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sloučenin na bázi vzácných zemin a uranu

Katedra fyziky kondenzovaných látek
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Abstrakt: Zabývali jsme se studiem vlivu vrstevnaté krystalové struktury na
magnetizmus 5f elektron̊u v tetragonálńıch uranových sloučeninách UnT In3n+2.
Monokrystaly sloučenin U2RhIn8, URhIn5 a UIn3 byly připraveny pomoćı r̊ustu z
indiového roztoku. Nová fáze U2RhIn8 krystalizuje ve struktuře typu Ho2CoGa8
s mř́ıžovými parametry a = 4.6056(6) Å a c = 11.9911(15) Å. Vlastnosti U2RhIn8

jsou bĺızké př́ıbuzným materiál̊um URhIn5 a UIn3, jak ukázala měřeńı magneti-
zace, měrného tepla a elektrického odporu. Výjimkou je pouze výrazná magne-
tokrystalová anizotropie ternárńıch sloučenin v̊uči kubické fázi UIn3. U2RhIn8

se uspořádává antiferomagneticky pod teplotou TN = 117 K s mı́rně zvýšeným
Sommerfeldovým koeficientem γ = 47 mJ·mol−1·K−2. Teplota přechodu roste
s rostoućım poměrem mř́ıžových parametr̊u c/a, vykazuje tedy opačné chováńı
oproti př́ıbuzným cérovým materiál̊um CenT In3n+2. Vliv magnetické pole na
teplotu uspořádáńı je v př́ıpadě obou ternárńıch sloučenin zanedbatelný až do 9 T.
Naopak p̊usobeńım hydrostatického tlaku hodnota TN roste až do maximálńıho
dosaženého tlaku 3.2 GPa a koeficient r̊ustu ∂TN/∂p odpov́ıdá chováńı př́ıbuzných
systémů URhIn5 a UIn3. Teplotńı roztažnost krystalu U2RhIn8 vykazuje hys-
terezńı chováńı antiferomagnetického přechodu, což odpov́ıdá přechodu prvńıho
druhu. Neutronová difrakce odhalila, že magnetická struktura sloučeniny URhIn5

se propaguje s vektorem k = (1/2,
1/2,

1/2) a zjǐstěný magnetický moment dosahu-
je hodnoty µ = 1.65 µB/U.

Kĺıčová slova: r̊ust z roztoku, 5f magnetizmus, vrstevnatá tetragonálńı struktura,
U2RhIn8, magnetická struktura
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Abstract: We have studied the interplay between the layered crystal structure
and the 5f magnetism in uranium-based tetragonal compounds UnT In3n+2. Sin-
gle crystals of U2RhIn8, URhIn5 and UIn3 were prepared by In self-flux method.
The novel U2RhIn8 compound adopts the Ho2CoGa8-type structure with lattice
parameters a = 4.6056(6) Å and c = 11.9911(15) Å. The behavior of U2RhIn8

strongly resembles that of related URhIn5 and UIn3 with respect to magnetiza-
tion, specific heat and electrical resistivity except for magnetocrystalline anisotropy
developing on stacking composition in the series UIn3 vs. U2RhIn8 and URhIn5.
U2RhIn8 orders antiferromagnetically below TN = 117 K and exhibits slightly
enhanced Sommerfeld coefficient γ = 47 mJ·mol−1·K−2. TN increases with in-
creasing c/a ratio in contrast to the behavior of their CenT In3n+2 counterparts.
Magnetic field leaves the value of the Néel temperature of URhIn5 and U2RhIn8

unaffected up to 9 T. On the other hand, TN increases with applied hydrostat-
ic pressure up to 3.2 GPa with the ∂TN/∂p coefficient resembling URhIn5 and
UIn3. Thermal expansion of U2RhIn8 reveals a hysteretic behavior of the antifer-
romagnetic transition pointing to its 1st-order character. The magnetic structure
of URhIn5 obtained from neutron diffraction propagates with k = (1/2,

1/2,
1/2)

and the magnetic moment µ = 1.65 µB/U.
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1. Introduction

1.1 Motivation and Aim

In this thesis we studied the synthesis and physical properties of uranium-based
layered tetragonal compounds described by a general formula UnTmX 3n+2m (T =
transition metal; X = p-metal; n = 1, 2; m = 0, 1). These materials are isostruc-
tural with the thoroughly studied cerium-based compounds to which for example
the well-known representant CeRhIn5 [7] belongs. The compounds crystallize in
the HonComGa3n+2m tetragonal structure with the space group P4/mmm (No.
123). The UX 3 compounds (n = 1, m = 0) crystallize in the cubic AuCu3-
type structure with space group Pm3̄m (group No. 221) with a purely three-
dimensional arrangement of uranium atoms. The tetragonal crystal structure
consists of m layers of T In2 alternating with n layers of UIn3 along the tetrago-
nal c-axis. The successful preparation of URhIn5 compound [1, 2] parallelly with
a Japanese group [1] motivated us to prepare a broad range of compounds with
different layer stacking, in order to investigate the effect of stacking composition
on 5f magnetism and the anisotropic properties. The following section offers a
concise overview of physical properties of previously studied cerium-based heavy
fermion compounds as well as uranium compounds within the UnTX 3n+2 family.

The Ce-based heavy fermion compounds, which are isostructural with the
uranium compounds studied within this work, form an interesting group rep-
resented by a general formula CenTmIn3n+2m. The layered structure of these
compounds allows the investigation of ’dimensionality’ effect on physical proper-
ties. Adding a layer of T In2 moves the character from 3D to more 2D-like. In the
case of CenTmIn3n+2m the ’dimensionality’ proved itself to be a powerful tuning
parameter; the superconducting transition temperature gradually increases while
moving from 3D to more 2D-like structure. The physical properties of selected
compounds are discussed in detail further in the text.

The simplest case is CeIn3, where the cerium atoms have a fully 3D arrange-
ment (see Figure 1.1). This compound orders antiferromagnetically at TN = 10 K
with a propagation vector k = (1/2,

1/2,
1/2) [3]. With applied pressure of 2.8 GPa

it undergoes a superconducting transition at T SC = 0.18 K [4].
CeCoIn5 and CeIrIn5 are well-known heavy fermion superconductors with

transition temperatures T SC = 2.3 K and 0.4 K, respectively [5]. CeRhIn5 or-
ders antiferromagnetically below the Néel temperature TN = 3.8 K and becomes
superconducting at T SC = 2.2 K under applied pressure p = 1.63 GPa [6]. The
magnetic structure of CeRhIn5 (without external magnetic field) is incommensu-
rate with a propagation vector k = (1/2,

1/2, 0.297) [7].
All the CeT In5 compounds have Ce2T In8 relatives (see Figure 1.1), which

reflect somewhat their ground state properties according to the corresponding
transition metal. However, due to reduced dimensionality effect in the CeT In5

compounds, the phase transition temperatures in Ce2T In8 are generally lower.
Ce2CoIn8 shows a superconducting transition at T SC = 0.4 K [8]. Ce2IrIn8 is a
heavy fermion paramagnet, as it does not show any superconducting transition
down to 50 mK [9]. Ce2RhIn8 orders antiferromagnetically at TN = 2.8 K. This
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compound becomes superconducting at T SC ≃ 400 mK under applied pressure
of 1.1 GPa [10]. The magnetic structure of Ce2RhIn8 is commensurate with a
propagation vector k = (1/2,

1/2, 0) [11].

UX 3 compounds
The crystal structure of UX 3 (X = Al, Si, Ge, Ga, In, Sn, Tl, Pb) compounds

is shown in Figure 1.1.

Figure 1.1: Crystal structure of UnTX 3n+2 compounds.

Considering UX 3 (X = p-metal) compounds, the size of the p-atom is a
crucial parameter. In case of smaller X -ions (Si, Ge) lack of magnetic ordering
(USi3, UGe3 [12, 13]) is observed due to strong 5f -p hybridization (for details
see Section 2.6). On the other hand, larger X -ions cause the hybridization to
be weaker, resulting in a magnetic ground state (UIn3, UPb3 [14, 15]). Figure
1.2 shows lattice parameters and ordering temperatures for UX 3 compounds as
a function of atomic number. The physical properties of selected materials are
discussed below in detail.

• The compounds UAl3, USi3 and UGe3 show enhanced Pauli-like paramag-
netism down to the lowest temperature accessible by experimental technique
[12, 13, 16].

• USn3 is on the verge of magnetic instability but does not order magnetically.
It shows a temperature independent magnetic susceptibility at low temper-
atures and a rather high Sommerfeld coefficient γ = 169 mJ·mol−1·K−2

[17].

• UGa3 is an itinerant spin-density-wave-type antiferromagnet with order-
ing temperature TN = 67 K [16]. Increasing hydrostatic pressure causes a
monotonous decrease of Néel temperature with a rate of −1.4 K·GPa−1.

• UIn3 orders antiferromagnetically with a rather high ordering temperature
TN = 88 K. Application of hydrostatic pressure increases the value of TN to
127 K at 9 GPa [18]. Neutron experiments revealed the propagation vector
k = (1/2,

1/2,
1/2) [14] similarly to CeIn3 [3].
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Figure 1.2: Lattice parameters and ordering temperatures for UX 3 compounds
as a function of atomic number [14].

• UTl3 orders antiferromagnetically with TN = 90 K and shows a local mo-
ment behavior [13].

• UPb3 also shows antiferromagnetic ordering (TN = 30 K). The magnetic
structure of UPb3 is described with a propagation vector k = (0, 0, 1/2)
[15].

UTX 5 compounds
Adding a layer of T In2 between the UIn3 ’blocks’ creates the UTX 5 (according

to their stoichiometry simply called ’115’) compounds. The crystal structure is
shown in Figure 1.1. Table 1.1 shows the lattice parameters of UTX 5 compounds.
The physical properties are discussed below.

Ni Pd Pt Fe Co Ir Rh Rh*

a (Å) 4.238 4.322 4.339 4.261 4.233 4.317 4.299 4.621
c (Å) 6.786 6.864 6.805 6.734 6.723 6.745 6.800 7.417

Table 1.1: Lattice parameters of UTX 5 compounds [1, 19, 20]. Rh* marks the
lattice parameters of URhIn5 compound measured by Matsumoto et al. [1].

• UNiGa5, UPdGa5 and UPtGa5 are itinerant antiferromagnets with ordering
temperatures TN = 86 K, 30 K and 26 K, respectively [21]. The propagation
vector k = (1/2,

1/2,
1/2) for UNiGa5 and k = (0, 0, 1/2) in the case of

UPdGa5 and UPtGa5 was found by neutron diffraction measurements [20].
The ordered moment changes from 0.9 µB in UNiGa5 to 0.24 µB in UPtGa5.

• UFeGa5, UCoGa5, URhGa5 and UIrGa5 compounds do not show any mag-
netic ordering throughout the whole temperature range [20].

3



UT In5 has only one representative compound, URhIn5. In contrast to its non-
magnetic counterpart ThRhIn5, URhIn5 is an antiferromagnet with TN = 98 K.
Magnetization measurements revealed huge magnetocrystalline anisotropy and an
extremely large paramagnetic Curie temperature θp = -400 K with effective mag-
netic moment corresponding to a localized uranium ion. From the heat capacity
measurements a moderately large Sommerfeld coefficient γ = 50 mJ·mol−1·K−2

was obtained demonstrating the contribution of 5f electrons to the conduction
band. A crossover from the high-temperature localized to a low-temperature
itinerant character occurs around T ∼ 150 K where the magnetic susceptibility
and electrical resistivity show a marked anomaly. Increasing hydrostatic pressure
supports the robustness of the antiferromagnetic phase [1].

U2TX 8 compounds
By adding a ’block’ of UIn3 to the ’115’ compounds we create the U2TX 8

(according to their stoichiometry ’218’) compounds. The crystal structure is
shown in Figure 1.1.

Only two compounds with the ’218’ stoichiometry have been reported so far:
U2FeGa8 and U2RhGa8. Both compounds are Pauli paramagnets and possess a
relatively large Sommerfeld coefficient γ = 52 mJ·mol−1·K−2 for U2FeGa8 and
γ = 43 mJ·mol−1·K−2 for U2RhGa8, respectively [22].
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2. Magnetism of f -electron
systems

2.1 Basic concepts

The magnetic properties of the materials stem almost solely from the motion of
electrons. This motion which is the sum of electron spin and orbital motion,
generates a magnetic moment connected with the electron. Classical electrody-
namics equates the orbital motion of electrons with electrical current I flowing in
infinitesimally small oriented loop enclosing the area |dS| (see Figure 2.1). The
magnetic moment dµ is given by

dµ = IdS. (2.1)

The units of dµ are A.m2. The vector of the magnetic moment dµ is always
perpendicular to the loop. The angular momentum of the electron orbiting the
loops is known as orbital angular momentum. To be able to describe magnetic

Figure 2.1: Infinitesimally small magnetic moment dµ generated by electrical
current I around oriented loop dS.

properties of solid state systems, one has to leave the mechanical approach and
move to the quantum one. Within this approach electron possesses another angu-
lar momentum called spin. The spin is an intrinsic degree of freedom, described
by spin quantum number s= ±1

2
. In the language of quantum mechanics, one

can define the operator of total orbital angular momentum L as follows

h̄L =
∑

i

ri × pi, (2.2)

where the sum is over all the electrons in the atom, h̄ is the Planck’s constant and
ri points to a location of the i th electron with the momentum of pi. We consider
now an unperturbed Hamiltonian [23] Ĥ0 as

Ĥ0 =
Z
∑

i=1

(
p2
i

2me

+ Vi), (2.3)
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where Z is the number of electrons in the atom and me (= 9.109382·10−31 kg)
is the electron mass. The first term in 2.3 represents the kinetic energy and V i

is the potential energy of the i th electron [23]. After the application of external
magnetic field B, the unperturbed Hamiltonian Ĥ0 is modified as

Ĥ =
Z
∑

i=1

(
p2
i

2me

+ Vi) + µB(L+ gS) ·B+
e2

8me

Z
∑

i=1

(B× ri)
2

= Ĥ0 + µB(L + gS) ·B+
e2

8me

Z
∑

i=1

(B× ri)
2

(2.4)

where e is the elementary charge of the electron, g is the so-called g-factor which
takes a value of ∼ 2 and S is the total spin angular momentum defined using the
Pauli spin matrices [23] σ as S = 1

2
σ. Equation 2.4 describes the origin of the

free magnetic moment in applied magnetic field as a sum of three contributions:
unperturbed Hamiltonian Ĥ0 followed by the paramagnetic and diamagnetic con-
tributions.

In equation 2.4 a new, convenient physical unit was introduced for measuring
atomic magnetic moments: the Bohr magneton µB. It is defined as µB = eh̄

2me
(=

9.27·10−24 A.m2).
In order to further discuss the role of paramagnetic and diamagnetic contri-

butions to the total magnetic moment, one needs to define physical quantities
– magnetization M and magnetic susceptibility χ. Magnetization M is defined
as magnetic moment per unit volume and in the SI system has a unit of A·m−1.
Considering a linear response to magnetic field, one can introduce a dimensionless
quantity called magnetic susceptibility χ as M = χH, where H = µ0B and µ0

= 4π · 10−7 H·m−1 is the permeability of vacuum. Magnetic susceptility χ gives
information about the degree of magnetization in the material in the presence of
applied magnetic field.

Diamagnetism
Diamagnetism refers to substances with negative magnetic susceptibility χ.

From a classical point of view it can be interpreted using Lenz’s law which states
that the applied magnetic field induces magnetic moments which oppose the
field that created them [24]. Diamagnetism is a purely quantum mechanical
phenomenon and is represented as the last term in equation 2.4. Considering the
case when L = S = 0, all the atomic shells are fully occupied and using 1st-order
perturbation theory, one can calculate the diamagnetic susceptibility χdia as

χdia =
M

H
= −

Ne2µ0

6Vme

Z
∑

i=1

〈r2i 〉, (2.5)

In equation 2.5, N is a number of ions with Z electrons occupying a volume V

and 〈r2i 〉 is a root mean square ionic radius. Diamagnetic susceptibility gives a
temperature independent negative contribution to the materials response in ap-
plied magnetic field which is present in all materials. Superconducting materials
are often referred to as perfect diamagnets [25], due to Meissner-Ochsenfeld effect
[26], with a diamagnetic susceptibility χdia = −1. Typical examples of diamag-
netic materials are inert gases, metals such as mercury (Hg), copper (Cu) and
bismuth (Bi) or water (H2O).
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Paramagnetism
Paramagnetism emerges in ions with non-zero L or S (or both). Diamag-

netic materials contain no unpaired electrons, thus the ions have no magnetic
moment in the absence of applied magnetic field. Paramagnetic materials con-
tain unpaired electrons which are the sources of magnetic moments irrespective
to magnetic field. These magnetic moments point in random directions without
applied magnetic field and yield positive magnetic susceptibility. Applied mag-
netic field B aligns these independent moments into the direction of the magnetic
field. On the other hand, increased temperature T serves the opposite purpose,
i.e. randomizes the direction of moments, therefore the paramagnetic response of
a material is proportional to B

T
ratio.

Quantum mechanical treatment of paramagnetism (second term in equation
2.4) states that magnetization is linearly proportional to Brillouin function BJ

M = MsBJ(y), (2.6)

where M s is saturation magnetization and BJ(y) is defined as

BJ(y) =
2J + 1

2J
coth(

2J + 1

2J
y)−

1

2J
coth

y

2J
. (2.7)

In the argument y = gJµBJB

kBT
, gJ is the Landé g-factor, J is the total angular

momentum quantum number and kB is the Boltzmann constant. In the case of
small magnetic fields, the paramagnetic susceptibility takes the value

χpara =
nµ0µ

2
eff

3kBT
=

C

T
, (2.8)

where n denotes the number of magnetic moments per unit volume and C is the
Curie constant. Equation 2.8 is called the Curie law and allows the deduction of
the value of effective magnetic moment µeff

µeff = gJµB

√

J(J + 1) (2.9)

from a measurement of the materials response in a small magnetic field. Mea-
surements in high magnetic fields leads to saturation magnetization

Ms = ngJµBJ. (2.10)

Hund’s rules
Electrons in atoms are distributed within filled and unfilled atomic shells.

The completely filled shells (L = S = 0) do not contribute to the total angular
momentum J, whereas electrons in unfilled shells can give a non-zero contribution
to the total angular momentum. Hund’s rules is a set of empirical statements
which finds the most favourable configuration that minimizes the total energy.

The first rule states the one should arrange the wave function in order to
maximize the quantum number of the total spin angular momentum S. This is
the consequence of the Pauli exclusion principle which prevents two electrons with
parallel spins occupying the same place, thus minimizing the Coulomb repulsion.

The second rule maximizes L, the quantum number of the total orbital angu-
lar momentum L. This rule also reduces the Coulomb repulsion since electrons
orbiting in the same direction can avoid each other more effectively.
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The third rule defines the value of J, the quantum number of total angular
momentum J, as J = |L - S | for atomic shells less than half-filled and J = |L +
S | for more than half-filled shells. This rule attempts to minimize the spin-orbit
coupling. In rare earth ions the concept of Hund’s rules works well due to the
localized character of 4f wave functions. On the other hand, in transition metals,
due to dominant crystal field interaction which quenches the orbital moments,
Hund’s rules are not applicable and different theory is used.

Hund’s rules give information about ground state, but do not discuss the
excited states. Ground state of an ion can be summarized by term symbols
2S+1LJ . They also allow us to estimate the value of effective magnetic moment
µeff using equation 2.9.

2.2 Localized and itinerant electron magnetism

Magnetic properties of (inter)metallic compounds can be described within the
framework of two basic approaches: the local moment and itinerant electron
model. These models only mimic the reality and can be be used in limit cases. The
following paragraphs will give a brief overview of the basics of these approaches
[27, 28].

Figure 2.2: Schematic sketch of radial wave functions. Taken from [29].

Localized electron magnetism
This type of behavior is characteristic for magnetic moments of well localized

electrons. The localization criterion is satisfied for 4f electrons (lanthanide series)
where the 4f wave function lies deeply embedded in the core of the atom (see
figure 2.2) and does not contribute to conduction or chemical bonding. The
foundations of this model are based on the well localized 4f wave functions which
allow a nearly free ion character due to negligible spatial overlap. As a result, the
observed effective magnetic moments are close those expected from Hund’s rules
(equation 2.9). The behavior of a localized system can be described using a full
free ion Hamiltonian

Ĥ = Ĥ0 + Ĥres + ĤSO + ĤCF, (2.11)
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where

Ĥ0 =

Z
∑

i=1

(
p2
i

2me

−
Ze,2

ri
+ Vef(ri)), e,2 =

e2

4πǫ0
, (2.12)

with contributions of kinetic (first) term, the electrostatic potential of nuclei is
represented by the second term and the effective potential Vef(ri), Coulomb and
exchange interaction from Hartree-Fock approximation, is given by the third term
in equation 2.12. Residual interaction Ĥres is a perturbation which takes the form

Ĥres =
∑

i 6=j

e,2

| ri − rj |
−

Z
∑

i=1

Vef(ri), (2.13)

that includes e-e interaction (first term) and the effective potential (second term).
Besides electrostatic interactions the free ion Hamiltonian contains magnetic in-
teractions such as spin-orbit interaction ĤSO. It is a relativistic effect, describing
the coupling of spin and orbital angular momenta S and L and it is the predom-
inant interaction described by Hamiltonian:

ĤSO =

N
∑

i=1

ξ(ri)(si · li), (2.14)

where the spin-orbit parameter ξ(r) is given by [27]

ξ(ri) =
h̄2

2m2
ec

2

1

ri

dU

dri
, (2.15)

where c is the speed of light and U is a spherically symmetric effective potential.
Crystal electric field (CEF) is a consequence of charge distribution around

ions in crystal lattice. It interacts with electrons occupying the f shells, giving
rise to magnetocrystalline anisotropy. Considering a case of single atom, CEF
removes the directional degeneracy of nearby atoms. The splitting to multiplets
also depends on the symmetry of CEF. The discrepancy between values of mag-
netic moments predicted by Hund’s rules and experimental data is given by CEF.
Hamiltonian of CEF can be calculated from first principles, using a general for-
mula:

ĤCF =
∑

L,M

BM
L ÔM

L , (2.16)

where BM
L represents symmetry-dependent crystal field parameters and ÔM

L are
the so-called Stevens operators [30] representing the whole f shell.

In systems with 3d elements the CEF interaction (∼ 1-2 eV in energy scale)
quenches the orbital contribution to ionic magnetic moments [27] and spin-orbit
interaction (∼ 10 meV in energy scale) can be considered as a perturbation [31].
In the 4f systems the spin-orbit interaction (∼ 100 meV) is responsible for the
formation of terms whereas the CEF interaction ( ∼ 10 meV) causes the splitting
to multiplets [27].

Itinerant electron magnetism
Previous relations consider magnetic moments in an isolated atom or ion.

However, embedding the ions into a metallic lattice, a contribution of conduction
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electrons to the total magnetization has to be considered [27, 28, 31]. First
attempt to describe metallic state was made by Pauli [32]. Each electron in a
metal has a configuration of either spin-up or spin-down. Placed in a magnetic
field, the energy of the electron will be increased/decreased depending on its
spin. In other words, magnetic field splits the electron band into two sub-bands
separated by 2µBB (see Figure 2.3). The magnetization is given by

M = µB(n↑ − n↓) = g(EF)µ
2
BB, (2.17)

where n↑ (n↓) is the number of spin-up (spin-down) electrons per unit volume
and g(EF) is the density of states at the Fermi level [23]. It gives rise to the
paramagnetic response of metals, called Pauli paramagnetism

χP =
M

H
= µ0µ

2
Bg(EF). (2.18)

Figure 2.3: Density of states showing the splitting of electron bands in applied
magnetic field.

After the development of electron band model by Bloch [33], Stoner [34] final-
ized this theory employing electronic band structure instead of discrete angular
momentum levels. This model fundamentally differs from the previously men-
tioned localized one and it is based on the prominent spatial distribution of 3d,
4d, 5d transition metal and 5f light actinide wave functions (see Figure 2.2).
Since these compounds lose their localized character they cannot be described
using Hund’s rules. First, we consider three simple ferromagnetic 3d metals Fe,
Co and Ni.

Fe Co Ni
M s (µB/atom) 2.216 1.715 0.616

T c (K) 1044 ± 2 1388 ± 2 627 ± 0.3

Table 2.1: Value of saturation magnetization M s and Curie temperature T c for
Fe, Co and Ni [35].

The non-integer values of saturation magnetization M s given in Table 2.1
cannot be obtained in the localized magnetism scenario. The reason for these
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values is a different microscopic mechanism on the basis of spontaneous spin-
splitting: let’s suppose we move (without magnetic field) a small amount of
electrons, in the energy range of δE, from spin-down band to spin-up band. The
total energy change associated with such electron transfer is given by [23]

∆E =
1

2
g(EF)(δE)2(1− Ug(EF)), (2.19)

where U scales the robustness of Coulomb interaction. From equation 2.19 we
get a condition for spontaneous spin-splitting, i.e. case when the transfer of spins
from one band to the other is energetically favourable

Ug(EF) ≥ 1. (2.20)

Equation 2.20 is known as Stoner criterion [23, 36]. This condition for spon-
taneous ferromagnetic ordering requires strong Coulomb interaction and also
large density of states at the Fermi energy. If the equation 2.20 is not satis-
fied (Ug(EF) < 1), ferromagnetism will not occur. Nonetheless, the magnetic
susceptibility of interacting free electron gas is changed

χS =
χP

1− Ug(EF)
, (2.21)

where χP represents the Pauli susceptibility introduced in equation 2.18 and
the denominator is the Stoner enhancement factor. More advanced method for
treating real systems is developed within the framework of density functional
theory [37].

2.3 Interactions between magnetic moments

Exchange interactions are crucial for the emergence of long-range magnetic order-
ing. They represent electrostatic interactions between electrons arising from the
antisymmetric nature of the overall wave function [23]. In the Heisenberg mod-
el, the spin-dependent Hamiltonian describing the energy of these interactions is
written as

Ĥ = −
∑

i,j

JijSi · Sj , (2.22)

where J ij is the exchange integral between i th and j th electron and Si, Sj are
spin quantum numbers of i th and j th electron, respectively [27].

There are three basic types of interactions [27]:

Direct exchange occurs between neighbouring magnetic atoms, with sufficient
overlap of their wave functions. The magnitude of exchange integral J ij exceeds
102 - 103 K. The exchange proceeds without any intermediary and occurs in ma-
terials containing d -electrons (Fe, Co, Ni) or 5f -electrons (uranium compounds).
It is not effective in rare earth compounds due to the strongly localized character
of the 4f wave functions.

Indirect exchange or superexchange describes the interaction between mag-
netic moments too far apart to be connected by direct exchange. The exchange

11



integral J ij is reduced, comparing with the previous case, possessing a value
around 100 - 102 K. In this case a non-magnetic intermediary ion provides the
interaction. Superexchange can be found in materials containing d -electrons or
4f -5f intermetallic compounds with p- or d -electrons.

RKKY (Ruderman-Kittel-Kasuya-Yoshida) exchange named after its main
proposers [38, 39, 40] is a long-range interaction between strongly localized 4f -
electrons where any direct interaction is excluded due to lacking overlap of wave
functions. It has an oscillatory dependence on the distance r between magnetic
moments and can be written as a r -dependent exchange interaction

JRKKY ∝
cos(2kfr)

r3
, (2.23)

where we assume a spherical Fermi surface with radius k f.

2.4 Types of magnetic order

In materials with strongly interacting magnetic moments cooperative phenomena
can be observed when the exchange interaction energy exceeds the energy of the
thermal movement of magnetic moments. These phenomena lead to a long-range
periodic magnetic ordering below a critical temperature. Ferromagnetism and
antiferromagnetism represent the basic types of magnetic ordering; except these
configurations, more complex structures can be found, such as ferrimagnetism,
helical order or spin-glass.

Ferromagnetism
A ferromagnetic material reveals a spontaneous magnetization even in the

absence of applied magnetic field, i.e all magnetic moments are in parallel align-
ment. For a ferromagnetic material placed in a magnetic field B, one should solve
the Hamiltonian

Ĥ = −
∑

i,j

JijSi · Sj + gµB

∑

j

Sj ·B, (2.24)

where the first term appeared already in the equation 2.22 and it is called the
Heisenberg exchange Hamiltonian (J ij > 0 for ferromagnets). The second term
is the Zeeman term describing the interaction between applied magnetic field
and magnetic moments in the material [23]. In order to solve equation 2.24, one
should define a so-called effective molecular field or Weiss field Bmf, produced by
the neighboring spins. This field measures the effect of magnetic ordering in the
system. To parametrize the strength of the molecular field an empirical constant
λ is used

Bmf = λM. (2.25)

If we now apply magnetic field Be, we can rewrite the paramagnetic susceptibility
χP (equation 2.8) into

χP =
µ0M

(Be +Bmf)
=

C

T
. (2.26)

Considering a linear change of external magnetic fieldBe, a physical quantity θP =
Cλ called Weiss temperature can be introduced, and the magnetic susceptibility
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Figure 2.4: Temperature dependence of (inverse) magnetic susceptibility and
spontaneous magnetization in a ferromagnetic material. TC is the Curie temper-
ature.

is given by

χ =
C

T − Cλ
=

C

T − θP
. (2.27)

Equation 2.27 represents the well-known Curie-Weiss law and describes the tem-
perature dependence of a ferromagnet above the ordering temperature. For sim-
ple ferromagnets θP corresponds to TC which is called the Curie temperature.
A typical temperature dependence of spontaneous magnetization and (inverse)
magnetic susceptibility is shown in figure 2.4. Common ferromagnetic materials
include: iron (Fe), cobalt (Co), nickel (Ni) and gadolinium (Gd).
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Antiferromagnetism
In an antiferromagnetic material (J ij < 0 in Equation 2.22) we observe an-

tiparallel alignment of adjacent magnetic moments (see Figure 2.5) below the
ordering temperature TN called the Néel temperature. Antiferromagnetism is of-

Figure 2.5: Magnetic structures of R2RhIn8 (R = Nd, Dy, Er) compounds. In
the case of (Dy, Nd)2RhIn8 (a) a ++– stacking of magnetic moments is observed
along the c-axis whereas in the case of Er2RhIn8 (b), the moments can point
in any direction within the ab-plane but they have to be parallel to each other.
Figure taken from [41].

ten presented as a composition of two ferromagnetic sublattices oriented opposite
to each other. To treat experimental data in the paramagnetic region one can
define magnetic susceptibility as

χ =
2C

T + TN
(2.28)

where C is the Curie constant from Equation 2.8. A typical temperature depen-
dence of (inverse) magnetic susceptibility is shown in Figure 2.6. Examples of an-
tiferromagnetic materials related to this work are: UIn3, UGa3, UPb3 [14, 15, 16].

The temperature dependence of magnetic susceptibility for paramagnetic, fer-
romagnetic and antiferromagnetic materials can be generalized using Curie-Weiss
law:

χ ∝
1

T − θP
, (2.29)

where θP = 0 is valid for a paramagnet; θP > 0 points to a ferromagnet with TC

as the ordering temperature and θP < 0 is characterized as an antiferromagnet
with TN as the ordering temperature.
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Figure 2.6: Temperature dependence of (inverse) magnetic susceptibility for an
antiferromagnetic (left figure) and ferrimagnetic (right figure) material. TN is
the Néel temperature.

Ferrimagnetism can be viewed as an uncompensated antiferromagnet. Two
magnetic sublattices with unequal magnetizations are aligned antiparallel to each
other, they do not cancel out each other, therefore the total magnetization is
non-zero (see Figure 2.6). With temperature variation we can achieve the mag-
netization to be zero at a characteristic temperature called the compensation
temperature. Ferrimagnets usually do not show Curie-Weiss behavior. An exam-
ple of uranium based ferrimagnetic compound is UAs [42].

Helical order or helimagnetism is typical for rare-earths metals, where
the atoms tend to form layered structures. If there is a non-zero angle between
magnetic moments lying in each layer, using nearest-neighbor and next-nearest-
neighbor coupling a condition favoring helical order can be obtained. This mag-
netic order is energetically favourable than (anti-)ferromagnetism [23]. Repre-
sentative compounds for such magnetic order is the CeRhIn5 [7] (see Figure 2.7)
which is iso-structural with URhIn5, a compound thoroughly studied in this work.

Figure 2.7: Magnetic structure of CeRhIn5. The disk denotes the moment rotat-
ing plane. The dashed line traces the spiral. Taken from [7].

Spin glass behavior can be defined as a random magnetic system with mixed

15



interactions which is characterized by a freezing of spins at a well-defined tem-
perature, called the freezing temperature. Below this temperature a metastable,
short-range magnetic order appears. Typical example is CuMn alloy [43].

2.5 Strongly correlated electron systems

A wide range of magnetic systems can be described using simple models, i.e. mean
field theory, described in the section about ferromagnetism. The basic assump-
tion of this model is that electrons do not interact with each other but they are
exposed to the effective field produced by surrounding spins. However in many
cases such simple approach cannot be used. In systems with strong hybridization
of inner d or f electrons and conduction electrons, correlations between electrons
cannot be neglected. We call compounds showing similar features strongly cor-
related electron systems (SCES) [44]. These systems include high-temperature
superconductors, cerium, ytterbium and uranium systems with Kondo interac-
tions [45]. One of the main topics of SCES are compounds that exhibit heavy
fermion behavior [46].

Heavy fermion compounds
Heavy fermion compounds (HF) have been a subject of intensive studies in the

past several decades. CeAl3 compound was the first representative of these sys-
tems [47]. This family of compounds is characterized by their anomalous specific
heat behavior. At low temperatures the materials’ heat capacity arises mainly
from the contribution of conduction electrons. It is linearly proportional to tem-
perature through the Sommerfeld coefficient. For simple metals the Sommerfeld
coefficient γ is in order of units of mJ/mol·K2 whereas in HF compounds this
value can exceed 1000 mJ/mol·K2. Since γ is proportional to the effective mass
of the electrons, hence the name heavy fermions.

HF compounds are inherently close to quantum critical point (QCP) [48] and
therefore suitable to investigate quantum criticality. The point at absolute ze-
ro temperature where matter becomes very sensitive to new forms of order is
called the quantum critical point. At this point, no thermal fluctuations can
occur, thus the phase transitions are driven by quantum fluctuations associated
with Heisenberg’s uncertainty principle [49]. The quantum critical behavior man-
ifests itself by the occurrence of coexistence of magnetism and superconductivity
(CeRhIn5 [54]) and non-Fermi liquid (NFL) behavior [55]. NFL behavior devi-
ates from Landau-Fermi liquid model [56] mainly in the temperature dependence
of heat capacity, magnetic susceptibility and electrical resistivity. NFL is often
observed in the vicinity quantum critical region where TN goes to zero or the
maximum of T c is observed [57]. NFL behavior is interpreted in the framework
of renormalization-group theory or self-consistent renormalization theory and so-
lutions were proposed by several theoreticians [58, 59, 60, 61]. Critical behav-
ior is also accompanied with the emergence of unconventional superconductivity
(CeCu2Si2 [50]). Unconventional superconductivity cannot be described using
the BCS (Bardeen-Cooper-Schrieffer) theory [51] as it excludes the coexistence of
magnetically ordered moments with the classical s-wave superconducting Cooper
pairs. In heavy fermion superconductors, cuprates and organic superconduc-
tors, the formation of superconducting state is described within a new approach
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[52, 53]. In these materials it was suggested that the spin-spin interactions can
substitute the role of phonons.

The very first strongly correlated electron systems included a single magnetic
impurity (3d -metal) embedded in a metal host. This model is effectively de-
scribed by the Anderson model [62]. In the limit of strong Coulomb interaction,
the Anderson model reduces to the Kondo hamiltonian [45]. The characteristic
temperature for the formation of ground state singlet within the Kondo model is
given by

kBTK = D exp

(

−
1

JN(0)

)

, (2.30)

where TK is known as the Kondo temperature, N (0) is the density of conduction
electron states at the Fermi level and J is the coupling constant originating
from exchange interactions. At T = 0 K, the ground state of the impurity
spin is completely screened by the surrounding conduction electron spins with
antiferromagnetic orientation, thus forming a non-magnetic state.

In a heavy fermion compound the 4f ions interact with each other and form
the magnetically ordered state via spin polarization of conduction electrons, i.e.
RKKY interaction (described earlier). The binding energy of this interaction is
given by

kBTRKKY ∝ J2N(0). (2.31)

Thus, there are two competing mechanisms; the RKKY and the Kondo inter-
action. The competition of these interactions is schematically illustrated in the
so-called Doniach diagram (see Figure 2.8) [63]. In the case of weak hybridiza-
tion (J ≪ J c) the RKKY interaction dominates and as a result the compound
orders magnetically. On the other hand, with increasing hybridization the Kon-
do screening (formation of singlet state) becomes dominant. For J ≫ J c all the
magnetic moments are fully screened, i.e. the compound is non-magnetic.
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Figure 2.8: Schematic illustration of the competition between Kondo (TK) and
the RKKY (TRKKY) interaction - Doniach phase diagram [63, 64]. The gray area
represents the antiferromagnetically ordered state. Non-Fermi liquid behavior is
observed near the critical value J c where the QCP is located. For J≫J c Landau-
Fermi liquid (LFL) is established. Figure taken from [65].

2.6 Magnetism in actinide intermetallics

The following section describes the ordering mechanisms in uranium and oth-
er actinide compounds and highlights differences between ordering mechanisms
discussed earlier [23, 28]. As mentioned earlier, there are two basic types of
magnetism in intermetallic compounds:

• Stoner magnetism is characteristic for 3d metals and it is connected with
polarization of density of states at the Fermi energy.

• Localized magnetism is characteristic for 4f compounds. It is connected
with the strong localization and weak interaction with surrounding envi-
ronment of 4f wave functions responsible for magnetism. As a consequence
of negligible mixing of 4f and conduction states the experimentally ob-
served magnetic moments agree with the free ion value (with valence 3+)
calculated from Hund’s rules [27].

In general, actinide compounds can be considered as a transition between these
two extreme conditions. Light actinides (up to Pu) are described by itinerant 5f
electrons whereas heavier ones tend to have localized 5f electrons.

5f states of uranium compounds
Uranium 5f wave functions are much more spatially extended compared to

their 4f counterparts, therefore they perceive their physical and chemical sur-
rounding more effectively (interaction between neighboring U atoms and with
the metallic lattice). Consequently, uranium 5f states are delocalized due to
their participation in bonding states along with a non-negligible hybridization
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with non-U neighboring atoms in the crystal lattice [66]. This delocalized char-
acter is usually responsible for magnetism in uranium intermetallic compounds
and has severe consequences:

• Experimentally observed magnetic moments are usually much smaller than
expected ones for free U3+ or U4+ ions. Magnetic moments can disappear
in the band limit resulting in Pauli paramagnetism described earlier. This
behavior is similar to 3d metals.

• Compared to 4f compounds, where the RKKY interaction [39, 40] is dom-
inant, the magnetic coupling is stronger in compounds containing 5f mag-
netic moments due to direct overlap of 5f wave functions.

• The high density of 5f states at the EF is responsible for high γ values from
low-temperature heat capacity and also for strongly anisotropic transport
and magnetic properties.

Hybridization and 5f -5f overlap
Two types of microscopic mechanisms affect the 5f states; direct overlap of

5f wave functions of neighboring U atoms and 5f -ligand hybridization.
In the first case the key parameter is the inter-uranium distance dU-U. Com-

pounds with small dU-U form a non-magnetic ground state (often superconduc-
tors) whereas large dU-U leads to magnetic ground state [67]. The critical limit,
so-called Hill limit reaches values in the range dU-U = 0.34 - 0.36 nm. The pres-
ence of magnetic ground state is established by Stoner-type criterion. This simple
rule neglects details of the density of states and 5f -ligand hybridization leading
to several exceptions with magnetic ordering with dU-U below Hill-limit (UNi2
[68]) or non-magnetic compounds with dU-U above Hill-limit (URh3 [69]).

The other important mechanism is the hybridization of 5f electrons and ligand
valence states which is characteristic for compounds with dU-U well above the Hill
limit. In case of strong hybridization this mechanism can be dominant leading
to non-magnetic ground state in compounds with negligible overlap of 5f wave
functions. When considering UX 3 (X = p-metal) compounds, the size of the
p-atom is a crucial parameter [66]. In case of smaller X -ions (Si, Ge), the p

wave function decays slower at the U-site, resulting in strong 5f -p hybridization
and lack of magnetic ordering (USi3, UGe3 [12, 13]) while larger X -ions cause
the hybridization to be weaker, resulting in magnetic ground state (UIn3, UPb3

[14, 15]). In uranium compounds containing d -metals, the filling of d -states is also
an important parameter that affects the strength of hybridization. Moving from
left to right (increasing electronegativity) in transition metal series, the d -band
is pushed further below EF reducing the overlap of 5f -d states and weakening
the hybridization. Therefore, magnetism is observed with more electronegative
d -metals in these compounds.

Magnetic moments in uranium compounds
The 5f -band model offers a sufficient description for the majority of urani-

um intermetallic compounds. The appearance of uranium magnetic moments is
based on spontaneous splitting of spin sub-bands resulting in total spin magnetic
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moment µS. However, strong spin-orbit interaction in 5f systems induces large
orbital magnetic moment µL, antiparallel to µS. Based on theoretical calcula-
tions, it was shown that the degree of delocalization of 5f states is reflected in
the ratio of spin and orbital magnetic moment [70].
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3. Experimental methods

3.1 Sample preparation

The very first step of every experiment in condensed matter research is the synthe-
sis of samples. In our case, the preparation of novel, high-quality single crystals
was crucial, thus we will go through the preparation in more detail.

Thermodynamics of crystal growth
From a thermodynamic point of view, compounds can be divided into congru-

ently and incongruently melting ones. A congruently melting solid phase melts
into a liquid phase with the same composition. On the other hand, incongruent-
ly melting solid phase melts into a liquid phase with different composition and
another solid phase that has a different composition from the original solid.

Phase diagram is a temperature-composition scheme showing a possible co-
existence of phases at the thermal equilibrium as a function of temperature. The
phase diagram is a starting point of crystal growth preparation. Binary phase
diagrams consist of two elements; in general n elements lead to N -dimensional
phase diagrams. Solidus-liquidus line [71] is a boundary line between solid and
liquid phases. At a peritectic point both solid and liquid phases transform into a
solid phase. At the eutectic point the liquid phase transforms into two different
solid phases.

The quality of the final crystals, either single or polycrystal, is largely depen-
dent on the quality of the starting elements. The purity of the elements (metals)
follows a rather simple notation: 4N5 = 99.995%, 5N = 99.999 %...etc. The
uranium (U) used in our sample preparation was cleaned using Solid State Elec-
trotransport (SSE) [72]. This technique uses ultrahigh vacuum and large DC
current at high temperatures.

Single crystal preparation
Single crystal samples can be prepared by fundamentally different techniques:

growth from melt, growth from vapor phase or growth from solution. Methods
using growth from melt include: Czochralski method, Bridgman method and
floating zone method [73, 74]:

• The Czochralski method or crystal pulling uses a seed crystal dipped into
melt. After contact has been established between seed and the melted
environment the seed is slowly rotated and lifted to obtain a single crystal.

• Floating zone method is advantageous for materials with high surface ten-
sion and low density. This method does not require any container but puts
a limit on crystal diameter and length given by gravitational forces.

• During crystal growth using Bridgman method a steady motion of a freezing
liquid-solid interface is utilized along an ingot. Either the whole ingot can
be melted or a molten zone is established.

• Bulk single crystals can also be grown from vapor phase by sublimation,
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chemical transport or chemical vapor deposition. These techniques are
mainly used in silicon industry.

Since our samples were incongruently growing we used the only option to
prepare them - the flux method. There are several advantages and disadvantages
of this method:

• The most distinct advantage is the possibility to prepare incongruently
growing compounds.

• During the growth process, crystals maintain their natural habitat.

• This method uses relatively simple equipment and consumes small amount
of elements.

• The main disadvantage is that the stoichiometry cannot be controlled dur-
ing growth which often leads to the presence of impurity phases.

The term ”flux” describes a high temperature solvent that allows the growth
to proceed at temperatures below the melting temperature of the solute phase.
Self-flux method is usually used for compounds containing the solvent, whereas in
the case of true-flux method the compound is grown from an additional element.
The principle of the two methods is the same. Rather difficult part of the growth
is the choice of the flux. Basic requirements of the flux include high solubility for
the solute without the formation of unwanted binary phases. The melt should
have a very low reactivity with the material of the crucible throughout the whole
temperature range. Elements as Al, Ga, In, Sn or Pb are used as fluxes.

Figure 3.1: Necessary equipment for flux growth: (a) programmable furnaces with
a temperature controller (b) the apparatus for sealing samples under vacuum or
protective atmosphere (c) the laboratory centrifuge.

First, the non-stoichiometric composition of starting elements is prepared.
This composition is usually different from the final product. Starting elements
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are placed in a high purity (99.8 % or 99.99%) alumina (sintered Al2O3) cru-
cible and sealed under vacuum (10−6 mbar) in a quartz tube (see Figure 3.2).
The quartz ampules are than placed in a laboratory furnace and heated up to a
temperature above the solidus-liquidus line of the desired composition. After a
reasonable amount of time at the maximum temperature (∼ 10 hours), dedicated
to properly homogenize the melt, the cooling begins with a slow and constant
rate (∼ 3◦C/h). The cooling rate affects the crystal sizes - the faster cooling the
smaller crystals. When the temperature of the melt reaches the solidus-liquidus

line [71], single crystals start to form and the solution becomes flux-richer due
to the lever-rule [73]. Precise temperature controlling is essential for the stable
growth of the crystals. In our case we used laboratory furnaces with built-in
temperature controller with precision of ± 0.5 ◦C (see Figure 3.1).

Figure 3.2: Quartz ampules after centrifugation containing the crucibles with
crystals and residual flux.

The growth must be stopped before reaching an eutectic point to avoid the
formation of unwanted phases. The last step of the growth process is to de-
cant the excess flux. This separation of solution from the crystals can be done
mechanically, chemically or using a laboratory centrifuge (see Figure 3.1). The
centrifugation is the most efficient way to separate the liquid solution from the
crystals. The quartz ampules must be moved quickly from the furnace to the cen-
trifuge to prevent the flux from solidifying. Chemical etching must dissolve the
flux efficiently and on the other hand, it must not attack the crystals. In our case
the remaining flux was etched by concentrated nitric acid (HNO3) which does not
attack the crystals. Mechanical removing of the crystals from the solidified flux
is time consuming and disadvantageous due to the fragility of the crystals.

3.2 Structural and chemical characterization

3.2.1 X -ray diffraction methods

X -ray diffraction methods represent the crucial tool for structure, crystal quality
(simple grain, twins...) and phase homogeneity (impurity) determination. Usual-
ly it is the first measurement which is performed after the crystal growth. X -rays
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are produced in large scale facilities (synchrotron radiation) [75] as well as in small
laboratories using X -ray tubes. The principle of X -ray diffraction is based on
the constructive interference of wavelengths comparable with dhkl (inter-planar
distance of studied crystal lattice). This effect is observable only when Bragg’s
law is fulfilled [76, 77]:

2dhklsinθ = nλ, (3.1)

where θ is Bragg’s angle, n is the order of reflection and λ is the wavelength of
the incident X -ray [76].

Laue method
Laue method is an experimental technique used to determine the quality and

orientation of crystals. In this work we used back-reflection Laue method. A
polychromatic wave emitted from X -ray tube is diffracted from a fixed sample.

Laue patterns were collected on a Photonic Science X -ray Laue System using
a polychromatic Cu radiation. Diffraction patterns were collected with a CCD
camera [78].

X -ray powder diffraction (XRPD)
XRPD is a technique usually used for phase and structure characterization of

both single and polycrystalline samples. Single crystals were powdered into fine
powder and uniformly distributed on a silicon plate - in order to reduce the back-
ground. Diffraction patterns were taken on a Bruker D8 Advance diffractometer
[79] equipped with a Cu lamp producing monochromatic Cu Kα radiation with
wavelengths Kα1

= 1.540600 Å and Kα2
= 1.544300 Å. The diffractometer oper-

ates on the principle of Bragg-Brentano geometry [76]. The result of XRPD is a
diffractogram, showing a 2θ dependence of intensity of diffracted beam.

For data treatment, structure determination FullProf/WinPlotr software was
used [80, 81]. This software uses the Rietveld method [82] which evaluates the
data on the basis of least square algorithm.

Single crystal X -ray diffraction
Measurements were performed both at the Department of Condensed Matter

Physics (DCMP) [83] and at the Institute of Physics in the Czech Academy of
Science (ASCR) [84].

Preliminary measurements of lattice parameters were performed at the DCMP
on a RIGAKU RAPID II diffractometer [85] equipped with a molybdenium lamp
(Mo) producing Mo Kα radiation and an image plate as a detector. The crys-
tal structures were solved by CrystalClear software [86]. Crystal structures at
the ASCR were determined using X -ray diffractometer Gemini, equipped with a
molybdenum (Mo) lamp, graphite monochromator and an Mo-enhance collimator
producing Mo Kα radiation, and a CCD detector Atlas. Absorption correction
of the strongly absorbing samples (µ ∼ 50 mm−1) was done by combination of
the numerical absorption correction based on the crystal shapes and empirical
absorption correction based on spherical harmonic functions, using the software
of the diffractometer CrysAlis PRO. The crystal structures were solved by SU-
PERFLIP [87] and refined by software Jana2006 [88].
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3.2.2 Scanning electron microscopy (SEM)

The results presented in this thesis were obtained using a Tescan Mira I LMH
SEM [89], equipped with secondary electron (SE) and back-scattered electron
(BSE) detector and with an energy dispersive X -ray analyzer (EDX) Bruker
AXS [90]. SEM uses a focused, high energy (10-30 keV) electron beam to extract

Figure 3.3: Bulk penetration of primary electrons. Picture taken from [91].

chemical or topographical information from a desirable region of the sample. High
energy primary electrons, emitted by the electron gun, interact with the sample
and a variety of signals is produced:

• Secondary electrons with energies < 50 eV originate from inelastic inter-
actions between the primary beam and atoms near the sample surface.
Therefore they provide mainly topographical information. This informa-
tion is obtained from ∼ 1− 10 nm depth.

• Back-scattered electrons with energies > 50 eV are reflected out of the
sample as a result of elastic scattering. They have worse spatial resolution
than secondary electrons, but are more dependent on the atomic number
Z, therefore they provide information about the distribution of different
elements in the sample. Areas of the sample surface containing lighter
elements appear darker, whereas areas with heavier elements appear lighter.

• Characteristic X -ray are primarily used to identify the chemical compo-
sition of the sample. Energy dispersive X -ray spectroscopy is based on
the X -ray excitations of the sample. Every element has a unique electron
shell structure; therefore interaction of high energy electrons with the sam-
ple produces a unique set of peaks on its spectrum [76]. EDX analysis
also allows different types of scanning methods: point scan gives quanti-
tative result from a small area given by the beam spot radius; line scan
reveals information about the distribution of elements along specified line;
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2D mapping gives qualitative information from the desired area revealing
inhomogenities and impurity phases.

3.3 Physical Property Measurement System -

PPMS

PPMS (see Figure 3.4) is a device, constructed by Quantum Design Inc., dedi-
cated to measure a wide range of physical properties at extreme conditions. The
accessible temperature range is between 1.8 - 400 K using 4He; the system is also
compatible with a 3He insert that allows cooling down to 350 mK. Static magnetic
field up to 9 T (14 T) induced in superconducting magnet is available in PPMS
9T (PPMS 14T) device. Detailed description of all possibilities is given in the
device manual [92]. The measurements of electrical resistivity, ac susceptibility
and specific heat down to 1.8 K can be also performed in hydrostatic pressures up
to 3.2 GPa depending on the pressure cell type. In this work we measured mainly
heat capacity and electrical resistivity, therefore we will focus on the description
of these techniques.

Figure 3.4: PPMS sample probe and a schematic cut of the system showing the
sample space with measuring puck [92].

3.3.1 Specific heat

PPMS measures the heat capacity using two-tau (2τ) method. At the first stage
of the measurement, the sample platform and puck temperatures are stabilized at
some initial temperature. Then, power is applied to the sample platform heater,
causing temperature rise. When the power is turned off, the temperature of the
sample platform relaxes toward the puck temperature. In the two-tau model the
first time constant (tau 1) is the relaxation time between sample platform and
puck, and the second time constant (tau 2) is represents the relaxation between
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the sample platform and the sample itself. The values of heat capacity are de-
termined by optimizing the agreement between measured data and the two-tau
model [93].

Heat capacity (specific heat), a thermodynamic quantity, is defined as an
amount of heat necessary to change the temperature of (1 gram) a substance by
1 K

CX(T ) = (
δQ

δT
)X , (3.2)

where X is a control (physical) parameter which is kept constant during the
measurement. From the experimental point of view, the control parameter is
usually pressure P. The temperature dependence of entropy can also be obtained
from measurement of specific heat in a following way

CP (T ) = (
δQ

δT
)P = T (

δS

δT
)P ⇒ S(T ) =

∫

CP

T
dT (3.3)

Since the entropy of the system S (T ) is directly related to energy levels due
to thermal excitations, specific heat represents an effective macroscopic probe.
CP (T ) is an additive thermodynamical quantity that can be written as a sum of
individual contributions which become dominant in various temperature ranges:

CP = Cnuc + Cel + Cph + Cmag + CSch, (3.4)

where the terms represent nuclear, conduction electron, phonon, magnetic and
Schottky contribution, respectively.

Nuclear contribution C nuc is dominant at very low temperatures (T< 0.5 K)
where it is usually recognized by a C nuc ∼ T−2 dependence.

Conduction electron contribution C el plays an important role up to temper-
ature 4 K. Using the theory of free electron gas and Fermi-Dirac distribution, one
can derive the exact form of C el as

Cel =
1

3
π2g(EF)k

2
BT = γT, (3.5)

where γ is the Sommerfeld coefficient which characterizes the proportionality
of the electronic specific heat and temperature. Typical values of γ are in the
mJ·mol−1·K−2 range. Since the coefficient γ is proportional to the density of
electronic states at the Fermi surface g(EF), it also gives information about the
effective mass of electrons me. In heavy fermion materials the γ value becomes
up to three orders of magnitude larger that one of a simple metal.

Phonon specific heat contribution C ph is a consequence of lattice thermal
vibrations represented by quasiparticles, called phonons. In a system with N

atoms in a unit cell, phonons can be divided according to dispersion relations
into 3N -3 optical branches and 3 acoustic branches (see Figure 3.5). The op-
tical branches can be described as a set of linear harmonic oscillators vibrating
independently with a frequency ωE, so-called Einstein frequency. The equation
describing optical phonons in the Einstein model is as follows:

CE
ph = 3R

(

ΘE

T

)2 exp(ΘE

T
)

(expΘE

T
− 1)2

, (3.6)
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Figure 3.5: Scheme of phonon dispersion showing acoustical and optical phonons
in a linear chain of two atoms. Figure taken from [94].

where ΘE = h̄ωE

kB
is the Einstein temperature. This approach gives a reasonable

agreement with experimental data at T → 0 K and high temperatures. However,
at low temperatures the Einstein model gives an exponential increase which is
experimentally not observed.

With the assumption of distribution of different frequencies ωD, the Debye
model treats the acoustic phonons. Their behavior is described by the Debye
integral

CD
ph = 9R

(

T

ΘD

)3

ΘD

T
∫

0

exp(x)

(exp(x)− 1)2
x4dx, (3.7)

where ΘD = h̄ωD

kB
is the Debye temperature and x = h̄ω

kBT
. This model gives better

agreement with experimental data at low temperatures than the Einstein model.
Phonon contribution at low temperatures can be described in a simplified way as

Cph = βT 3 (3.8)

where β = 12
5
π4R( 1

θD
)3. The whole temperature range can be fitted with an

empirical polynomial function appropriate for the Debye model in order to obtain
an estimate of the Debye temperature [95].

CD
ph =

24.9416 + 0.05313x2
D + 9.85 · 10−4x4

D + 4.8 · 10−7x6
D

1 + 0.0521x2
D + 8.71 · 10−4x4

D + 4.56 · 10−6x6
D + 2 · 10−8x8

D

, (3.9)

where xD = θD
T
.

A more sophisticated model, including the effect of anharmonicity, is described
by C. A. Martin [96]. The overall phonon contribution including both the Debye
and Einstein model with the correction for anharmonicity is given by

Cph = R

(

1

1− αDT
CD

ph +
3n−3
∑

i=1

1

1− αEiT
CEi

ph

)

, (3.10)

where αD and αEi are coefficients of anharmonic corrections for acoustic and
optical phonons.
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In the high-temperature region (around room temperature), the phonon con-
tribution is independent on any material and leads to the classical Dulong-Petit
law:

Cph = 3NkB, (3.11)

where 3N represents the 3 degrees of freedom of N atoms.
Cmag is a contribution to the total specific heat which is present only in

magnetically ordered systems. Magnetic contribution is usually obtained by sub-
tracting electron and phonon contributions from the experimentally measured
specific heat C P

Cmag = CP − (Cel + Cph). (3.12)

The temperature dependencies of C P of the magnetically ordered systems are
given by the spin-wave theory and they depend mainly on the type of magnetic
ordering and the dimensionality of the system [97]:

Cmag = AT
d

m exp(−
δ

T
) (3.13)

where d corresponds to the dimensionality of the magnetic order and m = 1
(2) for antiferromagnet (ferromagnet). The additional term exp(− δ

T
) describes

magnetic excitations across a gap δ in the magnon spectrum.
According to the phenomenological Landau theory, the transition from a para-

magnetic to a magnetically ordered state is a 2nd-order phase transition which
has a discontinuity in the specific heat. On the other hand, a 1st-order phase
transition manifests itself with a discontinuity in the entropy. Typical example
of such transitions are transition into a superconducting state or a structural
transition.

In the paramagnetic regime, the magnetic contribution can be described some-
what easier. It is given by the Schottky paramagnetic contribution C Sch which is
connected with crystal field perturbation. The energy splitting caused by crystal
field effects contributes to the specific heat and it is called the Schottky anomaly:

CSch =
R

T 2















n
∑
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T
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, (3.14)

where n = 2J + 1 is the number of energy levels, ∆i =
Ei

kBT
is the energy of the

i th level.
In the high-temperature limit the magnetic entropy can be described as

Smag = Rln(2J + 1). (3.15)

In compounds with a doublet crystal field ground state we obtain the maximum
theoretical value associated with magnetic transition

∆S = Rln2. (3.16)
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3.3.2 Electrical resistivity

Alternating current transport option is used on PPMS to determine the electrical
resistivity of measured sample. The current is produced in a current source with
a maximum of 2 A and precision of 0.02 µA. The frequency range of this source is
1 Hz - 1 kHz. The measurement of resistivity is done by using four-point method
(see Figure 3.6). The golden/copper wires are used as electrical contacts, fixed to
the sample by conducting silver paste. The typical values of resistance for high-
quality contacts were between 2-5 Ω at room temperature. The outer wires are
connected to the current source whereas the inner ones allow the measurement of
voltage on the sample. The values of resistivity is obtained from the knowledge
of the distance of inner wires and cross section of the sample perpendicular to
current direction. In the case of small samples the calculation of resistivity can
be effected with error up to 15 %.

Electrical resistivity, a bulk property, quantifies how strongly a material op-
poses the flow of electrical current. It is given by collisions of conduction electrons
on (quasi-) particles. Assuming independent scattering mechanisms, we can de-
scribe electrical resistivity using Matthiessen’s rule:

ρtot = ρ0 + ρe-ph + ρmag, (3.17)

where ρ0 denotes residual resistivity, ρe-ph is the term arising from scattering on
lattice vibrations and ρmag is the spin-disorder term.

Residual resistivity ρ0 arises from the presence of crystal defects (impurity
atoms, dislocations). This term is temperature independent and very small com-
pared to other terms, in case of non-magnetic, single phase sample.

The scattering of conduction electrons on phonons at low temperatures can be
described using the Bloch-Grüneisen formula, derived in the framework of Debye
model mentioned above:

ρe-ph(T ) = 4RΘD

(

T

ΘD

)5

ΘD

T
∫

0

x5

(exp(x)− 1)(1− exp(−x))
dx, (3.18)

where RΘD
includes fundamental constants and electron-phonon coupling con-

stant which is proportional to the phonon part of the resistivity in the Debye
model. For low temperatures ρe-ph(T ) presents a T 5 dependence, whereas at high
temperatures it can be approximated as a linear function.

The third term in Equation 3.17 includes spin-dependent scattering phenom-
ena. In magnetic systems this term has to be treated differently above and below
the magnetic transition temperature. In the magnetically ordered state ρmag(T )
depends on the peculiarities of the ordering and dispersion on quasi-particles,
called magnons. In a non-gapped dispersion relation for ferromagnetic (antifer-
romagnetic) magnons, the temperature dependence of ρmag, below the ordering
temperature, shows T 2 (T 4) dependence. In the case of a presence of gap ∆ in
the dispersion relation, the electrical resistivity below magnetic ordering can be
described [97, 98]:

ρmag(T ) = AT 2 +DT (1 + 2
T

∆
)exp(−

∆

T
), (3.19)
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where A is the term arising from electron-electron scattering in Fermi liquid, D
depends on the spin-disorder resistivity and electron-magnon coupling constant.

Figure 3.6: Scheme for the four-point method. Outer wires are connected to AC
source and inner wires are used for measuring voltage on the sample.

To investigate the effect of hydrostatic pressure on the magnetic properties of
studied samples, we measured the temperature dependence of electrical resistiv-
ity using a double-layered (CuBe/NiCrAl) piston-cylinder type pressure cell (see
Figure 3.7) with Daphne 7373 oil as the pressure-transmitting medium [99, 100].
Pressures up to 3.2 GPa were reached.

Figure 3.7: Cross-section view of a hybrid high pressure cell. Picture taken from
[101].

The manganin wire (alloy of 86 % Cu, 12 % Mn and 2 % Ni) was used to
determine the pressure inside the pressure cell. Pressure dependent resistivity of
manganin is given by:

R(T, p) = R(T, 0)(1 + α(T )p) (3.20)

where α(T ) is the pressure coefficient of resistance of the manganin wire. At
room temperature it takes the value of α(293 K) = 2.465·10−3. The difference
∆p between the room-temperature and the lowest measured temperature of the
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Daphne 7373 oil inside the pressure cell is 0.3 GPa and remains constant through-
out the range of used pressures. The real values of pressures inside the pressure
cell were determined using linear pressure dependence of electrical resistivity of
manganin wire at room temperature according to Equation 3.20 and the previ-
ously mentioned difference in pressure between room- and low-temperature.

3.4 Magnetic Property Measurement System -

MPMS

The commercial magnetic property measurement system from Quantum Design
Inc., is a magnetometer of SQUID (superconducting quantum interference device)
construction. Its working principle is based on the Josephson junction [102]. The
Josephson effect is a quantum mechanical phenomenon where electrical current
flows without any applied voltage across the Josephson junction. The junction
consists of two superconductors coupled by a thin insulating barrier. Cooper
pairs [51] can flow through the barrier by means of quantum tunneling.

The SQUID determines the magnetic moment by measuring induced voltage
while moving the sample through pickup coils. Two measurement options are
available - extraction (DC method) or rapid oscillation by a servo motor (RSO -
Reciprocating Sample Option).

The measured sample is fixed to a long thin rigid rod which is connected to
a DC servo motor outside the sample chamber in the case of extraction. The
SQUID technique is enormously precise and sensitive reaching the theoretical
limit of ∼ 10−8 emu. The cryostat, in which the detection coils are placed, allows
a wide temperature range between 1.8 K - 400 K and the application of external
magnetic field up to 7 T.

3.5 Thermal expansion measurement

The measurement of thermal expansion is very complex and requires well-developed
methods. There exists a wide range of non-contact methods based on optical mea-
surements [103], X -ray [104] or neutron diffraction [105]. Other methods include
mechanical contact with the sample: strain gauge [106], mechanical dilatometry
[107] or capacitance method [108].

In this thesis we measured thermal expansion using capacitance method. We
used a Vienna-type capacitance dilatometer [108] (see Figure 3.8).

The body of the cell is made of silver with the capacitor plates separated
from each other by two brass needle bearings. These bearings with the sample
are isolated from the silver body of the cell by sapphire discs [110]. The working
principle is based on inverting construction [111]: sample expansion opens the
capacitor and lowers its capacity, which is measured by a capacitance bridge.
The temperature dependence of capacitance C (T ) is used to calculate the thermal
expansion of the sample ∆l

l
.
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Figure 3.8: Cross section of capacitance dilatometer showing the position of the
sample, capacitor plates, silver spacer and sapphire disk. Taken from [109].

3.6 Neutron diffraction

Neutron diffraction is a powerful experimental technique in solid state research
that is based on the unique and convenient properties of neutrons:

• Neutron carries a zero electrical charge and thus, it has a large penetration
depth in materials, typically in the order of centimetres.

• The wavelength of thermal neutrons is comparable to the interatomic dis-
tance in solids.

• Neutrons are scattered by the nuclei thus, they provide significantly better
resolution of light elements and elements with similar atomic numbers than
X -rays.

• Neutron possesses a non-zero spin (S = 1
2
). Consequently it allows the

mapping of magnetic structures and excitations.

Neutrons can be produced by spallation or fission sources. Both techniques
require large scale facilities.

Neutron scattering experiments can be divided into two groups, based on the
energy of the neutron. If the energy of neutron remains unchanged before and
after the scattering we talk about elastic scattering or diffraction. The other case,
when the energy loss/gain of neutron measured, is called inelastic scattering. In
this work we used neutron diffraction to determine the magnetic structure.

The intensity of the scattered beam is linearly proportional to the square of
structure factor F hkl is given by:

Fhkl =
∑

i

bcexp(−iqri)exp(−Wi), (3.21)

where the sum is over the primitive cell, bc is the coherent scattering length, q is
the momentum transfer in reciprocal space, r i is the position of the i th atom and
W i represents the temperature factor.
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The main difference between the X -ray and neutron diffraction is given by
the scattering length bc. While in X -ray scattering the cross section depends
continuously on the number of electrons, for neutrons the cross section is arbitrary
and it is unique for different isotopes of the chemical element [112]. This is the
reason why it is difficult to distinguish neighboring atoms in the periodic table
using X -ray scattering in contrast to neutron scattering.

In this work we used neutron diffraction for magnetic structure determination
of URhIn5 compound, therefore it is necessary to describe the magnetic scatter-
ing of neutrons. The contribution from magnetic scattering leads to additional
diffraction pattern. The magnetic structure factor FM is defined as:

FM = p
∑

j

fj(q)mjexp(−iqri)exp(−Wi), (3.22)

where p = 0.2692·10−12 cm is a constant factor, f j and mj are the magnetic form
factor and magnetic moment of the jth atom, respectively [113].

PANDA - Cold three-axes spectrometer
PANDA (see Figure 3.9) is cold three-axis spectrometer located in FRM II

Heinz-Maier-Leibnitz centre, Munich-Garching [114]. PANDA is used in solid
state research for investigation of spin waves, crystal-field excitations, phonons
and also for diffraction and inelastic scattering. Basic principles of three-axes
spectrometry can be described using Figure 3.9. A polychromatic neutron beam
(white beam) hits a single crystal monochromator (pyrolytic graphite (PG) (200)
in the case of PANDA), which represents the first axis. Neutrons with defined
wavelength are selected due to the Bragg law (Equation 3.1). After monochromiza-
tion, the incident beam interacts with the sample, placed on the sample table.
The orientation of the sample with respect to the incident beam can be changed
by rotating the sample table i.e. the second axis. Neutrons may gain/lose energy
by interacting with the sample and are detected with the detector placed behind
the analyser crystal. On PANDA the detector is a 1D 3He-tube and the analyser
crystal is pyrolytic graphite. The desired energy can be selected by rotation of
the analyser, on the same principle as for the monochromator. This is then the
third axis of the instrument.

To determine the magnetic structure, we performed elastic neutron scattering
which means that the incident (first axis) and the reflected (third axis) neutrons
had same energy and it was kept constant during the experiment.
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Figure 3.9: Real-life (left figure) and schematic (right figure) view of PANDA.
Figures taken from [114].

3.7 Theoretical calculations

The method applied within this work is the density functional theory (DFT) with-
in local density approximation (LDA) [116] and generalized gradient approxima-
tion (GGA) [117, 118]. For this purpose, two independent computational meth-
ods, namely the full potential augmented plane wave plus local orbitals method
(APW-lo) and full potential local-orbital method (FPLO) were used to solve the
single particle Kohn-Sham equations (for more details see [119]). Density func-
tional theory is a quantum mechanical method used to investigate the electronic
structure of many-body systems. DFT replaces the energy of an electron system
with the electron probability density ρ. Its advantage is a little computational
cost compared to other ab-initio calculations such as Hartree-Fock method. Clas-
sical DFT is based on solution of Kohn-Sham equations. Kohn-Sham potential
takes into account electron exchange-correlation term. As we do not know this
exchange-correlation potential of a general system exactly, we use approximate
expressions instead. The most widely used approximation is LDA; the function-
al depends only on density at the coordinate where the functional is evaluated.
GGA represents a numerical approximation which takes into account also the
gradient of the density at the same coordinate.

The APW method solves Kohn-Sham equations not only close to nucleus but
also in the interstitial region. The space of the unit cell is divided into spheres
centered in each atom site and into the interstitial region. In the APW + lo
method local orbitals (lo) are included to improve the APW basis.
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4. Results and discussion

4.1 Synthesis

Single crystalline samples of UIn3, URhIn5 and U2RhIn8 were grown from In
self-flux, using high purity elements (U – SSE, Rh – 3N5, In – 5N). The glass
ampules with the batches placed in alumina crucibles were heated up (rate ∼
200 ◦C/h) to the maximum temperature (950 ◦C in the case of U2RhIn8), kept
there for 10 hours to let the mixture homogenize properly then cooled down
(600 ◦C in the case of U2RhIn8) with a slow rate (3 ◦C/h) and decanted using a
laboratory centrifuge (∼ 2000 RPM). To optimize the size and quality of crystals
we performed many (> 40) experiments using different starting compositions and
temperature ranges. As a result of our growth process single crystals of typical
dimensions of 1 × 1 × 0.5 mm3 were obtained. The temperature range for the
growth of U2RhIn8 together with the growth products is shown in Figure 4.1.

Figure 4.1: The temperature profile used for the successful growth of the U2RhIn8

single crystals. The URhIn5 single crystal with typical dimensions is shown on
the right-hand side.

Except the successful synthesis of URhIn5 and U2RhIn8 we attempted the
preparation of other compounds with the 1-1-5 and 2-1-8 stoichiometry with
various transition and p-metals. Our efforts to prepare ternary compounds, from
In self-flux with transition metals T = Mn, Fe, Co, Ni, Ru, Ir and Pt, resulted
in the growth of UIn3, binary phases such as RhIn3, UIr, RuIn3, Pd3In7 or UIrIn
ternary alloy. As a result of Sn self-flux growth we obtained binary phases USn3,
RhSn2 or CoSn2. Single crystals of UIn3 smaller than 50 < µm were obtained
from starting stoichiometry 1:(5, 10, 15). The growth conditions for selected
compounds are listed in Table 4.1.

36



T U:T :In T 1/T 2 (◦C) Final products
Mn 1:1:15 1100-400 UIn3 (∼ 1 mm), Mn-In binaries
Fe 1:1:15 1100-400 UIn3 (∼ 1 mm)
Fe 2:1:25 1100-400 UIn3 (∼ 1 mm)
Co 1:1:25 900-500 U-In and Co-In binaries
Co 2:1:25 900-500 U-In binaries
Ni 2:1:25 850-450 U-In binaries
Ru 1:1:25 900-500 U-In binaries
Ru 2:1:25 900-500 RuIn3

Rh 1:1:25 950-600 URhIn5, U4Rh3In18 interphase
Rh 1:1:25 1050-750 URhIn5, UIn3 (<100 µm)
Rh 1:1:25 1100-550 URhIn5

Rh 1:1:25 1050-750 URhIn5

Rh 1:2:25 900-450 RhIn3, UIn3

Rh 2:1:25 950-600 U2RhIn8 (<100 µm)
Rh 2:1:25 1050-750 URhIn, URhIn3

Rh 2:1:25 750-300 RhIn3

Rh 2:1:25 900-500 U2RhIn8 (<150 µm), U-In binary
Rh 2:1:25 1100-400 URhIn5, UIn3

Rh 2:1:70 900-500 U2RhIn8

Pd 3:1:25 750-400 U2PdIn8, UIn3 (<50 µm)
Pd 1:1:25 700-300 U-In binaries
Pd 2:1:25 700-300 U-In binaries
Pd 3:1:25 850-450 U-In binaries
Pd 2:1:25 850-450 U2PdIn8, UIn3

Pd 2:1:25 1000-550 UIn3

Ir 1:1:25 950-600 U-Ir binaries, UIrIn alloy
Pt 2:1:25 850-450 UIn3 (<50 µm)
T U:T :Sn T 1/T 2 (◦C) Final products
Co 1:1:25 1100-650 USn3, CoSn2

Rh 1:1:25 1100-650 USn3, RhSn2

Ir 1:1:25 1100-650 UIrSn, U-Sn binaries
U:In T 1/T 2 (◦C) Final products
1:5 800-500 UIn3 (<50 µm)
1:10 800-500 UIn3 (<50 µm)
1:15 800-500 UIn3 (<50 µm)

Table 4.1: Growth conditions and final products of UnTX 3n+2 compounds. The
starting (decanting) temperature is marked as T 1 (T 2). The largest dimension
is stated in the columns.

4.2 Characterization

Energy dispersive X -ray analysis was performed on randomly selected single crys-
tal to determine the precise chemical composition and homogeneity of the sam-
ples. Typical settings of measurements were 800-times magnification and 30 kV
voltage on the electron gun. Results of point scans analyses with standard devi-
ation provided by the ESPRIT software [79] are shown in Table 4.2.

37



UIn3 U2RhIn8 URhIn5

U 27.9 ± 1.1 U 18.3 ± 0.8 U 15.7 ± 1.0
- - Rh 9.2 ± 0.3 Rh 13.7 ± 0.5
In 72.0 ± 1.6 In 72.6 ± 1.9 In 70.5 ± 1.9

Table 4.2: Energy dispersive X -ray analysis; point scan results with standard
deviation.

For EDX analysis, samples were smoothly polished using diamond discs with
grain sizes from 3 µm down to 0.1 µm. The point scans (see Table 4.2) revealed the
composition of desired phases and the mapping scans confirmed the homogeneity
of the samples.

Figure 4.2: The left-hand side shows a polished area of a randomly selected
U2RhIn8 sample in SE detector. The SEM mapping image is depicted on the
right-hand side.

The 2D mapping scans for U2RhIn8 (see Figure 4.2) revealed the good homo-
geneity of the sample. In the case of UIn3 the sample surface was contaminated
with oxides. Mapping scan for URhIn5 (not shown), also revealed good homo-
geneity of the sample.

To check the structure and phase purity of the samples, single crystal X -
ray diffraction measurement was performed on U2RhIn8 and both single crystal
and powder X -ray diffraction was measured on URhIn5. Powder diffraction of
U2RhIn8 was not measured due to small amount of crystals. The analysis of
powder diffraction pattern of URhIn5 (see Figure 4.3) confirmed the HoCoGa5-
type structure with space group P4/mmm (No. 123) and lattice parameters a

= 4.6168(1) Å and c = 7.4145(1) Å. During Rietveld refinement of the powder
diffraction pattern only the URhIn5 phase was included. Every observed peak in
the pattern can be described by the reflections from the URhIn5 phase, except
the one at 2θ = 32.920◦ which arises from the (h k l) = (1 0 1) peak of pure
indium (In).

Single crystal X -ray diffraction was performed on Rigaku Rapid instrument
and on a Gemini X -ray diffractometer. The lattice parameters are listed an
compared in Table 4.3. The atomic coordinates and Wyckoff positions obtained
from single crystal X -ray diffraction on Gemini diffractometer are listed in Table
4.4
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Figure 4.3: Powder X -ray diffraction pattern of URhIn5. Vertical green lines
show the Bragg positions of the URhIn5 phase. Blue line depicts the difference
between observed data (red points) and calculated fit (solid black line).

Rigaku Gemini
Compound a (Å) c (Å) a (Å) c (Å)

URhIn5 4.6159(2) 7.4120(6) 4.6210(5) 7.4231(7)
U2RhIn8 4.6163(6) 12.0144(4) 4.6077(6) 11.9911(15)

Table 4.3: Lattice parameters of URhIn5 and U2RhIn8. Measurement results are
compared from single crystal diffraction performed on Rigaku Rapid instrument
[85] and single crystal X -ray diffraction performed on Gemini diffractometer.

Compound Wyckoff position x y z

URhIn5

U 1a 0 0 0
Rh 1b 0 0 0.5
In(1) 4i 0.5 0 0.30179(11)
In(2) 1c 0.5 0.5 0

U2RhIn8

U 2g 0 0 0.30883(7)
Rh 1a 0 0 0
In(1) 4i 0 0.5 0.12263(11)
In(2) 2h 0.5 0.5 0.30916(14)
In(3) 2e 0 0.5 0.5

Table 4.4: Atomic coordinates and Wyckoff positions of URhIn5 and U2RhIn8

obtained from single crystal X -ray diffraction.
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Laue patterns were taken to verify the orientation and quality of single crys-
tals. Laue pattern of URhIn5 single crystal is shown on Figure 4.4 compared to
calculated pattern using LauePt software [120].

Figure 4.4: Laue pattern of URhIn5 single crystal with its c-axis oriented per-
pendicular to the image plate is shown on the left-hand side. Calculated Laue
patter using LauePt software [120] is shown on the right-hand side.
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4.3 Physical properties

4.3.1 UIn3

The UIn3 compound forms the basic building ’block’ of the layered tetragonal
compounds studied within this thesis. We confirmed the magnetic properties
measured previously [14, 18] and obtained a conclusive set of data.

Figure 4.5: Temperature dependence of magnetic susceptibility and inverse mag-
netic susceptibility of UIn3 in magnetic field µ0H = 1 T oriented along [100] and
[110] direction. Vertical dashed line shows the position of the Néel temperature
obtained from the maximum of the ∂(χT )/∂T curve.

The temperature dependence of magnetic susceptibility and inverse magnetic
susceptibility in magnetic field oriented along the [100] and [110] direction is
shown on Figure 4.5. TN was obtained as the maximum of the ∂(χT )/∂T curve
[121]. The behavior of susceptibility and inverse susceptibility curves resembles
the previously published data [14, 18]. First, the susceptibility increases with
cooling; this increase and the shape of curves is similar in both [100] and [110]
direction suggesting negligible magnetocrystalline anisotropy in this compound.
The maximum value of magnetic susceptibility is reached at T χmax

= 130 K,
consistently with literature [14]. A sharp decrease of χ(T ) is observed in the
vicinity of transition temperature TN = 88 K reaching its minimum value at T
∼ 40 K. At low temperatures the magnetic susceptibility shows an upturn and
increases to the lowest measured temperature which is probably connected with
impurities within the sample. Similar behavior was observed in the structurally
related CePd3 compound [123, 124]

The inverse magnetic susceptibility shows Curie-Weiss behavior above T ∼
150 K (see Figure 4.5). This linear temperature dependence was fitted according
to Equation 2.8. The effective magnetic moments µeff and paramagnetic Curie
temperatures θP are shown in Table 4.5. The disagreement between the published
and our data probably arises from the different fitting interval, amount of impu-
rities and/or size of the sample (diamagnetic contribution from the glue used to
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fix the sample).

UIn3 µeff (µB/U) θP (K) µeff (µB/U) [14] θP (K) [14]
H ‖ [100] 3.16 -300 3.25 -176
H ‖ [110] 3.15 -310 - -

Table 4.5: Effective magnetic moments µeff and paramagnetic Curie temperatures
θP from the Curie-Weiss fits. Results are compared to those published by Tokiwa
et. al. [14].

4.3.2 URhIn5

URhIn5 was prepared as the first ternary compound within the UnT In3n+2 fam-
ily of compounds [1, 2]. In contrast to the cubic structure of UIn3, it is more
2D-like, providing the possibility to investigate the ’dimensionality’ effect on the
5f magnetism by means of magnetic susceptibility. Figure 4.6 shows the mag-
netic susceptibility of URhIn5 in a magnetic field of 2 T oriented along the [100]
and [001] directions. The temperature dependence of χ(T ) shows a significant
anisotropy where the [001] axis is the magnetic easy axis. The magnetic sus-

Figure 4.6: Temperature dependence of (inverse) magnetic susceptibility of
URhIn5 in magnetic field µ0H = 2 T oriented along the [100] and [001] direction.
Vertical dashed line shows the position of the Néel temperature obtained as the
maximum of ∂(χT )/∂T curve. Solid lines represent the Curie-Weiss law fit.

ceptibility starts to increases when cooling down from the room temperature.
This increase is more pronounced in the [001] direction. The maximum value of
χ(T ) is reached at T χmax

= 160 K consistently with literature [1]. The suscep-
tibility shows a rapid decrease with decreasing temperature below TN = 98 K.
This decrease is much more prominent for magnetic field in the [001] direction
indicating that the ordered moments point to this direction in the ordered state.
Recent nuclear quadrupole measurements support this speculation [122]. At T

∼ 50 K, the susceptibility becomes almost temperature independent and starts
to increase slightly again below T ∼ 10 K. Noteworthy, the χ(T ) curve for H ‖
[100] differs significantly from published data [1]. The low-temperature increase
of the susceptibility, as is seen in Figure 4.6 is much less pronounced in our data.
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This observation could point to an extrinsic nature of the upturn which means
a smaller amount of impurities in our sample compared to [1] similarly to UIn3

measurement.
The temperature dependence of inverse magnetic susceptibility is shown in

Figure 4.6. From the character of the 1/χ(T ) curve above the Néel temperature
it is evident, that the behavior of the URhIn5 does not follow the Curie-Weiss law
in the H ‖ [100] direction. The linear behavior appears probably above 400 K as
it was observed previously in UPtGa5 [125]. We formally applied the Curie-Weiss
law above 200 K to be able to compare our results with the previously published
data [1]. Optimal fitting of the data resulted in an effective magnetic moment µeff

= 3.71 µB/U, which is very close to the value of free U3+ ion (3.62 µB). Rather

more striking are the large negative Curie-Weiss temperatures θ
[001]
P = −500 K

for H ‖ [001] and θ
[100]
P = −900 K for H ‖ [100], indicating strong predominant

antiferromagnetic spin exchange. The significant difference between the values
θ
[001]
P and θ

[100]
P points to strong magnetocrystalline anisotropy in URhIn5.

Figure 4.7: Magnetic field dependence of magnetization of URhIn5 measured at
4 K in magnetic field oriented along the [100] and [001] axes.

The observed shallow maximum in χ(T ) (see Figure 4.6) for H ‖ [001] at T
∼ 160 K is in agreement with that observed before [1] and discussed in context
of a characteristic Kondo scale. When assuming that Kondo physics applies in
URhIn5 and neglecting crystal field influence, the Kondo temperature amounts
to TK = |θP|/4 giving 125 K for θ

[001]
P [126].

The magnetic field dependence of magnetization (see Figure 4.7) of URhIn5

was measured at T = 4 K for magnetic field oriented along the [001] and [100]
directions. Both magnetization curves reveal linear character up to 7 T. Using
a relation kBT χmax

≃ µBH c [127], where T χmax
= 160 K defines the position of

the maximum of the magnetic susceptibility data, and H c is the critical magnetic
field of metamagnetic transition, we obtain a value of H c = 240 T for URhIn5.
This extremely large value explains the absence of metamagnetic transition in
our experimental data.
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Figure 4.8: Temperature dependence of specific heat of URhIn5. The transition
into the antiferromagnetic state at TN = 98 K is marked by an arrow. Dashed
line shows the fit over the whole temperature range according to Equation 3.9.
Inset: low-temperature part of the heat capacity with a C /T = γ + βT 2 fit.

Figure 4.8 shows the temperature dependence of specific heat C (T ) of URhIn5.
The clear λ-shaped anomaly at TN = 98 K indicates a 2nd-order phase transition,
consistently with literature [1]. However, contrary to those data, no additional
feature in C (T ) at T ∼ 40 K is observed showing very good quality of the sin-
gle crystal. Since we do not have a non-magnetic analog to the URhIn5, we
can obtain only rough estimates of the contribution of conduction electrons and
phonons. The magnitude for the contribution of conduction electrons was de-
termined from a C /T = γ + βT 2 fit (see inset of Figure 4.8) to the data (fit
interval 1 K < T < 10 K). The value of Sommerfeld coefficient yields γ = 60.7
mJ·mol−1·K−2 and the Debye temperature θD = 165 K (see Figure 4.8) was ob-
tained from fitting the whole temperature range with an empirical polynomial
function appropriate for the Debye model (see Equation 3.9 [95]).

Figure 4.9 presents data in applied magnetic field of 9 T along the [001] di-
rection. The direct comparison with the zero-field measurement reveals that the
position of Néel temperature is almost unaffected within experimental uncertain-
ty. Interestingly, the CeRhIn5 counterpart is rather insensitive to the application
of magnetic field along the same direction as well [7].

Figure 4.10 summarizes the overall temperature dependence of the electrical
resistivity for current j applied along the [100], [110] and [001] axes. The room
temperature resistivity equals 180 µΩcm in the basal plane and is only slightly
lower for the c-axis direction ρ[001] = 170 µΩcm. Noteworthy is the extremely
high value of the residual resistivity ratio (RRR) exceeding 200 in the [100] direc-
tion. The RRR points to the high quality of the obtained single crystals. Note
that the room temperature resistivity reaches almost the same value as reported
by Matsumoto and co-workers [1]. Above TN, the resistivity in all directions
shows rather weak temperature dependence with positive ”metallic” temperature
coefficient dρ/dT. The data manifest distinct anomalies with onset at around ∼
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Figure 4.9: Comparison of heat capacity data in zero and 9 T magnetic field.
Vertical dashed line shows the position of the transition temperature TN = 98 K.

Figure 4.10: Temperature dependence of the electrical resistivity for current ap-
plied along the [100], [110] and [001] directions. The arrow marks the onset of the
antiferromangetic phase transition. The inset shows the transition in more detail.
Dashed line shows TN obtained from the heat capacity measurements. Right fig-
ure shows the low-temperature fit of the electrical resistivity with current applied
along the [001] direction.

100 K for ρ[001] and at a slightly lower temperature T = 98 K for ρ[100] and ρ[110],
respectively. Accordingly, the onset marks TN and the increase in resistivity re-
sults from opening of the SDW gap. Below TN the resistivity in all directions
drops rapidly. The temperature dependence of ρ down to lowest T can be fitted
using the equation appropriate for an energy gap (∆) antiferromagnet with an
additional T 2 Fermi-liquid term (see Equation 3.19).

By optimal fitting of ρ[100] we obtain a residual resistivity value ρ0 = 1 µΩcm,
an electron-electron scattering coefficient A = 0.013 µΩcm·K−2, an electron-
magnon and spin-disorder scattering prefactor D = 0.35 µΩcm·K−1 and ∆ =
82 K. Our fit yielded similar values of the parameters for electrical current along
the [110] direction. However in the case of j ‖ [001] we obtained a somewhat
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higher value of the gap energy ∆ = 119 K.
After evaluating the data from specific heat and electrical resistivity mea-

surements of URhIn5, the Kadowaki-Woods [128] ratio A/γ2 could be calculated.
Here, A is the coefficient of the quadratic term in the temperature dependence of
electrical resistivity. The value of 3.6·10−6 µΩcm·(mol·K/mJ)2 was obtained for
URhIn5, being one order of magnitude lower than in the common heavy-fermion
systems.

4.3.3 U2RhIn8

The U2RhIn8 compound represents the missing link, in the sense of structural
dimensionality, between the purely cubic UIn3 and the 2D-like URhIn5. After
the successful synthesis of this compound in single crystalline form we focused on
the investigation of magnetic and transport properties.

The temperature dependence of specific heat C (T ) for U2RhIn8 is presented
in Figure 4.11; a clear λ-shaped anomaly at TN = 117 K indicates a 2nd-order
phase transition. Closer observation of C (T ) versus T curve of U2RhIn8 reveals a
small anomaly at T ∼ 100 K, which probably arises from a tiny amount of URhIn5

(we found no evidence from EDX measurements to support this statement). The
magnitude of the conduction electron contribution to the heat capacity was de-
termined from a C /T = γ + βT 2 fit to the data from temperature interval 1 K
< T < 10 K. Since we do not have a non-magnetic analog, the results of the fit
are only rough estimates. For U2RhIn8, the value of the Sommerfeld coefficient
yielded γ = 47 mJ·mol−1·K−2 and the Debye temperature θD = 150 K was ob-
tained from fitting the whole temperature range with the empirical polynomial
function shown before (see Equation 3.9).

Figure 4.11: Temperature dependence of specific heat for U2RhIn8. The tran-
sition into the antiferromagnetic state is marked by an arrow at TN = 117 K.
Calculated value of heat capacity is marked with a dashed line. Inset: low-
temperature part of the heat capacity with a fit to determine the magnitude for
the contribution of conduction electrons.

46



Similarly to its more 2D-like counterpart, the transition temperature of U2RhIn8

is not affected by applied magnetic field up to 9 T (see Figure 4.12).

Figure 4.12: Comparison of the heat capacity data in zero and 9 T magnetic field
applied along the [001] direction. Vertical dashed line shows the position of the
transition temperature TN = 117 K.

Figure 4.13 shows the magnetic susceptibility of U2RhIn8 measured up to
400 K in a magnetic field of 1 T oriented along the [100] and [001] directions.
The temperature dependence of χ(T ) shows a significant anisotropy similarly to
its ’115’ counterpart. The Néel temperature was determined as the maximum of
the ∂(χ(T ))/∂T curve [121]. The behavior of the susceptibility curves resembles
the one shown for URhIn5. The magnetic susceptibility increases with decreasing

Figure 4.13: Temperature dependence of (inverse) magnetic susceptibility of
U2RhIn8 in magnetic field µ0H = 1 T oriented along the [100] and [001] di-
rection. Vertical dashed line shows the position of the Néel temperature obtained
as the maximum of ∂(χT )/∂T curve. Solid lines represent the Curie-Weiss law
fit.

temperature up to 150 K, where the maximum of the χ(T ) curve is reached.
This increase is more pronounced in the [001] direction. The susceptibility shows
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a rapid decrease with decreasing temperature below TN = 117 K. This decrease
is much more prominent for magnetic field in the [001] direction indicating that
the ordered moments point to this direction.

The temperature dependence of inverse magnetic susceptibility is shown in
Figure 4.13. From the character of the 1/χ(T ) curves above the Néel tempera-
ture it is evident that the behavior of U2RhIn8 does not follow the Curie-Weiss
law in the H ‖ [100] direction. The linear behavior of 1/χ(T ) in the [001] direction
was observed above 350 K (see Figure 4.13) similarly to the structurally related
UPtGa5 compound [125]. Such recovery of Curie-Weiss law at high temperatures
indicates a localized nature of 5f electrons. Thus, a crossover of the 5f elec-
trons from a low-temperature itinerant nature to a high-temperature localized
one is observed. This crossover effect is characteristic for many heavy-fermion
compounds such as UPt3, UPd2Al3 and URu2Si2 [125].

In accordance with previous arguments, we applied the Curie-Weiss law in
the H ‖ [001] direction. We obtained an effective magnetic moment of µeff = 3.45
µB/U which is close to the value of free U3+ ion (3.62 µB). The large negative
value of paramagnetic Curie temperature θP = -230 K reflects the huge magne-
tocrystalline anisotropy in U2RhIn8 induced by anisotropic 5f -ligand hybridiza-
tion. The Curie-Weiss law fit in the H ‖ [100] direction results in an effective
magnetic moment µeff = 3.62 µB/U and a paramagnetic Curie temperature θP =
-370 K.

Applying similar approach in the calculation of Kondo-temperature TK =
|θP|/4, as in URhIn5, we obtain TK = 57.5 K for θ

[001]
P [126].

Figure 4.14: Magnetic field dependence of magnetization of U2RhIn8 measured
at 4 K in magnetic field oriented along the [100] and [001] axes.

The magnetic field dependence of magnetization (see Figure 4.14) was mea-
sured at T = 4 K for magnetic field oriented along the [001] and [100] directions.
Both magnetization curves reveal linear character up to 7 T; the [100] axis is al-
most twice higher than the magnetization in the other direction, which resembles
the behavior of its more 2D counterpart [2]. On the other hand, it differs from
the results published by Matsumoto et al. [1]. Using a relation kBT χmax

≃ µBH c
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[127], where T χmax
= 150 K corresponds to the maximum in the magnetic suscep-

tibility data, and H c is the critical magnetic field of metamagnetic transition, we
obtain a value of H c = 220 T for U2RhIn8. This extremely large value explains
the absence of metamagnetic transition in our experimental data.

Figure 4.15 shows the temperature dependence of the electrical resistivity of
U2RhIn8 for electrical current j applied along the [100] and [110] axes. The room
temperature resistivity equals 320 µΩ·cm along the [100] direction and is only
slightly lower for the [110] direction (310 µΩ·cm). The residual resistivity ratio
(RRR) exceeds 500 being a sign of a sample of very high quality. The electri-
cal resistivity shows a monotonous decrease down to the value of the transition
temperature TN. Near the transition temperature TN = 117 K, a tiny kink is
observed, accompanied by a second-order phase transition and a formation of a
gap at the Fermi surface. Subsequently, the resistivity decreases rapidly with
decreasing temperature. The low-temperature part of the electrical resistivity
(see Figure 4.15) can be fitted well using the equation appropriate for and en-
ergy gap antiferromagnet (Equation 3.19) [97]. In the interval 2 K < T < 30 K
best fitting of ρ[100] we obtain a residual resistivity value ρ0 = 0.56 µΩcm, an
electron-electron scattering coefficient A = 0.006 µΩcm·K−2, an electron-magnon
and spin-disorder scattering prefactor D = 1.1 µΩcm·K−1 and the energy gap ∆
= 118 K. Our fit yielded similar values of the parameters for electrical current
along the [110] direction.

Figure 4.15: Temperature dependence of the electrical resistivity for current ap-
plied along the [100] and [110] directions. Arrow marks the position of the transi-
tion temperature TN. Right figure shows the low-temperature fit of the electrical
resistivity with current applied along the [100] direction.

After evaluating the data from specific heat and electrical resistivity mea-
surements of U2RhIn8, the Kadowaki-Woods [128] ratio A/γ2 could be calcu-
lated. The value of 2·10−6 µΩcm·(mol·K/mJ)2 was obtained for U2RhIn8. The
Kadowaki-Woods ratio for U2RhIn8 and URhIn5 is one order of magnitude lower
than in the common heavy-fermion systems.

In order to investigate the effect of hydrostatic pressure on the transition
temperature TN, we measured the temperature dependence of electrical resistivity
using a double-layered (CuBe/NiCrAl) piston-cylinder type pressure cell with
Daphne 7373 oil as a pressure transmitting medium. Pressures up to 3.2 GPa
were reached.
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The temperature dependence of electrical resistivity for electrical current ap-
plied along the [100] direction under applied hydrostatic pressure is shown in
Figure 4.16. The transition temperature TN gradually increases with increasing
pressure from 117 K at ambient pressure up to 126 K at 3.2 GPa with the rate
of 5.4 ± 0.9 K·GPa−1. This slope corresponds well to the pressure evolution of
TN in URhIn5 [1] and UIn3 [14].

The temperature-pressure phase diagram for U2RhIn8 is shown in Figure 4.16.
The gradual increase of TN can be explained using spin-fluctuation theory of
an itinerant 5f electron system alongside with the Hubbard model [129, 130].
According to this scenario, hydrostatic pressure induces an increase in the hy-
bridization between 5f and conduction electrons, which strengthens the exchange
coupling J between U ions. On the other hand, it also decreases the 5f magnetic
moment at the uranium site.

Figure 4.16: Temperature-pressure phase diagram of U2RhIn8. Inset shows the
temperature dependence of the electrical resistivity for electrical current applied
along the [100] direction at ambient pressure and at 3.2 GPa. Arrows indicate
the transition at TN.

The pressure evolution of TN for U2RhIn8 is comparable to those of UIn3 [14]
and URhIn5 [1] as is shown in Figure 4.17.

In order to acquire information about the temperature dependence of lattice
parameters for U2RhIn8, dilatometry has been measured using a Vienna-type
capacitance cell for thermal expansion in the PPMS 14T apparatus. The dimen-
sions (1 × 1 × 0.3 mm3) of selected single crystals allowed the measurement of
thermal expansion only along the [001] direction.

The measurements were performed in zero magnetic field and the heating/
cooling sequence with a rate of 0.1 K/min was repeated several times to confirm
that the obtained results are reproducible. The results of thermal expansion
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Figure 4.17: Temperature-pressure phase diagrams of UIn3, URhIn5 and U2RhIn8

compounds.

Figure 4.18: Relative length change of U2RhIn8 measured parallel to c-axis during
heating/cooling. Vertical line shows the position of the Néel temperature obtained
from heat capacity measurements.

show a hysteresis around the transition temperature TN = 117 K obtained from
the heat capacity measurement (see Figure 4.18). Contrary to the heat capacity
measurements, where the character of the peak at TN corresponds to a typical
2nd-order phase transition, results from dilatometry point to a 1st-order character
of the phase transition. The coefficient of linear thermal expansion α(T ) =
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1
l
∂l
∂T

was calculated as a numerical derivative of relative length change with the
temperature.

Figure 4.19: Temperature dependence of the coefficient of linear thermal expan-
sion during heating/cooling of U2RhIn8 obtained as a numerical differentiation of
relative length change with temperature. Vertical line shows the position of the
Néel temperature obtained from the heat capacity measurements.

Since heat capacity measurements pointed to a 2nd-order phase transition in
U2RhIn8, results from the thermal expansion measurements were analyzed with
respect to the Ehrenfest relations for the 2nd-order phase transition [131]:

∂TN

∂p
= Vmol ·

∆α

∆(C/T )
(4.1)

where V mol is the molar volume, ∆α is the jump in the temperature dependence
of the coefficient of linear thermal expansion and ∆(C /T ) represents the jump in
the heat capacity data (see Figure 4.20). The measurements of thermal expansion
and heat capacity at ambient pressure allow a qualitative estimation of the slope
of the change of TN with applied hydrostatic pressure. Better agreement with
experiment is obtained when assuming that the change in the coefficient of the
linear thermal expansion is the same in all directions of the tetragonal lattice.

Results from thermal expansion measurements, on the other hand, indicated a
1st-order phase transition with a small hysteresis around TN = 117 K (see Figure
4.18). Building on that premise we further analyzed the results with respect to
Clausius-Clapeyron relation appropriate for a 1st-order phase transition:

∂TN

∂p
=

∆V

∆S
, (4.2)

where ∆V is the volume change and ∆S is the jump in the magnetic entropy
around the transition temperature (see Figure 4.21). Since measurements of ther-
mal expansion could be performed only in the [001] direction, the volume change
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Figure 4.20: Estimation of the jump in the coefficient of linear thermal expansion
(left figure) during heating and the jump estimated from heat capacity data for
U2RhIn8 (right figure). Vertical line shows the position of the Néel temperature
obtained from the heat capacity measurements.

Figure 4.21: Temperature dependence of heat capacity around the transition
temperature and jump in the magnetic entropy calculated as ∆S =

∫

C
T
dT .

was calculated assuming that the relative length change in the [100] direction is
similar (isotropic volume change approximation).

The results from Ehrenfest and Clausius-Clapeyron relations are listed in Ta-
ble 4.6 and compared to the result obtained from the direct measurement of
temperature dependence of electrical resistivity under applied hydrostatic pres-
sure. The direct comparison of the results points to a 1st-order phase transition in
U2RhIn8 which is to be confirmed by heat pulse measurements using the PPMS
apparatus.
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∂TN/∂p (K·GPa−1)
Ehrenfest 0.5

Isotropic Ehrenfest 1.5
Clausius-Clapeyron 3.3

Experiment 5.4

Table 4.6: The slope of the change of TN with applied hydrostatic pressure from
Ehrenfest relation, isotropic Ehrenfest relation, Clausius-Clapeyron relation and
direct measurement.

4.3.4 Neutron diffraction

Single crystals of URhIn5 were carefully selected for elastic neutron scattering
measurement on the PANDA instrument. The selection procedure included the
confirmation of desired composition and homogeneity by EDX analysis and ori-
entation by Laue method. Crystals with the best quality were then glued with
GE-varnish to thin aluminum plates (to minimize the background during neutron
diffraction) (see Figure 4.22) with the crystals’ c-axis perpendicular to the plate
and with the a-axis parallel to the other crystals. The total mass of the single
crystals was 8 ∼ 10 mg per each plate. Recent experiments of zero-field nuclear

Figure 4.22: Aluminum plates with single crystals of URhIn5 glued to its surface
in [001] orientation.

magnetic resonance and nuclear quadrupole resonance on URhIn5 [132] revealed
all possible propagation vectors for this compound: k = (1/2,

1/2, 0), k = (1/2,
1/2,

1/2), k = (1/2, 0,
1/2) and k = (1/2, 0, 0).

By systematic searching around proposed positions in reciprocal space and
mapping through the first Brillouin zone, we have found the magnetic Bragg
satellites described by the propagation vector k = (1/2,

1/2,
1/2). Magnetic and

nuclear reflections were collected in both the ’hot’ and ’cold’ region of PANDA
with incident wave vectors k i = 2.570 Å−1 using pyrolytic graphite filter and
k i = 1.57 Å−1 using beryllium filter, respectively. In total, 8 independent mag-
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netic reflections have been measured, 5 of them had huge background and thus
low quality. Figure 4.23 shows the comparison of intensities of measured and
calculated reflections in FullProf software.

Figure 4.23: Comparison of intensities of measured and calculated reflections in
FullProf software.

Figure 4.24: Temperature dependence of one nuclear and one magnetic reflection.
The experimental point at the lowest measured temperature, in the case of the
magnetic reflection, was not included in the fit.
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Temperature dependence of the intensity of one nuclear (h k l) = (0 0 2) and
one magnetic reflection (h k l) = (0.5 0.5 0.5) was measured (see Figure 4.24).
The nuclear intensities do not change with temperature, confirming the absence
of ferromagnetically coupled sublattices below TN. For the magnetic reflection,
the data were fitted to the power law I ∝ (TN − T )2β [133] resulting in β = 0.23
as an order parameter. This value suggests a 3D character of magnetic ordering.

Figure 4.25: Magnetic structure of URhIn5 obtained from the neutron diffraction
measurement. Arrows depict the moments on uranium atoms.

Although the number of identified magnetic reflections was relatively small,
it was enough for the magnetic structure determination (see Figure 4.25) and a
rough estimation of magnetic moments. The magnetic moment per uranium site
is µ = 1.65 ± 0.11 µB.
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4.3.5 Theoretical calculations

The spin-polarized LSDA calculation splits the spin-up and spin-down bands with
spin magnetic moment at uranium site 2.17 µB. Since strong magnetocrystalline
anisotropy is present, the spin-orbit coupling is also included into calculations.
The calculated spin magnetic moment at uranium site decreases toM S = 1.744 µB

and the orbital magnetic moment M L = -2.418 µB is antiparallel. Magnetic mo-
ments located at rhodium and indium sites are both smaller than 0.1 µB. Total
uranium magnetic moment is |M T | = 0.674 µB. From comparison with URhIn5

we expected larger total uranium moment about |M T | = 1.6 µB. Thus, the cor-
relation movement of 5f electrons is not negligible. Therefore we used LSDA+U
method to describe correlated movement of 5f electrons. Tuning effective Hub-
bard U we have found spin magnetic moment M S = 1.738 µB and orbital magnetic
moment M L = -3.3 µB providing the total magnetic moment |M T | = 1.592 µB for
medium effective U = 1.3 eV. In the case of URhIn5 the total magnetic moment
resulted in |M T | = 1.618 µB for the effective U = 1.5 eV. We are fully aware that
such calculation loses its first-principle character on this level, but on the other
hand, we show that these heuristically derived values of effective U allow us to
obtain valuable results. The value of total magnetic moment on uranium site in
URhIn5 corresponds to the one obtained from neutron diffraction measurements
µ = 1.65 ± 0.11 µB/U.
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Conclusions

In the presented work, we focused our attention on the 5f magnetism of new
uranium compounds which have a crystal structure identical to the well known
cerium-based superconductors such as CeCoIn5 [5] and Ce2CoIn8 [8]. Single crys-
tals of UIn3, URhIn5 and the novel U2RhIn8 phase were synthesized using the
In self-flux method and characterized by the microprobe analysis and various X -
ray diffraction methods (single crystal, powder and Laue diffraction) and their
properties were studied by both macroscopic (magnetization, heat capacity, elec-
trical resistivity and thermal expansion subjected to high magnetic fields up to
9 T and hydrostatic pressures up to 3.2 GPa) and microscopic (neutron diffrac-
tion) measurements. The UnRhIn3n+2 compounds adopt the layered tetragonal
Ho2CoGa3n+2 (n = 1, 2) structure type with a space group P4/mmm; UIn3 crys-
tallizes in the cubic AuCu3-type structure with a Pm3̄m space group. The struc-
ture consists of UIn3 ’blocks’ and T In2 stacked sequentially along the tetragonal
c-axis.

���
��� ��� ��� ���

�
�
�	


�

��

�

���

���

���

����

������

�������

Figure 4.26: TN vs. c/a diagram depicting the evolution of transition tem-
perature with respect to increasing c/a ratio. The points are accompanied by
the structures UIn3 (cubic), URhIn5 (tetragonal) and U2RhIn8 (tetragonal) com-
pounds. Solid black line is a guide to the eye.

All three uranium compounds undergo a transition into the antiferromagnet-
ic state at TN = 88 K for UIn3, TN = 98 K for URhIn5 and TN = 117 K for
U2RhIn8. The Néel temperature increases with increasing c/a ratio (see Fig-
ure 4.26). Electrical resistivity measurement revealed the very high quality of
the studied ternary compounds with RRR exceeding 200 and 500, respective-
ly. Near the transition temperature a tiny kink is observed, accompanied by a
2nd-order-like phase transition and a formation of a gap at the Fermi surface.
The temperature dependence of magnetic susceptibility for URhIn5 and U2RhIn8

reveals a strong magnetic anisotropy and suggests that both systems undergo
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an itinerant-localized crossover at high temperatures above 300 K, similar to
other uranium-based compounds (UPd2Al3, URu2Si2 [125]), including UPtGa5
[125] from the same group of compounds. According to the heat capacity mea-
surements, the antiferromagnetic order is very resistant against the application of
external magnetic field up to 9 T. The application of the hydrostatic pressure sup-
ports the robustness of the antiferromagnetic phase in both ternary compounds
with similar pressure coefficients [1]. The gradual increase of TN in these com-
pounds can be explained using spin-fluctuation theory of an itinerant 5f electron
system alongside with the Hubbard model [129, 130]. According to this sce-
nario, hydrostatic pressure induces an increase in the hybridization between 5f
and conduction electrons, which strengthens the exchange coupling J between U
ions.

Thermal expansion measurement revealed a hysteresis around the Néel tem-
perature which suggests a 1st-order phase transition in U2RhIn8. This is an
unexpected result, as the heat capacity measurements point to a 2nd-order phase
transition similar to URhIn5 and UIn3. This contradiction could be explained if
we consider the difficulty of measuring the extremely narrow peak of the 1st-order
transitions in the specific heat. The transition could be then missed even when
performing several attempts. The order of transition was further analyzed with
respect to the Ehrenfest and Clausius-Clapeyron relations. The experimental
results from electrical resistivity under applied hydrostatic pressure show better
correspondence with the theoretical prediction for the 1st-order phase transition
(see Table 4.6) supporting our speculations.

Neutron diffraction measurement of URhIn5 revealed the arrangement of mag-
netic moments with a propagation vector k = (1/2,

1/2,
1/2) and the determined

magnetic moment per uranium ion is µ = 1.65 ± 0.11 µB. This commensu-
rate structure differs from the incommensurate magnetic structure in the related
CeRhIn5 which is characterized by a propagation vector k = (1/2,

1/2, 0.297) in
the ground state [7]. Microscopic measurements are needed to reveal the details
of magnetic moment arrangements in U2RhIn8. A proposal has been successfully
accepted for the magnetic structure determination of the U2RhIn8 compound on
the D10 instrument at ILL, Grenoble.

The character of the structural dimensionality develops from 3D towards 2D
when spanning the series: UIn3 (1-0-3) → U2RhIn8 (2-1-8) → URhIn5 (1-1-5)
which makes it unique among related tetragonal 5f systems. In the other cases,
either only the cubic compound (USn3, UPb3 [17]) or the cubic compound (UGa3
[16]) together with its 1-1-5 (or 2-1-8) parent system (T = Fe, Co, Ni, Pd, Ir,
Pt) are known [1, 19, 20, 22]. The Ga-based compounds with T = Fe, Rh,
which form both 1-1-5 and 2-1-8, are paramagnetic. TN vs. m/n diagram can
be constructed, where m and n represent the number of RhIn2 and (U,Ce)In3

layers, respectively, for the investigated ternary compounds (see Fig. 4.27) in
order to study the effect of stacking composition on the magnetic ordering. In
contrast to the cerium compounds [134], the Néel temperatures of UnRhIn3n+2

decrease with respect to the increasing m/n ratio. A possible explanation of
the opposite behavior in both series is given by the different driving microscopic
mechanisms in the compounds. These mechanisms in Ce-based compounds are
mostly RKKY-type while in the uranium compounds the 5f -ligand hybridization
plays a substantial role. Moreover, the energy scales in both systems differ by
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Figure 4.27: TN vs. m/n diagram depicting the relationship of the stacking
composition and magnetism of uranium layered structures in contrast to their
cerium analogs. The points are accompanied by the tetragonal structures and
transition temperatures of (U,Ce)RhIn5 and (U,Ce)2RhIn8 compounds. Dashed
black line is a guide to the eye.

two orders of magnitude, as the cerium-based compounds order magnetically well
below 10 K while the ordering temperature in the case of U-based compounds
exceeds 100 K. This behavior will be a subject of further investigation.
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