt+1(t) and the observed value yt:

ŷt+1 = (1− γ)(1− α)ŷt+1(t) + [1− (1− γ)(1− α)] yt+1 . (6.8)

In case that this method is appropriate for the particular time series y, we can

assume that the forecasting errors {et, t ∈ Z} form a white noise sequence. Then

the level L exhibits a random walk, see (6.6), the autocorrelated component is

driven by AR(1) process with parameter ϕ, see (6.7) and the residual component

is a white noise

εt = (1− γ)(1− α)et . (6.9)

Based on the white noise assumption, we can easily derive the variance formula

for forecasting errors with longer than unit horizon. Adding e.g. normality into

our assumptions, the derivation of prediction intervals is straightforward.

The three parameters ϕ, α and γ are of course not known in reality and

must be either chosen in an expert way or estimated from data, e.g. minimizing

a certain forecasts accuracy criterion like MSE. When γ = 0 is taken, one gets

the classical SES (if the initial value of C is set to 0).

The initialization of the method can be done using some simple approach

similar to those used for classical method. Especially one can take L0, the initial

value of L, exactly like in the classical method (first observation, an average

of several starting observations etc.) and initialize the autocorrelated component

by taking C0 = 0 or alternatively C0 = y1 − L0 or C0 = γ(y1 − L0). More

sophisticated initialization schemes are also possible. Another possible approach

consists in backcasting.

Relation to Holt method with damped trend. There is an interesting

relation between the suggested method and the Holt method with damped linear

trend. Let us denote by LHt the level and by Tt the slope of Holt method at time

time t and let αH and γH be the corresponding smoothing constants. Then if we
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take

αH = α + γ(1− α) , (6.10)

γH =

(
α
αH
− 1
)

(1− ϕ)

ϕ
(6.11)

and finally the slope damping constant of the Holt method being the same as the

autocorrelated component damping constant ϕ, we obtain the same smoothing

and forecasting results (for all horizons) as from the suggested method with

parameters ϕ, α and γ. Further it holds

LHt = Lt + Ct and THt = −1− ϕ
ϕ

Ct . (6.12)

Notice that αH ∈ (0, 1) but always γH < 0. Because of this fact and mainly

because of the quite different interpretation, it is better to introduce them as two

different methods rather than as two special cases of one method.

Version for irregular time series. Following the approach of Wright (1986),

we can introduce the version of the suggested method for irregular time series.

Let {ytn , n ∈ Z} be such a time series, tn+1 > tn, n ∈ Z. We will modify our

updating formulas (6.6) and (6.7) into the form

Ltn+1 = Ltn + αtn+1etn+1 (6.13)

and

Ctn+1 = ϕtn+1−tnCtn + γtn+1(1− αtn+1)etn+1 , (6.14)

where

etn+1 = e(tn)tn+1 = ytn+1 − ŷtn+1(tn) (6.15)

is the forecasting error from time tn to time tn+1 and the variable smoothing

coefficients αtn and γtn are updated in a recurrent way as in (2.15):

αtn+1 =
αtn

αtn + (1− α)tn+1−tn , (6.16)

γtn+1 =
γtn

γtn + (1− γ)tn+1−tn . (6.17)

It is obvious that this generalizes the suggested method for regular time series

and that it is also an extension of Wright’s SES for irregular time series from

Wright (1986) (see also Section 2.1).
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6.4 General method

In this section we will show how to incorporate an autocorrelated component into

any exponential smoothing type method. Moreover we will discuss the possibility

of having more than one autocorrelated component in a decomposition or the

possible multiplicative autocorrelated component. Finally the suggested method

extension is compared with an existing approach how to cope with autocorrelated

forecasting errors.

Let us consider any smoothing and forecasting method belonging

to exponential smoothing family. We will consider its version for irregular time

series {ytn , n ∈ Z}. Let Stn =
(
S

(1)
tn , S

(2)
tn , . . . , S

(k)
tn

)
be a k-dimensional state

vector of the method, e.g. (Ltn , Ttn , αtn , δtn) in the case of Holt method. Let the

original method be expressed by equations

ŷtn = Y (Stn) , (6.18)

ŷtn+τ (tn) = F (Stn , τ) , (6.19)

etn+1 = ytn+1 − ŷtn+1(tn) , (6.20)

Stn+1 = U (Stn , tn+1 − tn, etn+1) , (6.21)

where Y , F and U are given functions of appropriate dimensional arguments and

values.

Now we add the autocorrelated component C to the current state vector S

of the method and modify formulas (6.18) and (6.19) in the following way:

ŷtn = Y (Stn) + Ctn , (6.22)

ŷtn+τ (tn) = F (Stn , τ) + ϕτCtn . (6.23)

We must add an updating formula for C:

Ctn+1 = ϕtn+1−tnCtn + γtn+1

[
ytn+1 − Y (Stn+1)

]
, (6.24)

where γtn is a smoothing coefficient updated by (6.17). Initialization of this

extended method can be done analogously as in the case of SES in Section 6.3.

Multiple autocorrelated components. Similarly as it is possible and

sometimes reasonable to have more than one seasonal component in Holt-Winters

decomposition (see the daily and weekly seasonal component in Taylor (2003)), it

is also possible to consider more than one autocorrelated component with different

values of damping constant ϕ. These different values of ϕ refer to different average
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cycle lengths of the individual autocorrelated components (the higher ϕ is, the

longer the average cycle length is). The way how to incorporate two or more

autocorrelated components into a method is analogous to adding just one but

the notation becomes more complicated when trying to put it down formally.

Multiplicative autocorrelated component. Similarly as we distinguish

additive and multiplicative seasonal component, we can do so with autocorrelated

component. Up to now we have worked with additive one where the amplitude

of the autocorrelated component did not depend on the current level of the

series, see (6.22)-(6.24). Probably the multiplicative autocorrelated component

won’t have so large practical importance when compared with seasonal one

because the average cycle length is usually shorter, the pattern is not regular

and the amplitude of an autocorrelated component is usually lower than that one

of seasonal component.

However, in some specific situations it could be useful to let the autocorrelated

component join the decomposition scheme in a multiplicative manner. In such

a case we can change formulas (6.22)-(6.24) to

ŷtn = Y (Stn) exp(Ctn) , (6.25)

ŷtn+τ (tn) = F (Stn , τ) exp (ϕτCtn) , (6.26)

Ctn+1 = ϕtn+1−tnCtn + γtn+1{ln(ytn+1)− ln[Y (Stn+1)]} , (6.27)

see (4.28) and (4.29) for comparison. Of course it has sense only for positive data

and only in the case when the logarithmic transformation was not used to convert

the overall nature of the data from multiplicative to additive.

Comparison with an alternative approach. As we already mentioned, it

often occurs that the one-step-ahead forecasting errors produced by the classical

methods are positively correlated, see for example Taylor (2003). This can be

thought as a result of autocorrelated component ignored by the method. It is

obvious that these forecasts with autocorrelated errors are not optimal since there

is an information which is systematically ignored by the method.

The classical way how to overcome these difficulties is as follows, see Chatfield

and Yar (1988). We first apply the classical method to the time series. Then we

take the one-step-ahead forecasting errors obtained doing so and calculate their

first order sample autocorrelation coefficient, let us denote it by r. Then we

always add the amount of rτet to the classical forecast for τ time units ahead

from time t, where et is the last forecasting error occurred. The final forecasting
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errors will be uncorrelated and the accuracy of the method will be improved (new

RMSE value should appr. equal
√

1− r2 - times the original one).

This procedure has an advantage of a simple ”step by step” implementation.

On the other hand, it has the following disadvantages when compared with using

a method with autocorrelated component:

• There can be a confusion about what is the ”forecast” in fact.

• It in fact implicitly assumes that there is no truly residual component in the

series (as we would be restricted to have γ = 1 in our suggested method).

• It is not clear what is a smoothed value. Or the relations between

observations, smoothed values and forecasts are not always too pleasant.

• Smoothing coefficients of the methods are optimized first and then the

damping constant is ”optimized” (estimated) with the smoothing constants

already fixed. A simultaneous optimization can provide a better results.

• It is not clear how to use this approach in the case of an irregular time

series.

6.5 Numerical example

As a numerical example, we will use the time series of daily maximum

temperatures in ◦C in Sofia, Bulgaria, for period from 1st May to 30th September

2013 (5 complete months, 153 observations)1.

Of course this time series contains an annual seasonality so a method for

seasonal time series should be used in general. However, we use the series

values for relatively short period (less then half of the period length) where the

seasonality is not a dominant feature of the series development (the hottest month

in average was July with 32.2 ◦C and the coldest was September with 24.4 ◦C),

see Figure 6.2. So it is possible to consider the series as having locally constant

trend and no seasonality. There is also an apparent autocorrelated component

in the series, formed by short term variations of weather conditions (there are

appr. 10 consecutive periods of warmer and colder days).

Both the classical SES and SES with autocorrelated component were

implemented in author’s application DMITS, see Chapter 7. Classical method

(initialization using the first 10 observations, MSE-optimal value of smoothing

1http://freemeteo.com. Accessed on 16th February 2014.
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constant) gives the following results. Smoothing constant α was optimized

to α = 0.6064, achieved RMSE value is 3.1277 and the first order sample

autocorrelation coefficient of one-step-ahead forecasting errors is 0.073. It is

obvious that the method absorbed the autocorrelated (cyclical) component into

the time series level by using a relatively higher value of α. This guarantees

the autocorrelation coefficient to be not significantly positive (but e.g. α = 0.25

would bring the autocorrelation of 0.389).

SES with one additive autocorrelated component (initialization using again

the first 10 observations, MSE-optimal values of smoothing constants α and γ

and the damping constant ϕ) gives the following results. Optimal smoothing

constants are α = 0.2340 and γ = 0.8564 and ϕ = 0.6270, achieved RMSE value

is 3.0379 (which is better than from the classical method) and the autocorrelation

coefficient is 0.003, i.e. almost perfect 0.

The value of γ is close to 1 which means that there is just little residual

variation in the series and majority of the de-trended series is attributed to the

autocorrelated component. If we fix the value of γ to 1, we get optimal α = 0.2508

and ϕ = 0.5516 and RMSE value of 3.0393, i.e. very similar results. In general,

it could be possible to eliminate γ parameter by setting it to 1.

Figure 6.1: Daily maximum temperatures in Sofia, simple exponential smoothing
with autocorrelated component (MSE-optimal smoothing constants).

Figure 6.1 shows the results of the method: actual observations (blue marks)

and the smoothed and forecasted values (green line), zoomed for the period from

July 9 till the end of the series. We can observe how the out-of-sample forecasts

converge exponentially to the current level of the series, in contrast to the classical

SES where such forecasts form a straight horizontal line.
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Let us compare the values of the level smoothing constant α: 0.6064 vs. 0.2340.

The classical method absorbed the changes in time series values into its trend

(level) in much larger extend than the method with autocorrelated component.

On Figure 6.2 we can see how the method performed the series decomposition

to the systematic component (trend), semi-systematic component (autocorrelated

component) and residual component. We chose to plot decomposition as being

forecasted from a previous observation point, i.e. we plotted values yt (blue

marks), yt(t− 1) = Lt−1 + ϕCt−1 (trend + autocorrelated component; green line)

and Lt−1 (trend; red line) in the figure.

Figure 6.2: Daily maximum temperatures [◦C] in Sofia, Bulgaria - time series
decomposition using SES with autocorrelated component.

Naturally the red line is smoother than the green one, although it still absorbs

part of the short term cyclical (autocorrelated) variation.

6.6 Conclusion

Autocorrelated component in time series decomposition can play the role

of semi-systematic component, a hybrid between trend and residual component.

It provides a solution to positively autocorrelated forecasting errors, being

an integral part of the smoothing and forecasting method itself. We can also

conclude that it brings an AR(1) building block into a time series decomposition
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scheme. It has some common features with seasonal component but the crucial

difference is that it is not stable in long term, i.e. it does not have a fixed period

but exhibits stochastic autocorrelated cycles of variable length (as AR(1) does).

By setting γ = 1, the inclusion of autocorrelated component into the method

just requires one additional parameter, namely the damping (or autocorrelation)

parameter ϕ.
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Chapter 7

Software implementation

One objective of the dissertation thesis was to transpose the suggested time series

methods into a software form. To accomplish this objective, the application

DMITS (Decomposition Methods for Irregular Time Series) was continuously

developed as a part of this dissertation. It originated in the author’s diploma

thesis and now it includes other new methods suggested. The executable

application is contained in the electronic attachment to this thesis, including

a user manual in PDF.

The aim was to create user friendly and computationally robust software with

various smoothing and forecasting methods available, all applicable to irregular

time series. Detailed output is offered to the user, both in text and graphical

form.

The software has been used in business practice for many years by me and

my colleagues in MEDIARESEARCH research agency to smooth and forecast

monthly, quarterly or yearly time series of continual surveys results.

Implementation of the time series methods involves the calculation of the

initial values, the optimal choice of smoothing parameters, calculation of point

and interval predictions and assessment of the accuracy and adequacy of the given

predictive method used.

The methods available are:

• Simple exponential smoothing, see Section 2.1.

• Simple exponential smoothing with one additive autocorrelated component,

see Section 6.3.

• Method based on an assumption of irregularly observed ARIMA(0, 1, 1)

process, see Section 2.3.

• Holt method with linear and damped linear trend, see Section 2.1.

• Modified Holt method with linear and damped linear trend, see Section 3.4.
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• Double exponential smoothing, see Section 2.2.

• Triple exponential smoothing, see Section 2.2.

• DLS estimation of a linear trend, see Section 2.2.

• DLS estimation of a quadratic trend, see Section 2.2.

• Holt-Winters method with interpolated seasonal indices and trigonometric

functions (additive or multiplicative seasonality), see Sections 4.2 and 4.3.

A fictitious observation time t0 = t1 − q is always considered (q = tn−t1
n−1 is

the average time spacing). The initial values are determined for this time point

using DLS estimation of the trend in the initial section of the series, see Hanzák

(2007) for details. Holt-Winters methods is an exception: its initial values are

determined by back-casting. Prediction intervals are based on the assumption

of normality of the forecasting errors, see Hanzák (2007) for details.

Now let us describe the general program functionalities and options, not

depending on the particular method used. First we will describe what the user

has to or may specify to the program, see also Figure 7.1. Later the output of the

program will be described, see Figures 7.2 and 7.3.

Data input. As an input to the program, one must provide a sequence of time

series observation values yt1 , yt2 , . . . , ytn and optionally a sequence of observation

times t1, t2, . . . , tn. If the observation times are not specified, tj = j for all

j = 1, . . . , n is used automatically as a default option (i.e. a regular time series

is considered as a default). It must be t1 < t2 < . . . < tn, which is the only

restriction on the observation times. There is a minimum number of observations

(value n) required depending on the method used. A sequence of observation

times t1, t2, . . . , tn is not transformed by the program in any way so that any

change in the time scale is the user’s responsibility and must be made prior

to entering the series into the program. Time series values yt1 , yt2 , . . . , ytn can

generally be arbitrary real numbers unless a transformation with a limited domain

is used (see below).

Transformation. Four different transformations can be optionally applied

to the time series observations prior to the forecasting method is used. It is the

logarithmic, square root, inverse logistic and inverse Gompertz transformation,

see Hanzák (2007) for details. In the case of the first two transformations, all the

observations must be positive. In the case of the remaining two transformations,

all the observations must lie inside interval (0, 1).
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Choice of method. The choice of a particular smoothing and forecasting

method is the user’s responsibility. It has no effect on other options such as

the usage of transformation etc. Of course, the methods differ in parameters that

must be specified.

Figure 7.1: DMITS application: data input and method specification.

Choice of parameter values. Depending on the method used, one or three

smoothing parameters must be specified. These are denoted as α, γ, δ and

a damping constant. For each parameter, the user can either specify its fixed value

or let the program find the optimal parameter value according to a given criteria.

One, two or three parameters can be optimized simultaneously. By setting certain

parameter to 0 or 1, a sub-method is obtained of the more general method (the

damped linear trend changes to the classical linear one or the autocorrelated

component in the simple exponential smoothing is omitted).

The program offers four possible optimization criteria: the minimum MSE

(Mean Squares Error), MAE (Mean Absolute Error) and MAPE (Mean Absolute

Percentage Error) and ML (maximum likelihood), see Hanzák (2007) for details.

The optimization criterion is always calculated based on all n observations and
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their respective point predictions. To use MAPE criterion, all the observations

must be positive.

Searching for the optimal combination of parameters in terms of the

selected criterion is performed by an iterative numerical algorithm. Always

all the parameters except one are set fixed and the criterion is optimized

over the remaining parameter. The parameters being tuned rotate regularly.

The optimization relies on the assumption of convexity of the minimized function.

When this assumption is violated, it is possible that the solution will converge

just to a local minimum which differs from the global minimum.

Number of observations for initialization. The user must specify the

number of observations from the beginning of the series which will be used

to determine the initial values for the recursive method. There is a minimum

number of observations required depending on the method used. At most all the n

observations can be used for the initialization. Initial values of the method depend

on its parameters values so they are calculated repeatedly when the parameter(s)

optimization is used.

Parameters of the forecasts. The length of the forecasting horizon and the

time step for calculating the point predictions and prediction intervals must be

specified. Forecasting horizon determines how far into future from the time of the

last observation (tn) the predictions will be calculated. These are plotted as

a continuous curve into the time series plot and their values are also reported

in the text output with the specified time step. The confidence level of the

interval predictions can be chosen as 50, 75, 90, 95, or 99 %.

The text output of the program contains these sections:

Method specification. The first sections of the text output contains the

information on the selected method. It is therefore largely a transcription of what

the user has specified to be used. The only new information are the concrete

values of the parameters that have been optimized.

Descriptive statistics of the time series. A basic information about the

analyzed time series are reported: the number of observations n, the average

time spacing q, mean, variance and standard deviation of the series observations.

90



Forecasting accuracy. The achieved values of several prediction accuracy

measures are reported: MSE, RMSE (Root MSE), MAE and MAPE. They are

calculated based on all n observations and their respective point forecasts. MAPE

is calculated just in the case when all the observations are positive.

Forecasting method effectiveness. The prediction accuracy of the method

used is compared to four trivial benchmark methods such as constant mean model

or random walk model. The comparison is done based on the achieved MSE and

it is expressed in terms of R-Squared, see Hanzák (2007) for details.

Forecasting method adequacy. It is tested whether the normalized

prediction errors form a white noise. The mean and the mean square of these

errors and the p-value for the zero mean test (one sample t-test) are reported.

Further the first order sample autocorrelation and its significance p-value are

reported, see Hanzák (2007) for details.

Figure 7.2: DMITS application: text output.

Forecasting errors normality tests. The sample skewness and kurtosis

of the normalized forecasting errors and normality tests p-values based on these

measures are reported, see Hanzák (2007) for details.

91



Prediction intervals performance. For all n observations it is evaluated

whether they lie below, inside or above the respective prediction interval

constructed from the previous observation time. These findings are then

summarized in the form of three percentages compared with their theoretical

counterparts (e.g. 5, 90 and 5 % for the 90% confidence level).

Historical forecasts and smoothed values. For j = 1, . . . , n, the values

j, tj , ytj , ŷtj and ŷtj (tj−1) are reported.

Future forecasts. The point and interval predictions are reported for future

times determined by the maximum forecasting horizon and the time step specified.

Figure 7.3: DMITS application: time series smoothing and forecasting plot.

Time series plot. The observation values (marks), historical smoothed

values and forecasts (continuous curve) and future point predictions and

interval predictions (three continuous curves) are plotted into a single graph.

The historical smoothed values and forecasts are connected to form a continuous

line in the following way. Inside the time interval [tj−1, tj ] the forecasts

ŷtj−1+τ (tj−1) for τ ∈ [0, tj − tj−1] are plotted. The two different values ŷtj (tj−1)

and ŷtj that are plotted at time tj are connected by a vertical line. This method

of a graphical representation of historical forecasts and smoothed values seems

92



to be more appropriate and useful than the usual linear interpolation of individual

forecasts.

The plot margins adjust automatically to the plotted elements (however they

can be fixed as well). Multiple plot results can be combined into one single

compound plot to better visually compare different methods used. The plot can

be shifted in horizontal or vertical direction, zoomed in one or both dimensions

or zoomed into a selected rectangular area. It can be copied into the clipboard

or saved as a graphical file.
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Conclusions

Exponential smoothing type methods for smoothing and forecasting in time series

are very popular in practice. The reason is their intuitive decomposition nature,

adaptive performance and easy implementation through appropriate recursive

formulas. When facing various types of irregularities in time series (missing

observations, irregular time grid, outliers etc.) it is comfortable for the analysts

that they can overcome these difficulties but still stay in the framework of the

simple methods they are familiar with.

That is the reason why it has sense to make an effort in looking for suitable

extensions of these classical (often ad hoc) methods even that there are more

sophisticated model-based methods that could be used to do the job (e.g. based

on state space models and Kalman filtering). Fortunately it appears that the

empirical performance of the ad hoc and model-based methods is comparable.

In Chapter 3 a simple modification of Wright’s version of Holt method for

irregular time series (see Wright (1986)) was suggested. It has proved to be

an efficient way to eliminate the unpleasant impact of time-close observations.

The same simple modification of trend smoothing formula can be used in any

special or extended version of Holt method, including its seasonal version, Holt-

Winters method.

In Chapter 4 a general seasonality modeling concept was suggested in the

framework of Holt-Winters method. Several particular seasonality settings were

suggested, mainly interpolated seasonal indices and trigonometric functions. This

can face not only the case of missing observations as Cipra et al. (1995) or Ratinger

(1996) but also a generally irregular observation time grid. Moreover we receive

broader possibilities to deal with seasonality even when working with regular

time series. The usefulness of the suggested method were illustrated by real data

examples and a simulation study.

In Chapter 5 it was shown that the DLS estimation of linear a regression with

a linear trend and seasonal dummies is approximately equivalent to a certain

special case of Holt-Winters method with additive seasonality. The dependence

of the respective smoothing constants αHW , γHW and δHW on the discount factor

and period length was derived analytically and visualized. Maximum attainable

values of αHW and γHW are less than 1. Very high values of δHW are implied,

not reflecting the usually more stable seasonal pattern of the series. Thus the

practical importance of this approach stays rather limited.
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In Chapter 6 an autocorrelated component as an additional term in the time

series decomposition (beside the level, seasonal and residual component) was

considered. This can solve the problem of positively autocorrelated one-step-

ahead forecasting errors which often occurs even when using adaptive methods

such as the exponential smoothing. The simple exponential smoothing with the

autocorrelated component was illustrated using a real time series example.

Absence of a user friendly software available is in practice often a restrictive

fact for application of a particular method. In Chapter 7 the author’s software

application DMITS, implementing most of the methods suggested in the thesis,

was presented. The application is available to the reader in the electronic

attachment to the thesis.

Practical time series analysts face to countless many data-specific challenges

and sometimes no available method is capable to perform satisfactorily well

in its original form. However, I believe that the methods suggested in this

dissertation can solve some of the problems or at least serve as an inspiration

to find a proper solution. Further development of the methods should ideally

be motivated by practical experience with them and by new practical problems

to solve.
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