Title: Superconductivity and electronic properties of γ -U alloys and their hydrides. Author: Ilya Tkach Department / Institute: Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University Supervisor of the doctoral thesis: Doc. RNDr. Ladislav Havela, CSc., Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Prague, The Czech Republic Abstract: Low-temperature electronic properties for U-Mo and U-Zr splats stabilized in y-U were investigated. Magnetic measurements revealed Pauli paramagnetic behavior with temperature independent susceptibility for U-Mo alloys. U-Mo and U- Zr splats become superconducting at low temperatures with T_c up to 2.1 K and critical field 5-6 T. The superconductivity of γ-U can be considered as a bulk effect and can be described by the BCS theory, while α -U superconductivity is not a real bulk effect. U-Mo and U-Zr alloys absorb hydrogen at high pressures ($p \ge 4.5$ bar) and form hydrides with stoichiometry analogous to UH₃. The hydrides with Mo have an amorphous structure based on β-UH₃ phase, while hydrides with Zr have a crystalline structure of the α -UH₃ type. (UH₃)_{1-x}Mo_x hydrides are ferromagnetic with enhanced $T_{\rm C}$ up to 202 K and magnetic moments 1.1 $\mu_{\rm B}/{\rm U}$ in comparison with pure β -UH₃ (175) K; 0.87 μ_B/U). This is probably the first U-based ferromagnet with such a high T_C . The coercive field of $(UH_3)_{1-x}Mo_x$ and $(UH_3)_{1-x}Zr_x$ hydrides reaches values up to 4-6 T at low temperatures. Abrupt jumps are observed during the demagnetization process. Despite different crystal structure and inter-U spacing, the electronic properties of α -UH₃ phase are very similar to β -UH₃. Keywords: Uranium; superconductivity; ferromagnetism; hydrides