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Abstract

The efficient market hypothesis is one of the most important propositions in fi-

nance theory and has been subjected to years of rigorous empirical testing. We

examine power of a new tool for evaluating market efficiency, fractal dimension.

Characteristics and abilities of fractal dimension measure are explored through

extensive Monte Carlo simulations. We prove that it provides an accurate eval-

uation of market’s efficiency and its changes. This approach is highly innovative

and creates new possibilities for examination of markets. The uniqueness of

fractal dimension is in its ability to assign a numerical ranking to examined

series describing the level of (in)efficiency; it is accurate for small samples of

observations and quickly reflects changes in market efficiency structure.
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Abstrakt

Hypotéza efektivńıch trh̊u je jedńım z nejd̊uležitěǰśıch teźı ve finančńıch teoríıch

a byla zkoumána v mnoha empirických studíıch. V naš́ı práci se věnujeme zk-

oumáńı schopnost́ı nového nástroje pro ohodnoceńı tržńı efektivity, fraktálńı

dimenzi. Charakteristiky a schopnosti fraktálńı dimenze jsou zkoumány po-

moćı rozsáhlé Monte Carlo simulace. Simulace ukazuje, že fraktálńı dimenze

poskytuje přesné ohodnoceńı efektivity trh̊u a jej́ıch změn. Tento př́ıstup je

vysoce inovativńı a vytvář́ı nové možnosti pro zkoumáńı trh̊u. Jedinečnost

fraktálńı dimenze jako měř́ıtka tržńı efektivity spoč́ıvá v jej́ı schopnosti přǐradit

zkoumanému trhu č́ıselné ohodnoceńı vypov́ıdaj́ıćı o stupni (ne)efektivnosti,

fraktálńı dimenze má přesné výsledky i pro malé počty pozorováńı a dokáže

rychle zachytit změny ve struktuře tržńı efektivity.

JEL klasifikace G14

Kĺıčová slova Efektivńı trhy, fraktálńı dimenze, Monte Carlo

simulace
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Chapter 1

Introduction

The efficient market hypothesis is one of the most important financial theories.

Its weak form claims that all past information is reflected in the current price;

it means that investors using technical analysis cannot systematically achieve

abnormal returns in an efficient market. The market efficiency research is thus

in interest of economists, as well as investment communities concerned about

prices predictability.

The efficient market hypothesis is discussed and tested in many studies.

Most of them focus on testing whether a market is efficient or inefficient for

a selected sample period and employ various statistical tests, such as the serial

correlation test. The problem with this type of tests is inability to capture

short-term deviations from market efficiency. In our thesis, we examine power

of a new tool for evaluation of market efficiency: fractal dimension, which as

discussed below captures both global and local inefficiencies.

Fractal dimension measures roughness of time series data and takes value

on the interval [1, 2); random walk has fractal dimension equal to 1.5. Any

persistence makes time series smoother and fractal dimension is thus lower than

1.5. On the contrary, higher volatility increases fractal dimension above 1.5.

We argue that fractal dimension accurately captures all changes in efficiency

structure of examined market by taking values lower or higher than 1.5, and

the size of inefficiency is reflected in the size of deviation from 1.5.

Before using fractal dimension in practice, it is necessary to perform a com-

prehensive study of fractal dimension’s power in the context of efficient markets

using simulations; this is the first analysis of fractal dimension as a tool for

market efficiency evaluation. If the explanatory power of fractal dimension in

the context of efficient markets is proved, researches can use fractal dimension
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for a detailed analysis and comparison of individual markets, whereas investors

can utilize it in strategy planning to identify less efficient markets with possible

abnormal returns and to track changes in market efficiency.

Our analysis utilizes an extensive Monte Carlo simulation of time series

with different types of inefficiencies and estimates their fractal dimensions.

We use simulations of random walk, Brownian motion, and martingales for

the efficient part of time series and inter-space it with different settings of

ARFIMA(1, d, 1) representing the inefficient part. The madogram, Hall-Wood,

and box-count estimators are employed. Essentially, we examine how estimated

fractal dimension reacts to changes in ARFIMA coefficients and in the length

of the inefficient parts. In addition to time series analysis with one inefficient

part, we examine the impact of more inefficient parts with reverse effects and

the reaction of fractal dimension to gradual adding of observations with given

settings to the examined sample. The gradual estimation enables us to evaluate

the reaction of fractal dimension to small changes in the time series.

Except for extreme conditions, fractal dimension indeed reflects all changes

in ARFIMA setting as assumed, so we conclude that it is a powerful measure

of market efficiency enabling us to not only decide on efficiency/inefficiency of

a market, but to compare efficiency levels of individual markets as well.

The work is completed by an illustration of usage of fractal dimension in

practice; we evaluate efficiency of 28 stock indexes representing individual mar-

kets and compile their ranking of the markets based on efficiency. The eval-

uation reveals that indices such as FTSE (British), SPX (American), CAC

(French) and ESTX (European) have higher volatility than is characteristic

for efficient markets. Moreover, the least efficient markets are Chilean (IPSA)

and Malaysian (KLSE) ones, while Dutch and Canadian markets are the most

efficient ones. Lastly, we divide the indexes into four groups - high volatility

markets, inefficient markets, constantly improving markets, and markets hit by

the recent crisis.

The thesis is structured as follows: the next chapter contains an intro-

duction to the market efficiency theory and a literature overview. Chapter

3 describes the approaches to fractal dimension estimation, while Chapter 4

deals with the methodology and simulations settings. Consequently, Chapter 5

constitutes the principal part of the work and contains simulation results with

discussion; Chapter 6 then illustrates usage of the fractal dimension measure in

practise and presents efficiency ranking of the chosen markets. Finally, Chapter

7 concludes the thesis.



Chapter 2

Efficient market theory

The efficient market theory is the fundamental theory of capital markets devel-

oped by Fama (1965) and Samuelson (1965), and further expanded by Fama

(1970). The efficient market concept was widely accepted for approximately

30 years, until the behavioural economics started to become mainstream; nev-

ertheless, the efficient market theory still remains the central postulate of fi-

nancial markets. A market is called efficient if all available information is

immediately and accurately incorporated into prices, so investors cannot sys-

tematically make extensive profits.

2.1 Development of the theory

The idea of random walk model of security prices was firstly examined by

Bachelier (1900) in his Ph.D. dissertation “The Theory of Speculation”. He

argues that a speculation on security prices should be a “fair game” and ex-

pected profits of a speculator should be zero. This principle was later named

martingale. More than a half of the century later researchers started to empir-

ically examine security price formation without any given theory; the theory

was developed in 1960’s after accumulation of some empirical evidence of se-

curity prices nearly following random walk. Kendall and Hill (1953) focus in

their research on industrial share prices indices and spot prices of cotton and

wheat. They state that it seems that there is a randomly chosen number from

a symmetrical population of a fixed dispersion added to the series of prices.

This result is supported by investigations of Roberts (1959), and Granger and

Morgenstern (1963), who use spectral analysis. Fama firstly addressed the ef-

ficient market hypothesis in his Ph.D. dissertation, outlining the basic idea,
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in 1965. Samuelson (1965) and Mandelbrot (1966) extensively examine the

expected return model in efficient market theory and study the relationship

between this model and the model of random walk empirically examined in the

previous studies. Samuelson (1965) provides the first rigorous formulation of

the efficient market hypothesis using martingale principle.

Fama (1970) introduces three forms of efficient markets – strong-form ef-

ficiency, semi-strong-form efficiency, and weak-form efficiency and brings the

term “efficient market” into general use. The difference among the three forms

is in the information set which is fully reflected in security prices. The weak-

form’s information set is created by historical prices, meaning that investment

strategies based on the historical data analysis cannot produce excessive re-

turns, but one can earn excessive returns using current or private information.

The semi-strong-form’s information set consists of all publicly available infor-

mation, so an excessive return may be earned only by using private information.

Under the strong-form of efficient market hypothesis, no one can earn exces-

sive returns because all information - public and private - is fully reflected in

security prices.

The term “fully reflected” is too general and untestable, so the price for-

mation process had to be defined more exactly and Fama uses expected return

or “fair game” model for it.

The expected return model can be described by the following equation

E(pj,t+1|Φt) = [1 + E(rj,t+1|Φt)]pj,t, (2.1)

where E is expected value, pj,t, pj,t+1 are prices of security j at times t and

t+ 1, respectively, rj,t+1 is one period expected return, which can be expressed

as (pj,t+1, pj,t)/pj,t, and Φt stays for the information set that is fully reflected in

the price of security. This expression can be summarized into two assumptions

- market equilibrium conditions can be stated in terms of expected returns and

expected returns depend on the information set. These two assumptions ensure

that expected returns of a trading system based on information set Φt cannot

exceed the equilibrium expected returns.

Let

xj,t+1 = pj,t+1 − E(pj,t+1|Φt) (2.2)

be the excess market value of security j at time t+ 1; in other words, it is the
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difference between observed and expected price, then

E(xj,t+1|Φt) = 0, (2.3)

so xj is a “fair game” with respect to Φt. It can be equivalently described in

terms of returns. Let

zj,t+1 = rj,t+1 − E(rj,t+1|Φt), (2.4)

zj,t+1 is the excess return of security j at time t+ 1; equivalently said, it is the

difference between the observed and the expected return projected at t, then

E(zj,t+1|Φt) = 0, (2.5)

so zj is a “fair game” with respect to Φt. Fama points out that this specification

does not require serial covariance of returns to be zero. According to Fama

(1970), the model can be interpreted as submartingale or simplified to a random

walk model.

2.1.1 Random walk

The random walk model was the first concept used for efficient markets de-

scription, and Fama (1970) argues that the random walk model is the best

extension of the expected value or “fair game” efficient markets model which

allows description of the economic environment in greater detail. The random

walk model was mainly used in the early studies of the efficient market hypoth-

esis; it assumes that successive price changes are independent and identically

distributed. The model can be written as:

f(rj,t+1|Φt) = f(rj,t+1), (2.6)

meaning that the conditional and marginal probability distributions of an in-

dependent random variable are identical. The density function f has to be

the same for all t. However, random model respondents argue that investors

spend a lot of money on securities analysis, which would be useless if random

walk model was true. Further, random walkers suppose that investors quickly

exploit unexpected patterns in security prices to make profits; hence, the unex-

pected patterns occur only in a short term. LeRoy (1989) says that supporters

of the random walk model do not employ the condition that an irrational be-
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haviour cannot consistently persist in the equilibrium. Random walk is more

restrictive requirement than martingale; it rules out not only the dependence

of conditional expectation of (pt+1−pt) on information set, but also any higher

conditional moments. Martingale describes the financial markets more pre-

cisely because security prices usually go through more and less volatile periods

and the successive conditional variances are positively autocorrelated. This

option is ruled out in the case of random walk model. However, the martingale

hypothesis is difficult to test; hence, we use the random walk model as the main

concept.

2.1.2 Submartingale

The submartingale model says that the expected value of next period’s price

based on the information set Φt is equal or greater than the current period

price

E(pj,t+1|Φt) ≥ pj,t, (2.7)

or equivalently in terms of returns

E(rj,t+1|Φt) ≥ 0. (2.8)

Fama (1970) claims that the submartingale model implies that buying-and-

holding strategy has better or equal returns than any other trading strategy

based only on Φt. This statement is opposed by LeRoy (1989), who argues

that it is easy to find examples of economies where security prices follow sub-

martingale, but the buy-and-hold strategy is outperformed by other trading

strategies. If the inequalities hold as equations, the price sequence follows mar-

tingale. The martingale model was introduced by Samuelson (1965). LeRoy

(1989) proves that martingale and “fair game” models characterize the same

equilibrium in financial markets and that the two terms are synonyms. The

stochastic process rj,t+1 is then called a “fair game”.

We are interested in the weak-form of the efficient market hypothesis, which

says that past returns should not influence future returns and the expected

return model can be simplified to e.g. random walk, martingale or Brownian

motion.



2. Efficient market theory 7

2.1.3 Conditions of market efficiency

Fama (1976) proposes a slightly different definition of efficient markets in which

he states that the efficient market hypothesis does not require agents to be

rational, but they must have rational expectations. Population has to be correct

on average; however, each individual investor may underreact or overreact.

Sufficient market conditions consistent with the efficiency hypothesis are

easy to name: current prices on markets with no transaction costs, information

freely available to all investors, and investors agreement on effect of current

information on current and future price of security; such markets surely “fully

reflect” all available information. However, transaction costs, not freely avail-

able information to all investors, and disagreement among investors generally

do not have to imply market inefficiency; although they are potential sources

of inefficiency.

2.2 Literature overview

The efficient market hypothesis is still an attractive topic for empirical studies,

and there are thousands of studies focusing on the theory. We present only

a sample of the studies to illustrate the different results and approaches. The

first researcher considering this topic is Bachelier (1900), then the topic was

forgotten for a while, and the problem was rediscovered 60 years later when

computers allowed more rigorous examination of the hypothesis.

The first studies test the weak-form of efficient market hypothesis using

mostly an autocorrelation test which is easy to implement and understand.

Fama (1965) examines the first-order autocorrelation in the Dow Jones In-

dustrial Indices, and he find out that there is a positive autocorrelation in daily

returns for 23 out of 30 examined indices. Moreover, the daily returns are as

far as 2 standard errors away from 0 for 11 indices. But the work, together

with the other early studies, suffers from lack of statistical power.

The power of efficient market tests increases with data availability. In 1980’s

there were daily data on NYSE and AMEX stocks available, and the data

stretched back to the year 1962, creating a sufficient dataset for statistically

significant conclusions. Lo and MacKinlay (1988) group NYSE stocks according

to size and find reliable positive autocorrelation in the series of weekly returns

on portfolios; the autocorrelation is stronger for small portfolios. However,
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according to Fisher (1966) this effect can be caused by non-synchronous trading

problem, which is more important for the portfolios of small stocks.

Conrad and Kaul (1988) try to deal with the non-synchronous problem

by employing Wednesday-to-Wednesday returns, but the problem is not com-

pletely mitigated by this approach. Their conclusion is the same as the one

by Lo and MacKinlay (1988): returns are positively autocorrelated and the

autocorrelation is stronger for small stocks portfolios.

French and Roll (1986) point out that stock prices are more variable for open

stock markets. As the variance during trading hours is 72 times higher than

during weekend days, the difference is not negligible. Black (1986) argues that

the higher variance is caused by noise trading of uniformed investors. Based on

this hypothesis, the daily returns should be negatively autocorrelated. French

and Roll find that the autocorrelation in returns is positive for the top 60%

of individual stocks at NYSE, and negative for the others. After a further

analysis, they are not able to conclude that noise trading results in market

inefficiency.

To sum it up, the availability of data enables the researchers to reject the

hypothesis of market efficiency with constant expected returns.

The papers mentioned above consider only a short-horizon of returns. Shiller

et al. (1984) and Summers (1986) challenge this approach by arguing that even

a small deviation in autocorrelation from 0 in a short time horizon may result

in a big inefficiency in a long time horizon. Fama and French (1988) examine

returns on diversified portfolios of NYSE stock for period 1926-1985 and find

that there is a strong negative autocorrelation in 3- and 5-year returns, while

the autocorrelation is close to 0 for short horizons. However, the tests again

have a low statistical power.

Dickinson and Muragu (1994) use autocorrelation test to examine stock

prices behaviour on Nairobi Stock Exchange; Kenya as a developing economy

is considered to have inefficient market. Nevertheless, Dickinson and Muragu

do not find any signs leading to inefficiency and propose further studying to

draw a strong conclusion. African markets are later studied by e.g. Magnusson

and Wydick (2002) using Random Walk 3 test described by Campbell and

Andrew (1997), which examines Partial Auto-Correlation Function of random

increments of past price information and its divergence from zero. Although

they do not specifically investigate the Nairobi Stock Exchange, their result

is surprising as the efficiency is not rejected for 6 out of 8 markets. That
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contradicts the theory of correlation between market efficiency and development

of economics proposed by other studies.

Testing of efficient market hypothesis is not only a historical issue, it is

examined in recent studies as well. Paper of Lim et al. (2008) examines the

effect of Asian crises on efficiency of eight Asian stock markets. They use

bicorrelation test statistics for 3 periods – pre-crisis, crisis and post-crisis. They

find that higher inefficiency occurred during the crisis period and the most hit

region was Hong Kong. They say that the result is not surprising because the

financial environment is chaotic and investors overreact to both local and global

news during crisis years.

Alexeev and Tapon (2011) say that the test of weak-form of efficient markets

should be performed on a vast pool of individual stock rather than on stock

market indices, as the indices themselves are not traded in the spot market.

They simulate a series of trials using model-based bootstrap and then use

a modified chart pattern recognition algorithm to stocks listed on Toronto

Stock Exchange. They fail to reject the null hypothesis of weak form of market

efficiency, but they find that some sectors of Canadian economy (e.g. Travel

and Leisure, Electricity, Food Producers, Insurance) seem to be less efficient

than others.

Chong et al. (2012) examine the Chinese stock market and build on the se-

ries of researches on Asian markets efficiency. The results of the studies differ

and include both outcomes - rejecting and failing to reject the null hypothesis of

market efficiency. Chong et al. use trading rules based on time series model and

try to examine the efficiency in several sub-periods. The forecasts profitabil-

ity is evaluated by self-exciting threshold autoregressive model, autoregressive

model, and moving average model. The authors find that efficiency on Chinese

stock market has increased after the State-owned enterprises reform.

Most of the studies consider only a specific market or a group of usually

regionally connected markets, and they either reject or not reject the null hy-

pothesis of market efficiency. Some studies find a positive correlation between

the economic development and market efficiency, but it would be useful to have

a ranking of individual markets based on the level of market efficiency.

Such ranking is provided by Kristoufek and Vosvrda (2013), who employ

fractal dimension as a measure of efficiency, but the authors apply the mea-

sure to stock indices without further specifying the type of the estimator and

analysing the reactions of fractal dimension to changes in autocorrelation struc-
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ture of returns. The examination of appropriateness of the measure is left for

further studies.

In our study, we comprehensively examine the power of fractal dimension

in context of efficient markets using extensive Monte Carlo simulations and

show that the fractal dimension is appropriate and accurate measure of market

efficiency. This approach enables us to rank individual markets based on level

of efficiency. A ranking of the chosen stock markets completes our study and

illustrates the use of fractal dimension in practise. The principle of fractal

dimension is described in the following section.



Chapter 3

Fractal dimension

In this section, we define fractal dimension and describe approaches used for

its estimation. Fractal dimension measures roughness of a time series; or in

other words, it provides a description of how much space the time series fills.

Fractal dimension does not have a single general definition, it can be defined

in many ways, and some of them are more satisfactory than others. Different

definitions may result in different values of fractal dimension and they also may

have different properties. The oldest and very important measure of fractal

dimension is s-dimensional Hausdorff measures Hs on subsets of Rn, where

0 < s < n. It is defined for any set and it is mathematically convenient.

A smooth, differentiable series has fractal dimension equal to one. However,

when there are some spikes in the graph and the surface is non-differentiable,

fractal dimension is higher than one and rises with both the number of spikes

and their magnitudes. Generally, fractal dimension is always equal to or higher

than topological dimension n and it never exceeds n+1. In our study, we focus

on time series, so fractal dimension takes values on the interval [1, 2). The

main idea is that the fractal dimension will identify even a small inefficiency

in a time series. Fractal dimension of random walk, Brownian motion, and

martingale (time series corresponding to the theory of efficient markets) is 1.5.

If the volatility of a time series is higher, the time series is rougher and fractal

dimension is closer to 2. On the other hand, if there is some long time memory

in a time series, fractal dimension is lower than 1.5.
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3.1 Hausdorff measure

The Hausdorff dimension can be defined be the following expression

Hs(F ) = lim
δ→0

inf

{
∞∑
i=1

|Ui|s : {Ui} is a δ–cover of F

}
, (3.1)

where s stays for a non-negative number, δ is greater than 0, U is a non-

empty subset of n-dimensional Euclidean space, Rn, F is a subset of Rn, and

|U | = sup |x− y| : x, y ε U is the diameter of U marking the greatest distance

apart two point in the set U . If {Ui} is a finite collection of sets of diameter

smaller or equal to δ covering F , i.e. F ⊂ ∪ni=1Ui with 0 ≤ |Ui| ≤ δ for each i,

then {Ui} is a δ–cover of F ; Hs(F ) is the s-dimensional Hausdorff measure of

F .

We look for the minimal s power of the diameters for δ sufficiently close

to zero. The set of possible covers of F is reduced by decreasing δ and hence

the infimum increases. There is a unique value of s marked D for which holds

that if s < D, then Hs(F ) = ∞, and if s > D, then Hs(F ) = 0. The unique

value is called Hausdorff dimension of the set F . So if s = dimH F , Hs(F )

satisfies 0 < Hs(F ) < ∞. The problem of Hausdorff dimension is that it is

nearly impossible to calculate for real data; hence, we will use the box-count

dimension which is simple to estimate and calculate.

3.2 Box-count dimension

The box-count dimension is one of the most widely used ones. It is a special

form of the Hausdorff dimension, the difference is that in case of box-count

dimension, all cubes covering the set F have the same size, while the Hausdorff

dimension gives up on this preconception. Under the weak regularity condi-

tions, the box-count dimension is the same as the Hausdorff dimension. The

basic idea of the box-count method is dividing a box to quadrants and leaving

out parts not covering the time series, each quadrant is then divided to other

four parts; this process continues until the box width equals the resolution of

the data. F is a non-empty subset of Rn, N(δ) is the smallest number of sets

of diameter δ needed to cover the set F . The naive box-count estimator can

be expressed as

dimB F = lim
δ→0

log(N(δ))

log(1/δ)
. (3.2)
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When employing the box-counting dimension we suppose that the sets are non-

empty and bounded, otherwise we may have problems with log(0) or log(∞).

3.3 Estimation of fractal dimension

There are many ways to estimate fractal dimension. Gneiting et al. (2012)

provide a comprehensive study of several approaches to fractal dimension es-

timation and examine their large sample behaviour considering efficiency and

robustness. They also publish R code for estimation of fractal dimension using

the studied methods, it is accessible in R package “fractaldim”. We use their

code in our study. Although Gneiting et al. recommend using of the mado-

gram for measuring fractal dimension of time series, we examine more measures

in our study and compare the results. Namely, we employ the box-count es-

timator, the Hall-Wood estimator, and the madogram, a special case of the

variogram, in our study.

3.3.1 Box-count estimator

The basic idea of the box-count estimator is defined by the box-count dimen-

sion. Ordinary least square regression of logNδ(F ) on log(δ) is run and the box

count estimator equals to the slope coefficient. Gneiting et al. (2012) suppose

sample size to be power of 2, n = 2K , then it is possible to write down the

naive box-count estimator as

ˆdimB = −

{
K∑
k=0

(sk − s̄) logN(δk)

}{
K∑
k=0

(sk − s̄)2
}−1

, (3.3)

where sk = log δk and s̄ is the mean of s0, s1, . . . , sK . There are opinions that all

scales in regression fit of log(N(δ)) on log(δ) may cause a problem; hence, some

modifications of the naive box-count estimator were proposed. The model that

we use for estimation excludes the smallest scales δk for which N(δk) >
n
5

and

the two largest scales from the regression fit; this modification was proposed

by Liebovitch and Toth (1989). Although the box-count dimension is defined

for δ → 0 and this modification may thus seem unfortunate, the restriction

actually improves statistical and computational efficiency of the estimator.
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3.3.2 Hall-Wood estimator

The Hall-Wood estimator is a modified version of the box-count estimator

which operates in the smallest observed scales. Hall and Wood (1993) define

A(δ) as the total area of boxes that are needed to cover a graph of time series.

The box-count estimator can be than reformulated as

dimB = 2− lim
δ→0

log(A(δ))

log(δ)
. (3.4)

Set scale δl = l
n
, where l = 1, 2, . . . , n, the estimator of A(l/n) is then

Â(l/n) =
l

n

bn/lc∑
i=1

|Xil/n −X(i−1)l/n|, (3.5)

where Xj is j-th observation in time series.

The Hall-Wood estimator is based on ordinary least square regression fit of

log Â(l/n) on log(l/n),

ˆdimHW = 2−

{
L∑
l=1

(sl − s̄) log(Â(l/n))

}{
L∑
k=1

(sl − s̄)2
}−1

, (3.6)

where L ≥ 2, sl = log(l/n) and s̄ is the mean of s0, s1, . . . , sL. To minimize bias

Hall and Wood recommend to use L = 2, the expression can be then adjusted

to

ˆdimHW = 2− log(Â(2/n))− log(Â(1/n))

log(2)
, (3.7)

which is the standard implementation of the Hall-Wood estimator.

3.3.3 Variogram

As the madogram is a special case of the variogram, we base the description on

the explanation of the general version. The variogram is applied by Burrough

(1981) for the very first time; however, it started to be used in statistics more

often in 1990’s. It is intuitive and easy to implement. A stochastic process

{Xt : t ε R} with stationary increments has the following variogram γ(t) (or so

called structure function):

γ2(t) =
1

2
E(Xu–Xu+t)

2, (3.8)
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the variogram satisfies

γ2(t) = |c2t|α +O(|t|α+β) (3.9)

as t → 0,where α ε (0, 2], β ≥ 0, c2 > 0, and | · | stays for Euclidean norm.

Then according to Orey (1970), and Adler (1981) the graph of the path has

almost surely the following fractal dimension

D = d+ 1− α

2
. (3.10)

Moments estimator for the structure function γ(t) at lag t = l/n from time

series is classically expressed as

V̂2(l/n) =
1

2(n− l)

n∑
i=l

(Xi/n −X(i−l)/n)2. (3.11)

Based on relations above, the variogram estimator is

ˆdimV,2 = 2− 1

2

{
L∑
l=1

(sl − s̄) log(V̂2(l/n))

}{
L∑
l=1

(sl − s̄)2
}−1

, (3.12)

where L ≥ 2, sl = log(l/n) and s̄ is the mean of s0, s1, . . . , sL. Several studies

(Constantine and Hall 1994,Davies and Hall 1999, Zhu and Stein 2002) conclude

that the bias is minimized for L = 2. Gneiting et al. (2012) thus use this setting

in their implementation gaining

ˆdimV,2 = 2− log(V̂2(2/n))− log(V̂2(1/n))

log(2)
. (3.13)

The variogram estimator can be generalized to the variogram of order p of

a stochastic process with stationary increments,

γp(t) =
1

2
E(Xu–Xu+t)

p, (3.14)

for p = 2 we have variogram, p = 1 madogram, and p = 1/2 rodogram. All

of the expressions above can be generalized in similar manner. And it is not

necessary to state all of them here, for more details see Gneiting et al. (2012).

The critical question is what value of p should be chosen. Hall and Roy (1994)

show that the variogram fail easily when applied to non-Gaussian process. The

madogram is particularly robust and inclusive which is showed by Bruno and
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Raspa (1989) and Bez and Bertrand (2011), but it can fail for very irregular

paths. The madogram is a more efficient version of the Hall-Wood estimator.



Chapter 4

Simulation process description

We suppose that fractal dimension, in contrary to autocorrelation tests, cap-

tures local inefficiencies. To verify the ability, we simulate efficient time series

containing one or more inefficient parts, and we examine the reaction of fractal

dimension to changes in the inefficiency.

We use three different types of time series simulations corresponding to the

efficient market hypothesis - namely martingales, random walk and Brownian

motion - as we want to provide a comprehensive examination of explanatory

power of fractal dimension and verify robustness of results. Fractal dimension

of the respective time series is 1.5. For the inefficient part we use ARFIMA

time series; the magnitude of inefficiency is influenced by the parameters φ,

θ and d in the ARFIMA simulation as described later in this section. Final

fractal dimension of the whole time series depends on the length of the included

inefficient time series and the power of the inefficiency. (ARFIMA (0.9, 0.45,

0) has lower fractal dimension then ARFIMA (0.1, 0.45, 0), similarly a time

series with longer part of inefficiency has more biased fractal dimension than

the one with short part.)

Each time series has 10,000 observations and we simulate a thousand of time

series for each setting to make the results statistically significant. The time

series consist of efficient and inefficient parts. We measure fractal dimension of

each time series using several ways of measurement (the madogram, the box-

count estimator and the Hall-Wood estimator) and calculate the mean and

tolerance interval for each setting. Now we provide detailed description of used

types of time series and their simulation codes.
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4.1 Efficient time series

4.1.1 Random walk (RW)

In random walk, each step’s direction and size is chosen randomly. Random

walk is a non-stationary process, and stock prices are described by the random

walk model without drift, which can be write down as

Yt = Yt−1 + εt, (4.1)

where εt is normally distributed with zero mean and finite variance such that

it is independent and identically distributed with Corr(εt, εt−s) = 0. The ex-

pected value of random walk does not depend on t, but the variance of random

walk increases with time; it is actually a linear function of time. Further, the

best predictor of any future value of Y is always the current value, no matter

how far into the future we look. The change in stock price from one period to

the next period is unpredictable.

The code to simulate random walk can be found in the Appendix D.

4.1.2 Brownian motion (BM)

Brownian motion is a continuous-time stochastic process. Similarly to random

walk, each individual change is unrelated to the previous and future changes,

and it is one of the ways how to describe efficient market. Brownian motion

has the following properties: W0 = 0, Wt is almost surely continuous and it

has independent increments, and the difference Wt–Ws has normal distribution

with zero mean and variance (t − s) for 0 ≤ s ≤ t. For simulating this time

series we use package “sde” and specifically the function “bm” in R project.

4.1.3 Martingale (M)

As we noted before, LeRoy (1989) showed that martingale and “fair game” are

synonyms. We have probability space (Ω,F , P ), where Ω is a set of market

information, F is σ–algebra of the subsets of Ω, and P is probability measure

on F . A sequence X1, X2, . . . , Xn of random variables (represented by stock

prices in case of capital market) and corresponding σ–algebras F1,F2, . . . ,Fn
is martingale if it satisfies the following properties:
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1. Each Xi is an integrable random variable measurable with respect to the

corresponding Fi.
2. Expression Fi ⊂ Fi+1 holds for every i.

3. Relation E{Xi+1|Fi} = Xi a.e. P hold for every i ∈ [1, 2, . . . , n− 1].

In our case, the information set Ω contains only the historical prices, as we

focus on the weak-form of efficient market hypothesis.

The code used for simulation can be found in the Appendix D.

4.2 Inefficient time series

4.2.1 ARFIMA

The model is based on autoregressive moving average model, ARMA. The AR

part expresses the linear dependence of current value on previous value(s);

sequences with higher AR coefficient are more persistent. The MA part relates

to the idea that all variation in a time series is driven by current and past shocks.

MA(1) process, which we use in our simulations, has short time memory and

weak dynamics, so the MA parameter has a small influence on fractal dimension

of a time series in contrast to the AR(1) model. This does not hold for the

general model, MA(l) can capture richer dynamic patterns, and AR model can

be rewritten to a MA model. Generally, AR(k) model has infinite memory, and

MA(l) model has a memory of exactly l periods.1

ARMA(1 ,1) can be written as

Xt = α1Xt−1 + θ1εt−1 + εt, (4.2)

where both |α1| and |θ1| are required to be smaller than 1 to ensure stationarity

and invertibility respectively. The constant is set to 0 because returns are

generally close to 0.

Generalized model of ARMA(k, l) is then

Xt = α1Xt−1 +α2Xt−2 + . . . +αkXt−k +θ1εt−1 +θ2εt−2 + . . . +θlεt−l+ εt. (4.3)

1Note, that we use unusual notations of AR and MA orders - k and l, respectively. We
save p and q symbols to mark φ and θ coefficients of AR and MA parameters in figures and
graphs.
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Or using lag operators(
1−

k∑
i=1

αiL
i

)
Xt =

(
1−

l∑
i=1

θiL
i

)
εt, (4.4)

where Li are lag operators. For stationarity and invertibility, inverses of all

roots of (1−
∑k

i=1 αiL
i) and (1−

∑l
i=1 θiL

i) have to be inside the unit circle.

If at least one of the k roots of autoregressive lag operator polynomial is 1, the

sequence has a unit root and can be written down as(
1−

k∑
i=1

φiL
i

)
(1− L)Xt =

(
1−

l∑
i=1

θiL
i

)
εt. (4.5)

The sequence is not stationary. General model ARFIMA(k, d, l) is then(
1−

k∑
i=1

φiL
i

)
(1− L)dXt =

(
1−

l∑
i=1

θiL
i

)
εt, (4.6)

where d is an integer order of differencing. However, the condition of d as

an integer is too binding as there are time series with too much long-range

dependence to be stationary I(0), but they are still not truly non-stationary

I(1). The time series are represented by ARFIMA models, which allow d to

take values in −0.5 < d < 0.5, for d ≥ 0.5 the process is non-stationary. The

process is said to be anti-persistence for d ∈ (−0.5, 0). For d ∈ [0, 0.5) the

autocorrelation of ARFIMA process decays hyperbolically to zero, stationary

ARMA processes decay to zero geometrically, which is faster.

For simulation of these series we use package “fracdiff” and to gain series

with d higher than 0.5 ensuring non-stationarity, we use the cumsum function.

The whole process of simulation has the following steps:

1) We simulate the first part of random walk/Brownian motion/martingale.

2) We take the last point of the simulation and use it as the first one for

ARFIMA simulation. ARFIMA simulations may have totally different scale

than the efficient part and it may not fit to the simulated efficient part at all.

To make the two parts as similar as possible, we adjust the ARFIMA’s scale.

We define that the difference between the maximum and minimum of ARFIMA

series has to be equal to the difference between highest and lowest point of

given number of last efficient series observations. We take 1.5 longer part than

is the length of ARFIMA to alleviate the restriction, as ARFIMA series mostly
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stretches over much wider range of values than the efficient simulation. In the

end we shift the ARFIMA series to begin in the last point of efficient part

simulation.

3) The last part of the simulations is again an efficient one. We take the last

observation of ARFIMA part and use it as the starting point for simulation of

random walk/Brownian motion/martingale.

Now the simulated series is complete, and it consists of two efficient and one

inefficient part. To see how the individual parts fit to each other we enclose few

graphs of random walk with ARFIMA parts, see Figure B.7 in the Appendix.

The code used for simulations can be found in the Appendix D.

4.3 Simulations setting

Each time series has 10,000 observations and we simulate a thousand of time

series for each setting to ensure statistical significance of results. The time

series consist of efficient and inefficient parts. The efficient parts are created

by simulations of random walk (the core of simulations in Sections 5.4.1 and

5.4.2), Brownian Motion, and martingales and outputs of the three types of

simulations are compared (the results can be found in Section 5.4.10). The

inefficient parts are based on ARFIMA simulations. We need to limit the

study to a manageable scope, so the autoregressive and moving average order

is fixed to 1 and we change only the coefficients. Even so we estimate nearly 700

different settings of ARFIMA. Details about ARFIMA simulation are presented

in Sections 4.2.1 and 5.2.

Most of the time series simulations include only one inefficient part as we

want to track the effect of changes in inefficiency as accurately as possible. To

explore the impact of the length of time series, we use inefficient time series

with 300, 500 and 1,000 observations. The effect of observations numbers

is examined in more details for chosen inefficiency settings in Section 5.4.3.

Time series with more than one inefficient part are studied in Sections 5.4.6

and 5.4.7 and we specifically focus on inclusion of parts with contradictory

effect on fractal dimension and on gradual estimation of fractal dimension of

time series composed of parts with slightly different efficiency structure. This

approach examines the ability of fractal dimension to track small changes in

the efficiency structure.

Fractal dimension is estimated by three different estimators, namely the

madogram, the box-count estimator, and the Hall-Wood estimator. The most
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efficient estimator is the madogram; hence, it is used as a core estimator. The

other estimators are investigated in less detail and the results are compared.

As the estimators depend on number of lags used for estimations, the study

of lags’ impact on resulting fractal dimension is examined (Section 5.1) and

estimators using 5, 20 and 100 lags are used in the core study.

The coefficients φ and θ are marked as p and q in all tables and graphs;

we do not mix the notation in text. Moreover, the expression ARFIMA(0.6,

0.2, 0.4) means that the φ, d, and θ coefficient are equal to 0.6, 0.2 and 0.4,

respectively. Results are presented in tables, 2D graphs and 3D graphs. We use

fractal dimensions of the thousands simulations for each setting and calculate

average fractal dimension and standard error for each setting. The values of

means and standard errors are listed in tables, most of the tables have fixed θ

coefficient, φ coefficient changes in rows and d in columns. Shading represents

trends in fractal dimension with changing either based on the column or row

variable.

Further, the results are plotted in 2D figures including average fractal di-

mension and confidence intervals. Fractal dimension is assigned to y-axis, while

the x-axis shows values of d coefficient. Coefficients φ and θ are fixed. 3D graphs

provide a more complex view on the relationship between fractal dimension and

individual parameters of ARFIMA because it allows two coefficients to differ.

The graphs contain only average fractal dimensions to keep the graphs as clear

as possible. Fractal dimension is assigned to vertical axes, other axes denote

chosen parameters (φ, θ, d; one is always fixed); shading stresses the shape of

graph.



Chapter 5

Results of simulations

We now turn to the practical part of the thesis and present results of the

simulations in this section. At first, we are challenged by a problem of number

of lags. Secondly, we study fractal dimension of ARFIMA time series and

then we focus on the explanatory power of fractal dimension in the context of

efficient markets.

5.1 Problem of number of lags

The estimators of fractal dimension work with the number of lags determin-

ing the number of points used for fitting the line in the log-log regression as

illustrated in Figure 5.1; only the black points are used for fitting the line.

The fractal dimension package by Gneiting et al. (2012) enables us to choose

“auto” number of lags which corresponds to the theoretically “best” value –

the theoretically optimal number of lags for the madogram is two, and the

same holds for the Hall-Wood estimator. The box-count estimator determines

the smallest m for which n ≤ 2m, where n is the number of observations;

value neff = 2m−1 + 1 is calculated to define data points used for estimation:

x1, x2, ..., xneff
. The “auto” option considers box sizes εk for k = j, j+1, ...,m−

2, where N(εi) >
neff

5
holds for all i < j; this restriction corresponds to the

modification by Liebovitch and Toth (1989) and eliminates two largest and very

small boxes. The time needed for estimation is much higher for the automatic

option than for filling in a specific number (approximately 40 times higher), so

we do not use the “auto” option for the madogram and Hall-Wood estimators

and rather fill in the optimal number of lags. The optimal number of lags is

determined as the one with the smallest mean squared error (MSE); Davies
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Figure 5.1: Log-log regression for 2 and 100 lags

and Hall (1999) prove the statement about the optimal number of lags for the

Hall-Wood and madogram estimators numerically.

Gneiting et al. (2012) use the root mean squared error (RMSE) for compari-

son of individual estimators; we are inspired by their approach when examining

influence of the number of lags on resulting fractal dimension. Simulation of

Gaussian process is used for this purpose. Further, we examine the impact of

number of lags for simulated combinations of random walk and ARFIMA series

to find out how the individual estimators respond to changes in the ARFIMA

setting. In that case, we focus on means and standard errors of the estimated

fractal dimensions.

5.1.1 Gaussian process

We simulate Gaussian process with the powered exponential covariance func-

tion:

σ(t) = exp(−|t|α), (5.1)

and use fractal index, α, equal to 0.5, 1 and 1.5. Adler (1981) says that the

corresponding values of fractal dimension, D, are then given by D = 2−α/2, so

the estimated fractal dimensions for the chosen fractal indices should be equal

to 1.75, 1.5 and 1.25, respectively. The sample size of our simulation is 1024

as in the study by Gneiting et al. (2012); the number of replicates for each α

is 1,000, and we use 2, 5, 20, and 50 lags. In case of the box-count estimator,
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Figure 5.2: Box plot of madogram estimations of fractal dimensions
for α equal to 1.5, 1, and 0.5 implying fractal dimension
1.75, 1.5, and 1.25

we included the “auto” option as well. The results for all estimators, numbers

of lags and α are presented in Figures 5.2, and B.1 and B.2 in the Appendix.

As can be observed, we confirm the results of Gneiting et al. (2012), who

mark the madogram estimator as a more efficient version of the Hall-Wood

estimator; both of the estimators are quite accurate especially for small num-

ber of lags. The box-count estimator underestimates actual fractal dimension.

Nevertheless, we use it on a small sample of series to be able to compare the

results of the three estimators.

Although the optimal number of lags in the madogram and Hall-Wood

estimators is, according to Davies and Hall (1999), equal to 2, we obtain the

smallest RMSE for the 5 lags estimators. The RMSE then increases with the

number of lags, but the means of the fractal dimensions stay accurate. We

conclude that both the madogram and Hall-Wood estimators capture fractal

dimension well, even though that the number of observations is limited. The

box-count estimator tends to significantly underestimate fractal dimension for

all examined number of lags and settings of the simulated Gaussian process.
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The estimates of series with fractal dimension equal to 1.5 are very accurate

for all number of lags including the big ones. This fact is very important, as

the efficient markets are characterized by fractal dimension equal to 1.5, and

we want to determine the efficient markets flawlessly. For the other settings,

the madogram and Hall-Wood estimators tend to slightly overestimate fractal

dimension. However, in these cases, we are not interested in the exact value of

fractal dimension - we rather care about the ranking, so it is important that

the estimated fractal dimension reflects all changes in the series autocorrela-

tion structure accurately. This property of the estimators is examined in the

following sections. Later in this chapter, we show that estimators with higher

number of lags have some more desirable results, but we are aware of the inac-

curacies connected with them, so we use both small and large numbers of lags

for estimation of fractal dimensions and compare the results.

We examine not only the effect of number of lags, but we provide an com-

parison of the efficiency of the different estimators as well. Figure 5.3 shows

the box plot of the estimated fractal dimensions for the fractal index equal to

1 obtained through the madogram estimator with 5 lags, the Hall-Wood esti-

mator with 5 lags and the box-count estimator with the “optimal” number of

lags. Based on the lags analysis discussed above, these numbers of lags reflect

actual fractal dimension most accurately.

5.1.2 Series with efficient and inefficient parts

Time series are simulated using the process described in Section 4.3. In this

analysis, we operate with the random walk simulations and the madogram

estimator because it is the most efficient estimator and random walk is easy

and quick to simulate. We are not able to numerically determine exact fractal

dimension of a combination of random walk and ARFIMA series, so we cannot

use RMSE as the criterion for estimators’ evaluation. But we can check how

the estimations using different numbers of lags respond to changes in setting

of ARFIMA. Further, we observe standard error of the estimations, as we are

interested in the least volatile estimator.

The process of fractal dimension estimation is following:

1. Simulation of 1,000 time series for each setting. (Each setting has 10,000

observations.)

2. Fractal dimension estimation of each time series.

3. Calculation of the average fractal dimension and standard error for each
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Figure 5.3: Comparison of estimators - madogram (5 lags), Hall-
Wood (5 lags) and box-count (“auto” lags)



5. Results of simulations 28

Table 5.1: Fractal dimensions of RW with ARFIMA(0, d, 0) in
(20001:3000) estimated by madogram with changing num-
ber of lags

setting.

The estimated fractal dimensions of Gauss process suggest using smaller

number of lags; hence, we focus on comparing the results of the estimations

done with small number of lags, but we also use a few estimators with higher

number of lags to analyse their behaviour. The higher number of observations

(10,000 instead of 1024 used in the previous section) allows us to examine wider

range of number of lags. Specifically, we use the following numbers of lags: 2,

3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 50, 100, 500, and 1,000.

In the number of lag analysis, we use cumulative summations of ARFIMA

(0, d, 0) and ARFIMA(0.4, d, 0.4), d in (-0.5, 0.5), which clearly demonstrate

problems of smaller number of lags and simultaneously allow us to study the

estimators performance in case of random walk (ARFIMA(0, 0, 0)). A thousand

of random walk observations is replaced by an ARFIMA series. We track

mean fractal dimension and volatility (standard error) of fractal dimension for

changing d.

The means of the estimated fractal dimensions and the related standard

errors for ARFIMA(0, d, 0) are presented in Tables 5.1 and 5.2, respectively.2

2The notation ARFIMA(0, d, 0) means that φ = 0 and θ = 0. The k and l parameters
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Table 5.2: Standard errors of fractal dimension in Table 5.1

We find that the average fractal dimension decreases with the number of lags.

For high number of lags, the fractal dimension captures higher volatility in the

simulated time series very weakly, the mean of the estimated fractal dimensions

of time series with the most volatile ARFIMA, ARFIMA(0,-0.4, 0), is 1.536 for

1,000 lags, whereas it is 1.568 for 2 lags.

On the other hand, positive autocorrelation in differences is more signif-

icantly captured by the estimations with higher number of lags, the average

fractal dimension for setting ARFIMA (0, 0.4, 0) is 1.485 for 1,000 lags and

1.494 for 2 lags. This difference is not as striking as for negative d parame-

ters: the estimators with smaller number of lags capture the ARFIMA part in

random walk series with wider range of values.

Looking at ARFIMA (0, 0, 0), we can see that the mean fractal dimension

is very close to 1.5 for all estimators; 1,000 lags estimation with the fractal

dimension equal to 1.507 deviates from the desired 1.5 value the most, while

the other average fractal dimensions differ by less than 0.003.

The standard errors of the fractal dimensions increase with the number of

lags. The standard errors of the fractal dimensions obtained by the 2 lags

estimator are in the interval (0.008, 0.021), but for 1,000 lags the standard

errors increase above 0.05, meaning that the estimations are less accurate.

are set to 1 in the whole thesis, so we use this type of notation to simplify the labelling. The
shading captures trends in the fractal dimensions.



5. Results of simulations 30

Table 5.3: Fractal dimensions of RW with ARFIMA(0.4, d, 0.4) in
(20001:3000) estimated by madogram with changing num-
ber of lags

Table 5.4: Standard errors of fractal dimension in Table 5.3
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In case of ARFIMA(-0.4, d, 0.4), the results are skewed, especially for small

numbers of lags, where the fractal dimension increases with d parameter instead

of decreasing. This bias diminishes with higher number of lags and the 100

lags estimator returns the expected result. But as the AR coefficient grows,

skewness starts to appear in estimations using large number of lags as well.

We do not expect extremely strong autocorrelation in the price differences to

occur in real markets, so this bias should not influence our efficiency ranking.

As the estimators with higher number of lags give more accurate results in

specific cases, we do not restrict our analysis to small number of lags; we try to

estimate fractal dimension with higher number of lags up to 100 as well being

aware of higher standard errors.

5.2 Simulated ARFIMA

In our study, we simulate stock market prices following the random walk /

martingale process consistent with the efficient market theory. These processes

are defined by no autocorrelation in returns specified as differences. To verify

the power of fractal dimension, we include parts of time series that have auto-

correlated first differences – both negatively and positively. For this purpose

we use simulations of ARFIMA, specifically its cumulative summation.

We manage the level of autocorrelation through only coefficients of au-

toregressive and moving average parameters and not through the orders of

autoregressive and moving average parts; otherwise the simulations would be

too extensive, so all simulated ARFIMA are ARFIMA(1, d, 1).

The financial applications usually consider ARFIMA(1, d, 0) as a represen-

tative of inefficient time series; the inclusion of moving average parameter is

less common. As we want to provide as comprehensive analysis as possible,

we include the moving average parameter as well and track the influence of its

coefficient on fractal dimension.

As the orders of both autoregressive and moving average parts are always

equal to one, we change the usual notation mentioned in previous sentence to

present the values of coefficients instead of orders; hence, ARFIMA(p, d, q)=

=ARFIMA(φ, d, θ) to note the coefficients of autoregressive and moving aver-

age part, so ARFIMA (0.6, 0.4, 0.2) stays for (1− 0.6L)(1−L)0.4(Xt−Xt−1)=

=(1− 0.2L)εt. In tables and figures, we use p and q to denote the coefficients,

not the orders.

In simulations, parameter d takes values between -0.45 and 0.45 changing
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by 0.05 (19 different settings), φ coefficient of autoregressive parameter takes

values between 0 and 0.95 changing by 0.2 except of the last step (6 different

settings), and θ coefficient of moving average parameter changes in the same

manner as the autoregressive parameter coefficient (6 different settings). By

combining these three parameters, we get 19·6·6 = 684 different settings exam-

ined in our study. Further, we test the ability of fractal dimension to capture

the length of included inefficiency; we include 300, 500 and 1,000 inefficient

observations.

The negative parameter d and the positive coefficients φ and θ may have

contradictory impact on fractal dimension and the resulting fractal dimension

of the whole time series may be close to 1.5 value for other settings than

ARFIMA(0, 0, 0) as well. We can show this using the ARFIMA equation:(
1−

k∑
i=1

φiL
i

)
(1− L)dYt =

(
1−

l∑
i=1

θiL
i

)
.εt (5.2)

As we use the cumulative summation, Yt stays for (Xt − Xt−1), where Xt is

stock market price at time t.

In our specifications we have k ad l always equal to 1:

(1− φL)(1− L)d(Xt −Xt− 1) = (1− θL)εt, (5.3)

where

(1−L)d =
∞∑
i=0

(
d

k

)
(−L)d = 1− dL+

d(d− 1)

2!
L2− d(d− 1)(d− 2)

3!
L3 + . . .

(5.4)

As we include only one part of moving average (l parameter is always equal to

one), the moving average part has only a weak effect as described in the previous

chapter. Hence, we focus on the opposite effects of d and φ coefficients.

We get random walk also if (1 − φL)(1 − L)d = 1. The expression can be

rewritten as:
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(1− φL)(1− L)d = 1− dL+
d(d− 1)

2!
L2 − d(d− 1)(d− 2)

3!
L3 + . . . − φL+

+ φdL2 − φd(d− 1)

2!
L3 − . . .

= 1− (φ+ d)L1 + (
d(d− 1)

2!
+ φd)L2 − (

d(d− 1)(d− 2)

3!
+

+ φ
d(d− 1)

2!
)L3 + . . .

(5.5)

The infinite summation is probably never equal to one; however, for negative

d, it may be close to one. Table A.1 in the Appendix shows the coefficients of

back-shift operators; the random walk has all of the coefficients equal to zero;

for φ = 0.1 and d = −0.1, the coefficient of L is equal to 0 and the coefficients

of other back-shift operators are close to 0 and diminishing, which means that

the effect is very weak and fractal dimension should be close to 1.5.

If the coefficients d and φ have opposite signs and same magnitude, there

is no first order autocorrelation and the autocorrelations of higher orders de-

creases, as the coefficients converge to 0. The coefficients are positive, mean-

ing that the positive autocorrelation effect of φ is outweighed by the negative

autocorrelation effect of d, and fractal dimension should be larger than 1.5.

According to the theoretically calculated coefficients, fractal dimension should

be a bit more sensitive to the changes in d parameter than to the changes in φ

coefficient, as shown in Tables A.2 and A.3. When we keep constant φ coeffi-

cient and change the d coefficient starting in ARFIMA(0.1, -0.4, 0) and ending

in ARFIMA(0.1, 0.4, 0), we end up with slightly higher positive numbers than

in case of keeping d constant and changing φ coefficient, starting in the same

point and ending in ARFIMA(0.9, -0.4, 0).3

The graphs of time series give a clue about fractal dimension of the time

series. The box-count estimator of fractal dimension uses the number of boxes

that are crossed by the graph, so the visual appearance of graphs indicates frac-

tal dimension; higher volatility implies higher fractal dimension. An overview

of ARFIMA graphs can be found in the Appendix, Figures B.3 and B.4. The

graphs give an idea how the ARFIMA series visually vary for different coef-

ficients. The graphs show that the most visible changes are caused by the

differencing parameter; the impact of changes in the autoregressive coefficient

3The φ coefficient is marked as p in all tables.
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is visually perceptible as well; the least noticeable changes are those caused by

moving average coefficient.

We estimate fractal dimension for series with 500 observations and for each

setting we simulate 1,000 series; the ARFIMA analysis is done by the 5 lags

madogram estimator. The estimated fractal dimensions correspond to the the-

ory and reflect the changes in ARFIMA setting as expected and suggested by

the Figures B.3 and B.4. We illustrate the fact by tables of the average fractal

dimensions and 3D graphs.

Graphs in Figure 5.4 are smooth, indicating good performance of the frac-

tal dimension estimators, which capture all changes in the setting of ARFIMA

series on average. Decrease in the fractal dimension is steeper for the differ-

encing coefficient than for the moving average and autoregressive coefficients.

While the difference between the differencing parameter and the autoregressive

coefficient is small, the fractal dimension decreases with the moving average

coefficient much slower than with the differencing parameter; this is due to the

weak effect of the moving average parameter described in the Section 3.

Further details including standard error of the estimated fractal dimensions

can be found in Table 5.5. The standard errors are small with average of 0.0220

indicating that all measured fractal dimensions are close to the mean.

Detailed fractal dimension results presented in this section are estimated

using the madogram with 5 lags. The trends in the estimated fractal dimensions

are the same for estimators with all number of lags, but the values exhibit some

peculiarities shown in Table 5.6, the shaded settings are referred in text.

As described above, it is difficult to strictly say which ARFIMA setting

should have fractal dimension lower than 1.5 because of the prevailing positive

autocorrelation and vice versa. For example in settings such as φ = 0.4 and

d = −0.35, there is a positive first order autocorrelation and a negative au-

tocorrelation of higher orders. To make the computation of lag coefficients in

ARFIMA time series easier, we focus on ARFIMA(φ, d, 0) settings.

Fractal dimension of ARFIMA(0.3, -0.4, 0) should be higher than 1.5, as

negative autocorrelation is present in all orders and the coefficients of the back-

shifts operators decreases only very slowly, the function can be written as

(1 + 0.1L+ 0.16L2 + 0.14L3 + 0.1232L4 + 0.11043L5 + . . . )Xt = εt. (5.6)

The estimated fractal dimensions for all examined number of lags are higher

than 1.5, but whereas the fractal dimension for 2 lags is only 1.536, for 100
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Figure 5.4: 3D graph of mean fractal dimensions of ARFIMA time
series, one coefficient is fixed, the others are assigned to
x and y axes, madogram
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Table 5.5: Means (1st value) ad standard errors (2nd values) of frac-
tal dimensions for ARFIMA, 5 lags madogram
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Table 5.6: Differences among fractal dimensions estimated using dif-
ferent number of lags, madogram, shaded settings are re-
ferred in text

number of lags the fractal dimension reaches 1.794; this difference suggests

that some of the estimators overestimate fractal dimension. From the previous

Gauss process analyses, we know that the estimators with high number of

lags tend to do this; however, we should not generalize this finding without

further analysis. If the estimator precisely identifies an efficient time series

with the fractal dimension equal to 1.5 and correctly captures the changes

in ARFIMA setting, the overestimation for inefficient parts would not cause

a problem as we are not looking for exact fractal dimension of time series;

we rather want to make a ranking based on inefficiencies. Nevertheless, the

example illustrates that we cannot compare fractal dimensions estimated by

estimators with different number of lags.

For ARFIMA (0, 0, 0), all estimators return values very close to 1.5, but

the standard errors are increasing with the number of lags, so we obtain wider

confidence intervals. But as we shown above there are other settings whose

fractal dimension should be close to 1.5 and results for these are not so clear.

For example, ARFIMA(0.3, -0.3, 0) has zero first order autocorrelation and

weak negative autocorrelation of higher orders, so we expect fractal dimen-

sion to be slightly higher than 1.5. The fractal dimension estimated by the

madogram with 2 lags is 1.483. On the other hand, the 100 lags estimator

returns 1.722 which seems to be very high. The hypothesis that the madogram
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with higher number of lags overestimates fractal dimension is supported by

ARFIMA(0.3, -0.1, 0) results. The coefficient of the first back-shift operator

is -0.2, meaning that there is a positive first order autocorrelation; the other

back-shift operators’ coefficients are decreasing from 0.025 for L2 and reaching

values lower than 0.01 for L9 and higher powers, so the negative autocorrelation

in higher orders is much weaker and decreasing. The coefficients suggest that

fractal dimension should be lower than 1.5, and most of the estimators support

this hypothesis except for the estimators with 50 and 100 lags.

We obtain the same coefficient of the first back-shift operator also for

ARFIMA(0.6, -0.4, 0), so the power of the positive first order autocorrela-

tion is the same. The coefficients of the other back-shift operators are higher,

so the negative autocorrelation of higher orders should be stronger, and fractal

dimension should be higher than for ARFIMA(0.3, -0.1, 0). This holds for all

estimators except for those with 2 lags and 5 lags; the difference for 5 lags is

much smaller than for 2 lags. As we can see, none of the estimators is 100%

accurate and it is better to compare the results using estimators with several

different number of lags keeping in mind imperfections of each of them.

Graphs capturing the estimated fractal dimension showing confidence and

tolerance intervals for the 5 lags and 100 lags madogram estimator can be found

in the Appendix as Figures B.5 and B.6. The confidence and tolerance intervals

broaden with the used number of lags. The estimator with 5 lags results in

slightly concave line of the fractal dimensions decreasing with d for ARFIMA(0,

d, 0), linearly decreasing line for ARFIMA(0.4, d, 0.4) and slightly convex line

for ARFIMA(0.8, d, 0.8); the estimator with 100 lags gives lines that always

decrease linearly.

Graphs recording visual appearance of random walk time series with several

observations replaced by different types of ARFIMA are placed in the Appendix

as Figure B.7. Longer parts of ARFIMA can be distinguished by eye, but the

shorter ones are less evident especially thanks to the fitting we use to adjust

the starting point and value range of individual parts.

5.3 Comparison of random walk, Brownian mo-

tion and martingale

Random walk and Brownian motion are special cases of martingale processes;

hence, in terms of generality, it would be appropriate to use the martingale
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Table 5.7: Comparison of fractal dimensions of random walk, Brow-
nian motion and martingale simulations, madogram

Figure 5.5: Comparison of random walk, Brownian motion and mar-
tingale simulations

simulations. However, the simulation of martingales is a non-trivial problem.

There is not any R package for simulation of martingales, only unofficial codes

proposals - for example the one designed by Robert (2011) on his blog. This

simulation has problems described in the Appendix D; as illustrated in Table

5.7, it shows the biggest deviation from desired 1.5 fractal dimension.

The mean fractal dimensions of random walk and Brownian motion are both

very close to 1.5, and the differences in standard errors are minor. Graphs of

all three types of efficient market simulation are similar and it is not possible

to recognize which graph belongs to the random walk, Brownian motion and

martingale simulation without further analysis as shown in Figure 5.5. Since the

random walk simulation is more straightforward, we decide to use the random

walk simulation for the core comprehensive analysis. We employ the other

types of simulations in less comprehensive analysis and compare the results.
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5.4 Simulations results

We start with a very simple set using random walk simulation with t observa-

tions inter-spaced by ARFIMA simulations. We make an extensive simulation

of each combination of θ, φ and d coefficients and set t equal to 300, 500 and

1,000. For the core estimations, we use the madogram as the most efficient

estimator and report the results for 5, 20 and 100 number of lags.

Further, we analyse the effect of changes in the number of observations on

fractal dimension in more details for specific ARFIMA settings, verify whether

the influence of inefficient time series placement on fractal dimension, and ex-

amine series with two inefficient parts having contradictory impact on fractal

dimension. Theoretically, these two powers should go against each other with

fractal dimension around 1.5. We check whether this statement is true, and

try to find a solution to avoid the mistake. Later, we conduct shorter analysis

of Brownian motion and martingale simulations, and we examine the results

for different estimators, namely the Hall-Wood estimator and the box-count

estimator.

5.4.1 Five hundred of ARFIMA observations

The results confirm our hypothesis that fractal dimension reflects all changes in

autocorrelation structure of a time series in case of weak autocorrelation (small

coefficients φ and θ), but as the φ coefficient increases, the results of fractal

dimension start to show unexpected behaviour, especially for estimators with

small number of lags. Tables A.4, A.5 and A.6 in the Appendix contain means

and standard errors of the fractal dimensions estimated with the use of different

number of lags, namely 5, 20 and 100. The fractal dimension reacts on changes

in φ, d and θ coefficients in the combined time series equally as in the pure

ARFIMA time series - the changes with the θ coefficient are much smaller than

changes with the φ and d coefficients.

The 5 lags estimator exhibits expected results only for ARFIMA(0, d, 0);

for ARFIMA(0.4, d, 0) and ARFIMA(0, d, 0.4), the fractal dimension starts to

increase with higher values of d, and for ARFIMA(0.8, d, θ) we get a totally

inverse relation between the fractal dimension and the d coefficient. This inac-

curacy decreases with the number of lags as depicted in Figure 5.6 and Figures

B.8 and B.9 in the Appendix.

Figure 5.6 contains graphs with fixed θ coefficient and changing φ and d
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Figure 5.6: 3D graph of mean fractal dimensions of RW with 500
observations of ARFIMA, q is fixed, p and d are assigned
to x and y axes, madogram
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Figure 5.7: Mean fractal dimensions and confidence intervals of RW
with 500 observations of ARFIMA(0, d, 0), d assigned to
x-axis, changing number of lags, madogram

coefficients assigned to x and y axis; mean fractal dimension is on z axis.4 In

case of 5 lags, the fractal dimension decreases most rapidly with the φ coefficient

and an inaccuracies are visible already in the first graph where the θ coefficient

equals to 0; the graph with θ = 0.8 is far from the expected shape. Although

the graphs obtained through the 100 lags estimators are not as smooth as for

the 5 lags estimators, the trends do not change the direction even for high

φ and θ coefficients. Other 3D graphs of the fractal dimensions show similar

behaviour; graphs for ARFIMA(φ, 0.4, θ) are less smooth, and even higher

number of lags does not fix the peculiarities.

The use of estimators with higher number of lags is associated with some

disadvantages as well, particularly with higher standard errors of the estimates.

The 5 lags estimator returns mostly fractal dimensions with standard errors

lower than 0.01, but for the 100 lags estimator the standard errors increase to

values close to 0.02. The problem of increasing standard errors is shown in

Figure 5.7; except for widening of the confidence interval, the figures show that

the trend is more linear for higher numbers of lags compared to the convex

trend for the 5 lags estimator.

The difference in standard errors can be tracked in volatility of the frac-

tal dimensions for single simulation where d coefficient in ARFIMA(0, d, 0)

increases. The mean fractal dimensions are represented as smoothly declining

line, when the fractal dimension of single simulation moves along the trend as

in Figure 5.8; the fractal dimensions estimated with 100 lags are more volatile

than those estimated with 5 lags.

4In all graphs, the φ and θ coefficients are labelled as p and q, respectively. Further, we
use the notation ARFIMA(φ, d, θ).
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Figure 5.8: Fractal dimensions of RW with ARFIMA(0, d, 0) for a
sample simulations, madogram

We provide graphs of the mean fractal dimensions with confidence inter-

vals for changing φ, d, and θ coefficients and 5 and 100 lags. The Figures for

changing d parameters are presented in the text as 5.9 and 5.10, while the

other graphs can be found in the Appendix as Figures B.10 to B.13. The con-

fidence intervals are generally narrow indicating that the estimation of fractal

dimension should identify inefficiencies in real markets quite accurately.

Graphs of the fractal dimensions estimated with 5 lags turn with increasing

φ coefficient from a convex line decreasing with d to linearly increasing line,

whereas the fractal dimensions estimated with 100 lags are represented by a

very similar line for all settings.

While the shape of the fractal dimension lines turns from convex line de-

creasing with θ to horizontal linear line as depicted in Figure B.10, all lines

of the fractal dimensions are horizontal with the θ coefficient for 100 lags, and

the shape does not differs across the ARFIMA settings as exhibited in Figure

B.11.

Figure B.12 shows the relation between the fractal dimension and the φ co-

efficient for the 5 lags estimator; the line of the fractal dimensions is convex in

φ for negative d and then turns to a horizontal linear line for higher d parame-

ters. On the contrary, Figure B.13 of 100 lags estimations shows a concave line

of the fractal dimensions decreasing with φ for negative d parameters which

turns to horizontal line for increasing d.

It is interesting that there is a difference between the impact of numbers of

lags on fractal dimension for pure ARFIMA simulations and ARFIMA incorpo-

rated in efficient time series. In case of pure ARFIMA, the fractal dimensions

estimated by the madogram with 100 lags are higher than those estimated by
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Figure 5.9: Mean fractal dimensions and confidence intervals of RW
with 500 observations of ARFIMA, d assigned to x-axis,
5 lags madogram
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Figure 5.10: Mean fractal dimensions and confidence intervals of RW
with 500 observations of ARFIMA, d assigned to x-axis,
100 lags madogram
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the madogram with 5 lags; in case of ARFIMA(0, d, 0) incorporated to a se-

ries of random walk, it is the other way around - with the 100 lags estimator

we get a lower fractal dimension than with the 5 lags estimator. In case of

ARFIMA with higher values of φ ad θ coefficients, the 100 lags estimator re-

turns higher fractal dimensions, and it is clear that especially for negative d

parameter the estimator overestimates fractal dimension, as it returns fractal

dimensions higher than 1.5 even for ARFIMA simulations with φ = 0.8.

As we noted in the previous section, we do not suppose inefficiencies in real

markets to be as extreme as e.g. ARFIMA(0.8, 0, 0.4), so the inaccuracies

of estimators with small number of lags should not have an influence on the

results of real markets analysis and compilation of the efficiency ranking.

Regression of fractal dimensions

The differences in the estimated fractal dimensions may not be caused only

by imperfections in fractal dimension estimations but also by differences in

simulated time series, as the simulations are not completely exact. We try to

distinguish between these two imperfections by regressing the fractal dimension

of the whole series on the fractal dimension of both random walk parts and

ARFIMA part. We find that the coefficients of all these variables are significant

and the average Adjusted R2 of the regressions is 70% for the 5 lags estimators

and 80% for the 20 lags estimators. We use simple OLS regressions and test the

assumptions; all assumptions are fulfilled. The results are summed up in Table

5.8; the significance and value of coefficients of random walk parts suggests

that there is a difference between the two time series reflecting in their fractal

dimension; the coefficients’ values correspond to the number of observations

occupied by each of the parts. The coefficients of ARFIMA part depend on the

model settings.

5.4.2 Three hundred and one thousand of ARFIMA ob-

servations

We now evaluate the fractal dimensions estimated on time series with 300 and

1,000 ARFIMA observations and compare the result with the previous section;

we expect the results to be very similar, only the ARFIMA effect should be

stronger in the case of 1,000 observations and weaker for 300 observations.

The outcomes are presented in the the Appendix. Figures B.14 and B.15

show 3D graphs of the fractal dimension with fixed θ parameter estimated by
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Table 5.8: Results of regression of final series’ fractal dimension on
fractal dimensions of individual parts of the series

the 5 and 100 lags madogram; the bias in the fractal dimensions of the series

with 300 observations is smaller than of the series with 1,000 observations as

supposed. Even though the bias is smaller, it is still present and the shape

of graphs is same for all numbers of ARFIMA observations. As the effect of

more lags is same as in the case of 500 observations, we exhibit only the results

for the 5 lags estimators. The weaker effect of ARFIMA in series with 300

observation and stronger effect in series with 1,000 observations is noticeable

in the Tables A.7 and A.8 in the Appendix. The standard errors are higher

in the case of 1,000 ARFIMA simulations, especially for ARFIMA series with

higher φ coefficient, which is caused by the longer part of ARFIMA and its

probably lower exactness of simulations. Confidence intervals for the 5 lags

estimator are presented in Figures B.16 and B.17 in the Appendix. We can

conclude that the results confirm our expectations about the effect of number

of ARFIMA observations.

5.4.3 Detailed analysis of changing number of ARFIMA

observations

We examine the influence of changing number of ARFIMA observation on the

final series’ fractal dimension in a greater detail. We estimate fractal dimension

for 100, 200, 300, 400, 500, 750, 1,000, 1,500 and 2,000 ARFIMA observations in

random walk series and find that the longer the ARFIMA part is, the stronger

is the effect, which confirms our expectations; even the difference between 100

and 200 observations is noticeable. The standard error of estimations increases
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with the number of ARFIMA observations which can be found in Table A.9 in

the Appendix containing means and standard errors of the fractal dimensions;

the shading stresses the trends with changing number of observations. As

the behaviour of fractal dimension in context of changing number of lags is

described in previous sections of the thesis, we present the results for only the

5 lags estimator.

Figure B.18 in the Appendix depicts the relation between means and confi-

dence intervals of the fractal dimensions and increasing number of observations

of three selected types of ARFIMA. The reaction of the fractal dimension on

growing number of ARFIMA observations is very similar for the estimators

with all examined numbers of lags. In case of ARFIMA(0, -0.4, 0), the fractal

dimension increases with the number of ARFIMA observations, and there are

no differences among the estimators. The other examined types of included

ARFIMA have positively autocorrelated returns, so the fractal dimension de-

creases with the number of ARFIMA observations; for ARFIMA(0.4, 0, 0.4)

the estimator with 5 lags responds to the changes in number of observation

more significantly than the estimator with 100 lags; for ARFIMA(0.8, 0.4, 0.8)

it is the other way around: the 100 lags estimator is affected more than the 5

lags estimator.

Table 5.9 includes the mean fractal dimensions for different number of lags

estimators and the shading stresses problem of the bias for different number of

observation.

The problem of fractal dimension estimations bias is present in all 5 lags

estimations and in none of the 100 lags estimations; most interesting are the

results of the 20 lags estimator, where the fractal dimensions exhibit normal

behaviour for 100 observations, start to be a bit distorted for 200 observation,

and the skewness grows with the number of observations.

As both strength and length of ARFIMA observations influence fractal

dimension, we are unable to distinguish between e.g. 1,000 observations of

ARFIMA(0, 0.2, 0) and 400 observations of ARFIMA(0.8, 0, 0.8). For this

reason we recommend to not rely on fractal dimension of whole series but try

to estimate the series by smaller parts as described in one of the following

sections.
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Table 5.9: Mean fractal dimensions for different number of
ARFIMA(0.8, d, 0.8) observations, 5, 20, and 100 lags
madogram
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5.4.4 Placement of ARFIMA observations

The placement of an ARFIMA part in the efficient time series should not

have an influence on the resulting fractal dimension, but we rather empirically

verify the statement. The estimators with different number of lags exhibit

some peculiarities, so it is desirable to check how fractal dimension reacts to

ARFIMA part placed at different positions in the final time series. We place

the ARFIMA part to the first, second, third, and last quarters, use 300, 500,

and 1,000 ARFIMA observations and estimate fractal dimension with 5, 20,

and 100 lags.

A part of the result is depicted in Table A.10 in the Appendix. We detect

that the placement does not influence the estimated fractal dimension; differ-

ences in the fractal dimensions for various placements are negligible.5 Finally,

we try to split 1,000 observations to 500 observations in the first quarter and

500 observations in the third quarter of the time series; the fractal dimension

of this time series differs more significantly from the rest of the series con-

taining 1,000 ARFIMA observations; the difference happens to be larger than

0.003. This is another finding that lead us to estimating fractal dimension of

individual parts of the whole series.

5.4.5 Estimation of fractal dimension by parts

We estimate not only fractal dimensions of whole time series, but also fractal

dimensions of individual parts – the first part of random walk, the second part

of ARFIMA, and the third part of random walk, so we can compare the results

of individual parts and the whole time series. The fractal dimensions of random

walk parts are unsystematically distributed around 1.5, and the changes in frac-

tal dimensions of ARFIMA are consistent with the theory of fractal dimension

changes copying the changes in ARFIMA parameters; however, when we com-

bine the series, some imperfections in the fractal dimension estimations turn

up. Hence, we try to avoid the peculiarities by estimating fractal dimensions of

each part of the series separately. Our hypothesis is that the imperfections in

the estimated fractal dimension disappear if ARFIMA series covers a sufficient

part of the examined number of observations.

Two settings of ARFIMA are chosen for the analysis of performance of the

5 lags and 20 lags estimators. Specifically, we select ARFIMA(0.4, d, 0.4) and

ARFIMA(0.8, d, 0.8); each series contain 1,000 observations of ARFIMA. We

5The differences are smaller than 0.001.
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estimate fractal dimension of the whole time series; then the time series is di-

vided to 2, 4, 5, and 10 equally long parts, and we estimate fractal dimension

of each part separately. The results are presented in Table A.11 in the Ap-

pendix. As we know from the previous analysis, both estimators return skewed

results for the selected settings of ARFIMA. Looking at the 5 lags results,

we can see that the skewness is quite persistent and starts to diminish when

ARFIMA series covers at least the half of observations. A similar behaviour

can be observed for the 20 lags madogram.

We conduct a more detailed analysis of reactions of fractal dimension to

ratio of observations covered by ARFIMA time series; simulations containing

from 10% to 100% of ARFIMA observations are executed and their fractal

dimension is measured. We employ two different approaches: in the first one,

we fix the total number of observation to 10,000 and change the number of

ARFIMA observations, while in the second approach we fix the number of

ARFIMA observations and change the total number of observations. Again the

20 lags estimator is analysed on ARFIMA(0.8, d, 0.8) and the 5 lags estimator

on ARFIMA(0.4, d, 0.4). The results are shown in Tables 5.10 and 5.11.

In case of fixed number of total observations, skewness is persistent and the

difference between 10% of ARFIMA and 90% of ARFIMA is very small. For

fixed number of ARFIMA observations, the difference is more significant, but

the results remains biased even for 90% of ARFIMA observations. As we know

from the ARFIMA analysis and as it is shown in the tables with results again,

the fractal dimensions of pure ARFIMA simulation do not exhibit any type of

bias, but if an examined series contains a mixture of efficient and inefficient

parts, the results are always skewed for stronger autocorrelation structures and

estimators with lower number of lags. The ratio between efficient and inefficient

observations plays only a minor role, which is showed by the difference between

time series with 100% and 90% of ARFIMA observations.

Further, the efficient part has a higher than expected impact on the value

of fractal dimension. The fractal dimension of an efficient time series is 1.5

and the fractal dimension of ARFIMA(0.4, 0.2, 0.4) is 1.1155. One would

suppose that fractal dimension of a combination of these two series would be

linearly dependent on their proportion and fractal dimensions, so a combination

containing 90% of ARFIMA observations and 10% of efficient observations

should have fractal dimension close to 1.154.6 Nevertheless, the estimated

fractal dimension of this combination is 1.35 and the fractal dimension than

60.9 · 1.1155 + 0.1 · 1.5 = 1.154.



5. Results of simulations 52

Table 5.10: Means and standard errors of fractal dimensions for RW
with changing ratio of ARFIMA(0.4, d, 0.4) observations,
5 lags madogram
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Table 5.11: Means and standard errors of fractal dimensions for RW
with changing ratio of ARFIMA(0.8, d, 0.8) observations,
20 lags madogram
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only slowly increase with the proportion of efficient observations to 1.49. This

oddity may be caused by the fitting of ARFIMA series; we address the problem

later in this section.

Standard errors increase with declining number of total observations and

with the growing number of ARFIMA observation as well, which suggests that

the simulation of ARFIMA is less exact than the simulation of random walk.

We find that estimation by parts does not represent a solution for skewness of

some results and it is better to use estimators with more numbers of lags and

compare the results to avoid mistakes in the evaluation of a market; however,

there are other reasons to employ estimation of fractal dimension of separate

parts, e.g. a time series may contain parts with both positive and negative

autocorrelation which could counteract each other.

5.4.6 More contradictory ARFIMA parts

To analyse the problem of two inefficient parts with contradictory effects men-

tioned in the previous section, we simulate a time series with two inefficient

parts: the former part consists of ARFIMA(0, -0.4, 0) with negatively cor-

related returns and the latter part by ARFIMA(0.4, 0.2, 0.4) with positively

correlated returns. The graphs of the time series can be found in the Appendix

as Figure B.19. We place the ARFIMA(0, -0.4, 0) part to the first half of the

time series and ARFIMA(0.4, 0.2, 0.4) to the second half; then we switch the

order to check robustness of results.

We estimate fractal dimension for the whole time series and for the first and

second part separately; results are noted in Table 5.12. The fractal dimension

of the whole series confirms irrelevance of ARFIMA part placement and takes a

value relatively close to 1.5. The separate estimation enables us to distinguish

the part with positive and the part with negative autocorrelation. Although

both of the ARFIMA parts occupy the same number of observations, the fi-

nal fractal dimension is not equal to the average of fractal dimensions of the

individual parts. It is in fact slightly higher, indicating that the more volatile

ARFIMA part little overweights the other one.

As real markets consist of orderless sequence of more and less efficient parts,

we recommend to examine the sequence structure by parts.
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Table 5.12: Means and standard errors of fractal dimensions for RW
with two contradictory ARFIMA parts, madogram

5.4.7 Gradually estimated fractal dimension of complex

time series

To examine the power of fractal dimension on time series that are closer to

real markets, we simulate a complex time series composed of different types of

ARFIMA and various length of random walk. We estimate fractal dimension of

the whole series and of each tenth of the series separately. Then we apply a new

approach - gradual estimation of fractal dimension. We begin with estimation

of fractal dimension of the first 500 observations, add 10 observations in each

step and always re-estimate fractal dimension to see whether small changes in

autocorrelation structure influence resulting fractal dimension.

We begin with a time series composed of random walk and ARFIMA sim-

ulation that are both positively and negatively correlated. In spite of the fact

that strong autocorrelation and rapid changes are inconsistent with real mar-

kets, we include ARFIMA series with relatively strong autocorrelation to stress

out the effect. The composition of simulated time series is described by the

chart in Figure 5.11 and a graph of a sample simulated time series can be found

in Figure 5.12; the vertical grey lines signal changes in used types of simula-

tion. The strong positive and negative autocorrelation structures are visually

noticeable in the graph. Let us focus on fractal dimension to see whether the

changes in the structure show up in fractal dimension as well.
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Figure 5.11: Composition of simulated time series, 1st setting

Figure 5.12: Example of the complex time series, 1st setting

The means and standard errors of the fractal dimensions of the whole series

and each tenth of the series are shown in Table 5.13; we use the madogram

with 5, 20 and 100 lags. The first column indicates the range of observations

used in the estimation of fractal dimension, whereas the second column con-

tains information about the types of time series creating the separate parts.

The fractal dimension of the whole time series is not very informative; the 5

lags estimator claims that there is slight positive autocorrelation, while the

20 and 100 lags estimators return fractal dimensions slightly higher than 1.5,

suggesting negative correlation in the returns. The fractal dimensions of indi-

vidual tenths of the time series capture the differences among the individual

parts well, but standard errors are high especially for the estimators with large

number of lags. Despite high standard errors, the fractal dimensions of indi-

vidual parts give much better insight in the structure of the time series than

the fractal dimension of the whole series.

Finally, we get to the gradual growth in the number of observations. As

noted before, we estimate fractal dimension for the first 500 observations, then

for the first 510, 520 and so on up to 10,000. We end up with 951 different

fractal dimensions that should record the changes in the underlying time se-
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Table 5.13: Means and standard errors of fractal dimensions for the
whole complex series and its tenths, 1st setting, mado-
gram
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Figure 5.13: Means and standard errors of fractal dimensions for
graduate increase in number of observation complex
time series, 1st setting, 5 lags madogram

ries. Disregarding standard errors, the results for the estimators with 5, 20

and 100 lags are very similar, so we report only those for 5 lags. The mean

fractal dimensions and related confidence interval are depicted in Figure 5.13.

The graph shows that average fractal dimension reacts to the changes in the

time series exactly as expected and the reaction is nearly immediate. New

observations influence total fractal dimension in the direction of the fractal

dimension value of the just added part. The stronger is the autocorrelation,

the sharper is the change in fractal dimension. The confidence interval of the

fractal dimensions is narrow, so the approach is expected to work well not only

in averages but for a single time series as well. This is illustrated in Figure

B.20 in the Appendix. Although the line is more volatile than for means, it

tracks the changes correctly; the volatility of the fractal dimensions increases

with number of lags.

The previous results are promising; to make the simulations more similar

to real market prices development, we simulate another time series and use

smaller changes in the autocorrelation structure. Fractal dimension is expected

to register these changes as well. The chosen settings are presented in Figure

5.14. The changes in the settings of time series are less visually noticeable than

in the previous case as shown in Figure 5.15.

We conduct the same analysis as for the previous time series and find that

the even such small changes are well reflected in fractal dimension as demon-

strated in Figure 5.16. Even though the volatility in sample time series’ fractal

dimensions increases as shown in Figure B.21 in the Appendix, the trends still

correspond to the changes in the underlying time series. The fractal dimensions
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Figure 5.14: Composition of simulated time series, 2nd setting

Figure 5.15: Example of the complex time series, 2nd setting

of the whole series and each tenth of the series can be found in Table A.12 in

the Appendix.

These findings may be utilized in trading to identify changes in autocorre-

lation structure of returns. Together with analysis of slope of the line depicting

the estimated fractal dimensions and a study of individual parts of prices time

series, it can help to reveal the level of autocorrelation currently occurring on

the market and its changes. The practical usage of fractal dimension would

require a deeper study of e.g. the optimal length of time series used to tracking

the changes in fractal dimension (and so in the autocorrelation structure) or of

the connection between relative changes in the autocorrelation structure and

fractal dimension. Such analyses would be beyond the scope of our thesis and

are left to be examined by other studies. Although our work does not solve the

problem, it represents the first steps of fractal dimension usage in analysis of

market efficiency.

5.4.8 Impact of ARFIMA fitting

In the simulation of efficient and inefficient parts we use fitting of the series

to keep the amplitude more or less constant. This fitting may influence the
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Figure 5.16: Means and standard errors of fractal dimensions for
graduate increase in number of observation, 2nd setting,
5 lags madogram

resulting fractal dimension by diminishing the effect of ARFIMA part. Figure

B.22 in the Appendix depict ARFIMA simulation, fitted ARFIMA simulation,

inclusion of not fitted ARFIMA part to random walk and inclusion of fitted

ARFIMA part. The effect of fitting on ARFIMA series itself is minimal - it

only influences the scale; the values range of ARFIMA simulations is usually

much higher than values range of random walk and inclusion of such a series to

random walk would result in a very unrealistic sequence of observations such

as the one shown in the third graph. Therefore, a fitting is needed as it adjusts

the values range to correspond to random walk and the resulting time series

than look like the fourth graph.

The fitting influences fractal dimension of the time series as described in

Table 5.14. The fractal dimensions of the time series with unfitted ARFIMA

part are much smaller than those of time series with fitted ARFIMA, so we

can say that fitting decreases the effect of ARFIMA part on fractal dimension

of the whole series. Fractal dimension of ARFIMA series itself is not affected.

This finding explains the jump between the fractal dimensions of time series

with 90% and 100% of ARFIMA observations in Section 5.4.5.

5.4.9 Effect of number of observations on standard error

The fractal dimension estimated by the madogram reflects both the number

of lags and the number of observations as described in Equations 3.11 and
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Table 5.14: Effect of fitting on fractal dimension of time series, mado-
gram

3.12. We suppose that higher number of observations makes estimations more

accurate, and standard error of the estimated fractal dimension thus decreases.

The statement is confirmed by the results in Table 5.15, showing the mean

fractal dimensions and standard errors for given numbers of random walk obser-

vations and lags. The standard error of 5 lags estimation decreases from 0.0335

for 500 observations to 0.0023 for 100,000 observations; further, the estimated

fractal dimensions are closest to 1.5 for 5,000 and more observations.

We are now want to find whether we can use higher number of lags for time

series with more observations without increasing the standard error. To ex-

amine this topic, we fix the ratio between numbers of lags and observations to

1% and estimate the fractal dimension of 500 random walk observations with

the 5 lags estimator, 1,000 observations with the 10 lags estimators, and so on

up to using the 1,000 lags estimator for random walk with 100,000 observa-

tions. We discover that the estimations of fractal dimension are most precise

for 2,000 observations and the 20 lags estimator, 5,000 observations and the

50 lags estimator, and 10,000 observations and the 100 lags estimator. The

estimators with higher numbers of lags overestimate the fractal dimension, but

the standard errors decrease with the number of observation, meaning that the

fractal dimension estimated by the madogram with more lags on a bigger sam-

ple are less volatile; to keep the standard error unchanged, we may use even

more number of lags than 1% of observations.

If it is possible, one should use at least 2,000 observations for estimation of

fractal dimension to make standard errors small and estimations more precise.

However, we have only daily data and this limitation would be very striking,

the recommendation is thus applicable rather for high frequency data.



5. Results of simulations 62

Table 5.15: Means and standard errors of fractal dimensions for RW
with increasing numbers of observations and lags, mado-
gram

5.4.10 Other results

This subsection contains results for Brownian motion and martingale simu-

lations in combination with the madogram, Hall-Wood, and box-count esti-

mators. The outcomes description is divided to paragraphs for each type of

estimator; these include description of results for all kinds of efficient time

series simulation and comparison of the results. The background for the com-

ments can be found in Appendix, where we presents both tables with means

and standard errors of the fractal dimensions and 3D graphs. To save the sim-

ulation time, we simulate only 500 pieces of each setting for the Hall-Wood and

box-count estimators. The results of individual estimators are discussed in the

following order: the madogram, Hall-Wood, and box-count estimators.

There are only small differences between the results for random walk and

Brownian motion using the madogram. The fractal dimensions estimated on

Brownian motion cover wider range of values and their standard errors are

mostly a bit higher than for simulations of random walk. Martingale simula-

tion leads to overestimation of fractal dimension for the small lag estimators

as described in the section discussing differences between random walk, Brow-

nian motion, and martingale simulations. In case of the 100 lags estimator, the

results are much closer to the random walk outcomes. All types of simulations

exhibit the same bias for the 5 lags estimators and stronger positive autocor-

relation, and the bias disappears for the 100 lags estimators. The results are

summed up in Tables A.13 to A.15 in the Appendix. Further, we provide 3D

graphs for all free types of simulation including ARFIMA(p, d, 0.4) inefficient

part for 5, 20 and 100 lags in Figure B.23 in the Appendix. Figures for random

walk and Brownian motion simulation are nearly identical, the martingale fig-
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ures are more skewed and moved up for small number of lags, but the difference

is reduced with higher numbers of lags. The dissimilarities are caused by less

exact martingale simulation as described in one of the previous sections. We

can conclude that there is not a significant difference between the results of the

three types of simulations.

The results of the Hall-Wood estimators exhibit the same behaviour as in

case of the madogram estimators; characteristics of the outcome are same so

we do not repeat them here. The means and standard errors are presented in

Tables A.16 to A.18 in the Appendix and 3D graphs can be found in Figure

B.24 in the Appendix. For this estimator, we present only results for 5 and 20

lags.

The outcomes for the box-count estimator are completely different. Num-

ber of lags is set to the “auto” option as it is the most efficient estimator. The

3D graphs depicting the mean fractal dimension can be found in the Appendix

in Figure B.25. The results for random walk and Brownian motion simula-

tions keep the assumed trend but the fractal dimensions are underestimated.

Further, the impact of p parameter diminishes and the differences between sim-

ulations with ARFIMA(0, d, 0.4) and ARFIMA(0.8, d, 0.4) are much smaller

than in case of other estimators. Moreover, the graphs exhibit higher volatility,

so trends are not so clear. The differences between random walk and Brownian

motion can be characterized by the same description as provided for the mado-

gram and Hall-Wood estimations. Martingale simulation stands out as it seems

to be totally wrong. The fractal dimensions suffer from a big overestimation

and the trend in both parameters is reversed. The results are probably caused

by the problematic martingale simulation, which tends to overestimate fractal

dimension also for the other estimators; however, the impact is stressed a lot

for the box-count estimator. The means and standard errors for all types of

simulation are presented in the Appendix in Tables A.19 to A.21.

To point out differences between individual estimators, we include Figure

B.26 with results of the madogram, Hall-Wood and box-count estimators for

random walk simulations. As noted before, the results of the madogram and

Hall-Wood estimators are nearly identical while the box-count results stand

out with the underestimated fractal dimension and diminished impact of p

parameter.
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5.5 Conclusion

Based on the conducted analysis we conclude that fractal dimension accurately

captures the autocorrelation structure in returns and distinguishes between

autocorrelations of different strength. We recommend using of the madogram

estimator as it is the most efficient estimator. Although the 5 lags estimators

have the lowest standard errors, we think that it is better to examine esti-

mations with both lower and higher numbers of lags, because the small lags

estimators show some peculiarities for fractal dimension of time series with

stronger autocorrelation, which disappear with the increasing number of lags.

The problem of fractal dimension of a whole time series is that a time

series may contain positive and negative autocorrelations parts which could

counteract with each other and thus distort the efficiency result. For this

reason, we suggest to divide the time series to several parts and estimate fractal

dimensions for these parts separately to avoid distortions. If it is possible, the

individual parts should have at least 2,000 observations. To track changes in

a time series, one can estimate fractal dimension of the first part of the series

and then gradually add the other observations, re-estimating fractal dimension

after each extension of the time series.

Changes in fractal dimension together with the size of the changes may cre-

ate a useful tool for identification of market efficiency and tracking the changes

in the efficiency. A deeper study of the utilization of fractal dimension in trad-

ing is left for other studies as it is beyond the scope of this thesis. Now we use

these findings in comparison of individual markets and create their efficiency

ranking.



Chapter 6

Results of real market analysis

We analyse efficiency of 28 stock market indices listed in Table 6.1. The dataset

has been obtained from finance.yahoo.com public database. We examine all

indices with a reasonable number of observations available in the database;

our dataset includes indices from North and South America, Europe, Asia and

Oceania. The study utilizes all observations downloadable in the databases at

the beginning of February 2014, and the number of observations is noted in

Table 6.1. The exact analysed period of each individual stock can be found in

the Appendix in the section of indices’ analyses, where we describe the indices

in a greater detail. Examined periods of most of the indices cover the years of

stable growth, DotCom bubble burst and subsequent stable decrease, and the

2007-2008 financial crisis.

Note, that security prices can be viewed as simple price or a logarithmic

price. Logarithmic prices approach is the more standard one, so we apply it

in our thesis. Basic descriptive statistics of the logarithmic close/close returns

are presented in Table 6.2. To make the statistics comparable, we omit the

early observations and examine statistics for years 2000-2013 if available. Basic

descriptive statistics of the logarithmic close/close returns for all observations

are recorded in Table C.1 in the Appendix. According to the KPSS test and

Augmented Dickey Fuller test, all returns are stationary; the ADF test strictly

rejects the unit root for all indices, so we do not present the results.

Two types of analysis are employed: an overall analysis ranking the mar-

kets according to market efficiency and more detailed study of main groups of

markets based on the efficiency development of markets.
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Table 6.1: List of analysed indices

Ticker Index Country # obs.

AEX Amsterdam Exchange Index The Netherlands 5435
ASE Athens Stock Exchange General Index Greece 6746
ASX Australian Securities Exchange Index Australia 3120
ATX Austrian Traded Index Austria 5254
BEL20 Euronext Brussels Index Belgium 5777
BSE Bombay Stock Exchange Index India 4104
CAC Euronext Paris Bourse Index France 6063
DAX Deutscher Aktien Index Germany 5875
ESTX EURO STOXX 50 Index Eurozone 6953
FTSE Financial Times Stock Exchange 100 Index UK 7541
HSI Hang Seng Index Hong Kong 6471
IBOSP Ibovespa Brasil Sao Paulo Stock Exchange Index Brazil 5141
IPC Indice de Precios y Cotizaciones Mexico 5563
IPSA Santiago Stock Exchange Index Chile 2593
JKSE Jakarta Composite Index Indonesia 4033
KLSE Bursa Malaysia Index Malaysia 4975
KS11 KOSPI Composite Index Korea 4093
MERVAL Mercado de Valores Index Argentina 4270
NASD NASDAQ Composite Index USA 10847
NIKKEI NIKKEI 225 Index Japan 7402
NZX New Zealand Exchange 50 Gross Index New Zealand 2355
SPX Standard & Poor’s 500 Index USA 16128
SSEC Shanghai Composite Index China 5935
SSMI Swiss Market Index Switzerland 5871
STRAITS Straits Times Index Singapore 6546
TSE Toronto Stock Exchange TSE 300 Index Canada 7420
TWSE Taiwan Stock Exchange Weighted Index Taiwan 4082
XAO All Ordinaries Index Australia 7467

Table 6.2: Descriptive statistics of analysed indices, close-close re-
turns, observations for years 2000-2013

Index Mean Min Max SD Skewness Kurtosis KPSS p-value

AEX -0.0001 -0.0959 0.1003 0.0152 -0.0651 9.0820 0.1844 > 0.05
ASE -0.0004 -0.1021 0.1343 0.0176 -0.0132 7.1399 0.1743 > 0.05
ASX 0.0002 -0.0870 0.0563 0.0105 -0.4471 8.8732 0.1130 > 0.05
ATX 0.0002 -0.1025 0.1202 0.0150 -0.3027 10.1011 0.2398 > 0.05
BEL20 0.0000 -0.0832 0.0933 0.0132 0.0445 8.8571 0.1216 > 0.05
BSE 0.0004 -0.1181 0.1599 0.0162 -0.1818 9.4239 0.1529 > 0.05
CAC -0.0001 -0.0947 0.1059 0.0154 0.0262 7.6637 0.1371 > 0.05
DAX 0.0001 -0.0743 0.1080 0.0158 0.0233 7.1487 0.2505 > 0.05
ESTX -0.0001 -0.0821 0.1044 0.0156 0.0177 7.2505 0.1402 > 0.05
FTSE 0.0000 -0.0926 0.0938 0.0126 -0.1243 8.9375 0.1804 > 0.05
HSI 0.0001 -0.1358 0.1341 0.0158 -0.0667 10.8159 0.1219 > 0.05
IBOSP 0.0003 -0.1210 0.1368 0.0187 -0.0898 6.7837 0.1523 > 0.05
IPC 0.0005 -0.0827 0.1044 0.0141 0.0242 7.5342 0.1108 > 0.05
IPSA 0.0005 -0.0724 0.2788 0.0120 4.8278 120.9241 0.4298 > 0.05
JKSE 0.0005 -0.1095 0.0762 0.0148 -0.6766 8.9110 0.2101 > 0.05
KLSE 0.0002 -0.1925 0.1986 0.0111 -0.2474 95.5659 0.1401 > 0.05
KS11 0.0002 -0.1280 0.1128 0.0170 -0.5296 8.3126 0.1350 > 0.05
MERVAL 0.0007 -0.1295 0.1612 0.0213 -0.1223 7.7794 0.0844 > 0.05
NASD 0.0000 -0.1017 0.1325 0.0175 0.0457 7.9047 0.4790 > 0.04
NIKKEI 0.0000 -0.1211 0.1323 0.0158 -0.4203 9.2486 0.2949 > 0.05
NZX 0.0003 -0.0494 0.0581 0.0074 -0.3604 7.8701 0.2265 > 0.05
SPX 0.0001 -0.0947 0.1096 0.0132 -0.1753 10.7004 0.2634 > 0.05
SSEC 0.0001 -0.0926 0.0940 0.0156 -0.0891 7.5811 0.1465 > 0.05
SSMI 0.0000 -0.0811 0.1079 0.0122 0.0156 9.1551 0.1346 > 0.05
STRAITS 0.0001 -0.0922 0.0753 0.0123 -0.4240 9.1606 0.1692 > 0.05
TSE 0.0001 -0.0979 0.0937 0.0119 -0.6422 11.7667 0.0653 > 0.05
TWSE 0.0000 -0.0994 0.0652 0.0150 -0.2380 5.7584 0.1416 > 0.05
XAO 0.0002 -0.0855 0.0536 0.0100 -0.6056 9.4036 0.0868 > 0.05
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6.1 Overall analysis

In this section, we compare efficiency of the indices. We focus on the period

2000-2013 and estimate fractal dimension of each index using the madogram

with 5, 20, and 100 lags. Reasons for using these types of estimators are

described in the conclusion of the previous chapter. Recall that we have to

be aware of possible inaccuracy of the 100 lags estimator associated with the

limited number of observations.

The fractal dimensions for period 2000-2013 are presented in Figure 6.1

showing the results for the 5 lags estimator; results for the 20 lags estimator can

be found in the Appendix as Figures C.1. The fractal dimension of an efficient

market is marked by red colour. There are 5 indices characterized by the

dimension significantly higher than 1.5 indicating negative autocorrelation in

returns (and higher volatility in prices) compared to an efficient market. Other

7 indices have the fractal dimensions very close to 1.5, implying structures

close to efficient market, and the fractal dimensions of the rest of the indices

are lower than 1.5, which is probably caused by local or global persistences in

the data.

The index with the highest value of the fractal dimension is FTSE index of

British Financial Times Stock Exchange, followed by American SPX, French

CAC, European ESTX, and American NASD; all of them have the fractal

dimension higher than 1.5. Australian ASX, Brazilian IBOSP, Austrian AEX,

Canadian TSE, Japanese NIKKEI, Swiss SSMI, and German DAX have the

fractal dimensions very close to 1.5. The least efficient markets are marked

by the fractal dimension lower than 1.45; these markets probably experience

strong or long term trend and thus are at least partially predictable. Chilean

IPSA, Malaysian KLSE, Indonesian JKSE, Argentine MERVAL, and Greek

ASE belong among the 5 least efficient markets.

Figure C.1 in the Appendix shows result for the madogram with 20 lags,

which slightly overestimates fractal dimension, and it marks more indices as

highly volatile. The two estimators are not consistent even in the ranking of

indices; to identify the reasons of inconsistency, we have to analyse individual

indices in more details, as some patterns in data are strongly captured by the

20 lags estimators, while others by the 5 lags estimators. Hence, we provide

a brief description of each index in Appendix.

We do not present the overall results for the 100 lags madogram as they

may be significantly skewed due to the low number of observations.
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Figure 6.1: Fractal dimension for world stock indices, 5 lags mado-
gram

In the Appendix, we provide an overview of statistics and results for each

index: descriptive statistics for all observations and years 2000-2013, plot of the

index, fractal dimension of all observations, years 2000-2013 and each thousand

of observations separately, graph of the fractal dimensions gradually estimated

for increasing number of observations, and a brief comment. Even though the

tables of the the fractal dimensions contain values for the 5, 20 and 100 lags

estimators, the results for the 100 lags madogram are probably biased due to

low number of observations, this problem is illustrated in the previous chapter

on the standard errors of the 100 lags estimates. For the last graph, we use the

5 lags values.

The estimated fractal dimensions of indices presented in our thesis are

slightly higher than those introduced in the paper by Kristoufek and Vosvrda

(2013) which may be caused by employment of different estimators, lags specifi-

cations or the time range; we use data from years 2000-2013, whereas Kristoufek

and Vosvrda analyse time period January 2000 - August 2011. This can lead

to the differences in ranking as well.

6.2 Main groups of indices

This section examines results of a separate analysis of each index, which in-

cludes estimation of fractal dimension for every 1,000 observations of the time

series and re-estimation of fractal dimension for a gradually increasing sample,
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the re-estimated fractal dimensions are called “cumulative” fractal dimension

in the rest of the study. These two approaches enable us to see when an in-

dex was more and less efficient and when the changes in efficiency occurred.

Based on the analysis, the indices can be divided into four groups: very efficient

markets, low performing markets, markets that improved their structure and

reached efficiency but experienced a drop recently, and markets that steadily

improve their efficiency. Main characteristics of each group are provided in the

following sections. Even though we present only the graphs of “cumulative”

fractal dimension here, the characteristics of individual groups are based on

complex analysis of each index.

6.2.1 High volatility markets

This group of markets is characterized by anti-persistent periods when fractal

dimensions of all included markets exceeded 1.5. Although at the time of

each index introduction, the markets suffered from positive autocorrelation

in returns and fractal dimensions of the indexes was not higher than 1.45, the

inefficiencies disappeared, and fractal dimensions increased and approached 1.5

value. In the pre-crisis and the early crisis period, volatility increased above the

level desired by efficiency markets, and fractal dimension reached values higher

than 1.53. However, as the markets were hit by financial crisis, volatility has

decreased to the martingale level, and fractal dimension returned to values

close to 1.5. This development of fractal dimension is characteristic for highly

developed markets.

Focusing on the graphs of gradual estimation of the fractal dimensions, we

can see a rapid increase referring to the high volatility period. Let us describe

the characteristic features of the group on Figure 6.2 depicting the fractal

dimensions of a representative of the group - FTSE index. The observations

1 to 4,000 record the early existence of the index and the fractal dimension

oscillating along the 1.46 value indicates low efficiency of the market at that

time. Then there is a rapid growth of the “cumulative” fractal dimension,

typical for a period with high volatility. At the end of the sample, the growth

stops and the fractal dimension starts to stagnate with values close to 1.5

signalling an efficient market.

The group contains the following indices: CAC, ESTX, FTSE, NASD,

NIKKEI, and SPX. Statistics and graphs relating to the indices are presented

in Appendix C.
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Figure 6.2: FTSE - graph of gradually estimated fractal dimensions

6.2.2 Inefficient markets

This group includes markets with stagnating low level of efficiency accompanied

by low fractal dimension; these markets provide an opportunity for investors to

gain higher than normal returns. The group is characterized by local or global

persistences and contains mostly developing financial markets.

The members of this groups may have two different types of graphs - the

former ones clearly show that fractal dimension is stabilized and takes values

close to a given level, whereas the later ones can be misleading as “cumulative”

fractal dimension increases in spite of the stagnation of fractal dimension. See

for example the graph of STRAITS Section C.24 in the Appendix. The ongoing

growth is caused by very low initial values of the fractal dimension; even though

the fractal dimension keeps value close to 1.47 for the last 2,000 observations,

the graphs depict and increasing curve. To register the reason, one has to focus

on the values on y-axis. At the end of the sample, the “cumulative” fractal

dimension reaches 1.42, a value significantly lower than 1.46. The first described

type of graphs usually shows higher visual volatility in “cumulative” fractal

dimensions as depicted in Figure 6.3 of the TWSE index fractal dimensions.

Indices belonging to this group are: ASE, BSE, IPSA, KLSE, KS11, MER-

VAL, SSEC, STRAITS, and TWSE. Further information about these indices

can be found in the Appendix C.



6. Results of real market analysis 71

Figure 6.3: TWSE - graph of gradually estimated fractal dimensions

6.2.3 Constantly improving markets

Constantly improving markets group compiles indices that were not hit by the

crisis and whose fractal dimensions continue to growth and approaches the level

of 1.5. Most of the efficient markets were influenced by the recent crisis and

their fractal dimensions have decreased, which implies a drop in inefficiency.

However, there are few exceptions whose fractal dimensions continue to growth

despite the crisis. Although one can observes local slowdown in the growth

or even a slight decrease, fractal dimensions of individual parts of the indices

show growth, and fractal dimension of the last 1,000 observations is very close

to 1.5 for most of the group members. So this group, together with the “Very

efficient markets”, represent currently efficient markets.

Figure 6.4 is a representative illustration of the “cumulative” fractal dimen-

sion’s development of BEL20 index. You can see a sequence of less and more

steep increases. The graph shows that the “cumulative” fractal dimension ap-

proaches 1.45 value, but the fractal dimension of the last 1,000 observations

is 1.50, signalling high efficiency of the market. This example explains why

“cumulative” fractal dimension is a good indicator of fractal dimension devel-

opment but a bad indicator of the state of fractal dimension.

The group includes the following indices: ATX, BEL20, IPC, JKSE, TSE.

More detailed information about these indices are located in the Appendix C,

which includes statistics and graphs of individual indices.
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Figure 6.4: BEL20 - graph of gradually estimated fractal dimensions

6.2.4 Markets hit by the recent crisis

As noted in the preceding subsection, most of the previously efficient markets

were hit by the crisis that caused arising of local inefficiencies and positive au-

tocorrelation in returns. All indices recently experiencing a drop are contained

in this group, most of them were previously very close to efficiency and 1.5

value of fractal dimension, while now their fractal dimensions take values close

to 1.48.

The decrease in efficiency may not be visible in graphs of “cumulative”

fractal dimensions or it can appear as a slowdown in increase, which is caused

by the impact of previous observations; hence, the main indicator of a drop is

fractal dimension of the last 1,000 observations. We may show the effect on

Figure 6.5 of DAX index. The “cumulative” fractal dimension grows to 1.49

and then it starts to slightly decrease with a drop in the fractal dimension from

1.5 to 1.485.

The following indices were categorized as recently efficient but affected by

crisis: ASX, AEX, DAX, HSI, IBOSP, SSMI, XAO. Statistics and graphs re-

garding individual indices are presented in the Appendix C.
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Figure 6.5: DAX - graph of gradually estimated fractal dimensions



Chapter 7

Conclusion

The efficient market hypothesis and its testing are important not only for re-

searches but also for investors, because it is impossible to systematically achieve

abnormal returns on efficient markets. The currently used approaches to test-

ing the efficient market hypothesis have several drawbacks: primarily, they do

not capture local inefficiencies; further, they either reject or not reject the null

hypothesis of market efficiency, but they do not evaluate the level of efficiency;

finally, the tests are unable to sufficiently track small changes in the efficiency

structure. However, investors are interested not only in the presence of ineffi-

ciencies, but in their size and changes as well. Kristoufek and Vosvrda (2013)

suggest utilization of fractal dimension as an efficiency measure, but they apply

the tool in practise without testing its ability to capture the efficiency on simu-

lated data. Hence, we provide an extensive examination of fractal dimension’s

explanatory power in the context of efficient markets.

Fractal dimension measures roughness of a time series, taking values in the

interval [1,2). An efficient time series is supposed to follow martingale, which

has fractal dimension equal to 1.5. Inefficiencies are characterized by posi-

tive/negative autocorrelation in returns, i.e. a decrease in prices is followed by

decrease/increase with a probability higher than 0.5. Autocorrelation struc-

tures differing from martingales affect the graph of a times series - positive

autocorrelation in returns makes it smoother and fractal dimension of time se-

ries containing persistences should thus be lower than 1.5; on the other hand,

higher volatility should increase fractal dimension above 1.5. To test these

hypotheses, we employ an extensive Monte Carlo simulation, insert different

types of inefficiencies into efficient time series, measure their fractal dimensions

and compare the results.
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The main advantage of the fractal dimension analysis compared to other

efficiency tests is its ability to track local persistences. To verify the hypothesis

we use a simulation of efficient time series where we include a short part of

inefficient observations; the level of inefficiency and the number of observations

vary and the effect of the changes is studied. Each examined time series con-

sists of 10,000 observations and we simulate 1,000 time series of each setting

to ensure statistical significance. The efficient parts are obtained through ran-

dom walk, Brownian motion, and martingale simulation, while the inefficient

parts are based on ARFIMA (1, d, 1) simulations; the level of inefficiency is

managed by changes in the coefficients; in total, we use nearly 700 different

settings of ARFIMA. In addition to the analysis of series with one inefficient

part, we examine also the impact of time series with two inefficient parts with

reverse effect on fractal dimension and reaction of fractal dimension to gradual

adding of observations with given settings to the examined sample. The grad-

ual estimation enables us to evaluate the reaction of fractal dimension on small

changes in the time series.

Fractal dimension is estimated by the madogram, the Hall-Wood and Box-

count estimators. Based on our analysis of estimators’ efficiency, we recom-

mend to use the madogram with 5 lags as it is the most efficient and accurate

estimator. However, the estimator distorts results for extreme conditions char-

acterized by strong autocorrelation in returns. We suggest using the madogram

with higher number of lags (20, 100) to validate the results, but one should be

aware of the fact that estimators with higher number of lags tend to overesti-

mate fractal dimension and should be used only for ranking.

Based on the simulation results, we conclude that fractal dimension is a good

measure of market efficiency accurately reflecting all normal changes in effi-

ciency structure. The results tend to be skewed for extreme inefficiencies, but

we do not assume such strong autocorrelation in returns to be present in real

markets, so it does not influence usage of fractal dimension in practice.

Further, we simulate a series consisting of ARFIMA simulations with slightly

different settings - we estimate fractal dimension of first 500 observations and

then gradually add more observations and re-estimate the fractal dimension

each time. This study shows that fractal dimension quickly and accurately

reflects all changes in efficiency structure of the examined time series.

We complete the work with an example of practical usage of the fractal

dimension measure. Fractal dimensions of 28 stock indices are estimated and

the indices are then ranked based on the fractal dimension results. We find
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that some indices such as FTSE and SPX have fractal dimensions higher than

1.5 which implies anti-persistence. All indices characterized by higher volatility

are from developed countries. On the other hand, the lowest value of fractal di-

mension was obtained for some developing countries such as Chile and Malaysia

that have fractal dimensions close to 1.4. Dutch and Canadian indices have

fractal dimensions closest to 1.5, so these two are the most efficient ones.

The thesis proves that fractal dimension is a good measure of market effi-

ciency for common levels of autocorrelation structure of returns, as it reflects

all changes in ARFIMA setting accurately. It can be used for determination of

the efficiency size of examined series and creation of a ranking of the studied

markets. Further, fractal dimension very quickly shows even small changes in

structure of observations that are gradually added to the time series. Therefore,

fractal dimension can be used for examination of market efficiency development

in different economics, and investors can employ it to track changes in market

efficiency.
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Appendix A

Tables

The φ and θ coefficients are marked as p and q in all tables and figures.



A. Tables II

Table A.1: Coefficients of back-shift operators for different values of
d and p

Table A.2: Changes in coefficients of back-shift operators for increas-
ing d



A. Tables III

Table A.3: Changes in coefficients of back-shift operators for increas-
ing p

Table A.4: Means (1st values) and standard errors (2nd values) of
fractal dimensions for RW with ARFIMA, 500 observa-
tions, 5 lags madogram, shading underlines the trends



A. Tables IV

Table A.5: Means and standard errors of fractal dimensions for RW
with ARFIMA, 500 observations, 20 lags madogram



A. Tables V

Table A.6: Means and standard errors of fractal dimensions for RW
with ARFIMA, 500 observations, 100 lags madogram



A. Tables VI

Table A.7: Means and standard errors of fractal dimensions for RW
with ARFIMA, 300 observations, 5 lags madogram



A. Tables VII

Table A.8: Means and standard errors of fractal dimensions for RW
with ARFIMA, 1000 observations, 5 lags madogram



A. Tables VIII

Table A.9: Means and standard errors of fractal dimensions for RW
with changing number of ARFIMA observations, 5 lags
madogram



A. Tables IX

Table A.10: Means and standard errors of fractal dimensions for RW
with ARFIMA on different places, madogram



A. Tables X

Table A.11: Means and standard errors of fractal dimensions for RW
with ARFIMA estimated for individual parts of the time
series, only parts including the ARFIMA series and one
efficient part are presented, madogram



A. Tables XI

Table A.12: Means and standard errors of fractal dimensions for
graduate increase in number of observation complex time
series, 2nd setting, 5 lags madogram



A. Tables XII

Table A.13: Means and standard errors of fractal dimensions for RW
with ARFIMA, 500 observations, 5 and 100 lags mado-
gram, 1000 simulations



A. Tables XIII

Table A.14: Means and standard errors of fractal dimensions for BM
with ARFIMA, 500 observations, 5 and 100 lags mado-
gram, 1000 simulations



A. Tables XIV

Table A.15: Means and standard errors of fractal dimensions for M
with ARFIMA, 500 observations, 5 and 100 lags mado-
gram, 1000 simulations



A. Tables XV

Table A.16: Means and standard errors of fractal dimensions for RW
with ARFIMA, 500 observations, 5 and 20 lags Hall-
Wood, 500 simulations



A. Tables XVI

Table A.17: Means and standard errors of fractal dimensions for BM
with ARFIMA, 500 observations, 5 and 20 lags Hall-
Wood, 500 simulations



A. Tables XVII

Table A.18: Means and standard errors of fractal dimensions for M
with ARFIMA, 500 observations, 5 and 20 lags Hall-
Wood, 500 simulations



A. Tables XVIII

Table A.19: Means and standard errors of fractal dimensions for RW
with ARFIMA, 500 observations, “auto” lags box-count,
500 simulations



A. Tables XIX

Table A.20: Means and standard errors of fractal dimensions for BM
with ARFIMA, 500 observations, “auto” lags box-count,
500 simulations



A. Tables XX

Table A.21: Means and standard errors of fractal dimensions for M
with ARFIMA, 500 observations, “auto” lags box-count,
500 simulations



Appendix B

Figures



B. Figures XXII

Figure B.1: Box plot of Hall-Wood fractal dimension for α equal to
1.5, 1, and 0.5 implying fractal dimensions 1.75, 1.5, and
1.25



B. Figures XXIII

Figure B.2: Box plot of box-count fractal dimension for α equal to
1.5, 1, and 0.5 implying fractal dimension 1.75, 1.5, and
1.25



B. Figures XXIV

Figure B.3: Illustration of ARFIMA(p, d, 0) series for increasing d
on x-axis and p on y-axis



B. Figures XXV

Figure B.4: Illustration of ARFIMA(p, d, 0.9) series for changing d
on x-axis and p on y-axis



B. Figures XXVI

Figure B.5: Fractal dimension and confidence interval of ARFIMA
time series for 5 and 100 lags madogram estimator

Figure B.6: Fractal dimension and tolerance interval of ARFIMA
time series for 5 and 100 lags madogram estimator



B. Figures XXVII

Figure B.7: Inclusion of ARFIMA observations to random walk time
series



B. Figures XXVIII

Figure B.8: 3D graph of mean fractal dimensions of RW with 500
observations of ARFIMA, p is fixed, d and q are assigned
to x and y axes, madogram



B. Figures XXIX

Figure B.9: 3D graph of mean fractal dimensions of RW with 500
observations of ARFIMA, d is fixed, p and q are assigned
to x and y axes, madogram



B. Figures XXX

Figure B.10: Mean fractal dimensions and confidence intervals of RW
with 500 observations of ARFIMA, q assigned to x-axis,
5 lags madogram



B. Figures XXXI

Figure B.11: Mean fractal dimensions and confidence intervals of RW
with 500 observations of ARFIMA, q assigned to x-axis,
100 lags madogram



B. Figures XXXII

Figure B.12: Mean fractal dimensions and confidence intervals of RW
with 500 observations of ARFIMA, p assigned to x-axis,
5 lags madogram



B. Figures XXXIII

Figure B.13: Mean fractal dimensions and confidence intervals of RW
with 500 observations of ARFIMA, p assigned to x-axis,
100 lags madogram



B. Figures XXXIV

Figure B.14: 3D graph of mean fractal dimensions of RW with 300
observations of ARFIMA, q is fixed, p and d are assigned
to x and y axes, madogram



B. Figures XXXV

Figure B.15: 3D graph of mean fractal dimensions of RW with 1000
observations of ARFIMA, q is fixed, p and d are assigned
to x and y axes, madogram



B. Figures XXXVI

Figure B.16: Mean fractal dimensions and confidence intervals of RW
with 300 observations of ARFIMA, d assigned to x-axis,
5 lags madogram



B. Figures XXXVII

Figure B.17: Mean fractal dimensions and confidence intervals of RW
with 1000 observations of ARFIMA, d assigned to x-
axis, 5 lags madogram



B. Figures XXXVIII

Figure B.18: Mean fractal dimensions and confidence intervals of RW
with ARFIMA(0, -0.4, 0), ARFIMA(0.4, 0, 0.4), or
ARFIMA(0.8, 0.4, 0.8), 5, 20 and 100 lags madogram



B. Figures XXXIX

Figure B.19: Example of time series with two inefficient parts

Figure B.20: Means and standard errors of fractal dimensions for
graduate increase in number of observation, a sample
time series, 1st setting, 5 lags madogram

Figure B.21: Means and standard errors of fractal dimensions for
graduate increase in number of observation, a sample
time series, 2nd setting, 5 lags madogram



B. Figures XL

Figure B.22: Fitting of ARFIMA part



B. Figures XLI

Figure B.23: 3D graphs of mean fractal dimensions of time series with
500 observations of ARFIMA, q coefficient fixed, RW,
BM, and M, madogram



B. Figures XLII

Figure B.24: 3D graphs of mean fractal dimensions of time series with
500 observations of ARFIMA, q coefficient fixed, RW,
BM, and M, Hall-Wood estimator



B. Figures XLIII

Figure B.25: 3D graphs of mean fractal dimensions of time series with
500 observations of ARFIMA, q coefficient fixed, RW,
BM, and M, box-count estimator



B. Figures XLIV

Figure B.26: 3D graphs of mean fractal dimensions of time series with
500 observations of ARFIMA, q coefficient fixed, RW,
madogram, Hall-Wood and box-count estimators



Appendix C

Indices

Table C.1: Descriptive statistics of analysed indices, close-close re-
turns, all observations

Index Mean Min Max SD Skewness Kurtosis KPSS p-value

AEX 0.0001 -0.7526 0.1003 0.0173 -15.2238 663.7096 0.1584 > 0.05
ASE 0.0002 -0.6695 0.6523 0.0212 -0.3032 284.1992 0.4289 > 0.05
ASX 0.0001 -0.0870 0.0563 0.0105 -0.4441 8.8710 0.1167 > 0.05
ATX 0.0002 -0.1025 0.1202 0.0137 -0.3835 10.5432 0.1347 > 0.05
BEL20 0.0002 -0.0832 0.0933 0.0117 -0.0095 9.7523 0.1655 > 0.05
BSE 0.0004 -0.1181 0.1599 0.0165 -0.0901 8.5820 0.1158 > 0.05
CAC 0.0001 -0.0947 0.1059 0.0142 -0.0286 7.4976 0.1159 > 0.05
DAX 0.0003 -0.0987 0.1080 0.0144 -0.1028 7.7368 0.0975 > 0.05
ESTX 0.0002 -0.0826 0.1044 0.0134 -0.1550 8.9242 0.1762 > 0.05
FTSE 0.0002 -0.1303 0.0938 0.0111 -0.3767 11.3630 0.1914 > 0.05
HSI -0.0003 -0.1725 0.4054 0.0174 2.3857 59.9602 0.0887 > 0.05
IBOSP 0.0010 -2.2872 0.2883 0.0399 -36.5638 2105.1083 0.6145 > 0.02
IPC 0.0006 -0.1431 0.1215 0.0156 0.0243 8.7596 0.0522 > 0.05
IPSA 0.0005 -0.0724 0.2788 0.0120 4.7941 120.3318 0.4973 > 0.03
JKSE 0.0004 -0.1273 0.1313 0.0173 -0.1887 9.8524 0.2357 > 0.05
KLSE 0.0001 -0.2415 0.2082 0.0151 0.4074 56.7406 0.1605 > 0.05
KS11 0.0002 -0.1280 0.1128 0.0195 -0.1943 7.3659 0.0663 > 0.05
MERVAL 0.0005 -0.1476 0.1612 0.0217 -0.2867 8.3415 0.1427 > 0.05
NASD 0.0003 -0.1204 0.1325 0.0125 -0.2910 12.7884 0.0621 > 0.05
NIKKEI 0.0000 -0.1614 0.1323 0.0146 -0.2977 11.0927 0.1808 > 0.05
NZX 0.0003 -0.0494 0.0581 0.0074 -0.3519 7.8275 0.2287 > 0.05
SPX 0.0003 -0.2290 0.1096 0.0098 -1.0294 30.6599 0.0806 > 0.05
SSEC 0.0005 -0.1791 0.7192 0.0237 5.6100 159.2916 0.3435 > 0.05
SSMI 0.0003 -0.0838 0.1079 0.0117 -0.1259 8.9905 0.3877 > 0.05
STRAITS 0.0002 -0.1054 0.1287 0.0126 -0.1289 11.7824 0.0887 > 0.05
TSE 0.0002 -0.1200 0.0937 0.0099 -0.9272 17.5730 0.0454 > 0.05
TWSE 0.0000 -0.0994 0.0852 0.0153 -0.1605 5.7030 0.0990 > 0.05
XAO 0.0003 -0.2871 0.0607 0.0100 -3.7845 99.6413 0.1437 > 0.05



C. Indices XLVI

Figure C.1: Fractal dimension for world stock indices, 20 lags mado-
gram



C. Indices XLVII

C.1 AEX

Amsterdam Exchange Index (The Neatherlands)

5435 observations (12.10.1992 - 6.2.2014)

There is an observable drop in the AEX index caused by the introduction

of euro on the stock exchange in 1999 (1577th observation), which affected

fractal dimension; the results show persistences in the data during the first 2000

observations (December 1992 - August 2000). Then the series exhibits several

substantial changes in the autocorrelation; at first, the revenues became anti-

persistent; then the market experienced slight local persistence between August

2004 - July 2008; thereafter the index seems to be nearly efficient. The variation

is more strongly captured by the 20 lags estimator.



C. Indices XLVIII

C.2 ASE

Athens Stock Exchange General Index (Greece)

6746 observations (5.2.1988 - 4.2.2014)

Fractal dimensions of individual parts as well as the gradual re-estimation

of fractal dimension show that there are long-term or repeating persistences on

the market. Even though the strength of the persistences decreased since 2003,

they are still present.



C. Indices XLIX

C.3 ASX

Australian Securities Exchange Index (Australia)

3120 observations (17.10.2001 - 6.2.2014)

The ASX index is relatively new, it was launched in 2000, and at the be-

ginning it faced local persistences; its fractal dimension was lower than 1.47.

Then the index went through a period of higher volatility to stabilize in price

structure close to martingales.



C. Indices L

C.4 ATX

Austrian Traded Index (Austria)

5254 observations (11.11.1992 - 6.2.2014)

The index has a strong positive autocorrelation structure in its beginning,

since then fractal dimension is steadily growing (except for a short period in

the second half of 2004, when the price rapidly increased). Fractal dimension

of the index reaches 1.48 and seems to be stabilized, so some local persistence

is still present.



C. Indices LI

C.5 BEL20

Euronext Brussels Index (Belgium)

5777 observations (9.4.1991 - 6.2.2014)

The story of BEL20 index is similar to ATX; it was very inefficient when

it was launched, but its fractal dimension is constantly increasing, trends di-

minished and current fractal dimension is close to 1.5 meaning that the stock

index is relatively efficient.



C. Indices LII

C.6 BSE

Bombay Stock Exchange Index (India)

4104 observations (1.7.1997 - 6.2.2014)

The BSE index experiences strong autocorrelation structure in its returns

throughout the observed period. Its fractal dimension does not show any im-

provement in the efficiency.



C. Indices LIII

C.7 CAC

Euronext Paris Bourse Index (France)

6063 observations (1.3.1990 - 6.2.2014)

Fractal dimension of the index is very close to 1.5 since 1998. In years 2002-

2010, volatility of the index was higher than implied by martingale structure,

which is strongly reflected in 20 lags fractal dimensions. Today, returns of index

have slightly negatively autocorrelated structure, 5 lags fractal dimension is

close to 1.5, but 20 lags fractal dimension reaches 1.54.



C. Indices LIV

C.8 DAX

Deutscher Aktien Index (Germany)

5875 observations (26.11.1990 - 6.2.2014)

Disregarding the period 1990-1994, fractal dimension of DAX index moves

between 1.486 and 1.509, so the index is quite long-term efficient. Nowadays,

the fractal dimension stabilize at 1.486 according to the 5 lags estimator and

1.5 according to the 20 lags estimator.



C. Indices LV

C.9 ESTX

EURO STOXX 50 Index (Eurozone)

6953 observations (31.12.1986 - 31.1.2014)

The autocorrelation structure of the index revenues can be divide to three

parts; firstly it went through a time of strong positive correlation in 1987-

2000; then it jumped to negatively correlated structure; finally the negative

autocorrelation weakened and the series is now nearly efficient according to the

5 lags estimator, or the negative autocorrelation remains in the structure but

it is weaker according to the 20 lags estimator.



C. Indices LVI

C.10 FTSE

Financial Times Stock Exchange 100 Index (UK)

7541 observations (2.4.1984 - 6.2.2014)

The patterns in fractal dimension of FTSE index are very similar to ESTX

patterns. Low fractal dimension indicating short term persistence abruptly

changed to negatively correlated revenues and the correlation then weakened.



C. Indices LVII

C.11 HSI

Hang Seng Index (Hong Kong)

6471 observations (31.12.1986 - 6.2.2014)

Fractal dimension of HSI index is increasing, meaning that the markets be-

come more efficient. In the years 2007-2009, both fractal dimension estimators

(5 and 20 lags) mark the market as efficient, but according to the 5 lags es-

timator the following period contains some short term persistences, while the

20 lags estimator indicates that its structure is close to an efficient market’s

structure.



C. Indices LVIII

C.12 IBOSP

Ibovespa Brasil Sao Paulo Stock Exchange Index (Brazil)

5141 observations (27.4.1993 - 6.2.2014)

The index was divided by 10 in 1997 which had a similar effect as intro-

ducing euro in the case of AEX - a big decrease in fractal dimension. However,

since then the fractal dimension increases and is close to 1.5. The index went

through a more volatile period in 2012, but the volatility has returned back to

the martingale standards.



C. Indices LIX

C.13 IPC

Indice de Precios y Cotizaciones (Mexico)

5563 observations (8.11.1991 - 6.2.2014)

IPC index experienced strong trends in its beginnings such as BEL20, but

the trend has been disappearing in a slower pace and the fractal dimension

only approximates the 1.5 value.



C. Indices LX

C.14 IPSA

Santiago Stock Exchange Index (Chile)

2593 observations (10.1.2003 - 6.2.2014)

IPSA is one of the least efficient indices. In the analysis, we are limited

to narrow data range (2003-2013) of observations but the index shows to have

fractal dimension very close to 1.41 all the time. Only the 20 lags estimators

shows the series as a bit more efficient during last two years.



C. Indices LXI

C.15 JKSE

Jakarta Composite Index (Indonesia)

4033 observations (1.7.1997 - 6.2.2014)

JKSE index is another example of indices experiencing persistences in their

beginnings; at first, fractal dimension was moving around 1.4, but fractal di-

mension of period 2010-2013 is 1.5 indicating improvement of the market ef-

ficiency. However, this increase in fractal dimension does not significantly in-

fluence the fractal dimension of the whole 2000-2013 period, and the index is

placed among the least efficient ones.



C. Indices LXII

C.16 KLSE

Bursa Malaysia Index (Malaysia)

4975 observations (3.12.1993 - 6.2.2014)

KLSE index fractal dimension behaves similarly as fractal dimension of

IPSA index, it moves around the 1.4 value and does not show any significant

improvement. Malaysia is one of the worst performing markets.



C. Indices LXIII

C.17 KS11

KOSPI Composite Index (Korea)

4093 observations (1.7.1997 - 6.2.2014)

In the period 1997-2009, fractal dimension oscillated around 1.45 value, then

we can observe an increase in the fractal dimension signalling an improvement

in the market efficiency.



C. Indices LXIV

C.18 MERVAL

Mercado de Valores Index (Argentina)

4270 observations (8.10.1996 - 6.2.2014)

Argentina is one of the least efficient markets, fractal dimension of the index

started on the 1.42 value, then it increased to 1.45 but market was not able to

continue in the efficiency improvement; on the contrary, the fractal dimension

felt to the initial values.



C. Indices LXV

C.19 NASD

NASDAQ Composite Index (USA)

10847 observations (5.2.1971 - 6.2.2014)

Fractal dimension of NASDAQ index was very low until 1999, then it started

to increase rapidly and reached the 1.5 value signalling that the market is close

to an efficient one.



C. Indices LXVI

C.20 NIKKEI

NIKKEI 225 Index (Japan)

7402 observations (4.1.1984 - 6.2.2014)

The case of Japan market is very similar to the German one; except for the

period 1984-1987, fractal dimension indicates that the market is quite long-term

efficient.



C. Indices LXVII

C.21 NZX

New Zealand Exchange 50 Gross Index (New Zealand)

2355 observations (30.4.2004 - 5.2.2014)

NZX index is relatively new and we are very limited in the number of

observations (2004-2013), so we estimate fractal dimensions for only two 1,000

observations long periods (2004-2008, 2009-2013). The fractal dimension of

the first one is low, but we can observe a significant increase in the second

one with fractal dimension close to 1.49. The graph of fractal dimensions for

gradually increasing number of observations confirms a steep increase in the

fractal dimension at the beginning of 2009, since then the fractal dimension

seems to keep a value close to 1.49.



C. Indices LXVIII

C.22 SSEC

Shanghai Composite Index (China)

5935 observations (19.12.1990 - 30.1.2014)

The Shanghai’s market seems to steadily experience some persistences as

fractal dimension of the index constantly moves around 1.44 without any sig-

nificant changes.



C. Indices LXIX

C.23 SSMI

Swiss Market Index (Switzerland)

5871 observations (9.11.1990 - 6.2.2014)

Low fractal dimension in period 1990-1998 implies presence of some per-

sistence in this period, then the market became more efficient and the fractal

dimension increased above 1.5. During the last period, some trend appeared

in the market and fractal dimension significantly decreased.



C. Indices LXX

C.24 STRAITS

Straits Times Index (Singapore)

6546 observations (28.12.1987 - 6.2.2014)

The Singapore market efficiency improved during the analysed period, but

stronger trends start to appear recently; the fractal dimension was highest in

2004-20007, and then the fractal dimension started to decrease again.



C. Indices LXXI

C.25 TSE

Toronto Stock Exchange TSE 300 Index (Canada)

7420 observations (23.4.1984 - 6.2.2014)

Fractal dimension of TSE index behaves similarly as the one of BEL20

index, so the development of market efficiency in Canada and Belgium has

been comparable.



C. Indices LXXII

C.26 TWSE

Taiwan Stock Exchange Weighted Index (Taiwan)

4082 observations (2.7.1997 - 6.2.2014)

Based on the fractal dimension values, there can be found some relatively

strong local persistences on the Taiwan market. Fractal dimension was decreas-

ing in 1997-2008 with a rapid drop in August 2008. Recently, fractal dimension

has increased and reached 1.468 for 2009-2013 period.



C. Indices LXXIII

C.27 XAO

All Ordinaries Index (Australia)

7467 observations (3.8.1984 - 6.2.2014)

XAO index is a typical example of index with low initial fractal dimension

that gradually increased to values close to 1.5. It can be compared to IBOSP.



C. Indices LXXIV

C.28 SPX

Standard & Poor’s 500 Index (USA)

16128 observations (3.1.1950 - 6.2.2014)

The SPX index is the one with most observations stretching to 1950. The

market efficiency of the market was relatively low until 1997. Then it increased

rapidly with fractal dimension reaching the value 1.5; between 2002 and 2009,

the fractal dimension increased above 1.5 indicating some negative autocorre-

lation in revenues. Recently, the fractal dimension has decreased to the 1.487

value for 2010-2013 period.



Appendix D

R project code

D.1 Random walk

The first part of random walk is always simulated from 0; other random walk

parts use the last observation of inefficient section as the starting point.

The first part:

time=3000

startingpoint=0

x=c(startingpoint, rnorm(time))

randomwalk=cumsum(x)

The second part:

n=6500

x2=c(z[3500],rnorm(n))

rw3=cumsum(x2)

z[3500:10000]=rw3

D.2 Martingale

No package for simulation of martingale process exists, Robert a professor of

Statistics writing blog XI’AN’S OG proposes code presented in Appendices for

simulation of martingales; the code is based on paper by Shafer et al. (2011)

which links martingales and Bayes factor.

x=sample(0:1,10^4,rep=TRUE,prob=c(1-theta,theta))

s=cumsum(x)



D. R project code LXXVI

ma=pbinom(s,1:10^4,.5,log.p=TRUE)-pbinom(s-1,1:10^4,.5,...

...log.p=TRUE,lower.tail=FALSE)

The problem of this code is that for θ different from 1/2 it produces a sequence

going to infinity ,and it returns a time series with maximum and minimum

observed in the first steps for θ = 1/2. For this reason, we omit first 2000

observations.

D.3 ARFIMA

arfima.4=fracdiff.sim(501, ar=0.4, ma=-0.3, d=0.25)

arfima.3=arfima.4\$series$

arfima.2=cumsum(arfima.3)$

rw2=(1:750)

rw2[1:750]=rw[2251:3000]

drw=max(rw2)-min(rw2)

darfima=max(arfima.2)-min(arfima.2)

a=darfima/drw

arfima.1=arfima.2/a

arfima=arfima.1-arfima.1[1]+rw[3000]

z[1:3000]=rw

z[3000:3500]=arfima
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