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English.



I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In ........ date ............ signature of the author
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a matematické statistiky
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rozděleńı na výslednou výšku rezerv.
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Introduction

Claims reserving problem has been an area of research for actuarial professions
for many years. The correct determination of the reserves amount has a key
impact on the financial position of an insurance company, especially in the non-
life insurance. Improper reserves affect entire company and can lead to serious
problems.

For a long time the calculation of reserves had been understood as an algo-
rithmic method with exactly specified steps. Only about 40 years ago, actuaries
discovered a connection with stochastic modelling. Since that stochastic reser-
ving methods have been much studied and a lot of methods for claims reserves
estimation have been developed.

The most difficult question in a practical application of these methods is
probably a model choice and an adequacy of the models. Different methods and
data sets lead to different results. Every method is based on other ideas and use
other principles.

Generally, the stochastic reserving methods can be divided into several groups,
for example Distributional models, Generalized Linear Models, Bootstrap me-
thods, etc.

In this thesis, we will deal with one particular branch of the reserving methods
which is known as bayesian. This branch covers a lot of models which differ in
their form and assumptions but the key idea of all of them consists in bayesian
statistic. The term “bayesian” was first mentioned in 1760’s but the application of
bayesian methods in insurance dates from 1960’s. Bayesian models are often seen
as a “bridge” between the stochastic models and the pure deterministic models.

In short, bayesian reserving methods can be characterized as the methods
which allow to incorporate an existing prior information. This information can
be viewed as a single value or as a whole probability distribution of a proper un-
derlying quantity. The estimation of ultimate claims and claims reserves employs
two sources of information - the prior information and the observed data. Because
of this, in many situations bayesian approach gives better results in comparison
with the classical statistical approach.

This thesis is structured as follows. The first chapter explains the standard
notation of data used in claims reserving theory. The data—incremental or cu-
mulative claims—are understood as random variables ordered in the develop-
ment triangles. In this chapter, two elementary methods for estimation of claims
reserves—the Chain-Ladder method and the Bornhuetter-Ferguson method—are
also presented. Although these methods are relatively simple, the results ob-
tained in them often form the basis of the other more difficult models. The
Bornhuetter-Ferguson method is even viewed as a bayesian method.

The second chapter deals with the mathematical frame of bayesian reserving
methods - the bayesian statistics. Its grain is founded on Bayes theorem. It is
formulated here and the terms as the prior and the posterior distribution are
defined in this chapter. The process of estimation in the bayesian inference is
also described here.

The concrete bayesian reserving models are presented in the third chapter.
Each model starts with the formulation of its assumptions and continues with
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the derivation of the estimator for the claims reserves. At the beginning, two
simpler bayesian methods—Benktander-Hoviven method and Cape-Cod model—
are explained. They do not assume a prior distribution but only a prior estimate
for the expected ultimate claims. The second part of the chapter is devoted to
strict bayesian models with the prior distribution. It shows that with the smart
choice of a prior distribution the posterior distribution can be obtained in explicit
form.

The fourth chapter consists in the practical examples. The described claims
reserving methods are applied to the concrete development triangle. All calcula-
tion are made in the software R. The results are summarised in the tables or in
the graphs and there is always a confrontation and comparison of the results from
the different methods. Mainly Poisson-Gamma model is analysed and in addition
the impact of the choice of the prior distribution is studied in more detail.
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1. Introduction to reserving

theory

This thesis deals with the claims reserving problem for non-life insurance. This
branch of insurance products comprises any insurance except life insurance. Life
and non-life insurance products differ for example in terms of contracts and types
of claims. This implies that they are modelled rather differently. In non-life in-
surance, there is often a time-lag between claims occurrence and claims reporting
to the insurer called reporting delay. The reported claim can also take long time
to settle and several years may elapse before claims payment process is finally
closed. Sometimes even closed claims need to be reopened due to new develop-
ments. This time line of non-life insurance claim is shown in Figure 1.1

Figure 1.1: Typical time line of non-life insurance claim.

Because of these delays, the insurance company cannot settle a claim imme-
diately after its accident day and have to build so-called claims reserves. Claims
reserve represents the money which should be held by the insurer so as to be
able to meet all future claims arising from policies currently in force and policies
written in the past.

There are two different types of claims reserves. Reserves for claims that
have been reported but have not been settled, so called RBNS (Reported But
Not Settled) reserves. They are determined individually by an expert. The
second type are IBNR (Incurred But Not Reported) reserves for claims that have
occurred but have not been reported. They often contain also IBNeR (Incurred
But Not enough Reported) reserves for not enough reported incurred claims.
IBNR reserves are estimated by wide range of stochastic methods some of which
are studied in the next chapters.

The notation used in this chapter came from [Mandl, Mazurová–1999] and
[Wüthrich, Merz–2008].

1.1 Notation and assumptions

In this subsection we present a classical claims reserving notation and termino-
logy and we will use it throughout the whole thesis. The main purpose of the
claims reserving in non-life insurance is to set amount of IBNR reserves. When
calculating them we go from information about past losses and development of
payments. These data are ordered in so-called claims development triangles or
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run-off triangles which separate the data on two time axis. The notation of the
development triangle is seen in Table 1.1.

Accident Development year j

year i 0 1 · · · J − 1 J

0 X0,0 X0,1 · · · X0,J−1 X0,J

1 X1,0 X1,1 · · · X1,J−1 X1,J

...
...

...
...

Observations Xi,j, i+ j ≤ I

...
...

... Predicted values Xi,j, i+ j > I
...

I − 1 XI−1,0 XI−1,1 XI−1,2 · · · XI−1,J

I XI,0 XI,1 XI,2 · · · XI,J

Table 1.1: Claims development triangle

The index i corresponds to the accident year, the year of occurrence and the
index j to the development year or the development period—numbers of years
subsequently elapsed. I denotes the most recent accident year and J the last
development year. Entries of the triangle are denoted Xi,j. Xi,j represents all
payments for claims with accident year i settled with a delay of j years and
hence in the development year j and in the calendar year i+ j. We refer to Xi,j

as incremental payments of accident year i and the development year j. We can
also assume cumulative payments Ci,j for the accident year i and the development
year j. They are given by

Ci,j =

j∑

k=0

Xi,k

and are interpreted as the payments of the accident year i settled with a delay at
most j years so not later than in the development year j. The development trian-
gle containing cumulative payments is called cumulative development triangle.

At time I, the claims development tables are split into two parts, the upper
and the lower triangle. The upper triangles, denoted by DI and D̃I , contain
observable incremental payments Xi,j, i + j ≤ I or cumulative payments Ci,j,
i+ j ≤ I, respectively.

DI = {Xi,j; i+ j ≤ I, 0 ≤ j ≤ J},

D̃I = {Ci,j; i+ j ≤ I, 0 ≤ j ≤ J}.

The lower triangles DC
I and D̃I

C
include future, non-observable values of the out-

standing incremental or cumulative payments and they need to be estimated.

DC
I = {Xi,j; i+ j > I, i ≤ I, j ≤ J},

D̃I

C
= {Ci,j; i+ j > I, i ≤ I, j ≤ J}.

The cumulative payment Ci,J in the last development year is often said to be the
ultimate claim amount or the total claim amount of the accident year i.
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If i+ j = I, then Ci,j = Ci,I−i and Xi,j = Xi,I−i are called present cumulative
or incremental payments. They represent the most present observable values of
payments and they are crucial in the most reserving methods.

In addition to incremental payments, Xi,j may also represent change of re-
ported claim amount or the number of reported claims of accident year i settled
with delay of j years. Then Ci,j denotes total incurred claims or the total number
of reported claims with accident year i and reporting delay at most j years.

If Xi,j denote incremental payments, we can define outstanding loss liabilities
Ri,j for the accident year i at time j which are given by

Ri,j =
J∑

k=j+1

Xi,k = Ci,J − Ci,j.

We denote
Ri = Ri,I−i = Ci,J − Ci,I−i.

Ri represents present the outstanding loss liabilities—reserves for the accident
year i and need to be predicted. The predicted values of Ri together with Ci,I−i

give a predictor for the ultimate claim Ci,J .
In the claims reserving techniques entries of run-off triangles, Xi,j and Ci,j

respectively, are considered to be random variables. They are observable in DI

and D̃I respectively, and all predictions come from these observations.
In this thesis we will always focus on the estimation of Ci,J . To simpli-

fy the notation and formulas we make a general assumption throughout this
thesis that I = J and Xi,j = 0 for all j > J . This assumption is adapted
from [Wüthrich, Merz–2008]. Then we have to predict Ci,J for accident years
i = 1, ..., I.

1.2 Basic reserving methods

Before we start studies of bayesian reserving models we introduce two elementary
techniques for estimating IBNR claims reserves, the Chain-Ladder (CL) method
and the Bornhuetter-Ferguson (BF) method. Despite their simplicity they often
give accurate results and form the basis of other more complicated models. They
work with the development triangles and use conditionally expected value E[Ci,J |
D̃I ] as the estimator of an outcome of the random variable Ci,J .

1.2.1 Chain-Ladder method

The Chain-Ladder method is one of the most popular techniques. It was de-
veloped by T. Mack in [Mack–1993] and it is based on an assumption of pro-
portionality of columns—development years—in a run-off triangle. This model
is distribution-free and works with these two assumptions about the cumulative
claims

Model Assumptions 1.2.1.

1. Cumulative claims Ci,j of different accident years i are independent.
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2. There exists factors f0, ..., fJ−1 > 0 such that for all 0 ≤ i ≤ I and for all
1 ≤ j ≤ J we have

E[Ci,j | Ci,0, ..., Ci,j−1] = E[Ci,j | Ci,j−1] = fj−1Ci,j−1.

As will be seen later, the independence of the accident years is assumed in
almost all reserving methods.

Factors fj, j = 0, ..., J − 1 are called link ratios, development factors or CL
factors.

Under 1.2.1 we can derive that

E[Ci,J | D̃I ] = E[Ci,J | Ci,0, ..., Ci,I−i]

= E[E[Ci,J | Ci,J−1] | Ci,0, ..., Ci,I−i]

= fJ−1 E[Ci,J−1 | D̃I ], for i = 1, ..., I.

We can go on iteratively until we are on diagonal where i+ j = I and we get

E[Ci,J | D̃I ] = fJ−1...fI−iCi,I−i. (1.1)

The relationship (1.1) give us technique how to predict the amount Ci,J given
cumulative observations in the upper triangle D̃I . In the most practical appli-
cations, CL factors fj , j = 0, ..., J − 1 are not known and we need to estimate
them. The Chain-Ladder method estimates these factors as follows

f̂j =

∑I−j−1
i=0 Ci,j+1∑I−j−1
i=0 Ci,j

. (1.2)

By using (1.2) for fj we set the Chain-Ladder estimator for the ultimate claim,

denoted by ĈCL
i,J , as

ĈCL
i,J = Ê[Ci,J | D̃I ] = f̂J−1...f̂I−iCi,I−i, for i = 1, ..., I (1.3)

and for the outstanding reserves R̂CL
i,J as

R̂CL
i,J = ĈCL

i,J − Ci,I−i = Ci,I−i(f̂J−1...f̂I−i − 1), for i = 1, ..., I.

It is worth to remark that under 1.2.1, estimators (1.2) and (1.3) are unbiased

estimators of fj and E[Ci,J ], that is E[f̂j ] = fj and E[ĈCL
i,J ] = E[Ci,J ]. Moreover,

E[f̂0...f̂j ] = E[f̂0]...E[f̂j],

for all j = 1, ..., J − 1. So, f̂0...f̂J−1 are uncorrelated. Proofs of these statements
and other properties can be found in [Wüthrich, Merz–2008].

In this model we have only the assumption on the first moments. We can
also include variance assumption when we want to quantify uncertainties in these
estimates. Such model is known as Mack Chain-Ladder model. It is presented
and described in details in [Wüthrich, Merz–2008] and [England, Verrall–2002].
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1.2.2 Bornhuetter-Ferguson method

The next basic method which is grounded on the run-off triangles is Bornhuetter-
Ferguson method. It was published in the article “The Actuary and IBNR”
[Bornhuetter, Ferguson–1972]. It is considered to be one of the bayesian tech-
niques because it does not use only the observations from the development trian-
gles but it also allows an expert judgement to be incorporated.

This method works with these two assumptions

Model Assumptions 1.2.2.

1. Cumulative claims Ci,j of different accident years i are independent.

2. There exists factors µ0, ..., µI > 0 and pattern β0, ..., βJ > 0, βJ = 1 such
that for all 0 ≤ i ≤ I, 0 ≤ j ≤ J − 1 and for all 1 ≤ k ≤ J − j we have

E[Ci,0] = β0µi,

E[Ci,j+k | Ci,0, ..., Ci,j] = E[Ci,j] + (βj+k − βj)µi.

Moreover, the assumptions 1.2.2 implies that

E[Ci,j] = E[E[Ci,j | Ci,0]] = E[Ci,0] + (βj − β0)µi = βjµi, (1.4)

for 0 ≤ i ≤ I and 0 ≤ j ≤ J and we can formulate implied assumption for
Bornhuetter-Ferguson model which are also often used for this method.

Model Assumptions 1.2.3.

1. Cumulative claims Ci,J of different accident years i are independent.

2. There exists factors µ0, ..., µI > 0 and pattern β0, ..., βJ > 0, βJ = 1 such
that for all 0 ≤ i ≤ I and 0 ≤ j ≤ J we have

E[Ci,j] = βjµi.

It is important to point that assumptions 1.2.2 and 1.2.3 are not equivalent.
1.2.2 are stronger and imply 1.2.3 but not vice versa.

From relation (1.4) we have for fixed j = J an equality E[Ci,J ] = µi. So, the
parameter µi represents the expected value of the ultimate claim Ci,J .

We want to derive estimator of the ultimate claims amount Ci,J with the use
of observations from D̃I . Under 1.2.2, the conditional expected value of Ci,J given
D̃I can be expressed by the following relation

E[Ci,J | D̃I ] = E[Ci,J | Ci,0, ..., Ci,I−i]

= Ci,I−i + E[Ci,J − Ci,I−i | Ci,0, ..., Ci,I−i]

= E[Ci,I−i] + (1− βI−i)µi.

(1.5)
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However, under implied assumptions 1.2.3 the relationship (1.5) holds true only
if we assume that Ci,J − Ci,I−i is independent of Ci,0, ..., Ci,I−i.

(1.5) gives us a formula for Bornhuetter-Ferguson estimator of ultimate claim

ĈBF
i,J = Ê[Ci,J | DI ] = Ci,I−i + (1− β̂I−i)µ̂i, 1 ≤ i ≤ I. (1.6)

The parameter β̂I−i is an estimator of βI−i and µ̂i is an estimator of µi and
E[Ci,J ], respectively. Now, it only remains to obtain these estimators. We solve
this problem by comparing Chain-Ladder and Bornhuetter-Ferguson method. We
consider the assumptions 1.2.1 for Chain-Ladder technique. Then it holds

E[Ci,J ] = E[E[Ci,J | Ci,J−1]] = E[Ci,j]
J−1∏

k=j

fk

and

E[Ci,j] = E[Ci,J ]
J−1∏

k=j

f−1
k . (1.7)

The term
∏J−1

k=j f
−1
k in (1.7) depends only on j and E[Ci,J ] on i. So, we can write

E[Ci,j] = E[Ci,J ]︸ ︷︷ ︸
µi

J−1∏

k=j

f−1
k

︸ ︷︷ ︸
βj

= µiβj

and we set

βj =

J−1∏

k=j

f−1
k , j = 0, ..., J − 1. (1.8)

where fk ,k = 0, ...,J − 1 are the developments factors from Chain-Ladder. The
relation (1.8) between the CL factors and development pattern can be use only
for BF model with implied assumptions 1.2.3. Under 1.2.2 this deduction cannot
be done because assumptions 1.2.2 are not implied by the assumptions of Chain-
Ladder.

Using the identity (1.8), the Bornhuetter-Ferguson estimator (1.6) can be
expressed as follows

ĈBF
i,J = Ci,I−i + (1− β̂I−i)µ̂i = Ci,I−i +

(
1− 1

∏J−1
k=I−i f̂k

)
µ̂i. (1.9)

On the other hand, by rewriting (1.3) we obtain

ĈCL
i,J = Ci,I−i

J−1∏

k=I−i

f̂k = Ci,I−i + Ci,I−i

(
J−1∏

k=I−i

f̂k − 1

)

= Ci,I−i +
ĈCL

i,J∏J−1
k=I−i f̂k

(
J−1∏

k=I−i

f̂k − 1

)

= Ci,I−i +

(
1− 1

∏J−1
k=I−i f̂k

)
ĈCL

i,J . (1.10)
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We can see that (1.10) accords to expression of the Bornhuetter-Ferguson ultimate

claim (1.9) with µ̂i = ĈCL
i,J .

So, the only difference between the CL and BF method is in the choice of
the estimator for E[Ci,J ]. In Bornhuetter-Ferguson we use a prior estimate µ̂i.
It is often a plan value from a business plan based on an expert opinion or the
value used for premium calculations and it should be estimated before one has
any observations D̃I .

Chain-Ladder uses an opposite principle and replaces the prior estimate with

the estimate ĈCL
i,J which is based only on the observed data. It means that CL

and BF method constitute two extreme positions in claims reserving theory.

We have showed, that in calculation ĈBF
i,J one combines the prior information—

in estimation of µi, with the observations—in estimation of βj . From this reason
Bornhutter-Ferguson method is considered to belong to the bayesian techniques
which are the main theme of this thesis and will be presented in details in further
chapters.
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2. Bayesian approach to statistics

The bayesian theory constitutes a powerful branch of statistics which gives ano-
ther view of statistical problems solving. It is useful in practice mostly when we
have outcomes from the past. Bayesian approach offers a method of formalizing
a priori beliefs and of combing them with an available observations. It gives a
mathematical frame for the bayesian methods in actuarial science, specially in
the claims reserving.

In this chapter, we introduce basic principles and terms of the bayesian statis-
tics. Presented information comes from [Hušková–1985], [Bühlmann, Gisler–2005]
and [Figueiredo–2004].

Suppose X : (Ω,A, P ) → (Rn,Bn) is a random vector, X = (X1, ..., Xn)
′,

with a density r(x | θ) with respect to a σ- finite measure νn on (Rn,Bn), where
θ = (θ1, ..., θk)

′ is a parameter with values from a set H, a non-empty borel subset
of Rk.

In the classical approach we consider θ to be an unknown constant or vector
of constants, respectively. Only information about X is used to estimation of
parameter θ. In the bayesian inference we regard Θ as a random variable or a
random vector taking values from the set H.

So, let Θ = (Θ1, ...,Θk)
′ to be the random vector with density q(θ), θ ∈ H

with respect to a σ- finite measure λ on (H,B(H)). θ = (θ1, ..., θk)
′ ∈ H is

a realization of Θ. The distribution of Θ includes all information, experience
and judgements which are disposable before realization of X. Then the random
vector X has the conditional density r(x | θ) given Θ = θ with respect to the
νn. That is, for all measurable sets M and N it holds the relation

P [Θ ∈ M,X ∈ N ] =

∫

M

(∫

N

r(x | θ)dνn(x)
)
q(θ)dλ(θ).

The density q(θ) is called a priori density of Θ. We combine it with observations
to give a posterior density π(θ | x). This is done with Bayes theorem, which
forms the basis of bayesian statistics.

Theorem 2.1 (Bayes theorem). The posterior density function for Θ given
X = x, π(θ | x) is given by

π(θ | x) =
{

q(θ)r(x|θ)
∫

H
q(θ)r(x|θ)dλ(θ)

if
∫
H

q(θ)r(x | θ)dλ(θ) 6= 0

0 otherwise
(2.1)

For proof see [Hušková–1985].
The density π(θ | x) is considered as an update of the previous prior distribu-

tion once the observation x have been obtained. Denominator in the expression
(2.1) is a function only of x, so, we can rewrite the Bayes theorem as

π(θ | x) ∝ q(θ)r(x | θ).

It means that the posterior density is proportional to the product of the prior
density q(θ) and r(x | θ).
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2.1 Choice of a priori distribution

The key issue in the bayesian theory is the choice of the prior distribution which
should involve all information about Θ. In practice it never happens that we
are able to identify the prior distribution exactly from the available information.
There are many ways of defining it. Mostly, we assume the prior densities of a
specific functional form with unknown parameters.

In the implementation of the bayes theory it might occur a problem that the
posterior distribution cannot be calculated analytically. In a practical application
we would like to eliminate this problem. Given a function r(x | θ) we look for
a prior distribution which is not only compatible with knowledge about Θ but
also leads to a posterior probability function in a closed-form expression. For this
reason systems of a conjugate distributions are favoured.

Definition 2.1. Suppose that a prior density q(θ) is from a family of densities
Q. A random vector X has a density r(x | θ). The family Q is said to be a
conjugate with respect to the family of densities R = {r(x | θ), θ ∈ H} if the
posterior density π(θ | x) also belongs to the family Q for all realization x of X.

It is obvious that the family of all possible densities is conjugate to R but it is
not proper for practical applications. A useful conjugate family should contain as
minimum densities as possible. When this is the case, computing of the posterior
density from prior is not difficult.

Because of their tractability, conjugate systems are often used in bayesian re-
serving techniques and we will present such models in details in the next chapter.

2.2 Estimation in bayesian inference

In the classical approach when the parameter θ is deterministic estimation and
decisions about the parameter θ are based only on the density r(x | θ). In
the bayesian approach, we have a random parameter Θ. Its true value θ is a
realization of the parameter and estimation of this true value is based on its
posterior density (2.1).

Now, we explain basic terms and the technique of the bayesian estimation.

Definition 2.2. Let D to be a set of all possible decision about the parameter
realization θ. A function δ from Rn to D is called the decision function and its
value in the point x, δ(x), is called the decision about θ given an observation
X = x.

The task of the bayesian estimation is to derive a decision δ∗(x) which achieves
some sort of optimality criterion.

Let us consider D = H. In this situation is the optimal decision function

δ∗ rather our optimal bayesian estimator θ̂
∗ = (θ̂∗1, ..., θ̂

∗
k)

′ of θ which we have
wanted to get.

Definition 2.3. A loss function L is a measurable, bounded below function

L : H×D → R,

where measurability is understood with respect to the σ-algebra B(H)⊗ σ(D).
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The value of the loss function L(θ, δ) expresses how much the decision δ ∈ D
are to be penalized when θ is the true value of the parameter realization.

Definition 2.4. Risk R(θ, δ) of the decision function δ and the loss function L

when the true realization of parameter is θ is defined as

R(θ, δ) = E[L(Θ, δ(X)) | Θ = θ] =

∫

Rn

L(θ, δ(x))r(x | θ)dνn(x).

So, the risk R(θ, δ) is the conditional expected value of the loss function, in
other words, it is the mean loss due to the choice of decision function δ when the
true parameter realization is θ.

Further, we consider only the decision functions δ which satisfy R(θ, δ) < ∞,
∀ θ ∈ H and we regard ∆ the set of these functions. Then, the function
R : H×∆ → R is called the risk function and we can define the bayesian risk
and the bayesian risk function.

Definition 2.5. The random parameter Θ has the prior density q(θ). The
bayesian risk function ρ(q, δ) is defined by the following relation

ρ(q, δ) = E [R(Θ, δ)] =

∫

H

(∫

Rn

L(θ, δ(x))r(x | θ)dνn(x)
)
q(θ)dλ(θ), δ ∈ ∆.

(2.2)
Let δ0 ∈ ∆. Then the bayesian risk of the decision function δ0 is the value ρ(q, δ0).

The bayesian risk constitutes our criterion for the choice of the optimal esti-

mator of the true parameter realization θ. We want to find such an estimator θ̂∗

which minimizes it among all δ ∈ ∆. So

θ̂
∗ = argmin

δ∈∆
ρ(q, δ). (2.3)

We have to remark that the bayesian risk function (2.2) can be modified to
the following form

ρ(q, δ) =

∫

Rn

{(∫

H

q(θ)r(x | θ)dλ(θ)
)(∫

H

L(θ, δ(x))π(θ | x)dλ(θ)
)}

dνn(x).

This implies that the optimal bayesian estimator θ̂∗ is obtained by minimizing
the posterior expected loss

∫
H
L(θ, δ(x))π(θ | x)dλ(θ) = E[L(Θ, δ(X)) | X = x]

for a fixed x ∈ Rn (on the assumption that
∫
H

q(θ)r(x | θ)dλ(θ) 6= 0). So

θ̂
∗ = argmin

δ∈D

∫

H

L(θ, δ(x))π(θ | x)dλ(θ), x ∈ Rn. (2.4)

Observe that (2.4) depends on the observation x. However, this is not a
problem because every time the decision is to be made the observation x is
available.

We see, that the approach (2.3) with the bayesian risk is absolutely equivalent
to the approach (2.4) with the posterior expected loss and both lead to the same

optimal estimator θ̂∗.
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The choice of a loss function and of a prior distribution affects the value of θ̂∗.
The most common loss function is L(θ, δ(x)) = (θ−δ(x))2. It is called quadratic

loss function. In such a case, the optimal bayesian estimator θ̂
∗ is a posterior

mean of θ which can be expressed by the following relation

θ̂
∗ = E[Θ | X = x] =

∫

H

θπ(θ | x)dλ(θ).

For the proof see [Hušková–1985].
The use of quadratic loss function makes computations relatively straightfor-

ward. When we have the posterior density π(θ | x), corresponding posterior
expected value is usually easy to calculate. For this reason, quadratic loss fun-
ction is often considered in practical applications.

There are also another types of used loss function which but we will not deal
with them here. More information about them can be found in [Berger–1993].
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3. Bayesian methods for claims

reserving

In this chapter we investigate the main theme of this thesis—bayesian approaches
to stochastic reserving—specifically to the estimation of the ultimate claims. In
the recent years, these methods have been much studied and more applied in
the actuarial science. They allow to include a relevant subjective judgement in a
formal framework of stochastic model and that is their important benefit.

Bayesian methods for claims reserving can be characterised as methods in
which an expert knowledge or other existing prior information is combined with
observed data. The prior information can be given by a single value, for example
by a prior estimate for the ultimate claim. In the strict bayesian approach, the
prior information is described by a prior stochastic distribution of an underlying
random variable such as ultimate claim or a risk parameter of accident year. The
prior distribution is connected with observed data from the upper triangle DI

through the Bayes theorem (2.1) and so, a posterior distribution of the underlying
quantity is obtained.

Following the posterior distribution the estimation is made. It is based on the
combined sources of information therefore it may improve estimation from the
classical methods and its precision may be better.

The notation of the models in this chapter is taken from [Wüthrich, Merz–2008].
We start with two models, Cape-Cod model and Benktander-Hovinen method,
which do not assume a prior distribution but only a prior estimate for amount of
the expected ultimate claim. So they do not belong to the strict bayesian meth-
ods but they use bayesian consideration. Both of them arise from Bornhuetter-
Ferguson model and represent its extension.

3.1 Benktander-Hovinen method

In Section 1.2 we have showed that the Chain-Ladder estimator of the ultimate
claims Ci,J is based only on observations from a development triangle and it
ignores a possible prior knowledge.

On the other hand, in the Bornhuetter-Ferguson approach, only the prior
knowledge about the ultimate claim is used. Benktander-Hovinen (BH) method
considers mixture of these two models. It was developed by Benktander and
Hovinen who described it independently from each other in [Benktander–1976]
and [Hovinen–1981].

The assumptions of this method correspond to BF implied assumptions 1.2.2
to which we additionally assume that the development pattern β0, . . . , βJ > 0
and the parameter µi are known.

We fix an accident year i, 1 ≤ i ≤ I and define a following credibility mixture

ui(c) = c ĈCL
i,J + (1− c)µi, for c ∈ [0, 1], (3.1)

where ĈCL
i,J is the Chain-Ladder estimator (1.3) and µi is the known prior estimate

for E[Ci,J ]. Parameter c represents a credibility weight given to the Chain-Ladder
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estimator. When c = 0, (3.1) is equal to µi. The increasing amount of the ob-
served data in the accident year i should imply the increase of c because estimator

ĈCL
i,J is based on observations.
In the Benktander-Hovinen method we set c = βI−i. Then we get Benktander-

Hovinen estimator of the ultimate claim of the accident year i, ĈBH
i,J , which has

the form

ĈBH
i,J = Ci,I−i + (1− βI−i)ui(βI−i)

= Ci,I−i + (1− βI−i)
[
βI−i Ĉ

CL
i,J + (1− βI−i)µi

]
. (3.2)

We assume the implied assumptions 1.2.2 and so we can use the identifica-
tion (1.8) between CL factors fj, j = 0, ..., J − 1 and development pattern
(βj)j=0,...,J, which has been derived in Subsection 1.2.2. (βj)j=0,...,J are known

and because of the relation (1.8) also the CL development factors , so f̂j = fj

and ĈCL
i,J =

Ci,I−i

βI−i
. This gives us the following form of the BH estimator (3.2)

ĈBH
i,J = Ci,I−i + (1− βI−i) [Ci,I−i + (1− βI−i)µi]

= Ci,I−i + (1− βI−i)ĈBF
i,J . (3.3)

From the relationship (3.3) we can observe that the Benktander-Hovinen
method is rather iterated Bornhuetter-Ferguson method which uses the BF esti-
mator ĈBF

i,J as the new prior estimator of E[Ci,J ].
We can also investigate the further iteration of BF method and look at the

results it brings. We set Ĉ0 = µi and define

Ĉm+1 = Ci,I−i + (1− βI−i)Ĉm form = 0, 1, ... .

It is clear that for m = 1, Ĉ1 is the BF estimator for the ultimate claim and for

m = 2, Ĉ2 is the BH estimator. Behaviour of Ĉm for m → ∞ is showed by the
following theorem.

Theorem 3.1. Under the assumptions 1.2.2 and that the development pattern
(βj)j=0,...,J is known and βI−i > 0 it holds

lim
m→∞

Ĉm = CCL
i,J

This theorem says that if the BF method is further iterated the CL estima-
tor is obtained. It can be proved by induction and the proof can be found in
[Wüthrich, Merz–2008].

3.2 Cape-Cod model

Cape-Cod (CC) model is another reserving method which incorporates a prior
judgement. In the Chain-Ladder technique presented in Section 1.2 we use diag-
onal value Ci,I−i from a development triangle—the most recent observation—in
the expression of estimator of the ultimate claims. If Ci,I−i is an outlier, the CL
reserving method may not give proper results. The Cape-Cod model can solve
this problem by making diagonal observation more robust. It works with these
assumptions
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Model Assumptions 3.2.1.

1. Cumulative claims Ci,j of different accident years i are independent.

2. There exist parameters π0,..., πI , κ > 0 and a claims development pattern
β0, ..., βJ > 0, βJ = 1 such that for all 0 ≤ i ≤ I is

E[Ci,j] = κπiβj .

We see that these assumptions correspond with the implied assumptions 1.2.3
in the BF method with µi = κπi = E[Ci,J ]. In the Cape-Cod model, parameter πi

can be interpreted as a premium received for the accident year i and we assume
it is known. κ is the parameter independent of i and j and represents the average
loss ratio for all accident years and we does not know its value. The development
pattern (βj)j=0,...,J is the same pattern as in BF model so again it holds the
identity (1.8) between (βj)j=0,...,J and CL factors (fj)j=0,...,J−1.

Let κi refers to a loss ratio for each accident year i, i = 0,..., I. Because
βJ = 1 it can be expressed as the quotient of the expected ultimate claim E[Ci,J ]
and the premium received πi

κi =
E[Ci,J ]

πi

.

We have known πi, so an estimate of κi, denoted κ̂i, is given by

κ̂i =
Ê[Ci,J ]

πi

.

Using the CL estimator of ultimate claim as the estimator for E[Ci,J ], κ̂i can be
expressed in the form

κ̂i =
ĈCL

i,J

πi

=
Ci,I−i

∏J−1
j=I−i fj

πi

=
Ci,I−i

βI−iπi

. (3.4)

Furthermore, so defined estimator κ̂i is an unbiased estimator for κ because

E[κ̂i] =
E[ĈCL

i,J ]

πi

=
E[Ci,I−i]

βI−iπi

=
κβI−iπi

βI−iπi

= κ.

However, in this model, we need an estimator of the average loss ratio κ

independent of i. It can be set as a weighted average of κ̂i with weights βI−iπi.

By doing this we get the estimate κ̂CC for the “robusted” overall loss ratio given
by the next formula

κ̂CC =

I∑

i=0

βI−iπi∑I

k=0 βI−kπk

κ̂i =

∑I

i=0Ci,I−i∑I

i=0 βI−iπi

. (3.5)

Since κ̂i is unbiased for κ, κ̂CC is also the unbiased estimator of κ.
This leads to an estimator of the diagonal observation Ci,I−i which is “robus-

ted”. It is denoted by ĈCC
i,I−i and given by the relation

ĈCC
i,I−i = Ê[Ci,I−i] = κ̂CCπiβI−i. (3.6)
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ĈCC
i,I−i is unbiased estimator for E[Ci,I−i] and represents the smoothed diagonal

value Ci,I−i. Smoothing is done over all accident years by the term κ̂CC .

Now we are able to derive the Cape-Cod estimator of the ultimate claim ĈCC
i,J .

It is expressed by

ĈCC
i,J = Ci,I−i − ĈCC

i,I−i +
J−1∏

j=I−i

fjĈ
CC
i,I−i, for 1 ≤ i ≤ I. (3.7)

We can observe that in the formula for the Cape-Cod estimator (3.7) the CL

factors are applied to the “robusted” ĈCC
i,I−i and the difference between diagonal

observation and the “robusted” diagonal value is added. So, the Cape-Cod model
gives proper results also when there is an outlier on the diagonal.

There is also another way to look at the Cape-Cod estimator. We can rewrite
(3.7) to the following form

ĈCC
i,J = Ci,I−i + ĈCC

i,I−i

(
J−1∏

j=I−i

fj − 1

)

= Ci,I−i + κ̂CCπiβI−i

(
1

βI−i

− 1

)

= Ci,I−i + (1− βI−i) κ̂CCπi.

This form coincides with the formula of BF estimator (1.6) with the modified

prior estimate κ̂CCπi.

3.3 Strict bayesian models

Up till now we have considered that our prior knowledge is given by a single
value. Now we choose another approach and we introduce bayesian reserving
models in which this prior information is represented by a prior distribution of
an underlying quantity such as ultimate claim or a risk parameter

In here presented models we consider a latent random variable Θi. Θi is
regarded as the risk characterization of an accident year i. Typically, we do not
know the concrete values of Θi belonging to the accident years. However, we have
knowledge about the structure of Θi. This information is summarized by a prior
probability distribution which involves personal judgement and experience about
the risk characteristic.

We suppose that risk characteristics Θi of different accident years i, i = 0, . . . , I
are independent. Conditioning on Θi, we are able to say something about the
structure of the incremental variables Xi,0, ..., Xi,J of accident year i and about
the cumulative variables Ci,0, ..., Ci,J , respectively. We assume that given Θi, Xi,j

are conditionally independent random variables with a conditional distribution
which depends on Θi. The posterior distribution of Θi, given the incremental
observations in the upper triangle DI , is calculated through the Bayes theorem.
It differs with dependence on a choice of the conditional distribution of Xi,j and
on a choice of the prior distribution of Θi. It cannot be always expressed analyti-
cally and by using some special numerical algorithms we obtain only its estimate.
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In this thesis we restrict to the models when the posterior distribution can be
expressed by an explicit formula.

Our goal is to find an estimator for variable Ci,J for each accident year i. This
is done by the bayesian estimation described in Section 2.2. Recall, that us till
now we work with a fixed accident year i.

In all presented models, we suppose the quadratic loss function. Thus, the
optimal bayesian estimator for Ci,J is the posterior expected value E[Ci,J | DI ].
Our first step will be the computation of the posterior distribution of Θi given
DI and the obtained result will help us to calculate E[Ci,J | DI ].

In the following subsections, we present the concrete models with the proper
choice of distributions for Xi,j and Θi so the posterior distribution can be ob-
tained in an explicit form. We derive estimator for ultimate claims and show the
advantages of bayesian approach.

3.3.1 Poisson model with gamma prior distribution

Poisson model with gamma prior distribution is used mainly when variables Xi,j

in a development triangle represent incremental number of reported claims in
accident year i with delay of j years. The model works with these assumptions.

Model Assumptions 3.3.1.

There exist random variable Θi and positive constants γ0, ..., γJ with
∑J

j=0 γj = 1
such that for all i = 0, ..., I and j = 0, ..., J we have

1. Conditionally, given Θi = θ, Xi,j are independent and Poisson distributed
with E[Xi,j | Θi = θ] = θγj and var[Xi,j | Θi = θ] = θγj.

2. (Θi, (Xi,0, ..., Xi,J))
′, i = 0, ..., I are independent random vectors.

3. Θi is gamma distributed with shape parameter ai > 0 and scale parameter
bi > 0.

Observe, that in this model we do not make assumptions about the cumulative
variables, as up to now, but about the incremental claims Xi,j. We assume that,
the prior density of Θi, denoted by vai,bi, is the density of gamma distribution
given by

vai,bi(θ) =
baii

Γ(ai)
θai−1 exp(−biθ), θ > 0.

and so the prior expected value E[Θi] is equal to ai
bi
. Given Θi = θ, Xi,j are

Poisson distributed with the parameter θγj, so they have the density f θ
i,j with

respect to counting measure given by the relation

f θ
i,j(x) = exp(−θγj)

(θγj)
x

x!
, x = 0, 1, ...

The assumptions 3.3.1 also imply that the expected value of Xi,j can be ex-
pressed as

E[Xi,j] = E[E[Xi,j | Θi]] =
ai

bi
γj.
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We can also derive relations for the conditional expected value and variance
of Ci,J—the ultimate claim of accident year i or the total number of claims in
accident year i, respectively. Under 3.3.1 it holds

E[Ci,J | Θi] = E

[
J∑

j=0

Xi,j | Θi

]
=

J∑

j=0

E[Xi,j | Θi] =

J∑

j=0

γjΘi = Θi,

var[Ci,J | Θi] = var

[
J∑

j=0

Xi,j | Θi

]
=

J∑

j=0

var[Xi,j | Θi] = Θi.

In the derivation of the conditional variance of Ci,J we use the assumptions of
the conditional independence of Xi,j.

The Poisson-Gamma (Po-Ga) model assumes that Xi,j cannot take negative
values. When Xi,j represent number of reported claims there is no problem.
However, this model can be also used for development triangles of incremental
payments. They may have negative values and in such a case a practical appli-
cation is problematic.

Derivation of estimator for ultimate claim

Now we will use the model assumptions 3.3.1 to derive the estimator for the
ultimate claim Ci,J .

As first, we calculate the posterior density of Θi accord to the Bayes theo-
rem. Because the accident years—the vectors (Θi, (Xi,0, ..., Xi,J))

′, i = 0, . . . , I
are independent it is sufficient to condition only with Xi,j from accident year
i. The joint conditional density of the vector (Xi,0, ..., Xi,j)

′, given Θi = θ, can
be expressed as the product of densities f θ

i,k, k = 0, ..., j because the random
variables Xi,0, ..., Xi,j are conditionally independent. So we get

fXi,0,...,Xi,j|Θi
(xi,0, ..., xi,j | θ) =

j∏

k=0

exp(−θγk)
(θγk)

xi,k

xi,k!
.

Then according to the Bayes theorem, the posterior density of Θi, given
Xi,0 = xi,0, ..., Xi,j = xi,j, denoted by πΘi|Xi,0,...,Xi,j

, can be simplified to the
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following form

πΘi|Xi,0,...,Xi,j
(θ | xi,0, ..., xi,j) =

∏j
k=0 exp(−θγk)

(θγk)
xi,k

xi,k!

b
ai
i

Γ(ai)
θai−1 exp(−biθ)

∞∫
0

b
ai
i

Γ(ai)

∏j

k=0 exp(−θγk)
(θγk)

xi,k

xi,k!
θai−1 exp(−biθ)dθ

=

∏j

k=0 exp[−(bi + γk)θ]θ
xi,k+ai−1

∞∫
0

∏j

k=0 exp[−(bi + γk)θ]θxi,k+ai−1dθ

=
exp[−(bi + βj)θ]θ

∑j
k=0

xi,k+ai−1

∞∫
0

θ
∑j

k=0
xi,k+ai−1 exp[−(bi + βj)θ]dθ

=
exp[−(bi + βj)θ]θ

∑j
k=0

xi,k+ai−1

Γ(
∑j

k=0
xi,k+ai)

(bi+βj)
∑j

k=0
xi,k+ai

(3.8)

We denote

a
post
i,j = ai +

j∑

k=0

xi,k, b
post
i,j = bi + βj , (3.9)

where βj =
j∑

k=0

γk. Then the posterior density of Θi, given Xi,0 = xi,0, ...,Xi,j =

xi,j , can be expressed in the form

πΘi|Xi,0,...,Xi,j
(θ | xi,0, ..., xi,j) =

(bposti,j )a
post
i,j

Γ(aposti,j )
θa

post
i,j

−1 exp(−b
post
i,j θ) for θ > 0

(3.10)
This is again the density of gamma prior distribution but with new parameters
a
post
i,j and b

post
i,j . So, the gamma distribution is the conjugate distribution for the

Poisson distribution.
Observe that aposti,j and b

post
i,j are updated with information about observations

Xi,0 = xi,0, ..., Xi,j = xi,j and depend not only on the accident year i but also on
the development year j.

Specially, the conditional distribution of Θi given the incremental observations
DI = dI , dI = {xi,j, i+ j ≤ I, 0 ≤ j ≤ J} is gamma distribution with the shape
parameter a

post
i,I−i and the scale parameter b

post
i,I−i. This knowledge allows us to

compute the posterior expected value E[Θi | DI ]. It holds true

E[Θi | DI = dI ] = E[Θi | Xi,0 = xi,0, ..., Xi,I−i = xi,I−i] =
a
post
i,I−i

b
post
i,I−i

E[Θi | DI ] =
A

post
i,I−i

b
post
i,I−i

, (3.11)
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where A
post
i,I−i is defined as A

post
i,I−i = ai + Ci,I−i. The value E[Θi | DI ] represents

the optimal bayesian estimator of Θi. We can also rewrite (3.11) to the form

E[Θi | DI ] =
bi

bi + βI−i

ai

bi
+

(
1− bi

bi + βI−i

)
Ci,I−i

βI−i

=
bi

bi + βI−i

ai

bi
+

(
1− bi

bi + βI−i

)
I−i∑
k=0

γk
Xi,k

γk

I−i∑
k=0

γk

.

(3.12)

This expression implies that E[Θi | DI ] can be interpreted as a credibility
weighted average between the prior expected value E[Θi] =

ai
bi

and the weighted

average of the observation
Xi,k

γk
, k = 0, ..., I − i.

Now we will proceed with the derivation of relation for the posterior expected
value of the ultimate claim Ci,J . Using the assumption of conditional indepen-
dence of Xi,j , given Θi, we get the relation in the form

E[Ci,J | DI ] = E[E[Ci,J | Θi, DI ] | DI ]

= E

[
E

[
J∑

j=0

Xi,j | Θi, DI

]
| DI

]

= Ci,I−i + E

[
E

[
J∑

j=I−i+1

Xi,j | Θi

]
| DI

]

= Ci,I−i + E

[
J∑

j=I−i+1

γjΘi | DI

]

= Ci,I−i +
J∑

j=I−i+1

γj E[Θi | DI ]

= Ci,I−i + (1− βI−i)E[Θi | DI ], for 1 ≤ i ≤ I. (3.13)

This is the optimal bayesian estimator for ultimate claim in the Poisson-
Gamma model. Substituting (3.12) into the relation (3.13) we have the estimator
in the form

ĈPoiGa
i,J = Ci,I−i + (1− βI−i)

[
bi

bi + βI−i

ai

bi
+

(
1− bi

bi + βI−i

)
Ci,I−i

βI−i

]
, (3.14)

for 1 ≤ i ≤ I.

We have used the conjugate distributions in the model. Because of that the

computation of the estimator ĈPoiGa
i,J have been relatively easy and we have got

all expression in a closed form.
In the next section we look at such cases in more details.

3.3.2 Exponential dispersion family with its associated

conjugates

As have been already mentioned in Chapter 2, conjugate families of distributions
are often used in the practice. The Poisson-Gamma model is only one example of
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such families. Now we generalize this model to the exponential dispersion family
and find its associated conjugates.

Definition 3.1. A distribution is said to belong to the exponential dispersion
family (EDF), if it can be expressed as

dF (x) = exp

[
xθ − b(θ)

σ2

ω

]
a

(
x,

σ2

ω

)
dν(x), x ∈ A ⊆ R, (3.15)

where b(·) is a real-valued twice differentiable function of θ, θ is a parameter of the
family, a(·, ·) is a real-valued function of x and σ2

ω
, ω and σ2 are some real-valued

constants. ν denotes either the Lebesgue measure or a counting measure.

The EDF includes a large class of families of distribution, for example, the
families of the Poisson, gamma, normal and Bernoulli distributions. Each distri-
bution within EDF is uniquely characterized by functions b(·) and a(·, ·). The
parameter θ is called canonical parameter, σ2 is referred to as the dispersion
parameter and ω denotes a prior known weight.

The definition of exponential dispersion family can be also extended to the
multidimensional case, but we will not need it in this thesis. It can be found in
[Figueiredo–2004].

Now we show how EDF is used in reserving theory and introduce the expo-
nential dispersion family model. It assumes following

Model Assumptions 3.3.2.

1. There exists a claims development pattern (βj)0≤j≤J with βJ = 1, γ0 = β0 > 0
and γj = βj − βj−1 > 0 for j = 1, ...,J .

2. Conditionally, given Θi = θ, the Xi,j, j = 0, ..., J , are independent with
distribution

Xi,j

γjµi

∼ dF θ
i,j(x) = exp

[
xθ − b(θ)

σ2

ωi,j

]
a

(
x,

σ2

ωi,j

)
dν(x), (3.16)

where ν is the Lebesgue measure or a counting measure on R, b(·) is a real-
valued twice differentiable function of θ, a(·, ·) is a real-valued function of
x and σ2

ωi,j
, ωi,j > 0, µi > 0 and σ2 are some real-valued constants and F θ

i,j

is a probability distribution on R.

3. The random vectors (Θi, (Xi,0, ..., Xi,J))
′, i = 0, ..., I are independent and

Θ0, ...,ΘI are real-valued random variables with densities with respect to the
Lebesgue measure

uµ,τ2(θ) = d(µ, τ 2) exp

[
µθ − b(θ)

τ 2

]
, θ ∈ H ⊆ R (3.17)

with µ ≡ 1 and τ 2 > 0 and d(·, ·) is a real-valued function of µ and τ 2.
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So in this model, given Θi = θ,
Xi,j

γjµi
have a distribution from the exponential

distribution family with the canonical parameter θ, dispersion parameter σ2 and
known weights ωi,j. Observe, that whereas σ2 is constant over all observations
Xi,j, the weights ωi,j may vary. The canonical parameter θ can take values from
a set H , H ⊆ R. Θi is a risk characteristic of accident year i with a prior
distribution (3.17). µ and τ 2 does not depend on i, so Θi, i = 0, ..., I are
independent and identically distributed—i.i.d.

Derivation of estimator for ultimate claim

Our goal is now to set an optimal bayesian estimator for ultimate claim. We
will proceed analogous to the previous section. Moreover, we would like to verify
that so defined model is the example of conjugate classes of distributions and the
posterior distribution of Θi is of type (3.17) as prior distribution.

We assume again that accident years are independent. So it suffices to con-
centrate on a single fixed accident year i and in the calculation of the posterior
distribution of Θi we condition with the observation Xi,j from this accident year.

Again πΘi|Xi,0,...,Xi,j
regards the posterior density of Θi and we denote the

standardized observation
Xi,j

γjµi
with Yi,j, Yi,j =

Xi,j

γjµi
.

Given Θi = θ, the vector (Yi,0, ..., Yi,j)
′ has the density

fYi,0,...,Yi,j|Θi
(yi,0, ..., yi,j | θ) =

j∏

k=0

exp

[
yi,kθ − b(θ)

σ2

ωi,k

]
a

(
yi,k,

σ2

ωi,k

)
.

Now with the use of the Bayes theorem we can calculate the posterior density
πΘi|Yi,0,...,Yi,j

and πΘi|Xi,0,...,Xi,j
respectively.

24



πΘi|Yi,0,...,Yi,j
(θ | yi,0, ..., yi,j)

=
fYi,0,...,Yi,j|Θi

(yi,0, ..., yi,j | θ)u1,τ2(θ)∫
H
fYi,0,...,Yi,j|Θi

(yi,0, ..., yi,j | θ)u1,τ2(θ)dθ

=

∏j

k=0 exp

[
yi,kθ−b(θ)

σ2

ωi,k

]
a(yi,k,

σ2

ωi,k
)u1,τ2(θ)∫

H

∏j

k=0 exp

[
yi,kθ−b(θ)

σ2

ωi,k

]
a(yi,k,

σ2

ωi,k
)u1,τ2(θ)dθ

=

d(1, τ 2) exp
[
µθ−b(θ)

τ2

]∏j
k=0 exp

[
yi,kθ−b(θ)

σ2

ωi,k

]
a(yi,k,

σ2

ωi,k
)

d(1, τ 2)

∫
H
exp

[
µθ−b(θ)

τ2

]∏j
k=0 exp

[
yi,kθ−b(θ)

σ2

ωi,k

]
a(yi,k,

σ2

ωi,k
)dθ

=

∏j

k=0 a(yi,k,
σ2

ωi,k
) exp

[
θ−b(θ)

τ2

]
exp

[∑j

k=0
yi,kθ−b(θ)

σ2

ωi,k

]

∏j

k=0 a(yi,k,
σ2

ωi,k
)

∫
H
exp

[
θ−b(θ)

τ2

]
exp

[∑j

k=0
yi,kθ−b(θ)

σ2

ωi,k

]
dθ

=
exp

{
θ
[

1
τ2

+
∑j

k=0
ωi,kyi,k

σ2

]
− b(θ)

[
1
τ2

+
∑j

k=0
ωi,k

σ2

]}

∫
H

exp
{
θ
[

1
τ2

+
∑j

k=0
ωi,kyi,k

σ2

]
− b(θ)

[
1
τ2

+
∑j

k=0
ωi,k

σ2

]}
dθ

=

exp

{[
1
τ2

+
∑j

k=0
ωi,k

σ2

] [
θ[ 1

τ2
+
∑j

k=0

ωi,kyi,k

σ2 ]
1

τ2
+
∑j

k=0

ωi,k

σ2

− b(θ)

]}

∫
H
exp

{[
1
τ2

+
∑j

k=0
ωi,k

σ2

] [
θ[ 1

τ2
+
∑j

k=0

ωi,kyi,k

σ2 ]
1

τ2
+
∑j

k=0

ωi,k

σ2

− b(θ)

]}
dθ

. (3.18)

From (3.18) it follows that the posterior density of Θi given Xi,0 = xi,0, ...,

Xi,j = xi,j can be expressed analytically in the form

πΘi|Xi,0,...,Xi,j
(θ | xi,0, ..., xi,j)

=

exp





[
1
τ2

+
∑j

k=0
ωi,k

σ2

]



θ

[

1

τ2
+
∑j

k=0

ωi,k

xi,k
γkµi

σ2

]

1

τ2
+
∑j

k=0

ωi,k

σ2

− b(θ)








∫
H

exp





[
1
τ2

+
∑j

k=0
ωi,k

σ2

]



θ

[

1

τ2
+
∑j

k=0

ωi,k

xi,k
γkµi

σ2

]

1

τ2
+
∑j

k=0

ωi,k

σ2

− b(θ)








dθ

. (3.19)

We denote

τ 2post,i,j =

[
1

τ 2
+

j∑

k=0

ωi,k

σ2

]−1

,

µpost,i,j =
1
τ2

+
∑j

k=0

ωi,k

xi,k

γkµi

σ2

1
τ2

+
∑j

k=0
ωi,k

σ2

.
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Observe, that the integral in the denominator of (3.19) is a constant with the
respect to θ and it can be expressed as a function of τ 2post,i,j and µpost,i,j and so
we can define

C(τ 2post,i,j, µpost,i,j) =
1

∫
H
exp








1

τ 2
+

j∑

k=0

ωi,k

σ2

︸ ︷︷ ︸
(τ2post,i,j)

−1






θ

[
1
τ2

+
∑j

k=0
ωi,kxi,k

σ2

]

1
τ2

+
∑j

k=0
ωi,k

σ2︸ ︷︷ ︸
µpost,i,j

−b(θ)








dθ

This denotation allows us to simplify the complicated expression (3.19) to the
following form

πΘi|Xi,0,...,Xi,j
(θ | xi,0, ..., xi,j) = C(τ 2post,i,j, µpost,i,j) exp

[
θµpost,i,j − b(θ)

τ 2post,i,j

]
. (3.20)

Now, it is obvious that (3.20) is just the density uµpost,i,j ,τ
2
post,i,j

and so the

conditional distribution of Θi given Xi,0 = xi,0, ...,Xi,j = xi,j is of the same
type (3.17) as its prior density. This means that the class of distributions de-
fined by (3.17) is a conjugate class of distribution to the exponential distribution
family (3.16) what we wanted to show.

The new parameters τ 2post,i,j and µpost,i,j are updated with the information
about the observations Xi,0, ...,Xi,j . We can simplify them to the following ex-
pressions

τ 2post,i,j = σ2

(
σ2

τ 2
+

j∑

k=0

ωi,k

)−1

,

µpost,i,j =
τ 2post,i,j

σ2

(
σ2

τ 2
+

j∑

k=0

ωi,k

xi,k

γkµi

)
=

τ 2post,i,j

σ2

(
σ2

τ 2
+

j∑

k=0

ωi,kȳ
(j)
i

)
,

where

ȳ
(j)
i =

j∑

k=0

ωi,k∑j

l=0 ωi,l

xi,k

γkµi

.

Specially, the posterior distribution of Θi given DI = dI has the density (3.17)
with the parameters τ 2post,i,I−i and µpost,i,I−i.

Now, we formulate a theorem which will help us to derive the estimator of the
ultimate claims.

Theorem 3.2. Under the model assumptions 3.3.2 we have for i, j ≥ 0

1. Define µ(Θi) = E
[
Xi,j

γjµi
| Θi

]
then it holds

µ(Θi) = E

[
Xi,k

γkµi

| Θi

]
= b′(Θi) (3.21)

var

(
Xi,k

γkµi

| Θi

)
=

σ2b′′(Θi)

ωi,j
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2. If exp
[
θµi−b(θ)

τ2

]
disappears on the boundary of Θi for all µi, τ 2 then the

following relations hold

E[Xi,j] = γjµi E[µ(Θi)] = γjµi,

E[µ(Θi) | Xi,0 = xi,0, ..., Xi,j = xi,j ] = αi,j ȳ
(j)
i + (1− αi,j)1,

E[µ(Θi) | Xi,0, ..., Xi,j] = αi,jȲ
(j)
i + (1− αi,j)1,

where

αi,j =

∑j
k=0 ωi,k∑j

k=0 ωi,k +
σ2

τ2

and Ȳ
(j)
i =

j∑

k=0

ωi,k∑j
l=0 ωi,l

Xi,k

γkµi

.

This theorem comes from [Wüthrich, Merz–2008] and we will not present its
proof here. It can be found in [Bühlmann, Gisler–2005].

The first part of it says about conditional moments of the standardized ob-
servations

Xi,j

γjµi
and such the relations for the expected value and the variance

hold for every random quantity which has a distribution from the exponential
dispersion family.

The second part of the theorem deals with the posterior mean of µ(Θi), given
the observations Xi,0, ...,Xi,j . We can notice that this posterior mean can be
expressed as a credibility weighted average between the prior mean E[µ(Θi)] = 1

and Ȳ
(j)
i —the weighted average of the standardized observations

Xi,k

γkµi
. The cred-

ibility weight αi,j depends on the dispersion parameter σ2 and on τ 2. The larger
σ2 the smaller is αi,j—the weight given to the observations. Obversely, the larger
τ 2 the larger αi,j.

According to Theorem 3.2, the posterior mean of µ(Θi) given DI , denoted

µ̃(Θi), is given by

µ̃(Θi) = E[µ(Θi) | DI ] = E[µ(Θi) | Xi,0, ..., Xi,I−i] = αi,I−iȲ
(I−i)
i + (1− αi,I−i)

(3.22)
and it is rather the optimal bayesian estimator of µ(Θi) with the respect to the
quadratic loss function.

Now we have all necessary information to derive optimal bayesian estimator of
ultimate claims—posterior expected value E[Ci,J | DI ] = E[Ci,J | Xi,0, ..., Xi,I−i].
With its use, we obtain the resulting expression for E[Ci,J | DI ] in the form
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E[Ci,J | DI ] = E[E[Ci,J | Θi, DI ] | DI ]

= E

[
E

[
J∑

j=0

Xi,j | Θi, DI

]
| DI

]

= Ci,I−i + E

[
E

[
J∑

j=I−i+1

Xi,j | Θi

]
| DI

]

= Ci,I−i + E

[
J∑

j=I−i+1

γjµi E

[
Xi,j

γjµi

| Θi

]
| DI

]

= Ci,I−i + E

[
J∑

j=I−i+1

γjµiµ(Θi) | DI

]

= Ci,I−i +
J∑

j=I−i+1

γjµi E [µ(Θi) | DI ]

= Ci,I−i + (1− βI−i)µiµ̃(Θi), for 1 ≤ i ≤ I. (3.23)

(3.23) is the optimal bayesian estimator for ultimate claim in the EDF model

and we denote it ĈEDF
i,J . Replacing (3.22) into (3.23) we have it in the following

form

ĈEDF
i,J = Ci,I−i + (1− βI−i)µi

[
αi,I−iȲ

(I−i)
i + (1− αi,I−i)

]
. (3.24)

Using the analogous steps as in (3.23) we are also able to express the optimal

estimator for the increments Xi,I−i+k, k = 1, ..., i, denoted as X̂EDF
i,I−i+k

X̂EDF
i,I−i+k = E[Xi,I−i+k | DI ] = γI−i+kµiµ̃(Θi).

3.3.3 Examples of exponential dispersion family models

As we have already mentioned, exponential dispersion family contains a lot of
families of distributions. We have introduced EDF model generally. In this
section, we show the classical examples of EDF models.

Instead of generally defined distribution from EDF (3.16) we assume con-
crete distribution from this family for the incremental claims and we derive its
associated conjugates.

Poisson-Gamma model as EDF model

We dealt with the Poisson-Gamma model in Subsection 3.3.1, where we intro-
duced it as an individual model. In fact, it is only special case of EDF model and
now we show this. We reformulate Po-Ga assumptions 3.3.1 so that they coincide
with the assumptions 3.3.2 of EDF model and verify if we get the same estimator
of the ultimate claim.

Before we start we have to remark that the Poisson-Gamma model is the
special case of EDF only when Θi, i = 0, ..., I are a priori i.i.d., so gamma
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distributed with the parameters a and b which does not depend on the accident
years. Given Θi = θ, increments Xi,j, j = 0, ..., J are Poisson distributed with
the parameter θγj . This means that

P

[
Xi,j

γj
= k | Θi = θ

]
= P [Xi,j = kγj | Θi = θ]

= exp(−θγj)
(θγj)

kγj

(kγj)!
, k =

l

γj
, l = 0, 1, ...

and the conditional density of
Xi,j

γj
, given Θi = θ, denoted by fXi,j

γj
|Θi

(x | θ)
can be expressed as

fXi,j

γj
|Θi

(x | θ) = exp(−θγj)
(θγj)

xγj

(xγj)!
, x =

l

γj
, l = 0, 1, ...

This expression can be modified to the form which corresponds with (3.16)

fXi,j
γj

|Θi
(x | θ) = exp [−θγj + xγj log(θγj)− log((xγj)!)]

= exp

[
x log(θ)− θ

γj

]
exp [xγj log(γj)− log((xγj)!)] .

We denote θ̃ = log(θ), b(θ̃) = exp(θ̃), σ2 = 1, ωi,j = γj and a(x, 1
γj
) =

exp [xγj log(γj)− log((xγj)!)]. Now it is obvious that, given Θi = θ,
Xi,j

γj
has the

distribution from exponential dispersion family with the canonical parameter θ̃,
the dispersion parameter 1 and with the known weights γj.

Now we can work with Poisson-Gamma model as with the EDF model. First,
we set its conjugate prior distribution uµ,τ2 with µ ≡ 1

uµ,τ2(θ) = d(µ, τ 2) exp

[
µ log(θ)− θ

τ 2

]
1

θ

= d(µ, τ 2)θ
µ

τ2 exp

(−θ

τ 2

)
1

θ

= d(µ, τ 2)θ
µ

τ2
−1 exp

(−θ

τ 2

)
, θ > 0.

Obviously, it is proportional to the density of gamma distribution with the
parameters a = µ

τ2
= 1

τ2
and b = 1

τ2
.

From already obtained results, the posterior density of Θi, givenXi,0 = xi,0, . . . ,

Xi,j = xi,j, is again the gamma density uµpost,i,j ,τ
2
post,i,j

where

τ 2post,i,j =

(
1

τ 2
+

j∑

k=0

γk

)−1

=
1

1
τ2

+ βj
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and

µpost,i,j = τ 2post,i,j

[
1

τ 2
+

j∑

k=0

γk

(
j∑

l=0

γl∑j
h=0 γh

xi,l

γl

)]

= τ 2post,i,j

[
1

τ 2
+

j∑

k=0

γk

j∑

l=0

xi,l

βj

]

= τ 2post,i,j

[
1

τ 2
+

j∑

k=0

xi,k

]
.

This corresponds with the Poisson-Gamma model again, because

b
post
i,j =

1

τ 2post,i,j
=

1

τ 2
+ βj = b+ βj

and

a
post
i,j =

µpost,i,j

τ 2post,i,j
=

1

τ 2
+

j∑

k=0

xi,k = a+

j∑

k=0

xi,k.

This implies, that the estimator for the ultimate claims is the same for the
both cases and it is given by the relation

ĈEDF
i,J = ĈPoGa

i,J = Ci,I−i + (1− βI−i)

[
βI−i

βI−i +
1
τ2

Ci,j

βI−i

+
1
τ2

βI−i +
1
τ2

]

= Ci,I−i + (1− βI−i)

[
βI−i

βI−i + b

Ci,j

βI−i

+
b

βI−i + b

]

Binomial-Beta model

Another distribution which belongs to EDF is binomial distribution. In Binomial-
Beta model we assume given Θi = θ, Xi,j, j = 0, ..., J , has the binomial distri-
bution with the parameter γjµi ∈ N and θ ∈ (0, 1). This means that

P [Xi,j = k | Θi = θ] =

(
γjµi

k

)
θk(1− θ)γjµi−k, k = 0, ..., γjµi

and

P

[
Xi,j

γjµi

= k | Θi = θ

]
= P [Xi,j = kγjµi | Θi = θ] =

(
γjµi

kγjµi

)
θkγjµi(1−θ)γjµi−kγjµi

for k = l
γjµi

, l = 0, ..., γjµi.

The conditional density of
Xi,j

γjµi
given Θi = θ, fXi,j

γjµi
|Θi

(x | θ) can be written in
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the following form for x = l
γjµi

, l = 0, ..., γjµi.

fXi,j
γjµi

|Θi
(x | θ)

=

(
γjµi

xγjµi

)
θxγjµi(1− θ)γjµi−xγjµi

= exp

{
log

[(
γjµi

xγjµi

)]
+ xγjµi log(θ) + γjµi log(1− θ)− xγjµi log(1− θ)

}

= exp

[
x log( θ

1−θ
)− log( 1

1−θ
)

1
γjµi

](
γjµi

xγjµi

)

= exp

[
xθ̃ − b(θ̃)

1
ωi,j

]
a

(
x,

1

ωi,j

)
,

where θ̃ = log( θ
1−θ

), b(θ̃) = log[1 + exp(θ̃)], ωi,j = γjµi, σ
2 = 1 and a

(
x, 1

ωi,j

)
=

(
ωi,j

xωi,j

)
.

This expression of fXi,j

γjµi
|Θi

corresponds with (3.16) and the expected value

µ(Θi) = E[
Xi,j

γjµi
| Θi] is equal to Θi.

Now we define the prior distribution of Θi, uµ,τ2. According to the assumptions
3.3.2 we have the following prior distribution

uµ,τ2(θ) = d(µ, τ 2) exp{
µ log( θ

1−θ
)− log( 1

1−θ
)

τ 2
}1− θ

θ

1

(1− θ)2

= d(µ, τ 2)θ
µ

τ2
−1(1− θ)

1−µ

τ2
−1, θ ∈ (0, 1).

It holds that uµ,τ2 is proportional to θ
µ

τ2
−1(1− θ)

1−µ

τ2
−1, which implies that it

is a density of beta distribution with the parameters µ

τ2
> 0 and 1−µ

τ2
> 0.

The prior expected value is equal to µ

E[Θi] =
µ

τ2

µ

τ2
+ 1−µ

τ2

=
µ

τ2

1
τ2

= µ.

In this case, µ cannot be identically 1 as in the assumptions of the EDF model
because then the inequality 1−µ

τ2
> 0 would not hold. Instead of µ ≡ 1 we consider

µ ∈ (0, 1).
Now we have the assumptions which correspond with EDF model assumptions

and we can use the already derived results to set the posterior distribution and
the estimator of the ultimate claim.

Let us take some notes about the prior weights. In this model we have
ωi,j = γjµi which immediately implies that

∑j

k=0 ωi,j = βjµi. This simplifies
the expression of Ȳ j

i and αi,j to the following forms

αi,j =
βj

βj +
σ2

τ2µi

, Ȳ
j
i =

Ci,j

βjµi

.

Consequently, the posterior parameters τ 2post,i,j and µpost,i,j as well as the formu-

las for µ̃(Θi) and for the estimator of ultimate claims can be written in more
sophisticated forms.
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Normal-Normal model

In Normal-Normal model we assume that given Θi = θ, Xi,j, j = 0, ..., J , are
normal distributed with the parameters θ ∈ R and σ2γjµi > 0, N (θ, σ2γjµi) .

So,
Xi,j

γjµi
are N

(
θ, σ2

γjµi

)
and the conditional density fXi,j

γjµi
|Θi

(x | θ) is expressed by

the following relation

fXi,j

γjµi
|Θi

(x | θ) = 1√
2π σ2

γjµi

exp

[
−x2 + 2xθ − θ2

2 σ2

γjµi

]

= exp

(
xθ − θ2

2
σ2

γjµi

)
exp

(
−x2

2 σ2

γjµi

)
1√

2π σ2

γjµi

, x ∈ R.

This expression is in the form (3.16) with b(θ) = θ2

2
, ωi,j = γjµi and a

(
x, 1

ωi,j

)
=

exp

[
−x2

2 σ2

γjµi

]
1

√

2π σ2

γjµi

and we verify that normal distribution belongs to EDF. Here

again µ(Θi) = E[
Xi,j

γjµi
| Θi] = Θi.

The prior distribution of Θi, uµ,τ2 with µ ≡ 1, which is conjugate to N
(
θ, σ2

γj

)

is expressed in the following form

u1,τ2(θ) = d(1, τ 2) exp

(
θ − θ2

2

τ 2

)

= d(1, τ 2) exp

(
1

2τ 2

)
exp

(−1 + 2θ − θ2

2τ 2

)

= d̃(1, τ 2) exp

[−(θ − 1)2

2τ 2

]
, θ ∈ R.

This is proportional to exp
[
−(θ−1)2

2τ2

]
so u1,τ2 is the density of normal distribution

N (1, τ 2). The prior expected value E[Θi] is equal to 1 and the prior variance
var[Θi] is τ

2.
From already showed in EDF model, the posterior distribution (3.20) of Θi

is normal distribution with the posterior parameter µpost,i,j, τ
2
post,i,j and it is easy

to set the estimator of the ultimate claim Ci,J . The weights are as well as in
the Binomial-Beta case defined as the product of γj and µi which implies less
complicated form for estimators.

Geometric-Beta model

The Geometric-Beta model is also used in the claims reserving as a special case
of EDF model. Given Θi = θ, θ ∈ (0, 1) it assumes the Geometric distribution
with the parameter θ for incremental claims Xi,j, j = 0, ..., J . This means that
it holds

P [Xi,j = k | Θi = θ] = (1− θ)kθ, for k = 0, 1, ...
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The conditional density fXi,j |Θi
(x | θ) can be modified to the expression

fXi,j |Θi
(x | θ) = (1− θ)xθ = exp [x log(1− θ) + log(θ)] = exp

[
xθ̃ − b(θ̃)

]
,

for x = 0, 1, ...
The terms θ̃ and b(θ̃) are defined as θ̃ = log(1−θ) and b(θ̃) = − log(1−expθ̃).
Again, we can see that this density belongs to EDF. Observe, that in this

model we have all γj, µi and prior weights ωi,j all constant, equal to 1. The
dispersion parameter σ2 has the value 1, too.

The prior distribution of Θi, uµ,τ2 with µ ≡ 1 is according to 3.3.2 in the
following form

u1,τ2(θ) = d(1, τ 2) exp

[
log(1− θ) + log(θ)

τ 2

] −1

1− θ

= d(1, τ 2)(1− θ)
1

τ2
−1θ

1

τ2 , θ ∈ (0, 1).

This is proportional to θ
1

τ2 (1− θ)
1

τ2
−1, so it is a density of beta distribution with

the parameters 1
τ2

+ 1 > 0 and 1
τ2

> 0.
Analogous as in the previous examples we have the assumptions of EDF mo-

del. This implies the beta posterior distribution for Θi and the estimator of the
ultimate claim can be expressed easily.
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4. Practical application of models

In the previous chapters we summarized the theoretical background of the bayesian
claims reserving. Now we should examine the methods on a concrete example,
compare, review and discuss achieved results. This is the scope of this chap-
ter. All computations and analyses are done in the environment of R software
[R Core Team–2013]. The complete source code is attached in Appendix A. In
each example of concrete method we assume its corresponding assumptions for
data.

4.1 Data set

For the illustration of claims reserving methods we use a data set—a cumulative
development triangle displayed in Table 4.1. This data set consists of observed
cumulative paid losses of accident years 1988–1997. The line of business for this
data is Private Passenger Auto Liability Insurance. The data are taken from
[Meyers, Shi–2011] where the more detailed description can be found.

We have to remark that the cumulative payments in the triangle contain
allocated loss adjustment expenses (ALAE). ALAE are allocated to a single claim
and they are typically expenses for external expertise, external lawyer, etc. In the
practice it is common that data used for the claim reserves estimation contains
these expenses and reserving methods are applied on such a data.

Accident Development year j

year i 0 1 2 3 4 5 6 7 8 9

0 4339 9617 11584 12001 12640 12966 13058 13080 13182 13183

1 4445 9090 11125 11815 12027 12078 12626 12626 12627

2 6123 10564 12290 13579 14063 14412 14488 14497

3 5464 9537 11481 12335 12699 12721 12725

4 5113 8527 10344 11381 11742 12036

5 6540 11810 14533 14998 15890

6 5781 9519 10929 11356

7 4356 6779 8199

8 5250 8967

9 5743

Table 4.1: Observed cumulative payments

According to our notation from Chapter 1.1 we have I = J = 9, accident
years i = 0, ..., 9, the development years j = 0, ..., 9 and the entries of the
triangle—cumulative paid losses—denoted by Ci,j, i+ j ≤ I.

The corresponding incremental triangle with the incremental payments Xi,j,
i+ j ≤ I is shown in Table 4.2.

To get a graphical overview we can plot our data set—the cumulative tri-
angle 4.1. Figure 4.1 shows the development of cumulative claims, each line in
the graph corresponds to an accident year. For the better visibility we present
Figure 4.2 where we can see the same development of claims but with individual
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Accident Development year j

year i 0 1 2 3 4 5 6 7 8 9

0 4339 5278 1967 417 639 326 92 22 102 1

1 4445 4645 2035 690 212 51 548 0 1

2 6123 4441 1726 1289 484 349 76 9

3 5464 4073 1944 854 364 22 4

4 5113 3414 1817 1037 361 294

5 6540 5270 2723 465 892

6 5781 3738 1410 427

7 4356 2423 1420

8 5250 3717

9 5743

Table 4.2: Observed incremental payments

graph for each accident year. From the both pictures it is obvious that the de-
velopment of payments is less noticeable with the increase of development years.
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Figure 4.1: Development of cumulative payments

In addition to the development triangle we also need the information about
premium received corresponding to the each accident year. The premium is de-
noted by πi, i = 0, ..., 9 and it is listed in Table 4.3. We assume direct premium
before deducting any premiums sent to reinsurers.

4.2 Chain-Ladder method

The Chain-Ladder method is based on the development factors. From the graphic
representation of our data set it is not noticeable that the proportionality of the
columns should not hold and so the CL model may be proper.
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Figure 4.2: Development of cumulative payments—individual graphs

accident year earned premium
0 18793
1 18948
2 20527
3 21278
4 20779
5 23212
6 22219
7 18314
8 17043
9 19217

Table 4.3: Table of the earned premium

Applying the formula (1.2) for development factors we obtain estimators f̂j,
j = 0, ..., J − 1 listed in Table 4.4.

Now we can apply development factors to the latest known cumulative pay-
ments Ci,I−i—the diagonal values—from every accident year. We get the predic-
tion of payments for next development periods Ci,j, i + j ≤ I, i ≤ I, j ≤ J .

Values ĈCL
i,J , i = 1, ..., I, ĈCL

i,9 , i = 1, ..., I respectively, represent the ultimate
payments for the accident years. CL reserves are given as a difference of ultimate
payments and the diagonal values Ci,I−i. In Table 4.5 we can see the fulfilled
triangle with the observations and predicted values as well as the value of Chain-
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j 0 1 2 3 4 5 6 7 8

f̂j 1.780 1.199 1.063 1.039 1.016 1.014 1.001 1.004 1

Table 4.4: The values of f̂j

Ladder reserves. The value of total Chain-Ladder reserve—the sum of reserves
for all accident years is 14556.11.

i 0 1 2 3 4 5 6 7 8 9 CL reserves
0 4339 9617 11584 12001 12640 12966 13058 13080 13182 13183 0.00
1 4445 9090 11125 11815 12027 12078 12626 12626 12627 12628 0.96
2 6123 10564 12290 13579 14063 14412 14488 14497 14555 14556 59.19
3 5464 9537 11481 12335 12699 12721 12725 12735 12786 12787 61.82
4 5113 8527 10344 11381 11742 12036 12202 12212 12260 12261 225.36
5 6540 11810 14533 14998 15890 16152 16375 16388 16453 16455 564.54
6 5781 9519 10929 11356 11796 11991 12157 12166 12215 12216 859.56
7 4356 6779 8199 8715 9053 9202 9329 9337 9374 9375 1175.70
8 5250 8967 10755 11432 11875 12071 12238 12247 12296 12297 3330.06
9 5743 10225 12263 13035 13541 13764 13954 13965 14021 14022 8278.93

Total reserves 14556.11

Table 4.5: Fulfilled triangle and reserves for the Chain-Ladder method

4.3 Bornhuetter-Ferguson method

Bornhuetter-Ferguson method is considered to be a bayesian method and we use
priori information in it.

As first, we calculate the estimators of pattern (βj)j=0,...,J , denoted (β̂j)j=0,...,J,

using the identification (1.8). Values of (β̂j)j=0,...,J are showed in Table 4.6.

j 0 1 2 3 4 5 6 7 8 9

β̂j 0.410 0.729 0.875 0.930 0.966 0.982 0.995 0.996 1.000 1.000

Table 4.6: Development pattern (β̂j)j=0,...,J

The next step is to make a proper choice of µ̂i—a prior estimate for the
expected ultimate payments E[Ci,J ]. This estimate may originate from widespread
sources, for example from a volume measure such as premium or from external
expert opinion. However, it should not be based on any observations of payments
in the triangle.

We use the loss ratio method to determine µ̂i. The idea of this method is
based on expected loss ratio which may differ for different accident years. More
detailed description of it can be found in [Mandl, Mazurová–1999].

In this method, we denote ELRi to be the expected loss ratio for the accident
year i. Then, µ̂i is given by the product of this ratio and premium received

µ̂i = ELRiπi.

The expected loss ratio should be set properly. There are a number of sources
which are used for its selection, such as past data and experiences about claims or

37



market statistics for the similar lines of business. For simplicity in our example,
we assume the expected loss ratio to be constant for all accident years and we set
its value to be 0.75. Such a choice is reasonable for the Auto Liability Insurance.

According to (1.9) we are now able to compute the Bornhuetter-Ferguson
estimator of ultimate claims.

In Table 4.7, we can see the values of the prior estimates µ̂i, ultimate pay-

ments ĈBF
i,J and BF reserves. For comparison we also show the corresponding CL

estimates.
As showed in the section 1.2, CL method is rather BF method with the prior

estimate replaced by ĈCL
i,J . In our example, the value of the total BF reserve

is evidently higher than the CL reserves. This is caused by the fact that µ̂i is
in every accident year higher—more pessimistic and conservative—than the CL

estimator ĈCL
i,J .

We must point out that the loss ratio method for setting of µ̂i is not the
most used method in the practice. Usually, µ̂i represents the strategic business
plan value of the insurance company and its choice is based on an opinion of an
experienced expert.

i µ̂i ĈBF
i,J ĈCL

i,J BF reserves CL reserves

0 14094.75 13183.00 13183.00 0.00 0.00
1 14211.00 12628.08 12627.96 1.08 0.96
2 15395.25 14559.60 14556.19 62.60 59.19
3 15958.50 12802.15 12786.82 77.15 61.82
4 15584.25 12322.44 12261.36 286.44 225.36
5 17409.00 16487.28 16454.54 597.28 564.54
6 16664.25 12528.60 12215.56 1172.60 859.56
7 13735.50 9921.59 9374.70 1722.59 1175.70
8 12782.25 12428.45 12297.06 3461.45 3330.06
9 14412.75 14252.68 14021.93 8509.68 8278.93

Total reserves 15890.87 14556.11

Table 4.7: Reserves from the BF and the CL method

4.4 Benktander-Hovinen method

Benktander-Hovinen method is characterized as an iterated Bornhuetter-Ferguson
method. We have development pattern (β̂j)j=0,...,J from Table (4.6) and the prior
estimate µ̂i from Table (4.7). Using the formula (3.3) it is not difficult to calcu-

late BH estimators ĈBH
i,J , i = 1, ..., I. Their values as well as corresponding BH

reserves are showed in Table 4.8.
Now let us compare total reserves from the CL, BF and BH method. This is

showed in Table 4.9 and we see that the BH total reserve is between the CL and
the BF total reserves, because it is the mixture of the CL and BH method.

In the previous chapter we also mentioned the further iteration of the BF
method which should lead to the CL estimator of ultimate claims. By applying
Theorem 3.1 on our data set we get Table 4.10. We see that the differences are
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i ĈBH
i,J BH reserves

0 13183.00 0.00
1 12627.96 0.96
2 14556.21 59.21
3 12786.89 61.89
4 12262.49 226.49
5 16455.66 565.66
6 12237.59 881.59
7 9443.29 1244.29
8 12332.64 3365.64
9 14158.17 8415.17

Total reserves 14820.88

Table 4.8: Ultimate claim and reserves from the BH method

CL method BF method BH method
Total reserves 14556.11 15890.87 14820.88

Table 4.9: Comparison of total reserves from the CL, BF and BH method

insignificant already after the third iteration and the differences between Ĉ9 and

ĈCL
i,J are visible only in the last two accident years.

i Ĉ2 = ĈBH
i,J Ĉ3 Ĉ4 ... Ĉ9 ... ĈCL

i,J

0 13183.00 13183.00 13183.00 ... 13183.00 ... 13183.00
1 12627.96 12627.96 12627.96 ... 12627.96 ... 12627.96
2 14556.21 14556.19 14556.19 ... 14556.19 ... 14556.19
3 12786.89 12786.82 12786.82 ... 12786.82 ... 12786.82
4 12262.49 12261.38 12261.36 ... 12261.36 ... 12261.36
5 16455.66 16454.58 16454.54 ... 16454.54 ... 16454.54
6 12237.59 12217.11 12215.67 ... 12215.56 ... 12215.56
7 9443.29 9383.30 9375.78 ... 9374.70 ... 9374.70
8 12332.64 12306.69 12299.67 ... 12297.06 ... 12297.06
9 14158.17 14102.37 14069.42 ... 14025.33 ... 14021.93

Table 4.10: Iteration of the BF method

4.5 Cape-Cod model

Cape-Cod model consists in making the diagonal observations more robust. By
using the formulas (3.4) and (3.5) we get the estimated values of the loss ratio

κ̂i, for the accident years i = 0,..., I and of the “robusted” overall loss ratio κ̂CC .
They are listed in Table 4.11. For the better visualisation we can see these values

in the graph in Figure 4.3. The value of κ̂CC is illustrated with the line.
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i πi κ̂i

0 18793 0.701
1 18948 0.666
2 20527 0.709
3 21278 0.601
4 20779 0.590
5 23212 0.709
6 22219 0.550
7 18314 0.512
8 17043 0.722
9 19217 0.730

κ̂CC 0.643

Table 4.11: Values of κ̂i and κ̂CC
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Figure 4.3: The loss ratios κ̂i and the robusted ratio κ̂CC

Smoothed “robusted” diagonal observations ĈCC
i,I−i are obtained by (3.6). In

Table 4.12 we see these values and for comparison the original diagonal observa-
tions, too.

The Cape-Cod ultimate claims and reserves are shown in Table 4.13. We can
notice that the total CC reserves are smaller than the total BF and CL reserves.
This can be easily explained.

In the most of the accident years smoothing have reduced the diagonal obser-
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vation. We already known from the previous chapter that Cape-Cod method is
rather the CL method applied to the robusted diagonal values. So it is reasonable
that the total CC reserves are smaller than the total CL reserves.

When we take another look at the CC estimator ĈCC
i,J , it can be understood

as the BF estimator with the prior estimate κ̂CCπi. The prior estimate used in

BF method is µ̂i = ELRiπi. κ̂CC = 0.643 is below ELRi = 0.75 which implies
that the CC reserves are smaller that BF reserves in every accident year.

i Ci,I−i ĈCC
i,I−i

0 13183 12087.53
1 12627 12186.30
2 14497 13149.14
3 12725 13619.70
4 12036 13119.26
5 15890 14417.57
6 11356 13285.50
7 8199 10302.16
8 8967 7993.43
9 5743 5062.42

Table 4.12: Robusted diagonal values

i ĈCC
i,J CL reserves BF reserves CC reserves

0 13183.00 0 0 0
1 12627.92 0.96 1.08 0.92
2 14550.69 59.19 62.6 53.69
3 12791.16 61.82 77.15 66.16
4 12281.65 225.36 286.44 245.65
5 16402.22 564.54 597.28 512.22
6 12361.61 859.56 1172.6 1005.61
7 9676.28 1175.7 1722.59 1477.28
8 11935.51 3330.06 3461.45 2968.51
9 13040.82 8278.93 8509.68 7297.82

Total reserves 14556.1 15890.87 13627.86

Table 4.13: Ultimate claims and reserves from the Cape-Cod model

4.6 Poisson-Gamma model

Let us now illustrate the Poisson-Gamma model for our data set. This model
belongs to the strict bayesian methods for claims reserving so we assume a prior
gamma distribution for a risk characteristics of accident years and the conditional
Poisson distribution for the incremental payments. When we look at our incre-
mental triangle in the picture 4.2 it is obvious that all observed payments are
positive and it will be no problem in the application of this model.
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According to 3.3.1 we assume known positive constants γ0, ..., γJ with
∑J

j=0 γj =
1. In practice we do not usually know them and we have to choose estimators γ̂j,
j = 0, ...,J . Often used approach is to set

γ̂j = β̂j − β̂j−1, j = 1, ..., J,

where (β̂j)j=0,...,J is the already estimated pattern from the BF method and γ̂0
is set from the condition

∑J
j=0 γ̂j = 1. This choice of γ̂j is recommended in

[Wüthrich, Merz–2008]. The values of γ̂j can be seen in Table 4.14

j 0 1 2 3 4 5 6 7 8 9
γ̂j 0.40957 0.31963 0.14539 0.05505 0.03606 0.01593 0.01355 0.00077 0.00399 0.00008

Table 4.14: The values of γ̂j

The next step is to properly specify prior gamma distributions of Θi, for all
i = 0, . . . , I—to choose the shape parameters ai and the scale parameters bi.
The issue of the prior distribution selection is very polemic aspect of bayesian
theory. There is no recommended method which is considered to be the best.
The assessment of the prior is often made by an expert and it contains all his
judgements, beliefs and available information.

In our example, we adopt the method from [Wüthrich, Merz–2008]. In addi-
tion, we look at two different choices of the prior parameters ai and bi and review
their influence on the resulting estimators for the ultimate claims.

We come from the coefficient of the variation of Θi—CV[Θi], the expected
value and the variance of Θi. CV[Θi] is defined as

CV[Θi] =

√
var[Θi]

E[Θi]
,

it expresses the dispersion of the variable Θi, it is independent of the units of
measurement and it is usually given in %.

From the previous chapter we have the following relations

E[Θi] = E[Ci,J ] =
ai

bi
,

var[Θi] =
ai

b2i
,

CV[Θi] =
1√
ai
.

The selection of prior parameters consists in making the fixed choice of CV[Θi]
for all accident years and in the choice of E[Θi].

The case of CV[Θi] = 5%

In the first assumed case, we choose CV[Θi] = 5% for all accident years i. Next,
we set the prior expected value E[Θi], E[Ci,J ] respectively. We use the same values
as in the BF method—the values of µ̂i. Having E[Θi] and CV[Θi] it is easy to
get the prior parameters ai and bi. Their values are shown in Table 4.15.
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i CV[Θi] E[Θi] ai bi var[Θi]
0 0.05 14094.75 400 0.0284 496655
1 0.05 14211.00 400 0.0281 504881
2 0.05 15395.25 400 0.0260 592534
3 0.05 15958.50 400 0.0251 636684
4 0.05 15584.25 400 0.0257 607172
5 0.05 17409.00 400 0.0230 757683
6 0.05 16664.25 400 0.0240 694243
7 0.05 13735.50 400 0.0291 471660
8 0.05 12782.25 400 0.0313 408465
9 0.05 14412.75 400 0.0278 519318

Table 4.15: The choice of the prior parameters

As was proved in the previous chapter, the posterior distribution of Θi, given
the observations in the upper triangle, is again the gamma distribution but with
the new posterior parameters a

post
i,I−i and b

post
i,I−i. Their values are given by (3.9).

In fact, we should write â
post
i,I−i and b̂

post
i,I−i because instead of the known values of

γI−i their estimates have been used. But we will not use this to not overload the
notation. In Table 4.16 we can see the values of the posterior parameters, as well
as the posterior expected value E[Θi | DI ]—the optimal bayesian estimator of Θi.

i a
post
i,I−i b

post
i,I−i E[Θi | DI ]

0 13583 1.0284 13208.16
1 13027 1.0281 12671.30
2 14897 1.0219 14577.52
3 13125 1.0202 12864.74
4 12436 1.0073 12346.03
5 16290 0.9887 16476.72
6 11756 0.9536 12327.54
7 8599 0.9037 9515.22
8 9367 0.7605 12317.02
9 6143 0.4373 14046.73

Table 4.16: The posterior parameters

Finally, we can set estimators of the ultimate claims ĈPoiGa
i,J , which are cal-

culated by (3.14). These estimators and the corresponding reserves are listed in
Table 4.17.

The case of CV[Θi] = 0.5 ‰

Now we make another choice of the prior parameters and derive the estima-
tor of ultimate claims again. We change the coefficient of variation of Θi and
we set CV[Θi] to be 100-times smaller than in the previous case. So, we have
CV[Θi] = 0.5 ‰ for all i = 0, ..., I. The prior expected values E[Θi], E[Ci,J ]
respectively, remain unchanged. The parameters ai and bi can be again easily set
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i ĈPoiGa
i,J Po-Ga reserves

0 13183.00 0.00
1 12627.96 0.96
2 14556.28 59.28
3 12787.19 62.19
4 12262.92 226.92
5 16455.30 565.30
6 12223.44 867.44
7 9392.32 1193.32
8 12302.47 3335.47
9 14036.57 8293.57

Total reserves 14604.45

Table 4.17: The estimators of ultimate claims and reserves in the Po-Ga model

and their values are shown in Table 4.18. Observe that while the values of the
prior parameters are 10000-times greater than in the previous case the variance
of Θi is 10000-times smaller.

i CV[Θi] E[Θi] ai bi var[Θi]
0 0.0005 14094.75 4000000 283.79 49.67
1 0.0005 14211.00 4000000 281.47 50.49
2 0.0005 15395.25 4000000 259.82 59.25
3 0.0005 15958.50 4000000 250.65 63.67
4 0.0005 15584.25 4000000 256.67 60.72
5 0.0005 17409.00 4000000 229.77 75.77
6 0.0005 16664.25 4000000 240.03 69.42
7 0.0005 13735.50 4000000 291.22 47.17
8 0.005 12782.25 4000000 312.93 40.85
9 0.005 14412.75 4000000 277.53 51.93

Table 4.18: The choice of the prior parameters

The posterior parameters a
post
i,I−i and b

post
i,I−i calculated by (3.9) are listed in

Table 4.19 also with the posterior expected value E[Θi | DI ].

Finally, we are able to derive the estimators of the ultimate claims ĈPoiGa
i,J and

reserves by (3.14). Their values are listed in Table 4.20.

The comparison of results

As we have shown in our examples, the different prior distributions give the
different values of the ultimate claims and reserves. Now we try to sum up the
differences and investigate the effect of the prior choice on the resulting estimators.

Our two cases of the prior parameters choice differ only in the selection of
CV[Θi], var[Θi] respectively. The prior expected value has always the same value.
The smaller CV[Θi] the smaller dispersion in the risk characteristic Θi and this
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i a
post
i,I−i b

post
i,I−i E[Θi | DI ]

0 4013183 284.79 14091.55
1 4012627 282.47 14205.40
2 4014497 260.82 15392.05
3 4012725 251.65 15945.96
4 4012036 257.65 15571.59
5 4015890 230.73 17405.01
6 4011356 240.96 16647.09
7 4008199 292.09 13722.44
8 4008967 313.66 12781.12
9 4005743 277.94 14412.17

Table 4.19: The posterior parameters

i ĈPoiGa
i,J Po-Ga reserves

0 13183.00 0.00
1 12628.08 1.08
2 14559.60 62.60
3 12802.09 77.09
4 12322.21 286.21
5 16487.15 597.15
6 12527.39 1171.39
7 9919.96 1720.96
8 12428.14 3461.14
9 14252.34 8509.34

Total reserves 15886.94

Table 4.20: The estimators of ultimate claims and reserves in the Po-Ga model

expresses that we are more sure about our a priori belief. This is reflected in the

resulting Poisson-Gamma estimator ĈPoiGa
i,J .

Let us recall the formula (3.14) for ĈPoiGa
i,J

ĈPoiGa
i,J = Ci,I−i + (1− βI−i)

[
bi

bi + βI−i

ai

bi
+

(
1− bi

bi + βI−i

)
Ci,I−i

βI−i

]
.

We can notice that the expression in the brackets is the credibility mixture
between the prior mean ai

bi
, which in our examples coincide with the BF prior

estimate µ̂i, and the observations
Ci,I−i

βI−i
. The weights are bi

bi+βI−i
and βI−i

bi+βI−i
.

Intuitively, the smaller value of CV[Θi] should imply the greater weight given to
ai
bi

and consequently the lower weight given to the observations.
We verify this in Table 4.21 where the both weights—for the prior expected

value and for the observations—are shown for each case of CV[Θi]. It is obvious
that already by the choice CV[Θi] to be 5% the weights given to the prior are
relatively small and the observations are dominant in the estimator of the ultimate
claims. On the other hand, when the CV[Θi] is 100-times smaller, we are very
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sure about a priori belief and the weights given for ai
bi

are almost 1 while the
weights given to the observations are very low.

CV[Θi] = 5% CV[Θi] = 0.5 ‰

i bi
bi+βI−i

βI−i

bi+βI−i

bi
bi+βI−i

βI−i

bi+βI−i

0 0.0276 0.9724 0.9965 0.0035
1 0.0274 0.9726 0.9965 0.0035
2 0.0254 0.9746 0.9962 0.0038
3 0.0246 0.9754 0.9960 0.0040
4 0.0255 0.9745 0.9962 0.0038
5 0.0232 0.9768 0.9958 0.0042
6 0.0252 0.9748 0.9961 0.0039
7 0.0322 0.9678 0.9970 0.0030
8 0.0411 0.9589 0.9977 0.0023
9 0.0635 0.9365 0.9985 0.0015

Table 4.21: The credibility weights

Now we concentrate on the obtained ultimate claims and reserves and we
trade off the estimators from the both assumed cases, from the CL method and
from the BF method. The comparison of the ultimate claims is shown in Table
4.22. As was already mentioned, the Bornhueter-Ferguson method is based on
the prior knowledge, the Chain-Ladder method uses the opposite principle and it
is founded only on the observations.

The results in Table 4.22 verify that when the coefficient of the variation of
the prior distribution is low—0.5 ‰ , so we consider our prior information to be
proper and trustworthy, we get closer to the BF model. We have to remark that
resemblance between the results from Po-Ga model and BF model is caused by a
fact that we have used the same prior expected value of Ci,J , E[Ci,J ] =

ai
bi
= µ̂i in

the both models. Obversely, the choice of CV[Θi] = 5% causes that the ultimate
claims are very similar to CL ultimate claims.

ĈPoiGa
i,J

i CV[Θi] = 5% CV[Θi] = 0.5 ‰ ĈCL
i,J ĈBF

i,J

0 13183.00 13183.00 13183.00 13183.00
1 12627.96 12628.08 12627.96 12628.08
2 14556.28 14559.59 14556.19 14559.60
3 12787.19 12802.09 12786.82 12802.15
4 12262.92 12322.21 12261.36 12322.45
5 16455.30 16487.15 16454.54 16487.29
6 12223.44 12527.39 12215.56 12528.60
7 9392.32 9919.96 9374.70 9921.59
8 12302.47 12428.14 12297.06 12428.45
9 14036.57 14252.34 14021.93 14252.68

Table 4.22: The comparison of the ultimate claims
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Finally, we also compare the outstanding and the total reserves. This is shown
in Table 4.23. Obviously, the case with CV[Θi] = 0.5 ‰ is very close to the BF
method.

In our examples we have verified the following conclusion. The higher CV[Θi]
is chosen the more the final Po-Ga estimator is based on the observation and
the closer to the CL estimator. The chosen prior expected value displays in the
estimator only insignificantly.

On the other, the low CV[Θi] represents the strong belief in the prior estimator
and the credibility weight given to the prior expected value is dominant.

Po-Ga reserves
i CV[Θi] = 5% CV[Θi] = 0.5 ‰ CL reserves BF reserves
0 0.00 0.00 0.00 0.00
1 0.96 1.08 0.96 1.08
2 59.28 62.59 59.19 62.60
3 62.19 77.09 61.82 77.15
4 226.92 286.21 225.36 286.44
5 565.30 597.15 564.54 597.28
6 867.44 1171.39 859.56 1172.60
7 1193.32 1720.96 1175.70 1722.59
8 3335.47 3461.14 3330.06 3461.45
9 8293.57 8509.34 8278.93 8509.68

Total reserves 14604.45 15886.94 14556.11 15890.87

Table 4.23: The comparison of the total reserves
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Conclusion

The goal of this thesis was to analyse the bayesian methods in the stochastic
reserving. We have concentrated on the models which are often used in practice
and consequently we have applied the methods on a real data set and summed
up the results.

In the first two chapters of the thesis we have presented the theoretical infor-
mation needed for the models definition. At the beginning, we have introduced
the standard notation common in the actuarial science. We have also described
the elementary Chain-ladder method and Bornhuetter-Ferguson method which
are crucial in the reserving theory.

To understand the idea of the bayesian reserving methods we have become
familiar with the bayesian approach to statistic in the second chapter. We have
defined all the basic terms and the principle of the estimation in the bayesian
inference.

In the third chapter we have presented the concrete bayesian models. In the
present literature on claims reserving there are mostly listed only the formulas
for the estimators of ultimate claims. From this reason we have focused on the
derivation of these formulas and have explained the statistical background of the
models. We have framed assumptions for each of them and have provided very
detailed description of the single steps which lead to the final expression of the
estimators.

We have specially analysed the exponential dispersion family and its associa-
ted conjugates. The methods based on EDF remove the biggest drawback of the
bayesian approach—the intractable results and the absence of the closed formed
final expression. We have shown the concrete examples of models which use EDF
and have reformulated them so that they coincide with the generally defined EDF
model.

Finally, we have presented the important part of this thesis - the application
of the models on a real data set. All computation have been made in R software.
We have set the amount of ultimate claims and reserves for each method where-
by we have highlighted the characteristics of the models and have analysed the
connection between them.

In the bayesian methods, the specification of a prior distribution plays a big
role. This is work of the expert in the insurance company. There is not much
information about the choice of prior parameters in available actuarial literature.
In the thesis we have studied the impact of the prior choice on the resulting
ultimate claims and reserves. We have considered different choices of the coeffi-
cient of variation for the underlying quantity and we have verified following. The
higher coefficient of variation has produced the estimator based mainly on the
observation and contrariwise the lower coefficient has caused the dominance of
the prior expected value in the final estimator of the ultimate claims and reserves.

The bayesian approach offers much more possibilities in the estimation. It
could be applied to all unknown parameters in the model and it could be inte-
resting to investigate how this would change the estimators.
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A. Source code

This appendix contains full source code of the examples from Chapter 4.
The function to read data set and obtained triangles of cumulative and incre-

mental payments as well as earned premium.

-------------------------------------------------------------------

a=read.csv(choose.files(),header=TRUE)

grp.code=unique(a$GRCODE)

# function to get triangle data

ins.line.data=function(g.code){

b=subset(a,a$GRCODE==g.code)

name=b$GRNAME

grpcode=b$GRCODE

ay=b$AccidentYear

dev=b$DevelopmentLag

cum_incloss=b[,6]

cum_pdloss=b[,7]

bulk_loss=b[,8]

dir_premium=b[,9]

ced_premium=b[,10]

net_premium=b[,11]

single=b[,12]

posted_reserve97=b[,13]

# get incremental paid losses

inc_pdloss=numeric(0)

for (i in unique(ay)){

s=(ay==i)

pl=c(0,cum_pdloss[s])

ndev=length(pl)-1

il=rep(0,ndev)

for (j in 1:ndev){

il[j]=pl[j+1]-pl[j]

}

inc_pdloss=c(inc_pdloss,il)

}

data.out=data.frame(name,grpcode,ay,dev,

net_premium,dir_premium,ced_premium,

cum_pdloss,cum_incloss,bulk_loss,inc_pdloss,single,posted_reserve97)

return(data.out)

}

#my data

dat=ins.line.data(grp.code[3])

dat
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# upper triangle

udat=subset(dat,ay+dev<=1998)

# lower triangle

ldat=subset(dat,ay+dev>1998)

#package ChainLadder

install.packages(’ChainLadder’)

library(ChainLadder)

#data as triangle

cumpaid=as.triangle(udat,origin="ay", dev="dev", value="cum_pdloss")

cumpaid

#plotted data

plot(cumpaid)

plot(cumpaid,lattice=TRUE)

#incremental triangle

incpaid=cum2incr(cumpaid)

incpaid

#earned premium

premdat=subset(dat,ay+dev==1998)

premdat

prem=premdat$dir_premium

prem

-------------------------------------------------------------------

The computation of the development pattern in the Chain-Ladder method
and consequently of ultimate claims and reserves.

-------------------------------------------------------------------

#####Chain-Ladder method####

#development factors

devfactors=ata(cumpaid)

devfactors

n = 10

fac2 = sapply(1:(n-1),

function(i){

sum(cumpaid[c(1:(n-i)),i+1])/sum(cumpaid[c(1:(n-i)),i])

}

)

fac2

#fulfilled triangle

fullcumpaid= cbind(cumpaid)

for(k in 1:n){

fullcumpaid[(n-k+1):n, k+1] = fullcumpaid[(n-k+1):n,k]*fac2[k]

}

round(fullcumpaid)
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#CL ultimate claims

ultclaim=fullcumpaid[,10]

totalultclaim=sum(ultclaim)

totalultclaim

#CL reserves

diagcumpaid=getLatestCumulative(cumpaid)

diagcumpaid

res=ultclaim-diagcumpaid

res2=data.frame(res)

res2

totalres=sum(res2)

totalres

-------------------------------------------------------------------

The Bornhuetter-Ferguson method for the data set.

-------------------------------------------------------------------

####Bornhuetter-Ferguson method####

#computation of development pattern beta

facmin=fac2^(-1)

facmin

beta=1:10

for(k in 1:(n-1)){

beta[k] = prod(facmin[k:(n-1)])

}

beta[n]=1

beta

#a prior estimate mi , the loss ratio method

mi=prem*0.75

mi

#BF ultimate claims

BFultclaim=1:10

for(k in 0:(n-1)){

BFultclaim[ 1+k]= cumpaid[1+k,n-k]+(1-beta[n-k])*mi[k+1]

}

BFultclaim

#BF reserves

BFres=BFultclaim-diagcumpaid

BFres2=data.frame(BFres)

BFres2

BFtotalres=sum(BFres2)

BFtotalres

-------------------------------------------------------------------
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The Benktader-Hovinen method and iteration of the BF method.

-------------------------------------------------------------------

#####Benktader-Hovinen method####

#BH ultimate claims

BHultclaim=1:10

for(k in 0:(n-1)){

BHultclaim[ 1+k]= cumpaid[1+k,n-k]+(1-beta[n-k])*BFultclaim[k+1]

}

BHultclaim

round(BHultclaim,2)

#BH reserves

BHres=BHultclaim-diagcumpaid

BHres2=data.frame(BHres)

BHres2

BHtotalres=sum(BHres2)

BHtotalres

#iteration of the BF method

Hultclaim3=1:10

for(k in 0:(n-1)){

BHultclaim3[ 1+k]= cumpaid[1+k,n-k]+(1-beta[n-k])*BHultclaim[k+1]

}

BHultclaim4=1:10

for(k in 0:(n-1)){

BHultclaim4[ 1+k]= cumpaid[1+k,n-k]+(1-beta[n-k])*BHultclaim3[k+1]

}

BHultclaim5=1:10

for(k in 0:(n-1)){

BHultclaim5[ 1+k]= cumpaid[1+k,n-k]+(1-beta[n-k])*BHultclaim4[k+1]

}

BHultclaim6=1:10

for(k in 0:(n-1)){

BHultclaim6[ 1+k]= cumpaid[1+k,n-k]+(1-beta[n-k])*BHultclaim5[k+1]

}

BHultclaim7=1:10

for(k in 0:(n-1)){

BHultclaim7[ 1+k]= cumpaid[1+k,n-k]+(1-beta[n-k])*BHultclaim6[k+1]

}

BHultclaim8=1:10

for(k in 0:(n-1)){

BHultclaim8[ 1+k]= cumpaid[1+k,n-k]+(1-beta[n-k])*BHultclaim7[k+1]

}
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BHultclaim9=1:10

for(k in 0:(n-1)){

BHultclaim9[ 1+k]= cumpaid[1+k,n-k]+(1-beta[n-k])*BHultclaim8[k+1]

}

-------------------------------------------------------------------

The Cape-Cod model, computation of “robusted” loss ration and diagonal
values and CC estimators for ultimate claims and reserves.

-------------------------------------------------------------------

####Cape-Cod model####

#loss ratios ki

ki=1:10

for(k in 0:(n-1)){

ki[ 1+k]= cumpaid[1+k,n-k]/(beta[n-k]*prem[1+k])

}

ki

#robusted loss ratio kk

kk=sum(diagcumpaid)/(sum(rev(beta)*prem))

kk

#graph of loss ratios and robusted loss ratio

plot((0:9),ki*100,main = "Overall robusted loss ratio",

xlab = "Accident years",ylab = "Loss ratio in %", lwd = 3)

lines((0:9), y = rep(kk*100,10), type = "l", lwd = 3)

#robusted diagonal observations

diagrob=kk*prem*rev(beta)

diagrob

#CC ultimate claims

cc=1:10

for(k in 1:(n-1)){

cc[k+1] = prod(fac2[(10-k):(n-1)])

}

CCultclaim1=diagcumpaid-diagrob+cc*diagrob

CCultclaim1

CCultclaim=data.frame(CCultclaim1)

CCultclaim

#CC reserves

CCres=CCultclaim-diagcumpaid

CCres2=data.frame(CCres)

CCres2

CCtotalres=sum(CCres2)

CCtotalres
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-------------------------------------------------------------------

The Poisson-Gamma model for our data set. Calculation of ultimate claims
and reserving for two different choices of the prior parameters.

-------------------------------------------------------------------

####Poisson-Gamma model####

#computation of gammas

gama=1:10

for(k in 2:n){

gama[k] = beta[k]-beta[k-1]

}

gama[1]=1-sum(gama[2:10])

gama

sum(gama)

#the choice of CV 5%#

vco=0.05

#prior parameters

aa=rep(1/vco^2,10)

aa

bb=aa/mi

bb

aa/(bb^2)

#posterior parameters

apost2=1:10

for(k in 1:n){

apost2[k] = aa[k]+cumpaid[k,n-k+1]

}

apost2

bpost2=1:10

for(k in 1:n){

bpost2[k] = bb[k]+sum(gama[1:(n-k+1)])

}

bpost2

apost2/bpost2

#weights given to prior

alfa1=bb/(bb+rev(beta))

alfa1

#PoGa ultimate claims

pogaultclaim=1:10

for(k in 1:n){

pogaultclaim[ k]= cumpaid[k,n-k+1]+(1-beta[n-k+1])

*(alfa1[k]*(aa[k]/bb[k])+(1-alfa1[k])

*(cumpaid[k,n-k+1]/beta[n-k+1]))

}
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pogaultclaim

#PoGa reserves

pogares=pogaultclaim-diagcumpaid

pogares2=data.frame(pogares)

pogares2

pogatotalres=sum(pogares2)

pogatotalres

#the choice of CV = 0.05%#

vco3=0.0005

#prior parameters

aa3=rep(1/vco3^2,10)

aa3

bb3=aa3/mi

bb3

aa3/(bb3^2)

#posterior parameters

apost23=1:10

for(k in 1:n){

apost23[k] =aa3[k]+ cumpaid[k,n-k+1]

}

apost23

bpost23=1:10

for(k in 1:n){

bpost23[k] = bb3[k]+sum(gama[1:(n-k+1)])

}

bpost23

apost23/bpost23

#weights given to prior

alfa13=bb3/(bb3+rev(beta))

alfa13

#PoGa ultimate claims

pogaultclaim3=1:10

for(k in 1:n){

pogaultclaim3[ k]= cumpaid[k,n-k+1]+(1-beta[n-k+1])*

(alfa13[k]*(aa3[k]/bb3[k])+(1-alfa13[k])

*(cumpaid[k,n-k+1]/beta[n-k+1]))

}

pogaultclaim3

#PoGa reserves

pogares3=pogaultclaim3-diagcumpaid

pogares23=data.frame(pogares3)
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pogares23

pogatotalres3=sum(pogares23)

pogatotalres3

-------------------------------------------------------------------
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