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Introduction

The Cox proportional hazards model is the most widely used tool for modelling
the effect of covariates on time to event in the presence of censoring. It is a
very flexible model since no distribution has to be specified for the event times.
However, the model is not universal. The proportional hazards assumption – the
central topic of the thesis – has to be fulfilled for the model to be applicable.
Whether the assumption is plausible should be subject to careful inspection.

The thesis aims to make a contribution in several aspects. First, an overview
of the tests of the proportional hazards is given. Such overviews are available
in the literature (Ng’andu, 1994; Therneau and Grambsch, 2000) but more re-
cent developments including those of Lin et al. (2006) are included in the thesis.
Second, we provide a solid introduction to the field of survival analysis in Chap-
ter 1 establishing unified terminology and notation which allows to present the
derivations of the tests by Grambsch and Therneau (1994) and Lin et al. (1993)
in a more compact way than is available in the literature. Third, the above men-
tioned Lin-Zhang-Davidian test is newly implemented in R as it is not part of
any standard library yet. Fourth, simulation study investigating the power and
the size of the tests is conducted complementing the very recent results of Grant
et al. (2013). Furthermore, the tests are applied to medical data which enables a
more detailed comparison. The analysis is performed with R 2.14.2. Probability
theory background is provided in the Appendix.

Strong emphasis is placed on the continuity of presentation. Some of the methods
such as the Lin-Zhang-Davidian test are only described in scientific papers so far
which focus on bringing new ideas rather than thorough explanation. Great deal
of effort is made in preserving the consistency of notation which varies spectac-
ularly in the literature. In attempt to make matters as clear as possible, each
subscript is reserved for a single purpose: i = 1, . . . , n for individuals, j = 1, . . . , p
for covariates and k = 1 . . . ,m for events. This enables to omit much of the
omnipresent indexing without compromising in clarity of exposition. Random
objects are denoted in upcase and vector objects are written in bold unless it
contradicts an established notation.
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1. Survival Analysis

Let T1, . . . , Tn be independent non-negative continuous random variables denoting
the event times and let C1, . . . , Cn be independent non-negative random variables
denoting the censoring times. Denote T ?i = min(Ti, Ci) time to either event or
censoring – whichever occurs first – and ∆i = 1(Ti ≤ Ci) the event indicator. Let
t1 < . . . < tm represent the observed event times and set t0 = 0. Denote τ the
time of the end of the study.

1.1 The Case of No Covariates

First suppose that the observed information is contained in independent identi-
cally distributed random vectors (T ?i ,∆i)

T. There are several ways to describe
the distribution of time to event such as the survival function

S(t) = 1− F (t) ≡ P(Ti > t),

the hazard function

λ(t) ≡ lim
h→0+

1

h
P(t ≤ Ti < t+ h | t ≤ Ti)

which can be expressed in the survival function form

λ(t) = lim
h→0+

F (t+ h)− F (t)

h[1− F (t)]
=
F ′(t)

S(t)
= −S

′(t)

S(t)

and the cumulative hazard function

Λ(t) =

∫ t

0

λ(s) ds

which can also be rewritten as

Λ(t) = −
∫ t

0

S ′(s)

S(s)
ds = − logS(t).

It is therefore sufficient to know one of the functions S, λ and Λ to reconstruct
the other two. Estimators and their properties can be conveniently derived using
counting process theory. Denote the observed event indicator and count in the
form of right-continuous counting processes

Ni(t) = 1(T ?i ≤ t,∆i = 1), N(t) =
n∑
i=1

Ni(t)

and the at-risk indicator and count in the form of left-continuous counting pro-
cesses

Yi(t) = 1(T ?i ≥ t), Y (t) =
n∑
i=1

Yi(t).
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Also denote Ft = σ{Ni(s),1(T ?i ≤ s,∆i = 0) : 0 ≤ s ≤ t, i = 1, . . . , n}. Under
the independent censoring assumption

λ(t) ≡ lim
h→0+

1

h
P(t ≤ Ti < t+ h | t ≤ Ti, t ≤ Ci)

the Doob-Meyer theorem A.1 implies that the counting process Ni(t) can be
decomposed into a sum of an increasing Ft-predictable process Ai(t) representing
the mean structure and a zero-mean Ft-martingale Mi(t) representing the noise.
In the current setting the decomposition can be written as

Ni(t) = Ai(t) +Mi(t) =

∫ t

0

Yi(s) dΛ(s) +Mi(t)

(Fleming and Harrington, 1991, p. 26). The Nelson-Aalen estimator of the
cumulative hazard function has the form

Λ̂(t) =

∫ t

0

dN(s)

Y (s)
=
∑
tk≤t

∆N(tk)

Y (tk)
.

The survival function is typically estimated with the Kaplan-Meier estimator

Ŝ(t) =
∏
tk≤t

[1− dΛ̂(tk)] =
∏
tk≤t

[
1− ∆N(tk)

Y (tk)

]
.

1.2 The Case of Time-fixed Covariates

Next assume that the observed information is contained in the vector (T ?i ,∆i,X
T
i )T

where Xi is a random vector of p covariates associated with individual i. We de-
fine the conditional survival function

S(t |Xi) = 1− F (t |Xi) = P(Ti > t |Xi),

the conditional hazard function

λ(t |Xi) = lim
h→0+

1

h
P(t ≤ Ti < t+ h | t ≤ Ti,Xi)

and the conditional cumulative hazard function

Λ(t |Xi) =

∫ t

0

λ(s |Xi) ds = − logS(t |Xi).

The vector of covariates is incorporated in the model through the hazard function
in the form

λ(t |Xi) = λ0(t)eX
T
i β.

The Cox proportional hazards model arises when λ0 is allowed to be an arbitrary
non-negative function of time and is treated as a nuisance functional parameter.
The proportional hazards assumption means that the hazard ratio

λ(t |Xi)

λ(t |Xi′)
=
λ0(t)eX

T
i β

λ0(t)eX
T
i′β

=
eX

T
i β

eX
T
i′β

(1.1)
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does not depend on time and therefore the hazards λ(t |Xi) and λ(t |Xi′) are
proportional in the sense that λ(t |Xi) = c(Xi,Xi′) · λ(t |Xi′) where c(Xi,Xi′) =

e(XT
i −XT

i′ )β is time-invariant. Increasing the j-th component of Xi by one there-
fore causes the hazard to increase eβj times. Under the independent censoring
assumption

λ(t |Xi) = lim
h→0+

1

h
P(t ≤ Ti < t+ h | t ≤ Ti, t ≤ Ci, Xi)

the Doob-Meyer decomposition with respect to filtration Ft = σ{Ni(s), Yi(s+),
Xi : 0 ≤ s ≤ t, i = 1, . . . , n} gives

Ni(t) = Ai(t) +Mi(t) =

∫ t

0

Yi(s)e
XT
i β dΛ0(s) +Mi(t).

1.3 The Case of Time-varying Covariates

Finally suppose that the observed information is contained in the triplet (T ?i ,∆i,
Xi(t) : 0 ≤ t ≤ T ?i ) where Xi(t) is a left-continuous covariate process. Then we
define FXi

t = σ{Xi(s), 0 ≤ s ≤ t} and the conditional hazard function

λ(t | FXi
t ) = lim

h→0+

1

h
P(t ≤ Ti < t+ h | t ≤ Ti,FXi

t ).

The covariate process is incorporated in the model through the hazard function
in the form

λ(t | FXi
t ) = λ0(t)eX

T
i (t)β.

Under the independent censoring assumption

λ(t | FXi
t ) = lim

h→0+

1

h
P(t ≤ Ti < t+ h | t ≤ Ti, t ≤ Ci, FXi

t )

the Doob-Meyer decomposition with respect to filtration Ft = σ{Ni(s), Yi(s+),
Xi(s) : 0 ≤ s ≤ t, i = 1, . . . , n} gives

Ni(t) = Ai(t) +Mi(t) =

∫ t

0

Yi(s)e
XT
i (s)β dΛ0(s) +Mi(t).

1.4 Partial Likelihood Theory

Inference about the Cox proportional hazards model is based on the partial likeli-
hood theory introduced by Cox (1972, 1975). The partial likelihood function has
the form (Therneau and Grambsch, 2000, p. 40)

L(β) =
n∏
i=1

∏
t≥0

[
Yi(t)e

XT
i (t)β∑n

i′=1 Yi′(t)e
XT
i′ (t)β

]∆Ni(t)

.

The partial log-likelihood can be written as

`(β) =
n∑
i=1

∫ ∞
0

{
Yi(t)X

T
i (t)β − log

[
n∑

i′=1

Yi′(t)e
XT
i′ (t)β

]}
dNi(t).
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Differentiation with respect to β yields the score function

U(β) =
∂`(β)

∂β
=

n∑
i=1

∫ ∞
0

[Xi(t)−X(β, t)] dNi(t) =
m∑
k=1

[Xi(k)(tk)−X(β, tk)]

where the individual experiencing an event at time tk is denoted as i(k) and

X(β, t) =

∑n
i=1 Yi(t)e

XT
i (t)βXi(t)∑n

i=1 Yi(t)e
XT
i (t)β

is the conditional expectation of Xi(t) over the risk set applicable at time t where
the individual hazards λi(tk) play the role of weights

E[Xi(k)(tk) | Ftk ] =

∑
i:T ?i ≥tk

λi(tk | Ftk)Xi(tk)∑
i:T ?i ≥tk

λi(tk | Ftk)
(1.2)

=

∑n
i=1 Yi(tk)e

XT
i (tk)βXi(tk)∑n

i=1 Yi(tk)e
XT
i (tk)β

= X(β, tk).

The score function U(β) is then set to zero and the equation is solved numerical-

ly using the Newton-Raphson algorithm. The partial likelihood estimator β̂ of
parameter β is obtained. The observed information matrix has the form

I(β) = − ∂
2`(β)

∂β∂βT
=

n∑
i=1

∫ ∞
0

V(β, t) dNi(t) =
m∑
k=1

V(β, tk)

where

V(β, t) =

∑n
i=1 Yi(t)e

XT
i (t)β[Xi(t)−X(β, t)]⊗2∑n
i=1 Yi(t)e

XT
i (t)β

is the weighted variance matrix of Xi(t) over the risk set applicable at time t. By
analogy with (1.2) it holds that

var[Xi(k)(tk) | Ftk ] =

∑
i:T ?i ≥tk

λi(tk | Ftk)[Xi(tk)−X(β, tk)]
⊗2∑

i:T ?i ≥tk
λi(tk | Ftk)

(1.3)

=

∑n
i=1 Yi(tk)e

XT
i (tk)β[Xi(tk)−X(β, tk)]

⊗2∑n
i=1 Yi(tk)e

XT
i (tk)β

= V(β, tk).

The appealing attribute of the partial likelihood is that the asymptotic properties
of the classical likelihood are preserved. Denote J (β) the limit in probability of
n−1I(β). Kalbfleisch and Prentice (2002, 174–176) establish regularity conditions
under which the limit exists and

1√
n
U(β)

D−→ N[0,J (β)],

√
n(β̂ − β)

D−→ N[0,J −1(β)].

It is therefore possible to test

H0 : β = β0 against H1 : β 6= β0

6



with one of the three test statistics with the asymptotic χ2
p distribution under

the null hypothesis, namely the partial likelihood ratio test statistic

2[`(β̂)− `(β0)]
D−→ χ2

p,

the score test statistic

UT(β0)I−1(β0)U(β0)
D−→ χ2

p

and the Wald test statistic

(β̂ − β0)TI(β̂)(β̂ − β0)
D−→ χ2

p.

1.5 Residuals

Here and further we denote with a hat those expressions where β̂ instead of β is
plugged in and the cumulative baseline hazard function

Λ0(t) =

∫ t

0

λ0(s) ds

is replaced with the Breslow estimator

Λ̂0(t) =

∫ t

0

dN(s)∑n
i=1 Yi(s)e

XT
i β̂
.

For example we write

M̂i(t) = Ni(t)−
∫ t

0

Yi(s)e
XT
i (s)β̂ dΛ̂0(s). (1.4)

The martingale residuals are defined as M̂i = M̂i(∞). More insight into equation
(1.4) can be gained in case of time-fixed covariates where

Λ(t |Xi) =

∫ t

0

λ(s |Xi) ds =

∫ t

0

λ0(s)eX
T
i β ds = eX

T
i βΛ0(t) (1.5)

allows to write

Mi(t) = Ni(t)−
∫ t

0

Yi(s)e
XT
i β dΛ0(s) = Ni(t)−

∫ t

0

Yi(s) dΛ(s |Xi)

= Ni(t)−
∫ T ?i ∧t

0

dΛ(s |Xi) = Ni(t)− Λ(T ?i ∧ t |Xi)

in the form comparing event indicator with the total amount of risk undertaken
summarized in

Mi = ∆i − Λ(T ?i |Xi) and M̂i = ∆i − eX
T
i β̂ Λ̂0(T ?i ).

For i 6= i′ it holds that

EMi = 0 and cov(Mi,Mi′) = 0

7



as well as
varMi(t) = EM2

i (t) = EAi(t) = ENi(t) (1.6)

(Therneau and Grambsch, 2000, p. 22). While it also holds that EM̂i = 0, the

martingale residuals M̂1, . . . , M̂n are correlated as they sum to zero

n∑
i=1

M̂i(t) =
n∑
i=1

[
Ni(t)−

∫ t

0

Yi(s)e
XT
i (s)β̂ dΛ̂0(s)

]

=
n∑
i=1

[∫ t

0

dNi(s)−
∫ t

0

Yi(s)e
XT
i (s)β̂

∑n
i′=1 dNi′(s)∑n

i′=1 Yi′(s)e
XT
i′ (s)β̂

]

=

[
n∑
i=1

∫ t

0

dNi(s)

]
−

[
n∑

i′=1

∫ t

0

dNi′(s)

] ∑n
i=1 Yi(s)e

XT
i (s)β̂∑n

i′=1 Yi′(s)e
XT
i′ (s)β̂

= 0.

We define the score process

Ui(t) =

∫ t

0

[Xi(s)−X(β, s)] dMi(s)

and the score residuals Ûi = Ûi(∞). It follows from the definition of β̂ that∑n
i=1 Ûi = 0 since

Ûi(t) =

∫ t

0

[Xi(s)−X(β̂, s)] dM̂i(s)

=

∫ t

0

[Xi(s)−X(β̂, s)][ dNi(s) + Yi(s)e
XT
i (s)β̂ dΛ̂0(s)]

=

∫ t

0

[Xi(s)−X(β̂, s)][ dNi(s) +
Yi(s)e

XT
i (s)β̂∑n

i=1 Yi(s)e
XT
i (s)β̂

dN(s)]

=

∫ t

0

[Xi(s)−X(β̂, s)] dNi(s). (1.7)

Summing the score process over all individuals and partitioning with respect to
the observed event times we obtain

Rk =
n∑
i=1

∫ tk

tk−1

[Xi(s)−X(β, s)] dMi(s) =
n∑
i=1

[Ui(tk)−Ui(tk−1)] (1.8)

and define the Schoenfeld residuals as R̂k. In the case of no ties – which is implied
by the assumed continuous event times distribution – it follows from (1.7) that
the Schoenfeld residuals can be rewritten in the form (1.9) originally referred to
as the partial residuals (Schoenfeld, 1982)

R̂k =
n∑
i=1

[Ûi(tk)− Ûi(tk−1)]

=
n∑
i=1

∫ tk

tk−1

[Xi(s)−X(β̂, s)] dNi(s)

=
n∑
i=1

[Xi(tk)−X(β̂, tk)]∆Ni(tk)

= Xi(k)(tk)−X(β̂, tk) (1.9)
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where ∆Ni(tk) = Ni(tk)−Ni(tk−) is the indicator that an individual i is experi-
encing an event at time tk. From (1.2) we obtain

E(Rk | Ftk) = E[Xi(k)(tk)−X(β, tk) | Ftk ]
= E[Xi(k)(tk)− E[Xi(k)(tk) | Ftk ] | Ftk ] = 0 (1.10)

and using (1.3) we get

var(Rk | Ftk) = var[Xi(k)(tk)−X(β, t) | Ftk ]
= var[Xi(k)(tk)− E[Xi(k)(tk) | Ftk ] | Ftk ]
= var[Xi(k)(tk) | Ftk ] = V(β, tk). (1.11)

It holds that Rk is Fk′-measurable for k < k′ and

E(Rk′ |Rk) = E[E(Rk′ | Ftk′ ) |Rk] = ERk′

implies
cov(Rk,Rk′ | Ftk) = 0. (1.12)

The scaled Schoenfeld residuals R̂?
k are obtained from the expression

R?
k = V−1(β, tk)Rk.
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2. Tests of the Proportionality of
Hazards

The Cox proportional hazards model

λ(t |Xi) = λ0(t)eX
T
i β

carries two important assumptions worth depicting explicitly:

1. The hazard ratio (1.1) does not depend on time.

2. The multiplicative effect on the hazard of unit increase in a single covariate
keeping all others fixed does not depend on time.

While the first condition is typically called the proportional hazards assumption it
is actually its consequence described in the second condition that really matters.
The hazard ratio itself is of little interest as long as it is possible to summarize
the effect of a covariate with a single parameter. Suppose covariate values are
recorded several times over the course of the study. A suitable model for this
situation has the form

λ(t | FXi
t ) = λ0(t)eX

T
i (t)β

and the hazard ratio

λ(t | FXi
t )

λ(t | FXi′
t )

=
λ0(t)eX

T
i (t)β

λ0(t)eX
T
i′ (t)β

=
eX

T
i (t)β

eX
T
i′ (t)β

does depend on time. Nevertheless, the multiplicative effect on the hazard of unit
increase in the j-th covariate is still summarized by a single coefficient eβj . Some
authors like Kalbfleisch and Prentice (2002) are even reluctant to use the term
proportional hazards model as it is associated with unnecessary limitations. This
interpretation suggests that the real objective of model validity verification might
be to test for the time-invariance of the regression coefficients. An alternative to
the proportional hazards could be formulated through the model

λ(t |Xi) = λ0(t)eX
T
i β(t).

In Section 2.1 we will consider one class of such models with the most basic
example in the form

λ(t |Xi) = λ0(t)eX
T
i (β+ tθ).

Interestingly, all models of this class can be reformulated in terms of time-varying
covariates such as

λ(t |Xi) = λ0(t)eX
T
i β+ (t×XT

i )θ.

This suggests that standard tools can be applied for testing of the interaction
terms significance. Indeed, it is possible to proceed this way but it had long been
technically cumbersome to recreate datasets with time-transformed covariates
for each separate period of time. This inconvenience has been overcome with the
addition of tt option to the coxph function from survival library in R (Therneau
and Crowson, 2013).

10



2.1 Grambsch-Therneau Class of Tests

The approach based on the time-varying regression coefficients was first adopt-
ed by Schoenfeld (1982) for a single time-varying regression coefficient and later
generalized by Grambsch and Therneau (1994) for more than one time-varying re-
gression coefficient. Let Qj(t) be a Ft-predictable process and G(t) be a diagonal
matrix where

Gjj(t) = Qj(t)−Qj = Qj(t)−
1

m

m∑
k=1

Qj(tk).

Schoenfeld (1982) considered the case where

βj(t) = βj + [Qj(t)−Qj]θj

and tested
H0 : θj = 0 against H1 : θj 6= 0.

Grambsch and Therneau (1994) investigated the multivariate case

β(t) = β +G(t)θ

allowing for a joint test of

H0 : θ = 0 against H1 : θ 6= 0.

The null hypothesis of the proportional hazards corresponds to the model

λ(t |Xi) = λ0(t)eX
T
i β (2.1)

whereas the alternative model has the form

λ(t |Xi) = λ0(t)eX
T
i [β+G(t)θ]. (2.2)

We will work in the more general multivariate setting and derive a test of the null
hypothesis of the proportional hazards against a pre-specified alternative model
(2.2). The derivation is divided in two parts for illustrative purposes. First, we
will make an unrealistic assumption that the regression coefficient β is known
and later this assumption will be left out.

The first part of the derivation

Let us first assume that the parameter β is known and model (2.2) is valid. We
can write the Schoenfeld residuals corresponding to model (2.1) in the form

Rk = {Xi(k)(tk)−X[β(tk), tk]}+ {X[β(tk), tk]−X(β, tk)} (2.3)

instead of R̂k as β is assumed to be known. The first term represents the Schoen-
feld residuals under the true model (2.2) with zero mean. By differentiating with

11



respect to β we obtain

∂X(β, t)

∂βT
=

∂

∂βT

[∑n
i=1 Yi(t)e

XT
i (t)βXi(t)∑n

i=1 Yi(t)e
XT
i (t)β

]

=

∑n
i=1 Yi(t)e

XT
i (t)βXi(t)

⊗2∑n
i=1 Yi(t)e

XT
i (t)β

−

[∑n
i=1 Yi(t)e

XT
i (t)βXi(t)∑n

i=1 Yi(t)e
XT
i (t)β

]⊗2

=

∑n
i=1 Yi(t)e

XT
i (t)βXi(t)

⊗2∑n
i=1 Yi(t)e

XT
i (t)β

−X(β, t)⊗2

=

∑n
i=1 Yi(t)e

XT
i (t)β[Xi(t)

⊗2 −X(β, t)⊗2]∑n
i=1 Yi(t)e

XT
i (t)β

=

∑n
i=1 Yi(t)e

XT
i (t)β[Xi(t)

⊗2 −Xi(t)X(β, t)T + X(β, t)Xi(t)
T −X(β, t)⊗2]∑n

i=1 Yi(t)e
XT
i (t)β

=

∑n
i=1 Yi(t)e

XT
i (t)β[Xi(t)−X(β, t)]⊗2∑n
i=1 Yi(t)e

XT
i (t)β

= V(β, t).

The second term in (2.3) can thus be approximated using first order Taylor ex-
pansion of X[β(tk), tk] around β as

∂X(β, tk)

∂βT
[β(tk)− β] = Vk × [β(tk)− β] = VkGkθ

where Gk = G(tk) and Vk = V(β, tk). It follows that

E(R?
k | Ftk) = E(V−1

k Rk | Ftk)
.
= Gkθ. (2.4)

Due to the contribution of the first term in (2.3) we obtain from (1.11) that

var(R?
k | Ftk) = V−1

k V [β(tk), tk]V−1
k

.
= V−1

k (2.5)

and from (1.12) follows that for k < k′

cov(R?
k,R

?
k′ | Ftk) = cov(Rk,Rk′ | Ftk) = 0.

The assumption of known β together with conditions (2.4) and (2.5) imply that
R?
k follows a linear model (Anděl, 2007, p. 193). The best linear unbiased pre-

dictor of θ has the form

θ̂ =

(
m∑
k=1

GkVkGk

)−1 m∑
k=1

GkVkR?
k =

(
m∑
k=1

GkVkGk

)−1 m∑
k=1

GkRk

according to the Gauss-Markov theorem (Anděl, 2007, p. 194). Under the null
hypothesis H0 : θ = 0 it holds that(

m∑
k=1

GkRk

)T( m∑
k=1

GkVkGk

)−1 m∑
k=1

GkRk
D−→ χ2

p.
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The second part of the derivation

Now, we abandon the assumption that β is known and denote V̂k = V(β̂, tk).
Analogous arguments as for R?

k reveal that

ER̂?
k = E(V̂−1

k R̂k)
.
= Gkθ̂

but the condition
m∑
k=1

R̂k = U(β̂) = 0

following from (1.7) causes that the scaled Schoenfeld residuals R̂?
1, . . . , R̂

?
m are

correlated. To investigate their covariance structure we approximate R̂k using
the first order Taylor expansion around β as follows

R̂k
.
= Rk − Vk × (β̂ − β). (2.6)

Hence denoting R =
∑m

k=1 Rk, I =
∑m

k=1 Vk and summing over all events we
obtain

0
.
= R− I × (β̂ − β). (2.7)

Combining (2.6) and (2.7) we get

R̂k
.
= Rk − VkI−1R

and since R1, . . . ,Rm are uncorrelated we obtain

cov(R̂k, R̂k′)
.
= cov(Rk − VkI−1R,Rk′ − Vk′I−1R)

= cov(Rk,Rk′)− cov(Rk,Vk′I−1R)

−cov(VkI−1R,Rk) + cov(VkI−1R,Vk′I−1R)

= δk,k′Vk − cov(Rk,R)I−1Vk′
−VkI−1cov(R,Rk′) + VkI−1var(R)I−1Vk′

= δk,k′Vk − var(Rk)I−1Vk′
−VkI−1var(Rk′) + VkI−1Vk′

= δk,k′Vk − VkI−1Vk′ .

Approximating Vk with V̂k and I with Î = I(β̂) we get

var R̂?
k = var(V̂−1

k R̂k)
.
= (V̂−1

k Vk)V̂
−1
k − (V̂−1

k Vk)I
−1(VkV̂−1

k )
.
= V̂−1

k − Î
−1.

The estimator of θ has the form

θ̃ = D−1

m∑
k=1

GkR̂k

where the inverted variance matrix estimator

D =
m∑
k=1

GkV̂kGk −

(
m∑
k=1

GkV̂k

)
Î−1

(
m∑
k=1

GkV̂k

)T

13



takes the correlation into account and leads to

Ψ(D) = θ̃
T
Dθ̃ =

(
m∑
k=1

GkR̂k

)T

D−1

(
m∑
k=1

GkR̂k

)
D−→ χ2

p

under the null hypothesis. In practise, V(β̂, t) does not vary dramatically with
time (Therneau and Grambsch, 2000, p. 134) and is usually replaced with the
average value

V(β̂, t)
.
=

1

m

m∑
k=1

V̂k =
1

m
Î. (2.8)

Since
∑m

k=1 Gk = 0 it follows that

D =
1

m

m∑
k=1

GkÎGk (2.9)

and

θ̃ =

[
1

m

m∑
k=1

GkÎGk

]−1 m∑
k=1

GkR̂k (2.10)

from which we get

Ψ(D) = θ̃
T
Dθ̃ =


[

1

m

m∑
k=1

GkÎGk

]−1 m∑
k=1

GkR̂k


T [

1

m

m∑
k=1

GkÎGk

]

×

[
1

m

m∑
k=1

GkÎGk

]−1 m∑
k=1

GkR̂k

=

(
m∑
k=1

GkR̂k

)T [
1

m

m∑
k=1

GkÎGk

]−1 m∑
k=1

GkR̂k.

Moreover, let Qj(t) ≡ Q(t) be the same for all covariates and R denote the matrix
of the Schoenfeld residuals whose rows are formed by RT

k for k = 1 . . . ,m. By
analogy R? = mI−1R. Stacking Q(tk)−Q for k = 1, . . . ,m into the vector Q−Q,
it is possible to test for the overall non-proportionality of hazards with

Ψ(D) =

{
m∑
k=1

[Q(tk)−Q]R̂k

}T{
1

m
Î

m∑
k=1

[Q(tk)−Q]2

}−1

×
m∑
k=1

[Q(tk)−Q]R̂k

=
(Q−Q)TR?Î−1R?T(Q−Q)

1
m

∑m
k=1[Q(tk)−Q]2

=
(Q−Q)TR ÎRT(Q−Q)

m
∑m

k=1[Q(tk)−Q]2
D−→ χ2

p
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holding under the null hypothesis. Alternatively, each covariate can be investi-
gated separately. From (2.10) we get

θ̃j =

{
1

m
Îjj

m∑
k=1

[Q(tk)−Q]2

}−1 m∑
k=1

[Q(tk)−Q]R̂kj

.
=

{
1

m
Îjj

m∑
k=1

[Q(tk)−Q]2

}−1
1

m
Îjj

m∑
k=1

[Q(tk)−Q]R̂?
kj

=

∑m
k=1[Q(tk)−Q]R̂?

kj∑m
k=1[Q(tk)−Q]2

(2.11)

and the test statistic obtained from (2.9) and (2.11) satisfies

Ψj(D) =
θ̃2
j

Djj

=
{
∑m

k=1[Q(tk)−Q]R̂?
kj}2

mÎ−1
jj

∑m
k=1[Q(tk)−Q]2

D−→ χ2
1 (2.12)

under the null hypothesis. The test is available in R library survival under the
name cox.zph. Formula (2.12) reveals that it is – up to the assumption of the

constant variance – equivalent to testing for zero correlation between R̂?
kj and

Q(tk) or perhaps more illustratively to testing for zero slope in the regression of

R̂?
kj with Q(tk) as a single covariate. This enables to visualize the test by plotting

the scaled Schoenfeld residuals against time to see if the time transformation
Q is well chosen, i.e. the spread of the values of tk is wide enough for the
correlation-based inference to be reliable, see Therneau and Grambsch (2000,
p. 144) for an example. Grambsch and Therneau (1994) noted that it is possible
to construct a whole class of tests in this fashion when various forms of Qj(t) are
considered. Actually, many such tests had already been proposed before using
different argumentation.

Cox test

Cox (1972) was the first to propose a test for the significant effect of adding
time-varying covariates in the form of interaction between the j-th covariate and
a pre-specified function of time. The Cox test therefore corresponds to the test
described above with deterministic functions such as Qj(t) ≡ t and Qj(t) ≡ log t
used for all covariates. This test can be performed in R via the function cox.zph

in library survival setting transform = "identity" and transform = "log"

respectively.

Nagelkerke-Oosting-Hart test

Nagelkerke et al. (1984) based their test on the serial correlation of the Schoen-
feld residuals in the univariate case and more generally on the serial correlation
of the linear combinations RT

k β̂ in the multivariate case. Should the proportional

hazards assumption be violated due to the time-varying effect of XT
i β̂ the terms

RT
k β̂ would be positively correlated (Nagelkerke et al., 1984). The test is equiv-

alent to using the lagged Schoenfeld residuals R̂kj to construct Qj(t1) = 0 and

Qj(tk+1) = β̂2
j R̂kj for k ≥ 1 (Grambsch and Therneau, 1994).
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Breslow-Edler-Berger test

The test originally proposed by Breslow et al. (1984) in the context of two-sample
problem aimed to present an alternative to the log-rank test which would be
capable to detect the non-proportionality based on the crossing survival curves.
The test generalized into the regression context is equivalent to using the ranks
of the observed event times in Qj(t) ≡ N(t−). This test can be performed in R
via cox.zph setting transform = "rank". A modification of the test developed
by Harrell and Lee (1986) uses high absolute values of Fischer z-transform of
the correlation between the Schoenfeld residuals and the corresponding ranks
of the observed event times as evidence of monotone trend in the hazard ratio
(Ng’andu, 1994). This variant was implemented in a former version of SAS within
the procedure phglm.

Moreau-O’Quigley-Mesbah test

Moreau et al. (1985) presented a test based on the partitioning of the time axis
into several disjoint intervals. In the special case of the two-sample problem the
test is equivalent to the chi-square goodness-of-fit test by Schoenfeld (1980). Let
J1, . . . , Jq be a disjoint decomposition of [0,∞) into q intervals and let a1, . . . , aq
be fixed vectors of p components. The resulting test may be formulated in terms
of piecewise constant function Qj(t) =

∑q
g=1 agj1(t ∈ Jg). This parametriza-

tion allows to choose different functions for different covariates but the intervals
J1, . . . , Jq on which those functions are constant remain the same. A drawback
of the test is that the partitioning of the time axis has to be done in advance in
a rather arbitrary fashion. The test was further generalized by O’Quigley and
Pessione (1989).

Lin test

Lin (1991) suggested a test which is a generalization of the two-sample test by
Gill and Schumacher (1987). The idea of the original Gill-Schumacher test was to
construct two different estimators one of which puts more weight on early events
than the other. The difference between the two estimators served as evidence
against the proportionality of hazards. The Lin test compares the estimator β̂
following from the score equations

U(β) =
n∑
i=1

∫ ∞
0

[Xi(t)−X(β, t)] dNi(t) = 0

with the estimator β̃ following from the estimating equations

n∑
i=1

∫ ∞
0

Q(t)[Xi(t)−X(β, t)] dNi(t) = 0.

The test statistic
√
n(β̂ − β̃) has asymptotically zero-mean multivariate normal

distribution under the null hypothesis of the proportional hazards (Lin, 1991). If

the estimator β̃ is based on the first iteration of the Newton-Raphson algorithm
starting from β̂ the test belongs to the Grambsch-Therneau class where Qj(t) ≡
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Q(t) is the same for all covariates (Grambsch and Therneau, 1994). In practice,

Q(t) = Ŝ(t−) where Ŝ(t) is the Kaplan-Meier estimator is often used to detect
hazard ratios monotonously dependent on time. It is the default option for R
function cox.zph. Another possibility is to use Q(t) = Ŝ(t−)[1 − Ŝ(t−)] which
may be more appropriate to detect quadratic departures from the proportionality
of hazards. We have implemented the quadratic variant in R as an extension of
the function cox.zph.

Khondoker-Islam test

Recently, Khondoker and Islam (2009) suggested a test based on the log-log trans-
formation of the survival function claiming it is a direct analogy of the routinely
used graphical approach of plotting the log-log survival curves generalizing the
concept from a single binary covariate setting and removing the arbitrariness of
visual inspection. In fact, it is just another variant of the Lin test described
above. Therefore, we have implemented the test in R as another extension of the
function cox.zph. It uses Q(tk) = log[− log Ŝ(tk−)] for k = 1, . . . ,m to ensure
that Q is predictable with the only exception of setting Q(t0) = Q(t1) to avoid
zero argument in the outer logarithm.

Grønnesby-Borgan test

A test beyond the scope of the Grambsch-Therneau class was presented by
Grønnesby and Borgan (1996), yet it was revealed by May and Hosmer (1998)
that it is quite close in spirit. The idea of the Grønnesby-Borgan test is to to
divide the subjects into a fixed number of groups according to their risk score
XT
i β similarly as in the case of the Moreau-O’Quigley-Mesbah test where the

subjects are grouped with respect to the event times rather than the risk scores.
The disadvantage that both of the tests share is that the number of the groups is
arbitrary and has to be specified in advance. The groups usually contain about
the same number of observations.
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2.2 Lin-Wei-Ying Test

In the following, the central role is played by the components of the p-dimensional
empirical score process

Û(t) =
n∑
i=1

∫ t

0

[Xi −X(β̂, s)] dM̂i(s)

denoted as Ûj(t) =
∑n

i=1 Ûij(t). The research of their asymptotic properties led to
tests for which no functional form of the alternative hypothesis has to be specified.
Before we proceed with the Lin-Wei-Ying test itself we try to motivate it with
the historical evolution of the topic. The original idea of the test emerged in the
work by Wei (1984) who showed that for a single binary variable the weighted
empirical score process

Î−1/2
11 Û1(t)

is asymptotically equivalent to the Brownian bridge W 0(t) on [0, 1] under the pro-
portional hazards assumption. Therneau et al. (1990) argued that the asymptotic
equivalence is attained more generally for

Î−1/2
jj Ûj(t)

provided the asymptotic variance matrix J (t) of n−1/2U(t) satisfies Jjj′(t) = 0
for all j′ 6= j which means that the j-th covariate is asymptotically uncorrelated
with all others. We present the reasoning behind the result of Therneau et al.
(1990) from which the one by Wei (1984) follows. We first extend the definition
of I(β) to allow for dependence on time

I(β, t) =
n∑
i=1

∫ t

0

V(β, t) dNi(t)

and write I(t) = I(β, t). Also recall that I = I(∞). We combine two first order

Taylor expansions of the empirical score process Û(t) = U(β̂, t) around β

Û(t)
.
= U(t)− I(t)(β̂ − β)

and
0 = Û(∞)

.
= U(∞)− I(∞)(β̂ − β).

Eliminating β̂ − β we obtain

Û(t)
.
= U(t)− I(t)I−1(∞)U(∞) (2.13)

which can be suitably rewritten as

1√
n

Û(t)
.
=

1√
n

U(t)− 1

n
I(t)

[
1

n
I(∞)

]−1
1√
n

U(∞).

Let W(t) be a p-dimensional zero-mean Gaussian process with independent incre-
ments and the variance matrix J (t). (Fleming and Harrington, 1991, p. 289–291)
establish regularity conditions under which

1√
n

U(t)
D−→W(t) (2.14)
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holds as well as
1

n
I(t)

P−→ J (t) (2.15)

and
1

n
Î(t)

P−→ J (t). (2.16)

This means that both n−1I(t) and n−1Î(t) are consistent estimators of J (t). It
follows from the Cramér-Slutsky theorem (Anděl, 2007, p. 333) that

1√
n

Û(t)
D−→W(t)− J (t)J −1(∞)W(∞).

The asymptotic covariance matrix of the process n−1/2Û(t) has the form

C(s, t) = E[W(s)− J (s)J −1(∞)W(∞)][W(t)− J (t)J −1(∞)W(∞)]T

= cov[W(s),W(t)]− J (s)J −1(∞)cov[W(∞),W(t)]

− cov[W(s),W(∞)]J −1(∞)J (t)

+J (s)J −1(∞)var[W(∞)]J −1(∞)J (t)

and for s < t follows that

C(s, t) = J (s)− J (s)J −1(∞)J (t)

because of the independent increments property

cov[W(s),W(t)] = cov[W(s),W(t)−W(s) + W(s)]

= cov[W(s),W(t)−W(s)] + varW(s) = varW(s).

From (2.16) we get a special case

1

n
Î(∞)

P−→ J (∞)

and conclude using the Cramér-Slutsky theorem that when Jjj′(t) = 0 for some
j = 1, . . . , p and all j′ 6= j then

Î−1/2
jj Ûj(t) =

[
1

n
Îjj(∞)

]−1/2
1√
n
Ûj(t)

converges in distribution to

J −1/2
jj (∞)

[
Bj(t)−

Jjj(t)
Jjj(∞)

Bj(∞)

]
= W 0

[
Jjj(t)
Jjj(∞)

]
where W 0(t) is distributed as a Brownian bridge on [0, 1]. However, the as-
sumption of asymptotically uncorrelated covariates is often too strong to hold in
practice which is the reason why the Lin-Wei-Ying test based on Monte Carlo
simulation has been developed. In line with equation (2.13) Lin et al. (1993)
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revealed that the process n−1/2Û(t) is asymptotically equivalent to the process

n−1/2Ũ(t) where

Ũ(t) =
n∑
i=1

∫ t

0

[Xi − X̃(β, s)] dMi(s)

−
n∑
i=1

∫ t

0

Yi(s)e
XT
i βXi[Xi − X̃(β, s)]T dΛ0(s)

×I−1

n∑
i=1

∫ ∞
0

[Xi − X̃(β, s)] dMi(s)

and X̃(β, t) denotes the limit in probability of X(β, t). Lin et al. (1993) fur-

ther showed that n−1/2Ũ(t) converges in distribution to a zero-mean Gaussian
process. While the distribution of Mi(t) is not known it follows from (1.6) that

varMi(t) = ENi(t). It is therefore possible to approximate the distribution of Ũ(t)
by replacing Mi(t) with Ni(t)Zi where Zi are independent random variables with

the distribution N(0, 1). The empirical version of process Ũ(t) is constructed as

Ûsim(t) =
n∑
i=1

[Xi −X(β̂, s)]Ni(t)Zi

−
n∑
i=1

∫ t

0

Yi(s)e
XT
i β̂Xi[Xi −X(β̂, s)]T dΛ̂0(s)

× Î−1

n∑
i=1

[Xi −X(β̂, s)]∆iZi.

The distribution of n−1/2Û(t) is approximated by sampling n−1/2Ûsim(t) via
Zi while (T ?i ,∆i, Xi) is kept fixed. This approach is enabled by the fact that

the unconditional distribution of n−1/2Û(t) and its conditional distribution given
(T ?i ,∆i,Xi) coincide in the limit (Lin et al., 1993). Being able to simulate the
score process under the proportional hazards assumption we can estimate the
quantiles of the distributions of the test statistics

sup
t≥0
|Ûj(t)| and sup

t≥0
Î−1/2
jj |Ûj(t)|.

It is also possible to consider omnibus test statistics such as

sup
t≥0
||Û(t)|| = sup

t≥0

√
Û2

1 (t) + · · ·+ Û2
p (t)

and

sup
t≥0

p∑
j=1

Î−1/2
jj |Ûj(t)|.

The test is implemented in R library timereg within the function cox.aalen and
in SAS procedure phreg within the statement assess with option ph.
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2.3 Scheike-Martinussen Test

Scheike and Martinussen (2004) introduced a test of the time-varying effect of
some of the regression coefficients. This indicates an important feature of the
test. All other presented tests suffer from the drawback that they test whether
a certain covariate violates the proportional hazards assumption while assuming
that other covariates do not. The test developed by Scheike and Martinussen
(2004) works within the framework of the extended Cox model

λ(t | FXi
t ) = λ0(t)eX

T
1i(t)α+XT

2i(t)β(t) (2.17)

incorporating both the time-fixed regression coefficients α corresponding to co-
variates X1i(t) and the time-varying regression coefficients β(t) corresponding
to a different set of covariates X2i(t). It is recommended to start with model
allowing all regression coefficients to depend on time and sequentially test for
the significance of the time effect. We can thus avoid the assumption that all
regression coefficients apart from the one currently investigated are time-fixed. It
is of interest to test

H0 : β(t) ≡ β against H1 : β(t) 6≡ β.

Equivalently, we define the cumulative regression coefficients as

B(t) =

∫ t

0

β(s) ds

and test
H0 : B(t) = tβ against H1 : B(t) 6= tβ.

The central idea of the test is analogous with the Lin-Wei-Ying test and the most
noticeable difference is that the expressions are no longer neat. To avoid plethora
of new notation or half-page expressions we focus on the principles here and refer
the courageous reader to the original sources (Scheike and Martinussen, 2004;

Martinussen and Scheike, 2006). The estimators α̂ and β̂(t) of the regression co-
efficients α and β(t) respectively are based on the maximum likelihood principle.
The iterative procedure to obtain the estimators consists of the following steps:

0. Set the initial values of α̂(0) and β̂
(0)

(t).

1. Use the estimators from the previous step α̂(r) and β̂
(r)

(t) to compute the
Breslow estimator

Λ̂
(r)
0 (t) =

∫ t

0

dN(s)∑n
i=1 Yi(s)e

XT
1i(s)α̂

(r) +XT
2i(s)β̂

(r)
(s)
.

2. Smooth Λ̂
(r)
0 (t) to obtain λ̂

(r)
0 (t) using kernel estimation

λ̂
(r)
0 (t) =

1

b

∫ τ

0

K

(
s− t
b

)
dΛ̂

(r)
0 (s)

where b > 0 is a bandwidth parameter and K is a suitable kernel function.
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3. Perform one step of the Newton-Raphson algorithm based on the score
equations

n∑
i=1

∫ τ

0

{X1i(t)−X1[(αT,βT(t))T, t]} dNi(t) = 0,

n∑
i=1

{X2i(t)−X2[(αT,βT(t))T, t]}∆Ni(t) ≡ 0 ∀ t ∈ [0, τ ].

4. Use the updating step of the Newton-Raphson algorithm to proceed form
the current estimator α̂(r) to α̂(r+1).

5. Compute B̂(r+1)(t) based on the Newton-Raphson updating equations with

α̂(r+1) plugged in.

6. Smooth B̂(r+1)(t) to obtain β̂
(r+1)

(t) using kernel estimation

β̂
(r)

(t) =
1

b

∫ τ

0

K

(
s− t
b

)
dB̂(r)(s)

and return to step 1.

Finally, we set β̂(t) = β̂
(∞)

(t) and B̂(t) = B̂(∞)(t). Martinussen and Scheike

(2006, p. 208) establish conditions under which the process
√
n[B̂(t) − B(t)]

converges in distribution to a zero-mean Gaussian process. In the same spirit as
for the Lin-Wei-Ying test Scheike and Martinussen (2004) show that the process√
n[B̂(t)−B(t)] is asymptotically equivalent to a certain process with remarkably

technical expression whose empirical version can then be modified by multiplica-
tion of its n summands with independent standard normal random variables to
obtain a new process with the same limit distribution as

√
n[B̂(t) − B(t)]. To

test the null hypothesis

H0 : βj(t) ≡ βj against H1 : βj(t) 6≡ βj

we construct a test statistic of the Kolmogorov-Smirnov type

sup
0≤t≤τ

∣∣∣∣B̂j(t)−
t

τ
B̂j(τ)

∣∣∣∣
or a test statistic of the Cramér-von Mises type∫ τ

0

[
B̂j(t)−

t

τ
B̂j(τ)

]2

dt.

Kvaløy and Neef (2004) propose a test statistic of the Anderson-Darling type in
the context of the proportional hazards testing as well. The quantiles of the test
statistics distributions are approximated by complete analogy with the Lin-Wei-
Ying test through sampling independent random variables from N(0, 1) and trans-
forming them into random variables with a distribution asymptotically equivalent
to
√
n[B̂(t) − B(t)]. The test is implemented in R library timereg within the

function timecox.
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2.4 Lin-Zhang-Davidian Test

The members of the Grambsch-Therneau class of tests share the disadvantage of
the need for an arbitrary specification of the alternative hypothesis. To overcome
this obstacle consider a model with a single time-varying covariate

λ(t |X1i, X2i) = λ0(t)eX
T
1iβ+ f(t)X2i

and allow f to be an arbitrary smooth function of time with square integrable
second derivative. The estimation is performed maximizing the penalized partial
likelihood

`pen(β, f, θ) = `(β, f)− θ

2

∫
[f ′′(t)]2 dt (2.18)

where the second term penalizes variation in f to avoid over-fitting when using
large number of parameters. Before we give details on the recent test of Lin
et al. (2006) we set the scene considering some earlier approaches. Sleeper and
Harrington (1990) proposed to use non-penalized regression splines to model f but
the result was criticized by Gray (1992) for undue sensitivity to the number and
location of the knots as well as overall instability. O’Sullivan (1988) stated that
the maximum of the penalized partial likelihood (2.18) is attained for f in the form
of a cubic smoothing spline with the total of m knots and provides methods for
parameters estimation using B-spline basis functions (de Boor, 1978). However,
allocating a parameter for each event time is not very efficient. Reduction of
the dimensionality of the parameter space was proposed by Gray (1992, 1994)
who developed a spline-based tests for the proportional hazards which only uses
a moderate number of basis functions 1 < µ� m so that

f(t) =

µ∑
ϑ=1

γϑbϑ(t, q) = γTb(t, q)

where bϑ(t, q), ϑ = 1, . . . , µ are B-spline basis functions of order q. The choice of
µ is arbitrary but Gray (1992) argues that using more than 10–20 knots hardly
ever enhances the fit substantially. The penalized partial log-likelihood has the
form

`pen(β, f, θ) = `(β,γ)− θ

2

∫
[f ′′(t)]2 dt

= `(β,γ)− θ

2

∫
[γTb′′(t, q)]2 dt

= `(β,γ)− θ

2
γT

[∫
b′′(t, q)⊗2 dt

]
γ

= `(β,γ)− θ

2
γTPBγ

where PB =
∫

b′′(t, q)⊗2 dt is a positive semi-definite matrix. Significant com-
putational advantage could be gained if the penalty function is slightly modified
as explained in the following. Denote h the fixed distance between the adjacent
knots. It has been shown (de Boor, 1978, p. 116) that the B-spline basis functions

23



satisfy ∑
ϑ

γϑb
′
ϑ(t, q) =

1

h

∑
ϑ

(γϑ+1 − γϑ)bϑ(t, q − 1)

=
1

h

∑
ϑ

∆γϑbϑ(t, q − 1).

Eilers and Marx (1996) note that by induction∑
ϑ

γϑb
′′
ϑ(t, q) =

1

h

∑
ϑ

(γϑ+1 − γϑ)b′ϑ(t, q − 1)

=
1

h2

∑
ϑ

(γϑ+2 − 2γϑ+1 + γϑ)bϑ(t, q − 2)

=
1

h2

∑
ϑ

∆2γϑbϑ(t, q − 2). (2.19)

The cubic B-spline penalty has the form

θ

2

∫ [∑
ϑ

γϑb
′′
ϑ(t, 3)

]2

dt =
θ

2h4

∫ [∑
ϑ

∆2γϑbϑ(t, 1)

]2

dt

=
θ

2h4

∫ ∑
ϑ

∑
ϑ′

∆2γϑ∆2γϑ′bϑ(t, 1)bϑ′(t, 1) dt.

Only the adjacent linear B-splines overlap and therefore the only non-zero terms
are either of the form b2

ϑ(t, 1) or bϑ(t, 1)bϑ+1(t, 1) so the penalty term can be
written as a sum of the difference penalty obtained for ϑ = ϑ′

θ

2h4

∫
b2
ϑ(t, 1) dt︸ ︷︷ ︸

constant

×
∑
ϑ

(∆2γϑ)2

and a term depending only on the products of the adjacent second differences
obtained for ϑ = ϑ′ ± 1

θ

h4

∫
bϑ(t, 1)bϑ+1(t, 1) dt︸ ︷︷ ︸

constant

×
∑
ϑ

∆2γϑ∆2γϑ+1

which is eventually excluded from the P-spline penalty (Eilers and Marx, 1996).
Denote the (µ− 2)× µ dimensional second differences matrix

KP =

1 −2 1
. . . . . . . . .

1 −2 1

 and PP = KT
PKP .

The penalized partial log-likelihood with P-spline penalty is formed as

`pen(β, f, θ) = `(β,γ)− θ

2

µ−2∑
ϑ=1

(∆2γϑ)2

= `(β,γ)− θ

2
(KPγ)⊗2

= `(β,γ)− θ

2
γTPPγ.

24



Define η = (βT,γT)T and

Upen =
∂`pen(η)

∂ηT
=
∂`(η)

∂ηT
−
(

0
PPγ

)
,

Ipen = −∂
2`pen(η)

∂η∂ηT
= I −

(
0 0
0 −PP

)
.

The variance matrix of the regression coefficients is typically estimated with V̂
in the form of either

V̂1 = Î−1
pen or V̂2 = Î−1

pen Î Î−1
pen,

the former being conservative and usually preferred (Therneau and Grambsch,
2000, p. 122). The null hypothesis of the proportional hazards corresponds to
the case γ1 = · · · = γµ since the B-spline basis functions sum to one. Gray (1992)
proposed to use a general Wald type test of

H0 : Cη = 0 against H1 : Cη 6= 0

where the (µ−1)×(p+µ) constraint matrix C corresponding to the proportional
hazards assumption can be written as

C =

0 · · · 0 1 −1
...

. . .
...

. . . . . .

0 · · · 0 1 −1

 .

The test statistic which employs the maximum penalized partial likelihood esti-
mator η̂ has the form

(Cη̂)T[CI−1
pen(β̂, γ̂)CT]−1Cη̂

and the null hypothesis is rejected on the significance level α if the test statistic
exceeds the value of the 1− α quantile of the χ2 distribution with

tr[CI−1
pen(β̂, γ̂)CT]−1CV̂ CT. (2.20)

generalized degrees of freedom. Therneau and Grambsch (2000, p. 121) note that
under the null hypothesis the test statistics is asymptotically equivalent to

ν∑
ω=1

evωZ
2
ω

where evω, ω = 1, . . . , ν are the eigenvalues of

[CÎ−1
pen(β̂, γ̂)CT]−1CV̂ CT

and Zω, ω = 1, . . . , ν are independent standard normal random variables. For the
classical partial likelihood estimation it holds that evω ∈ {0, 1} and the asymptot-
ic distribution of the test statistic is chi-square with

∑ν
ω=1 evω degrees of freedom.

For the penalized partial likelihood estimation it holds that evω ∈ [0, 1] and while
the expected value of the test statistic is still

∑ν
ω=1 evω the variance 2

∑ν
ω=1 ev

2
ω
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does not exceed the value 2
∑ν

ω=1 evω obtained for non-penalized models. Th-
erneau and Grambsch (2000, p. 121) therefore conclude that it is conservative
to use the traditional χ2 limit distribution with

∑ν
ω=1 evω generalized degrees of

freedom as equivalently expressed in (2.20).

P-splines are implemented in the R function coxph from library survival un-
der the option pspline. The recent addition of the option tt (Therneau and
Crowson, 2013) theoretically allows to use P-splines as time transformations and
construct the partial likelihood ratio test of the proportional hazards. However,
the current implementation still does not seem completely reassuring and the test
has not been included in the analysis. Some other penalties may be considered
as well including those examined by Gray (1992) specifically in the context of the
proportional hazards testing where fewer events are likely to appear near the end
of the study due to censoring.

It is worth noting that the penalized partial likelihood framework also encompass-
es models such as ridge regression using identity matrix instead of PB or PP and
frailty models with Gaussian and gamma frailty terms (Therneau and Grambsch,
2000, p. 123 and 233).

The derivation of the Lin-Zhang-Davidian test

Lin et al. (2006) point out a common issue related to the spline-based tests
described above. They argue that the tests only achieve high power when the
smoothing parameter θ is tweaked with respect to the true alternative. Instead,
they propose a test utilizing a frailty models concept which requires no such
tuning. Consider the penalized partial likelihood with penalty based on the first
derivative

`pen(β, f, θ) = `(β, f)− θ

2

∫
[f ′(t)]2 dt.

Lin et al. (2006) state that the maximum of the penalized partial likelihood
is attained for f in the form of the first order smoothing spline which can be
parametrized as

f(t) = δ0 +
m∑
k=1

δk min(t, tk) (2.21)

where δ0, . . . , δm ∈ R. We can rewrite equation (2.21) as

ϕ = δ01 + Σδ

where ϕ = (f(t1), . . . , f(tm))T, 1 = (1, . . . , 1)T and

Σ =


t1 t1 · · · t1
t1 t2 · · · t2
...

...
. . .

...
t1 t2 · · · tm

 .

Setting ρ = θ−1 we can write

`pen(β, δ0, δ, ρ) = `[β,ϕ(δ0, δ)]− 1

2ρ
δTΣδ (2.22)
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or
Lpen(β, δ0, δ, ρ) = L[β,ϕ(δ0, δ)]× e−

1
2ρ
δTΣδ

which can be looked at as the product of the partial likelihood, the density of
N(0, ρΣ−1) and a constant. This suggests δ can be interpreted as a random vector
with the N(0, ρΣ−1) distribution and Lpen can be interpreted as the conditional
penalized partial likelihood given δ. The null hypothesis of the proportional
hazards corresponds to δ = 0. We denote

Uϕ =
∂`[β,ϕ(δ0,0)]

∂ϕ
and Vϕϕ =

∂2`[β,ϕ(δ0,0)]

∂ϕ∂ϕT
(2.23)

and consider a score type test of

H0 : δ = 0 against H0 : δ 6= 0

based on Φ̂ϕ = n−1ÛT
ϕΣÛϕ with the maximum partial likelihood estimators

under the null hypothesis β̂ and δ̂0 plugged in. We start with a spectral decom-
position of Σ setting

Φϕ =
1

n
UT
ϕΣUϕ =

1

n
UT
ϕPDP

TUϕ =
m∑
k=1

dk

(
1√
n

pT
kUϕ

)2

where the diagonal elements dk of D are the eigenvalues of Σ and the column
vectors pk of P are the corresponding eigenvectors. The second equation in (1.8)
shows that the k-th Schoenfeld residual is the increment of the p-dimensional
score process at the k-th event time. The first equation in (2.23) describes this
relationship in m-dimensional vector form for p = 1 and k = 1, . . . ,m. Therefore,
Ûϕ is a vector of the Schoenfeld residuals corresponding to the single time-varying
covariate. Equations (1.10), (1.11) and (1.12) show that the components of Uϕ

have zero mean and are uncorrelated, with variances given by the diagonal ele-
ments of Vϕϕ. Therefore n−1/2pT

kUϕ can be interpreted as a weighted sum of large
number of uncorrelated increments and the central limit theorem can be used to
approximate its distribution as N(0, wk) where wk = n−1pT

kVϕϕpk. Hence

Φ̂ϕ
.
=

m∑
k=1

dkwk

(
1

√
nwk

pT
kUϕ

)2

is approximately a sum of the weighted χ2
1 variables. The distribution of the

whole sum is approximated using the Satterthwaite method to match the first
two moments of the scaled chi-square distribution c ·χ2 with d degrees of freedom
(Satterthwaite, 1946). It holds that

EΦϕ = tr EΦϕ = E trΦϕ =
1

n
E trUT

ϕΣUϕ =
1

n
E trUϕUT

ϕΣ =
1

n
tr VϕϕΣ

and Lin et al. (2006) reveal that

varΦϕ =
2

n2
tr[(VϕϕΣ)2].
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The method of moments gives

c =
varΦϕ
2EΦϕ

=
tr[(VϕϕΣ)2]

ntr VϕϕΣ
and d =

(2EΦϕ)2

varΦϕ
=

(tr VϕϕΣ)2

tr[(VϕϕΣ)2]

which means that the test statistic ĉ−1Φ̂ϕ can be approximated with the χ2

distribution with d̂ degrees of freedom. Furthermore, Lin et al. (2006) proposed a
small sample correction for the variance introduced by estimating the regression
coefficients using

ĉ? =
tr[(V̂ ?

ϕϕΣ)2]

ntr V̂ ?
ϕϕΣ

and d̂? =
(tr V̂ ?

ϕϕΣ)2

tr[(V̂ ?
ϕϕΣ)2]

where

V̂ ?
ϕϕ = V̂ϕϕ −

(
V̂ϕβ V̂ϕϕ1

)( V̂ββ V̂βϕ1

1TV̂ϕβ 1TV̂ϕϕ1

)−1(
V̂βϕ

1TV̂ϕϕ

)

and V̂ββ, V̂βϕ, V̂ϕβ are defined by analogy with (2.23) plugging β̂ and δ̂0 in.

The test is not yet implemented in any R library to our knowledge. Therefore, we
have implemented the test in R by ourselves based on the STATA code from the
simulation study of Grant et al. (2013). In this article it is tacitly assumed that
the variance matrix is time-invariant as was done for the Grambsch-Therneau
class of tests in (2.8). This variant has been programmed as well.
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3. Application to Myocardial
Infarction Data

The methods described in the previous chapter are illustrated on medical data.
The data are taken from a prospective cohort study of cardiovascular diseases in
American patients of age 65 or higher (Fried et al., 1991). The study lasted from
1989 to 2002 with 3 954 patients enrolled. We are interested in testing the propor-
tional hazards assumption rather than making medical conclusions so we select a
sub-population of 3 374 patients (385 events) based on data completeness without
investigating the origin of the missing data. The objective is to investigate the
effect of a set of covariates on the time to myocardial infarction. We build a model
including five covariates with highly significant effects (p-values < 0.001) on the
hazard of myocardial infarction: gender, sub-clinical atherosclerosis, pack-years
(the amount of cigarettes smoked throughout life), systolic blood pressure and
HDL cholesterol level. The best model selection is not the objective in this case.
All covariate values are recorded at baseline. The significance level is set to 0.05.

Results of the Tests

The tests of the Grambsch-Therneau class are based on the correlation between
the scaled Schoenfeld residuals and the corresponding event times after a suitable
transformation. Equivalently, they are based on the slope of the regression line
using the scaled Schoenfeld residuals as response and the time transformation as a
single covariate, see Figures 3.1 and 3.2. The selection of the time transformation
plays a vital role as an inappropriate choice may create a couple of influential
observations with a great effect on the slope of the regression line, see Figure 3.1.

The two tests where the logarithmic transformation is applied – the Cox test and
the Khodonker-Islam test – prove inadequate, as illustrated for the first one on
Figure 3.1. All other tests give similar results. For example, the p-values of the
R default Lin test are 0.048 for gender, 0.058 for the systolic blood pressure and
higher for others. The combined p-value for all covariates is 0.098. The scaled
Schoenfeld residuals corresponding to gender approach zero after about six years
and the scaled Schoenfeld residuals corresponding to the systolic blood pressure
gradually decrease towards zero suggesting the effects of these covariates diminish
over time, see Figure 3.2.

The unweighted version of the Lin-Wei-Ying test rejects the null hypothesis of
the proportional hazards for gender (p-value 0.050) but not for the systolic blood
pressure (p-value 0.078) or any other covariate, see Figure 3.3. The weighted
version of the test does not reject the null hypothesis for any of the covariates
(p-values ≥ 0.090), see Figure 3.4.

The Scheike-Martinussen test is performed within the extended Cox model which
assumes the time-varying effect for all covariates and allows to impose the con-
stant effect constraint on covariates one by one. This way we proceed to a model
where the effects of sub-clinical atherosclerosis, pack-years and HDL cholesterol
are assumed time-fixed and the effects of gender and the systolic blood pressure
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Figure 3.1: Grambsch-Therneau class of tests: the scaled Schoenfeld residuals
against the event times after the logarithmic transformation (left plot, p-value
0.266) and the rank transformation (right plot, p-value 0.049). The shape of
the regression coefficient is visualized by a spline fit (solid line) and endowed
with two-standard-error pointwise confidence bands (dashed lines) as described by
Therneau and Grambsch (2000, p. 134–135). The first test is strongly influenced
by the three earliest observations.

are left possibly time-varying. The Kolmogorov-Smirnov type test rejects the null
hypothesis of the proportional hazards for gender (p-value 0.027) but not for the
systolic blood pressure (p-value 0.088) or any other covariate. The Cramér-von
Mises type test rejects the null hypothesis for gender (p-value 0.009) and the
systolic blood pressure (p-value 0.030) but not for any other covariate.

The original version of the Lin-Zhang-Davidian test rejects the null hypothesis
of the proportional hazards for gender (p-value 0.015) but not for the systolic
blood pressure (p-value 0.101) or any other covariate. The differences between the
original and the constant variance version of the test are small (p-value differences
≤ 0.006).

Summary of the Results

There is no evidence of the violation of the proportional hazards assumption for
sub-clinical atherosclerosis, pack-years and HDL cholesterol level. The effects of
gender and the systolic blood pressure are revealed to be weakened over time.
Since gender is a binary covariate we may compare the results with the common
approach of plotting the log-log survival curves in a model stratified with respect
to gender. The two curves overlap for the first half-year and then they start to
drift apart. Their distance stabilizes after about one year and the curves remain
approximately parallel for about five more years after which they start to get
closer again, see Figure 3.6. The final approaching of the curves is in line with
the findings above. The effect of gender in the first half-year is inconclusive.
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Figure 3.2: Grambsch-Therneau class of tests: the scaled Schoenfeld residuals
against the event times after the Kaplan-Meier transformation. The shapes of
the regression coefficients are visualized by spline fits (solid lines) and endowed
with two-standard-error pointwise confidence bands (dashed lines). The effect
of gender nearly vanishes after about six years. The effect of the systolic blood
pressure is gradually reduced to zero.
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Figure 3.3: Unweighted version of the Lin-Wei-Ying test: Empirical cumulative
score process (black) with 50 cumulative score processes simulated under the
null hypothesis (gray). No extensively divergent behaviour is apparent. The
maximum value for the systolic blood pressure is close to the overall maximum
value simulated.
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Figure 3.4: Weighted version of the Lin-Wei-Ying test: Empirical cumulative
score process (black) with 50 cumulative score processes simulated under the null
hypothesis (gray). No extensively divergent behaviour is apparent. The minimum
value for gender is close to the overall minimum value simulated.
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Figure 3.5: Scheike-Martinussen test: Estimates of the cumulative regression
coefficients (solid line) endowed with 95 % pointwise confidence bands (dashed
lines) as described by Martinussen and Scheike (2006, p. 221). Considerable
divergence from linearity is detected suggesting that the effects of gender (left
plot; p-values 0.027 [KS], 0.009 [CvM]) and the systolic blood pressure (right
plot; p-values 0.088 [KS], 0.030 [CvM]) diminish over time.
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Figure 3.6: Estimated log-log survival curves for men (solid line) and women
(dashed line). After one-year stabilization period the curves become approxi-
mately parallel indicating little evidence of the non-proportional hazards until
about six years. Then the curves start to get closer confirming the lack of fit to-
wards the end of the time range. The effect in the first half-year is inconclusive.
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4. Simulation Study

4.1 Theoretical Considerations

Bender et al. (2005) present the following approach to simulation of the event
times. Let Ti be random variables with increasing continuous distribution func-
tion F . Then the random variables F (Ti) have the uniform distribution on [0, 1]
and also

1− F (Ti) = S(Ti) = e−Λ(Ti) ∼ Unif(0, 1).

Therefore, if the cumulative baseline hazard function is invertible we can use
formula (1.5) to simulate the event times in the regression setting as

Ti = Λ−1(− logUi |Xi) = Λ−1
0 (− logUi · e−X

T
i β)

where Ui ∼ Unif(0, 1) or equivalently

Ti = Λ−1(Ei |Xi) = Λ−1
0 (Ei · e−X

T
i β) (4.1)

where Ei ∼ Exp(1). Specifically, if Ti have the exponential distribution with rate
parameter λ then

λ0(t) ≡ λ, Λ0(t) = λt and Λ−1
0 (t) =

t

λ
.

Thus, the event times can be simulated as

Ti =
Ei

λeX
T
i β
. (4.2)

Since the hazard function takes the form λ(t |Xi) = λeX
T
i β the event times can be

interpreted as exponentially distributed random variables with rate parameters
λeX

T
i β. More generally, the event times with the Weibull distribution and the

baseline hazard λ0(t) = λγtγ−1 can be simulated as Ti = (Ei · λ−1e−X
T
i β)1/γ. In

addition, the event times with the Gompertz distribution and the baseline hazard
λ0(t) = λeγt can be simulated as

Ti =
1

γ
log

(
1 +

γEi

λeX
T
i β

)
.

4.1.1 Time-varying Covariates

Austin (2012) investigates the simulation of the event times in the context of
time-varying covariates. An extension of this approach allows to include time-
varying covariates Xi(t) = (XT

1i,X
T
2i(t))

T = (XT
1i, h(t)XT

2i)
T. To sample the event

times with the exponential distribution and linear function h(t) = t, it suffices
to invert the conditional cumulative hazard function as in (4.1). For XT

2iβ > 0 it
holds that

Λ(t | FXi
t ) =

∫ t

0

λeX
T
1iα+XT

2i(s)β ds = λeX
T
1iα

∫ t

0

esX
T
2iβ ds

= λeX
T
1iα

[
1

XT
2iβ

esX
T
2iβ

]t
0

=
1

XT
2iβ

λeX
T
1iα(etX

T
2iβ − 1)
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while for XT
2iβ = 0 we obtain

Λ(t | FXi
t ) =

∫ t

0

λeX
T
1iα ds = λeX

T
1iαt.

Hence the event times can be simulated as

Ti = Λ−1(Ei | FXi
t ) =


1

XT
2iβ

log
[
1 +

Ei·XT
2iβ

λ exp(XT
1iα)

]
for XT

2iβ > 0,

Ei
λ exp(XT

1iα)
for XT

2iβ = 0.

To sample the event times with the exponential distribution and a step-function
h(t) = 1(t > tb) with unit upwards jump at breakpoint time tb applied to a single
covariate we compute

Λ( t | FXi
t ) =

∫ t

0

λeX
T
1iα+βX2i(s) ds = λeX

T
1iα

∫ t

0

eβX2i(s) ds

= λeX
T
1iα

(∫ tb

0

ds+

∫ t

tb

eβX2i ds

)
= λeX

T
1iα[tb + eβX2i(t− tb)]

for tb < t while formula (4.2) remains valid for tb ≥ t. After inverting the
conditional cumulative hazard function for tb < t we calculate the overall formula

Ti =


Ei

λ exp(XT
1iα)

for Ei
λ exp(XT

1iα)
< tb,

Ei+λtb exp(XT
1iα)[exp(βX2i)−1]

λ exp(XT
1iα+βX2i)

for Ei
λ exp(XT

1iα)
≥ tb.

Besides generalizing take the results published by Austin (2012) we also introduce
the logarithmic transformation h(t) = log t. For XT

2iβ 6= −1 it holds that

Λ(t | FXi
t ) =

∫ t

0

λeX
T
1iα+XT

2i(s)β ds = λeX
T
1iα

∫ t

0

elog(s)XT
2iβ ds

= λeX
T
1iα

∫ t

0

sX
T
2iβ ds = λeX

T
1iα

[
sX

T
2iβ+1

XT
2iβ + 1

]t
0

= λeX
T
1iα

tX
T
2iβ+1

XT
2iβ + 1

and

Ti = exp

{
1

XT
2iβ + 1

log

[
Ei · (XT

2iβ + 1)

λeX
T
1iα

]}
.

Austin (2012) also shows how to generalize the formula for arbitrarily switching
function with range {0, 1} and includes the Weibull and Gompertz distributed
event times as well.
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4.1.2 Model Misspecification

A different way to violate the proportional hazards assumption is to generate the
event times from the accelerated failure time model

λ(t |Xi) = λ0(teX
T
i β)eX

T
i β.

One typical choice of the distribution for the baseline hazard is the log-normal
distribution which allows to sample the event times as

Ti = exp(log T0i −XT
i β)

where log T0i are drawn from the normal distribution. Another model misspecifi-
cation occurs when the event times are generated by the additive hazards model

λ(t |Xi) = λ0(t) + XT
i β

introduced by Lin and Ying (1994). In the case of the constant baseline hazard
function λ0(t) ≡ λ it holds that

Λ(Ti |Xi) =

∫ Ti

0

(λ+ XT
i β) ds = Ti(λ+ XT

i β) ∼ Exp(1)

and it is possible to sample the event times as

Ti =
Ei

λ+ XT
i β

(4.3)

where Ei ∼ Exp(1). Comparing (4.2) and (4.3) we see that the event times are
generated from the exponential distribution with rate parameter λ + XT

i β and
the proportional hazards assumption is not violated. Therefore, we investigate
the case of the linear hazard function. It holds that

Λ(t | FXi
t ) =

∫ Ti

0

(λt+ XT
i β) ds =

λ

2
· T 2

i + XT
i β · Ti.

It follows that(√
λ

2
· Ti +

1√
2λ

XT
i β

)2

= Λ(t | FXi
t ) +

1

2λ
(XT

i β)2.

Hence the positive event times can be sampled via Ei ∼ Exp(1) as

Ti =

√
2

λ
· Ei +

(
1

λ
XT
i β

)2

− 1

λ
XT
i β.
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4.2 Simulation Design

Monte Carlo simulations with 1 000 replications are undertaken to evaluate the
size and the power of the tests presented above. The first simulation is performed
using the standard setting with sample size n = 250, all covariates independent,
the censoring times independent of covariates and the censoring rate, i.e. the
proportion of the observations where no event is recorded, around 30 %. Next,
these conditions are varied one by one. We examine the influence of low sample
size, correlated covariates, heavy censoring and covariate-dependent censoring.
The empirical size is calculated as the proportion of null hypotheses rejected when
the null hypothesis is true. The empirical power is calculated as the proportion
of null hypotheses rejected under one of the alternatives specified below.

4.2.1 Sampling of the Covariate Values

Three covariates are considered, two of them continuous and one discrete. Co-
variate values X1i are sampled from the normal distribution with mean 1 and
standard deviation 0.1 to avoid generating values out of the range [0, 2] (proba-
bility < 10−23). In the standard setting, covariate values X2i are sampled from the
uniform distribution on [0, 1] and covariates X3i are sampled from the Bernoulli
distribution with parameter pi ≡ 0.5 independently of all other covariates. Al-
ternatively, the covariates are assumed to be correlated. Covariate values X2i are
then sampled from the beta distribution where

ai = 5X1i, bi =
5

X1i

, E(X2i |X1i) =
ai

ai + bi
=

1

1 + 1
X2

1i

,

see Figure 4.1. Covariate values X3i are sampled from the Bernoulli distribution
with parameter pi = 0.5X1i. The regression coefficients corresponding to the
time-fixed covariates are set to β1 = β2 = β3 = 0.1. The linear predictor XT

i β has
empirical mean 0.2 and empirical standard deviation 0.06 for both uncorrelated
and correlated covariates based on the additional simulation of 10 000 replications,
see Figure 4.2.

4.2.2 Sampling of the Event Times

First, the event times are generated from the exponential model with rate pa-
rameter 0.25. The covariates are then allowed to depend on time one by one
through linear, logarithmic and step-function interactions. The regression coeffi-
cients for the time-varying covariates are selected with the aim of attaining the
power around 0.5 for which differences among the tests are best revealed, see
Table 4.1. The breakpoint in the step-function is set to tb = 2.5 so that it is
reached by approximately half of the individuals. Second, the Gompertz pro-
portional hazards model with the baseline hazard function λ0(t) = 0.25e0.1t, the
log-normal accelerated failure time model with parameters µ = 1, σ = 0.1 and
the additive hazards model with the linear baseline hazard function λ0(t) = 0.25t
are investigated.
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Figure 4.1: Density of the beta distribution for fixed values of X1i set to 0.75
(dashed line) and 1.25 (dotted line) approximately corresponding to the mini-
mum and the maximum values of the first covariate for sample size n = 250,
respectively. The density of the uniform distribution (solid line) used in the
case of independent covariates is a special case of the beta distribution with unit
parameters.

4.2.3 Sampling of the Censoring Times

The censoring times used in the standard setting are generated from the expo-
nential distribution with rate parameter 0.15 corresponding to the relatively low
censoring rate of about 30 %. An alternative option is to set the parameter to
0.5 which corresponds to relatively heavy censoring of about 60 % of the event
times. Apart from the censoring times independent of covariate values, we also
construct light censoring depending on the first covariate as Ci ∼ Exp(0.15X1i).

Table 4.1: Regression coefficients for the time-varying covariates. Transform: the
type of the time transformation used in the interaction term; TVC1–TVC3: the
regression coefficient for the first–third covariate allowed to depend on time.

Transform TVC1 TVC2 TVC3

linear 0.50 0.50 0.25
step-function 3.75 1.50 0.75
logarithmic 3.25 0.50 0.25
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Figure 4.2: Histogram of the linear predictor XT
i β in the case of independent

covariates (left plot) and correlated covariates (right plot). An additional sample
of 10 000 replications was used for its construction.

4.2.4 Overview of the Tests under Study

The ability to reveal the violation of the proportional hazards assumption is
investigated for the following tests:

1. Grambsch-Therneau class of tests as implemented in R library survival

within the function cox.zph

(a) Cox test (transform = "identity")

(b) Cox test (transform = "log")

(c) Breslow-Edler-Berger test (transform = "rank")

(d) Lin test (transform = "km")

(e) Lin test (transform = "km(1-km)")1

(f) Khondoker-Islam test (transform = "log(-log(km))")1

2. Lin-Wei-Ying test as implemented in R library timereg within the function
cox.aalen

(a) Unweighted version of the test

(b) Weighted version of the test

3. Lin-Zhang-Davidian test self-implemented in R2

(a) The original version of the test

(b) Constant variance version of the test

1Self-implemented extension of the function cox.zph.
2Implementation based on the STATA code from the simulation study of Grant et al. (2013).
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The Scheike-Martinussen test as implemented in R library timereg within the
function timecox was excluded from the study since it repeatedly encountered
numerical problems. The same issue was reported by Buchholz (2010) who sug-
gested to restrict the time range used for fitting to [0, τmax] for some τmax < τ .
Unfortunately, this approach has not solved the difficulties to such an extent
that the simulation would be plausible. It was noted by the authors of the test
(Scheike and Martinussen, 2004, p. 177) that it might indeed be difficult to fit the
extended Cox model for small sample sizes with all regression coefficients possi-
bly time-varying. They recommend setting some of the regression coefficients as
time-fixed in such cases which has not removed the problem either.

4.3 Simulation Results

The complete simulation results are summarized in the Appendix. The tables
of results are divided into the first part investigating the time-varying covariate
effects, see Tables A.1–A.10 and the second part investigating the model misspec-
ification, see Tables A.11–A.15.

4.3.1 Test-specific Results

The weighted version of the Lin-Wei-Ying test does not have valid size for sample
size n = 100, see Tables A.3, A.4 and A.12. It also fails to attain valid size for
the third covariate with sample size n = 250, see e.g. Tables A.1, A.2 and A.11.
Therefore, it is not considered for the subsequent power analysis. The test has
valid size for large sample sizes though. Using the standard setting with enlarged
sample size n = 1 000 the empirical sizes under the exponential model are 0.038,
0.063 and 0.076 respectively for each of the covariates. All tests under study
apart from the weighted version of the Lin-Wei-Ying test have valid sizes.

The quadratic variant of the Lin test has extremely low power compared to other
tests from the Grambsch-Therneau class and cannot be recommended unless there
is a prior indication of quadratic departure from the proportionality of hazards.
The Cox test with no time transformation appears to be more conservative than
other tests from the Grambsch-Therneau class apart from the above mentioned
version of the Lin test. The constant-variance version of the Lin-Zhang-Davidian
test turns out to be more conservative than the original version which means that
the approximation does reduce power.

The most powerful test is always one of the following: the original version of the
Lin-Zhang-Davidian test (32 times), the Khondoker-Islam test (20 times), the
unweighted version of the Lin-Wei-Ying test (17 times) and the Cox test with the
logarithmic transformation (9 times). The highest power among the tests of the
Grambsch-Therneau class is attained by the two tests based on the logarithmic
transformation – the Cox test and the Khodonker-Islam test. Nevertheless, it
was suggested in Chapter 3 that these two tests are the least reliable ones, see
Figure 3.1. The last two tests from the Grambsch-Therneau class with the rank
transformation and the Kaplan-Meier transformation typically have only slightly
lower power than the overall maximum attained.
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4.3.2 Alternative-specific Results

The most powerful test for detecting the time-varying covariate effect is the Lin-
Zhang-Davidian test in most cases (23 of 45 times). The most powerful test for
detecting the accelerated failure time model misspecification is the Khondoker-
Islam test in most cases (7 of 15 times) followed by the Lin-Zhang-Davidian
test (6 times). The most powerful test for detecting the additive hazards model
misspecification is the unweighted version of the Lin-Wei-Ying test in most cases
(8 of 15 times), yet it should be noted that no parameter values yielding powers
of any practical relevance were found in the current setting even after inclusion
of the intercept in the linear baseline hazard function. Similarly, the range of the
first covariate is strongly restricted, see Subsection 4.2.1, and the power of all tests
is very low when sampling the event times in the presence of linear interaction of
the first covariate with time.

4.3.3 Design-specific Results

The results for various simulation design alterations are contrasted with the re-
sults for the standard setting, see Tables A.1, A.2 and A.11. The immediate
consequence of decreasing the sample size is the loss of power. The decline is
about one half of the power under the standard setting irrespective of the test
type, see Tables A.3, A.4 and A.12. The results for correlated covariates suggest
that the higher the correlation between covariates the higher the loss of power.
The first covariate is fixed and its correlation with the second covariate is about
0.3. The power of the tests for the time-invariance of the second covariate is
mostly ranging between one third and one half of the power under the standard
setting. In contrast, the correlation between the first and the third covariate is
about 0.1 and there is hardly any difference in power, see Tables A.5, A.6 and
A.13. The effect of heavy censoring is of the same type as the effect of lowering
the sample size as it effectively reduces the number of the observed events, see
Tables A.7, A.8 and A.14. Censoring dependent on the first covariate has no
visible effect on the power of the tests, see Tables A.9, A.10 and A.15.
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Conclusion

The proportional hazards model is introduced and the proportional hazards as-
sumption is explained in detail. The tests of the Grambsch-Therneau class as
well as the Lin-Wei-Ying test, the Scheike-Martinussen test and the Lin-Zhang-
Davidian test are derived and described. The tests are motivated with both
historical development and their benefits over other tests whenever possible. The
appearance of the potential connections between the tests is accentuated by ad-
hering to unified terminology and notation.

The application to medical data illustrates the tests along with the graphical
diagnostics which are shown to provide a valuable insight into the mechanism
based on which the test statistics are calculated. They might reveal the way in
which the proportional hazards assumption is violated, see Figure 3.5, or they
might hint at the reliability of the test, see Figure 3.1.

The simulation study suggests that the Lin-Zhang-Davidian test, the unweighted
version of the Lin-Wei-Ying test and the two tests of the Grambsch-Therneau class
based on the logarithmic transformation – the Cox test and the Khodonker-Islam
test – have superior power. Nevertheless, the latter two tests should only be used
when supported by the graphical diagnostics because of their undue sensitivity
to influential observations, see Figure 3.1. The Lin test with the Kaplan-Meier
transformation is more reliable in this aspect (see also Grambsch and Therneau,
1994, p. 136) and while it does not provide the maximum power it is always close
enough to be considered a reasonable default option. It was further revealed that
the weighted version of the Lin-Wei-Ying test may not have valid size for sample
sizes up to n = 250 and should not be used in such cases. The applicability of
the Scheike-Martinussen test depends on whether the sample size is large enough
to fit the extended Cox model (2.17).

The parameters in the simulation study are set with the aim of revealing the
differences in the power of the tests to the fullest extent. The simulation results
are therefore limited to the test comparisons and are not supposed to be used to
assess whether the power of a certain test would be large enough in a real-life
setting. Simulation results concerning the practical applicability of the tests are
provided by Grant et al. (2013).

There are aspects of the topic beyond the scope of the thesis. For example, there
might be more than one variable violating the proportional hazards assumption
at a time. From the vast number of possible alterations in the simulation design
we highlight the possibility to test for a specified alternative to the constant
treatment effect such as gradual decline, delayed effect, switching effect etc.

Several other tests of the proportional hazards have been proposed some of
which are summarized by Buchholz (2010) including fractional polynomial mod-
els (Sauerbrei et al., 2007), reduced rank models (Perperoglou et al., 2006) and
methods based on local linear estimation (Cai and Sun, 2003) and average haz-
ard ratios (Schemper et al., 2009). Kraus (2007) applied the idea of data-driven
smooth tests (Ledwina, 1994) in the context of the proportional hazards testing.
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A. Appendix

A.1 Probability Theory

We give a brief overview of the basic terms related to the counting processes and
martingale theory. The exposition closely follows the framework introduced by
Fleming and Harrington (1991). The terminology is related to the interval [0,∞).

Definition A.1. A class of σ-algebras {Ft, t ≥ 0} satisfying Fs ⊂ Ft for all s ≤ t
is called a filtration. For filtration Ft we define

1. Ft+ =
⋂
h>0Ft+h,

2. Ft− = σ
(⋃

h>0Ft−h
)
.

Definition A.2. A family of random variables {X(t), t ≥ 0} defined on a prob-
ability space (Ω,F ,P) is called a stochastic process.

Definition A.3. A stochastic process {X(t), t ≥ 0} where X(t) is Ft-measurable
for all t ≥ 0 is called adapted to Ft.

Definition A.4. A stochastic process {X(t), t ≥ 0} adapted to Ft+ is called a
right-continuous process.

Definition A.5. A right-continuous process with limits from the left adapted to
Ft satisfying E|X(t)| <∞ for all t <∞ and one of the following conditions:

1. E[X(t+ s) | Ft] = X(t) a.s. for all s, t ≥ 0,

2. E[X(t+ s) | Ft] ≥ X(t) a.s. for all s, t ≥ 0,

3. E[X(t+ s) | Ft] ≤ X(t) a.s. for all s, t ≥ 0,

is called a Ft-martingale, a Ft-submartingale or a Ft-supermartingale respectively.

Definition A.6. A stochastic process {X(t), t ≥ 0} whereX(t) is Ft−-measurable
for all t ≥ 0 is called a Ft-predictable process.

Theorem A.1 (Doob-Meyer Theorem). Let {N(t), t ≥ 0} be a right-continuous
non-negative Ft-submartingale satisfying N(0) = 0 and EN(t) <∞ for all t ≥ 0.
Then there is a unique decomposition into a right-continuous Ft-martingale {M(t),
t ≥ 0} and an increasing right-continuous Ft-predictable process {A(t), t ≥ 0}
satisfying A(0) = 0 a.s. and EA(t) <∞ such that

N(t) = M(t) + A(t) a.s.

for all t ≥ 0. The stochastic process {A(t), t ≥ 0} is called a compensator of
submartingale {N(t), t ≥ 0}.

A.2 Tables of Simulation Results

The complete results of the simulation study are provided, see Tables A.1–A.15.
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Table A.1: Results of the simulation study for the time-varying covariate effects under the standard setting. Test: the type of the test
as labelled in Subsection 4.2.4; Cov: the covariate for which the power or the size is calculated; PH (exp): the size of the test under the
exponential model; TVC1–TVC3 (linear/step/log): the power or the size (in italics) of the test under the exponential model with the
first–third covariate allowed to depend on time through linear/step/log interaction.

Test Cov PH TVC1 TVC1 TVC1 TVC2 TVC2 TVC2 TVC3 TVC3 TVC3
(exp) (linear) (step) (log) (linear) (step) (log) (linear) (step) (log)

1st 0.033 0.089 0.489 0.247 0.019 0.022 0.028 0.022 0.028 0.033
GT (a) 2nd 0.036 0.040 0.048 0.039 0.452 0.477 0.247 0.025 0.022 0.032

3rd 0.026 0.042 0.047 0.032 0.026 0.027 0.024 0.356 0.320 0.221

1st 0.049 0.098 0.314 0.280 0.040 0.049 0.051 0.044 0.049 0.059
GT (b) 2nd 0.047 0.058 0.046 0.046 0.453 0.385 0.436 0.040 0.052 0.052

3rd 0.051 0.049 0.052 0.038 0.050 0.056 0.052 0.444 0.297 0.402

1st 0.057 0.105 0.501 0.246 0.038 0.043 0.050 0.040 0.050 0.050
GT (c) 2nd 0.049 0.050 0.038 0.050 0.562 0.581 0.411 0.040 0.038 0.055

3rd 0.058 0.052 0.042 0.039 0.047 0.050 0.052 0.545 0.432 0.365

1st 0.050 0.100 0.513 0.243 0.027 0.042 0.050 0.039 0.047 0.050
GT (d) 2nd 0.047 0.047 0.041 0.049 0.562 0.601 0.381 0.036 0.036 0.052

3rd 0.051 0.049 0.038 0.039 0.044 0.049 0.047 0.547 0.443 0.356

1st 0.051 0.051 0.062 0.077 0.051 0.048 0.052 0.050 0.052 0.054
GT (e) 2nd 0.047 0.047 0.051 0.051 0.104 0.096 0.224 0.044 0.055 0.051

3rd 0.056 0.044 0.039 0.057 0.048 0.047 0.057 0.117 0.085 0.208

1st 0.048 0.104 0.426 0.280 0.045 0.051 0.059 0.041 0.051 0.061
GT (f) 2nd 0.046 0.055 0.041 0.053 0.471 0.436 0.438 0.038 0.054 0.053

3rd 0.055 0.046 0.042 0.042 0.048 0.055 0.046 0.449 0.330 0.399
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Table A.2: Continuation of Table A.1. The censoring rate gives the proportion of the observations where no event is recorded.

Test Cov PH TVC1 TVC1 TVC1 TVC2 TVC2 TVC2 TVC3 TVC3 TVC3
(exp) (linear) (step) (log) (linear) (step) (log) (linear) (step) (log)

1st 0.058 0.115 0.591 0.227 0.052 0.060 0.057 0.058 0.061 0.053
LWY (a) 2nd 0.059 0.058 0.054 0.058 0.535 0.659 0.339 0.051 0.051 0.072

3rd 0.048 0.055 0.059 0.049 0.059 0.055 0.063 0.499 0.511 0.335

1st 0.035 0.084 0.472 0.187 0.036 0.043 0.037 0.045 0.038 0.026
LWY (b) 2nd 0.042 0.044 0.035 0.047 0.511 0.579 0.282 0.043 0.051 0.055

3rd 0.215 0.283 0.320 0.327 0.281 0.249 0.249 0.784 0.632 0.465

1st 0.053 0.114 0.541 0.266 0.034 0.050 0.061 0.050 0.053 0.046
LZD (a) 2nd 0.051 0.054 0.047 0.054 0.608 0.665 0.367 0.045 0.043 0.057

3rd 0.055 0.055 0.049 0.042 0.050 0.049 0.053 0.609 0.532 0.340

1st 0.041 0.098 0.539 0.248 0.024 0.040 0.049 0.041 0.042 0.038
LZD (b) 2nd 0.039 0.045 0.047 0.048 0.525 0.620 0.324 0.036 0.038 0.039

3rd 0.038 0.047 0.048 0.039 0.044 0.041 0.033 0.506 0.464 0.306

Censoring rate 0.330 0.219 0.235 0.227 0.263 0.294 0.324 0.300 0.318 0.333
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Table A.3: Results of the simulation study for the time-varying covariate effects with low sample size. Test: the type of the test as
labelled in Subsection 4.2.4; Cov: the covariate for which the power or the size is calculated; PH (exp): the size of the test under the
exponential model; TVC1–TVC3 (linear/step/log): the power or the size (in italics) of the test under the exponential model with the
first–third covariate allowed to depend on time through linear/step/log interaction.

Test Cov PH TVC1 TVC1 TVC1 TVC2 TVC2 TVC2 TVC3 TVC3 TVC3
(exp) (linear) (step) (log) (linear) (step) (log) (linear) (step) (log)

1st 0.021 0.034 0.197 0.101 0.028 0.022 0.018 0.021 0.018 0.021
GT (a) 2nd 0.015 0.032 0.043 0.037 0.126 0.154 0.075 0.020 0.023 0.014

3rd 0.020 0.034 0.058 0.042 0.020 0.022 0.027 0.103 0.094 0.076

1st 0.057 0.076 0.157 0.133 0.054 0.051 0.045 0.056 0.046 0.055
GT (b) 2nd 0.036 0.058 0.059 0.044 0.198 0.195 0.182 0.048 0.046 0.037

3rd 0.038 0.057 0.069 0.051 0.040 0.047 0.053 0.219 0.144 0.195

1st 0.049 0.057 0.188 0.110 0.048 0.040 0.047 0.041 0.041 0.054
GT (c) 2nd 0.036 0.041 0.036 0.046 0.239 0.246 0.161 0.044 0.054 0.033

3rd 0.036 0.052 0.047 0.044 0.037 0.046 0.051 0.240 0.184 0.169

1st 0.040 0.054 0.186 0.103 0.043 0.039 0.038 0.036 0.037 0.047
GT (d) 2nd 0.033 0.041 0.037 0.044 0.231 0.242 0.138 0.043 0.049 0.026

3rd 0.029 0.052 0.046 0.041 0.032 0.041 0.051 0.226 0.186 0.154

1st 0.056 0.072 0.058 0.076 0.056 0.051 0.053 0.065 0.053 0.054
GT (e) 2nd 0.043 0.052 0.053 0.042 0.084 0.085 0.125 0.057 0.063 0.051

3rd 0.046 0.066 0.049 0.034 0.059 0.050 0.059 0.103 0.089 0.128

1st 0.055 0.067 0.176 0.140 0.055 0.051 0.051 0.050 0.056 0.051
GT (f) 2nd 0.040 0.050 0.047 0.047 0.216 0.208 0.181 0.049 0.049 0.034

3rd 0.040 0.060 0.055 0.047 0.048 0.046 0.052 0.232 0.162 0.178
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Table A.4: Continuation of Table A.3. The censoring rate gives the proportion of the observations where no event is recorded.

Test Cov PH TVC1 TVC1 TVC1 TVC2 TVC2 TVC2 TVC3 TVC3 TVC3
(exp) (linear) (step) (log) (linear) (step) (log) (linear) (step) (log)

1st 0.071 0.082 0.247 0.118 0.062 0.064 0.064 0.071 0.060 0.060
LWY (a) 2nd 0.051 0.056 0.064 0.058 0.272 0.316 0.162 0.051 0.067 0.050

3rd 0.057 0.060 0.072 0.055 0.059 0.057 0.068 0.257 0.223 0.182

1st 0.275 0.468 0.572 0.525 0.329 0.340 0.325 0.287 0.283 0.310
LWY (b) 2nd 0.303 0.543 0.551 0.550 0.523 0.545 0.436 0.320 0.329 0.340

3rd 0.413 0.574 0.583 0.559 0.472 0.448 0.448 0.619 0.573 0.515

1st 0.049 0.081 0.224 0.138 0.059 0.052 0.053 0.047 0.048 0.062
LZD (a) 2nd 0.058 0.048 0.059 0.051 0.289 0.320 0.165 0.055 0.058 0.040

3rd 0.045 0.059 0.058 0.052 0.040 0.048 0.061 0.294 0.238 0.174

1st 0.032 0.048 0.215 0.110 0.038 0.042 0.034 0.034 0.034 0.042
LZD (b) 2nd 0.026 0.032 0.055 0.046 0.205 0.248 0.112 0.029 0.042 0.019

3rd 0.024 0.042 0.055 0.044 0.029 0.033 0.038 0.189 0.166 0.121

Censoring rate 0.330 0.218 0.236 0.227 0.263 0.295 0.322 0.299 0.316 0.330
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Table A.5: Results of the simulation study for the time-varying covariate effects with correlated covariates. Test: the type of the test as
labelled in Subsection 4.2.4; Cov: the covariate for which the power or the size is calculated; PH (exp): the size of the test under the
exponential model; TVC1–TVC3 (linear/step/log): the power or the size (in italics) of the test under the exponential model with the
first–third covariate allowed to depend on time through linear/step/log interaction.

Test Cov PH TVC1 TVC1 TVC1 TVC2 TVC2 TVC2 TVC3 TVC3 TVC3
(exp) (linear) (step) (log) (linear) (step) (log) (linear) (step) (log)

1st 0.024 0.077 0.460 0.192 0.032 0.025 0.027 0.020 0.029 0.032
GT (a) 2nd 0.024 0.032 0.049 0.050 0.168 0.138 0.084 0.021 0.035 0.029

3rd 0.021 0.030 0.055 0.052 0.034 0.026 0.030 0.406 0.314 0.252

1st 0.054 0.096 0.284 0.234 0.053 0.047 0.050 0.046 0.064 0.058
GT (b) 2nd 0.037 0.049 0.048 0.063 0.183 0.145 0.150 0.053 0.057 0.044

3rd 0.042 0.043 0.053 0.055 0.051 0.043 0.051 0.451 0.304 0.439

1st 0.043 0.097 0.472 0.185 0.044 0.038 0.037 0.038 0.051 0.054
GT (c) 2nd 0.038 0.038 0.030 0.057 0.217 0.190 0.134 0.043 0.056 0.047

3rd 0.052 0.038 0.052 0.054 0.045 0.042 0.049 0.580 0.432 0.390

1st 0.040 0.097 0.486 0.177 0.039 0.037 0.036 0.033 0.046 0.053
GT (d) 2nd 0.035 0.036 0.027 0.056 0.214 0.199 0.136 0.037 0.054 0.045

3rd 0.044 0.036 0.051 0.054 0.043 0.044 0.047 0.588 0.439 0.369

1st 0.054 0.064 0.058 0.090 0.049 0.046 0.056 0.049 0.056 0.046
GT (e) 2nd 0.048 0.046 0.046 0.058 0.062 0.063 0.097 0.060 0.058 0.048

3rd 0.045 0.037 0.037 0.041 0.052 0.061 0.045 0.126 0.087 0.198

1st 0.054 0.089 0.372 0.236 0.048 0.042 0.054 0.043 0.062 0.059
GT (f) 2nd 0.035 0.039 0.038 0.065 0.199 0.151 0.153 0.049 0.055 0.042

3rd 0.042 0.043 0.052 0.050 0.048 0.040 0.050 0.474 0.318 0.433
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Table A.6: Continuation of Table A.5. The censoring rate gives the proportion of the observations where no event is recorded.

Test Cov PH TVC1 TVC1 TVC1 TVC2 TVC2 TVC2 TVC3 TVC3 TVC3
(exp) (linear) (step) (log) (linear) (step) (log) (linear) (step) (log)

1st 0.063 0.110 0.607 0.217 0.073 0.063 0.053 0.050 0.061 0.055
LWY (a) 2nd 0.043 0.047 0.101 0.070 0.236 0.248 0.145 0.062 0.064 0.047

3rd 0.046 0.064 0.067 0.069 0.055 0.058 0.060 0.568 0.512 0.324

1st 0.037 0.087 0.470 0.159 0.050 0.036 0.041 0.031 0.042 0.033
LWY (b) 2nd 0.025 0.046 0.069 0.064 0.181 0.189 0.118 0.042 0.045 0.025

3rd 0.229 0.275 0.331 0.336 0.305 0.257 0.249 0.811 0.630 0.487

1st 0.050 0.117 0.546 0.233 0.066 0.067 0.049 0.045 0.059 0.058
LZD (a) 2nd 0.038 0.048 0.094 0.082 0.284 0.263 0.149 0.047 0.061 0.054

3rd 0.052 0.047 0.055 0.061 0.047 0.044 0.057 0.661 0.535 0.369

1st 0.040 0.103 0.541 0.208 0.053 0.053 0.034 0.032 0.046 0.043
LZD (b) 2nd 0.031 0.034 0.094 0.070 0.225 0.222 0.120 0.034 0.047 0.043

3rd 0.040 0.039 0.052 0.055 0.039 0.035 0.050 0.570 0.467 0.326

Censoring rate 0.329 0.220 0.236 0.228 0.259 0.295 0.325 0.298 0.316 0.332
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Table A.7: Results of the simulation study for the time-varying covariate effects with heavy censoring. Test: the type of the test as
labelled in Subsection 4.2.4; Cov: the covariate for which the power or the size is calculated; PH (exp): the size of the test under the
exponential model; TVC1–TVC3 (linear/step/log): the power or the size (in italics) of the test under the exponential model with the
first–third covariate allowed to depend on time through linear/step/log interaction.

Test Cov PH TVC1 TVC1 TVC1 TVC2 TVC2 TVC2 TVC3 TVC3 TVC3
(exp) (linear) (step) (log) (linear) (step) (log) (linear) (step) (log)

1st 0.038 0.049 0.232 0.147 0.025 0.034 0.023 0.022 0.022 0.028
GT (a) 2nd 0.042 0.022 0.052 0.043 0.215 0.149 0.175 0.033 0.024 0.029

3rd 0.033 0.035 0.043 0.041 0.027 0.039 0.039 0.169 0.118 0.128

1st 0.049 0.072 0.152 0.179 0.037 0.055 0.042 0.045 0.040 0.057
GT (b) 2nd 0.052 0.041 0.054 0.052 0.224 0.134 0.294 0.046 0.051 0.059

3rd 0.048 0.047 0.047 0.042 0.039 0.051 0.049 0.183 0.101 0.227

1st 0.047 0.060 0.210 0.145 0.046 0.049 0.040 0.041 0.038 0.051
GT (c) 2nd 0.056 0.037 0.048 0.044 0.278 0.156 0.263 0.056 0.046 0.057

3rd 0.052 0.044 0.040 0.045 0.043 0.050 0.051 0.217 0.105 0.207

1st 0.048 0.054 0.227 0.139 0.028 0.037 0.032 0.032 0.029 0.040
GT (d) 2nd 0.050 0.032 0.044 0.043 0.260 0.178 0.221 0.048 0.030 0.046

3rd 0.046 0.042 0.030 0.041 0.033 0.049 0.043 0.216 0.131 0.172

1st 0.054 0.049 0.089 0.083 0.046 0.052 0.051 0.048 0.050 0.061
GT (e) 2nd 0.059 0.044 0.052 0.061 0.178 0.093 0.256 0.060 0.057 0.064

3rd 0.055 0.042 0.052 0.048 0.050 0.052 0.053 0.166 0.081 0.208

1st 0.049 0.076 0.172 0.184 0.044 0.049 0.040 0.046 0.036 0.051
GT (f) 2nd 0.046 0.040 0.043 0.053 0.230 0.141 0.290 0.044 0.048 0.061

3rd 0.050 0.042 0.040 0.049 0.036 0.045 0.052 0.194 0.099 0.229
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Table A.8: Continuation of Table A.7. The censoring rate gives the proportion of the observations where no event is recorded.

Test Cov PH TVC1 TVC1 TVC1 TVC2 TVC2 TVC2 TVC3 TVC3 TVC3
(exp) (linear) (step) (log) (linear) (step) (log) (linear) (step) (log)

1st 0.048 0.069 0.271 0.152 0.058 0.062 0.052 0.047 0.042 0.060
LWY (a) 2nd 0.065 0.051 0.069 0.063 0.256 0.169 0.239 0.065 0.057 0.060

3rd 0.060 0.052 0.064 0.065 0.059 0.061 0.067 0.207 0.125 0.212

1st 0.123 0.044 0.253 0.168 0.057 0.132 0.185 0.089 0.128 0.171
LWY (b) 2nd 0.147 0.044 0.092 0.118 0.227 0.273 0.298 0.096 0.148 0.167

3rd 0.207 0.213 0.276 0.305 0.157 0.246 0.320 0.389 0.372 0.357

1st 0.057 0.071 0.273 0.165 0.052 0.057 0.043 0.046 0.050 0.058
LZD (a) 2nd 0.065 0.042 0.062 0.056 0.301 0.223 0.240 0.061 0.044 0.051

3rd 0.048 0.048 0.050 0.055 0.048 0.059 0.061 0.239 0.161 0.186

1st 0.048 0.057 0.247 0.143 0.040 0.041 0.032 0.037 0.033 0.046
LZD (b) 2nd 0.046 0.031 0.056 0.046 0.255 0.189 0.207 0.052 0.034 0.033

3rd 0.035 0.035 0.041 0.046 0.039 0.048 0.049 0.194 0.137 0.162

Censoring rate 0.623 0.519 0.558 0.569 0.567 0.607 0.643 0.598 0.621 0.638
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Table A.9: Results of the simulation study for the time-varying covariate effects with covariate-dependent censoring. Test: the type of
the test as labelled in Subsection 4.2.4; Cov: the covariate for which the power or the size is calculated; PH (exp): the size of the test
under the exponential model; TVC1–TVC3 (linear/step/log): the power or the size (in italics) of the test under the exponential model
with the first–third covariate allowed to depend on time through linear/step/log interaction.

Test Cov PH TVC1 TVC1 TVC1 TVC2 TVC2 TVC2 TVC3 TVC3 TVC3
(exp) (linear) (step) (log) (linear) (step) (log) (linear) (step) (log)

1st 0.025 0.101 0.495 0.250 0.016 0.029 0.030 0.024 0.029 0.033
GT (a) 2nd 0.034 0.036 0.043 0.037 0.447 0.471 0.255 0.027 0.016 0.035

3rd 0.026 0.047 0.041 0.035 0.027 0.024 0.028 0.358 0.318 0.241

1st 0.050 0.101 0.312 0.289 0.039 0.045 0.050 0.044 0.056 0.060
GT (b) 2nd 0.048 0.056 0.046 0.043 0.444 0.391 0.441 0.039 0.056 0.054

3rd 0.053 0.047 0.050 0.039 0.046 0.052 0.056 0.442 0.302 0.406

1st 0.048 0.110 0.518 0.257 0.035 0.044 0.054 0.042 0.046 0.053
GT (c) 2nd 0.053 0.046 0.036 0.049 0.560 0.588 0.402 0.036 0.042 0.061

3rd 0.052 0.050 0.040 0.043 0.045 0.051 0.046 0.535 0.436 0.379

1st 0.045 0.109 0.526 0.250 0.030 0.041 0.047 0.039 0.042 0.051
GT (d) 2nd 0.052 0.043 0.035 0.047 0.563 0.595 0.378 0.035 0.043 0.056

3rd 0.054 0.050 0.041 0.043 0.044 0.045 0.045 0.542 0.452 0.357

1st 0.049 0.055 0.059 0.083 0.052 0.054 0.050 0.049 0.050 0.047
GT (e) 2nd 0.047 0.047 0.047 0.045 0.099 0.092 0.219 0.041 0.061 0.048

3rd 0.057 0.042 0.034 0.056 0.045 0.052 0.056 0.118 0.087 0.206

1st 0.044 0.110 0.428 0.287 0.036 0.046 0.056 0.044 0.057 0.065
GT (f) 2nd 0.049 0.055 0.041 0.048 0.477 0.434 0.445 0.041 0.058 0.055

3rd 0.057 0.047 0.041 0.039 0.048 0.052 0.055 0.457 0.323 0.407
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Table A.10: Continuation of Table A.9. The censoring rate gives the proportion of the observations where no event is recorded.

Test Cov PH TVC1 TVC1 TVC1 TVC2 TVC2 TVC2 TVC3 TVC3 TVC3
(exp) (linear) (step) (log) (linear) (step) (log) (linear) (step) (log)

1st 0.052 0.121 0.592 0.239 0.054 0.057 0.057 0.058 0.057 0.053
LWY (a) 2nd 0.059 0.055 0.050 0.059 0.523 0.646 0.350 0.045 0.050 0.070

3rd 0.054 0.054 0.057 0.055 0.054 0.057 0.055 0.512 0.506 0.344

1st 0.031 0.088 0.468 0.196 0.037 0.044 0.046 0.049 0.033 0.042
LWY (b) 2nd 0.040 0.044 0.035 0.050 0.509 0.575 0.289 0.039 0.051 0.053

3rd 0.227 0.275 0.319 0.327 0.273 0.266 0.233 0.800 0.626 0.480

1st 0.044 0.117 0.542 0.271 0.034 0.048 0.062 0.052 0.049 0.049
LZD (a) 2nd 0.055 0.054 0.051 0.050 0.612 0.661 0.370 0.047 0.049 0.061

3rd 0.055 0.057 0.054 0.047 0.049 0.049 0.050 0.612 0.527 0.352

1st 0.033 0.102 0.537 0.247 0.028 0.040 0.048 0.040 0.041 0.040
LZD (b) 2nd 0.043 0.042 0.049 0.042 0.524 0.613 0.323 0.034 0.038 0.045

3rd 0.043 0.053 0.053 0.046 0.040 0.040 0.037 0.510 0.475 0.313

Censoring rate 0.329 0.218 0.235 0.226 0.263 0.294 0.323 0.299 0.317 0.332
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Table A.11: Results of the simulation study for the model misspecification under
the standard setting. Test: the type of the test as labelled in Subsection 4.2.4;
Cov: the covariate for which the power or the size is calculated; PH (Gomp): the
size of the test under the Gompertz model; AFT (log-norm): the power of the
test under the log-normal accelerated failure time model; AH (linear): the power
of the test under the additive hazards model with the linear baseline hazard.

Test Cov PH AFT AH
(Gomp) (log-norm) (linear)

1st 0.041 0.061 0.044
GT (a) 2nd 0.027 0.223 0.042

3rd 0.029 0.453 0.073

1st 0.050 0.062 0.052
GT (b) 2nd 0.048 0.242 0.064

3rd 0.051 0.490 0.100

1st 0.060 0.067 0.056
GT (c) 2nd 0.046 0.216 0.058

3rd 0.047 0.504 0.087

1st 0.056 0.065 0.053
GT (d) 2nd 0.039 0.216 0.054

3rd 0.047 0.499 0.084

1st 0.043 0.059 0.049
GT (e) 2nd 0.045 0.098 0.061

3rd 0.043 0.181 0.064

1st 0.050 0.073 0.053
GT (f) 2nd 0.051 0.274 0.063

3rd 0.053 0.565 0.101

1st 0.065 0.066 0.066
LWY (a) 2nd 0.055 0.151 0.074

3rd 0.043 0.456 0.092

1st 0.035 0.054 0.043
LWY (b) 2nd 0.029 0.169 0.050

3rd 0.274 0.768 0.357

1st 0.066 0.075 0.064
LZD (a) 2nd 0.051 0.177 0.064

3rd 0.049 0.516 0.092

1st 0.051 0.060 0.052
LZD (b) 2nd 0.032 0.165 0.054

3rd 0.036 0.441 0.083

Censoring rate 0.290 0.285 0.234
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Table A.12: Results of the simulation study for the model misspecification with
low sample size. Test: the type of the test as labelled in Subsection 4.2.4; Cov:
the covariate for which the power or the size is calculated; PH (Gomp): the size
of the test under the Gompertz model; AFT (log-norm): the power of the test
under the log-normal accelerated failure time model; AH (linear): the power of
the test under the additive hazards model with the linear baseline hazard.

Test Cov PH AFT AH
(Gomp) (log-norm) (linear)

1st 0.028 0.052 0.025
GT (a) 2nd 0.016 0.084 0.035

3rd 0.027 0.149 0.045

1st 0.062 0.057 0.056
GT (b) 2nd 0.055 0.094 0.053

3rd 0.058 0.160 0.065

1st 0.050 0.060 0.046
GT (c) 2nd 0.044 0.093 0.051

3rd 0.048 0.165 0.068

1st 0.046 0.057 0.042
GT (d) 2nd 0.038 0.090 0.047

3rd 0.047 0.162 0.067

1st 0.063 0.047 0.058
GT (e) 2nd 0.058 0.061 0.047

3rd 0.059 0.091 0.051

1st 0.061 0.062 0.052
GT (f) 2nd 0.048 0.113 0.044

3rd 0.062 0.175 0.068

1st 0.049 0.064 0.060
LWY (a) 2nd 0.070 0.091 0.053

3rd 0.060 0.190 0.082

1st 0.367 0.437 0.432
LWY (b) 2nd 0.413 0.507 0.459

3rd 0.506 0.582 0.561

1st 0.061 0.068 0.063
LZD (a) 2nd 0.058 0.096 0.052

3rd 0.063 0.182 0.079

1st 0.041 0.050 0.041
LZD (b) 2nd 0.037 0.067 0.036

3rd 0.037 0.142 0.053

Censoring rate 0.290 0.287 0.232
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Table A.13: Results of the simulation study for the model misspecification with
correlated covariates. Test: the type of the test as labelled in Subsection 4.2.4;
Cov: the covariate for which the power or the size is calculated; PH (Gomp): the
size of the test under the Gompertz model; AFT (log-norm): the power of the
test under the log-normal accelerated failure time model; AH (linear): the power
of the test under the additive hazards model with the linear baseline hazard.

Test Cov PH AFT AH
(Gomp) (log-norm) (linear)

1st 0.036 0.063 0.053
GT (a) 2nd 0.025 0.093 0.038

3rd 0.036 0.431 0.071

1st 0.056 0.067 0.058
GT (b) 2nd 0.037 0.097 0.045

3rd 0.048 0.466 0.090

1st 0.055 0.077 0.061
GT (c) 2nd 0.035 0.093 0.059

3rd 0.056 0.482 0.086

1st 0.054 0.077 0.061
GT (d) 2nd 0.034 0.094 0.058

3rd 0.058 0.478 0.088

1st 0.048 0.054 0.042
GT (e) 2nd 0.039 0.055 0.038

3rd 0.052 0.165 0.075

1st 0.050 0.071 0.057
GT (f) 2nd 0.038 0.111 0.046

3rd 0.050 0.563 0.089

1st 0.057 0.113 0.063
LWY (a) 2nd 0.052 0.103 0.072

3rd 0.057 0.493 0.098

1st 0.038 0.091 0.039
LWY (b) 2nd 0.026 0.083 0.056

3rd 0.261 0.783 0.366

1st 0.056 0.127 0.066
LZD (a) 2nd 0.044 0.123 0.063

3rd 0.057 0.588 0.098

1st 0.046 0.112 0.053
LZD (b) 2nd 0.036 0.104 0.051

3rd 0.044 0.489 0.083

Censoring rate 0.289 0.285 0.234

57



Table A.14: Results of the simulation study for the model misspecification with
heavy censoring. Test: the type of the test as labelled in Subsection 4.2.4; Cov:
the covariate for which the power or the size is calculated; PH (Gomp): the size
of the test under the Gompertz model; AFT (log-norm): the power of the test
under the log-normal accelerated failure time model; AH (linear): the power of
the test under the additive hazards model with the linear baseline hazard.

Test Cov PH AFT AH
(Gomp) (log-norm) (linear)

1st 0.033 0.046 0.034
GT (a) 2nd 0.034 0.102 0.037

3rd 0.031 0.194 0.056

1st 0.048 0.055 0.047
GT (b) 2nd 0.059 0.118 0.064

3rd 0.051 0.212 0.081

1st 0.047 0.060 0.051
GT (c) 2nd 0.050 0.114 0.050

3rd 0.045 0.227 0.077

1st 0.037 0.057 0.040
GT (d) 2nd 0.044 0.106 0.046

3rd 0.040 0.217 0.067

1st 0.055 0.061 0.053
GT (e) 2nd 0.057 0.083 0.054

3rd 0.060 0.117 0.065

1st 0.054 0.071 0.050
GT (f) 2nd 0.054 0.139 0.058

3rd 0.051 0.224 0.081

1st 0.052 0.066 0.060
LWY (a) 2nd 0.069 0.113 0.061

3rd 0.050 0.238 0.089

1st 0.101 0.438 0.043
LWY (b) 2nd 0.126 0.508 0.043

3rd 0.224 0.640 0.221

1st 0.052 0.073 0.052
LZD (a) 2nd 0.064 0.101 0.056

3rd 0.051 0.228 0.081

1st 0.040 0.049 0.042
LZD (b) 2nd 0.041 0.079 0.041

3rd 0.042 0.181 0.066

Censoring rate 0.593 0.673 0.541
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Table A.15: Results of the simulation study for the model misspecification with
covariate-dependent censoring. Test: the type of the test as labelled in Subsection
4.2.4; Cov: the covariate for which the power or the size is calculated; PH (Gomp):
the size of the test under the Gompertz model; AFT (log-norm): the power of the
test under the log-normal accelerated failure time model; AH (linear): the power
of the test under the additive hazards model with the linear baseline hazard.

Test Cov PH AFT AH
(Gomp) (log-norm) (linear)

1st 0.040 0.058 0.045
GT (a) 2nd 0.030 0.218 0.058

3rd 0.027 0.462 0.070

1st 0.055 0.066 0.055
GT (b) 2nd 0.053 0.228 0.066

3rd 0.053 0.497 0.094

1st 0.052 0.066 0.052
GT (c) 2nd 0.047 0.218 0.067

3rd 0.049 0.505 0.088

1st 0.050 0.066 0.054
GT (d) 2nd 0.042 0.214 0.065

3rd 0.045 0.498 0.086

1st 0.045 0.048 0.044
GT (e) 2nd 0.047 0.095 0.049

3rd 0.048 0.173 0.064

1st 0.055 0.077 0.056
GT (f) 2nd 0.052 0.273 0.071

3rd 0.053 0.570 0.103

1st 0.056 0.063 0.055
LWY (a) 2nd 0.055 0.153 0.075

3rd 0.049 0.447 0.090

1st 0.037 0.056 0.046
LWY (b) 2nd 0.029 0.167 0.065

3rd 0.290 0.763 0.365

1st 0.066 0.064 0.053
LZD (a) 2nd 0.048 0.181 0.080

3rd 0.048 0.510 0.089

1st 0.046 0.060 0.044
LZD (b) 2nd 0.039 0.162 0.067

3rd 0.039 0.447 0.079

Censoring rate 0.289 0.284 0.231
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Attachments

The complete code in R containing the implementation of the tests of the propor-
tional hazards assumption, the analysis of medical data and the simulation study
is attached on the CD. The myocardial infarction data are not included as they
are not approved for public release.
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