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Abstract

This thesis examines efficiency of several CME commodity futures and its re-

lation to market liquidity over the ten years period. The goal is to find ARMA

model that is better than white noise in terms of forecasting power and carry

out analysis of market liquidity if we find such model. This is done by com-

paring selected ARMA models to white noise. In order to do that, we use

Diebolt - Mariano test on forecast errors obtained by pseudo out - of - sample

analysis using rolling window with re - estimation. Concern of furhter analysis

are factors, that can influence the DM statistics. Main findings are, that we

are able to find such ARMA model for small enough time period within the ten

years period for almost all commodities. For most commodities, this sub period

is not long enough to violate efficient market hypothesis. Only for palladium

and lean hog futures this period is longer than one year. These two futures

shows strong signs of inefficiency, as its predictability is not out - weighted by

liquidity restrictions.

Keywords commodity futures,market efficiency,market liq-

uidity, predictability
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Abstrakt

Tato práce zkoumá efektivitu několika CME komoditńıch futures a jej́ı vztah

k likviditě během desetiletého obdob́ı. Ćılem je naj́ıt ARMA model, který

je lepš́ı než šum z pohledu kvality předpovědi a dále provést analýzu likvid-

ity daného trhu v př́ıpadě že se nám podař́ı takový model nalézt. Toto je

provedeno porovnáváńım vybraných ARMA model̊u ku šumu. K tomu je

použit Diebolt - Mariano test na chyby v předpovědi źıskané pseudo out -

of - sample analýzou za použit́ı klouzavého okna s opětovnou regreśı. Daľśı

analýza se zabývá vybranými faktory které mohou ovlivnit velikost DM statis-

tiky. Hlavńım zjǐstěńım je, že pro téměř každou komoditu jsme schopni nalézt

dostatečně malé obdob́ı, kde je ARMA model lepš́ı než šum. Pro většinu ko-

modit je toto obdob́ı tak malé, že na nemá vliv na hypotézu efektivńıch trh̊u.

Jen pro palladium a lean hog futures jsme schopni nalézt toto obdob́ı větš́ı
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než rok. Tyto dvě komodity ukazuj́ı silné známky neefektivity, která vycháźı

z toho, že schopnost predikovat neńı vyvážena sńıženou likviditou v daném

obdob́ı.

Kĺıčová slova komoditńı futures, efektivńı trh, likvidita

trhu, prediktabilita
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Proposed topic Efficiency, predictability and liquidity in the commodity

futures markets

Topic characteristics Efficient market hypothesis asserts, that we should not

be able to profit in financial markets using price forecasting or predict prices

at all. However in some cases, we are able to create good forecasting model,

that predicts prices accurately. Such behavior would inevitably violate efficient

market hypothesis, unless we were unable to profit on it because of other factors,

such as liquidity.

In my thesis, i would like to further look into problems of forecasting of the

futures market. In the first place, my goal will be to create model that is able

to accurately predict market prices and then compare my findings with traded

volume and open interest. Furthermore, i would like to examine whether the

same behavior persists in different commodity markets. To do so, i will use

standard methods used for short term forecasts, such as autoregressive moving

average model.

Hypotheses

1. Price of futures can be predicted in specific cases

2. Liquidity of futures can be approximated by traded volume and open

interest.

3. There is a trade-off between liquidity and the ability to predict the price

of futures, therefore the efficient market theory holds.

4. The relation between price forecasting and liquidity is same for all com-

modities, which means that this attribute is specifically for futures in

general.

mailto:cermak.vojtech@seznam.cz
mailto:kristoufek@icloud.com


Master Thesis Proposal xii

Methodology

Outline

1. Introduction

2. Literature review, description of future contracts and its prediction

3. Description of possible methods

4. Application methods on various commodity type datasets

5. Results

6. Conclusion

Core bibliography

1. Wooldridge , J. M. (2008): “Introductory Econometrics: A Modern Approach.”

South Western College

2. Wei, W. W. S.(2005): “Univariate and Multivariate Methods (2nd Edition).” Pear-

son

3. Murphy, J. J. (1986): “Technical Analysis of the Futures Markets: A Comprehensive

Guide to Trading Methods and Applications.” Prentice Hall Press

4. Tomek, W. G. (1997): “Commodity futures prices as forecast.” Review of Agricultural

Economics 19(1): pp. 23–44.,Agricultural & Applied Economics Association

5. Fama, E., K. French(1987): “Commodity Futures Prices: Some Evidence on Fore-

cast Power, Premiums and the Theory of Storage” The Journal of Business 60(1):

pp. 55–73.,The University of Chicago Press

6. Kellard, N., P. Newbold, T. Rayner, & C. Ennew (1999): “The relative efficiency

of commodity futures markets” Journal of Futures Markets 19(4): pp. 413–432.

Author Supervisor



Chapter 1

Introduction

Physical way of trading commodities carries a lot of inconvenience and risk,

related to the storing of given commodity. Because of that, most of the in-

vestors, who are willing to invest in commodities, prefer to trade commodities

using some of the instruments. Among the most popular instruments, used for

trading commodities, are without doubt futures contracts.

Popularity of commodity futures among investors has been growing since

the year 1990. This trend has intensified even more in recent 15 years and we

can expect that the growing popularity of commodities will continue in near

future as well. Few reasons why investors switch to commodities or at least

include them into their portfolios, are suggested in Jensen & Mercer (2011)

. First one reflects poor performance of traditional assets like equities and

real - estate, which failed the expectations of the investors during the Dot-com

bubble and events related to real - estate market, causing the ”2008 financial

crisis”. These incidents caused distrust to established financial instruments

among investor and forced them to look around for new stable assets worth

investing in, such as commodities. As described in Gorton & Rouwenhorst

(2006), commodities are indeed effective in providing diversification of both

stock and bond portfolios. However, perhaps the most important reason for

the popularity of commodities as investment asset are advances in research of

commodity investment instruments, which resulted in growing trust of investors

to invest in these.

For most risk averse investors, especially when investing in futures, mar-

ket efficiency is very important feature. Efficient markets are considered as

transparent and trustworthy, therefore it is an important area to study. Since

publication of Samuelson (1965), when Samuelson first suggested the relation
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of commodity futures prices as predictor of spot prices in the future as result

of market efficiency, importance of this relation has been discussed extensively.

Being able to predict future prices of spots is not only very important for spec-

ulative purposes, but is crucial especially for managing risk, which is highly

appreciated by hedgers as well as market participants who in fact require given

commodity for carrying out their business.

Goal of this thesis is to show on returns of several commodity futures,

divided into four main categories, whether there is market failure or not. To

do so, we will use group of ARMA models and perform out of sample forecast

of returns and then compare them to white noise. Under the efficient market

hypothesis, there should not statistically be a significant difference between

them. However, for some commodities, forecasting performance of ARMA

model can be significantly better than white noise. Such behavior does not

necessarily mean market failure, but is certainly extraordinary and require

further analysis. One way how to explain this phenomenon can be examining

traded volume of given commodity and look for its relation to forecast error.

Apart of that, this thesis will also examine several possible factors, which might

also have effect on difference of ARMA forecast errors and white noise, such as

affiliation to commodity group, size of the sample and size of the forecast error

series.

Structure of this work is as follows, second chapter sums important findings

about efficient market hypothesis and papers which already studied the issue of

commodity market efficiency. Third chapter is thoroughly describing suitable

methods for out - of - sample forecasting. Then, in fourth chapter, main concern

will be application of suitable method on selected commodities, with short

commentary. Last chapter is dedicated to discussion of these results and further

analysis of problematic results. Then follows brief conclusion.

All calculations and analysis are performed using R language scripts and

RStudio as developing environment. To facilitate the computations and to pro-

vide more efficient performance, programming the analysis is divided into three

scripts. First one is used for general analysis of commodity group, second is

specially modified to do detailed analysis of one ARMA model for one com-

modity, while last one is adjusted for generating graphic representations. All

scripts used for the analysis are available upon request.



Chapter 2

Literature review

2.1 Efficient market hypothesis

In the most basic way, as described in Lo (2007), the Efficient market hypoth-

esis suggests, that if market is efficient, then is impossible to gain abnormal

profit from trading on that market. The market prices imidiately reflect all

available relevant informations, thus making it impossible for investors to buy

undervalued and sell overvaulted items.

Among the first researchers who examined this property of financial markets

were Samuelson in his paper Samuelson (1965) . Samuelson stated so called

martingale definition of market efficiency. As he examined the commodity

futures, he observed that, under some assumptions, prices of commodity futures

follows martingale. This suggests relation between commodity futures and spot

prices as effect of efficient markets. Results of his research are that prices of

futures at time t are predicting prices of spot prices for time t. Further he

claimed, that on efficient markets futures prices are best unbiased estimator of

forthcoming futures prices and spot prices.

Apart of Samuelson, one of the most influential researcher in this area is

Fama, who discovered efficient market hypothesis independently on Samuelson

on stock prices using random walk definition Fama (1965). He deeper examined

issue of market efficiency in Fama (1970) and further extented this work in Fama

(1991). As result of his extended research, he suggested to classify market

efficiency types to weak form, semi-strong form, and strong form.

Weak form of market efficiency suggests, that prices fully reflect information

about the market that is contained in historical prices. Therefore no investor

relying purely on historical prices cannot gain extra profit and market prices
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cannot be predicted using technical analysis. This form of market efficiency

implies, that price does not follow any pattern and is strictly random.

Semi strong efficiency suggests that prices immediately reflect both histori-

cal prices and all publicly available information. This imply that even predict-

ing prices using fundamental analysis will not abnormally benefit the investors.

However, investors can make profit using insider information, which are not

available to public.

And finally, market under strong form of efficiency does reflect immediately

historical prices and both public and private information related to the market.

This would imply, that even with insider information, the investor is unable to

make extraordinary profit by any means.

2.2 Evidence of efficiency on commodity futures

markets

Algieri & Kalkuhl (2014) thoroughly examined the role of futures market in

stabilizing spot prices. Authors analyzed on set of commodity futures what

factors may have effect on forecast errors and differences between realization

and prediction of future spot prices. Findings of their analysis are as follows,

relevant factors that drive forecast errors up are a high level of realized price

volatility, the lack of liquidity in the market, and a longer contract maturity

horizon. Further, they found out that maize, soybean and wheat markets are

not fully informational efficient and investors can profit on them.

Kaminsky & Kumar (1990) examined excess returns in seven different com-

modity market over the 1976 - 1988 period. When taking in account this whole

period, the markets showed no signs of inefficiency for short - term forecast hor-

izont and the excess returns were statistically insignificant. However, further

detailed analysis of sub periods showed that for some commodities, like cocoa

and wheat, there are excess returns significantly positive. Further they stated

that empirical rejection of efficient market hypothesis does not necessarily im-

ply market failure and can happen from different reasons. One explanations

suggested by the authors is that returns reflects non zero risk premium instead

of market failure. Second possible explanation is, that the processes generating

spot prices are changing.

In Wang & Ke (2005), authors studied efficiency of soybean and wheat

markets in China. As result, they found out long term equilibrium between
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soybean futures and soybean spot prices. The long - run efficiency is implied

by soybean futures prices being reliable predictor of spot prices. Furthermore,

they studied short term weak efficiency in soybean futures market. In this part

of the study, they discovered that for some soybean spot contracts there can still

be inefficiency in short term and for such spot prices, futures are not good price

predictor. On the other hand, wheat markets in China are generally inefficient,

because wheat futures prices are not co-integrated with any wheat spot prices.

Suggested explanation is in market failure, which caused by manipulation from

large traders and by government regulation.

Authors of Kristoufek & Vosvrda (2014) examined market efficiency of 25

commodity futures across various groups such as metals, energies, softs, grains

and other agricultural commodities. Their findings are, that affiliation to some

group of commodity have great impact on efficience, because commodity futures

belonging to same group share several common properties. Further, the authors

found out that energy futures seems to be the most efficient, while agricultural

commodities, especially livestock, are the least efficient group.

The paper Tomek (1997) discuss differences between of econometrics models

and futures markets as forecasts for spot prices. Because new information can

arise between the time the forecast is made and the price is realized, Tomek

suggested that futures price can be an unbiased forecast of spot price, but

it is likely to have large variance of forecast error. Further, he suggests that

forecasting spot prices using econometrics models can have smaller variances

of forecast error than usage of futures prices. In the paper, it is also mentioned

that different commodity markets are likely to differ in their efficiency.

In Fama & French (1987) examined two different ways how to view dif-

ferences between present commodity futures and spot prices. While theory

of storage views this difference as result of expenses related to storing given

commodity, alternative view splits a future price into expected premium and

a forecast of the spot price. This idea was further extended in Kellard et al.

(1999). In addition, authors of Kellard et al. (1999) examined influence of fore-

casting period on efficiency and found out that at 28 days forecast horizont, the

commodities were relatively less efficient then for 56 days forecast horizont. In

short run, markets are not efficient, because there is limited information about

the period. On the other hand, in long run, efficiency is present as the markets

have enough time to include all relevant information into consideration.

Paper Chinn & Coibion (2014) examines the predictive content of commod-

ity futures prices for group of energy, agricultural, precious and base metals
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commodities. They found out that there are large differences both across and

within these groups. In general, both precious and base metals are poor predic-

tors of subsequent price changes. On the other hand, energy and agricultural

futures are quite good predictors, with exception of oil futures. Further, they

study influence of liquidity on the predictive content of commodity futures

prices. They used traded volume as a measure of liquidity instead of open in-

terest, since it proved to be reliable measurement of how many contracts have

been traded relative to contracts outstanding. As a result, they found out that

market liquidity has little influence on price changes.

Relations between market predictability and liquidity is further discussed in

Chordia et al. (2008). Authors state hypothesis about existence of predictabil-

ity in short run. There are other financial market attributes such as liquidity

which are related to market returns. They examined NYSE (New York Stock

Exchange) during the 1993 - 2002 period and found out that liquidity plays

important role in creation of efficiency. Conclusion is, predictability is severely

diminished during high - liquidy period. Therefore, liquidity improves efficiency

of given market.



Chapter 3

Methodology

This chapter discuss ways of forecasting commodity futures returns and meth-

ods how to evaluate its forecasting performance. First part of this chapter is

dedicated to introducing ARMA models and explaining how to use them, sec-

ond part is describing issue of forecasting methods and its differences, while

last part focuses on methods how to select best performing model. Although

all methods described in this chapter can be easily further extended for mul-

tiple steps forecasts, for needs of this work, one - step ahead forecasts will

be sufficient, since we are interested in maximising forecasting accuracy. It is

reasonable to expect that one-step ahead forecasts will be more accurate than

two and more step forecasts. Forecasting accuracy is crucial for making any

conclusions about market efficiency and therefore for purposes of this thesis.

3.1 ARMA models

Autoregressive moving average (ARMA) family of models are group of models

commonly used to do financial time series analysis. The model ARMA(q, p)

consists of two parts. As suggested in Wooldridge (2012), ARMA models can

be easily described by equations, as it consists of two main components. First

is autoregressive (AR) part of order q, described by equation 3.1

yt = α +

q∑
i=1

βiyt−i + εt (3.1)

Second part is moving average (MA) of order p, described by equation 3.2

yt = α +

p∑
i=1

βiεt−i + εt (3.2)
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When both parts are put together, we obtain ARMA(q,p) model, as de-

cribed by equation 3.3

yt = α +

p∑
i=1

βiεt−i +

q∑
i=1

βiyt−i + εt (3.3)

Main reason for using ARMA models is their simplicity. ARMA models

are easy to deploy and interpret because of the their linearity, yet they pro-

vide reasonably accurate results. Linearity of ARMA models also ensure that

methods used for regression are not very demanding for computational power

and are quick to carry out. This can be deciding factor especially when using

large data samples. In case of more complicated linear or nonlinear methods,

it would most likely take immense time to compute and obtain desired results.

3.1.1 Assumptions for using ARMA models

In order to have unbiased and consistent estimate when using ARMA models,

we need to assume stationary of given time serie. As we can seen in figure 3.1,

prices of CBOT Wheat Futures over ten years period (10.1.2004 - 10.1.2014)

does not seem to be stationary.

Figure 3.1: CBOT Wheat Futures
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To resolve this issue, we can transform using first differencing of prices to

obtain returns, as suggested inWooldridge (2012). It is also suitable, in order

to further stabilize variance of return series, to use logarithmic transformation.

logreturnt = ln(pricet)− ln(pricet−1) (3.4)

Figure 3.2 shows CBOT Wheat Futures logreturns series over the same

period after the transformation.
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Figure 3.2: Logreturn of CBOT Wheat Futures
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Resulting log return series appears to be stationary around zero. To further

confirm this, we can use Augumented Dickey Fuhler test for detecting unit root,

as described in Said & Dickey (1984). ADF test statistics follows t distribution.

The structure of the test is as follows:

H0 : ADF = 0 ; data needs to be further differenced and are not stationary

H1 : ADF < 0 ; data appears to be stationary and does not need further

differencing.

We are interested in rejecting the null hypothesis, therefore negative values

are appreciated. Testing logreturns of wheat futures yields ADF = −13.7

which is enough for rejection of the null hypothesis for all considered levels of

significance.

On the other hand, testing prices of CBOT Wheat Futures yields ADF =

−2.64 which is not enough to reject null hypothesis at 95% significance level.

This suggests that differencing was necessary.

It is reasonable to assume that this transformation will transform series of

prices to stationary logreturn series for various types of commodity futures, not

only for wheat.

3.2 Model selection methods

While there exists several methods how to select optimal configuration of q and

p parameters in ARMA(p,q) such as cross validation or Akaike information

criterion mentioned in Hastie et al. (2009), for this work simple one step ahead

out - of - sample analysis will be sufficient method of choosing model with best
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forecasting performance. This method will ensure that any possible pattern

within the data is detected. In addition, apparent advantage of using this

method are lower demands for computational power. It is likely, that using

more complicated methods would be enormously time consuming if able at all.

3.2.1 In-sample and Out - of - sample analysis for one - step

ahead forecasts

As described in Hastie et al. (2009), we considering general model yt = f(Xt).

Be Xt vector of explanatory variables (in case of ARMA model it will be either

or both MA and AR parts of some order) and be yt dependent variable for time

t = 1 . . . h, where time h is the most recent observation.

By doing simple in - sample analysis we use all available data to construct

the model. Then, we compare the models fitted values to real values previously

used to estimate the model. Output will be sequence of differences between

fitted values and real values, the forecast error series. While this procedure is

simple and easy to deploy, doing so can give us very unreliable results because

this method is very susceptible to over fitting and therefore the model will be

describing irrelevant white noise instead of true long term pattern

More suitable way to select best performing forecasting model is out - of

sample analysis. At first, it is similar to in - sample method. We use all

available data from time 1 to time h to construct the model. Then, unlike the

in - sample method, we try to use this model to forecast values of y for time

h+ 1. In case of general model, the forecast error is shown in equation 3.5.

eh+1 = yh+1 − f̂(Xh+1) (3.5)

Then, we compare our forecasted value to the real value when it is available.

This procedure should be repeated in order to obtain forecast error series.

While this procedure can give us realistic view on the models performance, it

is very time consuming because we need to wait some time till the real h + 1

data are available.

One solution to this problem is simulating this procedure on smaller sample.

This method is also sometimes called pseudo out - of - sample forecast. We

select given some historical time k, k < h and regress the model on sample

1 . . . k. Then, we can immediately compare our forecasted value to real value.

In order to obtain forecast error series, this procedure should be repeated for
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each time k + 1, k + 2 . . . and finally for h. Output of this method are errors

for each time in k . . . h. However, there are several different approaches how to

carry this out, namely expanding window and rolling regression with or without

re-estimation.

3.2.2 One step ahead rolling window regression with re-

estimation vs expanding window

When performing out - of - sample analysis using expanding window, we regress

again whole dataset for each time shift. Therefore, we obtain first forecast error

from models using dates 1 . . . k, second from 1 . . . k+1 , then repeat and finally

using whole sample 1 . . . h. Each time we need to regress the model again, once

our simulated forecast is compared to real value and then the new information

is included into the regression.

On the other hand, when carrying out rolling window method, we shift

whole window of the sample we are using, within the dataset. Hence, we

obtain first forecast error from models using time 1 . . . k, then from 2 . . . k + 1

, then repeat and finally h− k . . . h. This procedure can be repeated with only

one regression in the beginning, or we can re-estimate the model each time

we add new observation. Apparent drawback of using rolling window without

re-estimation is loss of relevance for large error series which may result in loss

of overall accuracy.

To conclude, rolling window is better at capturing relevant time frame than

expanding window, because the internal structure of time series can vary in

time. For our needs it is more suitable to use rolling window with re-estimation.

3.3 Accuracy measurements - comparing forecast

error series

From previous section, we are able to generate forecast error series using sim-

ulated out - of - sample method. Now we need to compare the each considered

specification of ARMA (p,q) in terms of forecasting performance. This can be

done by using forecast error series generated for each ARMA(p,q) specification.

Methods how to do so are discussed further in this section.
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3.3.1 Average of forecasting error methods

One of the simplest methods of measuring accuracy of forecast is suggested

in Wooldridge (2012). Basis of this method is using simple average of errors

to compare two error series. In order to get reliable information about the

accuracy of forecast, simple average of forecast errors by itself is not enough,

because the error series is symmetric and usually have both positive and nega-

tive values. Therefore, we need to either square each error or get it’s absolute

value. This procedure will result into obtaining series of absolute errors

ˆ|e|n+1 = |yn+1 − ŷn+1| (3.6)

or squared errors:

ê2n+1 = (yn+1 − ŷn+1)
2 (3.7)

To obtain information about the performance of our method, we simply

calculate average absolute error or average squared error by summing the series

of these series and dividing by number of observations. Resulting values are

mean are absolute error (MAE):

MAE =

n∑
t=1

|yn+1 − ŷn+1|

n
(3.8)

or rooted mean squared error (RMSE):

RMSE =

√√√√ n∑
t=1

(yn+1 − ŷn+1)2

n
(3.9)

We can say, that lower MAE or RMSE generally means that the model has

better forecasting accuracy. While having this property in common, there are

some differences in interpreting these two measurements. In some cases when

comparing two models to each other, one model can have lower MAE while

having higher RMSE than the second model. This issue is caused by the very

nature of these measurements. By using MAE, we adjust to each difference

between forecast and real value same weight, while in case of using RMSE, we

take squared difference. Therefore, large differences between forecasts and real

values have higher weight in case of RMSE. Generally, we can say that MAE

is better in measuring overall accuracy, while RMSE is better at capturing

substantially large forecast errors.



3. Methodology 13

3.3.2 Diebold - Mariano test

Although MAE or RMSE measurements can roughly suggest which model

might be better, they cannot tell us whether this difference is statistically

significant. In order to obtain reliable results, we need to perform formal sta-

tistical test. Suitable method is, as suggested in Diebold & Mariano (2002),

Diebold Mariano test which uses proper statistical inference to compare two

error series. Structure of the test is as follows:

H0 : DM = 0 ; two models have same accuracy

H1 : DM 6= 0 ; two models have different accuracy

The DM test statistics is asymptotically N(0, 1) distributed. Therefore, if

DM statistics falls outside interval (−zα/2, zα/2) , we can reject H0 and we know

that one model is better than the other in terms of forecasting accuracy.

Input to this test can be both absolute and squared error series. Similarly to

the forecasting error average absolute version of this test is better for comparing

overall accuracy of given models, while squared version is more sensitive for

rejection when large errors occurs in the analysis. For purposes of this work,

absolute error series version of the DM test is used.



Chapter 4

Application methods on various

commodities

This chapter is dedicated to application of methods from previous chapter on

various commodity futures datasets. Generally, we can divide commodity fu-

tures into several sub categories. First group of commodity futures contains

agricultural products. This group is further divided to three subgroups: grains

(wheat, corn, soybean), soybean related products (soybean, soybean oil, soy-

bean meat) and livestock (live cattle, and lean hogs). Next examined group

contains commodities related to energy industry. Here can be found crude oil

futures, heating oil futures and natural gas futures. Third important group of

commodity futures consists of precious metals, namely silver, gold, platinum

and palladium.

All data used are from CME group Inc. (Chicago Mercantile Exchange

& Chicago Board of Trade) exchanges, as they own one of the largest mar-

ket places for precious metals (NYMEX), energy futures (NYMEX) as well

as agricultural products futures (CBOT). Other commodity market places ap-

proximately follows same trends and the prices are in general very similar.

4.1 Specifications for the analysis

First, we need to select proper method of model selection. To analyze market

efficiency of given futures market, optimal way seems to be testing selected spec-

ification of ARMA model against simple white noise on selected data frame.

There are several parameters which must be specified in order to do proper

analysis. As described in previous chapter, suitable option seems to be pseudo
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out - of - sample analysis with rolling window for one step ahead forecasts. Us-

ing this method with combination of Diebold Mariano test, we can see whether

there is or is not any pattern in the data over given time period and whether

this pattern is significantly different from the noise.

4.1.1 Time frame

Then, we need to select time frame: starting date and period over which are

we trying to forecast values. In this work the examined period is starting from

10.1. 2004 and forecasts are to date 10.1. 2014. We are taking one trading year

as approximately 250 days, hence the length of forecast error series is about

2500 observations. Such length will provide us with enough information, which

are required to make reasonable conclusions about the time period.

For each commodity there will be ARMA models of maximum combined

order 3. This number should be enough, because ARMA models of larger

orders tend to suffer from over fitting and are usually worse than white noise

in terms of out - of - sample forecasting performance. Although both MAE

and RMSE are included into the table, these measures are only indicative and

main measure will be DM statistic. Of course, if DM statistic is positive, MAE

of such model should be lower than MAE of white noise.

We are interested in rejecting null hypothesis, therefore we are looking for

positive values around 1.96 which allows us reject null hypothesis at 95% level

of significance. On the other hand, negative such as -1.92 values indicate that

white noise is significantly performing better than given model. Generally, All

values above 1.00 are interesting and should be further examined.

One way how to further examine such data is shortening the error time

series and then examine forecast error sub sequence derived from the original

error series, like Kaminsky & Kumar (1990) suggested. We assume, there can

be patterns that are related to same smaller period than the ten years period

we originally selected. If this period is large and significant enough, it may

prevail in the results anyway. Considering smaller time frame, in which is given

ARMA model significantly better than white noise, will inevitably increase DM

statistics of analysis performed over whole ten years period. To decide whether

increased values of DM statistic are indicators of such behavior will require

adjusting the time frame and further analysis in general.
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4.1.2 Window size

Another important parameter when using rolling window regression is size of

the window. For analysis carried out in this work are used 250, 500 and 750

window sizes. These values should approximately have number of observation

similar to 1, 2 and 3 trading years. We can expect that with larger window size

values of DM statistics will fluctuate around zero and the test will tend to be

inconclusive as the model tries to fit larger sample. If there is any pattern in

the data, it is reasonable to expect, that it will prevail at all sizes of window,

even the smaller ones.

4.2 Precious metals

This group of commodity futures consists of gold futures, silver futures, plat-

inum and palladium futures. Used data are from New York Mercantile Ex-

change (NYMEX) , exchange owned by CME group. This marketplace is suit-

able representative of precious metal market because is among the largest, if

not the largest, precious metals market places in the world. Prices on other

large exchanges, such as Singapore Mercantile or London Metal Exchange, usu-

ally follow similar development of prices. All precious metals contract units are

in Troy Ounce which is approximately 31.1 grams. Stevenson (2010)

4.2.1 Gold

According to CME webpage, size of this type contract is 100 troy ounces.

Symbol of this contract is GC1. Results of the analysis are below in table 4.1.

Table 4.1: Analysis of gold futures (GC1)

250 window size 500 window size 750 window size

Model DM MAE RMSE DM MAE RMSE DM MAE RMSE

ARMA(0,1) -0.252 0.00913 0.01278 -0.274 0.00913 0.01276 -0.23 0.00912 0.01275
ARMA(1,0) -0.257 0.00913 0.01279 -0.265 0.00913 0.01276 -0.217 0.00912 0.01275
ARMA(0,2) -0.654 0.00917 0.01284 -0.538 0.00915 0.01279 -0.439 0.00914 0.01278
ARMA(1,1) -0.518 0.00916 0.01282 -0.442 0.00914 0.01278 -0.365 0.00914 0.01275
ARMA(2,0) -0.585 0.00916 0.01284 -0.502 0.00915 0.01279 -0.427 0.00914 0.01278
ARMA(0,3) -1.043 0.00921 0.01289 -0.769 0.00918 0.01282 -0.537 0.00915 0.01279
ARMA(1,2) -1.03 0.00921 0.01289 -0.656 0.00916 0.01281 -0.49 0.00915 0.01278
ARMA(2,1) -0.957 0.0092 0.01288 -0.716 0.00917 0.01281 -0.677 0.00917 0.0128
ARMA(3,0) -0.903 0.00919 0.01289 -0.716 0.00917 0.01282 -0.511 0.00915 0.01279

White noise - 0.0091 0.01274 - 0.0091 0.01272 - 0.0091 0.01272

Source: computation for skript parameters: v = 3, w = 250/500/750, s=11, z = 10
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Analysis of gold futures shows that we do not have enough evidence to reject

hull hypothesis. Further we can see, that with increasing order of both MA

and AR, the performance of models is getting worse. Size of rolling window

does not have noticeable influence on the results. Using white noise to predict

this time series seems to be the best option because values of DM statistics

are always negative and both RMSE and MAE are lower for the noise than for

the ARMA models. In other words, for forecasting of gold futures returns we

can not find better model than noise and therefore this market is most likely

efficient.

4.2.2 Silver

Standard size of one silver futures contract (SI1) on NYMEX is 5000 troy

ounces. Results of analysis are in table 4.2.

Table 4.2: Analysis of silver futures (SI1)

250 window size 500 window size 750 window size

Model DM MAE RMSE DM MAE RMSE DM MAE RMSE

ARMA(0,1) -0.681 0.01645 0.02341 -0.237 0.01639 0.02332 -0.403 0.01641 0.02334
ARMA(1,0) -0.524 0.01643 0.0234 -0.185 0.01639 0.02332 -0.361 0.01641 0.02333
ARMA(0,2) -1.445 0.01653 0.02349 -0.841 0.01645 0.02338 -0.662 0.01644 0.02336
ARMA(1,1) -1.164 0.0165 0.02346 -0.443 0.01641 0.02333 -0.62 0.01643 0.02335
ARMA(2,0) -1.243 0.01651 0.0235 -0.678 0.01644 0.02337 -0.606 0.01643 0.02336
ARMA(0,3) -2.017 0.01658 0.02356 -1.097 0.01648 0.02343 -0.793 0.01645 0.02336
ARMA(1,2) -1.711 0.01655 0.02352 -0.878 0.01646 0.0234 -0.826 0.01645 0.02336
ARMA(2,1) -1.586 0.01654 0.02353 -0.84 0.01645 0.02338 -0.791 0.01645 0.02336
ARMA(3,0) -1.782 0.01656 0.02355 -1.013 0.01647 0.02342 -0.784 0.01645 0.02337

White noise - 0.01638 0.02331 - 0.01637 0.02327 - 0.01637 0.02328

Source: computation for skript parameters: v = 3, w = 250/500/750, s=11, z = 10

Returns of silver futures show similar behavior like in case of gold futures.

Comparing ARMA models to white noise will again always yield negative DM

statistics. With increasing order of both AR and MA part, the DM statistics

tend to be more negative and size of the window does not seem to matter,

similarly to gold futures. Therefore, we can assume that there will be no model

of higher order that would be better performing than white noise and therefore

we can say silver futures market is also likely efficient.

4.2.3 Platinum

NYMEX standard for this commodity contract is 50 troy ounces. Symbol of

this contract type is PL1. Table 4.3 shows results of analysis of platinum.
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Table 4.3: Analysis of platinum futures (PL1)

250 window size 500 window size 750 window size

Model DM MAE RMSE DM MAE RMSE DM MAE RMSE

ARMA(0,1) -0.543 0.01075 0.01503 -0.458 0.01071 0.01497 -0.389 0.0107 0.01495
ARMA(1,0) -0.511 0.01075 0.01503 -0.406 0.01071 0.01496 -0.344 0.01069 0.01495
ARMA(0,2) -0.893 0.01079 0.01508 -0.557 0.01072 0.01499 -0.48 0.01071 0.01496
ARMA(1,1) -1.051 0.0108 0.01509 -0.625 0.01073 0.01497 -0.576 0.01072 0.01497
ARMA(2,0) -0.891 0.01079 0.01508 -0.551 0.01072 0.01499 -0.476 0.01071 0.01496
ARMA(0,3) -1.204 0.01082 0.01515 -0.731 0.01074 0.01504 -0.525 0.01071 0.01499
ARMA(1,2) -1.568 0.01085 0.01517 -0.832 0.01075 0.01502 -0.664 0.01072 0.01498
ARMA(2,1) -1.171 0.01081 0.01515 -0.77 0.01074 0.01503 -0.709 0.01073 0.015
ARMA(3,0) -1.131 0.01081 0.01514 -0.702 0.01074 0.01504 -0.542 0.01071 0.01499

White noise - 0.0107 0.01501 - 0.01067 0.01497 0 0.01066 0.01496

Source: computation for skript parameters: v = 3, w = 250/500/750, s=11, z = 10

Similarly to gold and silver futures, for all measured models the DM statis-

tics are negative. Although we can observe tendency of DM statistic to grow

with increasing size of window, it does not necessarily mean that higher widow

size will have better forecasting performance. More straightforward explana-

tion is, that with larger widow size the model will take more observations into

consideration and will be more similar to white noise, and therefore the DM

statistic will most likely converge to zero as size of window goes to larger val-

ues. Taking this in account, we can conclude that platinum futures market is

efficient as well.

4.2.4 Palladium

Last analysed precious metal futures traded on NYMEX are palladium futures.

Standard size of this palladium contract (PA1) is 100 troy ounces. Results of

analysis for paladium futures are in table 4.4.

Table 4.4: Analysis of palladium futures (PA1)

250 window size 500 window size 750 window size

Model DM MAE RMSE DM MAE RMSE DM MAE RMSE

ARMA(0,1) -0.477 0.01588 0.02219 -0.316 0.01588 0.02211 -0.191 0.01587 0.0221
ARMA(1,0) -0.43 0.01588 0.02219 -0.269 0.01588 0.02211 -0.175 0.01586 0.02209
ARMA(0,2) -0.788 0.01591 0.02219 -0.183 0.01587 0.02211 -0.188 0.01587 0.02209
ARMA(1,1) -1.141 0.01595 0.02229 -0.568 0.01591 0.02217 -0.411 0.01589 0.02212
ARMA(2,0) -0.786 0.01591 0.02219 -0.149 0.01586 0.02211 -0.178 0.01587 0.0221
ARMA(0,3) -0.62 0.01589 0.02226 0.051 0.01584 0.02212 0.016 0.01585 0.0221
ARMA(1,2) -0.719 0.0159 0.02224 -0.658 0.01591 0.02219 -0.505 0.0159 0.02214
ARMA(2,1) -0.774 0.01591 0.02226 -0.436 0.01589 0.02216 -0.179 0.01587 0.02211
ARMA(3,0) -0.803 0.01591 0.02225 -0.009 0.01585 0.02211 0.02 0.01585 0.02209

White noise - 0.01583 0.02212 - 0.01585 0.02208 - 0.01585 0.02208

Source: computation for skript parameters: v = 3, w = 250/500/750, s=11, z = 10
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We can observe similar behavior to platinum futures, with increasing size

of window the ARMA models tend to improve. However, unlike platinum, DM

statistic of some ARMA models for palladium are slightly positive. Although

we cannot reject null hypothesis right away, this case still requires more atten-

tion. In similar way as Kaminsky & Kumar (1990) suggested, we can expect

existence of reasonably large sub period within the original ten years’ time pe-

riod, where the AR(3) and MA(3) is able to outperform the white noise. Using

simple methods like bisection we should be able to identify such period within

the original time frame if it exists. Table 4.5 shows results of analysis for sub

period of 2010 - 2012.

Table 4.5: Analysis of palladium futures on sub period

500 window size

Model DM MAE RMSE

ARMA(3,0) 1.825 0.0177 0.0228
ARMA(0,3) 1.851 0.01769 0.02281

White noise - 0.01791 0.0229

Source: computation for skript parameters: w = 500, s=5, z = 2

For this script configuration, we can reject null hypothesis of DM test for

reasonably large significance level. In other words, both AR (3) and MA(3)

models outperformed white noise in terms of forecasting accuracy for the period

of 2010 - 2012, using data from 2009 - 2010 ( rolling window uses dataset of 500

observations behind the forecasted values). This case is quite extraordinary,

and such behavior would violate EMH. Therefore, this case needs our further

attention. Reasonable step would be analyzing liquidity of the marked during

this period, which will be concern of the next chapter.

4.3 Agricultural - Grains

In this group of commodities, the contract size are usually in bushel unit of

volume in US Customary System.According to Stevenson (2010), one US bushel

unit is approximately 0.03524 cubic meters. Main concern of our analsis are

corn, wheat and soybean futures. Further, we analysed soybean products such

as soybean meat and soybean oil.
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4.3.1 Corn

Contract size is usually 5000 bushels, symbol of this futures on Chicago board

of trade market place is C1. Results of analysis for corn futures can be found

in table 4.6.

Table 4.6: Analysis of corn futures (C1)

250 window size 500 window size 750 window size

Model DM MAE RMSE DM MAE RMSE DM MAE RMSE

ARMA(0,1) -0.216 0.01512 0.02035 -0.186 0.01508 0.02029 -0.248 0.01509 0.02029
ARMA(1,0) -0.17 0.01511 0.02035 -0.167 0.01508 0.02029 -0.257 0.01509 0.02029
ARMA(0,2) -0.546 0.01515 0.02039 -0.39 0.0151 0.02033 -0.263 0.01509 0.02031
ARMA(1,1) -0.758 0.01517 0.02041 -0.391 0.0151 0.02033 -0.401 0.01511 0.02031
ARMA(2,0) -0.509 0.01515 0.02039 -0.421 0.0151 0.02033 -0.297 0.0151 0.02031
ARMA(0,3) -0.695 0.01516 0.02044 -0.587 0.01512 0.02037 -0.536 0.01512 0.02034
ARMA(1,2) -0.984 0.01519 0.02046 -0.795 0.01514 0.02036 -0.577 0.01512 0.02033
ARMA(2,1) -1.212 0.01522 0.0205 -0.728 0.01513 0.02037 -0.699 0.01514 0.02035
ARMA(3,0) -0.754 0.01517 0.02044 -0.694 0.01513 0.02037 -0.567 0.01512 0.02035

White noise - 0.01509 0.0203 - 0.01506 0.02027 - 0.01507 0.02027

Source: computation for skript parameters: v = 3, w = 250/500/750, s=11, z = 10

We can observe that DM statistic are further being pushed to negative val-

ues with both growing order of ARMA model and size of window. Neither

MAE or RMSE of any ARMA model are lower than white noise for all selected

configurations. Therefore it is reasonable to say that corn futures returns can-

not be described by any ARMA model and appear to not follow any pattern.

This implies market efficiency for this type of futures contract.

4.3.2 Wheat

Again, contract size is 5000 bushels. Contract symbol is W1. Results are in

table 4.7.

Similarly to case of corn futures, we are not able to observe any positive

value of DM statistic, and average measures of ARMA error series are in each

case worse than white noise . Apparent difference to corn case is that with

increasing size of window DM statistics tent to be growing. However, even

with 750 size of window they does not get positive, therefore it is reasonable

to assume that the values of DM statistics will converge to zero, instead of

continuous growth and possible rejection of null hypothesis. We can conclude

that wheat futures were overalls efficient during this time period.
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Table 4.7: Analysis of wheat futures (W1)

250 window size 500 window size 750 window size

Model DM MAE RMSE DM MAE RMSE DM MAE RMSE

ARMA(0,1) -0.563 0.01644 0.02183 -0.239 0.01642 0.02177 -0.182 0.01639 0.02175
ARMA(1,0) -0.455 0.01642 0.02181 -0.239 0.01642 0.02177 -0.234 0.0164 0.02175
ARMA(0,2) -0.869 0.01647 0.02191 -0.242 0.01642 0.02182 -0.341 0.01641 0.02178
ARMA(1,1) -0.707 0.01645 0.02189 -0.497 0.01645 0.0218 -0.493 0.01642 0.02178
ARMA(2,0) -0.762 0.01646 0.0219 -0.233 0.01642 0.02182 -0.371 0.01641 0.02178
ARMA(0,3) -1.299 0.01651 0.02195 -0.444 0.01644 0.02186 -0.689 0.01644 0.02182
ARMA(1,2) -1.525 0.01653 0.02198 -0.199 0.01642 0.02183 -0.434 0.01642 0.02179
ARMA(2,1) -1.305 0.01651 0.02195 -0.482 0.01644 0.02186 -0.415 0.01641 0.02181
ARMA(3,0) -1.287 0.01651 0.02196 -0.395 0.01644 0.02186 -0.689 0.01644 0.02182

White noise - 0.01638 0.02175 - 0.0164 0.02173 - 0.01637 0.02172

Source: computation for skript parameters: v = 3, w = 250/500/750, s=11, z = 10

4.3.3 Soybean

Contract size is again 5000 bushel, while contract symbol is S1. Results can be

found in table 4.8.

Table 4.8: Analysis of soybean futures (S1)

250 window size 500 window size 750 window size

Model DM MAE RMSE DM MAE RMSE DM MAE RMSE

ARMA(0,1) -0.497 0.01305 0.01776 -0.182 0.013 0.01769 -0.115 0.013 0.01768
ARMA(1,0) -0.493 0.01305 0.01776 -0.175 0.013 0.01769 -0.101 0.013 0.01768
ARMA(0,2) -0.807 0.01308 0.01782 -0.362 0.01302 0.01772 -0.373 0.01302 0.01771
ARMA(1,1) -0.816 0.01308 0.01782 -0.305 0.01301 0.01772 -0.299 0.01302 0.01772
ARMA(2,0) -0.883 0.01309 0.01783 -0.363 0.01302 0.01772 -0.363 0.01302 0.01771
ARMA(0,3) -1.231 0.01312 0.01787 -0.504 0.01303 0.01776 -0.382 0.01303 0.01773
ARMA(1,2) -0.924 0.01309 0.01786 -0.629 0.01305 0.01775 -0.54 0.01304 0.01774
ARMA(2,1) -1.134 0.01311 0.01786 -0.539 0.01304 0.01775 -0.821 0.01307 0.01776
ARMA(3,0) -1.048 0.0131 0.01787 -0.423 0.01303 0.01775 -0.377 0.01302 0.01773

White noise 0 0.013 0.01769 0 0.01298 0.01766 0 0.01299 0.01765

Source: computation for skript parameters: v = 3, w = 250/500/750, s=11, z = 10

Soybean futures shows similar behavior to corn and wheat. No model shows

better forecasting performance than white noise. With increasing size of win-

dow the DM statistics are closer to zere. Again, this is probably just result of

convergence to zero, not evidence of improvement.

4.3.4 Soybean oil

Units used for measuring volume of this commodity are pounds, where one

pound is approximately 0.453 Kg. Standardized contract size of soybean oil

(BO1) is 60,000 pounds. Results for this contract type are in table 4.9.
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Table 4.9: Analysis of soybean oil futures (BO1)

250 window size 500 window size 750 window size

Model DM MAE RMSE DM MAE RMSE DM MAE RMSE

ARMA(0,1) -0.331 0.01217 0.01639 -0.077 0.01214 0.01634 -0.059 0.01215 0.01633
ARMA(1,0) -0.376 0.01217 0.0164 -0.085 0.01214 0.01634 -0.066 0.01215 0.01633
ARMA(0,2) -0.573 0.01219 0.01643 -0.248 0.01216 0.01636 -0.297 0.01217 0.01635
ARMA(1,1) -0.713 0.01221 0.01643 -0.268 0.01216 0.01636 -0.199 0.01216 0.01634
ARMA(2,0) -0.666 0.0122 0.01643 -0.264 0.01216 0.01637 -0.301 0.01217 0.01635
ARMA(0,3) -0.902 0.01223 0.01647 -0.369 0.01217 0.01639 -0.365 0.01218 0.01637
ARMA(1,2) -1.193 0.01226 0.0165 -0.486 0.01218 0.0164 -0.429 0.01219 0.01637
ARMA(2,1) -0.76 0.01221 0.01645 -0.469 0.01218 0.01638 -0.255 0.01217 0.01636
ARMA(3,0) -0.905 0.01223 0.01647 -0.368 0.01217 0.01639 -0.362 0.01218 0.01637

White noise - 0.01214 0.01633 - 0.01213 0.01632 - 0.01214 0.01631

Source: computation for skript parameters: v = 3, w = 250/500/750, s=11, z = 10

4.3.5 Soybean meat

For measuring soybean meat are used short tons, one short ton is approximately

907,2 Kg. Size of standard SM 1 Contract is 100 short tons. Results for soybean

meat futures can be found in table 4.10.

Table 4.10: Analysis of soybean meat futures (SM1)

250 window size 500 window size 750 window size

Model DM MAE RMSE DM MAE RMSE DM MAE RMSE

ARMA(0,1) -0.39 0.01427 0.01932 -0.133 0.01421 0.01923 -0.137 0.01421 0.01922
ARMA(1,0) -0.419 0.01427 0.01933 -0.14 0.01421 0.01923 -0.152 0.01421 0.01922
ARMA(0,2) -0.707 0.0143 0.01938 -0.278 0.01423 0.01926 -0.345 0.01423 0.01926
ARMA(1,1) -1.138 0.01434 0.01941 -0.315 0.01423 0.01926 -0.346 0.01423 0.01925
ARMA(2,0) -0.7 0.0143 0.01938 -0.313 0.01423 0.01926 -0.372 0.01423 0.01926
ARMA(0,3) -0.978 0.01433 0.01943 -0.431 0.01424 0.01929 -0.543 0.01425 0.01928
ARMA(1,2) -1.467 0.01438 0.01944 -0.578 0.01426 0.01928 -0.503 0.01425 0.01926
ARMA(2,1) -1.383 0.01437 0.01946 -0.65 0.01426 0.01928 -0.583 0.01425 0.01927
ARMA(3,0) -1.001 0.01433 0.01943 -0.512 0.01425 0.01929 -0.579 0.01425 0.01928

White noise - 0.01423 0.01926 - 0.0142 0.01922 - 0.0142 0.01922

Source: computation for skript parameters: (v = 3, w = 250/500/750, s=11, z = 10)

Both soybean oil and soybean meat display similar behavior. DM tests

are inconclusive for every ARMA model and they are converging to zero with

increasing window size. There is no reason to doubt the efficiency of both

markets over given time period.

4.4 Agricultural - Livestock

This group consists of live cattle futures and lean hog futures. Standardized

contract size is 40,000 pounds, which is approximately 18 tons. Symbol of the
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live cattle contract is LC1 and symbol of the lean hog contract is LN1.

4.4.1 Live cattle

Table 4.11: Analysis of live cattle futures (LC1)

250 window size 500 window size 750 window size

Model DM MAE RMSE DM MAE RMSE DM MAE RMSE

ARMA(0,1) 0.045 0.00696 0.0092 0.095 0.00696 0.0092 0.1 0.00696 0.0092
ARMA(1,0) -0.009 0.00697 0.0092 0.094 0.00696 0.0092 0.088 0.00696 0.00919
ARMA(0,2) -0.17 0.00699 0.00921 0.011 0.00697 0.0092 0.006 0.00697 0.00919
ARMA(1,1) -0.123 0.00698 0.00921 0.036 0.00697 0.0092 0.045 0.00696 0.00918
ARMA(2,0) -0.176 0.00699 0.00921 -0.03 0.00698 0.0092 0.006 0.00697 0.00918
ARMA(0,3) -0.399 0.00701 0.00923 -0.207 0.00699 0.00922 -0.133 0.00698 0.0092
ARMA(1,2) -0.368 0.00701 0.00924 -0.14 0.00699 0.00922 -0.086 0.00697 0.0092
ARMA(2,1) -0.351 0.007 0.00924 -0.095 0.00698 0.00921 -0.059 0.00697 0.00919
ARMA(3,0) -0.369 0.00701 0.00924 -0.175 0.00699 0.00922 -0.099 0.00698 0.0092

White noise - 0.00697 0.00923 - 0.00697 0.00923 - 0.00697 0.00923

Source: computation for skript parameters: v = 3, w = 250/500/750, s=11, z = 10

As we can see in table 4.11, DM statistic is positive for ARMA (0,1) even in

case of 250 window size and is increasing with growing size of the window. Both

MAE and RMSE are lower for ARMA models than they are in case of white

noise. Although this is good step, DM statistic is nowhere near levels required

for rejecting null hypothesis. This could either mean that this behavior is over

the whole period but is non-significant, or that this type of commodity can

be predicted on smaller than ten years’ time period. To decide which case are

live cattle futures we specify the script for suitable sub period, using bisection.

Results of this extended analysis are in table 4.12.

Table 4.12: Analysis of live cattle futures on sub period

500 window size

Model DM MAE RMSE

ARMA(0,1) 0.323 0.00807 0.01025
ARMA(1,0) 0.38 0.00806 0.01025
ARMA(0,2) -0.062 0.00811 0.01026
ARMA(1,1) 0.443 0.00806 0.01024

White noise 0 0.0081 0.01028

Source: computation for skript parameters: w = 500, s = 4, z = 1

By performing further analysis we can observe that values of DM statistics

are usually around zero. Best performance of ARMA (1,1) model was around

2010 - 2011 period, when DM statistic was around 0,44 . However, even this
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value is not enough to reject null hypothesis. We can conclude that this market

is unpredictable by any ARMA model on time frame longer than one year.

4.4.2 Lean hog

Table 4.13: Analysis of lean hog futures (LN1)

250 window size 500 window size 750 window size

Model DM MAE RMSE DM MAE RMSE DM MAE RMSE

ARMA(0,1) 1.01 0.01092 0.01473 1.018 0.01091 0.0147 1.032 0.01091 0.01468
ARMA(1,0) 0.917 0.01093 0.01471 1.031 0.01091 0.01467 1.145 0.0109 0.01465
ARMA(0,2) 0.588 0.01097 0.01473 1.051 0.0109 0.01463 1.046 0.01091 0.0146
ARMA(1,1) 0.526 0.01097 0.01475 1.017 0.01091 0.01464 1.243 0.01089 0.01458
ARMA(2,0) 0.483 0.01098 0.01474 1.063 0.0109 0.01462 1.117 0.0109 0.01458
ARMA(0,3) 0.305 0.01099 0.01476 0.909 0.01092 0.01464 1.058 0.0109 0.0146
ARMA(1,2) 0.108 0.01101 0.0148 0.908 0.01092 0.01464 1.082 0.0109 0.01459
ARMA(2,1) -0.002 0.01103 0.01481 0.87 0.01092 0.01465 0.96 0.01091 0.0146
ARMA(3,0) 0.134 0.01101 0.01479 0.861 0.01092 0.01465 0.981 0.01091 0.01459

White noise - 0.01103 0.01483 - 0.01101 0.01483 - 0.01101 0.01483

Source: computation for skript parameters: v = 3, w = 250/500/750, s=11, z = 10

Results of analysis displayed in table 4.13 suggests, that this product is

exceptional, because we can observe that DM statistics are for ARMA (1,0)

above 1 even for 250 size of window. With increasing widow size values of

DM statistics are generally growing across all orders of ARMA. Particularly

interesting is that for each examined window size the best ARMA model has

different configuration of orders. While for size of 250 best model is ARMA

(1,0), in case of 500 window size the best model is ARMA (2.0) and for 750

window size it is ARMA(1,1). By doing further analysis, we can observe similar

behavior like in live cattle care but DM statistic are generally substantially

more over zero in this case. Some smaller periods within analyzed ten year

time frame have lower DM statistics than aggregate results. To compensate

this, in average there should exist also smaller time period within the ten year

time frame, where the results are above average. Such period in this case is

between 2005 to 2008 (Table 4.14), where we can reject null hypothesis for all

analyzed ARMA models.

And we can even further extend for ARMA models of higher orders to see

that this effect eccurs even at such orders of ARMA (Table 4.15).

In any case, we can strongly reject null hypothesis for all examined situation

on the sub period. Therefore, we can conclude that any out of ARMA models,

even of high orders, are better at forecasting performance than random white
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Table 4.14: Analysis of lean hog futures on sub period

750 window size

Model DM MAE RMSE

ARMA(0,1) 2.092 0.01023 0.01336
ARMA(1,0) 2.173 0.01022 0.01334
ARMA(0,2) 2.166 0.01022 0.01333
ARMA(1,1) 1.998 0.01024 0.01335
ARMA(2,0) 2.112 0.01023 0.01334
ARMA(0,3) 1.967 0.01024 0.01334
ARMA(1,2) 2.059 0.01023 0.01334
ARMA(2,1) 2.052 0.01023 0.01334
ARMA(3,0) 1.85 0.01025 0.01336

White noise - 0.01044 0.01362

Source: computation for skript parameters: w = 750, s = 10, z = 3

Table 4.15: Extended analysis of lean hog futures on sub period

750 window size

Model DM MAE RMSE

ARMA(5,0) 2.007 0.01024 0.01335
ARMA(0,5) 2.148 0.01022 0.01332

Source: computation for skript parameters: w = 750, s = 10, z = 3

noise. Such behavior would necessarily violate Efficient market hypothesis and

require further attention to provide satisfactory explanation.

4.5 Energy

This group of futures consists of crude oil, heating oil and natural gas futures.

Examined time frame is ten years period from 10.1. 2004 to 10.1. 2014, there-

fore size of forecast error series is 2500 observation.

4.5.1 Crude oil

Crude oil contract (CL1) are in US barrel units, where one barrel is approx-

imately 35,2 liters Stevenson (2010) and standardized size of one NYMEX

contract is 1000 barrels. Results can be found in table 4.16.

As we can see, the DM statistic is increasing with growing size of window.

However, even at 750 window size, it did not cross zero. Although it is possible

that at even higher window size the DM statistic values will be positive, it is

highly unlikely that this such values will be enough to reject null hypothesis

even at smaller time period. Therefore, it is safe to conclude that this market

is efficient.
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Table 4.16: Analysis of crude oil futures (CL1)

250 window size 500 window size 750 window size

Model DM MAE RMSE DM MAE RMSE DM MAE RMSE

ARMA(0,1) -0.534 0.01575 0.02191 -0.23 0.01569 0.02185 -0.087 0.01565 0.02182
ARMA(1,0) -0.556 0.01575 0.02191 -0.244 0.01569 0.02185 -0.106 0.01565 0.02182
ARMA(0,2) -1.078 0.0158 0.02197 -0.718 0.01574 0.02191 -0.495 0.01569 0.02187
ARMA(1,1) -1.341 0.01583 0.022 -0.355 0.0157 0.02188 -0.43 0.01568 0.02187
ARMA(2,0) -1.047 0.0158 0.02197 -0.672 0.01573 0.02191 -0.47 0.01569 0.02187
ARMA(0,3) -1.934 0.01589 0.0221 -1.013 0.01577 0.02198 -0.639 0.01571 0.02191
ARMA(1,2) -1.501 0.01585 0.02204 -1.017 0.01577 0.02198 -0.472 0.01569 0.02188
ARMA(2,1) -1.701 0.01587 0.02204 -0.972 0.01576 0.02194 -0.55 0.0157 0.0219
ARMA(3,0) -1.917 0.01589 0.02208 -0.995 0.01577 0.02197 -0.596 0.0157 0.02191

White noise - 0.0157 0.02186 - 0.01567 0.02181 - 0.01564 0.0218

Source: computation for skript parameters: v = 3, w = 250/500/750, s=11, z = 10

4.5.2 Heating oil

This commodity futures are traded in US gallon unit, which is approximately

3,785 liters. Standardized size of one contract is 42 000 gallons of heating oil.

Symbol used for this commodity is HO1.

Table 4.17: Analysis of heating oil futures (HO1)

250 window size 500 window size 750 window size

Model DM MAE RMSE DM MAE RMSE DM MAE RMSE

White noise 0 0.01537 0.02053 0 0.01536 0.02051 0 0.01535 0.02049
ARMA(0,1) -0.433 0.01541 0.02058 -0.1 0.01537 0.02052 0.029 0.01535 0.0205
ARMA(1,0) -0.487 0.01542 0.02058 -0.125 0.01537 0.02052 0.024 0.01535 0.0205
ARMA(0,2) -0.748 0.01545 0.02063 -0.344 0.01539 0.02054 0.035 0.01535 0.02051
ARMA(1,1) -1.473 0.01552 0.02072 -0.226 0.01538 0.02055 -0.125 0.01536 0.02051
ARMA(2,0) -0.741 0.01545 0.02064 -0.309 0.01539 0.02055 0.052 0.01534 0.02051
ARMA(0,3) -0.695 0.01544 0.02065 -0.176 0.01538 0.02056 -0.007 0.01535 0.02055
ARMA(1,2) -1.855 0.01556 0.02079 -0.401 0.0154 0.0206 -0.112 0.01536 0.02054
ARMA(2,1) -1.481 0.01552 0.02071 -0.592 0.01542 0.02064 -0.12 0.01536 0.02055
ARMA(3,0) -0.885 0.01546 0.02067 -0.203 0.01538 0.02057 0.023 0.01535 0.02054

White noise - 0.01537 0.02053 - 0.01536 0.02051 - 0.01535 0.02049

Source: computation for skript parameters: v = 3, w = 250/500/750, s=11, z = 10

In table 4.17, we can observe rapid increase of DM statistic with increasing

window size. At size of 750, DM statistic is positive for some ARMA models.

By further investigating this issue, we can select more specific parameters and

analyze shorter time period within the original one where we would be able to

reject null hypothesis. By using simple bisection for searching best values of

DM statistic, we can obtain values displayed in table 4.18.

We can observe at 750 rolling window (w = 750, s=10, z = 1) that during

year 2005, there was one year frame where we can reject null hypothesis at
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Table 4.18: Analysis of heating oil futures on sub period

750 window size

Model DM MAE RMSE

ARMA(0,2) 1.269 0.01904 0.02462
ARMA(2,0) 1.336 0.01903 0.02461
ARMA(2,1) 1.375 0.019 0.02456

White noise 0 0.0192 0.02484

Source: computation for skript parameters: (w = 750, s=10, z = 1)

smaller levels of significance and this case certainly requires further examina-

tion.

4.5.3 Natural gas

Because of gaseous state of this commodity, unit of one contract is British

thermal units (BTU), which measures resulting calorific value of used natural

gas. One unit of BTU is equivalent of 1,0546 Giga Joules or, under standard

temperature and pressure, 28,26 cubic meters of natural gas as described in

Stevenson (2010). Standard size of one natural gas futures contract(NG1) is

10,000 million British thermal units.

Table 4.19: Analysis of natural gas futures (NG1)

250 window size 500 window size 750 window size

Model DM MAE RMSE DM MAE RMSE DM MAE RMSE

ARMA(0,1) -0.598 0.02361 0.03115 -0.408 0.02355 0.03107 -0.45 0.02355 0.03104
ARMA(1,0) -0.619 0.02361 0.03114 -0.477 0.02356 0.03107 -0.498 0.02355 0.03104
ARMA(0,2) -1.722 0.02372 0.03124 -0.795 0.02359 0.0311 -0.637 0.02356 0.03108
ARMA(1,1) -0.773 0.02363 0.03117 -0.604 0.02357 0.0311 -0.575 0.02356 0.03103
ARMA(2,0) -1.471 0.0237 0.03123 -0.827 0.0236 0.03111 -0.635 0.02356 0.03108
ARMA(0,3) -2.515 0.0238 0.03134 -1.219 0.02364 0.03113 -0.948 0.0236 0.03112
ARMA(1,2) -2.209 0.02377 0.03135 -1.117 0.02363 0.03116 -0.79 0.02358 0.03111
ARMA(2,1) -1.355 0.02369 0.03125 -0.828 0.0236 0.03112 -0.73 0.02357 0.03109
ARMA(3,0) -2.219 0.02377 0.03132 -1.133 0.02363 0.03115 -0.891 0.02359 0.03112

White noise - 0.02355 0.03111 - 0.02351 0.03106 - 0.0235 0.03102

Source: computation for skript parameters: v = 3, w = 250/500/750, s=11, z = 10

As can be seen in table 4.19, we can observe that none of ARMA models

outperformed random white noise in terms of forecasting accuracy. Window

of 750 observation shows even worse results than window of 500 observations.

There is no reason to expect that this behavior would change with further

increase in window size. Assuming that, we can say that natural gas futures

market is efficient.



Chapter 5

Discussing results

In this chapter, we will discuss the results of the analysis from previous chapter.

First, we will examine factors which may have effect on differences between

ARMA and white noise forecast errors. Such factors are order of ARMA model,

size of rolling window, size of size of forecast error series, and affiliation to some

commodity group. Then, we will focus on explaining cases, where the results

were significantly better than white noise, which would violate the weak form

of market efficiency.

5.1 Influence of parameters on results

5.1.1 Order of ARMA models

As assumed, we can generally observe that with increasing order of both MA

and AR or combined order including both parts, the DM statistic tend to

further go to negative values. Reasonable explanation is, that out - of - sample

analysis is particularly sensitive to over fitting. As evidence, we can observe

that over fitting will usually prevail even at quite small orders. Often the best

models among the ARMA group are either AR(1) or MA(1). Furthermore, we

can observe that models with combination of both MA and AR part and same

combined order tend to be worse than models with only either MA or AR part

of the same combined order, which is likely again caused by over fitting of the

model.

Figure 5.1 shows, that with increasing order of ARMA, the DM statistics is

being pushed further into negative values. Result of diplaying several different

ARMA models with same combined order is the staircase - like structure of

lines.
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Figure 5.1: Negative effect of ARMA order on DM statistics for se-
lected commodities
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5.1.2 Window size

Almost in all cases we can observe that with increasing window, the forecasting

performance of given ARMA models improved with growing size of rolling

window. Correctness of the expectation about fluctuation of DM statistics

around zero with window size growth is somewhat questionable. Although it

does explain DM improvement as result of increasing window size in many

cases, it does not explain behavior of lean hog futures and palladium futures,

where already positive DM statistics further improved with growing window

size. In case of lean hog, the only commodity futures that had DM statistic

over 1.00 of some model even for 250 window size, we can see that the value of

DM statistic is growing to even more positive values in case of 750 window size.

Similar behavior can be observed with palladium futures. We can substantially

increase the window size and show whether this behavior persists.

Taking lean hog futures as example with positive DM statistics for most of

the models, we are interested whether the DM statistics further improve even

with higher sizes of windows such as 1500 observations (6 trade years). Results

can be seen in table 5.1.

Natural gas is example of futures contract with lower DM statistic on 750

window size than on 500 size. By further extending the window size we want

to find out, whether this decreasing trend continue even for 1500 window size,

as displayed in table 5.2.

To make reasonable conclusion about influence of window size to our anal-

ysis, we need to take Crude oil as example of futures contract with increasingly
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Table 5.1: Analysis of lean hog futures - 750 and 1500 window size

750 window size 1500 window size

Model DM MAE RMSE DM MAE RMSE

ARMA(0,1) 1.032 0.01091 0.01468 1.103 0.0109 0.01467
ARMA(1,0) 1.145 0.0109 0.01465 1.215 0.01089 0.01464
ARMA(0,2) 1.046 0.01091 0.0146 1.166 0.0109 0.01461
ARMA(1,1) 1.243 0.01089 0.01458 1.311 0.01088 0.01458
ARMA(2,0) 1.117 0.0109 0.01458 1.239 0.01089 0.01458
ARMA(0,3) 1.058 0.0109 0.0146 1.197 0.01089 0.0146
ARMA(1,2) 1.082 0.0109 0.01459 1.296 0.01088 0.01458
ARMA(2,1) 0.96 0.01091 0.0146 1.192 0.01089 0.01459
ARMA(3,0) 0.981 0.01091 0.01459 1.109 0.0109 0.01459

White noise - 0.01101 0.01483 - 0.01101 0.01483

Source: computation are for skript parameters: (v = 3, w = 750/1500, s=11, z = 10)

Table 5.2: Analysis of natural gas futures - 750 and 1500 window size

750 window size 1500 window size

Model DM MAE RMSE DM MAE RMSE

ARMA(0,1) -0.45 0.02355 0.03104 -0.239 0.02352 0.03104
ARMA(1,0) -0.498 0.02355 0.03104 -0.258 0.02353 0.03103
ARMA(0,2) -0.637 0.02356 0.03108 -0.359 0.02354 0.03105
ARMA(1,1) -0.575 0.02356 0.03103 -0.181 0.02352 0.03102
ARMA(2,0) -0.635 0.02356 0.03108 -0.425 0.02354 0.03106
ARMA(0,3) -0.948 0.0236 0.03112 -0.74 0.02357 0.03109
ARMA(1,2) -0.79 0.02358 0.03111 -0.447 0.02354 0.03106
ARMA(2,1) -0.73 0.02357 0.03109 -0.421 0.02354 0.03106
ARMA(3,0) -0.891 0.02359 0.03112 -0.759 0.02358 0.03109

White noise - 0.0235 0.03102 - 0.0235 0.03103

Source: computation are for skript parameters: (v = 3, w = 750/1500, s=11, z = 10)
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negative DM statistics we want to show, whether such behavior will prevail

even at window size of 1500. Results for crude oil are in table 5.3.

Table 5.3: Analysis of natural gas futures - 750 and 1500 window size

750 window size 1500 window size

Model DM MAE RMSE DM MAE RMSE

ARMA(0,1) -0.087 0.01565 0.02182 -0.057 0.01565 0.0218
ARMA(1,0) -0.106 0.01565 0.02182 -0.061 0.01565 0.0218
ARMA(0,2) -0.495 0.01569 0.02187 -0.159 0.01566 0.02181
ARMA(1,1) -0.43 0.01568 0.02187 -0.058 0.01565 0.02181
ARMA(2,0) -0.47 0.01569 0.02187 -0.137 0.01565 0.02181
ARMA(0,3) -0.639 0.01571 0.02191 -0.289 0.01567 0.02183
ARMA(1,2) -0.472 0.01569 0.02188 -0.176 0.01566 0.02181
ARMA(2,1) -0.55 0.0157 0.0219 -0.23 0.01566 0.02182
ARMA(3,0) -0.596 0.0157 0.02191 -0.289 0.01567 0.02183

White noise - 0.01564 0.0218 - 0.01564 0.02179

Source: computation are for skript parameters: (v = 3, w = 750/1500, s=11, z = 10)

By further extending the window size, we can observe that the value is

always slowly growing. Possible explanation lies in the very nature of ARMA

model estimation. With increasing window size, each regression have larger

sample and the ARMA model takes more observation into consideration and

tries to describe pattern of the data on larger time period. When there is some

significant long term pattern among the data, with increasing sample size the

model will be more precise at describing the model and detecting the pattern.

If the best fitted model of each ARMA configuration is significantly different

from white noise, the DM statistics will tent to grow even at high window sizes

and slowly converge to some positive value. This is case of lean hog futures

and palladium futures measured on appropriate sub period.

On the other hand, if the best fitted model of each ARMA configuration

is similar to white noise, with increasing window size the DM statistic will

converge to zero, which would explain growth of DM statistic in case of Crude

oil, Natural gas and likely as well in majority of remaining commodities.

To conclude influence of window size, we can say that with increasing win-

dow the DM statistics will converge to the value of DM statistic of best fitted

ARMA models.

5.1.3 Error series size

Because of the assumption about existence of shorter time frame within the

ten years period where rejection of null hypothesis is possible, we carried out

separate analysis for each commodity futures when DM statistic of some model
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exceeded zero. Results of additional analysis corresponds with findings men-

tioned in Kaminsky & Kumar (1990). Using bisection algorithm and one trade

year as minimal time period, we found in cases of Palladium, Lean hog, live

cattle and heating oil on some sub period with noticeably higher DM statistics

than for the original ten years period.

In case of Palladium we found out, that the largest sub period where we are

able to reject null hypothesis is two trade years (forecast error series have 500

elements, DM of AR3 = 1,825 ), in case of lean hogs, such sub period are three

trade years (forecast error series have 750 elements, DM of AR1 = 2,173). On

the other hand, even at smallest considered sub period size (one trade year,

250 elements of forecast error series) we are not able to reject null hypothesis in

case of live cattle (smallest DM statistic have ARMA (1,1), 0,443) and heating

oil (closest to rejection of null hypothesis was DM of ARMA (2,1) = 1,375).

It is reasonable to assume, that in case of heating oil futures, we should

be able to find some sub period smaller than 250 elements of error series.

Furthermore, we can generalize this assumption for every of commodity futures

where DM test is inconclusive. In the other words, we can expect existence of

small enough sub period, where the rejection is possible all commodity futures.

However, these sub periods can be quite small and not very frequent, there-

fore the results of DM test will be always insignificant. Knowing this, we can

assume that this phenomena does not break the market efficiency, because

such sub periods are hard to detect and we can be never sure how long will

they last. Under these conditions investors are not able to systematically make

exceptional profits which means that markets are efficient.

Exception are commodities, where white noise is better for every forecasted

value in the sub period. However, nonexistence of single observation with

ARMA model being better than noise will most likely led to rejection of DM

test as result of DM statistic being strongly negative. White noise will be in

that significantly better than any ARMA model, which imply market efficiency.

Only exception would be case when any ARMA model would be almost same

as white noise, but slightly worse for every forecast. This case is extremely

unlikely. This behavior of test statistic implies that DM test statistics of ARMA

model and white noise is quite reliable measurement of market efficiency.

Values around zero can imply that given model is not significantly better

than noise or that ARMA model is significantly underperforming for some sub

period while being significantly better than noise in another sub period. Either
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way, if the period of good performance is small enough, market efficiency is not

violated, because we may be never sure about time stability of this occurrence.

5.1.4 Commodity group affiliation

From the results, it is clear that some commodity group share some similar

properties in terms of market efficiency. For example group of precious metal

futures is generally efficient, with exception of palladium. Gold, silver and

platinum have negative values of DM statistic for all ARMA models and window

sizes. We can notice that these three futures are not very sensitive to growth

of window size. While palladium shares the behavior of this group for 250 and

500 window size, for 750 size we can observe abnormally high DM statistic for

ARMA (3,0) and ARMA (0,3), which even grows with restricting the analysis

for sub period. In figure 5.2, we can observe that for precious metals, the

pattern of how DM statistic changes with different ARMA models is similar for

most commodities withing the group. The only exeption are again palladium

futures.

Figure 5.2: Precious metals - structure of DM statistic with change
of ARMA configuration
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For most energy futures is typical high sensitivity for window size growth.

Values of DM statistics grow from values around -0,5 at 250 window size to

values around zero for higher window sizes. Only exception is natural gas,

which is have strongly negative values for all examined window sizes.
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In figure 5.3, we can observe that energy futures follows similar pattern in

changes of ARMA order with exeption of heating oil futures.

Figure 5.3: Energy futures - structure of DM statistic with change of
ARMA configuration
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Figure 5.4 shows that both corn and wheat have similar reaction on ARMA

order change. Surprisingly, neither soybean and other soybean related futures

follows this pattern. On the other hand, as can be seen in figure 5.5, soy-

bean related futures as well as soybean futures appears to be following mutual

pattern.

Figure 5.4: Wheat, corn - structure of DM statistic with change of
ARMA configuration
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Figure 5.5: Soybean related futures - structure of DM statistic with
change of ARMA configuration
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We can say, that most efficient commodity group are precious metal futures

with exceptions of palladium followed by energy futures and grains. Least

efficient are livestock futures, as the only group of examined futures with mostly

possitive DM statistics. Worth mentioning is, that commodities with exeptional

pattern, such as heating oil and palladium, aswell shows signs of inefficiency.

In general, these results approximately confirms findings mentioned in Kris-

toufek & Vosvrda (2014) about market efficiency of commodity groups.

5.2 Market liquidity

Before we can make any conclusion about efficiency of the three problematic

futures(lean hog in figure 5.6, palladium in figure 5.7, heating oil in figure

5.8), it is appropriate to examine market liquidity during the sub period where

rejection of null was possible. To do that, we will graph absolute forecast error

over the traded volume for given sub period. As control check, we take natural

gas futures as example of commodity with efficient market(figure 5.9).

From the figures can be seen that there is no evident relation between

error size and traded volume of given commodity. Mean of absolute error is

approximately the same regardless the volume for all selected commodity types.

Box plots for palladium, lean hogs and heating oil have similar structure as

surely efficient natural gas. This is another evidence that volume has no relation

to forecast error and market efficiency. We can conclude that there are no
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Figure 5.6: Analysis of lean hog market liquidity over predictable sub
period - plot of ARMA (3,0) absolute errors over traded
volume
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Figure 5.7: Analysis of palladium market liquidity over predictable
sub period - plot of ARMA (3,0) absolute errors over
traded volume
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Figure 5.8: Analysis of heating oil market liquidity over predictable
sub period - plot of ARMA (2,1) absolute errors over
traded volume
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Figure 5.9: Analysis of natural gas market liquidity over predictable
sub period - plot of ARMA (1,0) absolute errors over
traded volume
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liquidity restriction that would prevent the investors from making extraordinary

profit.

Although there does not seem to be any relation between error size and

traded volume and we can predict the return using better than white noise, the

efficient market hypothesis is not necessarily violated if the sub period when we

are able to predict returns of this commodities appears at random and is small

enough, which is likely the case of heating oil. Under that, we would not be able

to forecast when such window of predictability happen and we have no certainty

when it will end. On the other hand, this sub period in cases of lean hog and

palladium is substantial, three trading years for lean hog and two for palladium.

In case of palladium, from historical development can be seen that sub period

of size is anomaly. In that case we no reason to doubt market efficiency, unless

similar behavior will became regular for future sub periods. Lean hog is quite

different in this concern. Because the DM statistic is bordering rejection for

whole ten years period, we can expect regular appearance of predictable sub

periods. With no liquidity restrictions, we have no reason to insist on market

efficiency for this type of futures contract.
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Conclusion

Main fidings of the work are that ARMA models provide better out - of - sample

forecasts than whine noise for some commodities on suitable time period and

test statistic of Diebold - Mariano test between ARMA models and white noise

is reliable measurement of market efficiency.

Size of combined order of ARMA model have mild impact on forecasting

performance, lower models are usually better. This is caused by over fitting

of the model. Apart of that, models of same combined order have similar

forecasting performance.

On the other hand, size of window in case of rolling window method of

measuring forecasting performance have considerable effect on forecasting per-

formance. With increasing size of the window, DM statistics will converge to

the value of DM statistic of best fitted ARMA models, which can be some posi-

tive value, like in case of lean hog, or zero, like most of other commodities. This

explains why DM statistic is usually growing with increasing size of window.

Size of period, over which we try to forecast is the determining factor for

measuring forecast performance. We can almost always find small enough

period, where the null hypothesis of DM test is rejected. This behavior however

does not break the market efficiency if the sub period is small enough and

appearing at random. Affiliation to commodity group have questionable effect

on market efficiency, mainly because most commodity futures shows evidences

of market efficiency anyways. However, there are some apparent similarities

among the commodity groups.

Examination of market liquidity shows little to none effect of traded volume

on forecast error over predictable sub period. This implies that there is no

restriction in liquidity of given market in problematic periods. While for heating
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oil and palladium there exists reasonable arguments for not rejecting EMH,

lean hog futures shows strong evidences of market inefficiency, which cannot

be explained by any explanation included in extend of this work.

Natural way how to extend this work is using more complicated models to

carry out the analysis. Another possible direction how to extend this thesis is

to analyse how much randomly does the predictable sub periods appear, which

might be crucial in analyzing general market efficiency of palladium futures

and heating oil futures.
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