Title: Superconductivity and electronic properties of γ -U alloys and their hydrides.

Author: Ilya Tkach

Department / Institute: Department of Condensed Matter Physics, Faculty of

Mathematics and Physics, Charles University

Supervisor of the doctoral thesis: Doc. RNDr. Ladislav Havela, CSc., Department of

Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University,

Prague, The Czech Republic

Abstract: Low-temperature electronic properties for U-Mo and U-Zr splats stabilized

in y-U were investigated. Magnetic measurements revealed Pauli paramagnetic

behavior with temperature independent susceptibility for U-Mo alloys. U-Mo and U-

Zr splats become superconducting at low temperatures with T_c up to 2.1 K and

critical field 5-6 T. The superconductivity of γ-U can be considered as a bulk effect

and can be described by the BCS theory, while α -U superconductivity is not a real

bulk effect.

U-Mo and U-Zr alloys absorb hydrogen at high pressures ($p \ge 4.5$ bar) and form

hydrides with stoichiometry analogous to UH₃. The hydrides with Mo have an

amorphous structure based on β-UH₃ phase, while hydrides with Zr have a crystalline

structure of the α -UH₃ type. (UH₃)_{1-x}Mo_x hydrides are ferromagnetic with enhanced

 $T_{\rm C}$ up to 202 K and magnetic moments 1.1 $\mu_{\rm B}/{\rm U}$ in comparison with pure β -UH₃ (175)

K; 0.87 μ_B/U). This is probably the first U-based ferromagnet with such a high T_C .

The coercive field of $(UH_3)_{1-x}Mo_x$ and $(UH_3)_{1-x}Zr_x$ hydrides reaches values up to 4-6

T at low temperatures. Abrupt jumps are observed during the demagnetization

process. Despite different crystal structure and inter-U spacing, the electronic

properties of α -UH₃ phase are very similar to β -UH₃.

Keywords: Uranium; superconductivity; ferromagnetism; hydrides