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The thesis deals with propositional substructural logics and shows some
undecidability (unsolvability) results for them. Formally speaking, it consists
of an introduction1 and two appended papers:

1. Karel Chvalovský. ‘Undecidability of Consequence Relation in Full Non-
associative Lambek Calculus’. Journal of Symbolic Logic (to appear).
(Appendix A)

2. Karel Chvalovský and Rostislav Horčík. ‘Full Lambek Calculus with
Contraction is Undecidable’. Journal of Symbolic Logic (to appear).
(Appendix B)

Although both appendices are completely independent they share some tech-
niques; the main method used in Appendix A is crucial also in Appendix B.

Our results, we believe, are interesting mainly for the following reason.
They show undecidable problems, seemingly simple, which had an unclear
status—there were, as far as we know, attempts to prove their decidability.
In particular, the problem studied in Appendix B was open for almost twenty
years, see [SO96].

In Appendix A we show that the finite consequence relation for some
basic non-associative substructural logics is undecidable. It is worth noticing
that such results usually depend heavily on associativity. Algebraically
speaking, we prove that some word problems are undecidable.

In Appendix B we show that the basic substructural logic with the rule
of contraction and lattice connectives in its language has an undecidable set
of theorems. Such results are rather rare, the relevance logic R [Urq84] being
a prominent example. Algebraically speaking, we prove that the class of
square-increasing residuated lattices has an undecidable equational theory.

Our main results are summarized in Table 1.1, where some other relevant
results are also included.

1 Introduction
Substructural logics, a rapidly emerging field, have various motivations that
come from linguistics, computer science, philosophy etc. Their common fea-
ture regardless of motivations is that we abandon the classical propositional
Boolean logic for some reasons, for details see e.g. [Res00; Pao02; Gal+07;
Bus10]. In particular, the properties of standard logical connectives can be
inadequate in various situations.

1Note that we use parts of this introduction in this text without further notice.
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Say we would like to reason about words in a formal language. Moreover,
for our purposes the expressive power of propositional logic seems sufficient
given that we have a reasonable encoding of words. One way to deal with
this is to interpret letters as atoms and define the concatenation operation
as a logical connective. It is quite clear that standard Boolean connectives
are not suitable for this purpose.

However, we can define a new logic with connectives that have the desired
properties. It does not necessarily mean that the problem is not expressible
in the classical Boolean setting, but rather that there is a more suitable
way how to deal with it. Usually we try to avoid a complicated encoding or
unnecessarily expressive formal systems, e.g. first-order logic. Therefore we
study only propositional logics in this thesis.

It turns out, quite interestingly, that completely different motivations
often lead to the very same logic. Moreover, there is a uniform way how to
obtain many of these logics using simple modifications of Gentzen’s sequent
calculus LJ for intuitionistic propositional logic [Gen35a; Gen35b], which
is a single-conclusion variant of the calculus LK for classical propositional
logic.

In this thesis substructural logics are described by sequent calculi ob-
tained from LJ by dropping some (possibly all) structural rules. In partic-
ular, we deal only with rules affecting antecedents, namely exchange (e),
contraction (c), and left-weakening2 or integrality (i) that are given by

Γ, ϕ, ψ,∆⇒ χ(e)
Γ, ψ, ϕ,∆⇒ χ

Γ, ϕ, ϕ,∆⇒ ψ(c)
Γ, ϕ,∆⇒ ψ

Γ,∆⇒ ψ(i)
Γ, ϕ,∆⇒ ψ

These rules describe structures occurring in antecedents and dropping
all of them equals to assuming that we deal with sequences of formulae
there. This also affects rules introducing logical connectives, because there
are often two natural ways how to define them, which are equivalent in
LJ but for weaker logics this need not be true. In particular, we usually
obtain two conjunctions, where one corresponds to commas in antecedents,
called product (·) or fusion, and the other one more resembles “standard”
conjunction in LJ, called meet (∧). These connectives are defined by

Γ, ϕ, ψ,∆⇒ χ(·L)
Γ, ϕ · ψ,∆⇒ χ

Γ⇒ ϕ ∆⇒ ψ(·R)
Γ,∆⇒ ϕ · ψ

2We ignore the rule of right-weakening which is of no importance in our thesis.
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Γ, ϕi,∆⇒ ψ(∧L) for i=1, 2
Γ, ϕ1 ∧ ϕ2,∆⇒ ψ

Γ⇒ ϕ Γ⇒ ψ(∧R)
Γ⇒ ϕ ∧ ψ

Recall that product in a logic without the previously mentioned structural
rules has the properties we desire to model the concatenation operator.
Roughly speaking, the logic obtained from LJ by dropping all the previously
mentioned rules is called the Full Lambek calculus (FL); its language contains
product (·), left (\) and right (/) implications3, meet (∧), and join (∨).4 A
presence of structural rules is usually expressed in a subscript appended to
the name of the original logic, e.g. FLc is FL with the rule of contraction.

In fact, we can obtain even weaker logics by assuming that antecedents are
non-associative, i.e. we have trees of formulae, instead of sequences, in them.
This way we obtain the Full Non-associative Lambek calculus (FNL) from
FL. A non-associative calculus was first introduced by Lambek [Lam61],
who considered it more suitable for linguistic applications than his original
associative calculus [Lam58].

Simple undecidable problems

A standard way how to prove an undecidability result is to encode a simple
problem which is already known to have that property. Many such problems
have been used in logic, e.g. variants of tilling, the Post correspondence
problem. Our results use two well-known abstract machines, namely counter
machines and tag systems, which have an undecidable halting problem.

Counter machines were formalized by Minsky [Min61] and for that
reason they are sometimes called after him Minsky machines. Roughly
speaking, they are Turing machines with counters instead of tapes. Hence
instructions are defined accordingly, we can only increment and decrement
counters. However, the later instruction contains a test. If we attempt to
decrement a counter which is equal to zero then it remains equal to zero
but the computation continues in different state. It is well-known [Min61]
that counter machines with two counters can simulate Turing machines
and hence they have an undecidable halting problem. These machines are
particularly suitable for our purposes, since they are easy to represent in

3Two implications occur in logics without the exchange rule. It can be easily seen
algebraically, since implications are defined by residuation laws

a · b ≤ c iff b ≤ a \ c iff a ≤ c / b

where we can read ≤ as ⇒. In algebra they are, for obvious reasons, called divisions.
4Usually, constants 0 and 1 are also included, but they do not play an important role

in our thesis and hence we mostly ignore them.
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terms of string rewriting systems. Moreover, strings can be easily handled
in some substructural logics, e.g. product corresponds to the concatenation
operation in FL.

Tag systems were proposed by Post [Pos43] and process finite words
over a finite alphabet A. Fix n > 0. An n-tag system is given by a set of
production rules (a program) which is a function π : A → A∗, where A∗ is
the set of finite words over A. The computation of the n-tag system given
by A and π on a word w ∈ A∗ is defined as follows. If |w| < n we terminate.
Otherwise, we examine the first letter in w, which is some a ∈ A. Then
we delete the first n letters in w and append π(a) to the rest of the word
after the last letter and obtain a new word. We repeat this process until
it is possible, i.e. we can run forever or at some point we terminate—we
obtain a word with less than n letters. It is known [CM64; Wan63] that
2-tag systems have an undecidable halting problem.

A Undecidability of Consequence Relation in
Full Non-associative Lambek Calculus
In Appendix A we prove that the (finite) consequence relation, usually
called the deducibility problem, in FNL, which is a non-associative logic, is
undecidable. We provide a construction how to encode 2-tag systems in the
language of FNL using only sequents with products and joins. Therefore
already this fragment of FNL is undecidable. Note that it is known that
the deducibility problem for FNL without join is decidable [Far08]. We also
show, in the introduction, that the deducibility problem for the fragment of
FNL only with an implication and join is also undecidable.

Our encoding works due to an interplay between product and join. In
particular, the fact that product distributes over join is essential there.
Roughly speaking, product enables us to represent words and join ensures
that we can rewrite them correctly using a form of conditional rewriting. In
particular, we use join to exchange pieces of information needed to correctly
perform a computation of a 2-tag system.

The whole construction is rather robust. Hence the same undecidability
results follow easily for FNLc, FNLe, and FNLec

5. Similarly, the dedu-
cibility problem for the one-variable fragment of FNL (and FNLe) is also
shown to be undecidable.

5Note that FLec, the associative variant of FNLec, has a decidable deducibility
problem.
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Theorems Deducibility problem
FL decidable undecidable
FLe decidable undecidable
FLc undecidable (see Appendix B) undecidable
FLec decidable decidable
FLi decidable decidable
FNL decidable undecidable (see Appendix A)
FNLe decidable undecidable (see Appendix A)
FNLc undecidable (see Appendix A)
FNLec undecidable (see Appendix A)
FNLi decidable decidable

Table 1.1: Some substructural logics related to this thesis and their decidab-
ility.

It is clear that word problems for the corresponding algebraic structures,
which are based on join-semilattice groupoids, are undecidable. In fact,
even a little bit stronger results than those following immediately from the
algebraic completeness of substructural logics can be obtained. Similarly, it
follows that some reachability problems for term rewriting systems are also
undecidable.

B Full Lambek Calculus with Contraction is
Undecidable
In Appendix B we deal with an associative logic, but it turns out that
we face again a form of non-associativity there and hence techniques from
Appendix A can be used again. A common approach how to prove that a
substructural logic has a decidable set of theorems uses the cut elimination,
since then there are usually only finitely many possible proofs to be checked.
If the logic in question contains the contraction rule, as in our case, then
the situation can be entirely different. However, it is still possible to prove
decidability for some logics, e.g. FLec [KO91], using Kripke’s combinatorial
idea [Kri59] which was further extended by Meyer [Mey66]. However, in
FLc this is not possible, since we prove that this logic is undecidable and
hence there is no bound on the proof-search in it.

An outline of our proof is as follows. First, we start with the string
rewriting system [Hor15] developed to prove that the deducibility problem
for FLc is undecidable. It uses a representation of counter machines by
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square-free words, they do not contain uu as a subword, and therefore the
rule of contraction cannot influence the encoding. Second, we show how to
interpret such string rewriting systems in what we call atomic conditional
string rewriting systems, where their conditionality is closely connected to
the main technique used in Appendix A. Finally, such rewriting systems can
be easily encoded in FLc as formulae. It follows that the set of theorems in
FLc is undecidable. In fact, we prove that already the positive fragment of
FLc is undecidable, since the whole construction requires only an implication,
join, and meet.

Clearly, it also follows that the corresponding algebraic structure, square-
increasing residuated lattices, has an undecidable equational theory. In
fact, the real order used in Appendix B is the opposite, we use algebraic
methods to prove the correctness and completeness of our encoding there.
It is not essential, but such an approach seems to be more convenient than
a proof-theoretical one, which is used in Appendix A. However, all the
arguments would remain the same regardless of the method used.

We can formulate an interesting corollary. As the set of theorems in
FLc is recursively enumerable but not recursive, it is possible to get the
following variant of the deduction theorem. The way we obtain it is purely
algorithmic and hence it differs significantly from how “standard” deduction
theorems look like.

Theorem. Let Γ ∪ {ϕ} be a finite set of formulae. There is an explicit
algorithm that produces a formula ψ (given an input ϕ and Γ) such that ψ
is provable in FLc iff ϕ is provable in FLc from Γ.
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