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Abstract

Correctly specified models to forecast returns of indices are important for in-
vestors to minimize risk on financial markets. This thesis focuses on conditional
Value at Risk modeling, employing flexible quantile regression framework and
hence avoiding the assumption on the return distribution. We apply semi-
parametric linear quantile regression (LQR) models with realized variance and
also models with positive and negative semivariance which allows for direct
modelling of the quantiles. Four European stock price indices are taken into
account: Czech PX, Hungarian BUX, German DAX and London FTSE 100.
The objective is to investigate how the use of realized variance influence the
VaR accuracy and the correlation between the Central & Eastern and Western
European indices. The main contribution is application of the LQR models for
modelling of conditional quantiles and comparison of the correlation between
European indices with use of the realized measures. Our results show that
linear quantile regression models on one-step-ahead forecast provide better fit
and more accurate modelling than classical VaR model with assumption of nor-
mally distributed returns. Therefore LQR models with realized variance can
be used as accurate tool for investors. Moreover we show that diversification
benefits are decreasing over time.
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Abstrakt

Správne definované modely na predpovedanie výnosov indexov sú dôležité pre
investorov, kvôli minimalizovaniu rizika na finančných trhoch. Táto práca sa
zameriava na podmiené modelovanie Value at Risk, ktorá využíva rámec flex-
ibilnej kvantilovej regresie, a tým sa môže vyhnúť predpokladu o normálne
rozdelených výnosoch. Aplikujeme semiparametrickú lineárnu regresiu kvan-
tilov (LQR) s realizovaným rozptylom a tiež model s pozitívnou a negatív-
nou semivarianciou, ktorá umožňuje priame modelovanie kvantilov. Do úvahy
berieme ceny štyroch európskych akciových indexov: českého PX, maďarského
BUX, nemeckého DAX a londýnskeho FTSE 100. Naším cieľom je zistiť, ako
použitie realizovaných rozptylov ovplyvňuje presnosť VaR a koreláciu medzi
strednou a východnou Európou so západoeuróskymi indexmi. Hlavným príno-
som práce je aplikácia modelov LQR pre modelovanie podmienených kvantilov
a porovnanie korelácie medzi európskymi indexmi s využitím realizovaných
mier. Naše výsledky ukazujú, že pri jednokrokovej prognóze lineárny kvan-
tilový regresný model poskytuje lepšie odhady a taktiež presnejšie predpovede
ako klasický VaR model s predpokladom normálne distribuovaných výnosov. Z
tohoto dôvodu, LQR modely s realizovanou varianciou môžu byť použité ako
presné nástroje pre investorov. Naviac ukážeme, že prínosy z diverzifikácie
klesajú v čase.
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Constantly present uncertainty is a typical sign of financial markets that split
investors into two groups - on risk lovers and risk haters. In One form or an-
other, analyses of stock market returns are a part of their daily work. Over the
last years, there is an ongoing discussion about how to find the best volatility
estimators by using the high-frequency (intra-daily) information. Studies have
shown that estimators of volatility based on the intra-day data have improved
the ability to measure financial market volatility.

Intra-day information also allows us to estimate numerous financial decisions,
but most estimation requires assumption of normal distribution, e.g. Value at
Risk (VaR). VaR is unstable when losses are not normally distributed, because
loss distributions tend to have fat-tail not allow modelling upper and lower
quantiles independently. To avoid these asymmetries without constructing a
parametric distribution, quantile regression can be used. Conditional quantile
regression methodology was already used by Zikes and Barunik (2013), who
introduced conditional quantile models to avoid making restrictive assumptions
on the dynamics of the conditional distributions on S&P 500 and WTI Crude
Oil futures contracts. We will follow their approach by applying their model
on CEE stock market return.

Most of studies are focused on measurement of entire realized volatility and
on elimination of any information that could be contained by both, positive
and negative intra-day returns. That is why Barndorff-Nielsen, Kinnebrock
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and Shephard (2010) came with “realized semivariance”, decomposing usual
realized variance into components of positive intra-day returns and negative
intra-day returns. Patton, Sheppard (2011) measured realized semivariance on
S&P 500 and other 105 individual stocks and they had shown that volatility
is strongly related to the volatility of past negative returns than to one with
positive returns. We will apply their finding on our data set.

Moreover, realized semivariance models can serve as risk management tool for
investors trading on stock markets. However for asset pricing and portfolio allo-
cation is not only important to understand quantified movements on domestic
market, but also to connect and correlate with movements of other markets.
Christoffersen, Errunza, Jacobs and Hugues (2010) show that correlations have
been significantly trending upward studied markets. This is the reason, why
we will try to detect correlation between our CEE markets and German DAX
Index.

Hypotheses

1. Linear quantile regression performs reasonably well and explains volatility
movements when applied on given dataset.

2. Negative realized semivariance is more important for a future volatility
then positive realized semivariance.

3. Due to globalization, the importance of an international portfolio diver-
sification is decreasing.

Methodology

To verify our hypotheses, we are going to use 5 minutes intra-day stock returns
from Central and Eastern European stock markets returns. This data is going
to be used to model our returns, when we will follow Zikes and Barunik (2013)
in use of linear semiparametric model for quantiles of future returns proposed
by Koenker & Bassett (1978).

To decompose variance on positive and negative semivariances, we will fol-
low Zikes and Barunik (2013) and Patton, Sheppard (2011), who shows that
quadratic variation process contains from two parts – integrated variance and
jump variation.
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Chapter 1
Introduction

Over the past two decades, financial markets experienced several main events
which radically influenced investors’ way of thinking. Asian financial crisis in
1997 which was just a start, followed by IT “dot-com” bubble in 2000 and
mainly recent Global financial crisis in 2008 increased the uncertainty on the
markets. Due to this uncertainty, investors want to understand full dynamics
of return of their portfolio.

However, most of the investors analyze data on daily basis, which can exclude
numerous important events occurring within the day. Fortunately, thanks to
technology innovations and increased computational power we are now able
to use so called “high-frequency” data which capture financial information on
the markets several times a day. The frequency of data can differ, as we are
now able to get the prices in the size of the smallest tick at the specific stock
index. Already in 1998 Andersen and Bollerslev came with an idea of employing
high-frequency data for the construction of volatility measurement through
cumulative squared intraday returns. With the use of the intra-day variance,
we can improve modeling of future returns.

Therefore, over the past years numerous economists started to use high-frequency
data. One of the applications was the specification of the “ideal” frequency,
as with increasing frequency of the data, the microstructure noise occurs due
to bid-ask spread. Bandi and Russell (2008) found that the biasness of the
noise can be diminished by filtering on 5-minute intraday data. Due to this
different effect of positive and negative news, Barndorff-Nielsen, Kinnebrock
and Shephard (2010) proposed semivariance estimator to confirm the state-
ment of Kahneman and Tversky (1982) and Wells, Hobfoll and Lavin (1999)
that downside variance is more informative than upside one. Later on, Pat-
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ton and Sheppard (2013) confirmed that division of variance can significantly
improve future volatility forecasts.

One of the most common applications is estimation of investor’s risk by Value
at Risk metric, which measures the exposure to market risk. On the one hand,
VaR is the most widely used measure of the risk, as its main advantage is
simplicity; however on the other hand, it has several disadvantages – as the
assumption about the normally distributed returns is required during calcula-
tion. This is the case of RiskMetrics, developed by J.P. Morgan and Reuters
(1996). To avoid this normality assumption, quantile regression can be used.
In our work, we follow Zikes and Barunik (2014) in their linear semiparametric
modeling approach for quantile regression to forecast VaR over the quantiles.

Moreover, as financial markets became more integrated at the 90s, correlation
increased. This rise can be seen in deregulation of capital markets and change
in movement of capital between developed countries. Christoffersen, Errunza,
Jacobs and Hugues (2012), Bekaert, Hodrick and Zhang (2009), Evans and
McMillan (2009) confirmed that the effect of international diversification is
slowly disappearing. We believe that this trend is similar for the European
markets. Hence we measure the correlation with dynamic conditional correla-
tion (DCC) GARCH introduced by Engle and Sheppard (2001). Later we use
realized measures to get more precise results using quantile correlation (QR)
structure of Campbell, Koedijk and Kofman(2000).

In our work we focus on performance of linear quantile regressions, its ability to
model stock market data across different quantiles. The results of the analysis
are then used to calculate Value at Risk of our portfolio. Moreover, we analyze
not only the “whole” variance, but also both positive and negative semivariance
as these components contain different information with various significance.
Also due to the globalization of the markets, authors assume that importance of
the diversification of portfolio between markets is decreasing and our empirical
analysis shows the proof of this hypothesis on European data.

In the analysis, we use 5-minute high-frequency data since January 1, 2008
till October 13, 2014 of Prague Stock Exchange, Budapest Stock Exchange,
Deutsche Boerse AG and Financial Times Stock Exchange indices, representing
European Stock market. To the best of our knowledge, this study presents the
primary results for this region with usage of high-frequency data.

Our results for four stock indices show that linear quantile regression with real-
ized measures improved the accuracy of the forecasts on the one-step-ahead pe-
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riod in comparison to classical model with assumption of normally distributed
returns. Quantile regression models mostly performed well based on back-
testing methods. These results are consistent with Zikes and Barunik (2014)
findings on S&P 500 index in United States. Moreover, we estimated that the
diversification is slightly decreasing over time. By using realized measures to
calculate the correlation between the CEE and Western European stock indices,
we found that QR shows smaller correlation in comparison to DCC model.

The rest of the thesis is structured as follows. Theoretical background of re-
alized measures, linear quantile regression model, Value at Risk and diversifi-
cation concepts are described in the Chapter 2. Chapter 3 describes data and
Chapter 4 is dedicated to empirical application. Chapter 5 concludes.



Chapter 2
Theoretical background

2.1. Realized Measures

During investment decisions, investors experience problems connected with dis-
tribution of returns. Most of the models assume that the portfolio has Gaussian
distribution, which is not true most of the time (Bucley, Saunders and Seco,
2008). Zikes and Barunik (2014) showed that this normality can be avoided by
quantile regression with usage of high-frequency data, which does not rely on
parametric assumptions.

Andersen and Bollerslev (1998) came with an idea about usage of high-frequency
data for the construction of volatility measurement through cumulative squared
intraday returns. They found that proposed volatility measures provide radical
improvement in comparison with daily data. For estimation they used exchange
rates of Deutschemark – U.S. Dollar and Japanese Yen – U.S. Dollar and found
that even when daily volatility models perform quite well, while explaining most
of variability of volatility factor, the models with realized volatility are more
precise.

2.1.1. Realized Variance

To start with realized volatility concept, firstly we create logarithmic returns

𝑟𝑡,𝑖 = 𝑙𝑛(𝑃𝑡,𝑖)− 𝑙𝑛(𝑃𝑡,𝑖−1) (2.1)
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where 𝑖 = 1,2, ...,𝑚 is the intra-day interval and 𝑃𝑡 denotes the stock price in
the interval 𝑖 of day 𝑡. These returns evolve continuously through time

𝑟𝑡,𝑖 = 𝜇𝑡𝑑𝑡+𝜎𝑡𝑑𝑊𝑡 (2.2)

where 𝜇𝑡 denote the drift, 𝜎𝑡 volatility and 𝑊𝑡 is standard Brownian motion.
As 𝑑𝑡 → 0 the drift between observations is getting close to zero. However the
drift and volatility does not need to be constant in continuous time interval,
which can result into

𝑟𝑡 =
𝑡ˆ

𝑡−1

𝜇𝑠𝑑𝑠+
𝑡ˆ

𝑡−1

𝜎𝑠𝑑𝑊𝑠 (2.3)

Following Andersen and Bollerslev (1998), the realized variance is sum of intra-
day returns. Realized variance (RV) is then specified as

𝑅𝑉𝑡,𝑀 =
𝑀−1∑︁
𝑖=0

𝑟2
𝑡,𝑖 =

𝑀−1∑︁
𝑖=0

(𝑝𝑡,𝑖+1 −𝑝𝑡,𝑖)2 (2.4)

where 𝑅𝑉𝑡,𝑀 is realized variance in the day 𝑡 with 𝑀 intraday returns.

Realized volatility for assets can be then constructed by simply taking squared
root of realized variance

𝑅𝑉 𝑂𝐿𝑡,𝑀 =
√

𝑅𝑉 𝑡,𝑀 (2.5)

In general, realized volatility can be represented as a standard deviation. Let
us assume arbitrage-free logarithmic return with normal distribution, which is
consisting from predictable drift and standard deviation 𝑟𝑡 = 𝜇𝑡 + 𝜎𝑡𝜀𝑡 where
𝜀𝑡 ∼ 𝑁(0,1), under assumption of no drift we get 𝜀𝑡 = 𝑟𝑡

𝜎𝑡
. In case of realized

volatility, under assumptions mentioned above, we can say that error 𝜀𝑡 = 𝑟𝑡√
𝑅𝑉𝑡

should be approximately normally distributed white noise process.

In case of continuously observed prices and 𝑡 getting close to zero, the realized
variance approached the integrated variance on day 𝑡

𝐼𝑉𝑡 =
ˆ 𝑡

𝑡−1
𝜎2

𝑠𝑑𝑠 (2.6)

and it correspond closely to conditional variance for discrete sample returns.
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As the prices are not observable in continuous time, in our case we need to
compute realized variance in the discrete time.

However, financial time series exhibit larger movements usually associated with
microeconomic and macroeconomic news or announcements, so called jumps,
which largely affects estimates.

When we take jumps possibility into our price process, realized variation does
not converge to the integrated variance even when it is really closely linked to
it, but converges to quadratic variation, formally defined as

𝑄𝑉𝑡 = 𝐼𝑉𝑡 +𝐽𝑉𝑡 (2.7)

where 𝐼𝑉𝑡 represent the variation from continuous part of returns and 𝐽𝑉𝑡

measures the variation coming from pure discontinuous part of returns - jumps

𝐽𝑉𝑡 =
𝛾∑︁

𝑗=1
𝐽2

𝑡,𝑗 (2.8)

that occurred 𝑗 = 1,2, . . . ,𝛾 times over day 𝑡.

2.1.2. Realized Semivariance

However, in our work we would like to show not only the effect of whole sam-
ple variation, but also separately results from positive and negative variance.
This decomposition is important due to fact that positive variance should have
smaller effect on variation as the negative one. Kahneman and Tversky (1982)
termed value function, when they studied relationship between values of vari-
ous possible outcomes. They concluded that value function is steeper for losses
then for gains. This can be explained by behavior of investors, which are more
afraid to lose some money as to get gain. Their findings were supported by
other studies - Kahneman and Tversky (1984), studying distress and joy of
participants after experiencing losses or gains, and by Wells, Hobfoll and Lavin
(1999) investigating gain and losses of resources where respondents were preg-
nant women. Their research showed that gains had no significant effect however
the losses had much higher effect, which resulted in depression and anger.

Due to this different effect of positive and negative news, we use for measuring
volatility so called semivariance. This estimator was proposed by Barndorff-
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Nielsen, Kinnebrock and Shephard (2010) and it can capture the variation only
of the negative or positive returns. These estimators are defines as sum of only
positive (negative) intra-day returns for 𝑅𝑆+(𝑅𝑆−).

𝑅𝑆+
𝑡,𝑀 =

𝑀−1∑︁
𝑖=0

𝑟2
𝑡,𝑖𝐼[𝑟𝑖>0] (2.9)

𝑅𝑆−
𝑡,𝑀 =

𝑀−1∑︁
𝑖=0

𝑟2
𝑡,𝑖𝐼[𝑟𝑖<0] (2.10)

These estimators provide decomposition of Realized variance 𝑅𝑉𝑡,𝑀 = 𝑅𝑆+
𝑡,𝑀 +

𝑅𝑆−
𝑡,𝑀 . Authors’ findings about negative semivariance seem in line with the

conclusions of the Kahneman and Tversky(1982) that the negative semivariance
is much more informative than the positive one.

Previous definition of realized semivariance counts only with integrated vari-
ance. Following Barndorff-Nielsen, Kinnebrock and Shephard (2010), the real-
ized semivariance in continuous time converge into one-half of integrated vari-
ance plus jumps.

𝑅𝑆+
𝑡,𝑀

𝑝−→ 1
2

ˆ 𝑡

0
𝜎2

𝑠𝑑𝑠+
∑︁

0≤𝑠≤𝑡

𝑟2
𝑡,𝑖𝐼[𝑟𝑖>0] (2.11)

𝑅𝑆−
𝑡,𝑀

𝑝−→ 1
2

ˆ 𝑡

0
𝜎2

𝑠𝑑𝑠+
∑︁

0≤𝑠≤𝑡

𝑟2
𝑡,𝑖𝐼[𝑟𝑖<0] (2.12)

By analyzing 105 individual stocks and S&P 500 index, Patton and Sheppard
(2013) confirmed that negative realized semivariance is: “much more important
for future volatility than positive semivariance, and disentangling the effects of
these two components significantly improves forecasts of future volatility.”

The important finding to mention is that this kind of realized variance or
realized semivariance measures only the variance in the intra-day returns. The
inter-day changes between closing price and opening price are not included.
These changes could be included, when we would calculate daily returns as
difference between the last observation of previous day and pre-last observation
of current day. However using this methodology, our results of realized variance
could be biased due to the high variance of first observation in sample, including
inter-day change in the price.
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2.2. Value at Risk

Over the years, Value at Risk (VaR) as risk management tool became standard
to measure market risk connected with portfolio. The advantage and reason
for wide use of VaR is that it sums up all risk associated to portfolio into one
number as a loss associated to given probability.

VaR is formally described as maximum expected loss over some time horizon
with given probability.

𝑃𝑟(𝑟𝑡 < −𝑉 𝑎𝑅𝑡 | 𝛺𝑡) = 𝛼 (2.13)

where 𝑟𝑡 is return of portfolio at time 𝑡 = 1,2, . . .𝑇 , information set at time t
is denoted by Ω𝑡 and 𝛼 is probability level of risk, with confidence level 1−𝛼.
As we already mentioned, VaR is maximum loss of portfolio in the risk and it
is defined usually on confidence interval 99%, 95% or 90% with probabilities
𝛼=1%, 5% or 10%, respectively. VaR at 90% is rarely used, as probability of
loss is high and it is connected with high losses in portfolio value. On contrary,
VaR at 99% confidence interval is highly used, for example Basel Committee on
Banking Supervision in 2004 recommended Basel II, which uses VaR as a tool
to estimate market risk exposure for setting capital requirements in financial
system industry.

Engle and Manganelli (2004) describe VaR from statistical point of view: “VaR
estimation entails the estimation of a quantile of the distribution of returns.”
However the return distributions are changing over time, which brings prob-
lems into the estimation. Due to this issue, it is better to directly estimate
quantile of the distribution via semiparametric models. Except semiparamet-
ric models, VaR is estimated through parametric and nonparametric methods.
Following Engle and Manganelli (2004) VaR methods split, we discuss main
pros and cons of each method and the reasoning, why we use in our analysis
the semiparametric one.

The most common parametric approached is Generalized Autoregressive Con-
ditional Heteroskedasticity (GARCH), proposed by Bollerslev (1986), which al-
lows the conditional variance to be time-varying, while constant unconditional
variance and so improve the forecast results.

Another parametric model is RiskMetrics, developed by J.P. Morgan and Reuters
(1996), which use the exponentially weighted moving average computation of
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variance. This moving average makes RiskMetrics model a special case for of
GARCH. Parametric mean-VaR model is one of the simplest approached of the
RiskMetrics model. Its simplicity comes from the usage of Gaussian normal
distribution of returns.

𝑉 𝑎𝑅𝑡 = 𝐸(𝑟𝑡)−𝜎𝑡 * 𝑞𝑛𝑜𝑟𝑚(𝑐) (2.14)

where 𝐸(𝑟) is expected return, 𝜎 is standard deviation measured by realized
volatility and 𝑞𝑛𝑜𝑟𝑚(𝑐) is so called “cut-off” point, representing c-quantile of
the standard normal distribution. The most frequent cut-off points are for the
90%, 95% and 99% confidence intervals with cut-off point 1.282, 1.645 and
2.326 respectively.

These methods usually underestimate the VaR approach, due to assumption
of normally distributed residuals. Also, some other problems may arise while
using these models, e.g. misspecification of the variance equation or that model
errors may not be independently and identically distributed (i.i.d.), which is
part of main model assumption.

For non-parametric models, most common method is Historical Simulation of
VaR. The advantage of this approach is that it really simplifies VaR computa-
tions and also it does not make explicit assumptions about the portfolio returns.
However if we look into procedure, the distribution of portfolio returns is con-
stant, does not change and returns has the same weight. Boudoukh, Richard-
son and Whitelaw (1998) combined historical simulation with RiskMetrics to
overcome problems. This hybrid approach does not use equal weights for all
in-sample observation, but apply exponentially declining weights so take into
account “age” of observations.

With semiparametric methods, for example with Extreme Value Theory, we can
focus only on the tails of distributions and so we do not have to care about mod-
elling the whole return distribution. The most common semiparametric model
was introduced by Engle and Manganelli (2004) – Conditional Autoregressive
Value at Risk (CAViaR), which does not model whole distribution of returns,
but directly model the evolution of quantiles over time. With this model, we
do not need to assume distribution of portfolio returns, but only assumption
about correct specification of the quantile process. Other methods focusing
on VaR are quasi-maximum likelihood GARCH models and methods based on
quantile regression. The reason we work with semiparametric methods is that
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we do not need to use any assumptions about distribution.

Quantile 𝑉 𝑎𝑅𝛼 of a given portfolio can be characterized as

𝑞𝛼(𝑟𝑡+1) = 𝜎𝑡𝛷(𝛼) (2.15)

where 𝑞𝛼(𝑟𝑡+1) is 𝛼-quantile of the return distribution, 𝜎𝑡 is volatility and 𝜑(𝛼)
denotes 𝛼-quantile of a standard normal cumulative distribution. In general,
we do not want to make this assumption about distribution function of the
underlying error term. That is the reason, why usage of quantile regression as
nonparametric estimation is suitable in our case.

There are several other studies, focusing on regression quantile modelling in
Value at Risk. Chernozhukov and Umantsev (2001) analyzed conditional mar-
ket risk of stock price oil producer stock price and Dow Jones Industrial Average
index, measuring conditional risk.

Taylor (2000) proposed approach to the estimation of the distribution of multi-
period returns by using historical returns of exchange rate data with three
methods. Authors found that GARCH model with empirical distribution does
not perform well. Overall, the GARCH models with Gaussian distribution and
quantile regression approach have similar performance.

2.3. Linear Quantile regression model

In this section, we focus on the linear quantile regression originally proposed
Koenker & Bassett (1978). We will follow Zikes and Barunik (2014) in use of
this linear semiparametric model for 𝛼-quantile of future stock returns:

𝑞𝛼(𝑟𝑡+1 | 𝛺𝑡) = 𝛽0(𝛼)+𝛽𝜈(𝛼)′𝜈𝑡,𝑀 +𝛽𝑧(𝛼)′𝑧𝑡 (2.16)

where 𝑟𝑡+1 is logarithmic return, Ω𝑡 contains information known at time 𝑡,
𝑣𝑡,𝑀 is set of quadratic variation, 𝑧𝑡 is vector of weakly exogenous variables
and 𝛽0(𝛼), 𝛽𝑣(𝛼), 𝛽𝑧(𝛼) are vectors to be estimated.

Previous equation is determined by parameters 𝛽0(𝛼), 𝛽𝑣(𝛼), 𝛽𝑧(𝛼) which solve
minimizing problem of objective function:

1
𝑇

𝑇∑︁
𝑡=1

𝜌𝛼(𝑟𝑡+1 −𝛽𝑜(𝛼)−𝛽𝜈(𝛼)′𝜈𝑡,𝑀 −𝛽𝑧(𝛼)′𝑧𝑡) (2.17)
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where 𝜌𝛼(𝑥) = (𝛼 −1{𝑥 < 0})𝑥.

Similar methodology was already used by Cenesizoglu and Timmermann (2008),
who modelled the return distribution of US stock market. For quantile mod-
elling they used similar specification as Zikes and Barunik (2014), but instead
of quadratic variation they used last period’s conditional quantile and absolute
value of last period’s return, firstly defined by Engle and Manganelli (2004). As
we already described in previous section, the realized volatility has advantage
of intraday changes, which can improve future modelling.

The main advantage of this approach is no distribution assumption. In the most
of the models, the assumption about distribution has to be made. Moreover,
the evidence from different quantiles can help to specify the economic source of
return and due to that investor can include this information into its portfolio
choice.

2.4. Forecast evaluation

As one of the main part of our work is dedicated to the forecast of variables,
we need to monitor the forecast performance of our models. The evaluation
provides essential feedback on the quality of forecasted data which can help us
answer the question, if we used the correctly specified forecasting method and
also if the forecasts are giving economic and statistical sense.

There is wide range of forecast evaluation methods used in the literature, which
we can use to check the accuracy of the conditional quantile models underlying
to this work. We take into account absolute and also relative performance of the
models. For the absolute performance, which shows us the performance within
model, we are going to use unconditional coverage test, independence test and
combined conditional coverage test. As we also want to see the differences
between different models, we are going to check the relative performance. The
performance will be compared via unconditional coverage, the value of the
tick loss function and the Diebold-Mariano test statistic for equal predictive
accuracy. All of these performance measures are explained below.

2.4.1. Absolute performance

To evaluate the absolute performance of our models, we use three tests. The
unconditional coverage test discussed by Kupiec (1995), Christoffersen (1998)
independence test and test of conditional coverage.
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Unconditional Coverage

Kupiec (1995)introduced performance tests based on proportion of failures or
PoF test, which measures if the number of exceptions is consistent with the
confidence level or not. Under the null hypothesis that the model is correctly
specified, the number of failures follows the binominal distribution with prob-
ability 𝛼.

The probability (𝑝) of observing the number of failures (𝑥) in the sample with
number of observations (𝑛) and with the frequency of failures predicted by the
model 𝛼, the null hypothesis for Proportion of Failures is:

𝑃𝑟𝑜𝑏(𝑥 | 𝛼,𝑛) = (𝑛
𝑥)𝛼𝑥(1−𝛼)𝑛−𝑥 (2.18)

Accurate estimates should have the property that the unconditional coverage,
which is measured by 𝛼* = 𝑥/𝑛 is equal to the desired coverage level 𝛼. Thus
under the null hypothesis, 𝛼* = 𝛼 which means that model predicts 𝛼*𝑛 viola-
tions. We can test the unconditional coverage hypothesis using the appropriate
likelihood ratio test 𝐿𝑅𝑢𝑐

𝐿𝑅𝑢𝑐 = 2
[︁
𝑙𝑜𝑔(𝛼*𝑥(1−𝛼*)𝑛−𝑥)− 𝑙𝑜𝑔(𝛼𝑥(1−𝛼𝑥)𝑛−𝑥)

]︁
(2.19)

The 𝐿𝑅𝑢𝑐 test statistics has an asymptotic 𝜒2
1 (chi-squared) distribution with

one degree of freedom.

If the proportion 𝛼* is below to the desired significance level 𝛼, then the un-
conditional coverage test reject the null hypothesis.

However, in case of dynamics are present in the higher-order moments, the
unconditional coverage test is insufficient as it tests only the coverage of the
interval. Christoffersen (1998) mentions that unconditional coverage “does not
have any power against the alternative that the zeros and ones come clustered
together in a time-dependent fashion”. Therefore we need to test independence
assumption to have correct definition of the absolute performance of our fore-
casted data.

Test of independence

The null hypothesis of independence tells us the probability that the previous
violations are not influencing the next violations. Christoffersen (1998) suggest
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to test the independence against first-order Markov alternative. At first, let’s
consider first-order Markov chain,𝐼𝑡, with transition probability matrix

𝛱1 =
⎡⎣ 1−𝜋01 𝜋01

1−𝜋11 𝜋11

⎤⎦ (2.20)

where 𝜋𝑖𝑗 = 𝑃𝑟𝑜𝑏(𝐼𝑡 = 𝑗|𝐼𝑡−1 = 𝑖). For this process is likelihood

𝐿(𝛱1) = (1−𝜋01)𝑛00𝜋𝑛01
01 (1−𝜋11)𝑛10𝜋𝑛11

11 (2.21)

Where 𝑛𝑖𝑗 is the number of observations with value 𝑖 followed by 𝑗. To maxi-
mizing the log-likelihood function and solve for the parameters, we use following
specified matrix:

̂︁𝛱1 =
⎡⎣ 𝑛00

𝑛00+𝑛01
𝑛01

𝑛00+𝑛01
𝑛10

𝑛10+𝑛11
𝑛10

𝑛10+𝑛11

⎤⎦ (2.22)

Secondly, let’s consider output sequence𝐼𝑡, from an interval model. It looks
really similar to the 𝛱1 matrix. We test hypothesis that the sequence is inde-
pendent by nothing that 𝛱2 corresponds to independence.

𝛱2 =
⎡⎣ 1−𝜋2 𝜋2

1−𝜋2 𝜋2

⎤⎦ (2.23)

The likelihood of the second matrix under null hypothesis is therefore

𝐿(𝛱2) = (1−𝜋2)𝑛00𝜋𝑛01
2 (1−𝜋2)𝑛10𝜋𝑛11

2 (2.24)

With the maximum likelihood estimate ̂︁𝛱2 = ̂︀𝜋2 = (𝑛01+𝑛11)
(𝑛00+𝑛10+𝑛01+𝑛11) , the like-

lihood ratio test of independence is

𝐿𝑅𝑖𝑛𝑑 = −2𝑙𝑜𝑔

[︃
𝐿(̂︁𝛱1)
𝐿(̂︁𝛱2)

]︃
(2.25)

which is an asymptotically 𝜒2
1 (chi-squared) distributed with one degree of

freedom.

With the test of independence we have tested the dynamics in the interval
forecast, we can now proceed to the joint test of unconditional coverage and
independence.
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Conditional Coverage

Christoffersen (1998)also proposed, how to create this joint test, so called condi-
tional coverage. It is basically just combination of the log-likelihood statistics:

𝐿𝑅𝑐𝑐 = 𝐿𝑅𝑢𝑐 +𝐿𝑅𝑖𝑛𝑑 (2.26)

with the null hypothesis about correctly specified model which are independent
to previous violations. The 𝐿𝑅𝑐𝑐 test has also an asymptotic 𝜒2

1 distribution
with one degree of freedom.

This conditional coverage enables joint testing of randomness and correct cov-
erage, while we can also study the effect of each subcomponent.

2.4.2. Relative performance

To compare the performance of used models, again we are going to use uncondi-
tional coverage test. Moreover, we are going to follow Giacomini and Komunjer
(2005) in use of the loss function. As the last relative performance test we use
Diebold and Mariano (1995) test for equal predictive ability.

Tick loss function

Giacomini and Komunjer (2005) implemented “tick” loss function 𝜏𝛼. Let 𝑓𝑡

be a forecast of the variable 𝑌𝑡+1, conditional on the information set at time t.
Tick loss function can be then defined as follows:

𝜏𝛼(𝑒𝑡+1) = (𝛼 − 𝐼(𝑒𝑡+1 < 0))𝑒𝑡+1 (2.27)

where 𝐼(.) is approximation to the indicator function, 𝑒𝑡+1 ≡ 𝑦𝑡+1 − 𝑓𝑡, and 𝑓𝑡

is the quantile forecast. Authors decided for this tick function specification, as
the object of interest is the conditional α-quantile of the distribution of 𝑌𝑡+1.

Authors in paper concluded that the use of tick loss function is better “than the
quadratic loss function in the definition of encompassing” (Giacomini and Ko-
munjer 2005). Therefore we will follow them in applying the tick loss function
for the evaluation of our conditional modelling of returns.

Diebold-Mariano test statistics

Test developed by Diebold and Mariano (1995) is used to evaluate the equal
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predictive ability of different models. This test is based on the defined loss
differential between the two forecasts, which is formally defined as:

𝑑𝑡 = 𝐿(𝑒1)−𝐿(𝑒2) (2.28)

where 𝑒1 and 𝑒2 are vectors of the forecast error from the first model and the
second model respectively.

Under null hypothesis, two forecasts have equal accuracy if and only if loss
differential has expected value zero for all 𝑡. Alternative hypothesis is that the
two forecast have different accuracy level.

Considering the quantity 𝑇 , the sample mean of the loss differential is

𝑑 =
𝑇∑︁

𝑡=1
𝑑𝑡 (2.29)

Diebold-Mariano test statistics is then:

𝐷𝑀 = 𝑑√︂
2𝜋𝑓𝑑(0)

𝑇

(2.30)

where 2𝜋𝑓𝑑(0) is estimator of the asymptotic variance of
√

𝑇𝑑. Under null
hypothesis, DM is normally distributed.

Diebold-Mariano test also use Newey-West estimator developed by Newey and
West (1987) when using multi-step ahead forecast. It is important to use this
estimator to account serial autocorrelation in the forecast errors, which occurs
during forecasting.

2.5. Diversification

International diversification should allow us minimization of portfolio volatility
in comparison to portfolio constructed by regional assets only. The reason is
that on international market investors have bigger choice for investment. How-
ever, the option of diversification exists only in case of low cross-country or
cross-market correlations. As the financial markets have become more inte-
grated over the last years, this cross-market correlation should increase. We
could evidence of this correlation during Global Financial Crisis, where we
saw “Mexican wave” across financial markets. But the co-movements between
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markets depends does not systematically. We can see different correlations
not only on cross-country level but also on cross-continent level or between
countries with different maturities.

We believe that the effect of international diversification is slowly disappearing.
Christoffersen, Errunza, Jacobs and Hugues (2012) support this hypothesis by
using weekly return for developed (DMs) and emerging markets (EMs) over 36
years. They performed time-varying correlations and found that “correlations
have been significantly trending upward for both the DMs and EMs.” However,
as emerging markets often experience financial crises, authors conclude that
diversification benefits decreased in the DMs, EMs benefits stay the same.

The similar results were found by Bekaert, Hodrick and Zhang (2009), who
examined international stick return co-movements using portfolio returns from
23 developed markets across globe (they consider North America, Europe and
the Far East region) over period 1980-2005. They have not found evidence
for an upward trend in return correlation for North America and for Far East
regions, but for the European stock markets they found evidence. Evans and
McMillan (2009) came to same conclusion after analyzing 33 international stock
market indices. This information is important to know due to construction of
our portfolio, consisting from European stock market indices.

In the previous researches, authors focused on the correlation of the whole dis-
tribution. However usually, several extreme observations in the tail of distribu-
tion can bias the overall correlations structure, as we are unable to determine
what the extent of this biasness is. Therefore it would be best, as in case of
forecasting specific quantile, use the correlation of the specific quantile. To
do so, we are going to follow Campbell, Koedijk and Kofman (2000) in use of
quantile correlation structure.

Let’s assume normal return distribution. Then VaR quantile estimation 𝑟𝑐 will
not be exceeded with probability (1-c) %

𝑟𝑐 = 𝜁𝑐𝜎 (2.31)

Where 𝜁𝑐 is (1-c)% quantile of standardized normal distribution. Rewriting
this formula as a portfolio quantile, we get

𝑟2
𝑐 = 𝜁2

𝑐

[︁
𝑤2

𝑥𝜎2
𝑥 +𝑤2

𝑦𝜎2
𝑦 +2𝑤𝑥𝑤𝑦𝜎

]︁
(2.32)



Theoretical background 17

where 𝑤𝑥 and 𝑤𝑦 are the weights in the portfolio.

By replacing the standard deviations with VaR quantile estimates, we get
conditional correlation measure:

𝜌𝑄 =
𝑟2

𝑄 −𝑤2
𝑥𝑟2

𝑥,𝑄 −𝑤2
𝑦,𝑄𝑟2

𝑦,𝑄

2𝑤𝑥𝑤𝑦𝑟𝑥,𝑄𝑟𝑦,𝑄
(2.33)

In case of normally distributed returns and equal weights in the portfolio, the
correlation is constant across quantiles. In our work, we are going to use the
equally weighted portfolio based on the Goetzmann et al. (2005), who showed
that the equally weighted portfolio provide more diversification as capital-
weighted portfolio on different markets.

As a benchmark model for our quantile regression analysis, we are going to use
dynamic conditional correlation (DCC) from Garch model class, introduced
by Engle and Sheppard (2001). The advantage of DCC model is the flexibil-
ity of univariate GARCH models with correlations, which were estimated by
parametric models. Authors claim that DCC model perform well and provide
sensible results in variety of situations.

They proposed the dynamic correlation structure (formula 2.34, 2.35 and 2.36).
The time varying correlation matrix 𝑅𝑡 will be be

𝑅𝑡 = 𝑄*−1
𝑡 𝑄𝑡𝑄

*−1
𝑡 (2.34)

𝑄𝑡 = (1−
𝑀∑︁

𝑚=1
𝛼𝑚 −

𝑁∑︁
𝑛=1

𝛽𝑛)�̄�+
𝑀∑︁

𝑚=1
𝛼𝑚(𝜖𝑡 −𝑚 𝜖

′
𝑡−𝑚)+

𝑁∑︁
𝑛=1

𝛽𝑛𝑄𝑡−𝑛 (2.35)

𝑄*
𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎣

√
𝑞11 0 0 . . . 0
0 √

𝑞22 0 . . . 0
... ... ... ... ...
0 0 0 · · · √

𝑞𝑘𝑘

⎤⎥⎥⎥⎥⎥⎥⎦ (2.36)

Where �̄� is a diagonal matrix composed of the square root of the diagonal
elements of 𝑄𝑡 and 𝑄*

𝑡 is the unconditional covariance of the standardized
residuals. The element of 𝑅𝑡 should be in the form 𝜌𝑖𝑗𝑡 = 𝑞𝑖𝑗𝑡√

𝑞𝑖𝑖𝑞𝑗𝑗
.



Chapter 3
Data

In our work, we will analyze the stock market data consisting from PX, BUX
DAX and FTSE 100. These indices were chosen due to diversification of the
data across Central and Western Europe. Also, we were limited during choos-
ing process because of small number of high-frequency data over Central and
Eastern Europe, as our source database does not possess needed prices for
Warsaw Stock Exchange (WIG) and Vienna Stock Exchange (ATX) indices.

We characterize Central and Eastern Europe by PX and BUX indices. PX
index represents Prague Stock Exchange index. The base of PX consists of 13
companies, where market capitalization share of top 4 companies is over 80%.
PX index took over PX50 and PX-D indices in 2006 with base value of 1,000
in April 5, 1994.

Also BUX index, Budapest Stock Exchange index consists of 13 companies,
with market capitalization of top 4 companies is almost 95%. BUX accounts
approximately for 94% of Hungarian domestic market capitalization. BUX has
base value of 1,000 as January 2, 1991.

Western Europe indices – DAX and FTSE 100 are characterized by much higher
liquidity and market capitalization in comparison to Central market induces.

DAX index is German stock index, which consist of 30 most actively traded
German companies traded on Frankfurt Stock Exchange. The DAX has base
value of 1,000 as of July 1, 1988. The DAX represents around 80% of the
market capital authorized in Germany.

FTSE 100 index (denoted as FTSE) is Financial Times Stock Exchange index,
which includes 100 most highly capitalized companies listed in London Stock
Exchange. Base value of index is 1,000 as of December 30, 1983.
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3.1. High-frequency data

Over the last years, the significant increase of computer computational power
enables us to gather data in milliseconds. However not all the time quantity
can bring insights to data. Due to the bid-ask spread we experience in the
high-frequency data micro-structure noise, which can largely bias our estimates.
This noise however can be diminished by using appropriate filtering of the data.
Bandi and Russell (2008) shows that “there is a non-negligible probability of
obtaining optimal sampling frequencies in excess of 5 minutes”. This frequency
is mainly because we add bid-ask spread only 78-105 times per trading day,
as trading hours differ across markets. However the micro-structure noise is
different for each stock. More liquid stocks have lower micro-structure noise
(Aït-Sahalia & Yu 2009) as we use different indices on different markets, the
optimal frequency could differ. Due to this fact, we follow Bandi and Russell
(2008) in use of high-frequency 5-minute intraday data, which are commonly
used between economists. All data were obtained on October 14, 2014, from
Tick Data, Inc.

As we already mentioned, we cover period from January 1, 2008 until October
13, 2014. To summarize our data, we have 1,705 trading days with 136,887
closing prices for PX, 1,689 trading days with 157,585 closing prices for BUX,
1,727 trading days with 179,291 closing prices for DAX and 1,714 trading days
with 174,103 closing prices for FTSE.

Trading hours and with it connected number of observations remained almost
constant for DAX and FTSE. Only several exceptions occurred in the data. One
of main the biggest outliers for DAX and for FTSE was last day of the year,
when the trading hours were shorten. Moreover, DAX’s number of observations
was shortened several times in March 2009, when market was closed 30 minutes
earlier. During this month, most of the markets hit the bottom and started to
growth again. Otherwise DAX data were obtained since 9:05 am till 5:36 pm.
Also FTSE index has been traded shorter during several days in March 2009,
last trading day of the year, but also during Christmas Eve. FTSE experienced
huge fall in terms of observations during February 25, 2011, when London Stock
Exchange system was halted by computer problem for numerous hours. The
change in the number of observations came with BUX. Till November 2010,
BUX was trading since 9:00 am till 4:30 pm however due to change in December
1, 2010 Budapest Stock Market started to trade till 5:00 pm. This change in
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Table 3.1.: Descriptive statistics of high-frequency daily logarithmic returns
PX BUX DAX FTSE

Mean -0.0990 -0.0944 -0.0311 -0.0278
Median -0.0620 -0.0838 0.0159 -0.0051

Min -11.9665 -10.3103 -7.5587 -7.9355
Max 5.5317 6.7095 8.7943 7.6648

Std. Dev. 1.1125 1.4415 1.2899 1.0841
Skewness -1.3322 -0.4413 -0.1131 0.0176
Kurtosis 13.4762 4.8864 4.7506 8.5443
Source: Author’s computations

trading hours created additional 6 observations per day. PX changed trading
hours several times since January 2008. Between January 1, 2008 and January
31, 2011 PX was trading since 9:30 am till 4:00 pm. Since February 1, 2011 till
November 29, 2012 PX traded started 15 minutes earlier and since November
30, 2012 Prague Stock Index started to trade since 9:00 am. Now it starts to
trade at the same time as DAX and FTSE indices.

In general, we can observe that Western European markets are more traded as
Central European markets. It’s visible not only from number of trading days,
but also from the length of trading per day.

The descriptive statistics of 5 minute closing prices and daily logarithmic re-
turns are summarized in the Table 3.1.

From the descriptive statistics we can see that all indices except the FTSE
index are negatively skewed. However FTSE’s skewness is really close to the
zero. Prague stock index has the highest negative skewness, which means that
on this index is the highest probability of a bigger negative return.

Figure 3.1 shows 5 minute closing prices with corresponding daily returns since
January 2008 till October 2014. We can see decreasing price over all stock
indices till February 2009, when they hit the bottom. PX and BUX experienced
highest falls, losing almost two thirds of its price since January 2008. The lowest
decrease experienced FTSE index, which lost “only” 47 percent of its price.
From the charts and from statistics in the Table X-X we can see that FTSE
is also least volatile index with standard deviation of 1.08. This low volatility
is visible also from daily returns in August 2011, when due to downgrade of
United States and France ranking global market experienced fall of all main
indices, FTSE in comparison to other markets experienced smaller variation in
the returns.
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Figure 3.1.: 5-minute closing prices and daily returns

Source: Author’s computations

3.2. Realized variance and volatility

In this subsection, we will continue in constructing realized variation measures
and components of RV. As discussed in the section 2.1.1, we calculate RV as
sum of squared intra-day logarithmic returns. To compress the data, we will use
realized volatility as a simple square root of realized variance. The comparison
of daily returns and realized volatility is visible in Figure 3.2 below for the PX
index, where we can see that realized volatility (red line) really nicely describes
daily returns (blue line). For the rest of the indices, the graphical comparison
can be found in Figure A.1 in Appendix.

Based on the figure comparison, we can see that realized volatility describes
data well, except of periods with increased volatility during 2008 and 2011.

As we already mentioned earlier in section 2.1.1, realized volatility can be
under assumption of no drift described as standard deviation. Thus error of
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Figure 3.2.: Comparison of daily returns with realized volatility (PX index)

Source: Author’s computations

Figure 3.3.: White noise assumption

Source: Author’s computations

data calculated as daily return over realized volatility can be described as white
noise process. Figure 3.3 shows that error of Prague Stock Exchange index can
be described as white noise process (the results for the rest of indices are in
Figure A.2 in Appendix).



Chapter 4
Empirical analysis

In the previous chapters we explained the underlying theory of VaR and fore-
casting, we proceed with our empirical analysis. We study the performance of
stock index data between January 2008 and October 2014. During this time pe-
riod, our data experienced several time intervals with significantly higher vari-
ance. For the modelling approach, it would be convenient to divide our sample
into two parts and see, how the data are able to perform over these periods. For
each of these periods we need to conclude in-sample and out-of-sample analy-
sis. The in-sample period analysis is important to see the forecasting ability of
used model and out-of-sample forecast will suit for “real” forecast.

However, due to lack of the data in our dataset (we have only around 1,700
trading days per index), we are going to perform analysis on the same dataset
with changing the proportion of in-sample and out-of-sample period.

In our work we focus on lower quantiles 1%, 5% and 10% as 99%, 95% and
90% VaR are the most used risk metrics in the practice. Unfortunately, as only
small number of observations are left for out-of-sample testing1, we can expect
not-well performing results for the 1% quantile. However as we want to see the
performance of our models in the low quantiles, we are going to include this
quantile into analysis.

In this chapter, we conclude 1-day VaR forecast using three models. At first
linear quantile regression using realized variance, after that linear quantile re-
gression using the realized semivariance and as a benchmark we are going to
use VaR model with Gaussian return distribution, which we are going to call
VaR_Gauss. After that we are going to change the horizon of forecasting and

1As 1% hit rate in approximately 500 observations is in fact 5 observations, our models can
outperform in this low quantile.
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going to perform 5-day and 10-day forecast. To compare the performance of
the models, we are going to use absolute and relative performance metrics and
conclude, which of the mentioned models has the best forecasting accuracy.

4.1. Linear quantile regression

At first we need to conduct linear quantile regression, which is based on Zikes
and Barunik (2014) model. We are going to perform this regression on the whole
sample size, to have description of the whole sample using the realized variance
and after that we conclude analysis with usage of the realized semivariances.
The exact realized variance linear quantile regression will be as follows:

𝑞𝛼(𝑟𝑡+1) = 𝛽0(𝛼)+𝛽𝜈(𝑅𝑉 𝑂𝐿𝑡) (4.1)

The quantile regression can be estimated for the full distribution, however we
are going to focus only on the main quantiles – left tailed 1%, 5%, 10%, 50%
median regression, also known as least absolute deviation (LAD) and on right
tailed 90%, 95% and 99%. We chose these quantiles due to fact that these
quantiles shows tailed distribution and most of time these quantiles are the
most sensitive for biased results.

The results of conditional linear quantile regression can be found in the Table
4.1 below and visually in the Figure A.3 in Appendix, where we can com-
pare OLS estimate with the best fit to expected returns estimated by using
quantile regression. The table report estimated coefficients for the variables
with Student’s t-statistics in the parentheses. We find that realized volatil-
ity is statistically significant across all lower and high quantiles, however we
can see that on 50% quantiles, the significance level of estimated variables is
low. This low significance on LAD supports our assumption of importance to
use quantile regression. The estimated parameters of realized volatility have
negative coefficients in the left-tail quantiles and positive coefficients in the
right-tail quantiles. In general, we do not see any extreme values of regres-
sions in individual quantiles. We can only conclude that PX has the heaviest
left-tail realized volatility across analyzed indices. Coefficient of PX index on
1% quantile is almost 2.5 times larger as coefficient of DAX index. This can
be the results of the market liquidity. As the PX is less tradable market, it is
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Table 4.1.: Estimated results of conditional linear quantile regression with re-
alized volatility
quantile 0.01 0.05 0.10 0.50 0.90 0.95 0.99

PX
constant -0.36 -0.30 -0.36 0.01 0.09 0.22 0.42

(-0.82) (-1.59) (-2.84) (0.19) (0.91) (1.41) (1.33)
√

𝑅𝑉
-3.71 -2.01 -1.28 -0.12 1.38 1.59 2.63
(-5.58) (-4.53) (-5.36) (-1.16) (7.71) (6.12) (4.78)

BUX
constant -0.68 -0.32 -0.45 -0.12 -0.03 0.10 0.06

(-1.01) (-1.05) (-2.88) (-1.01) (-0.17) (0.41) (0.12)
√

𝑅𝑉
-2.28 -1.66 -1.11 0.04 1.32 1.72 2.53
(-2.52) (-4.82) (-7.17) (0.35) (7.21) (6.7) (4.24)

DAX
constant -1.46 -0.50 -0.35 0.02 0.13 0.44 0.38

(-5.97) (-2.71) (-2.36) (0.37) (1.25) (2.52) (1.27)
√

𝑅𝑉
-1.53 -1.42 -1.08 -0.01 1.14 1.25 2.23
(-7.06) (-6.97) (-6.76) (-0.12) (9.38) (6.85) (6.36)

FTSE
constant 0.06 -0.27 -0.17 -0.02 0.21 0.28 0.22

(0.47) (-1.99) (-1.49) (-0.4) (2.8) (1.97) (0.58)
√

𝑅𝑉
-2.99 -1.51 -1.13 0.03 0.98 1.19 2.40

(-28.34) (-6.91) (-7.11) (0.32) (8.4) (5.06) (4.47)
Source: Author’s computations

more sensitive to the information and though it is visible via higher changes in
the extreme quantiles (0.01 and 0.99). As we look at the 50% quantile (LAD),
PX has the lowest coefficient. This means that PX has more negative as pos-
itive returns. Surprisingly, BUX has the highest LAD coefficient, which could
lead into assumption that there is higher probability of positive return from
investing into this index.

For further analysis we are going to call model with realized volatility LQR_RV.
Zikes and Barunik(2014) estimated linear quantile regression on S&P 500 in-
dex and WTI Crude Oil futures. Their estimated parameter had expected
properties – sign and significance across all quantiles.

After we have model with the realized volatility, now we are going to use model
with positive and negative volatility. As we discussed in the underlying theory,
the differences can be found as we decompose realized volatility. Therefore
we slightly change used realized volatility linear quantile regression model as
follows:

𝑞𝛼(𝑟𝑡) = 𝛽0(𝛼)+𝛽𝜈1(𝑅𝑆+
𝑡 )+𝛽𝜈2(𝑅𝑆−

𝑡 ) (4.2)
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Table 4.2.: Estimated results of linear quantile regression with squared root of
realized semivariance
quantile 0.01 0.05 0.10 0.50 0.90 0.95 0.99

PX

constant -0.40 -0.31 -0.33 0.01 0.11 0.18 0.56
(-2.36) (-1.88) (-2.56) (0.14) (1.19) (1.2) (2.42)

√
𝑅𝑆+ -1.65 -1.70 -0.83 0.03 1.12 1.31 1.50

(-3.49) (-2.82) (-2.17) (0.19) (4.17) (3.25) (3.57)
√

𝑅𝑆− -3.78 -1.20 -1.09 -0.20 0.81 1.09 2.15
(-7.21) (-1.96) (-3.38) (-1.64) (3.28) (2.89) (2.77)

BUX

constant -0.67 -0.32 -0.44 -0.11 -0.03 0.09 0.32
(-0.96) (-1.54) (-2.44) (-0.88) (-0.16) (0.39) (0.65)

√
𝑅𝑆+ -1.57 -1.32 -0.93 -0.12 1.19 1.07 1.35

(-1.14) (-8.28) (-2.76) (-0.56) (3.72) (2.8) (1.32)
√

𝑅𝑆− -1.69 -1.04 -0.67 0.17 0.70 1.38 1.82
(-1.31) (-2.52) (-2.06) (0.76) (2.39) (3.08) (2.25)

DAX

constant -1.44 -0.59 -0.35 0.02 0.15 0.45 0.31
(-5.27) (-3.44) (-2.42) (0.33) (1.39) (2.64) (1.27)

√
𝑅𝑆+ -1.15 -0.37 -0.60 0.06 0.69 0.67 2.57

(-1.91) (-0.88) (-1.85) (0.32) (2.52) (1.62) (3.53)
√

𝑅𝑆− -1.03 -1.52 -0.93 -0.07 0.90 1.08 0.80
(-2.96) (-4.78) (-2.87) (-0.45) (3.71) (3.04) (2.16)

FTSE

constant -0.06 -0.28 -0.19 -0.04 0.18 0.21 0.25
(-0.34) (-2.1) (-1.7) (-0.75) (2.68) (1.73) (0.72)

√
𝑅𝑆+ -1.32 -1.07 -0.49 -0.05 0.51 0.33 0.98

(-2.41) (-1.89) (-1.19) (-0.27) (4.14) (0.57) (0.71)
√

𝑅𝑆− -2.69 -1.07 -1.10 0.13 0.92 1.47 2.38
(-5.14) (-1.88) (-2.86) (0.57) (4.05) (2.66) (2.25)

Source: Author’s computations

The results of this decomposition can be found in the Table 4.2 and Figure
A.4and A.5in the Appendix. On 1% quantile, only for DAX is more important√

𝑅𝑆+ than
√

𝑅𝑆−, while on the 5% confidence level, the negative volatility
is already higher. BUX has similar coefficients at the 1% and on contrary, PX
and FTSE indices has squared root of negative semivariance twice higher as
positive one.

In the data, we can observe several significant changes in the coefficient of√
𝑅𝑆+ and

√
𝑅𝑆−. For

√
𝑅𝑆+, we can see significant change between 1% and

5% quantile in BUX and FTSE indices. On the other hand, for
√

𝑅𝑆−, we can
see significant changes on low quantiles for DAX and on upper quantiles (90%
- 99%) for FTSE.

Our findings are consistent with the results of Zikes and Barunik(2014). They
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found that the realized downside volatility dominates positive volatility across
all estimated quantiles. Therefore we can conclude that the

√
𝑅𝑆− on our CEE

indices has the similar impact as Zikes and Barunik S&P 500 index. For this
linear quantile regression model with semivariance we will further address as
LQR_RS.

4.2. Forecast

We proceed with the one day forecast for our indices. For forecasting we are
going to use rolling window forecast, when the size of window is equal to in-
sample size. As we mentioned before, we are going to perform forecast for
sample from January 2008 till October 2014. For this period we use 2 datasets,
which will differ in the in-sample and out-of-sample proportion. This division
we will use due to volatile returns in the 2011, which are visible in the Figure
3.2. For the first subsample, we use in-sample period size of 1,200 returns, while
for the second subsample we use in-sample, with size of 800 returns. Due to
this we can see the forecast performance for less and also for the highly volatile
data. In this section we describe the results of subsamples in detail and after
that we summarize the main findings.

For each sample we calculate in-sample and out-of-sample forecast using dif-
ferent models. At first we perform forecast using linear quantile regression us-
ing quadratic variation. The forecast will be estimated directly for the wanted
quantile, derived from Koenker & Bassett (1978) and Zikes and Barunik (2014),
to avoid assumption about return distribution.

𝑞𝛼(𝑟𝑡+1) = 𝛽0,𝑡(𝛼)+𝛽𝜈(𝑅𝑉 𝑂𝐿𝑡) (4.3)

As we mentioned in the theory, quadratic variation has a lot of information
and should perform well, however we want to see the performance, we use the
model with the semivariance.

𝑞𝛼(𝑟𝑡+1) = 𝛽0,𝑡(𝛼)+𝛽𝜈1(𝑅𝑆+
𝑡 )+𝛽𝜈2(𝑅𝑆−

𝑡 ) (4.4)

In our case, as a benchmark model we are going to use VaR model with Gaus-
sian return distribution, which is one the basic models used for forecasting



Empirical analysis 28

VaR.

𝑉 𝑎𝑅𝑡+1(𝛼) = 𝐸 [𝑟𝑡]−𝑅𝑉𝑡 * 𝑞𝑛𝑜𝑟𝑚(𝑐) (4.5)

For each of the sample we conduct forecast for 1%, 5% and 10% quantiles. The
performance of the forecasts will be validated through absolute and relative
performance tests, specified earlier in the Section 2.4.

Moreover we evaluate the relative performance of our models by using value of
Giacomini and Komunjer tick-loss function (T-L) and Diebold-Mariano (DM)
test statistic for equal predictive accuracy. For Diebold-Mariano test we con-
sider two-sided alternative hypothesis, which says that the two compared mod-
els have different level of accuracy. As a benchmark model we are going to
consider quantile regression model with the semivariance.

For the multi-step forecast, we consider two types of horizons, when we use 5
and 10-step-ahead forecasts. These forecasts are going to be estimated based on
slightly changed methodology. At first we need to calculate cumulative returns
for given horizon.

𝑟ℎ,𝑡 =
ℎ−1∑︁
𝑖=0

𝑟𝑡+𝑖 (4.6)

Also we need to assume realized volatility for this horizon, which will be cal-
culated based on given formula:

𝑅𝑉 𝑂𝐿ℎ,𝑡 =

⎯⎸⎸⎷ℎ−1∑︁
𝑖=0

𝑅𝑉 𝑂𝐿2
𝑡+1 (4.7)

However, as we use cumulative returns, we have to consider the autoregression
in our models. Therefore we evaluate multi-step ahead forecasts by using only
relative performance metrics, as for absolute performance evaluation is used
independence factor (in independence test and also conditional coverage test).

4.2.1. First sample forecast

At first we will evaluate the performance of our model on data with in-sample
period of size 1,200 observations, covering both periods of higher volatility.
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Table 4.3.: Absolute and relative performance of PX index on one-step-ahead
forecast with in-sample period of 1,200 observations

VaR in-sample out-of-sample
1% LQR_RV LQR_RS VaR_Gauss LQR_RV LQR_RS VaR_Gauss
UC 0.0142 0.0142 0.1760 0.0041 0.0041 0.1072

L ind 1.3967 1.3967 0.9741 n/a n/a 2.3013
L cc 3.2686 3.2686 848.5634 n/a n/a 159.5064
Tick 0.0438 0.0433 0.1410 0.0286 0.0288 0.0572
DM 8.2050 18.5554 0.2466 27.4590
5%
UC 0.0509 0.0500 0.1284 0.0289 0.0309 0.0598

L ind 1.1016 1.2466 0.7146 3.5938 7.0722 2.5438
L cc 1.1209 1.2466 111.1833 8.9381 11.3457 3.4679
Tick 0.1393 0.1391 0.1546 0.0876 0.0877 0.0837
DM -3.2441 16.6369 -0.1092 19.7290
10%
UC 0.0992 0.1009 0.0676 0.0495 0.0495 0.0351

L ind 0.1671 0.3468 0.4532 2.2303 2.2303 5.6338
L cc 0.1747 0.3580 16.1011 18.8120 18.8120 35.2103
Tick 0.2118 0.2118 0.2223 0.1374 0.1371 0.1621
DM 0.9779 -13.2277 -1.3660 -13.0008

Absolute performance is evaluated by unconditional coverage (UC), likelihood of independence

test (L ind) and likelihood of conditional coverage (L cc). Relative performance is evaluated by

tick loss function (Tick) and Diebold-Mariano test of accuracy (DM).

Source: Author’s computations

One-step forecast

We start evaluation of forecast performance on the PX index. The results are
summarized in the Table XX. On the left side of the table we can see the in-
sample performance and on the right side of the table we can see out-of-sample
performance.

On the 1% quantile we can observe that the VaR_Gauss model has the highest
percentage of violations, which means it significantly underestimates the risk at
a given confidence level. Therefore we reject hypothesis about correct specifica-
tion in both in-sample and out-of-sample period. For LQR_RV and LQR_RS
we cannot reject null hypothesis of unconditional coverage in in-sample and
out-of-sample period, however for out-of-sample period we cannot perform in-
dependence test. This unavailability was caused by low number of violations
and as no violations followed previous violations, the likelihood ratio became
zero. The fact connected with this is that our out-of-sample period includes
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only 507 observations, therefore in case we would have wider out-of-sample pe-
riod, some violation should arise. Diebold-Mariano accuracy test shows that
in in-sample period our models do not have same forecasting accuracy, how-
ever in out-of-sample period LQR_RV and LQR_RS has same accuracy. DM
hypothesis is rejected in case of VaR_Gauss.

For the in-sample period on the 5% quantile, we can see that models LQR_RV
and LQR_RS have similar unconditional coverage, really close to 5% signifi-
cance level, which means that these models are correctly specified. The bench-
mark VaR_Gauss model, on the other hand, has proportion of violations almost
13%. Therefore for VaR_Gauss model we can reject null hypothesis about cor-
rect specification. We can observe high likelihood ratio of conditional coverage
test for the VaR_Gauss model, which supports the results of the unconditional
coverage test. Nevertheless, this VaR_Gauss model is independent for pre-
vious violations. Between models comparison with Diebold-Mariano test for
predictive accuracy tells us that in in-sample period we reject null hypothesis
of same accuracy of the models. While between LQR_RV and LQR_RS is
the difference really small, the comparison with VaR_Gauss shows significant
difference supported also by tick-loss function. In the out-of sample period we
see improvement of the VaR_Gauss model. The unconditional coverage felt
down on approximately 6% violations and likelihood of conditional coverage for
this model is the only one, which does not reject null hypothesis for the correct
number of exceedances. The main factor behind the non-correct specification
of the LQR_RV and LQR_RS models is the overestimation of the potential
risk. Moreover, LQR_RS failed during the independence test.

On the 10% quantile, we can see similar results as for the 5% quantile. In the
in-sample period, linear quantile regression models performs better as classical
VaR_Gauss model. On contrary to 5% quantile, VaR_Gauss overestimate the
potential risk. In the out-of-sample period, all our models are overestimating
the potential risk, however in the LQR models, the overestimation is lower.
Moreover, VaR_Gauss is also dependent to previous violations. Looking at the
DM test, we just confirm the absolute performance tests. For the LQR_RS
and LQR_RV we cannot reject null hypothesis of same accuracy.

The performance of our models on PX index showed that linear quantile regres-
sion model with usage of realized semivariance perform best, followed by linear
quantile regression model with usage of the realized variance. The VaR_Gauss
model usually underestimates of overestimates the forecasts even in in-sample
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period, which can then cause significant violations in out-of-sample period. The
graphical comparison of the PX forecast models is in Figure 4.1.

Results for BUX index we can see in Table B.1 in Appendix. At 1% quantile,
linear quantile regression models perform really well, when LQR_RV predicts
1.7% violations and LQR_RS predicts 1.5% in in-sample period which is close
to expected number of violations. However in the out-of-sample period, models
predicted zero violations. This mean that LQR models overestimated risk.
VaR_Gauss model on the other hand underestimated risk, with more than
10% violation in both samples. The independence test for quantile regression
models cannot be concluded due to overestimation, however for the VaR_Gauss
model the past violations does not influence future violations. From the relative
performance perspective we can conclude that LQR_RS model has in out-of-
sample period accuracy as LQR_RV, confirmed by Diebold-Mariano test value
of 1.90. However this accuracy is influenced by observed number of violations.

On 5% quantile we have more consistent results of forecasts. Based on un-
conditional coverage, we accept null hypothesis about correct specification for
LQR_RV and LQR_RS, while we reject this hypothesis for VaR_Gauss model,
where the number of violations was 7.8%. However for the out-of-sample pe-
riod, the number of violations is slightly overestimated for quantile regression
models, while still a little underestimated for VaR_Gauss. The independence
test shows that the violations are not influenced by previous violations. The
Diebold-Mariano test confirms that the VaR_Gauss model is less accurate than
quantile regression models, when in out-of-sample period the LQR models has
same accuracy.

Based on the absolute performance on 10% quantile forecast of BUX index, in
the in-sample period the VaR_Gauss model highly overestimates the risk, while
LQR_RV and LQR_RS models were correctly specified. However in the out-
of-sample period, all of our models overestimated the risk with 7.0%, 5.9% and
2.3% of violations for LQR_RV, LQR_RS and VaR_Gauss respectively. These
violations haven’t been influenced by the previous violations, confirmed by the
independence test. Therefore the conditional coverage results mostly reject
null hypothesis about correct specification and independence due to incorrect
specification. By comparing our models by tick loss function and DM test, in
the out-of-sample period quantile regression models had same accuracy while
the VaR_Gauss model was significantly different.
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Figure 4.1.: One-step-ahead PX forecast with in-sample size of 1,200 observa-
tions

Source: Author’s computations
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For all low quantiles of BUX we could see that the linear quantile regression
models have better forecasting performance as classical VaR model with nor-
mally distributed returns. Moreover by using realized semivariance we can
improve the forecasts even more.

During forecasting the DAX index data, we can observe similar performance as
with PX and BUX data. The results are summarized in the Table B.2 in the
Appendix of this document. For the 1% quantile, we see highly underestimated
forecasts for the VaR_Gauss model with normally distributed returns. While
LQR_RV and LQR_RS showed 0.8% violations for both models, VaR_Gauss
model experienced more that 10% of violations (12.1% for the in-sample and
10.6% for the out-of-sample period). Due to the low number of violations, we
cannot study their independence for linear quantile models, however for the
VaR_Gauss model the independence hypothesis was not rejected. The relative
performance moreover shows that even LQR_RV and LQR_RS models does
not have same accuracy. The alternative hypothesis of more accurate model
confirmed that LQR_RS model has better accuracy.

Moving to the 5% quantile, the unconditional coverage reject the null hypoth-
esis of correct specification for the VaR_Gauss in in-sample period. The LQR
models has 5.5% and 5.9% of violations for model with realized variance and
semivariance respectively. These violations are independent in time for all
models, therefore only for VaR_Gauss model we reject hypothesis of correct
specification and independence. For the out-of-sample period, the conditional
coverage confirms the correct specification and independence for all models.
Looking at the DM test values we can reject hypothesis of the same accuracy
between LQR_RV and LQR_RS, showing that LQR_RS has better perfor-
mance. On contrary, LQR_RV has better accuracy in comparison to LQR_RS
in out-of-sample period.

In the 10% quantile, we again reject only VaR_Gauss model, which shows
overestimation of the risk. While LQR_RV and LQR_RS shows 10.3% and
10.6% violations respectively, VaR_Gauss model shows only 3.3% in the in-
sample period. In the out-of-sample is the probability of violations similar as
to the in-sample period. All models show independence between current and
previous violations. DM test shows that only in the out-of-sample period has
LQR_RV and LQR_RS same accuracy, while in the in-sample period is the
LQR_RS model more accurate.

In the last forecast we analyzed FTSE index data. On 1% quantile, summa-
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rized in the Table B.3 in Appendix, the VaR_Gauss model underestimated
the underlying risk, when allowed 11.1% and 10.7% violation in the in-sample
and out-of-sample period respectively. Therefore we conclude that the model
is not correctly specified. We have not been able to perform independence test
for LQR_RS in the out-of-sample period, however other models show indepen-
dence in all periods. Relative performance tells us that LQR_RV and LQR_RS
have same accuracy in the in-sample period, however in the out-of-period, the
LQR_RS is more accurate. VaR_Gauss model show the highest tick loss and
DM test value, representing the least accurate model on 1% quantile.

On 5% quantile, linear quantile models again perform well, showing reasonable
amount of violations in both in-sample and out-of-sample period. VaR_Gauss
model underperform in the in-sample period, however in the out-of-sample
period we cannot reject null hypothesis about correctly specified model. Fore-
casted violations are not influenced by previous violations in any of our models.
From the DM test hypothesis we can conclude that LQR_RV and LQR_RS
has same accuracy in the in-sample period. In the out-of-sample period, model
with semivariance is the most accurate.

In-sample period on 10% quantile is correctly specified for linear quantile re-
gression models, while VaR_Gauss model overestimated forecasts with uncon-
ditional coverage of 3.2% violations. In the out-of-sample period, all our model
overestimate the risk. However while LQR_RV and LQR_RS forecasted 7.5%
and 7.3% violations respectively, VaR_Gauss model estimated 2.4% violations
leading to higher overestimation. The independence test have not rejected the
independence of our estimates and conditional coverage test confirms that only
two models are correctly specified and independent – LQR_RV and LQR_RS
in the in-sample period. The relative performance tests show that linear quan-
tile models have same accuracy with DM test values -1.05 and 0.01 in the in-
sample and out-of-sample period respectively. The VaR_Gauss model on the
other hand underperforms in comparison to LQR model with semivariance.

In the one-step ahead forecast we could observe that linear quantile models
performed better in comparison to VaR model with Gaussian distribution.
VaR_Gauss model mostly underperformed on 1% and 5% quantiles even in
the in-sample period and on 10% quantile overestimated the risk. LQR models
performed well on 1% quantile in the in-sample period, however in the out-of-
sample period it underestimated risk, when on BUX index we have not observed
any violations.
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Multi-step forecast

In the multi-step forecast we are going to focus on the relative performance on
the horizons 5 and 10 steps ahead and also will compare it to performance on
one-step ahead forecast. The results for PX index are summarized in the Table
4.4 and results of BUX, DAX and FTSE are in the Table B.4, B.5 and B.6.

For PX index, the unconditional coverage reject correct specification except for
LQR_RV out-of-sample forecast. VaR_Gauss model highly underestimated
risk, with more than 28% violations in the in-sample period. LQR_RV model
is the most accurate model in the in-sample period, however in the out-of-
sample period it has same accuracy as LQR_RS model. On 10-step-ahead
forecast, LQR models are correctly specified with 1.5% and 1.8% of violations,
while VaR_Gauss model again underestimated risk with 12.3% violations. In
the out-of-sample period, we reject correct specification for all models, when
LQR_RV, LQR_RS and VaR_Gauss models estimated 3.2%, 13.2% and 12.2%
violations. We can see that model with semivariance underestimated the risk
the most from all models. Diebold-Mariano test with alternative hypothesis of
more accurate model says that LQR_RV has better accuracy as LQR_RS on
both samples. Moreover LQR_RS has in out-of-sample period same accuracy
as VaR_Gauss model.

Moving to 5% quantile, the unconditional coverage test on horizon 5 days
shows that in the in-sample period we reject correct specification for all models,
while in the out-of-sample period we confirm correct specification for LQR_RV
model. In the out-of-sample period LQR_RS model estimated 13.5% viola-
tions, while VaR_Gauss model only 7.9% of violations. Based on tick loss
function and DM test we see that LQR_RV has better accuracy as model with
semivariance in both in-sample and out-of-sample period, while VaR_Gauss
shows same accuracy as LQR_RS. On horizon 10 we see LQR_RS model es-
timated 22% of violations instead of 5%, showing the high underestimation of
the risk.

While on horizon one LQR models were correctly specified in the in-sample pe-
riod, on horizon 5 we reject correct specification for all models. Following DM
test results, LQR_RV and VaR_Gauss models has better accuracy in both
in-sample and out-of-sample period compared to LQR_RS. On horizon 10,
LQR_RV model has correct specification in the in-sample and out-of-sample
period, while for LQR_RS and VaR_Gauss we reject null hypothesis of correct
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specification based on the unconditional coverage values, LQR_RS underesti-
mated risk with 14% and 28% violations in the in-sample and out-of-sample
period respectively, while VaR_Gauss overestimated the risk. DM test con-
firms results of the horizon 5, showing that LQR_RS has lower accuracy as
LQR_RV and VaR_Gauss.

The result for the Budapest Stock Exchange index are similar to PX index. On
5-step-ahead forecast, only LQR_RV in the in-sample period is correctly spec-
ified on 1% quantile. The rest of the models underestimated risk – LQR_RS
estimated 8.8% violations in the out-of-sample period and VaR_Gauss model
in both samples estimated over 10% violations. DM test of model accuracy
tells us that LQR_RV has better accuracy in comparison to LQR_RS while
VaR_Gauss has lower accuracy. On horizon 10 steps ahead is LQR_RV the
only model with correct specification in both samples. The difference is in the
model accuracy, when LQR_RV is the most accurate and also VaR_Gauss
model has better accuracy in the in-sample period in comparison to LQR_RS.

On 5% quantile and with h=5, only for LQR_RS model we reject null hypoth-
esis of correct specification. In out-of-sample period, LQR_RS forecasted ap-
proximately 17% violations. Therefore based on tick-loss function, we say that
LQR_RS is least accurate model in comparison to LQR_RV and VaR_Gauss
models. We see similar results also for 10-step-ahead forecast, where we reject
correct specification for the LQR_RS. VaR_Gauss is the only model, which
on 5% quantile has correct specification in both – in-sample and out-of-sample
periods, while LQR_RV underestimated risk with 7.6% violations. Based on
Diebold-Mariano test value we reject null hypothesis of same accuracy in the
in-sample period between our models. In the out-of-sample period, VaR_Gauss
and also LQR_RV are more accurate than LQR_RS.

The unconditional coverage on 1-step-ahead forecast on 10% quantile is usually
characterized by the correct specification in the in-sample period and overesti-
mation in the out-of-sample period. On forecast with horizon 5 and 10 we see
correct specification only for the LQR_RV model in the in-sample period, while
LQR_RV in the out-of-sample period and LQR_RS model underestimate the
risk. On contrary, VaR_Gauss model overestimated the risk with only 2% and
1.5% violations in in-sample and out-of-sample period on horizon 5 and 7.5%
and 8.7% on horizon 10. DM test tells us that LQR_RV and VaR_Gauss
models has better accuracy than LQR_RS.

We continue by analyzing DAX index. On the 1% quantile, only LQR_RV is
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correctly specified in the in-sample period with 5-step-ahead forecast. The rest
of the models underestimated the risk. LQR_RV has also better accuracy than
LQR_RS in both in-sample and out-of-sample period, while VaR_Gauss has
lowest accuracy. On horizon 10 we have similar results, however VaR_Gauss
model has better accuracy as LQR_RS in the out-of-sample period.

On the 5% quantile and horizon 5 days, VaR_Gauss model in the in-sample
period is correctly specified, with 5% violations while LQR_RS model signif-
icantly underestimated the risk. Based on the tick loss function, VaR_Gauss
and LQR_RV models has better accuracy in comparison to model with semi-
variance. On horizon 10, our models has same accuracy in the out-of-sample
period, while in the in-sample period, LQR_RV and VaR_Gauss are more
accurate in comparison to LQR_RS.

VaR_Gauss model, as we already saw on PX and BUX indices, overestimates
the risk on the 10% quantile. On horizon forecasts is this finding consistent,
when in the in-sample period VaR_Gauss model estimated only 1% and 1.3%
violations on horizon 5 and 10 days respectively. On the other hand, LQR_RS
underestimated the risk with 23.5% and 32.2% violations in the out-of-sample
period. LQR_RS is the least accurate model in both – in-sample and out-of-
sample period, based on DM test and tick loss function.

The last index we performed horizon forecast is FTSE. On 1% quantile in
the in-sample period is LQR_RV model correctly specified across all horizons,
while for VaR_Gauss we reject null hypothesis of correct specification across
all samples. Following tick loss function and DM test, on horizon 5 days has
LQR_RV better accuracy than LQR_RS in both in-sample and out-of-sample
period, while VaR_Gauss is the least accurate model. On horizon 10, LQR_RS
and VaR_Gauss has same accuracy, while LQR_RV has the best one.

Continuing on 5% quantile, VaR_Gauss model is correctly specified in the in-
sample period on 5 day and 10 day horizon, while LQR_RV model only on
horizon 5. LQR_RS model forecasted over 24% violation in the out-of-sample
period on horizon 10, therefore we reject correct specification. Following results
of tick loss function and Diebold-Mariano relative performance, VaR_Gauss
and LQR_RV are more accurate than LQR_RS on both horizons – 5 and 10.

Consistently with one-step-ahead forecasts, VaR_Gauss model overestimated
risk on 10% quantile, while LQR_RS and LQR_RV underestimated risk in
the out-of-sample period. On both horizons 5 and 10 days, we cannot reject
null hypothesis of same accuracy for LQR_RV and LQR_RS model, while
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VaR_Gauss model is more accurate in comparison to linear regression model
with semivariance. While on horizon 5, LQR_RS model forecasted 23.5% vio-
lations in the out-of-sample period, on horizon 10 it forecasted 32.2% violations.

Forecast summary

For the one-step-ahead forecast, VaR_Gauss was the least accurate model
across all indices, showing overestimation of risk on 10 % quantile, while under-
estimating it at lower quantiles. Linear quantile regression models performed
well, when model with semivariance was the most accurate and model with
realized variance had usually same accuracy proved by relative performance
evaluation techniques. During 5 and 10 day horizon forecasts, the performance
of LQR_RS model decreased, while the LQR_RV model performed best. The
low accuracy of LQR_RS model could be caused by period with significant
semivariance, which we included in the forecast. VaR_Gauss showed better
accuracy as LQR_RS model, which could be caused by the assumption of the
normal distribution, while LQR_RS model is based on more precise past stock
performance.

4.2.2. Second sample forecast

After we evaluated performance of our models with in-sample period size of
1,200 observations, we decrease its size on 800 observations. Due to that we
can observe the out-of-sample performance on more volatile returns.

One-step forecast

We start by evaluation forecasts, forecasted for Prague Stock Exchange index.
The results are in the Table 4.5.

On 1% quantile, linear quantile models are specified well, when we failed to re-
ject null hypothesis about correct model specification. On the other hand, with
VaR_Gauss model we rejected the hypothesis about correct specification, when
VaR_Gauss model forecasted in the in-sample period 16.5% of violations. This
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Table 4.5.: Absolute and relative performance of PX index on one-step-ahead
forecast with in-sample period of 800 observations

VaR in-sample out-of-sample
1% LQR_RV LQR_RS VaR_Gauss LQR_RV LQR_RS VaR_Gauss
UC 0.0138 0.0125 0.1652 0.0079 0.0079 0.1480

L ind 2.2131 2.5652 0.3516 n/a n/a 2.8789
L cc 3.2381 3.0382 513.2945 n/a n/a 482.4927
Tick 0.0484 0.0459 0.1549 0.0302 0.0302 0.0830
DM -0.6586 16.2895 -0.1365 20.8914
5%
UC 0.0501 0.0488 0.1214 0.0407 0.0407 0.0983

L ind 3.6454 1.9893 1.1544 1.3695 1.3695 1.5478
L cc 3.6455 2.0133 63.5478 3.0940 3.0940 35.8926
Tick 0.1554 0.1555 0.1713 0.0959 0.0968 0.1008
DM 5.2074 11.5101 2.3527 11.9470
10%
UC 0.0964 0.0989 0.0638 0.0723 0.0746 0.0542

L ind 1.0890 0.7706 2.1730 0.0330 0.0012 0.7284
L cc 1.2072 0.7819 15.3263 8.2917 6.9090 25.0207
Tick 0.2347 0.2344 0.2458 0.1482 0.1485 0.1680
DM -5.8114 -11.5681 1.8051 -16.0251

Absolute performance is evaluated by unconditional coverage (UC), likelihood of independence

test (L ind) and likelihood of conditional coverage (L cc). Relative performance is evaluated by

tick loss function (Tick) and Diebold-Mariano test of accuracy (DM).

Source: Author’s computations
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high number of violations can be explained by wider in-sample period, exclud-
ing second period of higher volatility. Moreover, in the out-of-sample period,
VaR_Gauss model forecasted 14.8% of violations, which supports the incor-
rect specification in the in-sample period. Linear quantile regression models
has same accuracy performance, with DM test value -0.65 and -0.13.

5% quantile follows the results of 1% quantile. LQR_RV and LQR_RS are
correctly specified models in in-sample and also out-of-sample period, while
we rejected null hypothesis for VaR_Gauss model, because instead of ex-
pected 5% violations, VaR_Gauss model estimated 12.1% and 9.8% violations
in in-sample and out-of-sample period respectively. All our forecasted viola-
tions are independent in the time, therefore by conditional coverage we reject
VaR_Gauss model. Moreover by relative performance we conclude that our
models do not have same accuracy, when in in-sample and out-of-sample period
LQR_RS model has the best accuracy from given models.

Forecasted Value at Risk values at 10% quantile are correctly specified for the
linear quantile regression models in the in-sample period, while VaR_Gauss
model underestimated the risk, when forecasted only 6.4% of violations. In
the out-of-sample period, all our models underestimated given risk, however
the underestimation was smaller in case of LQR models. Based on tick loss
function we can conclude that VaR_Gauss model is least accurate and Diebold-
Mariano test confirmed that LQR_RV model has better performance in both
– in-sample and out-of-sample period.

Based on results from the PX index we can conclude linear quantile regression
models has better forecasting potential than classical VaR model with normal
distribution. We can make also graphical comparison from Figure 4.2. So we
can conclude that VaR_Gauss model underestimates the risk in in-sample and
also out-of-sample period.

We continue the forecast by analyzing BUX data on 1% quantile, which are
summarized in Appendix in the Table B.7. VaR_Gauss model underestimated
the potential risk, when forecasted 13.1% of violation in the in-sample period
and 11.4% in the out-of-sample period, though LQR_RV and LQR_RS es-
timated approximately expected number of violations for this quantile. The
VaR_Gauss estimated violations are independent to previous ones, while inde-
pendence test for LQR models are not available due to low number of violations.
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Figure 4.2.: One-step-ahead PX forecast with in-sample size of 800 observations

Source: Author’s computations
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By comparing DM test values we have to reject null hypothesis of same accu-
racy, VaR_Gauss model has the smallest accuracy and LQR_RS has greater
accuracy as LQR_RV model.

While on 1% quantile, VaR_Gauss model underestimated risk in the in-sample
and out-of-sample period, on 5% quantile it is correctly specified for out-of-
sample period. The estimated number of violations are independent in time
for all models, therefore based on conditional coverage test we reject only
VaR_Gauss model in the in-sample period. Following the results for relative
performance metrics, we conclude that out models do not have same accuracy.
LQR_RV model has better accuracy in in-sample period, while LQR_RS has
better accuracy in the out-of-sample period.

LQR_RV and LQR_RS have been correctly specified on the in-sample period,
however in the out-of-sample period they overestimated the risk with 7.7%
violations for both models. This violations are independent in time, there-
fore we reject conditional coverage hypothesis due to unconditional coverage
likelihood part. VaR_Gauss model is overestimating the results as instead of
expected 10% violation it forecasted 3.5% and 2.9% violation in the in-sample
and out-of-sample period. Diebold-Mariano test confirms correct specification
for the out-of-sample forecast between linear quantile regression models. In the
in-sample period, the LQR_RV is more accurate.

The third analyzed index with in-sample size of 800 observations is DAX, which
results are summarized in the Appendix in the Table B.8. Based on absolute
performance metrics, 99% Value at Risk estimates on 1% quantile is correctly
specified for the linear quantile regression models in both in-sample and out-of-
sample period. On the other hand, VaR_Gauss model underestimated risk with
more than 11% violations instead of 1%. Therefore for this model we reject null
hypothesis of correct model specification supported by also conditional coverage
metric. Following results of the tick loss value and DM test we can conclude
that VaR_Gauss model has lowest accuracy, while LQR_RV and LQR_RS
has same accuracy.

For 5% quantile we can observe similar results as for 1% quantile. While LQR
models perform well, forecasting approximately required number of violations,
model with normal distribution underestimated the risk with 8.8% and 7.2%
in the in-sample and out-of-sample period respectively. Taking likelihood ratio
of independence test, all violations for our models are independent to previous
violations, therefore we cannot reject conditional coverage hypothesis for LQR
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models, while we reject it for VaR_Gauss model. In the in-sample period,
LQR_RV and LQR_RS has same accuracy, while in the out-of-sample period,
model with use of semivariance has better accuracy.

While for PX and BUX data linear quantile regression models overestimated
risk on 10% quantile for out-of-sample period, in DAX case these model es-
timated correct probability of violations. However VaR_Gauss model still
overestimated risk in both in-sample and out-of-sample period. Estimated vi-
olations are independent in time, therefore we reject conditional coverage null
hypothesis only for VaR_Gauss model. Based on the Diebold-Mariano test,
LQR_RV and LQR_RS has same accuracy in out-of-sample period, while in
in-sample period LQR_RV is more accurate. VaR_Gauss has worst accuracy
from the given models with DM test value of -11.8 and -14.8 in the in-sample
and out-of-sample respectively.

The last index to analyze is FTSE index, which has similar results to DAX.
On 1% quantile, VaR_Gauss underestimates the risk with 11.0% and 10.6%
violations in the in-sample and out-of-sample respectively. On the other hand,
linear quantile regression models are correctly specified in both samples. As
we do not reject independence hypothesis, we reject conditional coverage hy-
pothesis for VaR_Gauss model. Following the DM test value, in the in-sample
period LQR_RV and LQR_RS models have same accuracy, while in the out-
of-sample, the accuracy differs.

Linear quantile regression models on 5% quantile have been usually correctly
specified, however LQR_RS overestimated the risk in the out-of-sample period.
In the in-sample period, VaR_Gauss model underestimated risk with 6.6%
of violations. Based on relative performance, we say that VaR_Gauss and
LQR_RS models have same accuracy in the in-sample period. In the out-of-
sample period, VaR_Gauss has lower accuracy as LQR_RS and so LQR_RV.

On 10% quantile, VaR is overestimated with VaR_Gauss model, while LQR
models estimated correct number of violations. Exceptionally, we reject null hy-
pothesis of independent violations for VaR_Gauss model in the out-of-sample
period, with likelihood ratio of 2.81. Other models has independent violations
in time. Based on tick loss value we say that VaR_Gauss model underperforms
in comparison to LQR models, which has same accuracy based on Diebold-
Mariano test.



Empirical analysis 45

Multi-step forecast

We continue with the horizon forecasts of PX index, which are summarized in
the Table 4.6. On 1% quantile, we see consistent results for LQR_RV model,
which is correctly specified across all quantiles in the in-sample period. For
other models, only LQR_RS in the in-sample period on horizon 10 is correctly
specified based on unconditional coverage. Following the Diebold-Mariano test,
LQR_RV is more accurate than LQR_RS, while LQR_RS is more accurate
than VaR_Gauss model. Therefore we can conclude that LQR_RV is the most
accurate model on 1% quantile.

Moving to 5% quantile, for LQR_RV model we cannot reject null hypothesis of
correct specification on horizon 5, while on horizon 10 we reject this hypothesis
for out-of-sample period. LQR_RS is incorrectly specified on both horizons,
when in the out-of-sample period it forecasted 15% and 20% violations on
horizon 5 and 10 respectively. Based on the DM test, VaR_Gauss model has
same accuracy as LQR_RS, while LQR_RV is more accurate in the in-sample
period.

Similarly to 5% quantile, also on 10% quantile is the LQR_RV model correctly
specified except for the out-of-sample period on horizon 10. LQR_RS model
underestimated risk, when it allowed 26% violation on horizon 10 in the out-
of-sample period and 20% in the in-sample period. On contrary, model with
Gaussian distribution overestimated risk, allowing less than 6% of violations
on both horizons. Based on tick loss function and alternative hypothesis of
DM test we can say that LQR_RV and VaR_Gauss are more accurate in
comparison to linear quantile regression model with semivariance.

We continue by analyzing BUX index, whose results are in the Table B.10 in Ap-
pendix. On 1% quantile, only LQR_RV is correctly specified in the in-sample
period across all horizons. On horizon 5, LQR_RS and VaR_Gauss models
underestimated risk with 7.6% and 11.5% violations in the out-of-sample pe-
riod respectively, while on horizon 10 both underestimated risk with over 13%
violations. Following the results of the DM test, LQR_RV is more accurate
model than LQR_RS on horizon forecasts, while VaR_Gauss model is less
accurate, except of the in-sample period on 5-step-ahead forecast.

On 5% quantile, VaR_Gauss model has correct specification in both in-sample
and out-of-sample period during 5-step-ahead forecast, while LQR_RV only
in the in-sample period and LQR_RS is not correctly specified. This is also
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confirmed by alternative hypothesis of DM test, showing that LQR_RV and
VaR_Gauss are both more accurate than LQR_RS. On horizon 10, all models
are correctly specified in the in-sample period, while in out-of-sample period
model underestimated risk. Similarly to horizon 5, VaR_Gauss and LQR_RV
models are more accurate.

VaR_Gauss model overestimated risk on 10% quantile on horizon one and this
trend is consistent also over higher horizons. On the other hand, LQR_RV
is correctly specified in the in-sample period with 10.5% and 11.2% violation
on horizon 5 and 10 respectively. Both VaR_Gauss and LQR_RV models are
more accurate as the LQR_RS, which estimated in the out-of-sample period
20.9% violations on horizon 5 days and 25.8% on 10-step-ahead forecast, which
is similar with PX index.

Following the results of DAX in the Table B.11 in Appendix, we can see consis-
tent results with one-step-ahead forecast. On 1% quantile, VaR_Gauss model
underestimated risk with more than 10% violation across horizons in both
in-sample and out-of-sample period. LQR_RV is correctly specified in the in-
sample period, while in the out-of-sample period it underestimated risk. Based
on tick loss function, for LQR_RS and VaR_Gauss we cannot reject null hy-
pothesis of the same accuracy, while LQR_RV model is the most accurate on
both horizons.

On 5% quantile of horizon 5, only VaR_Gauss model in the in-sample period
is correctly specified with 4.7% violations. For LQR models we reject hypoth-
esis of correct specification on both horizons, when in the out-of-sample pe-
riod of horizon 10, models underestimated risk with 11.8% and 24% violations
by LQR_RV and LQR_RS respectively. DM test shows that LQR_RV and
VaR_Gauss models are more accurate as model LQR model with semivariance.

10% quantile copy the results of the BUX and PX indices, when VaR_Gauss
overestimated risk across sample for both horizons. For LQR_RV we fail to
reject null hypothesis of unconditional coverage, therefore we say LQR_RV is
correctly specified in the in-sample period. DM test with alternative hypothesis
of better accuracy shows that both LQR_RV and VaR_Gauss models are more
accurate than LQR_RS for 5 and 10-step-ahead forecasts.

The last index we analyze is FTSE, whose results are summarized in the Table
B.12 in Appendix. On horizon 5 on 1% quantile, VaR_Gauss underestimated
risk in both in-sample and out-of-sample periods, while LQR models were cor-
rectly specified in the in-sample period. LQR_RV is however more accurate
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as model with semivariance, while VaR_Gauss is less accurate model in com-
parison to LQR_RS. LQR_RS is incorrectly specified on horizon 10, which
resulted into same accuracy with VaR_Gauss model.

As we move to higher quantiles, LQR_RS is decreasing accuracy in higher
horizons. On 5% quantile, LQR_RS estimated 14.4% and 20.7% violation
on horizon 5 and 10 respectively in the out-of-sample period. LQR_RV and
VaR_Gauss are correctly specified in the in-sample periods. DM test value
on 5-step-ahead forecast tells us that both LQR_RV and VaR_Gauss models
are more accurate than LQR_RS and this is consistent also for the horizon 10
days, supported by high tick loss function values of LQR_RS.

10% quantile was characterized by overestimation of risk with VaR_Gauss
model across indices. This is the same for the horizon forecasts in both in-
sample and out-of-sample periods. LQR_RV is correctly specified in the in-
sample period of 5 and 10-step-ahead forecasts, while LQR_RS model under-
estimated risk. On horizon 5, LQR_RV and VaR_Gauss models are more
accurate than LQR_RS, while on the horizon 10 we cannot reject hypothesis
of same accuracy for LQR models.

Forecast summary

The models performed similarly as on the dataset with larger in-sample period.
On horizon one, VaR_Gauss was the least accurate model across all indices
while on higher horizons it became more accurate. It was caused mainly by the
usage of the cumulative returns. Linear quantile regression model with realized
volatility performed well across all horizons, while model with semivariance was
the most accurate on one-step-ahead forecast while underperformed on horizon
5 and 10.

4.3. Diversification

After we performed forecasts, we will focus on the diversification of the indices.
As our indices are trading in different days, we need to filter data to be able to
create the correlations. We choose only daily returns and realized variance for
the days, when all of the indices were traded.
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The plot of dynamic conditional correlation is in the Figure 4.3 (blue line). We
can see that for the PX-DAX correlation is with mean 0.50 (+-0.2) and 0.44
(+-0.2) for the PX-FTSE.

For the quantile correlation, we modify Campbell et al. (2000) formula 2.33.

We use high-frequency data to define the realized variance. However from these
data we cannot define the covariance of our portfolio, as the length of trading
days differ and also countries of origin are in different time zones. Due to
that we are going to use the covariance of the portfolio from the DCC model to
define common quantile of the portfolio. However as we cannot mix the realized
variance with covariance from the DCC model, we need to use also GARCH
variance from dynamic conditional correlation model. The edited formula for
quantile correlation is as follows

𝜌𝑄 =
𝑟2

𝑄 −𝑤2
𝑥𝑞𝑟2

𝑥,𝑄 −𝑤2
𝑦,𝑄𝑞𝑟2

𝑦,𝑄

2𝑤𝑥𝑤𝑦𝑞𝑟𝑥,𝑄𝑞𝑟𝑦,𝑄
(4.8)

where 𝑞𝑟2
𝑄 are fitted values of quantile regression.

The results of quantile correlation is the green line in the Figure 4.3. We can
see that in comparison to DCC model, quantile correlation shows smaller cor-
relation between PX and Western European indices. Moreover, the correlation
is decreasing over time.

Correlations charts for BUX index are in Appendix in the Figure A.6 The
results are less volatile in comparison to PX correlations. DCC average corre-
lation is 0.51 (+-0.12) with DAX index and 0.46 (+- 0.18) for FTSE index.

We found that realized measures improved correlation estimates, as in com-
parison to dynamic conditional correlation model does not assume normally
distributed returns. Following the results of the quantile correlation, the diver-
sification benefits are decreasing within European countries. Therefore we can
confirm our hypothesis of globalization.
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Figure 4.3.: Correlation of the PX with Western European indices

Source: Author’s computations



Chapter 5
Conclusion

In this thesis we examined conditional Value at Risk modeling by employing
flexible quantile regression framework on European indices during the period
from January 2008 till October 2014. Our main contribution comes from Cen-
tral and Eastern European indices, represented by PX and BUX index, together
with Western European DAX and FTSE 100 with use of the high-frequency
data. We follow Zikes and Barunik (2014) in application of linear quantile
regression models for forecasting the Value at Risk and then we compare the
quantile correlation between indices.

In the first part of the thesis, we present the theoretical background for realized
measures and their obtaining from the high-frequency data. Further, we focus
on Value at Risk concept, where we describe the approaches for its calculation
and pros and cons of each methods. Followed by definition of linear quantile
regression model with use of realized measures of realized variance and positive
and negative semivariance, we introduce forecast evaluation methods of the
absolute and relative performance. We conclude the theoretical part by defining
quantile diversification framework.

The next part of the thesis starts with description of the data. Firstly, high-
frequency data of studied indices is described in detail. Secondly, the realized
variance and volatility of our dataset is presented.

After we explained theory and data, we continue with empirical application,
where we analyzed the modelling performance of considered VaR models –
linear quantile regression model with realized variance, semivariances and VaR
model with assumption of normally distributed returns. We evaluated their
performance in two subsamples, with difference in the size of in-sample period
and described the results for all the indices for several horizons. The results of
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modelling are described in the detail for each of the sample with short summary
at the end. Last part of the chapter focuses on diversification of indices over
time.

The results of the modelling indicate that linear quantile regression models
performed significantly better in both in-sample and out-of sample period com-
pared to VaR model with normal distribution. The results are consistent across
all indices, quantiles and subsamples during the one-day-ahead forecasts. How-
ever in the higher horizons, model with realized semivariances became less accu-
rate, which can be caused by the large in-sample period, which includes periods
with significant variance. The correlation findings from QC model show that
diversification benefits are decreasing over time between European indices as
we assumed in the beginning of the work.

In conclusion, we showed that modelling of conditional quantiles by quantile
regression is reasonable VaR estimation, providing better results as different
models. Therefore models with realized measures can be used as a more ac-
curate tool for investors. The quantile correlation provided sufficient results,
however as we used the variance and covariance from the dynamic conditional
correlation model, it might be sensible to evaluate the diversification based on
high-frequency data. We leave this improvement for future work.



Bibliography

Andersen, T. G. & T. Bollerslev (1998): “Answering the skeptics: Yes,
standard volatility models do provide accurate forecasts.” International Eco-
nomic Review vol. 39: pp. 701 – 720.

Andersen, T. G., T. Bollerslev, F. X. Diebold, & P. Labys (2003):
“Modeling and forecasting realized volatility.” Econometrica vol. 71(issue
2): pp. 579 – 625.

Aït-Sahalia, Y. & J. Yu (2009): “High frequency market microstructure
noise estimates and liquidity measures.” The Annals of Applied Statistics
vol. 3(no. 1): pp. 422 – 457.

Bandi, F. M. & J. R. Russell (2008): “Microstructure noise, realized volatil-
ity, and optimal sampling.” Review of Economic Studies vol. 75(issue 2):
pp. 339 – 369.

Barndorff-Nielsen, O. E., S. Kinnebrock, & N. Shephard (2010):
“Measuring downside risk - realised semivariance.” Volatility and Time Series
Econometrics: Essays in Honor of Robert F. Engle pp. 117 – 136.

Bekaert, G., R. J. Hodrick, & X. Zhang (2009): “International stock
return comovements.” The Journal of Finance vol. 64(issue 6): pp. 2591 –
2626.

Berkowitz, J., P. Christoffersen, & D. Pelletier (2009): “Evaluating
value-at-risk models with desk-level data.” Management Science vol. 57(is-
sue 12): pp. 2213 – 2227.

Bollerslev, T. (1986): “Generalized autoregressive conditional heteroskedas-
ticity.” Journal of Econometrics vol. 31: pp. 307 – 327.



Bibliography 54

Boudoukh, J., M. Richardson, & R. F. Whitelaw (1998): “The best
of both worlds: A hybrid approach to calculating value at risk.” Risk vol.
11(no. 5): pp. 64–67.

Buckley, I., D. Saunders, & L. Seco (2008): “Portfolio optimization when
asset returns have the gaussian mixture distribution.” European Journal of
Operational Research vol. 185(no. 3): pp. 1434 – 1461.

Budapest Stock Exchange (2014a): “BUX index.” [online: 12/22/2014].
Retrieved from: http://bse.hu/topmenu/marketsandproducts/indices/bux.

Budapest Stock Exchange (2014b): “Why BUX index?” [online:
12/22/2014]. Retrieved from: http://goo.gl/u1LKIl.

Campbell, R., K. Koedijk, & P. Kofman (2000): “Covariance and corre-
lation in international equity returns: A value-at-risk approach.” Erasmus
University Rotterdam .

Cenesizoglu, T. & A. G. Timmermann (2008): “Is the distribution of stock
returns predictable?” SSRN Electronic Journal .

Chernozhukov, V. & L. Umantsev (2001): “Conditional value-at-risk: As-
pects of modeling and estimation.” Empirical Economics vol. 26(issue 1):
pp. 271 – 292.

Christoffersen, P. (1998): “Evaluating interval forecasts.” International
Economic Review vol. 39: pp. 841 – 862.

Christoffersen, P., V. R. Errunza, K. Jacobs, & L. Hugues (2012): “Is
the potential for international diversification disappearing?” The Review of
Financial Studies vol. 25(no. 12): pp. 3711 – 3751.

Deutsche Börse (2014): “DAX index.” [on-
line: 12/22/2014]. Retrieved from: http://www.dax-
indices.com/EN/index.aspx?pageID=25&ISIN=DE0008469008.

Diebold, F. X. & R. S. Mariano (1995): “Comparing predictive accuracy.”
Journal of Business and Economic Statistics vol. 13: pp. 253 – 265.

Engle, R. F., S. Manganelli, R. Engle, & S. Manganelli (2004):
“Caviar: Conditional value at risk by quantile regression.” Journal of Busi-
ness vol. 22(issue 4): pp. 367 – 381.



Bibliography 55

Engle, R. F. & K. Sheppard (2001): “Theoretical and empirical properties of
dynamic conditional correlation multivariate garch.” NBER Working Paper
(no. 8554).

Evans, T. & D. G. McMillan (2009): “Financial co-movement and cor-
relation.” International Journal of Banking, Accounting and Finance vol.
1(issue 3): pp. 215 – 241.

Financial Times Stock Exchange (2014): “FTSE
100 index.” [online: 12/22/2014]. Retrieved from:
http://www.ftse.com/Analytics/FactSheets/temp/19f69c7b-ba6c-4217-
ab86-d407e8b144c5.pdf.

Giacomini, R. & I. Komunjer (2005): “Evaluation and combination of con-
ditional quantile forecasts.” Journal of Business & Economic Statistics vol.
23(no. 4): pp. 416–431.

Goetzmann, W. N., L. Li, & K. G. Rouwenhorst (2005): “Long?term
global market correlations.” The Journal of Business vol. 78(no. 1): pp. 1
– 38.

Hua, J. & S. Manzan (2013): “Forecasting the return distribution using high-
frequency volatility measures.” Journal of Banking & Finance vol. 37(no.
11): pp. 4381 – 4403.

J.P. Morgan and Reuters (1996): “Riskmetrics - technical document.”
Retrieved from: http://yats.free.fr/papers/td4e.pdf.

Kahneman, D. & A. Tversky (1982): “The psychology of preferences.” Sci-
entific American vol. 246(issue 1): pp. 160 –173.

Kahneman, D. & A. Tversky (1984): “Choices, values, and frames.” Amer-
ican Psychologist vol. 39(issue 4): pp. 341 – 350.

Koenker, R. & J. Gilbert Bassett (1978): “Regression quantiles.” Econo-
metrica vol. 46(no. 1): pp. 33–50.

Kupiec, P. H. (1995): “Techniques for verifying the accuracy of risk measure-
ment models.” Journal of Derivatives vol. 3(no. 2): pp. 73–84.

Manganelli, S. & R. F. Engle (2001): “Value at risk models in finance.”
European Central Bank Working Paper Series (no. 75).



Bibliography 56

Newey, W. K. & K. D. West (1987): “A simple, positive semi-definite, het-
eroskedasticity and autocorrelation consistent covariance matrix.” Economet-
rica vol. 55(no. 3): pp. 703 – 708.

Patton, A. J. & K. Sheppard (2013): “Good volatility, bad volatility: Signed
jumps and the persistence of volatility.” Economic Research Initiatives at
Duke (ERID) Working Paper (no. 168).

Prague Stock Exchange (2014): “PX index.” [online: 12/22/2014]. Re-
trieved from: http://www.pse.cz/dokument.aspx?k=Burzovni-Indexy.

Taylor, J. W. (2000): “A quantile regression neural network approach to esti-
mating the conditional density of multiperiod returns.” Journal of Forecasting
vol. 19: pp. 299 – 311.

The Guardian (2014): “London stock exchange halted by
computer problem.” [online: 12/22/2014]. Retrieved from:
http://www.theguardian.com/business/2011/feb/25/london-stock-
exchange-halted.

Wells, J. D., S. E. Hobfoll, & J. Lavin (1999): “When it rains, it pours:
The greater impact of resource loss compared to gain on psychological dis-
tress.” Personality and Social Psychology Bulletin vol. 25(issue 9): pp.
1172 – 1182.

Zikes, F. & J. Barunik (2014): “Semiparametric conditional quantile models
for financial returns and realized volatility.” Journal of Financial Economet-
rics .



Appendix A
Figures



Figures 58

Figure A.1.: Comparison of daily returns with realized volatility (BUX, DAX
amd FTSE indices)

Source: Author’s computations
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Figure A.2.: White noise assumption for BUX, DAX and FTSE indices

Source: Author’s computations
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Figure A.3.: Results of conditional linear quantile regression with realized
volatility

Note: PX_rtsqRV is realized volatility of PX index, DAX_rtsqRV is realized volatility of DAX index,
BUX_rtsqRV is realized volatility of BUX index and FTSE_rtsqRV is realized volatility of FTSE index.

Source: Author’s computations
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Figure A.4.: Results of linear quantile regression with squared root of realized
semivariance

Note: PX_rtsqRSpos is realized positive semivolatility and PX_rtsqRSneg is realized negative semivolatility
of PX index, BUX_rtsqRSpos is realized positive semivolatility and BUX_rtsqRSneg is realized negative
semivolatility of BUX index.

Source: Author’s computations
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Figure A.5.: Results of linear quantile regression with squared root of realized
semivariance

Note: DAX_rtsqRSpos is realized positive semivolatility and DAX_rtsqRSneg is realized negative
semivolatility of DAX index, FTSE_rtsqRSpos is realized positive semivolatility and FTSE_rtsqRSneg is
realized negative semivolatility of FTSE index.

Source: Author’s computations



Figures 63

Figure A.6.: Correlation of the BUX with Western European indices

Source: Author’s computations
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Tables 65

Table B.1.: Absolute and relative performance of BUX index on one step ahead
forecast with in-sample period of 1,200 observations

VaR in-sample out-of-sample
1% LQR_RV LQR_RS VaR_Gauss LQR_RV LQR_RS VaR_Gauss
UC 0.0167 0.0150 0.1293 0.0000 0.0000 0.1045

L ind n/a n/a 0.2780 n/a n/a 0.3308
L cc n/a n/a 525.6238 n/a n/a 146.0267
Tick 0.0525 0.0525 0.1342 0.0269 0.0270 0.0591
DM 6.4592 30.6375 1.9002 40.4325
5%
UC 0.0500 0.0500 0.0784 0.0320 0.0320 0.0661

L ind 0.0000 0.0000 1.0067 0.4645 0.4645 0.4463
L cc 0.0001 0.0001 18.4943 4.1191 4.1191 2.7802
Tick 0.1776 0.1777 0.1805 0.0923 0.0922 0.0909
DM -8.3852 28.2892 1.6246 29.5984
10%
UC 0.0909 0.0909 0.0350 0.0704 0.0597 0.0235

L ind 0.0008 0.0008 0.1822 0.0555 0.3540 1.3285
L cc 1.1329 1.1329 73.3601 5.1086 10.1024 44.1961
Tick 0.2775 0.2778 0.3327 0.1558 0.1557 0.1953
DM 7.2559 -15.2318 1.0296 -23.5619

Absolute performance is evaluated by unconditional coverage (UC), likelihood of independence

test (L ind) and likelihood of conditional coverage (L cc). Relative performance is evaluated by

tick loss function (Tick) and Diebold-Mariano test of accuracy (DM).

Source: Author’s computations
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Table B.2.: Absolute and relative performance of DAX index on one step ahead
forecast with in-sample period of 1,200 observations

VaR in-sample out-of-sample
1% LQR_RV LQR_RS VaR_Gauss LQR_RV LQR_RS VaR_Gauss
UC 0.0075 0.0083 0.1218 0.0099 0.0099 0.1065

L ind n/a n/a 0.0031 n/a n/a 0.3162
L cc n/a n/a 477.5801 n/a n/a 162.8786
Tick 0.0406 0.0401 0.1129 0.0276 0.0276 0.0735
DM 4.0591 39.7125 -8.4011 43.2381
5%
UC 0.0550 0.0592 0.0851 0.0375 0.0394 0.0710

L ind 2.9166 1.5895 1.0918 1.7391 1.4526 0.8192
L cc 3.5398 3.6190 26.9819 3.5655 2.7300 5.0098
Tick 0.1528 0.1559 0.1606 0.1004 0.1001 0.1019
DM -7.5125 4.4490 2.8415 30.3406
10%
UC 0.1034 0.1059 0.0325 0.0809 0.0848 0.0355

L ind 0.3395 0.2049 0.0657 0.1554 0.0381 0.1875
L cc 0.4937 0.6641 80.1831 2.3471 1.4009 30.5969
Tick 0.2540 0.2546 0.3082 0.1574 0.1580 0.1890
DM 9.4499 -15.7617 -0.4087 -21.9370

Absolute performance is evaluated by unconditional coverage (UC), likelihood of independence

test (L ind) and likelihood of conditional coverage (L cc). Relative performance is evaluated by

tick loss function (Tick) and Diebold-Mariano test of accuracy (DM).

Source: Author’s computations
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Table B.3.: Absolute and relative performance of FTSE index on one step ahead
forecast with in-sample period of 1,200 observations

VaR in-sample out-of-sample
1% LQR_RV LQR_RS VaR_Gauss LQR_RV LQR_RS VaR_Gauss
UC 0.0133 0.0150 0.1109 0.0121 0.0101 0.1073

L ind 1.5940 1.2176 1.4385 3.6882 n/a 1.0667
L cc 2.8201 3.8548 412.2663 3.9032 n/a 161.3626
Tick 0.0359 0.0359 0.0829 0.0193 0.0188 0.0435
DM -1.6721 13.9054 5.1446 27.3715
5%
UC 0.0484 0.0492 0.0676 0.0344 0.0344 0.0648

L ind 3.1133 2.8691 1.1931 0.2620 0.2620 1.6580
L cc 3.1808 2.8851 8.2366 3.0856 3.0856 3.7438
Tick 0.1242 0.1244 0.1265 0.0644 0.0642 0.0649
DM -1.3387 2.9750 5.2698 34.9060
10%
UC 0.1059 0.1068 0.0317 0.0749 0.0729 0.0243

L ind 1.7701 0.9561 0.4714 1.7419 2.0452 1.1340
L cc 2.2293 1.5523 83.0063 5.4961 6.4620 45.0344
Tick 0.2026 0.2050 0.2584 0.1032 0.1031 0.1278
DM -1.0584 -12.4484 0.0055 -21.4441

Absolute performance is evaluated by unconditional coverage (UC), likelihood of independence

test (L ind) and likelihood of conditional coverage (L cc). Relative performance is evaluated by

tick loss function (Tick) and Diebold-Mariano test of accuracy (DM).

Source: Author’s computations
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Tables 71

Table B.7.: Absolute and relative performance of BUX index on one step ahead
forecast with in-sample period of 800 observations

VaR in-sample out-of-sample
1% LQR_RV LQR_RS VaR_Gauss LQR_RV LQR_RS VaR_Gauss
UC 0.0175 0.0150 0.1314 0.0035 0.0046 0.1139

L ind n/a n/a 0.5605 n/a n/a 0.0558
L cc n/a n/a 359.8681 n/a n/a 310.9898
Tick 0.0541 0.0546 0.1453 0.0370 0.0372 0.0835
DM 3.9290 26.4520 4.4226 28.6013
5%
UC 0.0501 0.0526 0.0864 0.0380 0.0391 0.0621

L ind 0.0000 0.2858 0.7646 0.0597 0.0974 0.1318
L cc 0.0001 0.3947 19.2048 2.9346 2.4281 2.6436
Tick 0.1865 0.1874 0.1912 0.1233 0.1242 0.1221
DM -7.7999 23.2581 3.9439 17.5952
10%
UC 0.0901 0.0914 0.0350 0.0771 0.0771 0.0288

L ind 0.3970 0.3017 0.0003 0.3341 0.3341 0.1035
L cc 1.2916 0.9815 48.7392 5.7874 5.7874 66.3842
Tick 0.2958 0.2956 0.3491 0.1956 0.1957 0.2434
DM 5.1109 -12.0193 0.0136 -15.5623

Absolute performance is evaluated by unconditional coverage (UC), likelihood of independence

test (L ind) and likelihood of conditional coverage (L cc). Relative performance is evaluated by

tick loss function (Tick) and Diebold-Mariano test of accuracy (DM).

Source: Author’s computations
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Table B.8.: Absolute and relative performance of DAX index on one step ahead
forecast with in-sample period of 800 observations

VaR in-sample out-of-sample
1% LQR_RV LQR_RS VaR_Gauss LQR_RV LQR_RS VaR_Gauss
UC 0.0050 0.0050 0.1189 0.0132 0.0132 0.1147

L ind n/a n/a 0.2014 n/a n/a 0.1179
L cc n/a n/a 306.5043 n/a n/a 328.0667
Tick 0.0382 0.0386 0.1139 0.0353 0.0351 0.0894
DM -1.6217 37.0059 2.2411 31.8132
5%
UC 0.0513 0.0526 0.0889 0.0474 0.0485 0.0728

L ind 0.7870 0.9096 2.5174 0.4396 0.3461 0.3223
L cc 0.8159 1.0185 23.3625 0.5699 0.3888 9.0535
Tick 0.1531 0.1532 0.1623 0.1220 0.1228 0.1259
DM -0.8847 12.1723 3.8404 27.3254
10%
UC 0.0989 0.1014 0.0350 0.1014 0.0992 0.0309

L ind 0.5588 0.8052 0.0003 0.8756 1.1913 0.0213
L cc 0.5701 0.8220 48.7392 0.8962 1.1973 64.2988
Tick 0.2549 0.2551 0.3091 0.1991 0.1994 0.2412
DM -6.0521 -11.8191 -0.1439 -14.7896

Absolute performance is evaluated by unconditional coverage (UC), likelihood of independence

test (L ind) and likelihood of conditional coverage (L cc). Relative performance is evaluated by

tick loss function (Tick) and Diebold-Mariano test of accuracy (DM).

Source: Author’s computations
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Table B.9.: Absolute and relative performance of FTSE index on one step ahead
forecast with in-sample period of 800 observations

VaR in-sample out-of-sample
1% LQR_RV LQR_RS VaR_Gauss LQR_RV LQR_RS VaR_Gauss
UC 0.0163 0.0150 0.1101 0.0112 0.0089 0.1063

L ind 1.6280 1.9027 1.3091 2.7682 3.6421 2.6681
L cc 4.2955 3.6643 271.9193 2.8905 3.7456 288.2363
Tick 0.0399 0.0397 0.0907 0.0231 0.0231 0.0533
DM -1.3777 11.5095 5.5826 15.4540
5%
UC 0.0476 0.0501 0.0663 0.0369 0.0358 0.0649

L ind 2.2422 1.7540 0.6423 0.4572 0.5670 2.6154
L cc 2.3440 1.7540 4.7303 3.9889 4.7647 6.4392
Tick 0.1359 0.1360 0.1392 0.0800 0.0802 0.0809
DM -4.5908 1.4312 4.8891 34.1237
10%
UC 0.0976 0.1026 0.0338 0.0861 0.0872 0.0235

L ind 1.6597 0.3489 1.0548 1.8114 0.7793 2.8120
L cc 1.7103 0.4098 52.0675 3.8070 2.4598 84.4275
Tick 0.2212 0.2246 0.2834 0.1302 0.1315 0.1643
DM 0.3919 -10.3920 -0.5661 -13.5874

Absolute performance is evaluated by unconditional coverage (UC), likelihood of independence

test (L ind) and likelihood of conditional coverage (L cc). Relative performance is evaluated by

tick loss function (Tick) and Diebold-Mariano test of accuracy (DM).

Source: Author’s computations
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