Abstract

Title:

Effect of a bicycle's component on the energy expenditure

Objectives:

Aim of this bachelor's thesis is to determine the difference of energy expenditure in a different component mounting frame of the bicycle.

Methods:

The study involved 6 probands aged 25.5 ± 3.6 years. Energy expenditure was calculated on the basis of oxygen consumed (O₂) and carbon dioxide exhaled (VCO₂). To measure was used exhaled gas analyzer Metamax from Cortex and method spiroergometry. Probands completed two runs cadence of 95 rounds per minute on a bicycle with a different component (a shock). Completed line measured 750 meters, led to a gradient of 5 ° \pm 2 ° and lasts 3 minutes.

Results:

In our study we found that the differences in energy intensity during bicycling on a hard-tail bike compared to a full-suspension are due to the standard error of the analyzer exhaled gases Metamax® insignificant. VO_2 values during the study period did not exceed the threshold of 2 ml /kg/min for the confirmation the authenticity of our hypothesis. Cycling with two shock-absorbers at a distance of 750 m long and 3 minutes remains segment with the inclination of $5 \circ \pm 2 \circ$ cause energy expenditure in the average value of 161.23 ± 33.15 kJ versus bicycling without shock-absorber and 160.98 ± 24.10 kJ expenditure, which represents an increase of 0.15%.

Key words:

bicycle, energy expenditure, components, bike suspension