
Undecidability of Some
Substructural Logics
Nerozhodnutelnost některých

substrukturálních logik

Karel Chvalovský

Doctoral Thesis
Disertační práce

Charles University in Prague
Faculty of Arts

Department of Logic

Univerzita Karlova v Praze
Filozofická fakulta

Katedra logiky

Subject of study / Studijní obor: Logic / Logika
Supervisor / Školitelka: Marta Bílková

2015

I hereby declare that I carried out this thesis independently and only with
the cited sources. This thesis is not substantially the same as any that I have
submitted for a degree or diploma or other qualification at any university.

Prohlašuji, že jsem disertační práci napsal samostně s využitím pouze
uvedených a řádně citovaných pramenů a literatury a že přáce nebyla
využita v rámci jiného vysokoškolského studia či k získání jiného nebo
stejného titulu.

In Prague / V Praze Karel Chvalovský

Abstract
This thesis deals with the algorithmic undecidability (unsolvability) of
provability in some non-classical logics. In fact, there are two natural
variants of this problem. Fix a logic, we can study its set of theorems or its
consequence relation, which is a more general problem. It is well-known that
both these problems can be undecidable already for propositional logics and
we provide further examples of such logics in this thesis. In particular, we
study propositional substructural logics which are obtained from the sequent
calculus LJ for intuitionistic logic by dropping structural rules. Our main
results are the following. First, (finite) consequence relations in some basic
non-associative substructural logics are shown to be undecidable. Second,
we prove that a basic associative substructural logic with the contraction
rule, which is notorious for being hard to handle, has an undecidable set of
theorems. Since the studied logics have natural algebraic semantics, we also
obtain corresponding algebraic results which are interesting in their own
right.

Abstrakt
Tato disertační práce se zabývá algoritmickou nerozhodnutelností (neřešitel-
ností) dokazatelnosti v některých neklasických logikách. Ve skutečnosti
existují dvě přirozené varianty toho problému. Mějme dánu logiku, pak
můžeme studovat její množinu teorémů nebo její relaci důsledku, což je
obecnější problém. Je známo, že oba tyto problémy mohou být nerozhod-
nutelné již pro výrokové logiky a tato disertační práce poskytuje další pří-
klady takových logik. Konkrétně se věnujeme výrokovým substrukturálním
logikám, které lze získat ze sekventového kalkulu LJ pro intuicionistickou
logiku odebráním strukturálních pravidel. Naše hlavní výsledky jsou násle-
dující. Ukazujeme nerozhodnutelnost (konečné) relace důsledku pro některé
základní neasociativní substrukturální logiky. Dále dokazujeme, že množina
teorémů v základní substrukturální logice s pravidlem kontrakce, které
obvykle způsobuje řadu komplikací, je nerozhodnutelná. Neboť studované
logiky mají přirozené algebraické sémantiky, dostáváme také odpovídající
algebraické výsledky, které jsou zajímavé samy o sobě.

Keywords: substructural logics, undecidability, provability, sequent calculi

Klíčová slova: substrukturální logiky, nerozhodnutelnost, dokazatelnost,
sekventové kalkuly

Acknowledgments

I am deeply indebted to my colleagues whom I have been privileged to learn
from. I wish some of them considered our conversations as beneficial as I
did.

Let me name, in particular, Rostislav Horčík who is not only a coauthor
of the second paper, but I have been very happy to discuss many topics
relevant to this thesis with him.

My work has been generously supported by the Czech Science Foundation
and the Grant Agency of Charles University. I was fortune to participate in
projects led by Petr Cintula, Petr Hájek, and Vojtěch Kolman.

Last but not least I would like to thank my supervisor Marta Bílková for
her constant support and comments on a preliminary version of the thesis.

iv

Foreword

This thesis is comprised of an introduction and two appended papers:

1. Karel Chvalovský. ‘Undecidability of Consequence Relation in Full Non-
associative Lambek Calculus’. Journal of Symbolic Logic (to appear).
(Appendix A)

2. Karel Chvalovský and Rostislav Horčík. ‘Full Lambek Calculus with
Contraction is Undecidable’. Journal of Symbolic Logic (to appear).
(Appendix B)

The appendices, which are self-contained, form the core of the thesis. How-
ever, both of them are rather technical and assume some familiarity with
their topics. Therefore the introduction is meant as a brief exposition for a
general logician. We assume, however, that the reader has some elementary
prior knowledge of sequent calculi, algorithmic undecidability, and universal
algebra to mention just few topics.

Note that the papers are copyrighted by the Association for Symbolic
Logic and both authors of the second paper contributed equally.

v

Contents

1 Introduction 1
1.1 Substructural logics and sequent calculi 2
1.2 Full Lambek calculus . 5
1.3 Algebraic counterparts . 7
1.4 Decidability in substructural logics 10
1.5 Simple undecidable problems 12
1.6 Undecidability in substructural logics 21
1.7 Our results . 22

Bibliography 28

A Undecidability of Consequence Relation in Full Non-associative
Lambek Calculus 33
A.1 Introduction . 33
A.2 Preliminaries . 35
A.3 Encoding . 40
A.4 Correctness of encoding . 46
A.5 Completeness of encoding 49
A.6 Some possible modifications 52
A.7 Remarks on algebraic consequences 55
A.8 Remarks on term rewriting systems 56

Bibliography 58

B Full Lambek Calculus with Contraction is Undecidable 60
B.1 Introduction . 60
B.2 Preliminaries . 62
B.3 SRSs and atomic conditional SRSs 70
B.4 Atomic conditional SRSs and RLc 76
B.5 Conclusions . 79

Bibliography 82

vi

Chapter 1

Introduction

The two appendices (papers) comprising this thesis show that some natural
problems in particular propositional substructural logics are algorithmically
undecidable (unsolvable). Although substructural logics are a rapidly emer-
ging field, we can hardly assume that a logician, whose interests lie outside
this field, is familiar with them.

Substructural logics have various motivations that come from linguist-
ics, computer science, philosophy etc. We are not going to discuss these
motivations here, the interested reader can check many sources e.g. [Res00;
Pao02; Gal+07; Bus10]. Anyway, their common feature is that we abandon
classical Boolean logic for some reasons.

Say we would like to reason about words in a formal language. Moreover,
for our purposes the expressive power of propositional logic seems sufficient
given that we have a reasonable encoding of words, our basic data structure.
One way to deal with this is to interpret letters as atoms and define the
concatenation operation as a logical connective. It is quite clear that standard
Boolean connectives are not suitable for that purpose.

However, we can define a new logic with connectives that have the
desired properties. This does not necessarily mean that the problem is not
expressible in the classical Boolean setting, but rather that there is a more
convenient way how to represent it. Usually we try to avoid a complicated
encoding or unnecessarily expressive formal systems, e.g. first-order logic.
Therefore we study only propositional logics in this thesis. Another way
how to understand this is that we have a problem expressible in a “fragment”
of a classical general purpose formal system, but for some reasons we prefer
to use a more problem-specific one. These reasons can be computational,
philosophical, or even mere elegance can be important for us.

Clearly, this approach has its drawbacks. One of them is that we obtain
a new formal system every time we change our problem. Nevertheless, it

1

1.1. Substructural logics and sequent calculi

turns out, quite interestingly, that completely different motivations often
lead to the very same logic. Moreover, there is a uniform way how to obtain
many of these logics using simple modifications of Gentzen’s sequent calculus
for classical (intuitionistic) logic. Therefore the number of systems with
“reasonable” motivations seems to be relatively small. Those reasons, we
believe, justify studying substructural logics.

1.1 Substructural logics and sequent calculi
Gerhard Gentzen1 in his seminal work [Gen35a; Gen35b], which was accepted
as his doctoral thesis, proposed systems of natural deduction for classical
(NK2) and intuitionistic (NJ) first-order logic. One of his motivations was
to set up a formal system that would more resemble actual mathematical
reasoning than Hilbert (Frege) style proof systems do. In order to prove
his main theorem (Hauptsatz)—the elimination of the cut rule—he defined
sequent calculi LK and LJ as variants of systems NK and NJ, respectively.

We briefly recall some basic notions from sequent calculi for classical and
intuitionistic logic, for details see e.g. [Tak87; TS00]. However, we assume
that the reader is quite familiar with such calculi, because we believe it is
safe to consider them folklore. Let ϕ, ψ, and χ be propositional formulae
in a language containing conjunction (∧), disjunction (∨), implication (→),
and negation (¬) over a set of atoms. Let Γ, ∆, Θ, and Λ be (possibly
empty) finite sequences of formulae separated by commas. For our purposes
here, it is crucial that we deal with sequences, unlike sets as usual. This is,
however, the only modification we need here. The reason for that change
will be clear in a moment. A sequent is a relation between two arbitrary
finite sequences of formulae Γ and ∆, we denote it by Γ⇒ ∆ and call Γ
there its antecedent and ∆ its succedent. Recall that the meaning of such a
sequent is that the conjunction of formulae in the antecedent implies the
disjunction of formulae in the succedent (

∧
Γ→

∨
∆), i.e. ϕ is a theorem iff

the sequent ⇒ ϕ is provable.
A proof (or derivation) in such a calculus from a set of sequents S is a

finite rooted tree with nodes labeled by sequents satisfying the following
properties. Only axioms (initial sequents) or members of S can occur as
leaves and all the other nodes (parents) are obtained from their children by
rules that describe how new valid sequents are derived.

1Note that he was an associate professor at Deutsche Karls-Universität in Prag from
1943 until his arrest in May 1945. He died in Prague due to malnutrition after three
months in prison.

2Note that we will use similar notation for non-associative systems later on.

2

1.1. Substructural logics and sequent calculi

The only axioms of LK are ϕ⇒ ϕ for any formula ϕ. On the contrary,
sequent calculi have many rules which can be divided into two main groups,
namely structural and logical rules. Already Gentzen3 singled structural
rules4, which describe the structures occurring in sequents, i.e. how commas
in sequents behave, out for their different nature. In LK the structural rules
are as follows5

• Weakening

Γ⇒∆(wL)
ϕ,Γ⇒∆

Γ⇒∆(wR)
Γ⇒∆, ϕ

• Contraction

ϕ, ϕ,Γ⇒∆(cL)
ϕ,Γ⇒∆

Γ⇒∆, ϕ, ϕ(cR)
Γ⇒∆, ϕ

• Exchange

Γ, ϕ, ψ,Θ⇒∆(eL)
Γ, ψ, ϕ,Θ⇒∆

Γ⇒∆, ϕ, ψ,Θ(eR)
Γ⇒∆, ψ, ϕ,Θ

Here and subsequently, we tacitly assume that all rules are introduced as
schemata. The left rules describe the structure of antecedents and right
rules of succedents. It is easy to see that all these rules together express the
fact that sequences of formulae on both sides can be seen as sets of formulae,
which is the case of LK. Nevertheless, if we want to show that the cut rule

Γ⇒∆, ϕ ϕ,Θ⇒ Λ(Cut)
Γ,Θ⇒∆,Λ

is dispensable, Gentzen’s Hauptsatz, then it is a clever idea to deal with
sequences (or multisets) as Gentzen did. All rules mentioned so far, including
the cut rule, are called structural rules in Gentzen’s papers. This is a natural

3We should mention that he was influenced by Hertz, cf. [Doš93].
4Note that some Polish authors, cf. [Wój88, p. 85], use this terminology in a different

context. They call rules closed under substitution as structural (or logical).
5We use a terminology that is prevailing in substructural logics. The order of rules

respects Gentzen’s papers. Gentzen’s Verdünnung is translated in Kleene’s book [Kle52]
as thinning. Some people also use monotonicity, but we prefer weakening, which comes
from Curry [Cur50; Cur77]. Contraction seems to be universally accepted. Exchange is a
variant of interchange, following Kleene, and sometimes it is called permutation, following
Curry. For further details see [Doš93].

3

1.1. Substructural logics and sequent calculi

name for they express the structural properties of proofs. However, the
cut rule is, obviously, entirely different from the rest of rules. For these
reasons structural rules but the cut rule are considered independently and
they are called weak-structural rules in Takeuti’s book [Tak87]. However,
as we mainly study calculi where the cut rule is admissible6, we call weak-
structural rules simply structural rules. Hence we do not count the cut rule
among structural rules, the usual convention in substructural logics.

The logical rules, which describe the behaviour of logical connectives, for
LK are defined by

ϕi,Γ⇒∆(∧L) for i = 1, 2
ϕ1 ∧ ϕ2,Γ⇒∆

Γ⇒∆, ϕ Γ⇒∆, ψ(∧R)
Γ⇒∆, ϕ ∧ ψ

ϕ,Γ⇒∆ ψ,Γ⇒∆(∨L)
ϕ ∨ ψ,Γ⇒∆

Γ⇒∆, ϕi(∨R) for i = 1, 2
Γ⇒∆, ϕ1 ∨ ϕ2

Γ⇒∆, ϕ(¬L) ¬ϕ,Γ⇒∆
ϕ,Γ⇒∆(¬R)

Γ⇒∆,¬ϕ

Γ⇒∆, ϕ ψ,Θ⇒ Λ(→L)
ϕ→ ψ,Γ,Θ⇒∆,Λ

ϕ,Γ⇒∆, ψ(→R)
Γ⇒∆, ϕ→ ψ

Gentzen himself noticed that the intuitionistic system LJ can be obtained
from LK by assuming sequences of length at most one in succedents. Hence
(cR) and (eR) become void in LJ. In this thesis, we concentrate solely
on systems derived from LJ. Hence only one or no formula can occur
in succedents. Although this may seem a bit restrictive, it is, in fact, a
reasonable assumption, because many prominent substructural logics have
this property.

Now we are ready to express what are substructural logics for us—logics
described by sequent calculi obtained from LJ by dropping some (possibly
all) structural rules. We can and will study also other structural rules
(especially associativity), but the basic idea should be clear—some rules
describe the structure of proofs and other rules define how logical connectives
behave. We would like to keep these two groups separated. However, this
requires a more careful definition of logical rules, because several variants
that would be equivalent in LJ can easily be non-equivalent in logics lacking
some structural rules. This is not particularly surprising, because the
structural properties of proofs, and hence structural rules, also affect how
logical connectives behave.

6A rule is admissible in a calculus if its set of theorems remains the same regardless
of that rule.

4

1.2. Full Lambek calculus

For example, we could propose the following rules

Γ, ϕ, ψ,∆⇒ χ(·L)
Γ, ϕ · ψ,∆⇒ χ

Γ⇒ ϕ ∆⇒ ψ(·R)
Γ,∆⇒ ϕ · ψ

describing a new connective called product (also called fusion). It is easy
to prove that given all the structural rules as in LJ the connective · is
equivalent to ∧ defined before. However, if we have no structural rule this
is no longer the case. In fact, under such conditions we obtain a completely
new connective, which has the same properties as commas in sequents and
hence can serve as the connective for the concatenation operation we looked
for.

1.2 Full Lambek calculus
We have provided some warm-ups for substructural logics and indicated
how to obtain them from the sequent calculus LJ for intuitionistic logic.
Indeed, the basic system we are interested in, the Lambek calculus (L)
introduced in [Lam58], is obtained from LJ by dropping all the previously
mentioned structural rules. However, in L only three logical connectives are
allowed, namely product (·) and left (\) and right (/) implications. It has
the following (schema of) axiom and inference rules

(Id) ϕ⇒ ϕ
Γ, ϕ,∆⇒ ψ Θ⇒ ϕ(Cut)

Γ,Θ,∆⇒ ψ

Γ, ϕ, ψ,∆⇒ χ(·L)
Γ, ϕ · ψ,∆⇒ χ

Γ⇒ ϕ ∆⇒ ψ(·R)
Γ,∆⇒ ϕ · ψ

Γ, ϕ,∆⇒ ψ Θ⇒ χ(\L)
Γ,Θ, χ \ ϕ,∆⇒ ψ

ϕ,Γ⇒ ψ(\R)
Γ⇒ ϕ \ ψ

Γ, ϕ,∆⇒ ψ Θ⇒ χ(/L)
Γ, ϕ / χ,Θ,∆⇒ ψ

Γ, ϕ⇒ ψ(/R)
Γ⇒ ψ / ϕ

Likely the first question to ask is why we have two implications. The
reason is quite simple, we do not have the rule of exchange and hence there
are (at least) two natural ways how to define this connective.

Although we motivated this whole enterprise by introducing a connective
that differs significantly from standard conjunction, it can be still useful
to have also connectives that more resemble standard conjunction and

5

1.2. Full Lambek calculus

disjunction. In particular, it is common to assume also lattice connectives
join (∨) and meet (∧) which are given by

Γ, ϕ,∆⇒ ψ Γ, χ,∆⇒ ψ(∨L)
Γ, ϕ ∨ χ,∆⇒ ψ

Γ⇒ ϕi(∨R) for i = 1, 2
Γ⇒ ϕ1 ∨ ϕ2

Γ, ϕi,∆⇒ ψ(∧L) for i=1, 2
Γ, ϕ1 ∧ ϕ2,∆⇒ ψ

Γ⇒ ϕ Γ⇒ ψ(∧R)
Γ⇒ ϕ ∧ ψ

The Lambek calculus with such defined join and meet is called the Full
Lambek calculus (FL). However, it is more common to assume that FL
contains also a constant 1, which corresponds to the empty sequence in
antecedents, defined by

Γ,∆⇒ ψ(1L)
Γ, 1,∆⇒ ψ

(1R) ⇒ 1

Moreover, even such a logic is sometimes considered to be the positive
fragment of FL and FL requires also a constant 0. We are liberal in this
respect. In fact, each of two appendices uses a different convention. However,
their context makes it clear whether 1 is assumed or not and the constant 0
is of no significance to us.

From our point of view, clearly, an important role is played by structural
rules. In particular, we deal only with those affecting antecedents, namely
exchange (e), contraction (c), and left-weakening or integrality (i) that are
given by

Γ, ϕ, ψ,∆⇒ χ(e)
Γ, ψ, ϕ,∆⇒ χ

Γ, ϕ, ϕ,∆⇒ ψ(c)
Γ, ϕ,∆⇒ ψ

Γ,∆⇒ ψ(i)
Γ, ϕ,∆⇒ ψ

Structural rules are usually denoted by letters and their presence in a
logic is indicated by a sequence of such letters, in a subscript, appended to
the name of the original logic without them, e.g. FLc is FL with the rule of
contraction and FLec is FL with the rules of exchange and contraction.

The logics obtained from FL by adding a subset of those structural rules7
play a prominent role and are called basic substructural logics in [Gal+07].

7In fact, also the rule right-weakening (o) which is given by

Γ⇒(o)
Γ⇒ ϕ

is considered there. However, this rule plays no essential role here, because all our results
hold already in positive fragments and hence also with (o). Therefore we ignore this rule
completely. Moreover, it requires to allow also the empty sequence in succedents, called a
stoup. Note that if we have both (i) and (o) then we call them simply weakening (w).

6

1.3. Algebraic counterparts

Now we should define non-associative versions of previous logics. More
or less it only requires assuming trees of formulae in antecedents, unlike just
sequences of formulae we assumed so far, and hence using not only commas
but also brackets, e.g. the following is an example of a valid proof in the
non-associative version of L

p⇒ p

q⇒ q r⇒ r

(q, r)⇒ (q · r)
(p, (q, r))⇒ (p · (q · r))

(q, r)⇒ p \ (p · (q · r))
q⇒ (p \ (p · (q · r))) / r
⇒ q \ ((p \ (p · (q · r))) / r)

However, a complete presentation requires more subtle formal changes,
because a different approach to handle contexts is needed. For a formal
definition the reader can consult Definition A.2.1 in Appendix A. Never-
theless, for the purpose of this introduction, it makes little sense to discuss
these details here. The non-associative versions of L and FL are called
the Non-associative Lambek calculus (NL) and the Full Non-associative
Lambek calculus (FNL), respectively. Other logics are obtained from them
by adding structural rules as in the associative case, e.g. FNLc is FNL with
the rule of contraction. In fact, associativity is another structural rule, even
though one not considered by Gentzen. Its importance became apparent
when Lambek realized that non-associative structures are more suitable for
linguistic applications and with such motivations in mind he introduced NL
in [Lam61b].

1.3 Algebraic counterparts
In the previous section, we started with a calculus having an associative
product and only then we showed how to obtain the non-associative version
from it. This order makes no longer sense for algebraic structures, since
already the non-associative case is well-known in algebra.

An (algebraic) structure is a set with at least one finitary operation
defined on it. The structures with a (non-associative) binary operation
are called groupoids (or magmas). By abuse of notation, we use the same
symbols as in the previous section to emphasize that we only obtain two
different approaches to the same problem. Nevertheless, we usually follow
the standard terminology, i.e. connectives are operations and formulae are
terms. The previously mentioned binary operation (·) is again called product

7

1.3. Algebraic counterparts

or fusion. Moreover, if product is associative then such structures are called
semigroups.

We can expand our language in numerous ways. Semigroups with a unit
element (1) are monoids whereas we call groupoids with 1 simply groupoids
with unit. The crucial role, for our purposes, is played by lattice operations
join (∨) and meet (∧), especially the former one turns out to be essential
for us. Let 〈A,∨,∧〉 be a lattice then its reducts 〈A,∨〉 and 〈A,∧〉 are a
join-semilattice and meet-semilattice, respectively. A structure 〈A, ·,∨,∧〉 is
called a lattice-ordered groupoid if 〈A, ·〉 is a groupoid, 〈A,∨,∧〉 is a lattice,
and product distributes over join. Similarly, we obtain (semi)lattice-ordered
semigroups, monoids, and groupoids with unit. Alternatively, we can define
(semi)lattices in terms of partially ordered sets—a ≤ b iff a ∨ b = b iff
a = a∧ b—the order is induced by the (semi)lattice structure. For simplicity
of notation, we use the order as an abbreviation, e.g. using join, through
the text and hence a ≤ b is strictly speaking an equality.

The last pair of operations we are interested in are implications which
are defined by residuation laws. A lattice-ordered residuated groupoid
〈A,∧,∨, ·, \, /〉 is a structure such that 〈A,∧,∨〉 is a lattice, 〈A, ·〉 is a
groupoid, and for all a, b, c ∈ A hold residuation laws:

a · b ≤ c iff b ≤ a \ c iff a ≤ c / b.

This explains why operations \ and / are also called divisions in algebra.
Similarly, we obtain other structures—lattice-ordered residuated monoids
are known as residuated lattices (RL).

Recall that an identity s = t holds in a class of algebras K if for every
algebra A ∈ K and every homomorphism f from terms (formulae) into the
carrier set of A we have f(s) = f(t) in A. Hence s ≤ t holds in K if s∨ t = t
holds in K.

Moreover, if K is a variety of algebras V , i.e. the class of all algebras satis-
fying a given set of identities I, then s = t holds in K if it is possible, roughly
speaking, to obtain both t from s and s from t using the transformations
allowed by I.

1.3.1 Algebraic completeness

The importance of previously defined algebras stem from the fact that they
play the same role for logics we study as Boolean algebras play for classical
logic, for a detailed treatment of this topic see [Gal+07]. For example, let ϕ

8

1.3. Algebraic counterparts

and ψ be formulae then

ψ⇒ ϕ is provable in FL iff ψ ≤ ϕ holds in RL,
⇒ ϕ is provable in FL iff 1 ≤ ϕ holds in RL.

That is FL is complete with respect to RL. Note that we do not distinguish
corresponding operations and connectives. Hence formulae and terms are
mutually exchangeable and therefore a sequent ϕ ⇒ ψ has roughly the
same meaning as the identity ϕ ≤ ψ. Moreover, the empty sequence in
an antecedent can be naturally interpreted as 1. Strictly speaking, a more
complex structure than a formula or the empty structure can occur in an
antecedent, however, we can equivalently express it assuming commas are
interpreted as products.

In logic, we study which sequents, and therefore formulae, are provable
in a given logic. The direct algebraic counterpart of this problem is the
equational theory of a corresponding class of algebras K, the set of all
identities (equations) valid in K.

We can easily rephrase also the provability from a set of sequents S in
algebraic terms and vice versa. It suffices to restate all sequents in S as
identities or the other way around. The corresponding problem, whether an
identity s = t holds in a class of structures K given a finite set of identities
E = {s1 = t1, . . . , sn = tn}, is called the quasi-equational theory of K. In
other words, we ask whether the quasi-identity

(s1 = t1 and . . . and sn = tn) implies s = t (1.1)

holds in K. Note that, more precisely, we have the universal closure of (1.1).
In logical terms, this is equivalent to the provability of both s⇒ t and t⇒ s
from {s1 ⇒ t1, t1 ⇒ s1, . . . , sn ⇒ tn, tn ⇒ sn}. A more general problem is
called the universal theory of K, where any Boolean form is allowed and not
only those satisfying (1.1), i.e. the set of first-order universal sentences valid
in K.

On the contrary, a more specific problem is the word problem. The word
problem for a variety of algebras V, given by a set of identities I, is the
question whether (1.1) holds in V given a fixed finite set E and hence only
s and t remain inputs now.8 Roughly speaking, both transformations given
by I and E are allowed. There is, however, a significant difference between
I and E. Unlike all instance of transformations from I are usable, only
explicit members of E are usable.

8We assume a finite set of generators, i.e. all terms (formulae) occurring in E ∪ {s, t}
contain only variables from this set.

9

1.4. Decidability in substructural logics

It is hardly surprising that structural rules we have mentioned have a
very clear algebraic meaning. In sequent calculi they express properties
of comma in antecedents and hence correspond to properties of product
here. We have already discussed associativity. Clearly, the exchange rule is
equivalent to commutativity (x · y = y · x). Similarly, the contraction and
left-weakening rules correspond to the properties of being square increasing
(x ≤ x ·x) and integral (x ≤ 1), respectively. Note that both these properties
can be equivalently expressed as x∧ y ≤ x · y and x · y ≤ x∧ y, respectively.
This clarifies the role played by structural rules in the relation between
product and meet.

1.4 Decidability in substructural logics
The most natural decision problem we can formulate for a logic is arguably
provability in it. In fact, there are two different problems, since the deduction
theorem often does not hold in substructural logics. First problem is to
decide whether a formula is provable (a theorem) in the logic. Second and a
more general problem, which is called the deducibility problem for the logic
(or its finite consequence relation), is to decide whether a formula is provable
in the logic from a finite set of formulae.

Many of these decision problems in substructural logics are decidable,
but not all of them. In this thesis we show such undecidability results.
Nevertheless, let us concentrate on decidability results first.

A common way how to prove that a substructural logic has a decidable
set of theorems is using the cut elimination, the property all logics9 we are
interested in have. Assume we have a logic without the contraction rule and
we want to decide whether a sequent is provable in it. This can be done
easily by checking all the possible proofs of that sequent, since there are
only finitely many of them.

The argument is rather straightforward. First, we can check only cut-free
proofs. Second, all rules, except for the exchange rule (and associativity),
have the property that sequents are always derived only from strictly “simpler”
sequents. Finally, the exchange rule (and associativity) can be handled by
assuming a suitable structure in antecedents, e.g. we consider multisets of
formulae instead of their sequences.

9In logics with the contraction rule this may require a slightly modified definition of
this rule; we allow whole structures to be contracted not only formulae. However, both
definitions are equivalent if product is in the language. Moreover, the cut elimination is a
little bit more complicated if proofs from assumptions are allowed, cf. Theorem A.2.2.

10

1.4. Decidability in substructural logics

If the logic in question has the contraction rule then the situation is
entirely different. The previous argument, clearly, fails, since if a sequent
is not provable then there might be infinitely many conceivable proofs
to check. However, it is still possible to prove the decidability of LJ
(and LK) using cut-free proofs. Already Gentzen noticed that there are
always only finitely many proofs which need to be checked, assuming some
redundancies among them. The decidability of FLec is proved in [KO91]
and uses the combinatorial idea developed by Kripke [Kri59] to prove that
the implicational fragment of FLec is decidable and further extended by
Meyer in his doctoral thesis [Mey66].

On the other hand, in Appendix B we show that FLc is undecidable.
Therefore the contraction rule can make the proof-search “essentially” infinite.

An algebraic way how to prove decidability is via the Finite Model
Property (FMP). We take a class of algebras corresponding to a given logic.
A class of algebras K has the FMP if for any identity s = t that fails in K
there exists a finite algebra B ∈ K such that s = t fails in B. A finitely10

axiomatizable class of algebras K with the FMP has a decidable equational
theory. On the contrary, a decidable equational theory does not imply
the FMP.

A stronger property than the FMP is the Finite Embeddability Property
(FEP). A class of algebras K has the FEP if every finite subset of an A ∈ K
has an isomorphic copy in a finite algebra B ∈ K. Roughly speaking, the
FEP is equivalent to the fact that for every quasi-identity

∧
E → s = t,

where E is a finite set of equalities, that fails in K there exists a finite
algebra B ∈ K such that

∧
E → s = t fails in B. A finitely axiomatizable

class of algebras K with the FEP has a decidable universal theory and hence
also a decidable word problem. This is a standard way how to prove that
the deducibility problem for a logic is decidable.

The FEP for logics with the left-weakening rule is proved in [BA05].
Note that both the associative and non-associative cases are studied there.
The decidability of the deducibility problem for FLec follows from the fact
that this logic has a form of the deduction theorem, see [Urq99]. Moreover,
it is known that FLec has the FEP, see [Alt05], and hence it has a decidable
universal theory. In the non-associative case it is known that even the
deducibility problem for NL is decidable [Bus05] and, in fact, it is possible
to prove the FEP for the fragment of FNL without join, see [Far08].

A brief overview of some known results, which are most relevant to
our thesis, is in Table 1.1. The undecidability results mentioned there are
discussed in Sections 1.6 and 1.7.

10Note that this property is necessary, see [Urq81].

11

1.5. Simple undecidable problems

Theorems Deducibility problem
FL decidable undecidable
FLe decidable undecidable
FLc undecidable (see Appendix B) undecidable
FLec decidable decidable
FLi decidable decidable
FNL decidable undecidable (see Appendix A)
FNLe decidable undecidable (see Appendix A)
FNLc undecidable (see Appendix A)
FNLec undecidable (see Appendix A)
FNLi decidable decidable

Table 1.1: Some substructural logics related to this thesis and their decidab-
ility.

1.5 Simple undecidable problems
Undecidability results are usually proved by encoding a problem which
is already known to be undecidable into the formal system in question.
There are many problems that have been shown to be undecidable since
Church [Chu36b; Chu36a] and Turing [Tur37; Tur38] independently proved
that there is no algorithm to solve the Entscheidungsproblem.11 In this
section we define some very simple formal systems which have undecidable
halting problems. These systems are used in both appendices to prove our
results.

We should emphasize that the systems we are about to define can
compute the same problems as a universal Turing machine, but they are
computationally inefficient. In fact, they were not constructed to perform
real computations. Indeed, their sole purpose is to be as simple as possible
but still universal computational models.

Our ultimate goal is to faithfully express such a computational system
by formulae in a given logic. The systems to be defined later are particularly
suitable for this purpose. However, there are further systems that has been
used to prove celebrated undecidability results in logic, e.g. variants of tiling
or the Post correspondence problem.

Let us emphasize that some parts of this section are more detailed and
technical than necessary. Actually, even some proofs are sketched despite the
fact that they are not original. Our sole motivation was to provide a deeper
insight into such models of computation, because they play important roles

11These and other seminal papers on undecidability can be found in [Dav65].

12

1.5. Simple undecidable problems

in both appendices. However, the reader not interested in technical details
is kindly asked to skip parts of this section at her or his discretion.

1.5.1 Counter machines

First, we introduce counter machines that were formalized by Minsky [Min61]
and for that reason they are sometimes called after him Minsky machines.
However, similar models were independently proposed by many authors.
Therefore they occur in literature under different names and in many vari-
ants. In our context it is interesting to mention at least Lambek’s infinite
abacus [Lam61a].

Roughly speaking, they are Turing machines12 with a different data struc-
ture and hence also instructions. Therefore they are deterministic and have
finitely many states. As their title suggests, they have several unbounded
counters, i.e. integers, instead of a tape. The available instructions are very
simple—we can only increment and decrement these counters. However, the
later instruction contains a test. If we attempt to decrement a counter which
is equal to zero then it remains equal to zero but the computation continues
in a different state. Hence this instruction has two possible outcomes.

Definition 1.5.1. An n-counter machine is a pair 〈m, τ〉, where the non-
zero n ∈ N is the number of its counters, the non-zero m ∈ N is the number
of its states, and

τ : [1,m]→{INC} × [1 . . . n]× [0 . . .m]∪
{DEC} × [1 . . . n]× [0 . . .m]× [0 . . .m]

is the program performed by the machine.

The meaning of the previous definition becomes clear from how an n-
counter machine 〈m, τ〉 computes over counters c1, . . . , cn. The computation
begins in the initial state 1 by performing τ(1). The meaning of τ is as
follows.

If τ(i) = 〈INC, c, j〉 then in the state i we increment the counter cc
and switch over to the state j. If τ(i) = 〈DEC, c, j, k〉 then in the state i
two outcomes are possible. If the counter cc is not equal to zero then we
decrement it and switch over to the state j. Otherwise, the counter cc is
equal to zero and hence we just switch over to the state k leaving counters

12For our purposes, we need not care much which particular definition of a Turing
machine we deal with. For example, assume we have a standard definition with an
unbounded tape over a binary alphabet.

13

1.5. Simple undecidable problems

untouched. Whenever a machine reaches the final state 0 its computation
ends. Therefore τ(0) is undefined.

We say that an n-counter machine 〈m, τ〉 accepts an input 〈c1, . . . , cn〉,
an initial value of counters, if the computation of this machine over the
given input ends after finitely many steps in the final state 0 with all the
counters c1, . . . , cn equal to zero. Otherwise, we say that the machine rejects
the input.

Example 1.5.1. We show a non-trivial computation by a 2-counter machine,
how it can compute the well-known function from the Collatz conjecture
(3n+ 1 conjecture).13 The function f : N→ N is given by

f(n) =

{
n/2 if n is even,
3n+ 1 if n is odd.

The Collatz sequence for n is the sequence n, f(n), f(f(n)), . . . and the
Collatz conjecture says that 1 occurs in the Collatz sequence for any n > 0.

We construct a 2-counter machine that accepts the input 〈n, 0〉 iff 1
occurs in the Collatz sequence for n. The program is in Table 1.2. First,
the machine tests whether n is equal to 1. If so it terminates. Otherwise, it
computes the Collatz function (or cycle if n = 0) of n. It decides whether
the first counter is even or odd. During this process the first counter is
moved to the second counter. Finally, the value of f(n) is computed in
the first counter and the second counter is cleared. The whole process is
repeated until the first counter is equal to 1.

Naturally, our interest in these systems follows from the following the-
orem.

Theorem 1.5.1 ([Min61]). A 2-counter machine can simulate a Turing
machine.

Idea of proof. A nice proof is based on a chain of reductions, for further
details see [Min67; Sch72]. Assume we have a Turing machine with a tape
over a binary alphabet. First, we can easily simulate the tape by two
stacks, since the position of the machine’s head halves the tape into two
stacks. Second, a stack can be simulated by two counters. A stack is just
a binary number and we can store it, in the reverse order, in a counter.
Another counter is needed to perform the necessary operations and tests.
Finally, we can easily represent finitely many counters by a counter using

13This function has a close connection to the decidability of some simple Turing
machines and other systems, see [De 08].

14

1.5. Simple undecidable problems

State Instruction Meaning
1 〈DEC, 1, 2, 17〉 n > 0?
2 〈DEC, 1, 3, 0〉 n = 1?
3 〈INC, 1, 4〉
4 〈INC, 1, 5〉
5 〈DEC, 1, 6, 9〉 n even?
6 〈INC, 2, 7〉
7 〈DEC, 1, 8, 12〉 n odd?
8 〈INC, 2, 5〉
9 〈DEC, 2, 10, 1〉 n/2 branch
10 〈DEC, 2, 11, 17〉
11 〈INC, 1, 9〉
12 〈DEC, 2, 13, 16〉 3n+ 1 branch
13 〈INC, 1, 14〉
14 〈INC, 1, 15〉
15 〈INC, 1, 12〉
16 〈INC, 1, 1〉
17 〈INC, 1, 17〉 infinite loop

Table 1.2: The Collatz sequence computed by a 2-counter machine.

a Gödel numbering and another counter is again needed to perform the
necessary tests and operations, e.g. multiplying and dividing. In fact, a
single counter suffices if we have multiplication and division by constants as
instructions.

Corollary 1.5.2. The halting problem for 2-counter machines is undecid-
able.

Remark. It is worth noting that there is no 2-counter machine that can
compute 2a from the input 〈a, 0〉, see [Sch72]. The point is that the whole
coding in Theorem 1.5.1 is based on the fact that both the input and output
of the “real” computation are encoded as the input of the 2-counter machine.

1.5.2 Rewriting systems

A formalism closer to logic is rewriting. We can understand the provability
of ϕ⇒ψ in L as a rewriting problem—we try to rewrite ϕ into ψ. For these
reasons it can be useful as a middle step in proving undecidability results in

15

1.5. Simple undecidable problems

logic. There are many rewriting systems. We concentrate on string rewriting
systems and their more general variant, called term rewriting systems.

String rewriting systems

A formal definition of string rewriting systems complies with the intuitive
meaning suggested by their name. A string rewriting system (or semi-Thue
system) is a tuple 〈Σ, R〉, where Σ is an alphabet and R ⊆ Σ∗ × Σ∗ is a
binary relation on strings over Σ. A member 〈x, y〉 of R is called a (rewriting)
rule and we write it x R y.

Two strings u and v are in a single-step reduction relation→R ∈ Σ∗×Σ∗,
we write it u→R v, if x R y, u = sxt, and v = syt for some strings x,
y, s, and t. Clearly, this generalizes to a finite-step reduction relation →∗R
which is the reflexive transitive closure of→R. The problem whether u→∗R v
holds, for a fixed v, is usually called the reachability problem. Note that R
is usually clear from the context and hence we do not write it explicitly. For
further details see e.g. [Ter03; BO93].

Example 1.5.2. We again show how to compute the Collatz sequence.
Assume we have the following rewriting rules:

q11 11q 11qB e1B q1B o1111b

11e e1 1o o111

Ae Aq Ao Aq

It holds Aq1nB→∗ Aq1B iff 1 occurs in the Collatz sequence for n. The
integer n is represented by the sequence of n consecutive symbols 1 (denoted
by 1n), A and B are stoppers, and q, e, and o are pointers.

Assume we have Aq1nB. The rule in the first column moves the pointer
q right in steps of length two. Sooner or later this rule is no longer applicable.
Then the first rule in the second or third column is used and hence n was
even or odd, respectively. In the former case we replace the pointer q by e
and move it left halving the number of 1’s. In the later case we replace the
pointer q by o and also move it left while we triple the number of 1’s, the
plus one part is performed during the first step. Finally, in both cases, we
reach the left stopper A and then change e or o back to q.

It is hardly surprising that string rewriting systems are expressive enough
to interpret 2-counter machines. The following lemma, and its proof, is sort
of folklore, cf. [KS95].

Lemma 1.5.3. A string rewriting system can simulate a 2-counter machine.

16

1.5. Simple undecidable problems

Idea of proof. A configuration of a 2-counter machine 〈τ ,m〉 is fully determ-
ined by a triplet 〈i, c1, c2〉, where i is its state and c1 and c2 are values of the
first and second counter, respectively. This triplet can be represented by the
string Aac1qibc2B. Given such a representation it is rather straightforward
how to describe the instructions of the 2-counter machine by rewriting rules.
INC is easy and DEC is only slightly more complicated. Say we want to
simulate an instruction τ(i) = 〈DEC, 1, j, k〉. Then the following two rules

aqi qj

Aqi qk

are sufficient. Note that the second rule handles the case when the first
counter is equal to zero. For exactly these reasons we use stoppers A and B.

Hence the 2-counter machine accepts an input 〈d1, d2〉 iff Aad1q1b
d2B→∗

Aq0B in the string rewriting system obtained.

Corollary 1.5.4. The reachability problem for string rewriting systems is
undecidable.

Our main motivation to show the previous results is that the undecidab-
ility of the deducibility problem for L follows easily, albeit string rewriting
systems are interesting in their own right. An interpretation of a string
rewriting system in terms of sequent calculi is straightforward—the members
of Σ are atoms and hence members of Σ∗ are atoms connected by products,
i.e. formulae containing only product. Clearly, all rules x y can be inter-
preted as sequents x⇒ y and a reachability problem u→∗ v as the problem
whether or not u⇒ v is provable from such a set of sequents.

Corollary 1.5.5. The deducibility problem for the Lambek calculus L is
undecidable.

In fact, both previous corollaries follow from the following celebrated
result proved independently by Post and Markov. It is not only important
for our purposes here, but it is worth mentioning that it is one of the first
“natural” undecidability results at all.

Theorem 1.5.6 ([Pos47; Mar47a; Mar47b]). The word problem for semig-
roups is undecidable.

This is, clearly, a stronger result than those following from Lemma 1.5.3,
but the same proof works here, albeit equalities allow rewriting in both
directions the proof is robust in this respect.

We conclude this section with Tseitin’s result which is a stronger variant
of the previous theorem, but it has, first and foremost, a remarkably short

17

1.5. Simple undecidable problems

presentation. Moreover, it provides an example of a seemingly easy problem
presentable in plain terms which is undecidable.

Theorem 1.5.7 ([Tse58]). The problem whether a word is equal to the word
aaa assuming

ac = ca bc = cb eca = ce cdca = cdcae caaa = aaa

ad = da bd = db edb = de daaa = aaa

is undecidable.

Term rewriting systems

It is quite obvious that more general structures than strings are required
for rewriting systems to be able to deal with non-associativity or formulae
(terms) in general. However, we can obtain such rewriting systems, called
term rewriting systems, roughly in a similar way to the way NL is obtained
from L. In fact, the objects in term rewriting systems are general terms,
but it is pointless to restate all definitions for string rewriting systems from
scratch because they generalize straightforwardly, for details see [Ter03].
Indeed, in string rewriting systems we replace a substring of a string by
another string and in term rewriting systems we replace a subterm in a term
by another term.

There is, clearly, a term rewriting system, satisfying some additional
properties, which has an undecidable reachability problem, since a string
rewriting system is a term rewriting system with a single binary operation
satisfying associativity.

1.5.3 Tag systems

The last computational models we discuss here are tag systems. They
were proposed by Post [Pos43] and again process finite words. Let A =
{a1, . . . , am} be a finite alphabet of letters. A set of production rules (a
program) is given by a function π : [1,m]→ A∗, where A∗ is the set of finite
words over A.14 The computation of the n-tag system given by A and π on
a word w ∈ A∗ is defined as follows.

If |w| < n we terminate. Otherwise, we examine the first letter in w,
which is some ai. Then we delete the first n letters in w and append π(i) to
the rest of the word after the last letter and obtain a new word.

We repeat this process until it is possible, i.e. we can run forever or at
some point we terminate—we obtain a word with less than n letters. We use

14For convenience, we use π(ai) instead of π(i) later in this section.

18

1.5. Simple undecidable problems

↓ for such a word. In the later case we say that the n-tag system terminates
on w and write w ∗A,π ↓.

Example 1.5.3 ([De 08]). We have a 2-tag system over the alphabet {a, b, c}
with the production rules

π(a) = bc,

π(b) = a,

π(c) = aaa.

A computation of the 2-tag system on a suitable input simulates the Collatz
sequence. We start with a natural number k which is encoded as ak, a
unary encoding as in string rewriting systems. The computation terminates
on ak, for n > 0, iff 1 is in the Collatz sequence for k. For example, the
computation for k = 3 is

aaa→ abc→ cbc→ caaa→ aaaaa→ aaabc→ abcbc→
cbcbc→ cbcaaa→ caaaaaa→ aaaaaaaa→ aaaaaabc→
aaaabcbc→ aabcbcbc→ bcbcbcbc→ bcbcbca→ bcbcaa→

bcaaa→ aaaa→ aabc→ bcbc→ bca→ aa→ bc→ a.

Note that during the computation sequences of a’s occur, but the com-
putation of the Collatz sequence is shortened a bit. Whenever we should
obtain a3l+1 from al, for an odd l > 1, we skip this step and obtain a(3l+1)/2

immediately.

Example 1.5.4. A nice example of a 3-tag system over a binary alphabet
with the rules π(0) = 00 and π(1) = 1101 was created by Post [Pos43].
However, to our knowledge, the problem whether the halting problem for
this particular system is decidable remains open. For nice remarks on
this example see Minsky’s book [Min67, pp. 267–268]. Note that it is
quite possible that this problem is very closely connected with the Collatz
conjecture, see [De 09].

Theorem 1.5.8 ([CM64; Wan63]). A 2-tag system can simulate a 2-counter
machine.

Idea of proof. We roughly imitate constructions from [CM64] and [Wan63]
here. A configuration of a 2-counter machine 〈m, τ〉 is given by a triplet
〈i, c1, c2〉, where i is its state and c1 and c2 are values of the first and second
counter, respectively. Such a triplet can be represented by

qiqi(aiai)
2c1 (bibi)

2c2 . (1.2)

19

1.5. Simple undecidable problems

Note that all symbols are doubled, since 2-tag systems ignore every second
symbol.

Assume that τ(i) = 〈INC, 1, j〉, i.e. we increment the first counter and
change the machine’s state to j. This can be simulated by the following15

production rules of a 2-tag system

π(qi) = qjqj, π(ai) = ajajajaj, π(bi) = bjbj

and hence we get qjqj(ajaj)2c1+1
(bjbj)

2c2 from (1.2).
Clearly, a more complicated part is decrementing, since it contains a

test. Assume that τ(i) = 〈DEC, 1, j, k〉, i.e. we increment the first counter
and change the machine’s state to k if c1 = 0 or to j if c1 > 0. We add the
following rules

π(qi) = q′ijkq
′
ijk, π(ai) = a′i, π(bi) = b′ijb

′
ik.

Hence we obtain q′ijkq′ijk(a′i)2c1 (b′ijb
′
ik)

2c2 from (1.2). Note that if c1 = 0 then
there is only one a′i which means that the whole produced word has an odd
length and hence, roughly speaking, different letters are processed than if
c1 > 0. The computation continues using

π(q′ijk) = q′′ijq
′′
ik, π(a′i) = a′′ja

′′
k, π(b′ij) = b′′j b

′′
j , π(b′ik) = b′′kb

′′
k.

Hence we get q′′ijq′′ika′′ja′′k(b′′kb′′k)2c2 if c1 = 0 or q′′ijq′′ik(a′′ja′′k)2c1−1
(b′′j b

′′
j)

2c2 if c1 > 0.
The decrementing is completed by applying

π(q′′ij) = qjqj, π(a′′j) = ajaj, π(b′′j) = bjbj,

π(q′′ik) = qkqkqk, π(a′′k) = akak, π(b′′k) = bkbk.

Therefore we get qkqkqk(akak)20(bkbk)
2c2+1 if c1 = 0 or qjqj(ajaj)2c1−1

(bjbj)
2c2

if c1 > 0.
It remains to show how to handle the final state q0. For these purposes

we add rules

π(q0) = q′0, π(q′0) = q′′0 , π(q′′0) = q′′′0 , π(q′′′0) = q′′′0 q
′′′
0 ,

π(a0) = a′0, π(a′0) = a′0a
′
0,

π(b0) = b′0b
′
0, π(b′0) = b′′0, π(b′′0) = b′′0b

′′
0.

which give us q0q0a0a0b0b0 → a0a0b0b0q
′
0 → b0b0q

′
0a
′
0 → q′0a

′
0b
′
0b
′
0 → b′0b

′
0q
′′
0 →

q′′0b
′′
0 → q′′′0 .

15It is possible to modify these rules in order to get at most three symbols on the right
side. This is, obviously, the best possible such an optimization, for details see [Wan63].

20

1.6. Undecidability in substructural logics

Note that 1-tag systems are decidable. It is possible to obtain an explicit
upper bound, given an input and a 1-tag system, on the number of steps
after which we get a repetition if the computation does not halt, for details
see [Wan63].

1.6 Undecidability in substructural logics
It is, as far as we know, quite rare for a “natural” substructural logic to have
an undecidable set of theorems. A well-know example, and the first one
discovered, is the relevance logic R, which is a fragment of the involutive
distributive FLec. The undecidability of its positive fragment was proved by
Urquhart [Urq84] using among other things the undecidability of the word
problem for modular lattices obtained independently by Hutchinson [Hut73]
and Lipshitz [Lip74].

Similarly, the variety of modular residuated lattices has an undecidable
equational theory, a fact observed in [JT02], since the undecidability of the
equational theory for modular lattices was proved by Freese [Fre80].

There are some other examples, the linear logic being the prominent one.
In this case, however, its undecidability [Lin+92] follows from the expressive
power of exponentials and, in our language, it corresponds to the fact that
the deducibility problem for FLe is undecidable.

The undecidability of the deducibility problem is a more widespread
phenomenon. We have discussed how to prove that the deducibility problem
for L, and hence FL, is undecidable using 2-counter machines. We could
try to modify their encoding, see the proof of Lemma 1.5.3, to show similar
results for other logics.

We have mentioned that the deducibility problem for FLe is undecidable.
In the setting with the exchange rule we have the following problem. A
standard way to test the equality of a counter to zero is by checking whether a
qi, the symbol used to represent the state i, is next to a stopper. The exchange
rule, however, can arbitrarily shuffle letters and hence that approach is no
longer possible.

Nevertheless, a solution exists, it is possible to check empty counters
using join. Roughly speaking, we do not rewrite a word, representing a
machine’s state before a given step of a computation is performed, into
another word, representing a machine’s state after it. Instead, in this case
we rewrite a word into two words connected by join. One of them has the
standard meaning, but the other one certifies that the counter is really
empty. The idea to use join in this context occurred in [Lin+92] and was

21

1.7. Our results

simplified in [Kan95]. It is worth emphasizing that we use join in a similar
fashion in both appendices, however, in a more involved way.

Another reasonable candidate for the undecidability of the deducibility
problem is Lc. Unfortunately, the contraction rule, clearly, ruins the con-
struction, since the counters are represented by a unary encoding (sequences
of letters), which can be contracted. If we know that AanqibmB⇒ Aq0B, a
standard representation of the fact that a 2-counter machine accepts the
input 〈n,m〉 in the state i, is provable, then Aan

′
qib

m′B ⇒ Aq0B is also
provable, by the contraction rule, for any two numbers 0 < n′ ≤ n and
m′ ≤ m.

However, there is a remedy to this problem. Obviously, if only square-free
words, which contain no subword uu, could occur then the contraction rule
would be inapplicable. The representation of words by their square-free vari-
ants is a well-known problem investigated already by Axel Thue, see [Lot02].
In fact, it is possible to represent a unary sequence, e.g. an, by a square-free
sequence over an alphabet containing at least three symbols. Therefore the
deducibility problem for Lc, and hence also for FLc, is undecidable. The
whole construction, inspired by [KS95], can be found in [Hor15], however, a
brief exposition is also in Section B.3.

Recall that the deducibility problem for FLec is decidable. It means
that it is not possible to combine previous two ideas together. Indeed, it
is impossible to produce a suitable encoding which would be immune both
to the rules of contraction and exchange. Similarly, it is clear that the left-
weakening rule also ruins presented encodings completely, a not particularly
surprising fact assuming the known decidability results for logics containing
this rule.

1.7 Our results
Finally, we reached the last section of this introduction, where the results
from both appendices are discussed briefly. After all, these results constitute
this thesis. Although both appendices are completely independent, they
share some common ideas. In particular, the way join is used in Appendix A
is also essential in Appendix B.

1.7.1 Consequence relation in FNL (see Appendix A)

In Appendix A we deal with non-associative logics and show that the
deducibility problem (finite consequence relation) for FNL is undecidable.
Note that all undecidability results we have discussed so far use associativity

22

1.7. Our results

in an essential way. This is not a mere coincidence, the deducibility problem
for NL is decidable and hence our results cannot be obtained solely by a
more involved representation of words. Therefore lattice connectives are also
necessary. In particular, the essential connective, in addition to product, is
join, because it is possible to show, using the FEP, that the deducibility
problem for FNL without join remains decidable [Far08].

Anyway, we still need to express a machine’s state, given by a word, in
our non-associative setting. A straightforward way is to take the word, a
sequence of letters, and impose a fix convention on bracketing in it. In our
case, it is convenient to assume that all brackets tight to the right side, e.g.
abcd is represented by (a(b(cd))).

The above representation, clearly, has its drawbacks. Assume we simulate
a computation and we are in a state represented by a word ab . . . cd with
a finite but otherwise unrestricted length. In our representation, it means
we have (a(b(...(cd) . . .))). If the next state of the computation is obtained,
for example, by rewriting ab into e then, obviously, we have a problem.
Similarly, it would be unclear how to rewrite a into ef and still keep our
convention on bracketing.

It is possible, however, to overcome these problems using join, but we can
simplify our situation even more by using a suitable computational model
to start with. It turns out that 2-tag systems are very convenient in our
situation. Roughly speaking, they require three things. First, we need to
delete pairs of symbols. It is fairly easy, since deleting is the most elementary
operation we can imagine here. Second, we need to append symbols. It is
a routine matter to perform that, since our bracketing makes it possible
to manipulate the end of a word in the same way as in the associative
case. Clearly, the problem is to manipulate other parts. Finally, we need to
perform previous operations correctly—the symbols to be appended entirely
depend on the first symbol and the deleting and appending steps, loosely
speaking, need to pass the baton between them. Therefore we need some
tests to handle this, which is, clearly, the crucial part of our construction.

Roughly speaking, the use of join makes it possible to constrain the use
of deleting and appending steps. We refer the reader to Appendix A for
details and further technical tricks. However, an example illustrating one of
techniques is appropriate.

Example 1.7.1. Let S, a tree of formulae, be a non-associative equivalent
to a context Γ, a sequence of formulae, for details see Section A.2. We
assume that a sequent (e, S)⇒ T ∨ A is already provable meaning (e, S)
represents a state of a computation which terminates (T) or it is an auxiliary
word (A). Indeed, the former variant holds for (e,S) here.

23

1.7. Our results

Assume that a state represented by (b,S) precedes the state represented
by (e, S) in a computation if S satisfies some additional properties, i.e. it is
possible to rewrite b into e only under such additional conditions. Therefore
we introduce an auxiliary symbol be and make it possible to prove (be,S)⇒A
only if all conditions for rewriting b into e are fulfilled. Then, using an
assumption b⇒ e ∨ be, we can deduce

...
(e, S)⇒ T ∨ A

...
(be,S)⇒ A

(be,S)⇒ T ∨ A
(e ∨ be,S)⇒ T ∨ A b⇒ e ∨ be

(b, S)⇒ T ∨ A

Hence b⇒ e ∨ be makes it possible to rewrite b into e only if we have a
witness, namely be, certifying that all other conditions are fulfilled. It is a
variant of conditional rewriting, which is used explicitly in Appendix B.

The main theorem proved in Appendix A is the following.

Theorem 1.7.1. The deducibility problem for FNL is undecidable.

We would like to emphasize that the whole construction works due to
an interplay between product and join. Namely, it is crucial that product
distributes over join. Indeed, it is really sufficient to have sequents containing
only product and join and therefore such a fragment is already undecidable.
Moreover, it is possible to get rid of products and use implications instead
of them and hence the fragment of FNL with only an implication and join
is also undecidable. Although it is an easy consequence of the original
construction, it is not mentioned in Appendix A, because it made no sense
to discuss it in the paper without going into technical details. However, the
only non-trivial step required to prove this, roughly, occurs in Appendix B
and hence all the necessary pieces are, more or less, available now.

Theorem 1.7.2. The deducibility problem for the fragment of FNL con-
taining only an implication and join is undecidable.

Idea of proof. In a nutshell, the sequents occurring in our construction are
of a very limited shape, namely

ϕ⇒ ψ or ϕ⇒ ψ ∨ χ

where all ϕ, ψ, and χ are of the form p1 · (· · · (pn−1 ·pn) · · ·), for pi atoms and
n > 0. Moreover, every sequent of the form ϕ⇒ ψ ∨ χ can be equivalently

24

1.7. Our results

expressed by ϕ⇒ q1 ∨ q2, q1⇒ ψ, and q2⇒ χ, for fresh atoms q1 and q2.
Hence we can assume every sequent contains in the succedent a join of atoms
or a formula of the form p1 · (· · · (pn−1 · pn) · · ·).

Any sequent containing products as the only connective in the succedent
can be equivalently expressed by sequents having only an atom or a join
of atoms in their succedents using the same technique as in Appendix B
where string rewriting systems are transformed into atomic conditional
string rewriting systems, see Section B.3.2. Although some modifications
are necessary, we believe that the interested reader can deal with them.

Hence we can assume that all the sequents are of the form

s1 · (· · · (sn−1 · sn) · · ·)⇒ r1 ∨ · · · ∨ rm

for n ≥ 0 and m > 0 where all si and rj are atoms. Any such a sequent is,
obviously, equivalent to

⇒ sn \ (. . . \ (s1 \ (r1 ∨ · · · ∨ rm)) . . .),

which completes the proof. Clearly, it is possible to adapt the whole
construction to work with / instead of \. Roughly speaking, all brackets
then tight to the left side and symbols in words encoding tag systems occur
in the reverse order.

The whole original construction is quite robust in the way that almost
no modifications are required to show that the problem remains undecidable
if the rule of contraction or exchange, or even both, are added. In fact, it
is possible to show the same for other modifications.16 On the contrary, if
the distributive laws hold for join and meet then the deducibility problem
becomes decidable [BF09]. Note that these distributive laws influence not
only the provability of formulae containing join and meet, but they change
also the set of formulae provable in the fragment containing only product and
join. Another simple modification worth mentioning is that the one-variable
fragment of FNL is already undecidable.

It is also possible to express our results in algebraic or term rewriting
terms. Therefore we prove that some word problems and reachability
problems are undecidable. It turns out that these problems are undecidable
even in weaker systems than those obtained as the direct counterparts of
logics we study.

16For example, if we have the rule called mingle which is, algebraically speaking,
expressed by xx ≤ x or xy ≤ x ∨ y.

25

1.7. Our results

1.7.2 Theorems in FLc (see Appendix B)

Now we confine our attention to Appendix B which deals with associative
structures and a different problem. The main theorem proved in Appendix B,
which is a joint work with Rostislav Horčík, is the following.

Theorem 1.7.3. The set of theorems in FLc is undecidable.

In fact, it is possible to show that this already holds for the fragment
of FLc containing only join, meet, and an implication. Therefore already
the positive fragment of FLc is undecidable. On the contrary, Lc is decid-
able [Bim14, Section 9.1.5].

Our proof works as follows. We start with the string rewriting system de-
veloped to prove that the deducibility problem for FLc is undecidable [Hor15],
see also Section 1.6. Recall that it uses only square-free words to make
the contraction rule inapplicable. We show how to express the reachability
problem for that string rewriting system in terms of provability in FLc.

The given string rewriting system can be equivalently represented as,
what we call, an atomic conditional string rewriting system. Those systems
permit only letters on the right side of rewriting rules, but they allow us
to restrict the use of these rules by specific contexts, cf. the use of join in
Appendix A.

It is possible to encode a reachability problem in such a new system
directly in FLc. Roughly speaking, the above-mentioned conditionality can
be expressed by join, the rewriting relation corresponds to an implication,
and a set of rules is a meet of their representations.

Note that the proofs of correctness and completeness of our encoding are
algebraic. In fact, we show that the equational theory of square-increasing
residuated lattices, which are a sound and complete algebraic semantics for
(the positive fragment of) FLc, is undecidable. It is not essential, but such an
approach seems to be more convenient than a proof-theoretical one. However,
all arguments would remain the same regardless of the method used.

We can formulate an interesting corollary of our main theorem. As the
set of theorems in FLc is recursively enumerable but not recursive, it is
possible to get the following variant of the deduction theorem. The way we
obtain it is purely algorithmic and hence it differs significantly from how
“standard” deduction theorems look like.

Corollary 1.7.4. Let Γ ∪ {ϕ} be a finite set of formulae. There is an
explicit algorithm that produces a formula ψ (given an input ϕ and Γ) such
that ψ is provable in FLc iff ϕ is provable in FLc from Γ.

26

1.7. Our results

Moreover, the above formula ψ, clearly, needs to contain only join, meet,
and an implication.

A natural question to ask is whether or not it is possible to connect the
results in both appendices and prove that the non-associative variant of
FLc has an undecidable set of theorems as well. Unfortunately, I have no
definite answer to this problem, since I have thought about it, for several
reasons, only very briefly.

27

Bibliography

[Alt05] Clint J. van Alten. ‘The Finite Model Property for Knotted
Extensions of Propositional Linear Logic’. Journal of Symbolic
Logic 70.1 (2005), pp. 84–98. url: http://www.jstor.org/
stable/27588349.

[BA05] Willem J. Blok and Clint J. van Alten. ‘On the finite embeddab-
ility property for residuated ordered groupoids’. Transactions of
the AMS 357.10 (2005), pp. 4141–4157. doi: 10.1090/S0002-
9947-04-03654-2.

[BF09] Wojciech Buszkowski and Maciej Farulewski. ‘Nonassociative
Lambek Calculus with Additives and Context-Free Languages’.
In: Languages: From Formal to Natural. Ed. by Orna Grumberg,
Michael Kaminski, Shmuel Katz and Shuly Wintner. Lecture
Notes in Computer Science 5533. Berlin Heidelberg: Springer,
2009, pp. 45–58. doi: 10.1007/978-3-642-01748-3_4.

[Bim14] Katalin Bimbó. Proof Theory: Sequent Calculi and Related Form-
alisms. Discrete Mathematics and Its Applications. London: CRC
Press, 2014.

[BO93] Ronald V. Book and Friedrich Otto. String-rewriting Systems.
New York: Springer, 1993.

[Bus05] Wojciech Buszkowski. ‘Lambek Calculus with Nonlogical Ax-
ioms’. In: Language and Grammar: Studies in Mathematical
Linguistics and Natural Language. Ed. by C. Casadio, P. J. Scott
and R. A. G. Seely. CSLI Lecture Notes 168. Stanford: CSLI,
2005, pp. 77–93.

[Bus10] Wojciech Buszkowski. ‘Lambek Calculus and Substructural Lo-
gics’. Linguistic Analysis 36 (2010), pp. 15–49. url: http://
www.linguisticanalysis.com/volumes/36issue1-4.

[Chu36a] Alonzo Church. ‘A Note on the Entscheidungsproblem’. Journal
of Symbolic Logic 1.1 (1936), pp. 40–41.

28

http://www.jstor.org/stable/27588349
http://www.jstor.org/stable/27588349
http://dx.doi.org/10.1090/S0002-9947-04-03654-2
http://dx.doi.org/10.1090/S0002-9947-04-03654-2
http://dx.doi.org/10.1007/978-3-642-01748-3_4
http://www.linguisticanalysis.com/volumes/36issue1-4
http://www.linguisticanalysis.com/volumes/36issue1-4

Bibliography

[Chu36b] Alonzo Church. ‘An Unsolvable Problem of Elementary Number
Theory’. American Journal of Mathematics 58.2 (1936), pp. 345–
363.

[CM64] John Cocke and Marvin Lee Minsky. ‘Universality of Tag Sys-
tems with P=2’. Journal of the ACM 11.1 (1964), pp. 15–20.
doi: 10.1145/321203.321206.

[Cur50] Haskell Brooks Curry. A Theory of Formal Deducibility. Notre
Dame Mathematical Lectures 6. University of Notre Dame, 1950.

[Cur77] Haskell Brooks Curry. Foundations of Mathematical Logic. New
York: Dover Publications, 1977.

[Dav65] Martin Davis, ed. The Undecidable: Basic Papers On Undecidable
Propositions, Unsolvable Problems And Computable Functions.
New York: Raven Press, 1965.

[De 08] Lisbeth De Mol. ‘Tag systems and Collatz-like functions’. The-
oretical Computer Science 390.1 (2008), pp. 92–101. doi: 10.
1016/j.tcs.2007.10.020.

[De 09] Liesbeth De Mol. ‘On the boundaries of solvability and un-
solvability in tag systems. Theoretical and Experimental Res-
ults.’ In: Proceedings International Workshop on The Complexity
of Simple Programs. Ed. by Turlough Neary, Damien Woods,
Tony Seda and Niall Murphy. Vol. 1. 2009, pp. 56–66. doi:
10.4204/EPTCS.1.5.

[Doš93] Kosta Došen. ‘A Historical Introduction to Substructural Logics’.
In: Substructural Logics. Ed. by Peter Schroeder-Heister and
Kosta Došen. Studies in Logic and Computation 2. Oxford:
Clarendon Press, 1993.

[Far08] Maciej Farulewski. ‘Finite embeddability property for residuated
groupoids’. Reports on Mathematical Logic 43 (2008), pp. 25–42.
url: http://rml.tcs.uj.edu.pl/rml-43/02-farulewski.
pdf.

[Fre80] Ralph Freese. ‘Free Modular Lattices’. Transactions of the AMS
261.1 (1980), pp. 81–91. doi: 10.1090/S0002- 9947- 1980-
0576864-X.

[Gal+07] Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski and Hiroakira
Ono. Residuated Lattices: An Algebraic Glimpse at Substruc-
tural Logics. Vol. 151. Studies in Logic and the Foundations of
Mathematics. Amsterdam: Elsevier, Apr. 2007, p. 532.

29

http://dx.doi.org/10.1145/321203.321206
http://dx.doi.org/10.1016/j.tcs.2007.10.020
http://dx.doi.org/10.1016/j.tcs.2007.10.020
http://dx.doi.org/10.4204/EPTCS.1.5
http://rml.tcs.uj.edu.pl/rml-43/02-farulewski.pdf
http://rml.tcs.uj.edu.pl/rml-43/02-farulewski.pdf
http://dx.doi.org/10.1090/S0002-9947-1980-0576864-X
http://dx.doi.org/10.1090/S0002-9947-1980-0576864-X

Bibliography

[Gen35a] Gerhard Gentzen. ‘Untersuchungen über das logische Schließen I’.
Mathematische Zeitschrift 39.1 (1935), pp. 176–210. doi: 10.
1007/BF01201353.

[Gen35b] Gerhard Gentzen. ‘Untersuchungen über das logische Schließen II’.
Mathematische Zeitschrift 39.1 (1935), pp. 405–431. doi: 10.
1007/BF01201363.

[Hor15] Rostislav Horčík. ‘Word Problem for Knotted Residuated Lat-
tices’. Journal of Pure and Applied Algebra 219.5 (May 2015),
pp. 1548–1563. doi: 10.1016/j.jpaa.2014.06.015.

[Hut73] George Hutchinson. ‘Recursively unsolvable word problems of
modular lattices and diagram-chasing’. Journal of Algebra 26.3
(1973), pp. 385–399. doi: 10.1016/0021-8693(73)90001-X.

[JT02] Peter Jipsen and Constantine Tsinakis. ‘A Survey of Residuated
Lattices’. In: Ordered Algebraic Structures: ed. by Jorge Martínez.
Vol. 7. Developments in Mathematics. Dordrecht: Kluwer, 2002.

[Kan95] Max I. Kanovich. ‘The Direct Simulation of Minsky Machines in
Linear Logic’. In: Advances in Linear Logic. Ed. by Jean-Yves
Girard, Yves Lafont and Laurent Regnier. London Mathematical
Society Lecture Note Series 222. Cambridge University Press,
1995.

[Kle52] Stephen Cole Kleene. Introduction to Metamathematics. Ams-
terdam: North-Holland, 1952.

[KO91] Eiji Kiriyama and Hiroakira Ono. ‘The contraction rule and
decision problems for logics without structural rules’. Studia
Logica 50.2 (1991), pp. 299–319. issn: 0039-3215. doi: 10.1007/
BF00370189.

[Kri59] Saul Aaron Kripke. ‘The problem of entailment’. Journal of
Symbolic Logic 24 (1959). abstract, p. 324. url: http://www.
jstor.org/stable/2963903.

[KS95] Olga G. Kharlampovich and Mark V. Sapir. ‘Algorithmic Prob-
lems In Varieties’. International Journal of Algebra and Compu-
tation 5 (1995), pp. 379–602.

[Lam58] Joachim Lambek. ‘The Mathematics of Sentence Structure’.
American Mathematical Monthly 65.3 (1958), pp. 154–170. url:
http://www.jstor.org/stable/2310058.

[Lam61a] Joachim Lambek. ‘How to program an infinite abacus’. Canadian
Mathematical Bulletin 4 (1961), pp. 295–302. doi: 10.4153/CMB-
1961-032-6.

30

http://dx.doi.org/10.1007/BF01201353
http://dx.doi.org/10.1007/BF01201353
http://dx.doi.org/10.1007/BF01201363
http://dx.doi.org/10.1007/BF01201363
http://dx.doi.org/10.1016/j.jpaa.2014.06.015
http://dx.doi.org/10.1016/0021-8693(73)90001-X
http://dx.doi.org/10.1007/BF00370189
http://dx.doi.org/10.1007/BF00370189
http://www.jstor.org/stable/2963903
http://www.jstor.org/stable/2963903
http://www.jstor.org/stable/2310058
http://dx.doi.org/10.4153/CMB-1961-032-6
http://dx.doi.org/10.4153/CMB-1961-032-6

Bibliography

[Lam61b] Joachim Lambek. ‘On the calculus of syntactic types’. In: Struc-
ture of Language and Its Mathematical Aspects. Ed. by Roman
Jakobson. Providence, Rhode Island: American Mathematical
Society, 1961, pp. 166–178. doi: 10.1090/psapm/012.

[Lin+92] Patrick Lincoln, John Mitchell, Andre Scedrov and Natarajan
Shankar. ‘Decision problems for propositional linear logic’. An-
nals of Pure and Applied Logic 56.1–3 (1992), pp. 239–311. doi:
10.1016/0168-0072(92)90075-B.

[Lip74] Leonard Lipshitz. ‘The undecidability of the word problems for
projective geometries and modular lattices’. Transactions of
the AMS 193 (1974), pp. 171–180. doi: 10.1090/S0002-9947-
1974-0364040-2.

[Lot02] M. Lothaire. Algebraic Combinatorics on Words. Encyclopedia
of Mathematics and its Applications 90. Cambridge: Cambridge
University Press, Apr. 2002.

[Mar47a] Andrei Andreevich Markov. ‘Impossibility of certain algorithms
in the theory of associative systems (Russian)’. Doklady Akademii
Nauk SSSR 55 (1947), pp. 587–590.

[Mar47b] Andrei Andreevich Markov. ‘Impossibility of certain algorothms
in the theory of associative systems II (Russian)’. Doklady Aka-
demii Nauk SSSR 58 (1947), pp. 353–356.

[Mey66] Robert K. Meyer. ‘Topics in modal and many-valued logic’. PhD
thesis. University of Pittsburgh, 1966.

[Min61] Marvin Lee Minsky. ‘Recursive Unsolvability of Post’s Problem of
“Tag” and other Topics in Theory of Turing Machines’. Annals of
Mathematics 74.3 (1961), pp. 437–455. doi: 10.2307/1970290.

[Min67] Marvin Lee Minsky. Computation: Finite and Infinite Machines.
London: Prentice Hall, 1967.

[Pao02] Francesco Paoli. Substructural Logics: A Primer. Trends in Logic.
Dordrecht: Springer, 2002.

[Pos43] Emil Leon Post. ‘Formal Reductions of the General Combinat-
orial Decision Problem’. American Journal of Mathematics 65.2
(1943), pp. 197–215. url: http://www.jstor.org/stable/
2371809.

[Pos47] Emil Leon Post. ‘Recursive unsolvability of a problem of Thue’.
Journal of Symbolic Logic 12.1 (Mar. 1947), pp. 1–11. doi: 10.
2307/2267170.

31

http://dx.doi.org/10.1090/psapm/012
http://dx.doi.org/10.1016/0168-0072(92)90075-B
http://dx.doi.org/10.1090/S0002-9947-1974-0364040-2
http://dx.doi.org/10.1090/S0002-9947-1974-0364040-2
http://dx.doi.org/10.2307/1970290
http://www.jstor.org/stable/2371809
http://www.jstor.org/stable/2371809
http://dx.doi.org/10.2307/2267170
http://dx.doi.org/10.2307/2267170

Bibliography

[Res00] Greg Restall. An Introduction to Substructural Logics. London:
Routledge, 2000.

[Sch72] Rich Schroeppel. A two counter machine cannot calculate 2N .
Tech. rep. A. I. Laboratory, M.I.T., 1972.

[Tak87] Gaisi Takeuti. Proof Theory. 2nd. Oxford: North-Holland, 1987.
[Ter03] Terese, ed. Term Rewriting Systems. Cambridge Tracts in The-

oretical Computer Science 55. Cambridge: Cambridge University
Press, 2003.

[TS00] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof
Theory. 2nd. Cambridge Tracts in Theoretical Computer Science
43. Cambridge University Press, July 2000.

[Tse58] Grigorii Samuilovich Tseitin. ‘An associative calculus with an
insoluble problem of equivalence’. Trudy Matematicheskogo In-
stituta im. V. A. Steklova 52 (1958), pp. 172–189. url: http:
//mi.mathnet.ru/eng/tm1317.

[Tur37] Alan Mathison Turing. ‘On Computable Numbers, with an Ap-
plication to the Entscheidungsproblem’. Proceedings of London
Mathematical Society s2-42.1 (1937), pp. 230–265. doi: 10.1112/
plms/s2-42.1.230.

[Tur38] Alan Mathison Turing. ‘On Computable Numbers, with an Ap-
plication to the Entscheidungsproblem. A Correction’. Proceed-
ings of London Mathematical Society s2-43.1 (1938), pp. 544–546.
doi: 10.1112/plms/s2-43.6.544.

[Urq81] Alasdair Urquhart. ‘Decidability and the Finite Model Property’.
Journal of Philosophical Logic 10.3 (1981), pp. 367–370. url:
http://www.jstor.org/stable/30226231.

[Urq84] Alasdair Urquhart. ‘The Undecidability of Entailment and Relev-
ant Implication’. Journal of Symbolic Logic 49.4 (1984), pp. 1059–
1073. doi: 10.2307/2274261.

[Urq99] Alasdair Urquhart. ‘The Complexity of Decision Procedures
in Relevance Logic II’. Journal of Symbolic Logic 64.4 (1999),
pp. 1774–1802. doi: 10.2307/2586811.

[Wan63] Hao Wang. ‘Tag systems and lag systems’. Mathematische An-
nalen 152.1 (1963), pp. 65–74. doi: 10.1007/BF01343730.

[Wój88] Ryszard Wójcicki. Theory of Logical Calculi: Basic Theory of
Consequence Operation. Vol. 199. Synthese Library. Dordrecht:
Kluwer, 1988.

32

http://mi.mathnet.ru/eng/tm1317
http://mi.mathnet.ru/eng/tm1317
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1112/plms/s2-43.6.544
http://www.jstor.org/stable/30226231
http://dx.doi.org/10.2307/2274261
http://dx.doi.org/10.2307/2586811
http://dx.doi.org/10.1007/BF01343730

Appendix A

Undecidability of Consequence
Relation in Full Non-associative
Lambek Calculus†

Karel Chvalovský
Institute of Computer Science, Academy of Sciences of the Czech Republic,

Pod Vodárenskou věží 271/2, 182 07 Prague 8, Czech Republic

Abstract

We prove that the consequence relation in the Full Non-associative
Lambek Calculus is undecidable. An encoding of the halting problem
for 2-tag systems using finitely many sequents in the language {·,∨}
is presented. Therefore already the consequence relation in this
fragment is undecidable. Moreover, the construction works even when
the structural rules of exchange and contraction are added.

A.1 Introduction
There are many motivations for studying substructural logics, which can be
seen as logics lacking some structural rules when presented in the form of
sequent calculi. It is of no surprise that some of the motivations come from
linguistics. Lambek [Lam58] introduced a calculus, which is now called after
him (L), with exactly these motivations in mind. All the normal structural
rules, i.e. exchange, contraction, and weakening, are missing in L. The

†Karel Chvalovský. ‘Undecidability of Consequence Relation in Full Non-associative
Lambek Calculus’. Journal of Symbolic Logic (to appear).

33

A.1. Introduction

standard language of L contains product (·) and two implications (/ and
\) as connectives. Nevertheless, it is common in substructural logics to
consider also additive join (∨) and meet (∧). By adding rules for all these
connectives we obtain the Full Lambek Calculus (FL).

With linguistics in mind it is natural that Lambek [Lam61] also intro-
duced a non-associative variant of his calculus, we call it NL. The main
difference can be demonstrated by structures used to represent sequents. In
L the basic structure is a sequence of formulae, but non-associativity in NL
requires a tree with leaves that are labelled by formulae. Again by adding
rules for join and meet we obtain the Full Non-associative Lambek Calculus
(FNL), for details see e.g. [BF09; GO10].

A natural question to ask is whether or not the provability in these
calculi is decidable. It is known [BF09] that provability in FNL is decidable
in polynomial space. The problem we deal with in this paper is whether
provability in FNL is decidable if finitely many non-logical axioms are added,
i.e. we study the decidability of the finitary consequence relation in FNL.
Although this problem was shown [Bus05] to be decidable in polynomial
time for NL, we prove that it is undecidable for FNL by encoding the
halting problem for 2-tag systems in the language {·,∨}, i.e. we show that
the provability from finitely many non-logical axioms is undecidable in this
fragment. Moreover, it is undecidable even if the structural rules of exchange
and contraction are added. It is worth noting that we are in non-associative
setting, because associativity usually plays an important role in similar
results, cf. the undecidability of consequence relation in L [Bus82; Bus05].
However, we show that the distributivity of product over join is sufficient.
It is worth noting that the consequence relation in the distributive FNL,
the distributive laws hold for {∧,∨}, is decidable, see [BF09; Far08; HH14].

Although this paper deals solely with logic, there are some algebraic
consequences. FNL is complete with respect to lattice-ordered residuated
groupoids. Therefore we prove that their word problem is undecidable. This
solves negatively Problem 7.1 in [HH14]. Moreover, the encoding of the
halting problem for 2-tag systems can be used directly to obtain a similar
result for their {·,∨}-reduct—join-semilattices expanded by a groupoid
operation (product) where product distributes over join. Our construction
shows that the word problem for such structures is generally undecidable.
This is true even if x · y = y · x and x ≤ x · x hold. Moreover, we do not
need the idempotency and commutativity of join in full generality.

The paper is organized as follows. The next section contains some
basic definitions. As for our purposes it is sufficient to deal with {·,∨}
we concentrate solely on this language. Nevertheless, we present an entire
sequent calculus for FNL first. Then we discuss a sequent calculus for

34

A.2. Preliminaries

the {·,∨}-fragment and some equivalences on formulae. In the last part of
this section tag systems are introduced. In Section A.3 we describe how
a tag system can be encoded in the language {·,∨}. The most important
part describes non-logical axioms which express the behaviour of a given
tag system. Then we prove, in Sections A.4 and A.5, the correctness
and completeness of our encoding. In Section A.6 we discuss some possible
modifications—addition of the structural rules and the one-variable fragment.
Section A.7 contains some algebraic consequences of our construction. A
formulation of our results in terms of term rewriting systems is briefly
discussed in Section A.8.

A.2 Preliminaries
Formulae are formed out in the standard way from a denumerable set of
propositional variables (atoms) using connectives and parentheses. All the
connectives are binary: product (·), two implications (\ and /), join (∨),
and meet (∧). We denote formulae by small Greek letters and do not write
parentheses if no confusion can arise.

As we are in non-associative setting we have to impose some other
notions, following e.g. [Bus05; BF09; GO10], which simplify the formulation
of rules in our sequent calculus and handling of substitutions later on. We
say that all formulae are (atomic) structures, the empty structure ε is a
structure, and if S and T are structures then (S,T) is a structure, nothing
else is a structure. Moreover, (ε, S) = (S, ε) = S and we always assume that
a structure does not contain unnecessary empty structures. A context is a
structure S[◦] which has a single occurrence of the special structure symbol
◦, a place for substitution. Then S[T] denotes the result of substitution of
T for ◦ in S[◦]. We use the blackboard bold font for structures and contexts
are distinguished by using square brackets for substitutions.

A.2.1 Full Non-associative Lambek Calculus

We present a sequent calculus for FNL, cf. [Bus05; BF09; GO10]. For any
structure S and formula ϕ we say that S⇒ ϕ is a sequent. The definition
of provability in a sequent calculus is standard—a proof is a tree labelled
by sequents, where only axioms can occur as leaves and every other vertex
(sequent) is obtained by an inference rule from its children.

Definition A.2.1. Let ϕ, ψ, χ, ϕ1, and ϕ2 be arbitrary formulae and S, T
be arbitrary structures. The sequent calculus for FNL has the following
axioms and inference rules:

35

A.2. Preliminaries

(Id) ϕ⇒ ϕ
S[ϕ]⇒ ψ T⇒ ϕ

(Cut)
S[T]⇒ ψ

S[(ϕ, ψ)]⇒ χ
(·L)

S[ϕ · ψ]⇒ χ

S⇒ ϕ T⇒ ψ(·R)
(S,T)⇒ ϕ · ψ

S[ϕ]⇒ ψ T⇒ χ
(\L)

S[(T, χ\ϕ)]⇒ ψ

(ϕ, S)⇒ ψ
(\R)

S⇒ ϕ\ψ

S[ϕ]⇒ ψ T⇒ χ
(/L)

S[(ϕ/χ,T)]⇒ ψ

(S, ϕ)⇒ ψ
(/R)

S⇒ ψ/ϕ

S[ϕ]⇒ χ S[ψ]⇒ χ
(∨L)

S[ϕ ∨ ψ]⇒ χ

S⇒ ϕi(∨R) for i = 1, 2S⇒ ϕ1 ∨ ϕ2

S[ϕi]⇒ ψ
(∧L) for i = 1, 2

S[ϕ1 ∧ ϕ2]⇒ ψ

S⇒ ϕ S⇒ ψ(∧R) S⇒ ϕ ∧ ψ

Our aim is to discuss calculi with non-logical axioms. Therefore we
extend the previous definition to handle them. They are sequents S⇒ α,
where S and α are a structure and a formula, respectively. However, let
us remark that non-logical axioms are not closed under substitutions and
therefore propositional variables in them are treated as constants. We use
Φ for a set of non-logical axioms and FNL(Φ) for the sequent calculus
containing axioms and rules for FNL and non-logical axioms from Φ.

As the reader probably anticipated the intended meaning of comma in
structures is product. Two natural extremes arise: the case when there are
as many as possible commas instead of products and vice versa. For this
purposes we define translations σ and ρ.

Definition A.2.2. Let S be any structure. The functions σ and ρ on
structures are given by

σ(S) =

(σ(T), σ(U)) if S = (T,U),

(σ(ϕ), σ(ψ)) if S = ϕ · ψ,
S otherwise.

ρ(S) =

{
ρ(T) · ρ(U) if S = (T,U),

S otherwise.

It is clear that ρ(S) = ρ(σ(S)), σ(S) = σ(ρ(S)), and ρ(S) is a formula,
for non-empty S.

36

A.2. Preliminaries

Example A.2.1. It holds that σ(p · (q · r)) = (p, (q, r)), but σ(p∨ (q · r)) =
p ∨ (q · r), where p, q, and r are atoms.

Lemma A.2.1. For any set of non-logical axioms Φ, structure S, and
formula ϕ it holds that S ⇒ ϕ is provable in FNL(Φ) iff σ(S) ⇒ ϕ is
provable in FNL(Φ) iff ρ(S)⇒ ϕ is provable in FNL(Φ).

Proof. It is sufficient to use (·R) and (Cut), or (·L).

As our aim is to produce an encoding of an undecidable problem, we
will have to show that such an encoding is correct and complete. In order to
prove completeness we will study all the possible proofs of some sequents in
our calculus. For this reason we want to produce a simpler calculus which
proves the very same sequents.

A natural restriction is to allow only very specific cuts. We call a
sequent S⇒ ϕ regular if the only formulae occurring in the structure S are
propositional variables, i.e. it contains no connectives. A set of non-logical
axioms Φ is regular if all its members are regular. Let us assume the notation
in Definition A.2.1 for (Cut). We call ϕ there the cut formula. We say that
a cut is principal if T⇒ ϕ is a regular sequent from non-logical axioms,
cf. [Tro92, p. 174]. A proof containing only principal cuts is called standard.

We need to define some more notions. The grade of a cut is the length
of the cut formula ϕ. The size of a cut is the number of sequents appearing
in the proof of S[ϕ]⇒ψ and T⇒ϕ. However, the size of all principal cuts is
defined to be 0. Every application of a rule for connectives creates a formula
and we call it the main formula. Other formulae appearing in this sequent
are called side formulae.

Theorem A.2.2. For any regular set of non-logical axioms Φ, structure S,
and formula ϕ it holds that S⇒ ϕ has a proof in FNL(Φ) iff S⇒ ϕ has a
standard proof in FNL(Φ).

Proof. This is proved by standard cut-elimination techniques, cf. [Tro92;
Gal+07; Doš88; Ono98]. The proof is by double induction on the grade
and size of cuts. We take a top most (closest to leaves) non-principal cut
and transform it into another cut and the sum of grades of all cuts in the
proof either decreases, or remains equal and then the sum of their sizes
decreases. As this process is well-founded it suffices to show that we are
able to transform every possible non-principal cut.

Let us assume we have a top most non-principal cut. If the cut formula
is a side formula in any of two input sequents then we can apply the rule for
a sequent where the cut formula is a side formula after the cut. Therefore
we obtain a cut with the same grade but smaller size.

37

A.2. Preliminaries

If both the main formulae in the input sequents are the same as the cut
formula then both were obtained by rules for the same connective. Let us
assume that it was e.g. \. Then we can transform

...
T[ξ]⇒ ψ

...
U⇒ χ

(\L)
T[(U, χ\ξ)]⇒ ψ

...
(χ,V)⇒ ξ

(\R)
V⇒ χ\ξ

(Cut)
T[(U,V)]⇒ ψ

into
...

T[ξ]⇒ ψ

...
(χ,V)⇒ ξ

(Cut)
T[(χ,V)]⇒ ψ

...
U⇒ χ

(Cut)
T[(U,V)]⇒ ψ

and we obtain two cuts with the sum of grades smaller then in the original
cut. Similarly for other connectives.

As we have a set Φ we must handle the cases where a cut is applied on
other principal cut(s). In such a case we can always transform

...
T[ξ]⇒ ψ

...
U[χ]⇒ξ V⇒ χ

(Cut)
U[V]⇒ ξ

(Cut)
T[U[V]]⇒ ψ

into
...

T[ξ]⇒ ψ

...
U[χ]⇒ ξ

(Cut)
T[U[χ]]⇒ ψ V⇒ χ

(Cut)
T[U[V]]⇒ ψ

where we can assume V⇒ χ is a member of Φ. Therefore we obtain cuts
with smaller size and zero size while the sum of grades remains the same.

The final non-trivial case is if we want to use cut on T[ξ]⇒ ψ, which is
a member of Φ, and U[χ]⇒ ξ. Then ξ is an atom, e.g. ξ = p, because Φ is
regular. Hence p cannot be the main formula in U[χ]⇒ p. Therefore the
technique for side formulae or the above mentioned cut transformation can
be used on it.

38

A.2. Preliminaries

A.2.2 Non-associative Lambek Calculus with only
product and join

The variant of cut-elimination for FNL(Φ) proved in Theorem A.2.2 has
many consequences. Let Φ be a regular set of non-logical axioms and S⇒ ϕ
a sequent such that they contain only connectives from {·,∨}. Then S⇒ ϕ
is provable in FNL(Φ) iff it is provable using only logical axioms (Id), non-
logical axioms from Φ, (·L), (·R), (∨L), (∨R), and (Cut). We will denote
such a calculus NL∨(Φ) to emphasize that the full language of FNL(Φ) is
not needed. Moreover, S⇒ ϕ has a proof in NL∨(Φ) iff it has a standard
proof in NL∨(Φ).

The choice of {·,∨} is not arbitrary. Our Φ, which will demonstrate
the undecidability of the consequence relation, will be in this particular
language. Therefore we restrict ourselves to this language from now on. We
can also define a natural equivalence relation and normal forms on formulae
in this language. Let the following equivalences hold for any formulae ϕ, ψ,
and χ.

ϕ ∼ ϕ ∨ ϕ (Idempotency)
ϕ ∨ ψ ∼ ψ ∨ ϕ (Commutativity)

ϕ ∨ (ψ ∨ χ) ∼ (ϕ ∨ ψ) ∨ χ (Associativity)
ϕ · (ψ ∨ χ) ∼ (ϕ · ψ) ∨ (ϕ · χ) (Left-Distributivity)
(ϕ ∨ ψ) · χ ∼ (ϕ · χ) ∨ (ψ · χ) (Right-Distributivity)

Let ∼∗ be the reflexive, symmetric, and transitive closure of ∼. If we read
∼ in the previous equivalences as ⇒ and ⇐ it is easy to verify that the
corresponding sequents are provable in NL∨(∅). Hence it is clear that if we
prove S[ϕ]⇒ ψ and ϕ ∼∗ χ then we can also prove S[χ]⇒ ψ using (Cut).

Definition A.2.3. A formula ϕ is simple if the only connective occurring
in ϕ is product (·).

We define a variant of normal forms for formulae in {·,∨}, because any
such a formula can be equivalently expressed as a join of simple formulae. It
is sufficient to apply left- and right-distributivity from left to right as many
times as needed. Moreover, this representation can be considered unique
(assuming the idempotency, commutativity, and associativity of join) if we
impose an order, e.g. lexicographic, on simple formulae. However, the actual
order is not important for us. Therefore we assume that it is fixed in our
paper.

39

A.3. Encoding

Definition A.2.4. A formula ψ is a simple representation of a formula ϕ if
ψ =

∨n
i=1 χi, all χi are simple, and ϕ ∼∗ ψ. We write ψ = [ϕ]s and also use

notation that χi ∈ [ϕ]s if this representation is unique, i.e. n is the minimal
possible and simple formulae are ordered.

In order to simplify the notation we will use this representation of
formulae. Moreover, we omit products and most parentheses in formulae as
we implicitly assume that product is the default connective and parentheses
tight to right, e.g. pqr is strictly speaking (p · (q · r)).

A.2.3 Tag systems

Tag systems were proposed by Post [Pos43] and they operate on finite words,
i.e. finite sequences of letters. Let A = {a1, . . . , an} be a finite alphabet of
letters with no special halting letter. A set of production rules is given by
a function π : [1, n]→ A∗, where A∗ is the set of finite words over A. The
computation of the 2-tag system given by A and π on a word w ∈ A∗ is
defined as follows.

If |w| < 2 we terminate. Otherwise, we examine the first letter in w,
which is some ai. Then we delete the first two letters in w and append π(i)
to the rest of the word after the last letter and obtain a new word.

We repeat this process until it is possible, i.e. we can run forever or
at some point we terminate—we obtain a word with less than two letters.
We use ↓ for such a word. In the later case we say that the 2-tag system
terminates on w and write w ∗A,π ↓. It is well-known, see [CM64], that the
halting problem for a 2-tag system, i.e. whether it terminates on a given w,
is generally undecidable.

Example A.2.2. Let A = {a1, a2}, π(1) = a2, and π(2) = a1 describe a
2-tag system. Then our very elementary system, starting on w = a1a2a2,
computes as follows:

w = a1a2a2

a1a2a2a2

a1a2a2a2a1 = ↓

A.3 Encoding
In this section we present how to encode a computation of a 2-tag system in
the language {·,∨}. We have an arbitrary but fixed 2-tag system given by
A = {a1, . . . , an} and π : [1, n]→ A∗. Assume that w ∈ A∗ is a word. We
recall our simple representation of formulae—a join of formulae containing

40

A.3. Encoding

only products. For simplicity we also do not write products and most
parentheses in formulae as we implicitly assume that product is the default
connective and parentheses tight to right.

The encoding is based on a join of simple formulae which read from
the left side contain some prefix, letters from A, and end with a symbol (a
capital letter) describing their meaning.

Moreover, to simplify the formulation of the encoding the letters from A
are represented in pairs starting from the left side. It is convenient as 2-tag
systems delete pairs of letters. Hence a pair of letters aiaj is represented
by cji . When the length of a word is odd then its last letter ai is simply
represented by ci.

Definition A.3.1. Let A = {a1, . . . , an} and π : [1, n] → A∗ describe a
2-tag system. The set C(A) of finite words in the pair notation over A is
given by C(A) = C(A)∗p ∪C(A)∗p×C(A)s, where C(A)p = { cji | 1 ≤ i, j ≤ n }
and C(A)s = {c1, . . . , cn}. The translation function δ : A∗ → C(A) is defined
by

δ(w) =

ε if w is the empty word,
ci if w = ai,

cjiδ(v) if w = aiajv,

where ε represents the empty string. We will also use the reverse function
δ−1 : C(A)→ A∗.

Example A.3.1. It holds that δ(a1a2a1a2) = c2
1c

2
1 and δ(a1a2a1) = c2

1c1.

Although using our conventions on notation simple formulae may look
like sequences, they are trees. Hence the cut rule only enables us to substitute
a tree for a subtree in them. As in our representation parentheses tight
to right it is easy to process the end of a formula, because it is a subtree.
However, when we append or delete letters we have to transfer pieces of
information between the beginning and end of words (formulae). To get
around this problem, we will use join.

First, we present some basic ideas in Section A.3.1. Second, the needed
non-logical axioms are presented in Section A.3.2. However, all the properties
of the encoding will be apparent from Sections A.4 and A.5, where the
correctness and completeness of this encoding are proved.

A.3.1 The basic ideas behind

As the encoding, given by non-logical axioms, is relatively complex we
present the behavior of our encoding first. The rules should be then easier
to understand.

41

A.3. Encoding

State formulae

First, we describe how a state of a 2-tag system is represented by a formula
in our encoding. Later on we will call these formulae state formulae. For
this purposes the alphabet contains the following symbols:

• c1
1, . . . , c

n
n represent the pairs of letters,

• c1, . . . , cn represent the letters,

• e and e′ represent the deleted pairs of letters,

• X and X ′ represent the end of words.

A state of a computation of a 2-tag system is fully described by the word
it processes. We check whether its length is at least two, delete the first two
letters, and append letters according to π and the first deleted letter. In our
encoding we switch deleting and appending. However, it does not matter,
because we will append letters only if the length of the processed word is at
least two.

We start by representing the word w as eδ(w)X, where the only connect-
ive is product and all parentheses tight to right.

Let us look at the 2-tag system from Example A.2.2, i.e. w = a1a2a2,
π(1) = a2, and π(2) = a1. Then the initial formula is ec2

1c2X. The
computation continues in such a way that we add π(1) and change X to X ′.
Hence we obtain ec2

1c
2
2X
′, where c2

2 represents a2a2, see our pair notation.
The change of the primality of X (and other symbols) will enable us to

recognize whether we only added letters or also deleted the corresponding
pair of letters. This subtle detail will be essential to the completeness
proof. It will ensure that the appending and deleting steps must alternate.
Therefore there will be a straightforward translation between state formulae
and words occurring in a computation of a 2-tag system.

In ec2
1c

2
2X
′ we delete c2

1, which represents a1a2, by changing it to e′. Hence
we have ee′c2

2X
′. This represents the next state of the computation as both

X and the last e are primed. The computation can continue to ee′c2
2c1X

and by changing c2
2 to e we get ee′ec1X. However, then the computation

cannot proceed as only one letter remains.
From the previous example we can see that during the computation

we add letters to the end and change letters at the beginning to e or e′.
Therefore correct formulae start with alternating e and e′. If X and the
last e are both primed or both not primed then such a formula directly
represents a state of a 2-tag system (a word). Otherwise, the letters were

42

A.3. Encoding

added according to π, but the corresponding first two letters, represented
by cji , had not been deleted.

If there are less than two letters from A and the closest e and X are both
primed or both not primed we are in a termination state. As we want an
unique representation of termination states we first delete the only letter (if
any) from A and then also e and e′ one by one. Therefore all the termination
states can be represented by the formula eX.

In our example, we get the following sequence ee′ec1X, ee′eX, ee′X ′,
and finally we get eX.

Auxiliary formulae

Nevertheless, it is clear that we must check whether we appended and
deleted (changed to e or e′) the right letters. Moreover, we must be very
particular about the correct alternation of appending and deleting steps.
Therefore we have to use some auxiliary formulae, which ensure that the
system is simulated faithfully. Hence whenever we execute any such a step
we obtain a join of a state formula and an auxiliary formula. This auxiliary
formula certifies that the step was used correctly. For this purposes some
more symbols are needed:

• A represents the end of general auxiliary formulae,

• Ci and C ′i, for 1 ≤ i ≤ n, represent the end of auxiliary formulae for
adding letters,

• D and D′ represent the end of auxiliary formulae for deleting letters,

• d and d′ represent the position where a pair of letters was deleted.

The idea is that whenever we obtain an auxiliary formula we must
transform it into the general auxiliary formula eA. This ensures that the
step was used correctly.

Let us again assume we have ec2
1c2X. We want to append π(1). However,

this is possible only if the word represented by this formula begins with a1

and contains at least one more letter. Hence some cj1 has to be after the last
e. We will be able to prove

ec2
1c2X ⇒ ec2

1(c2
2X
′ ∨ c2C1),

from our non-logical axioms and ec2
1(c

2
2X
′ ∨ c2C1) ∼∗ ec2

1c
2
2X
′ ∨ ec2

1c2C1.
Here C1 in ec2

1c2C1 says that we appended π(1) and hence we want to check
whether the word represented by ec2

1c2C1 starts with some cj1. We can show

43

A.3. Encoding

that by deleting all the letters but the first pair. Therefore from ec2
1c2C1

we obtain ec2
1C1. Then we get eA, because C1 matches the first letter in c2

1,
which represents a1a2, and the primality of C1 and e is the same. Moreover,
c2

1 certifies that the original formula contained at least two letters from A
before π(1) was appended. It works similarly for C ′i, e′, and X ′.

However, we cannot continue with another appending step, because the
primality of X ′ is different from the primality of e in ec2

1c
2
2X
′. Hence we

would not be able to transform the auxiliary formula into eA. Therefore we
now have to delete the first two letters, c2

1 in our case. We will be able to
prove

ec2
1c

2
2X
′⇒ e(e′ ∨ d′)c2

2X
′

and e(e′ ∨ d′)c2
2X
′ ∼∗ ee′c2

2X
′ ∨ ed′c2

2X
′. Here ed′c2

2X
′ is not a state formula,

because it contains d′. Hence it is an auxiliary formula and we want to
obtain eA from it. First, we get ed′c2

2D
′. Here D′ says that we deleted

the first two letters, which are represented by d′. The procedure is then
similar to the previous case, we delete all the letters between d′ and D′.
From ed′c2

2D
′ we obtain ed′D′ and then eA. This last step is possible for

the following two reasons. First, D′ and d′ are primed and e is not primed.
Second, there is no further symbol between e and d′. It works similarly for
X, but we use D, d and get e in the state formula.

Note that we could now continue by appending π(2), because e′ and X ′
in ee′c2

2X
′ are both primed, but not by deleting c2

2, because we would not
be able to transform the obtained auxiliary formula into eA.

A.3.2 Actual representation

From the previous text it should be clear that the question whether a 2-tag
system given by A and π terminates on a w ∈ A∗ will be translated into
the question whether

eδ(w)X ⇒ eX ∨ eA

is provable in NL∨(Φ[A, π]), where Φ[A, π] is a finite set of non-logical
axioms given in the following definition.

Definition A.3.2. Let A = {a1, . . . , an} and π : [1, n] → A∗ describe a
2-tag system. The set of non-logical axioms Φ[A, π] contains

e′eX ⇒ e′X ′ (A.1)
eciX ⇒ eX (A.2)
ee′A⇒ eA (A.3)

ee′X ′⇒ eX (A.4)
e′ciX

′⇒ e′X ′ (A.5)
e′eA⇒ e′A (A.6)

44

A.3. Encoding

ecjiCi⇒ eA (A.7)
ckj clCi⇒ ckjCi (A.8)

ckj c
m
l Ci⇒ ckjCi (A.9)
cjX ⇒ δ(aj π(i))X ′∨cjCi

(A.10)
ckjX ⇒ ckj δ(π(i))X ′∨ckjCi

(A.11)

e′cjiC
′
i⇒ e′A (A.12)

ckj clC
′
i⇒ ckjC

′
i (A.13)

ckj c
m
l C

′
i⇒ ckjC

′
i (A.14)

cjX
′⇒ δ(aj π(i))X∨cjC ′i

(A.15)
ckjX

′⇒ ckj δ(π(i))X∨ckjC ′i (A.16)

ed′D′⇒ eA (A.17)
d′ciD

′⇒ d′D′ (A.18)

d′cjiD
′⇒ d′D′ (A.19)

cjickD
′⇒ cjiD

′ (A.20)

cjic
l
kD
′⇒ cjiD

′ (A.21)
X ′⇒D′ (A.22)
cji ⇒ e′ ∨ d′ (A.23)

e′dD⇒ e′A (A.24)
dciD⇒ dD (A.25)

dcjiD⇒ dD (A.26)

cjickD⇒ cjiD (A.27)

cjic
l
kD⇒ cjiD (A.28)
X ⇒D (A.29)
cji ⇒ e ∨ d (A.30)

for every i, j, k, l,m ∈ [1, n].

Remark. The set Φ[A, π] is not regular, but we can replace all the products
on the left side of sequents by commas and obtain regular sequents, i.e. we
use σ. Lemma A.2.1 says that this does not change provability. Therefore
we can always assume that Φ[A, π] is regular.

The intuitive and simplified meaning of these non-logical axioms is
following. By (A.1,A.4) and (A.3,A.6) we say that e and e′ have to alternate.
The axioms (A.1,A.4) and (A.2,A.5) say that a terminating word can contain
no or one letter from A and that X and the last e are simultaneously primed
or not primed.

It is important to notice that some rules have two variants, because we
use the pair notation and words can have odd or even length.

The axioms (A.7–A.9) (or A.12–A.14) describe how formulae containing
Ci (or C ′i) have to look like, i.e. cji is right after e (or e′). Likewise, the
axioms (A.17–A.21) (or A.24–A.28) describe formulae containing D′ (or D),
i.e. d′ (or d) is right after e (or e′).

The meaning of (A.10,A.11) (or A.15,A.16) is more complicated. If we
apply them to a simple formula we obtain a join of two simple formulae,
using the simple representation. The first of them contains appended π(i)
and changed primality of X. The second formula contains Ci (or C ′i) and

45

A.4. Correctness of encoding

we want to obtain eA from this formula. This is possible if cji is right after
e (or e′) and it certifies that the rule was used correctly.

If the axioms (A.23) (or A.30) are applied to a simple formula we again
obtain a join of two simple formulae, using the simple representation. The
first one contains e′ (or e) instead of cji . The second one contains d′ (or d)
instead of it. We want to eliminate, obtain eA, the second formula. The
axioms (A.22) (or A.29) allow us to rewrite such a formula to one ending
with D′ (or D). We can eliminate it, obtain eA, if d′ (or d) is right after e
(or e′).

A.4 Correctness of encoding
We presented the set of non-logical axioms Φ[A, π] for a given 2-tag system
described by A = {a1, . . . , an} and π : [1, n]→ A∗. From now on, this 2-tag
system will be fixed.

In this section we show that the representation is correct, i.e. what is
computed by the 2-tag system can be also proved using Φ[A, π] and our
encoding. As we already indicated we divide formulae into two groups:
formulae representing a state of the 2-tag system and auxiliary formulae.

In the following text we use 〈ee′〉m to describe repeating e and e′. Let
〈ee′〉0 be the empty sequence and 〈ee′〉m+1 = ee′〈ee′〉m. Moreover, to simplify
our presentation we handle simple formulae as sequences. For our purposes
here, we can do it, but we have to be aware of their real representation,
i.e. they are trees containing products and parentheses which tight to
right. Therefore if we assume that evX = ec2

1c2X then the subsequence
v = c2

1c2 is not here even a (sub)formula, because ec2
1c2X is strictly speaking

(e · (c2
1 · (c2 · X))). However, we can say that v ∈ C(A) and hence even

δ−1(v) ∈ A∗, because it represents the word a1a2a2.

Definition A.4.1. A formula ϕ is an auxiliary formula in A iff it is one of
the following

1. 〈ee′〉meA,

2. 〈ee′〉mecjivCi,

3. 〈ee′〉med′vD′,

4. 〈ee′〉med′vX ′,

5. 〈ee′〉mee′A,

6. 〈ee′〉mee′cjivC ′i,

7. 〈ee′〉mee′dvD,

8. 〈ee′〉mee′dvX,

for v ∈ C(A), m ≥ 0, and 1 ≤ i, j ≤ n. We define the set of all auxiliary
formulae in A by ΓA = {ψ | ψ is an auxiliary formula in A}.

46

A.4. Correctness of encoding

In the following lemmata we simplify proofs using Lemma A.2.1. If we
want to use (Cut) with the cut formula ϕ, then there has to be a structure
S[ϕ]. However, sometimes we want to “substitute” for a subformula ϕ in a
formula χ. This is possible if χ = ρ(S[ϕ]), because S[ϕ]⇒ ψ is provable iff
χ⇒ψ is provable by Lemma A.2.1. Then using (Cut) on S[ϕ]⇒ψ and T⇒ϕ
we obtain S[T]⇒ ψ. Finally, using again Lemma A.2.1 we get ρ(S[T])⇒ ψ.
We denote such an application of (Cut) by (Cut?). Similarly, we can use
(∨L) and denote it (∨L?).

Lemma A.4.1. If ϕ ∈ ΓA then ϕ⇒ eA is provable in NL∨(Φ[A, π]).

Proof. We check all the cases. If ϕ = 〈ee′〉meA, for m > 0, then we use (A.6)
and (A.3) from Φ[A, π]

ee′A⇒ eA e′eA⇒ e′A(Cut?)
〈ee′〉1eA⇒ eA ee′A⇒ eA

(Cut?)
〈ee′〉2A⇒ eA

...
〈ee′〉mA⇒ eA e′eA⇒ e′A

(Cut?) 〈ee′〉meA⇒ eA

We get 〈ee′〉mee′A⇒ eA by one more application of (A.3).
If ϕ = 〈ee′〉mecjivCi we first obtain

...
〈ee′〉meA⇒ eA ecjiCi⇒ eA

(Cut?)
〈ee′〉mecjiCi⇒ eA

using (A.7) and then use (A.9) as many times as needed, i.e. b|δ−1(v)|/2c-
times. If δ−1(v) has odd length then we have to use also (A.8). The situation
with 〈ee′〉mee′cjivC ′i is completely analogous.

If we want to prove 〈ee′〉med′vD′⇒ eA (or 〈ee′〉mee′dvD⇒ eA) we start
from 〈ee′〉meA⇒eA (or 〈ee′〉mee′A⇒eA) and use (A.17–A.21) (or A.24–A.28)
in a very similar fashion. Finally, using (A.22) (or A.29) on 〈ee′〉med′vD′⇒
eA (or 〈ee′〉mee′dvD ⇒ eA) we immediately get 〈ee′〉med′vX ′ ⇒ eA (or
〈ee′〉mee′dvX ⇒ eA).

Corollary A.4.2. If ϕ ∈ ΓA then ϕ⇒eX∨eA is provable in NL∨(Φ[A, π]).

47

A.4. Correctness of encoding

Definition A.4.2. A formula ϕ is a state formula in A iff it is one of the
following

1. 〈ee′〉mevX,

2. 〈ee′〉mee′cjivX,

3. 〈ee′〉mee′vX ′,

4. 〈ee′〉mecjivX ′,

for v ∈ C(A), m ≥ 0, and 1 ≤ i, j ≤ n. We define the set of all state
formulae in A by ΛA = {ψ | ψ is a state formula in A}.

The function τ which translates a state formula ϕ into a word in A∗ is
defined by

τ(ϕ) = δ−1(v).

Example A.4.1. It holds that τ(ec2
1c2X) = a1a2a2, τ(ec2

1c
2
2X
′) = a2a2, and

τ(ee′c1X
′) = a1 = ↓.

Lemma A.4.3. If w ∗A,π ↓ then 〈ee′〉meδ(w)X ⇒ eX ∨ eA and
〈ee′〉mee′δ(w)X ′⇒ eX ∨ eA are provable in NL∨(Φ[A, π]) for any m ≥ 0.

Proof. We prove this by induction on the length of the 2-tag derivation. If
w is in a termination state it means w is the empty sequence or w = ai, for
some i ∈ [1, n]. We use (A.4) and (A.1) m-times to obtain 〈ee′〉meX ⇒ eX.
Using (A.2) we get 〈ee′〉meciX ⇒ eX, for 1 ≤ i ≤ n. One more application
of (A.4) on 〈ee′〉meX ⇒ eX leads to 〈ee′〉mee′X ′⇒ eX. Then using (A.5)
we get 〈ee′〉mee′ciX ′⇒ eX, for 1 ≤ i ≤ n. We complete all these cases by
(∨R).

Let us assume that one step computation of our 2-tag system leads from
w to v and 〈ee′〉mee′δ(v)X ′⇒ eX ∨ eA and 〈ee′〉mee′eδ(v)X⇒ eX ∨ eA are
provable in NL∨(Φ[A, π]). It means that there are indexes i and j such that
w = aiaju and v = u π(i). Using Corollary A.4.2 and then (A.23) we obtain

...
〈ee′〉mee′δ(uπ(i))X ′ ⇒ eX∨eA

...
〈ee′〉med′δ(uπ(i))X ′ ⇒ eX∨eA

(∨L?)
〈ee′〉me(e′∨d′)δ(uπ(i))X ′⇒ eX∨eA cji ⇒ e′∨d′

(Cut?)
〈ee′〉mecji δ(uπ(i))X ′⇒ eX∨eA

If u has odd length, u = tak, then δ(tak π(i)) = δ(t)δ(ak π(i)), and using
Corollary A.4.2 and then (A.10) we get

...
〈ee′〉mecji δ(t)δ(ak π(i))X ′ ⇒ eX∨eA

...
〈ee′〉mecji δ(t)ckCi ⇒ eX∨eA

(∨L?)
〈ee′〉mecji δ(t)(δ(ak π(i))X ′∨ckCi)⇒ eX∨eA ckX ⇒ δ(ak π(i))X ′∨ckCi

(Cut?)
〈ee′〉mecji δ(t)ckX ⇒ eX∨eA

48

A.5. Completeness of encoding

where cjiδ(t)ck = δ(aiaju) = δ(w). If u has even length we use (A.11).
The proof of 〈ee′〉mee′cjiδ(u)X ′ ⇒ eX ∨ eA using the provability of

〈ee′〉mee′eδ(v)X ⇒ eX ∨ eA is completely analogous.

Corollary A.4.4. If w ∗A,π ↓ then eδ(w)X ⇒ eX ∨ eA is provable in
NL∨(Φ[A, π]).

A.5 Completeness of encoding
We have proved that our encoding can simulate any terminating computation
of our fixed 2-tag system given by A = {a1, . . . , an} and π : [1, n]→ A∗. It
remains to prove the other direction—any proof of a sequent expressing that
the system terminates can be translated into a terminating computation of
the given 2-tag system.

Recall the definition of our simple representation, see Definition A.2.4,
the translation ρ, which replaces all commas in structures by products, and
the reverse translation σ, see Definition A.2.2.

As was already mentioned we can assume that all the members of
Φ[A, π] are regular, i.e. any α⇒ β from Φ[A, π] is treated as σ(α)⇒ β, see
Lemma A.2.1. We know from Theorem A.2.2 that S⇒ ϕ is provable in
NL∨(Φ[A, π]) iff it has a standard proof in NL∨(Φ[A, π]). Therefore the
following three lemmata are proved by induction on the height of the proof,
which is the length of the longest branch in its tree representation, with
only principal cuts.

We want to prove that if S ⇒ eX ∨ eA is provable then the simple
representation of ρ(S) contains only auxiliary formulae or state formulae
that represent words with terminating computations.

The main reason, why we use the equivalence ∼∗ on formulae and
simple representation, is the rule (∨L). This rule enables us to join two
structures, e.g. from ec1X⇒eX∨eA and ec2X⇒eX∨eA we can easily prove
e(c1∨c2)X⇒eX ∨eA and (e∨e)c1X⇒eX ∨eA. Our simple representation
is a way how to handle similar obstacles.

Lemma A.5.1. If S⇒ eA is provable in NL∨(Φ[A, π]) then for all ψ ∈
[ρ(S)]s hold ψ ∈ ΓA.

Proof. The proof is by induction on the height of the standard proof. If
the height is zero then the only possibilities are (Id) or members of Φ[A, π].
Hence [ρ(S)]s can contain only eA, ee′A, ed′D′, or ecjiCi, for any i, j ∈ [1, n].
All these formulae are elements of ΓA.

49

A.5. Completeness of encoding

We assume that this lemma holds for all standard proofs with height at
most n. Fix an arbitrary proof of S⇒ eA with height n + 1. We have to
check all the possible last steps.

It is impossible that (∨R) is the last step and if it is (·L) then we get
S⇒ eA from some S′⇒ eA, where ρ(S) = ρ(S′).

If (∨L) is the last step then it means that there are W, χ, and ξ such
that S = W[χ ∨ ξ], W[χ]⇒ eA, and W[ξ]⇒ eA. Hence ψ ∈ [ρ(S)]s iff
ψ ∈ [ρ(W[χ])]s or ψ ∈ [ρ(W[ξ])]s.

If (·R) is the last step then there exist U and V such that S = (U,V),
U⇒ e, and V⇒ A. It is easy to prove by induction that e = [U]s and
A = [V]s. Hence eA = [(U,V)]s.

The last case is when we use a principal cut. Let us assume that from
S′⇒ eA and a member of Φ[A, π] we obtain S⇒ eA.

If an axiom σ(α)⇒ β with no join is used then it is sufficient to show
for any ρ(T[β]) ∈ [ρ(S′)]s, i.e. ρ(T[β]) ∈ ΓA, that ρ(T[α]) ∈ ΓA. We check
all the possible axioms and assume T[β] is an arbitrary but fixed.

If we use one of (A.3), (A.6–A.9), (A.12–A.14), (A.17–A.21), or (A.24–
A.28) then from T[β], where ρ(T[β]) ∈ ΓA, we obtain T[σ(α)] such that
ρ(T[α]) ∈ ΓA.

If we use (A.22) or (A.29) then ρ(T[β]), which is in ΓA, is equal to some
〈ee′〉med′vD′ or 〈ee′〉mee′dvD. Therefore the formula ρ(T[α]) is also in ΓA.

The other axioms from Φ[A, π] cannot be applied, because the induction
hypothesis would be violated as we will show in the rest of the proof.

If (A.1), (A.2), (A.4), or (A.5) were used it would mean that T[β]
contains eX or e′X ′. Hence ρ(T[β]) /∈ ΓA.

We have to also check axioms σ(α)⇒ β ∨ γ containing join. It suffices
to show for any two formulae ρ(T[β]) ∈ [ρ(S′)]s and ρ(T[γ]) ∈ [ρ(S′)]s,
i.e. ρ(T[β]), ρ(T[γ]) ∈ ΓA, that ρ(T[α]) ∈ ΓA, because (ρ(T[β]) ∨ ρ(T[γ])) ∼∗
ρ(T[β ∨ γ]). Let T[β] and T[γ] be arbitrary but fixed.

If (A.10) or (A.11) were used then we could clearly assume ρ(T[β])
ends with X ′ and ρ(T[γ]) with Ci. Moreover, they are members of ΓA.
Therefore ρ(T[γ]) has to be equal to some 〈ee′〉mecjivCi and hence ρ(T[β]) =
〈ee′〉mecjiδ(δ−1(v) π(i))X ′, but then ρ(T[β]) /∈ ΓA. It follows that (A.10)
and (A.11) are not applicable in this case. Similarly for (A.15) and (A.16).

If (A.23) were used then we could clearly assume ρ(T[γ]) contains d′.
It is impossible that ρ(T[γ]) = 〈ee′〉med′vD′ and ρ(T[β]) = 〈ee′〉mee′vD′ as
ρ(T[β]) /∈ ΓA. Therefore ρ(T[γ]) = 〈ee′〉med′vX ′ and ρ(T[β]) = 〈ee′〉mee′vX ′,
but then also ρ(T[β]) /∈ ΓA. Similarly for (A.30).

Lemma A.5.2. If S⇒ eX is provable in NL∨(Φ[A, π]) then for all ψ ∈
[ρ(S)]s hold ψ ∈ ΛA and τ(ψ) = ↓.

50

A.5. Completeness of encoding

Proof. The proof is by induction on the height of the standard proof. If
the height is zero then the only possibilities are (Id) or members of Φ[A, π].
Hence [ρ(S)]s can contain only eX, ee′X ′, or eciX, for any i ∈ [1, n]. All
these formulae are trivially equal to ↓ under τ .

We assume that this lemma holds for all standard proofs with height at
most n. Fix an arbitrary proof of S⇒ eA with height n + 1. We need to
consider all the possible last steps.

It is impossible that (∨R) is the last step and if it is (·L) or (∨L) then
we can use arguments from the previous lemma.

If (·R) is the last step then S = (U,V), U⇒ e, and V⇒X. It is easy to
prove by induction that e = [U]s and X = [V]s. Hence eX = [(U,V)]s.

The last case is when we use a principal cut. Let us assume that from
S′⇒ eA and a member of Φ[A, π] we obtain S⇒ eA. It is clear that only
the axioms (A.1), (A.2), (A.4), and (A.5) from Φ[A, π] are applicable. The
other axioms contain on the right side a symbol, which does not occur in
ΛA. This violates the induction hypothesis.

As an axiom σ(α)⇒ β with no join is used, it is sufficient to show
for any ρ(T[β]) ∈ [ρ(S′)]s, i.e. τ(ρ(T[β])) = ↓, that τ(ρ(T[α])) = ↓. Fix
T[β] and we know that the axiom (A.1), (A.2), (A.4), or (A.5) is used.
Hence T[β] contains eX or e′X ′. We conclude from ρ(T[β]) ∈ ΛA that
τ(ρ(T[α])) = ↓.

Lemma A.5.3. If S⇒ eX ∨ eA is provable in NL∨(Φ[A, π]) then for all
ψ ∈ [ρ(S)]s hold

1. ψ ∈ ΓA, or

2. ψ ∈ ΛA and τ(ψ) ∗A,π ↓.

Proof. The proof is by induction on the height of the standard proof. If the
height is zero then the only possibility is (Id). Hence [ρ(S)]s contains eX
and eA. We know that τ(eX) = ↓ and eA ∈ ΓA. Note that τ is defined only
for state formulae and therefore the application of τ on any formula implies
that this formula is in ΛA.

We assume that this lemma holds for all standard proofs with height at
most n. Fix an arbitrary proof of S⇒ eX ∨ eA with height n+ 1. We need
to consider all the possible last steps.

It is impossible that (·R) is the last step and if it is (·L) or (∨L) then
we can use arguments from Lemma A.5.1.

If (∨R) is the last step then there are two possibilities. If we use (∨R)
on S⇒ eA then for all ψ ∈ [ρ(S)]s hold ψ ∈ ΓA by Lemma A.5.1. And if we
use (∨R) on S⇒ eX then for all ψ ∈ [ρ(S)]s hold τ(ψ) = ↓ by Lemma A.5.2.

51

A.6. Some possible modifications

The last case is when we use a principal cut. Let us assume that from
S′⇒ eX ∨ eA and a member of Φ[A, π] we obtain S⇒ eX ∨ eA.

If an axiom σ(α)⇒ β with no join is used then it is sufficient to show
for any ρ(T[β]) ∈ [ρ(S′)]s, i.e. ρ(T[β]) ∈ ΓA ∪ ΛA, that ρ(T[α]) ∈ ΓA or
τ(ρ(T[α])) ∗A,π ↓. We have to check all the possible axioms and assume
T[β] is an arbitrary but fixed.

If we use the axiom (A.1), (A.2), (A.4), or (A.5) it means that T[β]
contains eX or e′X ′. Hence ρ(T[β]) ∈ ΛA and τ(ρ(T[α])) = ↓.

If we use one of (A.3), (A.6–A.9), (A.12–A.14), (A.17–A.21), or (A.24–
A.28) then ρ(T[β]) ∈ ΓA. Applying any of these axioms we obtain T[σ(α)]
such that ρ(T[α]) ∈ ΓA.

If we use (A.22) or (A.29) then ρ(T[β]) ∈ ΓA, because ρ(T[β]) is equal
to some 〈ee′〉med′vD′ or 〈ee′〉mee′dvD and hence ρ(T[α]) ∈ ΓA.

We have to also check axioms σ(α)⇒ β ∨ γ containing join. In this case
two formulae ρ(T[β]) ∈ [ρ(S′)]s and ρ(T[γ]) ∈ [ρ(S′)]s, i.e. ρ(T[β]), ρ(T[γ]) ∈
ΓA∪ΛA, are sufficient as (ρ(T[β])∨ρ(T[γ])) ∼∗ ρ(T[β∨γ]). We have to show
that ρ(T[α]) ∈ ΓA or τ(ρ(T[α])) ∗A,π ↓. Let T[β] and T[γ] be arbitrary but
fixed.

If we use (A.10) or (A.11) then we can clearly assume ρ(T[β]) ends with
X ′ and ρ(T[γ]) with Ci. Therefore ρ(T[γ]) is equal to some 〈ee′〉mecjivCi and
hence ρ(T[β]) = 〈ee′〉mecjiδ(δ−1(v) π(i))X ′. Hence ρ(T[α]) = 〈ee′〉mecjivX
and τ(ρ(T[α])) = aiajδ

−1(v). We know that τ(ρ(T[β])) = δ−1(v) π(i) ∗A,π ↓
and hence τ(ρ(T[α])) ∗A,π ↓, because we get δ−1(v) π(i) from aiajδ

−1(v) by
a single step of the 2-tag system. Similarly for (A.15) and (A.16).

If we use (A.23) then we can clearly assume ρ(T[γ]) contains d′. It is
impossible that ρ(T[γ]) = 〈ee′〉med′vD′ and ρ(T[β]) = 〈ee′〉mee′vD′, because
ρ(T[β]) /∈ ΓA ∪ ΛA. Therefore ρ(T[γ]) = 〈ee′〉med′vX ′ and ρ(T[β]) =
〈ee′〉mee′vX ′. Hence ρ(T[α]) = 〈ee′〉mecjivX ′ and τ(ρ(T[α])) = δ−1(v) =
τ(ρ(T[β])) ∗A,π ↓. Similarly for (A.30).

Corollary A.5.4. If eδ(w)X⇒ eX ∨ eA is provable in NL∨(Φ[A, π]) then
w ∗A,π ↓.

As the halting problem for 2-tag systems is generally undecidable Corol-
laries A.4.4 and A.5.4 give us that the consequence relation in NL∨, and
therefore in FNL, is undecidable.

A.6 Some possible modifications
In this section we discuss some easy modifications of our result. Although
they could influence the validity of the completeness of encoding proved in

52

A.6. Some possible modifications

the previous section, we will show that they have no or negligible effect on
the proofs of Lemmata A.5.1–A.5.3.

A.6.1 Adding structural rules

We can add structural rules to our non-associative calculus, cf. [GO10]. The
rules of exchange (e), contraction (c), and left-weakening or integrality (i)
are defined as:

S[(T,U)]⇒ ψ
(e)

S[(U,T)]⇒ ψ

S[(T,T)]⇒ ψ
(c)

S[T]⇒ ψ

S[ε]⇒ ψ
(i)

S[T]⇒ ψ

It is obvious that our construction fails with the rule of left-weakening.
In fact then the consequence relation is decidable, see [BA05].

However, our construction works with exchange and contraction. It is
easy to check that Theorem A.2.2 is provable when the rule of exchange is
added. If the rule of contraction is added then the only non-trivial case is
when

...
T[(U[χ],U[χ])]⇒ ψ

(c)
T[U[χ]]⇒ ψ

...
V⇒ χ

(Cut)
T[U[V]]⇒ ψ

Nevertheless, such a proof can be transformed into

...
T[(U[χ],U[χ])]⇒ ψ

...
V⇒ χ

(Cut)
T[(U[V],U[χ])]⇒ ψ

...
V⇒ χ

(Cut)
T[(U[V],U[V])]⇒ ψ

(c)
T[U[V]]⇒ ψ

Thus we can prove a variant of Theorem A.2.2 assuming a more general
definition of (Cut) that makes possible to perform these two cuts at once,
see [HOS94], and a small change in the inductive argument.1

Therefore it is sufficient to show that Corollary A.5.4 holds even with
exchange and contraction.

1It is worth noting that we have the rule of contraction for structures and not only for
formulae. The rule of contraction for formulae does not admit cut-elimination. However,
as we have product in the language both rules are equivalent in the presence of (Cut),
cf. [GO10].

53

A.6. Some possible modifications

Exchange

As all our simple formulae can be represented as sequences of propositional
variables, where brackets tight to right, it is a simple matter to show that
our construction works when the rule of exchange is added, because in our
case we can define a normal form. For example it is clear that (e((Xe)e′))
is equivalent to ee′eX. We define the function l by

l(ϕ·ψ)=

ϕ · l(ψ) if ψ is not a propositional variable,
ψ · l(ϕ) if ϕ is not a propositional variable,
ϕ · ψ if ψ is a propositional variable which is a capital letter,
ψ · ϕ if ϕ is a propositional variable which is a capital letter,

and l(p) = p for any propositional variable p. We can change the definition
of simple representation, see Definition A.2.4, not to be a join of simple
formulae χi, but a join of simple formulae l(χi). Then it is easy to check
that Lemmata A.5.1–A.5.3 hold with this adapted definition.

Contraction

The case when the rule of contraction is added is easy, because this rule is
not applicable in the proofs of Lemmata A.5.1–A.5.3. The reason is that
no formula occurring in our construction has ϕ · ϕ as a subformula, cf. the
definition of Φ[A, π], ΓA, and ΛA. Moreover, the rule of exchange has no
effect on that.

A.6.2 One-variable fragment

It is easily seen that in our construction we can encode any finite sequence of
variables by one variable using non-associativity. Let p be the only variable
and we want to encode the sequence of variables p0, . . . , pm. The variable pi
is uniquely determined by i and hence also by 2i+ 1.2 We can represent pi
by the binary representation of 2i+ 1, hence we use k = dlog2(m+ 1)e+ 1
bits, where we replace all zeros by p and ones by (pp) and all the parentheses
in the resulting formula tight to right.

Example A.6.1. If we have p0, . . . , p15 then we need 5 bits. Therefore p2

is represented by 00101 and hence by (p(p((pp)(p(pp))))).
2The reason why we use 2i+ 1 instead of i is that this encoding works even with the

rule of exchange, because 1 is always the last symbol in the binary representation.

54

A.7. Remarks on algebraic consequences

It is obvious that this encoding does not work with the rule of contraction.
However, it is easy to obtain a function similar to l from Section A.6.1 which
works nicely with the rule of exchange.

A.7 Remarks on algebraic consequences
As FNL is complete with respect to lattice-ordered residuated groupoids, see
e.g. [GO10], our paper proves that the word problem for them is undecidable.
However, we can obtain a stronger result as we need only {·,∨}. Let G
be a set with a groupoid operation (product) and join on it, where join is
idempotent, commutative, associative, and product distributes over join,
i.e. they satisfy equalities in Section A.2.2. As 〈G,∨〉 is a join-semilattice
we can define x ≤ y iff y = x ∨ y. Our construction shows that the word
problem for such a structure is generally undecidable. Therefore it does not
have the finite embedability property (FEP).3

The translation is fairly straightforward. We know that S⇒ϕ is provable
iff ρ(S)⇒ϕ is provable. We can translate that into ρ(S) ≤ ϕ, i.e. ϕ = ρ(S)∨ϕ.
This way we can translate all the axioms from Φ[A, π], see Definition A.3.2,
and use them as a theory. The 2-tag system given by A and π terminates
on a word w ∈ A∗ iff eX ∨ eA = eδ(w)X ∨ eX ∨ eA is provable from this
theory.

A direct proof that this works can be based on Sections A.4 and A.5.
The correctness is proved as in Section A.4. The proof of completeness by
induction on the length of the derivation starting from eX ∨ eA is analogous
to the proof in Section A.5. Note that our simple representation is convenient
for this purpose.

Let us also note that the structural rules of exchange and contraction
given in Section A.6.1 correspond to x · y = y · x and x ≤ x · x, respectively.
Therefore the word problem is undecidable even if these equalities hold.

On the other hand, it is easy to check that in the proof of correctness we
do not need the idempotency and commutativity of join in the full generality.
It suffices to add the following particular equality

eA ∨ eX = eX ∨ eA. (A.31)
3On the contrary, the FEP holds for distributive lattice-ordered residuated groupoids,

see [BF09; Far08; HH14]. There is a quasi-identity in the language {·,∨} that holds in
the distributive case but does not hold in the non-distributive one. A join-semilattice L
is distributive if a ≤ a1 ∨ a2, for a, a1, a2 ∈ L, implies a = a′1 ∨ a′2, for some a′1, a′2 ∈ L,
where a′1 ≤ a1 and a′2 ≤ a2, see [Grä11]. A particular example of such a quasi-identity is
x ≤ x1 ∨ x2 and y ≤ y1 ∨ y2 implies xy ≤ xy1 ∨ x1y2 ∨ x2y, which was kindly provided
by Rostislav Horčík.

55

A.8. Remarks on term rewriting systems

However, for our construction to work we need the associativity of join and
the distributivity of product over join.

A.8 Remarks on term rewriting systems
A natural way how to think about our construction is that we produce a
term rewriting system. For our purposes here, a term rewriting system is
a collection of rewriting rules ϕ→ ψ, where ϕ and ψ are formulae. Such a
rule says that in a formula we can replace any of its subformula ϕ by ψ.

It is clear that we can read ϕ⇒ ψ as ϕ→ ψ. Therefore our rewriting
system is given by Φ[A, π] and the rules of the sequent calculus. Note that
strictly speaking rewriting rules are stronger than (Cut), but in our case it
is a simple matter to simulate them by (Cut).

An obvious question to ask is whether all rules given by the sequent
calculus are necessary for the proof of correctness in Section A.4. It is easily
seen that we can replace the sequent calculus with the following rules. For
any formulae ϕ, ψ, and χ we need

ϕ · (ψ ∨ χ)→ (ϕ · ψ) ∨ (ϕ · χ), (A.32)
(ϕ ∨ ψ) · χ→ (ϕ · χ) ∨ (ψ · χ). (A.33)

Moreover, we do not need the full idempotency, commutativity, and associ-
ativity of join. It is sufficient to add the particular instance

(eX ∨ eA) ∨ eA→ eX ∨ eA (A.34)

to Φ[A, π]. It follows that the accessibility problem ϕ→∗ ψ, whether we
can rewrite ϕ to ψ in finitely many steps, is generally undecidable even
for rewriting systems satisfying only rules (A.32) and (A.33). A particular
undecidable problem is eδ(w)X ∨ eA→∗ eX ∨ eA.

It follows easily from the previous sections that the accessibility problem
remains generally undecidable if we add any (general) rules which are sub-
sumed by the commutativity and contractivity of product; the idempotency,
commutativity, and associativity of join; the distributivity of product over
join (in the opposite direction).

Acknowledgements

The author would like to thank to Rostislav Horčík who identified the {·,∨}-
fragment as the important one. He was also very helpful and supportive
during the author’s work on the problem. The anonymous referee, Zuzana

56

A.8. Remarks on term rewriting systems

Haniková, and Marta Bílková had many useful comments on various versions
of this paper. Félix Bou asked the question whether the construction works in
the one-variable fragment. The work was supported by grant P202/10/1826
of the Czech Science Foundation and by the long-term strategic development
financing of the Institute of Computer Science (RVO:67985807).

57

Bibliography

[BA05] Willem J. Blok and Clint J. van Alten. ‘On the finite embeddab-
ility property for residuated ordered groupoids’. Transactions of
the AMS 357.10 (2005), pp. 4141–4157. doi: 10.1090/S0002-
9947-04-03654-2.

[BF09] Wojciech Buszkowski and Maciej Farulewski. ‘Nonassociative
Lambek Calculus with Additives and Context-Free Languages’.
In: Languages: From Formal to Natural. Ed. by Orna Grumberg,
Michael Kaminski, Shmuel Katz and Shuly Wintner. Lecture
Notes in Computer Science 5533. Berlin Heidelberg: Springer,
2009, pp. 45–58. doi: 10.1007/978-3-642-01748-3_4.

[Bus05] Wojciech Buszkowski. ‘Lambek Calculus with Nonlogical Ax-
ioms’. In: Language and Grammar: Studies in Mathematical
Linguistics and Natural Language. Ed. by C. Casadio, P. J. Scott
and R. A. G. Seely. CSLI Lecture Notes 168. Stanford: CSLI,
2005, pp. 77–93.

[Bus82] Wojciech Buszkowski. ‘Some Decision Problems in the Theory of
Syntactic Categories’. Zeitschrift für mathematische Logik und
Grundlagen der Mathematik 28.33-38 (1982), pp. 539–548. issn:
1521-3870. doi: 10.1002/malq.19820283308.

[CM64] John Cocke and Marvin Lee Minsky. ‘Universality of Tag Sys-
tems with P=2’. Journal of the ACM 11.1 (1964), pp. 15–20.
doi: 10.1145/321203.321206.

[Doš88] Kosta Došen. ‘Sequent-systems and groupoid models. I’. English.
Studia Logica 47.4 (1988), pp. 353–385. issn: 0039-3215. doi:
10.1007/BF00671566.

[Far08] Maciej Farulewski. ‘Finite embeddability property for residuated
groupoids’. Reports on Mathematical Logic 43 (2008), pp. 25–42.
url: http://rml.tcs.uj.edu.pl/rml-43/02-farulewski.
pdf.

58

http://dx.doi.org/10.1090/S0002-9947-04-03654-2
http://dx.doi.org/10.1090/S0002-9947-04-03654-2
http://dx.doi.org/10.1007/978-3-642-01748-3_4
http://dx.doi.org/10.1002/malq.19820283308
http://dx.doi.org/10.1145/321203.321206
http://dx.doi.org/10.1007/BF00671566
http://rml.tcs.uj.edu.pl/rml-43/02-farulewski.pdf
http://rml.tcs.uj.edu.pl/rml-43/02-farulewski.pdf

Bibliography

[Gal+07] Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski and Hiroakira
Ono. Residuated Lattices: An Algebraic Glimpse at Substruc-
tural Logics. Vol. 151. Studies in Logic and the Foundations of
Mathematics. Amsterdam: Elsevier, Apr. 2007, p. 532.

[GO10] Nikolaos Galatos and Hiroakira Ono. ‘Cut elimination and strong
separation for substructural logics: An algebraic approach’. An-
nals of Pure and Applied Logic 161.9 (2010), pp. 1097–1133. doi:
10.1016/j.apal.2010.01.003.

[Grä11] George Grätzer. Lattice Theory: Foundation. Basel: Birkhäuser,
2011.

[HH14] Zuzana Haniková and Rostislav Horčík. ‘Finite Embeddability
Property for Residuated Groupoids’. Algebra Universalis 72.1
(2014), pp. 1–13. doi: 10.1007/s00012-014-0284-1.

[HOS94] Ryuichi Hori, Hiroakira Ono and Harold Schellinx. ‘Extending
intuitionistic linear logic with knotted structural rules.’ Notre
Dame Journal of Formal Logic 35.2 (Mar. 1994), pp. 219–242.
doi: 10.1305/ndjfl/1094061862.

[Lam58] Joachim Lambek. ‘The Mathematics of Sentence Structure’.
American Mathematical Monthly 65.3 (1958), pp. 154–170. url:
http://www.jstor.org/stable/2310058.

[Lam61] Joachim Lambek. ‘On the calculus of syntactic types’. In: Struc-
ture of Language and Its Mathematical Aspects. Ed. by Roman
Jakobson. Providence, Rhode Island: American Mathematical
Society, 1961, pp. 166–178. doi: 10.1090/psapm/012.

[Ono98] Hiroakira Ono. ‘Proof-Theoretic Methods in Nonclassical Logic:
An Introduction’. In: Theories of Types and Proofs. Ed. by M.
Takahashi, M. Okada and M. Dezani-Ciancaglini. Vol. 2. MSJ
Memoirs. Tokyo: Mathematical Society of Japan, 1998, pp. 207–
254.

[Pos43] Emil Leon Post. ‘Formal Reductions of the General Combinat-
orial Decision Problem’. American Journal of Mathematics 65.2
(1943), pp. 197–215. url: http://www.jstor.org/stable/
2371809.

[Tro92] Anne Sjerp Troelstra. Lectures on Linear Logic. CSLI lecture
notes 29. Stanford, CA: Stanford, CA : Center for the Study of
Language and Information, 1992.

59

http://dx.doi.org/10.1016/j.apal.2010.01.003
http://dx.doi.org/10.1007/s00012-014-0284-1
http://dx.doi.org/10.1305/ndjfl/1094061862
http://www.jstor.org/stable/2310058
http://dx.doi.org/10.1090/psapm/012
http://www.jstor.org/stable/2371809
http://www.jstor.org/stable/2371809

Appendix B

Full Lambek Calculus with
Contraction is Undecidable†

Karel Chvalovský and Rostislav Horčík
Institute of Computer Science, Academy of Sciences of the Czech Republic,

Pod Vodárenskou věží 271/2, 182 07 Prague 8, Czech Republic

Abstract

We prove that the set of formulae provable in the full Lambek
calculus with the structural rule of contraction is undecidable. In fact,
we show that the positive fragment of this logic is undecidable.

B.1 Introduction
Besides the cut rule, Gentzen’s sequent calculus LJ for propositional intu-
itionistic logic contains other structural rules, namely the rule of contraction
(c), exchange (e), left weakening (i), and right weakening (o). By removing
all these rules from LJ, one arrives at the full Lambek calculus FL. More
generally, every extension of FL by a subset of the rules (c), (e), (i), and (o)
defines a logic between FL and LJ. In [Gal+07] these logics are called basic
substructural logics. It is known that each of these logics has an analytic
sequent calculus. In particular, the cut rule is eliminable in all these calculi if
the contraction rule is introduced in its global variant (see [SO96] or [Gal+07,
Chapter 4]).

†Karel Chvalovský and Rostislav Horčík. ‘Full Lambek Calculus with Contraction is
Undecidable’. Journal of Symbolic Logic (to appear).

60

B.1. Introduction

Cut elimination is closely related to decidability. It is known that all
basic substructural logics are decidable except of FLc and FLco, where the
former is the extension of FL by the contraction rule and the latter is the
extension of FLc by the right weakening rule. The decidability of basic
substructural logics without the contraction rule follows immediately from
the cut elimination theorem and is proved in [Kom86]. On the other hand,
such an easy argument is not applicable for logics with the contraction
rule, since this rule makes the proof-search tree infinite. Nevertheless,
intuitionistic logic is decidable [Gen35a; Gen35b] and the same holds for the
extension of FL by the exchange and contraction rule [KO91] (the original
combinatorial idea from the proof goes back to Kripke [Kri59]). In contrast,
we show that FLc and FLco are the only undecidable logics among all basic
substructural logics. Actually, we prove that their common positive fragment
FL+

c is undecidable.
Among known propositional substructural logics, there are not so many

logics with an undecidable set of provable formulae. One of them is the
relevance logic R, which is a fragment of the involutive distributive FL
with the exchange and contraction rule. The undecidability of its positive
fragment is established in [Urq84]. Another example is the extension of
FL by the modular law. Since the equational theory of modular lattices is
undecidable [Fre80], one can easily extend this result to the extension of
FL by the modular law, as pointed out in [JT02]. One should also mention
the undecidability of propositional linear logic [Lin+92]. Nevertheless, its
undecidability is caused by the expressive power of exponentials, while the
fragment of linear logic without exponentials is PSPACE-complete [Lin+92].

The following paragraphs outline our undecidability proof. We start
with an undecidable problem P from [Hor15] (see Theorem B.3.1), where it
is shown that the deducibility problem for FL+

c (i.e. the question whether
a formula is provable from a finite theory) is undecidable. The problem
P is formulated as a reachability question for a string rewriting system
simulating a Minsky machine using only square-free words. This ensures
that the contraction rule does not affect the simulation of computation.

In order to isolate key ideas of the proof, we refrain from presenting a
direct reduction from the problem P into FL+

c . We instead introduce an
auxiliary problem and split the reduction into two steps.

First, Section B.3.2 shows how to reduce the reachability problem for a
string rewriting system to the same problem for an atomic conditional string
rewriting system, i.e. a string rewriting system where the rules can have
only atoms on the right-hand side and their usage is restricted to specific
contexts.

Second, an encoding of the reachability problem for an atomic conditional

61

B.2. Preliminaries

string rewriting system into FL+
c is presented in Section B.4. A set of

rewriting rules is encoded as a lattice conjunction (meet) of implications.
The conditionality of rewriting rules is handled by the lattice disjunction
(join). The idea of using the lattice disjunction for similar purposes comes
from [Kan95], where it is used for linear logic. In fact, our application of
this idea was inspired by [Chvar].

The completeness of encoding from Section B.4 is proved by a semantical
method similar to the one used in [Laf96]. This method relies on a sound
and complete algebraic semantics for FL+

c based on a variety of residuated
lattices RLc. In order not to mix different formalisms, we opt for using an
algebraic formalism throughout the paper. Actually, we prove undecidability
of the equational theory for RLc which immediately implies that FL+

c is
undecidable.

Section B.5 contains several comments on possible modifications of the
main result, as well as its connection to the deduction theorem.

B.2 Preliminaries
As was mentioned in the introduction, we show that even the positive frag-
ment of full Lambek calculus with the contraction rule FL+

c is undecidable.
Probably the most natural way of presenting FL+

c is in terms of a sequent
calculus. Formulae are formed in a standard way from a countable set of
variables Var and a constant 1 using the following connectives: fusion (·),
two implications (\ and /), join (∨), and meet (∧). It should be noted that
we have two implications, because there are two natural ways how to obtain
them in systems where the rule of exchange is not valid. The set of all for-
mulae is denoted by Fm. When writing formulae, we omit some parentheses
using the convention that fusion binds tighter than implications followed
by meet and join. Furthermore, we use the fact that fusion is associative
in FL+

c . Moreover, we often omit fusion completely, i.e. a formula ϕ · ψ is
shortly written as ϕψ.

A sequent is a pair Γ⇒ ϕ, where Γ is a (possibly empty) sequence of
formulae and ϕ is a formula. The elements of Γ are separated by commas
as usual and the intended meaning of these commas is fusion.

Definition B.2.1. The sequent calculus for FL+
c has the following axioms

and inference rules1:
1It is worth noting that we formulate the rule of contraction (c) for sequences and

not only for formulae. The rule of contraction only for formulae does not admit cut
elimination. However, as we have fusion in the language, both rules are equivalent in the
presence of (Cut).

62

B.2. Preliminaries

(Id) ϕ⇒ ϕ
Γ1, ϕ,Γ2⇒ ψ ∆⇒ ϕ(Cut)

Γ1,∆,Γ2⇒ ψ

Γ1,Γ2⇒ ψ(1L)
Γ1, 1,Γ2⇒ ψ

(1R) ⇒ 1

Γ1, ϕ, ψ,Γ2⇒ χ(·L)
Γ1, ϕ · ψ,Γ2⇒ χ

Γ⇒ ϕ ∆⇒ ψ(·R)
Γ,∆⇒ ϕ · ψ

Γ1, ϕ,Γ2⇒ ψ ∆⇒ χ(\L)
Γ1,∆, χ \ ϕ,Γ2⇒ ψ

ϕ,Γ⇒ ψ(\R)
Γ⇒ ϕ \ ψ

Γ1, ϕ,Γ2⇒ ψ ∆⇒ χ(/L)
Γ1, ϕ / χ,∆,Γ2⇒ ψ

Γ, ϕ⇒ ψ(/R)
Γ⇒ ψ / ϕ

Γ, ϕ,∆⇒ χ Γ, ψ,∆⇒ χ(∨L)
Γ, ϕ ∨ ψ,∆⇒ χ

Γ⇒ ϕi(∨R) for i=1, 2
Γ⇒ ϕ1 ∨ ϕ2

Γ, ϕi,∆⇒ ψ(∧L) for i=1, 2
Γ, ϕ1 ∧ ϕ2,∆⇒ ψ

Γ⇒ ϕ Γ⇒ ψ(∧R)
Γ⇒ ϕ ∧ ψ

Γ1,∆,∆,Γ2⇒ ψ(c)
Γ1,∆,Γ2⇒ ψ

The provability in the sequent calculus for FL+
c is defined in the usual

way—a proof is a tree labeled by sequents with only axioms in leaves and
all the other vertices are obtained from their children by the inference rules.
We say that a formula ϕ is a theorem of FL+

c if ⇒ ϕ is provable in FL+
c .

The logic FL+
c has a sound and complete algebraic semantics based

on residuated lattices. A residuated lattice A = 〈A,∧,∨, ·, \, /, 1〉 is an
algebraic structure such that 〈A,∧,∨〉 is a lattice, 〈A, ·, 1〉 is a monoid and
for all a, b, c ∈ A we have

a · b ≤ c iff b ≤ a\c iff a ≤ c/b, (B.1)

where ≤ is the order induced by the lattice structure of A, i.e. a ≤ b iff
a ∨ b = b.

Given a residuated lattice A, an A-evaluation (or shortly evaluation if
A is clear from the context) e is a map from Fm into A preserving all the
connectives, i.e. it is a homomorphism from the formula algebra on Fm to A.
An identity is a pair of formulae 〈ϕ, ψ〉 written suggestively as ϕ = ψ. We
say that an identity ϕ = ψ holds in A if for every A-evaluation e we have
e(ϕ) = e(ψ). More generally, an identity ϕ = ψ holds in a class of residuated
lattices K if it holds in every residuated lattice from K. An identity of the
form ϕ ∨ ψ = ψ is shortly denoted by ϕ ≤ ψ.

63

B.2. Preliminaries

Fact B.2.1. The following identities hold in the class of all residuated
lattices:

• x(x\y) ≤ y,

• x(y ∨ z) = xy ∨ xz,

• (y ∨ z)x = yx ∨ zx.

Note that x ≤ y implies xz ≤ yz and zx ≤ zy by the distributivity of
fusion over join.

A residuated lattice A is called square increasing if the identity x ≤ x2

holds in A. It is well known (see e.g. [Gal+07]) that the class of square-
increasing residuated lattices forms a variety denoted by RLc, i.e. it is
axiomatized by a set of identities.

Theorem B.2.2 (e.g. [Gal+07]). FL+
c is sound and complete with respect to

the class of square-increasing residuated lattices. More precisely, the sequent
ψ⇒ ϕ is provable in FL+

c iff the identity ψ ≤ ϕ holds in RLc.

Since the sequents ⇒ ϕ and 1⇒ ϕ are equivalent in terms of provability
in FL+

c , it follows that the sequent ⇒ ϕ is provable in FL+
c iff the identity

1 ≤ ϕ holds in RLc. Furthermore, observe that by (B.1) an identity ϕ ≤ ψ
holds in RLc iff 1 ≤ ϕ\ψ holds there. Consequently, if we prove that the set
of identities of the form ϕ ≤ ψ valid in RLc is undecidable, then we obtain
the same for the set of provable formulae in FL+

c .
We opt for using algebraic semantics in our proofs because algebraic

notation in this case seems to be more compact. Nevertheless, this choice is
not essential and has no influence on the construction itself. Moreover, a
reader preferring e.g. proof-theoretical notions can adapt even all the proofs,
because the main ideas in them remain the very same.

B.2.1 Residuated frames

In the following paragraphs, we recall residuated frames which will be useful
in the construction of a suitable countermodel in the proof of completeness
of our encoding. We start with an important example of a residuated lattice
called the powerset monoid.

Example B.2.1 (see e.g. [Gal+07]). Let M = 〈M, ·, 1〉 be a monoid. The
powerset monoid is the residuated lattice P(M) = 〈P(M),∩,∪, ·, \, /, {1}〉

64

B.2. Preliminaries

defined on the powerset of M , where for X, Y, Z ⊆ M the operations are
defined as follows:

X · Y = {x · y ∈M | x ∈ X, y ∈ X },
X\Z = { y ∈M | X · {y} ⊆ Z },
Z/Y = {x ∈M | {x} · Y ⊆ Z }.

Note that 1 ∈ X\Z iff X ⊆ Z.

Other examples of residuated lattices can be obtained from the power-
set monoid P(M) by considering a suitable closure operator on the poset
〈P(M),⊆〉. Recall that a closure operator on 〈P(M),⊆〉 is a map γ : P(M)→
P(M) such that for all X, Y ⊆M we have

• X ⊆ γ(X),

• γ(γ(X)) = γ(X), and

• X ⊆ Y implies γ(X) ⊆ γ(Y).

A subset X ⊆ M is said to be γ-closed if X = γ(X). The set of all γ-
closed subsets of M is denoted P(M)γ . Recall that 〈P(M)γ,∩,∪γ〉 forms a
complete lattice where X ∪γ Y = γ(X ∪ Y).

A subset B ⊆ P(M)γ of γ-closed sets is said to be a basis for γ if every
X ∈ P(M)γ can be expressed as the intersection of all the basis elements
above X, i.e. X =

⋂
{B ∈ B | X ⊆ B }. Given a basis B for the closure

operator γ, the equivalence

X ⊆ γ(Y) iff Y ⊆ B implies X ⊆ B for all B ∈ B (B.2)

holds for all X, Y ⊆M .
It is well known that every closure operator on 〈P(M),⊆〉 is induced

by a binary relation N ⊆M × T for some set T (see e.g. [DP02; Gal+07]).
Given such a relation N ⊆ M × T , one can introduce the following two
maps which define a Galois connection between 〈P(M),⊆〉 and 〈P(T),⊆〉:

XB = { b ∈ T | (∀x ∈ X)(x N b) },
Y C = { a ∈M | (∀y ∈ Y)(a N y) }.

Lemma B.2.3 (see e.g. [DP02; Gal+07]). The maps C and B have the
following properties:

• X ⊆ Y implies Y B ⊆ XB for X, Y ⊆M .

65

B.2. Preliminaries

• X ⊆ Y implies Y C ⊆ XC for X, Y ⊆ T .

• ∅C = M and ∅B = T .

• XBCB = XB and Y CBC = Y C for X ⊆M and Y ⊆ T .

• The map γN : P(M)→ P(M) defined by γN(X) = XBC is a closure
operator on 〈P(M),⊆〉.

• The collection { {b}C | b ∈ T } forms a basis for γN .

Let x1, . . . , xn ∈M . To shorten the notation, we will write γN{x1, . . . , xn}
instead of γN({x1, . . . , xn}).

Assume that we have a closure operator γ on the powerset monoid
P(M) described in Example B.2.1. If γ satisfies γ(γ(X) · γ(Y)) = γ(X · Y)
for all X, Y ⊆ M then γ is called a nucleus. In this case one can define
a residuated lattice on γ-closed sets. The resulting algebra P(M)γ =
〈P(M)γ,∩,∪γ, ·γ, \, /, γ{1}〉, where X ∪γ Y = γ(X ∪ Y) and X ·γ Y =
γ(X · Y), is a residuated lattice (see e.g. [Gal+07]).

We have mentioned above that every binary relationN ⊆M×T induces a
closure operator γN on 〈P(M),⊆〉. The following definition gives a sufficient
condition on N for γN to be in addition a nucleus.

Definition B.2.2 ([GJ13]). A residuated frame is a two-sorted structure
W = 〈M, T,N〉 where M = 〈M, ·, 1〉 is a monoid, T is a set, and N ⊆
M × T is a nuclear relation, i.e. there exist operations : M × T → T and
� : T ×M → T such that

x · y N z iff y N xz iff x N z�y.

Given a residuated frame W = 〈M, T,N〉, the induced closure operator
γN is a nucleus on the powerset monoid P(M) (see [GJ13]) indeed. Thus
one can define a dual algebra W+ of the residuated frame W by letting W+

to be the residuated lattice P(M)γN .
Now we present an example of a residuated frame associated with a

language L over an alphabet Σ and its dual algebra. This example will be
of use later. Given an alphabet Σ, the set of all words (resp. non-empty
words) over Σ is denoted Σ∗ (resp. Σ+). Recall that Σ∗ together with the
concatenation of words and the empty word ε forms the free Σ-generated
monoid.

Example B.2.2. Let Σ be an alphabet and L ⊆ Σ∗ a language. Consider
a structure WL = 〈Σ∗,Σ∗ × Σ∗, N〉 where the binary relation N ⊆ Σ∗ ×

66

B.2. Preliminaries

(Σ∗ × Σ∗) is defined by

x N 〈u, v〉 iff uxv ∈ L.

It follows that N is nuclear, since for all x, y, u, v ∈ Σ∗ we have

xy N 〈u, v〉 iff y N 〈ux, v〉 iff x N 〈u, yv〉 iff uxyv ∈ L.

Consequently, WL forms a residuated frame and the dual algebra

W+
L = 〈W+

L ,∩,∪γN , ·γN , \, /, γN{ε}〉

is a residuated lattice where W+
L = P(Σ∗)γN , X ∪γN Y = γN(X ∪ Y) and

X ·γN Y = γN(X · Y).

In what follows, we assume that Σ ⊆ Var. Hence Σ∗ ⊆ Fm if we identify
a word a1a2 . . . an ∈ Σ∗ with the formula a1 ·a2 · · · · ·an (the fusion of atoms
a1, . . . , an).

Lemma B.2.4. Let e : Fm→ W+ be a W+
L -evaluation, a1, . . . , an ∈ Σ and

w = a1a2 . . . an. Assume that e(ai) = γN(Xi) and Xi ⊆ Σ∗ for i = 1, . . . , n.
Then e(w) = γN (X1 ·X2 · · · · ·Xn). In particular, if Xi = {ai} for i = 1, . . . , n
then e(w) = γN{w}.

Proof. By the definition of a nucleus we have

γN(X) ·γN γN(Y) = γN(γN(X) · γN(Y)) = γN(X · Y).

This can be easily generalized for arbitrarily many subsets X1, . . . , Xn ⊆ Σ∗

and hence
γN(X1) ·γN · · · ·γN γN(Xn) = γN(X1 · · ·Xn).

Therefore the lemma follows, since

e(w) = e(a1) ·γN · · · ·γN e(an) = γN(X1) ·γN · · · ·γN γN(Xn) = γN(X1 · · ·Xn).

Certainly, we are interested in languages L such that W+
L is square

increasing. We say that a language L over an alphabet Σ is closed under
the contraction rule if uxxv ∈ L implies uxv ∈ L for all u, x, v ∈ Σ∗.

Lemma B.2.5. If L ⊆ Σ∗ is closed under the contraction rule then
W+

L ∈ RLc.

67

B.2. Preliminaries

Proof. LetX ∈ W+
L , i.e.X = γN (X). It suffices to show that (X ·X)B ⊆ XB,

for if this is proved, Lemma B.2.3 gives

X = XBC ⊆ (X ·X)BC = X ·γN X.

Assume that 〈u, v〉 ∈ (X · X)B and x ∈ X. Hence xx ∈ X · X and so
uxxv ∈ L. Since L is closed under the contraction rule, we have uxv ∈ L.
Thus 〈u, v〉 ∈ XB.

B.2.2 Regular languages

In what follows, we will need to encode regular languages closed under the
contraction rule into the equational theory of RLc. In this section we will
show how to do it. It also affords a good illustration of how to use residuated
frames in order to prove a completeness of an encoding.

Given an alphabet Σ, the set of all regular languages over Σ is denoted
Reg(Σ). Recall that every regular language can be captured by a right-linear
context-free grammar (see [HU79]). Let G = 〈V,Σ, P, S〉 be a right-linear
context-free grammar with a finite set of variables V (non-terminals), a
finite set of terminals Σ, a start variable S and a finite set of production
rules P of the form A → wB or A → w for some variables A,B ∈ V
and w ∈ Σ∗. The derivation relation →∗G of G is defined in the usual way
(see e.g. [HU79]). For every non-terminal A ∈ V we define its language
L(A) = {w ∈ Σ∗ | A→∗G w }. In particular, L(S) is the language generated
by G. Until further notice, we assume that V ∪ Σ ⊆ Var.

We define a finite set of formulae

∆G = {wB\A | A→ wB ∈ P } ∪ {w\A | A→ w ∈ P }.

Then we define a formula δG as the meet of 1 and all the formulae in ∆G,
i.e. δG = 1 ∧

∧
∆G.

Now we can encode the membership of a word w ∈ Σ∗ in the regular
language L = L(S) generated by G via the identity wδG ≤ S. The following
lemma shows that this encoding is sound.

Lemma B.2.6. Let G = 〈V,Σ, P, S〉 be a right-linear context-free grammar
generating a regular language L and w ∈ (V ∪Σ)∗. If S →∗G w then wδG ≤ S
holds in RLc. In particular, if w ∈ L = L(S) then wδG ≤ S holds in RLc.

Proof. The claim is proved by induction on the number of steps in the
derivation of w using the grammar G. Clearly, SδG ≤ S holds in RLc, since
δG ≤ 1. Assume that w is derived by a production rule A → uB ∈ P ,

68

B.2. Preliminaries

i.e. w = w′uB. Hence uB\A ∈ ∆G and so δG ≤ uB\A. By the induction
hypothesis, we know that w′AδG ≤ S holds in RLc. It follows that

wδG ≤ wδ2
G ≤ w(uB\A)δG = w′uB(uB\A)δG ≤ w′AδG ≤ S.

The case for a production rule of the form A→ u is completely analogous.

We prove the completeness of our encoding via the residuated frame WL

(see Example B.2.2). We start with a general lemma.

Lemma B.2.7. Let G = 〈V,Σ, P, S〉 be a right-linear context-free grammar
and W = 〈Σ∗, T,N〉 a residuated frame. Given a W+-evaluation e : Fm→
W+ suppose that e(a) = γN{a} for a ∈ Σ and e(A) = γN(L(A)) for A ∈ V .
Then ε ∈ e(δG).

Proof. We have to show that ε ∈ e(δG) = e(1) ∩
⋂
ϕ∈∆G

e(ϕ). Since ε ∈
γN{ε} = e(1), it suffices to show that for every ϕ ∈ ∆G we have ε ∈ e(ϕ).
In other words, we need to show that e(wB) ⊆ e(A) (resp. e(w) ⊆ e(A)) if
ϕ = wB\A (resp. ϕ = w\A).

Assume that ϕ = wB\A (the proof for ϕ = w\A is analogous). Hence
the production rule A → wB belongs to P . Let x ∈ L(B). Hence A →G

wB →∗G wx, i.e. wx ∈ L(A). Consequently, we have {w} · L(B) ⊆ L(A).
Thus Lemma B.2.4 implies

e(wB) = γN({w} · L(B)) ⊆ γN(L(A)) = e(A).

Assume that the regular language L generated by G is closed under the
contraction rule and wδG ≤ S holds in RLc. Hence W+

L belongs to RLc by
Lemma B.2.5. Thus wδG ≤ S holds in W+

L . Consider the evaluation from
Lemma B.2.7. It follows that e(wδG) = γN(e(w) · e(δG)) ⊆ e(S) = γN{L}.
Since ε ∈ e(δG) by Lemma B.2.7 and w ∈ γN{w} = e(w) by Lemma B.2.4,
we obtain w ∈ e(w) ·e(δG) ⊆ e(wδG) ⊆ γN{L}. In order to show that w ∈ L,
it suffices to show that L is γN -closed. To see this observe that L = {〈ε, ε〉}C.
Thus L is a member of the basis for γN (see Lemma B.2.3).

Theorem B.2.8. Let L be a regular language closed under the contraction
rule, G = 〈V,Σ, P, S〉 its generating right-linear context-free grammar and
δG = 1 ∧

∧
∆G. Then w ∈ L iff wδG ≤ S holds in RLc.

69

B.3. SRSs and atomic conditional SRSs

B.3 SRSs and atomic conditional SRSs
A string rewriting system (shortly SRS) is a tuple 〈Σ, R〉, where Σ is an
alphabet and R ⊆ Σ∗ × Σ∗ is a binary relation. A member 〈x, y〉 of R is
called a (rewriting) rule and we write it x y.

A single-step reduction relation→ ⊆ Σ∗×Σ∗ is defined for any w,w1 ∈ Σ∗

as w→ w1 iff there are words x, y, u, v ∈ Σ∗ such that w = uxv, w1 = uyv
and x y ∈ R. A reduction relation →∗ is the reflexive transitive closure
of →. For further details see e.g. [BO93].

Given a word w0 ∈ Σ∗, we define a language corresponding to 〈Σ, R〉
and w0 by

L(w0) = {w ∈ Σ∗ | w→∗ w0 }.

The problem to decide whether a word w ∈ Σ∗ belongs to L(w0) is sometimes
called the reachability problem (for a fixed word w0).

It is easy to construct an SRSs 〈Σ, R〉 and w0 ∈ Σ+ such that L(w0)
is undecidable. A common way how to obtain such a rewriting system is
to encode a Minsky machine (two-counter machine) with an undecidable
set of accepting configurations. These machines have a finite set of states
and therefore their configuration can be completely described by a triplet
〈i,m, n〉 of natural numbers, which says that the machine is in the state i
and counters have values m and n. A possible way how to encode such a
triplet by a word is

Aamqia
nB,

where A,B are stoppers and ak is the sequence of k letters a. One can
also capture operations of Minsky machines by rewriting rules. It follows
that the language L(Aq0B) is undecidable—a Minsky machine accepts a
configuration 〈i,m, n〉 if its computation ends in 〈0, 0, 0〉. However, in our
case the problem is that L(Aq0B) is not closed under the contraction rule.
Therefore such a straightforward representation of counters is impossible.

Nevertheless, we can represent counters by square-free words, i.e. do not
contain uu as a subword. It is well known (see e.g. [Lot02]) that if we have
a morphism over the alphabet {a, b, c} defined by

h(a) = abc h(b) = ac h(c) = b

then hm(a) is square free for any m. Hence we can represent a state of our
machine by

Ahm(a)BqiCh
n(a)D.

In this way we can obtain a rewriting system such that the language
L(AaBq0CaD) is undecidable and consists only of square-free words and

70

B.3. SRSs and atomic conditional SRSs

therefore it is closed under the contraction rule. This coding is inspired
by [KS95, Section 7.2.5] and the complete construction is described in [Hor15,
Section 4], where the word problem for RLc and therefore the deducibility
problem for FL+

c are proved to be undecidable.

Theorem B.3.1 ([Hor15]). There is an SRS 〈Σ, R〉 and w0 ∈ Σ+ such that
L(w0) is undecidable. In addition, L(w0) consists only of square-free words,
i.e. L(w0) is closed under the contraction rule. Moreover, the rules contain
only square-free words.

It is worth pointing out that R from the previous theorem contains only
non-empty words, i.e. R ⊆ Σ+ × Σ+, and hence if w→∗ w0 then w ∈ Σ+,
since w0 ∈ Σ+. Clearly, empty words play no essential role in this SRS,2 the
fact to be used later.

In this paper we will present an encoding of the reduction relation →∗
for such a rewriting system into the equational theory of RLc.

B.3.1 A naïve way of encoding

Theorem B.3.1 gives us an SRS 〈Σ, R〉 and w0 ∈ Σ+ such that it is undecid-
able whether w→∗ w0 for w ∈ Σ+. Algebraically we would like to encode
this problem as the validity of w ≤ w0 modulo the given set of rules R. The
problem is how to represent the set of rules R. Now we are going to present
a naïve way how to do that. Although it does not work, we will elaborate
on it later on.

The most natural way is to represent a rule x y ∈ R as an implication,
e.g. x\y. The idea is as follows. Assume we have uxv, uyv ∈ Σ∗. We know
x(x\y) ≤ y (see Fact B.2.1) and hence ux(x\y)v ≤ uyv. Moreover, as we
have contraction, it holds that

ux(x\y)v ≤ ux(x\y)(x\y)v ≤ uy(x\y)v.

This shows how to represent a rewriting rule, but we can easily generalize
this to the whole set R using meet. Let θ =

∧
x y∈R(x\y) then in the

previous example we have

uxθv ≤ uxθθv ≤ ux(x\y)θv ≤ uyθv.

However, such a straightforward representation fails. Assume also z xv ∈ R.
We have uz→ uxv→ uyv. Hence we would like to show that uzθ ≤ uxθv ≤

2For these reasons even the definition of SRSs in [Hor15] allows only non-empty
words.

71

B.3. SRSs and atomic conditional SRSs

uyθv, but the previous technique does not work. It is not enough that
z\xv is in θ, because we would need z\xθv to be in θ, which is obviously
impossible, since it cannot contain itself.

Obviously, this is an essential problem. If all x y ∈ R were such that
y is only a letter, i.e. y ∈ Σ, then this would work, but for obvious reasons
there is no such SRS satisfying Theorem B.3.1. However, it is possible to
define a modification of SRSs (Section B.3.2) such that the naïve way of
encoding will be applicable on these modified systems (Section B.4).

B.3.2 Conditional string rewriting systems

To overcome the problem with the naïve encoding, we introduce a certain
modification of string rewriting systems, which we call conditional SRSs. A
conditional string rewriting system (or CSRS) is a tuple 〈Σ, R〉, where Σ is
an alphabet and R ⊆ Σ∗ × Σ∗ × Reg(Σ)× Reg(Σ) is a relation. A member
〈x, y, L`, Lr〉 of R consists of a rewriting rule x y and two regular languages
L`, Lr and expresses the fact that the rule x y can be used only in a context
restricted by the languages L`, Lr. We denote the tuple 〈x, y, L`, Lr〉 more
suggestively 〈x y, L`, Lr〉. A single-step reduction relation → ⊆ Σ∗ × Σ∗

is defined for any w,w1 ∈ Σ∗ by

w→ w1 iff there are a rule 〈x y, L`, Lr〉 ∈ R and words u ∈ L` and
v ∈ Lr such that w = uxv and w1 = uyv.

A reduction relation →∗ is the reflexive transitive closure of →.
Note that similar rewriting systems were considered in the literature.

For instance, Chottin in [Cho79] defined so-called controlled string rewriting
systems where only left contexts are restricted by regular languages.

A CSRS is said to be atomic if all its rules have atomic right-hand sides,
i.e. if for every 〈x y, L`, Lr〉 in R we have y ∈ Σ.

In the rest of this section we are going to show that every SRS 〈Σ, R〉,
which has R ⊆ Σ∗ × Σ+,3 can be simulated by an atomic CSRS. More
precisely, assume that we have another two copies of Σ denoted Σ′ = { a′ |
a ∈ Σ } and Σ′′ = { a′′ | a ∈ Σ } such that Σ, Σ′ and Σ′′ are disjoint. We will
prove that there is an atomic CSRS 〈Σ ∪ Σ′ ∪ Σ′′, R′〉 such that for every
w,w0 ∈ Σ∗ we have w→∗ w0 iff w ∗R′ w0.

Clearly, every rule x a in R with an atomic right-hand side can be
simulated by the atomic conditional rule 〈x a,Σ∗,Σ∗〉. Every non-atomic

3This assumption is useful for simplifying the construction, since the SRS from
Theorem B.3.1 satisfies it. However, we could extend the construction even to rules of
the form x ε. Roughly speaking, it would suffice to allow empty words in the definition
of atomic CSRSs and handle such rules similarly to atomic rules.

72

B.3. SRSs and atomic conditional SRSs

rule x a1 . . . an from R, where n ≥ 2 and a1, . . . , an ∈ Σ, is simulated by
the following atomic conditional rules:

〈ε a′′i ,Σ
∗(Σ′′)∗,Σ∗〉 for i ∈ {2, . . . , n}, (B.3)

〈x a′1,Σ
∗, a′′2 . . . a

′′
nΣ∗〉, (B.4)

〈a′′i ai,Σ
∗Σ′(Σ′′)∗,Σ∗〉 for i ∈ {2, . . . , n}, (B.5)

〈a′1 a1,Σ
∗,Σ∗〉. (B.6)

Lemma B.3.2. Let w,w0 ∈ Σ∗. Then w→∗ w0 implies w ∗R′ w0.

Proof. By induction on the length of derivation. The simulation of a rule
x a with an atomic right-hand side is obvious. Let x a1 . . . an be a rule in
R having a non-atomic right-hand side. The rewriting step uxv→ua1 . . . anv
for u, v ∈ Σ∗ is simulated as follows:

uxv R′ uxa
′′
2v by (B.3)

 ∗R′ uxa
′′
2 . . . a

′′
nv by (B.3)

 R′ ua
′
1a
′′
2 . . . a

′′
nv by (B.4)

 ∗R′ ua
′
1a2 . . . anv by (B.5)

 R′ ua1a2 . . . anv by (B.6).

For the converse direction we need to interpret the auxiliary words
containing symbols from Σ′ and Σ′′ back in Σ∗. For this purpose we define
two monoid homomorphisms

h1 : (Σ ∪ Σ′ ∪ Σ′′)∗ → Σ∗ and h2 : (Σ ∪ Σ′′)∗ → Σ∗

respectively by

h1(a) = h1(a′) = h1(a′′) = a and h2(a) = a, h2(a′′) = ε

for all a ∈ Σ.
Since the domains of h1 and h2 are the free monoids, the above defin-

itions extend uniquely to the whole domains. Then we merge the above
homomorphisms together and define a mapping h : (Σ ∪ Σ′ ∪ Σ′′)∗ → Σ∗ by

h(w) =

{
h2(w) if w ∈ (Σ ∪ Σ′′)∗,

h1(w) otherwise, i.e. w contains a letter from Σ′.

Note that h(w) = h2(w) = w for w ∈ Σ∗.

73

B.3. SRSs and atomic conditional SRSs

Lemma B.3.3. If w ∗R′ w0 then h(w)→∗ h(w0) for w,w0 ∈ (Σ∪Σ′∪Σ′′)∗.
In particular, w ∗R′ w0 implies w→∗ w0 for w,w0 ∈ Σ∗.

Proof. By induction on the length of derivation. Assume that w R′ w1 ∗R′
w0. By the induction hypothesis, we have h(w1)→∗ h(w0). If w = uxv,
w1 = uav for u, v, x ∈ Σ∗, a ∈ Σ, and 〈x a,Σ∗,Σ∗〉 ∈ R′ then x a ∈ R
and the lemma holds trivially. Assume that the rule from R′ used in w R′w1

is among the rules (B.3)–(B.6) corresponding to a rule x a1 . . . an in R.
The proof splits into two cases.

First, suppose that w ∈ (Σ ∪ Σ′′)∗. Hence h(w) = h2(w). Note that only
the rule (B.3) or (B.4) can be applied to w. If (B.3) is applied then w = uv
and w1 = ua′′i v for some u ∈ Σ∗(Σ′′)∗, v ∈ Σ∗, and i ∈ {2, . . . , n}. Thus
w1 ∈ (Σ ∪ Σ′′)∗ and we have

h(w1) = h2(w1) = h2(ua′′i v) = h2(uv) = h(w).

Therefore h(w)→∗ h(w1) by reflexivity.
If (B.4) is applied then w = uxa′′2 . . . a

′′
nv and w1 = ua′1a

′′
2 . . . a

′′
nv for some

u, v, x ∈ Σ∗. Hence

h(w) = h2(w) = h2(uxa′′2 . . . a
′′
nv) = uxv

and

h(w1) = h1(ua′1a
′′
2 . . . a

′′
nv) = ua1a2 . . . anv.

Consequently, we have h(w) = uxv→ ua1a2 . . . anv = h(w1).
Second, suppose that w 6∈ (Σ ∪ Σ′′)∗, i.e. w contains a letter a′ ∈ Σ′.

Hence h(w) = h1(w) and only the rule (B.5) or (B.6) can be applied to w.
If (B.5) is applied then w = ua′z′′a′′i v and w1 = ua′z′′aiv for some u, v ∈ Σ∗,
a′ ∈ Σ′, z′′ ∈ (Σ′′)∗, and i ∈ {2, . . . , n}. This gives

h(w) = h1(w) = h1(ua′z′′a′′i v) = h1(ua′z′′)aih1(v) = h1(ua′z′′aiv) = h(w1)

and so h(w)→∗ h(w1).
Finally, if (B.6) is applied then w = ua′1v and w1 = ua1v for some

u, v ∈ Σ∗. We thus get h(w) = h1(w) = ua1v = h2(w1) = h(w1) and so
h(w)→∗ h(w1).

Assume that the language L(w0) corresponding to the original SRS
〈Σ, R〉 consists of square-free words only. The next lemma shows that the
language

L′(w0) = {w ∈ (Σ ∪ Σ′ ∪ Σ′′)∗ | w ∗R′ w0 }
associated with the atomic CSRS 〈Σ ∪ Σ′ ∪ Σ′′, R′〉 also contains only square-
free words.

74

B.3. SRSs and atomic conditional SRSs

Lemma B.3.4. The language L′(w0) ⊆ (Σ∪Σ′∪Σ′′)∗ contains only square-
free words.

Proof. Let w ∈ L′(w0). We prove the lemma by induction on the length of
derivation. The base case is easy, since w0 ∈ L(w0) is a square-free word.
Suppose that w R′ w1 ∗R′ w0. By the induction hypothesis, w1 is square
free. We distinguish five cases according to the rule used in w R′ w1.
Before that note the following general fact. Since w ∈ L′(w0), we have
h(w)→∗ h(w0) = w0 by Lemma B.3.3. Hence h(w) ∈ L(w0).

If a rule 〈x a,Σ∗,Σ∗〉 ∈ R′ corresponding to an atomic rule x a ∈ R
is used then w ∈ Σ∗. Consequently, w = h(w) ∈ L(w0) and L(w0) contains
only square-free words.

Assume that the rule from R′ used in w R′ w1 is among the rules (B.3)–
(B.6) corresponding to a rule x a1 . . . an in R.

If (B.3) is used then w = uu′′v and w1 = uu′′a′′i v for u, v ∈ Σ∗ and
u′′ ∈ (Σ′′)∗. Since u′′ is a subword of w1, it follows that u′′ is square free. If
u′′ 6= ε then w is square free, because otherwise u or v would contain a square,
which contradicts w1 being square free. If w = uv then w = h(w) ∈ L(w0)
and so it is square free.

If (B.4) is used then w = uxa′′2 . . . a
′′
nv and w1 = ua′1a

′′
2 . . . a

′′
nv for some

u, v ∈ Σ∗. Since w1 is square free, the same holds for u and v. If w
contained a square then it would have to be a subword of ux. Since
h(w) = h2(w) = uxv ∈ L(w0), uxv is square free. Thus ux is square free as
well, a contradiction.

If (B.5) or (B.6) is used then w contains a letter from Σ′. Thus h(w) =
h1(w). Suppose that w = uzzv for some u, z, v ∈ (Σ ∪ Σ′ ∪ Σ′′)∗. Hence

h(w) = h1(uzzv) = h1(u)h1(z)h1(z)h1(v) ∈ L(w0).

Since L(w0) contains only square-free words, we have h1(z) = ε. Thus z = ε,
since h−1

1 (ε) = {ε}. Consequently, w = uzzv = uv.

It is easy to see that the conditional languages Σ∗, Σ∗(Σ′′)∗, and Σ∗Σ′(Σ′′)∗

are closed under the contraction rule. Also the last conditional language
a′′2 . . . a

′′
nΣ∗ is closed under the contraction rule because the right-hand sides

of all rules in R are square free (see Theorem B.3.1). Summarizing, we have
the following theorem.

Theorem B.3.5. There is an atomic CSRS 〈Σ, R〉 and w0 ∈ Σ+ such that
the corresponding language L(w0) is undecidable and consists only of square-
free words. Moreover, the conditional regular languages are closed under the
contraction rule.

75

B.4. Atomic conditional SRSs and RLc

B.4 Atomic conditional SRSs and RLc
In this section we show how to encode an atomic CSRS into the equational
theory of RLc. Let 〈Σ, R〉 be the atomic CSRS from Theorem B.3.5 and
w0 ∈ Σ+ such that the language L(w0) = {w ∈ Σ+ | w→∗ w0 } consists
only of square-free words (i.e. it is closed under the contraction rule) and is
undecidable. Also conditional languages of every rule in R are closed under
the contraction rule.

First, we describe the conditional contexts in our atomic CSRS by a
right-linear context-free grammar. We can index the members of R by an
index set I, i.e. R = {Ri | i ∈ I and Ri is a rule }. Define an extended
alphabet Σe = Σ ∪ { ri | i ∈ I }, where ri are fresh variables. Of course,
we assume that Σe ⊆ Var. For every rule Ri = 〈x a, L`, Lr〉, where
x ∈ Σ∗ and a ∈ Σ, define a regular language Li = L`riLr. Note that the
languages Li are pairwise disjoint due to the pairwise different symbols ri
and closed under the contraction rule. Finally, we define a regular language
Aux =

⋃
i∈I Li, which is clearly closed under the contraction rule. Since Aux

is regular, there is a right-linear context-free grammar G generating Aux.
Consider the formula δG = 1 ∧

∧
∆G such that wδG ≤ S holds in RLc iff w

belongs to Aux (see Theorem B.2.8), which means w = uriv for some i ∈ I,
Ri = 〈x a, L`, Lr〉, u ∈ L`, and v ∈ Lr.

Second, we can combine this with the naïve way of encoding rules from
Section B.3.1. As we have an atomic CSRS, which means only letters can
occur on the right-hand side of rewriting rules, the main obstacle disappeared,
cf. Section B.3.1. Moreover, we have shown how to describe the conditional
contexts using the grammar G and hence δG. Now we can modify the
definition of θ from Section B.3.1 in the following way.

For every rule Ri = 〈x a, L`, Lr〉 in R, we define a formula θi =
x\(a ∨ ri). Furthermore, we extend this for all the rules by defining a
formula θ = 1 ∧

∧
i∈I θi. Note that θ ≤ θi for all i ∈ I and θ ≤ 1. Hence

θ ≤ θ2 ≤ 1 · θ = θ.
Assume we have uxv, uav ∈ Σ∗ and Ri = 〈x a, L`, Lr〉 ∈ R. It is now

impossible to show uxθv ≤ uaθv as in Section B.3.1, because θi contains
ri. This is by purpose—the conditionality of rewriting must be taken into
account. Namely, uriv belongs to Aux only if u ∈ L` and v ∈ Lr. This gives
us

uriθvδG ≤ urivδG ≤ S ≤ uaθv ∨ S,

where urivδG ≤ S certifies that we rewrite in the correct context. Moreover,
using δG ≤ 1 we know

uaθvδG ≤ uaθv ≤ uaθv ∨ S.

76

B.4. Atomic conditional SRSs and RLc

Hence we can combine these two things together using join and distributivity
from Fact B.2.1 and so

u(a ∨ ri)θvδG = uaθvδG ∨ uriθvδG ≤ uaθv ∨ S.

We are now in a position to simulate the rewriting step x a of our
atomic CSRS using the formula θi = x\(a∨ ri). Since ux(x\(a∨ ri))θvδG ≤
u(a ∨ ri)θvδG by Fact B.2.1, we obtain

uxθvδG ≤ uxθ2vδG ≤ uxθiθvδG =

= ux(x\(a ∨ ri))θvδG ≤ u(a ∨ ri)θvδG ≤ uaθv ∨ S.

It is clear that we need the formula θ to be spread everywhere along a
word if we want to simulate an arbitrary rewriting step. For this reason,
given a non-empty word w = a1 . . . an such that all ai are letters, we define
wθ = a1θa2θ . . . anθ.4 Observe that wθ ≤ w, wθ ≤ wθθ, and (uv)θ = uθvθ

hold for all non-empty words u, v, and w.
The following lemma shows in full details that the outlined construction

can be used to describe atomic CSRSs in the language of RLc.

Lemma B.4.1 (Soundness). Let w ∈ L(w0). Then wθδG ≤ w0 ∨ S.

Proof. By induction on the length of derivation. The base case is obvious,
since wθ0 ≤ w0 and δG ≤ 1. Hence wθ0δG ≤ w0 ≤ w0 ∨ S. Assume that
w→ w1 by a rule Ri = 〈x a, L`, Lr〉 and w1 →∗ w0. By the induction
hypothesis, we have wθ1δG ≤ w0 ∨ S. Furthermore, we have w = uxv and
w1 = uav such that u ∈ L` and v ∈ Lr. We know that

wθ = uθxθvθ ≤ uθxθθvθ ≤ uθxθvθ ≤ uθxθ2vθ ≤ uθx(x\(a ∨ ri))θvθ ≤
≤ uθ(a ∨ ri)θvθ = uθaθvθ ∨ uθriθvθ = (uav)θ ∨ (uriv)θ ≤ wθ1 ∨ uriv.

Observe that uriv ∈ Li. Thus urivδG ≤ S by Theorem B.2.8. Consequently,

wθδG ≤ (wθ1 ∨ uriv)δG = wθ1δG ∨ urivδG ≤ w0 ∨ S.

4Note that for our atomic CSRS 〈Σ, R〉 from Theorem B.3.5 there is no need to
define εθ because ε never occurs if we start rewriting from a non-empty word w ∈ Σ+.
In general, this need not be the case, but even then we could ensure such behaviour by
expressing w→∗ w0 equivalently as bw→∗ bw0, where b is a fresh letter.

77

B.4. Atomic conditional SRSs and RLc

It remains to prove the opposite direction. Consider the residuated frame
WL(w0)∪Aux = 〈Σ∗e,Σ∗e × Σ∗e, N〉 where

z N 〈u, v〉 iff uzv ∈ L(w0) ∪ Aux.

Hence W+
L(w0)∪Aux is a residuated lattice. Moreover, W+

L(w0)∪Aux ∈ RLc by
Lemma B.2.5 because L(w0) ∪ Aux is closed under the contraction rule by
Theorem B.3.5.

Assume that wθδG ≤ w0 ∨ S holds in RLc for some w ∈ Σ+. We want
to show that w ∈ L(w0). Since the inequality wθδG ≤ w0 ∨S holds, we have
e(wθδG) ⊆ e(w0 ∨ S) for every W+

L(w0)∪Aux-evaluation e : Fm→ W+
L(w0)∪Aux.

Let e be the evaluation defined in Lemma B.2.7, i.e. e(a) = γN{a} for every
a ∈ Σe and e(A) = γN(L(A)) for every non-terminal from the grammar G
generating the language Aux = L(S). Therefore e(u) = γN{u} for every
word u ∈ Σ∗ by Lemma B.2.4. Furthermore, we have

e(w0 ∨ S) = γN(γN{w0} ∪ γN(L(S))) = γN({w0} ∪ Aux).

Since 〈ε, ε〉 ∈ ({w0} ∪ Aux)B, we have by Lemma B.2.3 that

γN({w0} ∪ Aux) ⊆ {〈ε, ε〉}C = L(w0) ∪ Aux.

Thus we know that the words in e(wθδG) = γN(e(wθ) · e(δG)) belong to
L(w0) ∪ Aux.

Lemma B.4.2. It holds ε ∈ e(θi) for all i ∈ I. Consequently, ε ∈ e(θ) =
γN{ε} ∩

⋂
i∈I e(θi).

Proof. Consider the formula θi = x\(a ∨ ri) corresponding to a rule Ri =
〈x a, L`, Lr〉 ∈ R. It suffices to check that

γN{x} = e(x) ⊆ e(a ∨ ri) = γN(γN{a} ∪ γN{ri}) = γN{a, ri}.

Using the basis for γN (see Lemma B.2.3) and (B.2), we have to show that
{a, ri} ⊆ {〈u, v〉}C implies x ∈ {〈u, v〉}C. Assume that uav, uriv ∈ L(w0) ∪
Aux. Hence uav ∈ L(w0) and uriv ∈ Li ⊆ Aux which yield u ∈ L` and v ∈ Lr.
Consequently, uxv→ uav→∗ w0 and so uxv ∈ L(w0), i.e. x ∈ {〈u, v〉}C.

Since ε ∈ e(θ), we have w ∈ e(wθ). Similarly, ε ∈ e(δG) by Lemma B.2.7
and so w ∈ e(wθ)e(δG). Consequently, w ∈ γN(e(wθ)e(δ)) = e(wθδG) ⊆
L(w0) ∪ Aux. As w 6∈ Aux we have w ∈ L(w0).

Lemma B.4.3 (Completeness). Assume that wθδG ≤ w0 ∨ S holds in RLc
for w ∈ Σ+. Then w ∈ L(w0).

78

B.5. Conclusions

Since the problem whether w ∈ L(w0) is undecidable, the set {ϕ ≤ ψ |
ϕ ≤ ψ holds in RLc } is undecidable as well. Thus we obtain the following
theorem.

Theorem B.4.4. The equational theory of RLc is undecidable. Con-
sequently, the set of formulae provable in FL+

c is undecidable.

B.5 Conclusions
Theorem B.4.4 implies also the undecidability of the logic FLc, since FL+

c

is its positive fragment. Recall that FLc is an expansion of FL+
c where the

language is expanded by a constant 0 (see [Gal+07]). The sequent calculus
for FLc can be obtained from the one shown in Definition B.2.1 by adding
the following axiom and rule:

(0L)
0⇒

Γ⇒(0R)
Γ⇒ 0

Moreover, the notion of a sequent is modified a little bit by allowing on the
right-hand side a stoup, i.e. a formula or the empty sequence. Accordingly,
one has to modify the rules from Definition B.2.1 in an obvious way. The
logic FLco is an extension of FLc by the right weakening rule:

Γ⇒(o)
Γ⇒ ϕ

The logic FLc is sound and complete with respect to the variety of pointed
square-increasing residuated lattices (also called FLc-algebras). An FLc-
algebra A = 〈A,∧,∨, ·, \, /, 0, 1〉 is an algebra such that 〈A,∧,∨, ·, \, /, 1〉 ∈
RLc and 0 ∈ A. Similarly, the logic FLco is sound and complete with
respect to a subvariety of FLc-algebras axiomatized by the identity 0 ≤ x.

The logics FLc and FLco have a common fragment, namely FL+
c . This

follows easily for FLc because every square-increasing residuated lattice is a
reduct of an FLc-algebra, it suffices to interpret 0 arbitrarily. Concerning
FLco, it is sufficient to show that every square-increasing residuated lattice
A is embeddable into an FLc-algebra where 0 is its bottom element. Since A
need not have a minimum, we can first embed it into its Dedekind–MacNeille
completion Ā. Since the Dedekind–MacNeille completion preserves the
identity x ≤ x2, we have Ā ∈ RLc (see [CGT12]). Consequently, Ā forms
an FLc-algebra where 0 ≤ x holds if we interpret 0 as the bottom element,
it exists as the lattice reduct of Ā is complete.

Theorem B.5.1. The set of formulae provable in FLc (resp. FLco) is
undecidable.

79

B.5. Conclusions

B.5.1 Used language

In our constructions we have used almost complete language, but this is not
necessary. The constant 1 has been used for simplicity and can be easily
eliminated. We know that x = 1\x and in all the remaining cases (in δG
and θ) we can replace 1 by the meet of all p\p for all atoms p occurring in
our construction.

Similarly, we can get rid of all fusions. First, we can change even the
original problem w→∗ w0 from Theorem B.3.1 into an equivalent problem
w→∗ p, where p is a fresh atom, by adding the rewriting rule w0→p. Second,
using the same construction as in the paper we obtain an identity. We easily
get an equivalent identity that contains no fusion using x1 · · · · · xn ≤ y
iff xn ≤ xn−1\(. . . \(x1\y) . . .) and x1 · · · · · xm\y = xm\(. . . \(x1\y) . . .).
Notice that in our case such a y can only be an atom or join of atoms.

It should be also noted that we could use / instead of \ changing the
construction accordingly. Therefore, we can clearly formulate the whole
construction in the language containing only an implication, join, and meet.
It does not matter whether as an identity in RLc or sequent in FL+

c (with
or without empty left-hand side).

B.5.2 Knotted axioms

It should be clear that the construction can be easily adapted for logics
having a weaker form of contraction xk ≤ xl, 1 ≤ k < l. Basically one has
to change the encoding by replacing wθ with wθ

k , where if w = a1 . . . an
then wθ

k
= a1θ

k . . . anθ
k. Furthermore, the final inequality is changed to

wθ
k
δkG ≤ w0 ∨ S.
In order to modify our proof, note that the identity x ≤ x2 is used only

for θ and δG. Since θ ≤ 1 and δG ≤ 1, we obtain θk = θk+1 and δkG = δk+1
G . If

1 is not in the language and we change θ and δG according to Section B.5.1
then we still have aθk = aθk+1 and aδkG = aδk+1

G for every atom a occurring
in wθkδkG ≤ w0 ∨ S, which is sufficient to complete the proof.

B.5.3 Deduction theorem

From some point of view, one can understand our construction as a form of
deduction theorem for a very limited fragment of formulae—a reachability
problem for some rewriting systems is translated into provability in FL+

c .
However, this suffices to get a full form of “algorithmic” deduction theorem,
because we can easily obtain the following chain of reductions. Let ϕ be a
formula and T a finite theory. First, the set of formulae provable in FLc

80

B.5. Conclusions

from T is recursively enumerable and hence there is a Minsky machine
accepting an input (a suitable encoding of ϕ and T) iff ϕ is provable in
FLc from T . Second, this paper describes how to express such a decision
problem in terms of provability in FL+

c . Moreover, all the steps in this chain
are constructive and explicit.

Theorem B.5.2. Let T ∪ {ϕ} be a finite set of formulae. There is an
algorithm that produces a formula ψ (given an input ϕ and T) such that ψ
is provable in FL+

c iff ϕ is provable in FLc from T .

Acknowledgment
The authors wish to thank Wojciech Buszkowski and anonymous referees
for valuable comments and remarks. The work was supported by the grant
P202/11/1632 of the Czech Science Foundation and the long-term strategic
development financing of the Institute of Computer Science (RVO:67985807).

81

Bibliography

[BO93] Ronald V. Book and Friedrich Otto. String-rewriting Systems.
New York: Springer, 1993.

[CGT12] Agata Ciabattoni, Nikolaos Galatos and Kazushige Terui. ‘Al-
gebraic proof theory for substructural logics: Cut-elimination
and completions’. Annals of Pure and Applied Logic 163.3 (Mar.
2012), pp. 266–290. doi: 10.1016/j.apal.2011.09.003.

[Cho79] Laurent Chottin. ‘Strict deterministic languages and controlled
rewriting systems’. In: Automata, Languages and Programming.
Ed. by Hermann A. Maurer. Vol. 71. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 1979, pp. 104–117. isbn:
978-3-540-09510-1. doi: 10.1007/3-540-09510-1_9.

[Chvar] Karel Chvalovský. ‘Undecidability of Consequence Relation in
Full Non-associative Lambek Calculus’. Journal of Symbolic
Logic (to appear).

[DP02] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices
and Order. 2nd. Cambridge: Cambridge University Press, 2002.

[Fre80] Ralph Freese. ‘Free Modular Lattices’. Transactions of the AMS
261.1 (1980), pp. 81–91. doi: 10.1090/S0002- 9947- 1980-
0576864-X.

[Gal+07] Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski and Hiroakira
Ono. Residuated Lattices: An Algebraic Glimpse at Substruc-
tural Logics. Vol. 151. Studies in Logic and the Foundations of
Mathematics. Amsterdam: Elsevier, Apr. 2007, p. 532.

[Gen35a] Gerhard Gentzen. ‘Untersuchungen über das logische Schließen I’.
Mathematische Zeitschrift 39.1 (1935), pp. 176–210. doi: 10.
1007/BF01201353.

[Gen35b] Gerhard Gentzen. ‘Untersuchungen über das logische Schließen II’.
Mathematische Zeitschrift 39.1 (1935), pp. 405–431. doi: 10.
1007/BF01201363.

82

http://dx.doi.org/10.1016/j.apal.2011.09.003
http://dx.doi.org/10.1007/3-540-09510-1_9
http://dx.doi.org/10.1090/S0002-9947-1980-0576864-X
http://dx.doi.org/10.1090/S0002-9947-1980-0576864-X
http://dx.doi.org/10.1007/BF01201353
http://dx.doi.org/10.1007/BF01201353
http://dx.doi.org/10.1007/BF01201363
http://dx.doi.org/10.1007/BF01201363

Bibliography

[GJ13] Nikolaos Galatos and Peter Jipsen. ‘Residuated frames with
applications to decidability’. Transactions of the AMS 365 (2013),
pp. 1219–1249. doi: 10.1090/S0002-9947-2012-05573-5.

[Hor15] Rostislav Horčík. ‘Word Problem for Knotted Residuated Lat-
tices’. Journal of Pure and Applied Algebra 219.5 (May 2015),
pp. 1548–1563. doi: 10.1016/j.jpaa.2014.06.015.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Auto-
mata Theory, Languages and Computation. 1st. Reading, Mas-
sachusetts: Addison-Wesley, 1979.

[JT02] Peter Jipsen and Constantine Tsinakis. ‘A Survey of Residuated
Lattices’. In: Ordered Algebraic Structures: ed. by Jorge Martínez.
Vol. 7. Developments in Mathematics. Dordrecht: Kluwer, 2002.

[Kan95] Max I. Kanovich. ‘The Direct Simulation of Minsky Machines in
Linear Logic’. In: Advances in Linear Logic. Ed. by Jean-Yves
Girard, Yves Lafont and Laurent Regnier. London Mathematical
Society Lecture Note Series 222. Cambridge University Press,
1995.

[KO91] Eiji Kiriyama and Hiroakira Ono. ‘The contraction rule and
decision problems for logics without structural rules’. Studia
Logica 50.2 (1991), pp. 299–319. issn: 0039-3215. doi: 10.1007/
BF00370189.

[Kom86] Yuichi Komori. ‘Predicate logics without the structural rules’.
Studia Logica 45.4 (1986), pp. 393–404. issn: 0039-3215. doi:
10.1007/BF00370272.

[Kri59] Saul Aaron Kripke. ‘The problem of entailment’. Journal of
Symbolic Logic 24 (1959). abstract, p. 324. url: http://www.
jstor.org/stable/2963903.

[KS95] Olga G. Kharlampovich and Mark V. Sapir. ‘Algorithmic Prob-
lems In Varieties’. International Journal of Algebra and Compu-
tation 5 (1995), pp. 379–602.

[Laf96] Yves Lafont. ‘The undecidability of second order linear logic
without exponentials’. Journal of Symbolic Logic 61.2 (1996),
pp. 541–548. doi: 10.2307/2275674.

[Lin+92] Patrick Lincoln, John Mitchell, Andre Scedrov and Natarajan
Shankar. ‘Decision problems for propositional linear logic’. An-
nals of Pure and Applied Logic 56.1–3 (1992), pp. 239–311. doi:
10.1016/0168-0072(92)90075-B.

83

http://dx.doi.org/10.1090/S0002-9947-2012-05573-5
http://dx.doi.org/10.1016/j.jpaa.2014.06.015
http://dx.doi.org/10.1007/BF00370189
http://dx.doi.org/10.1007/BF00370189
http://dx.doi.org/10.1007/BF00370272
http://www.jstor.org/stable/2963903
http://www.jstor.org/stable/2963903
http://dx.doi.org/10.2307/2275674
http://dx.doi.org/10.1016/0168-0072(92)90075-B

Bibliography

[Lot02] M. Lothaire. Algebraic Combinatorics on Words. Encyclopedia
of Mathematics and its Applications 90. Cambridge: Cambridge
University Press, Apr. 2002.

[SO96] Bayu Surarso and Hiroakira Ono. ‘Cut elimination in noncom-
mutative substructural logics’. Reports on Mathematical Logic
30 (1996), pp. 13–29.

[Urq84] Alasdair Urquhart. ‘The Undecidability of Entailment and Relev-
ant Implication’. Journal of Symbolic Logic 49.4 (1984), pp. 1059–
1073. doi: 10.2307/2274261.

84

http://dx.doi.org/10.2307/2274261

	Introduction
	Substructural logics and sequent calculi
	Full Lambek calculus
	Algebraic counterparts
	Decidability in substructural logics
	Simple undecidable problems
	Undecidability in substructural logics
	Our results

	Bibliography
	Undecidability of Consequence Relation in Full Non-associative Lambek Calculus
	Introduction
	Preliminaries
	Encoding
	Correctness of encoding
	Completeness of encoding
	Some possible modifications
	Remarks on algebraic consequences
	Remarks on term rewriting systems

	Bibliography
	Full Lambek Calculus with Contraction is Undecidable
	Introduction
	Preliminaries
	SRSs and atomic conditional SRSs
	Atomic conditional SRSs and RLc
	Conclusions

	Bibliography

