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Abstrakt:

Tato prace je zaloZzena na zopakovani experimentery kprovedli
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of 1.37 to 2.16 K at saturated vapor pressure. \Weewable to measure time
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| ntroduction

The beginning of low-temperatuphysicscan be traced back tuly 10 1908,
when theDutch physicistHeike KamerlinghOnnesliquefied helium for the first time
in Leiden. Aftera serief experiments thabllowed over the yeardpw-temperature
physicists knew that helium had remarkable propenvhich could not be explained
by classical physics. It was clear that the behavad helium at temperatures above
and below 2.17 K clearly differed. This temperatu@s named th&-point because
of the shapeof the temperature dependence of the specific. Hdalium above
and below this temperature was named He | and,Heslpectively.

In 1938, Pyotr Kapitsa published the results of lydrodynamic experiments
with liquid helium [1]. Kapitsa observed that/though theflow of Helium in agap
between twaptical-grindeddiscsis barelydetectablefter coolingbelow thex-point,
it mayflow smoothly.This phenomenowas dubbeguperfluidity.

Kapitsa’'s and later, Allen’s and Misener’s expemtse2] showed the dynamic
viscosity of superfluid helium was significantlywer than the dynamic viscosity
of normal liquid helium. However, experiments orstonally oscillating cylinders in
Toronto [3]showedthat He Il is able to flow without internal frictioin certain cases,
but in others, it appeared to behave as a nornsabws liquid. This was a serious
problem which had to be resolved.

A milestone in resolving these conflicting experiments was achieved
by Andronikashvili [4]. He used an assembly of dideglsed very close to each other
immersed in liquid helium and measured the resadinegtiency of torsional vibrations
in relation to temperatur@he resonant frequency was found to be almost aonst
in He 1, while in He I, it increased noticeablyrhis experimental resullead
to Landau’sphenomenologicalwo-fluid description oHe Il [5; 6], which tells us that
He 1l behaves as anixture of two independent components a normal
and a superfluid component.

The last experiment relevant to my thesis was peadd R. J. Donnelly
and A. C. Hollis Hallett in 1958 [7]n this experiment, a torsion oscillator consisting
of a suspended disc was used to explore the flowuperfluid helium.My work
is basedon repeatingtheir experimentusing moderntechnology, such asnaging

anddata processingyhich could provide more accurate results.
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The Joint Low Temperature Laboratory establishetivdésen the Faculty
of Mathematics and Physics of Charles University Hrague and the Institute
of Physics of the Academy of Sciences of the CzZeepublic, where this work
has been performed, has extensive experience exfileration of He Il using various
oscillating bodies, like quartz tuning forks [8; B9]. For this reason, | will compare
the results of my work using a torsion oscillatathvihe results of my colleagues using

other oscillators in He II.



1 Theoretical Background

To plan our experiment,as well as the processingnd interpretation
of any measureduantities, it imecessary to have certd&nowledgeof the following
fields of physics classical hydrodynamics, superfluidity and biedaviour of torsional

oscillators in fluids.

1.1 Selected Parts of Classical Hydrodynamics

To study themotion of the continuum, wecan basicallyuse twomethods
The continuum &n be divided intandividual material points (volume element}
andtrack theirmovement — thiss known asLagrange’smethod We canalso focus
on the pointsof space andnonitor the movement of thaternatingmaterial points
of the continuunin whichthese pointef spaceenter— this is the Euler'snethod.
Following Euler, we canlescribe the motion dfuids by derivingthe equations
of motion The etire derivation can be found in refll] on pages 44 — 46.
The equation of motioaf an incompressibieiscousfluid can be written in the form:
@
ot
where i is velocity, t time, p density of the fluid,p is pressurey kinematic

— — 1 — p:4
+u-l7u=—;l7p+vAu+f, (1)

viscosity, andf is thesum of the forces actingn the fluid This equation izalled
the NavierStokes equation. [11]
To fully describe the motion offluids, it is required to supplement

this equatiorwith the continuity equation:

g—’t) +V-7=0, (2)
wherej” = pu is flux density of the fluid. This equation cae dmsilyinferred from
Gauss’sheorem. The derivation can be found in ref. [I1pages 1 and 2.
Although this equation system describes the mechanicabehaviour
of incompressibleviscousfluids, an analytical solutiorexists only forsomesimple
cases oflows. In more complexasesit is necessarto solve the systemumerically.
Whether or not therare anyanalytical solutions depends orthe following flow

characteristics



Time dependent flow ariables can be divided into two categories; stable
(stationary) and unsteady (transient) flo8gtionary flowvariablesat a given point
of the liquid are timeindependentwhereas in the case of unstedthansient)flows,
the flow variables areme-dependent.

Accordingly, the motion of viscous fluid flowan be divided intdwo basic
types:laminar and turbulent flown the case olaminarflow, thefluid particlesmove
next to each otheas ifin layersthat camot mix. In turbulent flow,fluid particlescarry
the flow in addition toshifting and complex motion, which leads to thdéormation
of vorticesand theliquids mixing The velocity of the individual fluid particles ves
irregularly. Particlesno longer have aonstant velocityatall locations sothe turbulent
flow is notstationary

Whether a (statistically) steadyflow is laminar or turbulent depends

on the Reynolds numb&e

Re = U7l, 3)
whereU is the mean velocity of the flowjs the scale at whickelocity changesccur
(typically the size of a submerged body or theusdif a pipe) and is thekinematic
viscosity. If the Reynoldsnumber is smalletthan a critical value which must
be determined for eactype of flow experimentstheflow is laminar If the Reynolds
numberis greater thathis criticalvalue, the flow igurbulent.

Characteristic numbers such Reexpress the dynamical similarity of different
flows. Two flows are dynamically similar only if ¢ly are similar geometrically
and the appropriate characteristic numbers havsaime value.

To characterise ateady flow, just one characteristic number is required
To characterise unsteady flows, it is necessagdtb another characteristic number
to the parameters describing stationary flow thatilal reflect the time-dependence
or periodicity of the flow. Thus, periodic flows eardynamically similar if two
corresponding characteristic numbers are equal.

To theReynolds numbesne might, for example, add tBé&rouhalnumberSr.

D
e @)
which relatesthe frequency of theformation of vortices in the wake behind

Sr

an obstaclefy, its characteristic sizeD, and velocity, U. Other frequentlyused

characteristic numbersare the Stokes and the Keulegan€arpenter numbers.
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The Stokes numbéi; corresponds to the ratio thfe characteristibodydimensionD,
to the viscous penetration degitand is defined by the following formula

D? 1D?
Bt ©
wherev is the kinematic viscosity of the fluid arids the frequency of oscillation.
The Keulegan-Carpenter numbeKc, describes the relative importance
of the non-linear drag forces over inertial foré@msbluff objects in an oscillatory fluid
flow or similarly, for objects that oscillate irflaid at rest. It is defined by the formula:

ur 2zU
KemT =

— (6)
where U is the velocity amplitude, T is the period of the oscillation
andl is a characteristic length scale.

These pairs of numbers are just the most frequemsled combinations,
but in principle, we can choose different pairsduse it is possible to roam freely
between the characteristic numbers.

Note that if we substituté = D, assuming that the velocity changes typically
at the length scales corresponding to the body, $iee following relation holds
between the dimensionless numbef¥. = Re. This is valid at low frequencies
(low Stokes number), where the viscous penetratepth is much larger than the body
dimensions.

It is of interest that in the high frequency lirgit > 1), only one characteristic

number is required to describe the flow. Let us@ra why it is possible to say that.

Consider the Navier-Stokes equation, neglectingvtiteme forces?, and put it into
a dimensionless form using the following relations:

ﬁ:Uu’, V= TV’, tzat’,p: pUz ,, (7)

whereU is the velocity amplitudel, some characteristic length at which the velocity
is changing is the angular frequency atite dashed quantities are the dimensionless
counterparts. After multiplying by 1/U?, we obtain the dimensionless form

of the Navier-Stokes equation:

T 7T R
There are two prefactors in the dimensionless éxquaflw)/U andv/(Ul),

which completely characterise the flow. The firstneo is the inverse



Keulegan-Carpenter number multiplied iy @hd thesecond is the inverse Reynolds
number.

However, in the limit of high frequencies, morensiigant velocity changes
occur on the length scale of the viscous penetratiepth & = /2v/w
than on the scale of the bodiimensions, as for sufficiently high frequencies,
we haved « [ [11]. Thereforewe will substitute) for the characteristic length scéle
and we will show that the two characteristic prafes are equal, except
for a multiplier constantAfter substituting the formula for the viscous peaton

depth, the first prefactor is given:by

va
Kec U U U

whilst the second is given by:

Re_Ul_U\/E_\/EU' (10)
w

Equivalently, it is possible to say thiét = 7 Re in the limit of high frequencies,
which replaces the relatidfy.f = Re, valid in the low frequency limit.

The fact that both terms characterizing the flow ihe dimensionless
Navier-Stokesequations aralirectly proportionalin the limit of high frequencies,
allows us to describea flow only by one characteristicnumber. For this purpose,
we shall choose the Reynolds number usintpr the characteristic length scale,
similarly to the above calculation. We therefordirde Res = US/v=U+2/vw,
understanding that (given the geometry of the lasoil and the bounding volume
including their surface roughness); this is the yomlimensionless parameter

determining the oscillatory flow in the high frequay limit.



1.2 Liquid Helium and the Basics of Superfluidity

Helium is the secondnost abundant elememt the universelts atomicnumber
is 2; itis an inert tastelesspdourlessgas. It has two stablésotopes;*He and*He.
Helium has the lowest temperatureligtiefaction at atmospheric pressaral displays
uniquebehaviourin the liquid stateHelium is the onlyknown liquid that undergoes
a superfluidohase transitioNormal liquid helium and cooled helium gas aresical
Newtonian fluids with thelowest kinematic viscosity of all knowsubstances.
For cold helium gas, it has a value of 3.21%18°s® at a pressure of 2.5 bar
and a temperature of 5.5 K. For normal liquid haljit is 1.96x16 m?s* at saturated
vapour pressure and at a temperature of 2.25 K.cbarparison, the kinematic
viscosity of water at 298.15 K is 1.016%10rs™.

Let us examine the differences between the stadiienh isotopes®He is a rare
isotope, in nature there are one million atom&Hsf to every atom ofHe. Although
the two isotopes of helium behave similarly undernmal conditions, they behave
very differently under extreme conditions, suchl@s temperaturesThis is due
to the spin of the atoms governed by the numbeuofeons in thenfHe atoms have
four nucleons, therefore they are indistinguishgaldicles with integer spin - bosons
and their behaviour is governed by Bose-Einstaitissics. In contrast, thé#He atom
has three nucleons and is a representative oftimglisshable particles with half-
integer spin - Fermions and obeys Fermi-Dirac sites. The difference of these
statistics is highlighted under extreme conditiamsl results in the helium isotopes
having different behaviour with varying temperatues well as the nature
of the transition into the superfluid pha3ée temperature of the superfluid transition
in “He is around 2.1K at saturated vapour pressure. In the casélef this phase
transition occurs at temperatures between 0.93 mi&k 27 mK, in the pressure
range 0 to34.5 bar. Throughout this discussion, we will ordgnsider “He
and its superfluidity.

The uniqueness 8He is evident from its phase diagram (Fig. 1.1)likénother
substances’He has no triple point, or indeed any sublimatianve. During cooling
at atmospheric pressure, helium will not freezenei¥ the sample were cooled down
to absolute zero. To form solftHe, an external pressure of at least 25 atmospheres

IS required.
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Fig. 1.1: The phase diagram &fle.

Helium-4 in the superfluid phase (He Il) gives usvanderful opportunity
to observe the direct manifestations of quantumsioByon a macroscopic scale.
It was the first substance found to undergo a $prtransition, and as such,
it was the first superfluid to be studied in detail

In the phase diagram, normal He | and superfluiduimeHe 1l are separated
by the so-called\-line, where the transition between the two flumtscurs. While
looking into a glass cryostat containing liquidited, the temperature is reduced along
the saturated vapour curve by gradually pumping te@ bath, the transition
to the superfluid state is clearly evideBuddenly, the heavy boiling of the liquid
is completely suppressed. This phenomenon occues tdu the high thermal
conductivity of He I1l, which is at least 3 milliotimes higher than in He |
and is sufficiently high to suppress the thermaldggnts necessary for the existence
of nucleation sites where bubbles form. Thus, auwe of He Il is not cooled
by boiling, but rather by superficial evaporationlyo Furthermore, if we prevent
the influence of mechanical vibrations, the surfatéhe He Il is smooth to the level
of one atomic layer, which is the smoothest natyicadcurring surface.

Another feature of He 1l is the ability to adheceaimost any contact material
to create a nanoscopic layer on its surface — dperiuid film [12]. This feature

Is manifested in the phenomena known as thin fibw.fIf a tube is partially
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submerged in a bath

ﬁ ﬁ__ g; :E of superfluid helium, in time,
== e if | 4 it will itself be filled
;;g.“..“ e == up to a height which
E_ T e corresponds to the level
Eé of the surrounding liquid bath

________________ (Fig. 1.2). If this tube is raised
Fig. 1.2: Manifestation of the superfluid film. slightly above the surface
of the bath, the liquid
in the tube will then start to flow back into thath through the superfluid film.
If the tube were to be removed from the superflugtium bath entirely, one could
observe the formation of helium droplets on thedtof the tube which drip back
into the bath and the tube empties itself over time
In experiments where thermal gradier*-

are induced, more unusual properties of He
can be observed, e. g. the fountain effect [1
Due to this effect, it is possible to obser
how the superfluid component of He Il leaks throu
a labyrinth of very narrow channels through whi
the normal fluid, which has a finite viscosity, le

helium, any temperature gradient correspor: === m= - mmmn g )
to a pressure gradient and vice versa. Fig. 1.3: The fountain effe.

As mentioned above, during the 1930s, the reselisted to the viscosity
of He Il were controversial. The results obtainkeg Allan and Misener [2]
on capillary flow and from Kapitza's experiments] [vith a chamber closed

by optically smooth discs (Fig. 1.4), indicated tthiae viscosity of He I
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is approximately 1500-times lower than that ofltteel. In contrast, earlier work based
on torsional oscillations of a cylinder suggestetsaosity comparable with He I.

These seemingly contradictory results together wite other anomalous
properties, outlined above, stimulated the firgtrapts of Tisza and Landau towards
a theoretical description of Hell. However, it wasot until the work
of Andronikashvili that the situation became somatdtearer.

Andronikashvili [4] used asystem of discs n kapitza's experiment )

suspendedby afibre under tension madieom phosphor Optically
smooth
bronze which had aiameter 0f340 um and alength He Il surfaces

of approximately 100 cm (Fig. 1.4)he stack consistec
of 100 discs of 0.013 mm thick aluminium foil,

interleaved 0.21 mm thick aluminium washersstrung

onto an aluminiunmandrel. When we submerge the sta
of discs into liquid helium, the viscous penetnatiepth
will be greater than the spacing of discs and iheid
will be clamped by the oscillator. The moment darira

in a viscous fluid will be affected by the momehirertia

in vacuum and the oscillation period will be grea

because of the increase of effective mass. Andashikli

observed that upon coolitgglow the superfluidransition
Andronikashvili’s experiment

Fig. 1.4: Diagram
decreased. of Kapitza’s (top)

temperature, theperiod of oscillation significantly

The observation that a portion of the fluid betwe 2"d  Andronikashvilii's

(bottom) experiments.

the discs mechanically "decoupled” from the odatla
led to the idea that He Il consists of two compdsieane of which flows without
friction, and that their ratio depends strongly thie temperature. This of course
explains the previous controversy, since both comapts contribute to the friction
acting on a torsionally oscillating cylinder, bunhlp the superfluid component
with zero viscosity can flow through tiny capilles, or into Kapitza‘'s experimental
chamber. Eventually, the phenomenological two-fluidbdel was formulated,
as we still use it today.

This model describes He Il as a fluid composedwal tomponents called

the normal and superfluid components. The normalpament has a finite viscosity,
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transfers heat and has finite entropy. The supérfftomponent has zero viscosity,
cannot transmit heat and has no entropy. Thesecbtmgponents occupy the same
space and are considered to have independent tyef@its. The density of He Il,
p Is given by the sum of the densities of the two ponents, i.e.p = p, + ps,
where p,, is the density of normal component apdis the density of superfluid

component (Fig. 1.5).

1.0
e
w
&
2 ost
®
o
2 oa}
=]
0
o 02 =
U,D A M i i
0.0 05 1.0 1.5 20 25

Temperature (K)

Fig. 1.5: The dependence of the densities of the normabkapdrfluid components on temperature.

The ratio of the normal and superfluid component oisly dependent
on temperature (and pressure). When we move aloagsaturated vapour curve
from the lambda point to lower temperatures, th® raf the densities shifts rapidly
in favour of the superfluid component. Because mloemal component density
decreases, the viscous forces acting on the sudbeebody immersed will come
from a lesser part of He 1.

The derivation of the hydrodynamic equations of tiwe-fluid model is quite
complex. It can be found, for example, in ref. [IAje linearised form of the dynamic

eqguations for an incompressible flow at low coutder velocities is as follows:

—

ou , p o
Ps a_ts + ps (U V)ug = _?svp + psSVT — Fs, (11)
aun — _— pTl 27—
Pn— t P (U Vun = — ?VP = psSVT + Fos + VU, (12)
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where 7 is the dynamic viscosity of the normal component aﬂ is a term
representing the coupling force of mutual frictlogtween the normal and superfluid
components, if vortices are present in the supdrfllhese need to be supplemented
by an equation of continuity, for incompressiblafl this is given by:

V- (pplty + pstts) = 0, (13)
and if we choose to neglect any energy dissipata, also need an equation
expressing the law of the conservation of entraggrgby:

d(ps)

ot
wheres is the specific entropy angbu,, expresses the entropy flux.

+ V- (psu,) =0, (14)

If we assume that there are not any vortices inlidngd, we can neglect
the mutual friction term and if we consider thewflto be isothermal, the equations
will be reduced to their simplest form:

—

du Ps

Ps E + ps(u_s)v)u_s) = - ; Vp, (15)
aml) ————> pn 2—>
Pn ? + pn(unvun) = - ?Vp +nVou,, (16)

The first of these is the Euler equation for theestiuid component,
and the second is the Navier-Stokes equationshi®rviscous normal component.
These equations are no longer coupled, so theields of the two components
are in the simplest case, independent.

In his two-fluid model, Landau assumed that themarcomponent consists
of thermally exited helium atoms, and proposes scrijgion using the dispersion
relations of thermal excitations. His dispersionlatien showed two types
of excitations called "phonons" and "rotons." Pagters depending on the momentum
and energy were chosen to match the data measyrekhdironikashvili because
the number density of phonons and rotons can bd tseestimate the density
of the normal component.

Another important result that can be derived froime tcorrect form
of the excitation spectra predicted by Landau & uhlimate critical velocity above
which superfluidity in He Il is no longer possibl€onsidering the change
of dispersion relations in the Galilean transfoioratin the reference system

of a moving body, we come to the same conclusiohaaslau did that excitations
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(rotons) will form continuously at velocities aboy® meters per second. This velocity
value was later confirmed by ions moving in H41b]

As it has two independent components, He Il suppsome regimes of flow
which cannot exist in conventional liquids. For exde, turning on a heater at a closed
end of a channel causes the superfluid componenflot® toward the heater
where it absorbs heat and changes into the noromapa@nent, which must then flow
in the opposite direction, away from the heateclass of similar phenomena is known
as thermal counterflow. This is characterised by reass transfer, but at sufficiently
high velocities it leads to the formation of turknte.

The two-fluid model works well in the temperatuamge from the lambda point
down to 1 K, where the normal component is alreguite depleted. At temperatures
below 0.7 K, the model fails completely, becausselis so little normal component
that it no longer represents a continuum, but nbestlescribed as ballistic thermal
excitations. At temperatures below 0.2 K, the hggmamics of He Il does not
significantly change any more and we talk aboutithi& of zero temperature.

While Landau[5; 6] published his phenomenological two-fluid model,t#ri
London [16] and Laszlo Tisza [17] worked on theotlyebased on the Bose-Einstein
condensation (BEC), which would explain the norssieal properties of He Il. BEC
is a process in which bosons will occupy the funelatal quantum-mechanical state
(the lowest accessible energy state) on a macrossmale if they are cooled
to a sufficiently low temperature, provided theseai sufficient density. Fritz London
calculated that for an ideal gas composed of (nteracting) helium atoms,
the condensation should occur at 3.15 K, which isfficgently close
to the experimentally determined temperature, K Xorresponding to the superfluid
phase transition. The difference arises from the fhat atoms in liquid helium
in fact interact rather strongly, whereas Fritz dom's calculation assumes
no interactions at all.

With this approach, it was possible to explain finentain and mechano-caloric
effects, since any temperature gradient in the méwhmed condensate automatically
implies a pressure gradient, and vice versa. Fumihee, it was assumed
that the superfluid component consists of the atdamming the Bose-Einstein

condensate, while the rest of the atoms constih&e'normal component.” However,
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Landau’s model was more successful in describing densities of the two
components as inferred from Andronikashvili’'s exmpent.

On the other hand, without a theory based on Basstdin condensation,
another peculiarity of He Il - the existence of wpied vortices in the superfluid
component — could not be explained. BEC theory ssigghat the atoms in the ground
state should be described by a single macroscogictgm-mechanical wave function.
If we try to calculate the velocity of the supeidlucomponent, we find
that no rotational movement should be possiblethascirculation around a loop
bounding a continuous area of superfluid would Iy, definition, zero.
This is in contradiction with the experiment delsed in ref. [18], as uniform rotation
of He Il has been observed to be very similar &b ith classical fluids.

This discrepancy can be resolved if we consider rbiation in He Il creates
one-dimensional topological defects (lines), alovigch a violation of superfluidity
occurs. These defects have been observed expeaiiyesund are called quantized
vortices, as follows from the theory that the diation of the superfluid component
around these lines can only have defined (quantizedues, which are equal
to multiples of the quantum of circulation= h/m, whereh is Planck's constant
andm the atomic mass SHe.

All quantized vortices in He Il almost always haealy one quantum
of circulation, as this minimises the energy of thgstem. A complex tangle
of these quantized vortices, which may arise dicsertly high velocity, is called

quantum turbulence.
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1.3 Behaviour of a Torsionally Oscillating Disc in auke

To compare our results with the theory of the hggramics of superfluids,
it is necessary to derive the theoretical desanptof the studied problem,
the torsionally oscillating disc. Generally, findirsolutions to the Navier-Stokes
equations describing the behaviour of a fluid atban oscillating disc is a complex
mathematical task. For turbulent flow, no solut@an be derived analytically; even
numerical simulations of such time-dependent floauld be of great complexity.
Therefore, we limit ourselves to laminar flow amebtsimplified cases; flow around
a torsional oscillator in the form of a disc placed infinite volume of fluid
and between two stationary parallel plates.

For this calculation, it is appropriate to stadnfr the Navier-Stokes equations
and the equation of continuity detailed in cylimati polar coordinates, ¢, z.

Then, the three components of the Navier-Stokeatexjuare as follows:

ou, . — ug 10p 2 0uy, u,
W, -2 =4y (Au, - —=—2-2), 17
o T Jur r p or M op 12 (17
ou - uu 1 dp 20u, u
® | (= rie r UYp
— 4 (u- £ _e 18
ot (7 V)up + r prad +V( vt o r2>' (18)
du, - 1dp
. . ) 19
5t + (u-V)u, 09z + vAu, (19)
where
.= of u,of of
V) f =mup L+ 2Ly, = 20
(u V)f U or + T 0 +u 0z’ (20)
10/ of 1 0%f 0%*f
= (=) _——L 4L 21
Af ror (r ar) * r2dp? 0z% (21)
and the equation of continuity is:
la(rur) N lau(p N ou, o, (22)

r or r do 0z

Firstly, we will derive expressions describing thetion of a torsionally
oscillating disc in infinite space.
Consider a plane disc with large radiRswhich executes rotary oscillations

with a small amplitude about its axis, the angleathtion beingd = 6, cos(wt),
where 6, « 1. For small amplitude oscillations, the te(lﬁ-V)f in the equation

of motion is always small compared witAu/dt, whatever the frequency.
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If R> 4, i.e., if the radius significantly exceeds thecwiss penetration depth,
the disc may be regarded as infinite in determitimgvelocity distribution. It is easy
to see that the solution of the Navier-Stokes eguais such that, = u, = 0,
u, =u=r0(zt), where (zt) is the angular velocity of the fluid.
Then te equation of continuity is satisfied identicaipd the three components
of the Navier-Stokes equatiom cylindrical polar coordinates are reduced

to the single equation:

00 %0
Loy (23)
at 0z?
The solution of this equation, which satisfies theundary condition
N =0, = —wb, sin(wt), where, is the angular velocity of the disc, far= 0,

and is equal to zero far= oo is:

z A
= —(0,e 5si _Z (24)
0 (lpe §&sin (a)t 6)'
where 2, = w6, is the amplitude of the angular velocity of thesdi
ando is theviscous penetration depth

The moment of the frictional forces on both sidethe disc is given by:
R /21
M = Zf f rE,rdodr
0 Y0

R
ou
= 4m7fr W dr (25)
0 =0

=%Q01/wan4 (cos(wt) + sin(wt)),

—

ou

oz

whereE, is the local viscous drag force given By= Tl( ) . However, only
z=0

the part of the viscous force in-phase with th@ey is responsible for the damping
of the oscillations. One can therefore write foe dfissipative part of the moment
of forces:

T
Mgy = EQO./(uan“ sin(wt), (26)
from which it is possible to calculate the dampuwgfficientk and its effective

valuek, s given by averaging the dissipative forces over pereod:

Mdis n
k= — = —./wpnR*, 27
0 > \ wpn (27)
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k(T 2
koyp = 7| lsin(wo)| = 2 = JZwpR*, (28)

which will bedirectly compared with experimental data.
A factor often used to describe the fluid flow lie trate of energy dissipation.

It canbe derived analogically to the dissipative momérihe frictional forces:

dE R (21 T
£=——= 2f f u F, gis rdedr = — 0% JwpnR* sin?(wt), (29)
dt o Jo ' V2
where F, ;s is the dissipative component of the viscous for@e-phase

with velocity). An effective energy dissipation asged over one period
is then given by:

T
Eoff = EQOZ,/wan‘*. (30)

The same procedure as above is used to deriveltteons describing the flow
around the torsionally oscillating disc placed Ine tmiddle of two plates located
at distanceh on either side of the disc. The calculation wilffef mostly
by the boundary conditions- In this case, it is required that the solution
of this equation is? = —, sin(wt) for z= 0 and 2 = 0 for z = h. Relations

describing the desired variables will take a sligbifferent shape then:

2
cosh (25—h) — Ccos (%)
. (cos(wt) (sinh (%) sin (Z _52h>

— sin (g) sinh (Z ;Zh» (31)

+ sin(wt) (cosh (g) cos <Z _(SZh)

— cOoS (g) cosh <Z _(SZh))),
1 0o/ wpnR*

MT N
V2 cosh (%) — CosS (%)

. (sinh (%) (cos(wt) + sin(wt)) (32)

+ sin (25—h) (—cos(wt) + sin(a)t))),

nt=
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1t Toy/wpnR*sin(wr) sinh (5) s (5) (33)
dis V2 cosh (26—h) — cos (%)
¢ _myjwpnR* sinh (5)+sin (%) (34)
V2 cosh (26—h) — cos (26—h)’
(2 2h
. \/WR‘* . sinh (Z) + sin (Zl), (35)
cosh (T) — cos (T)
o nfy’\JwpnR*sin*(wt) sinh (Zg_h) +sin (27) (36)
V2 cosh (26—h) — Cos (%)
) nﬂo?J555R4_ﬂnh(TT)*'““(%?) (37)
eff 2V2 cosh (%) — cos (%)

As we would expect, in the limih<<¢ these relationships reduce exactly
to those derived for the example of a torsionafigikating disc in an infinite volume
of fluid. Figure 1.6 shows this limiting behaviour of the effectivdamping
coefficient. As in our cas&,,,, = 0.475 mm andh = 4.5 mm, it is evident
that we can use the expressions derived in theefkample.

To compare with experimental data, an expressiorthe relaxation timer
derived from the solution to the equation of motafra linearly damped harmonic

torsional oscillator, will be used:

21 41
T=—=

T (38)

wherel = %mR2 is the moment of inertia of the dism its mass and its radius.

One of the assumptions used in all the calculai®tizat the initial deflection is small;
due to that, the inertial term of the Navier-Stokeguation can be neglected.
The derived results thus apply only to the situatichere laminar flow takes place
around the disc. In the event that the flow is wileht, we expect the frictional forces
and energy dissipation to exceed the values derialeove, and the damping
coefficients k and ke will become functions of the angular velocity aruule.
Our goal will be, among others, to identify thetical values of relevant quantities
at which this occurs.
18
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Fig. 1.6: Ratio of the damping coefficient cald¢atafor the disc between two plates to the damping
coefficient obtained for a disc in an infinite vole of fluid plotted against the distance of thecdis
from the plates divided by the viscous penetratiepth. If the disc is moved away from the plates
by at least five penetration depths, the two cdmEdme essentially equivalent, whilst in the limit
of low h/6, the ratio of the damping coefficients scales isgly proportional to this parameter,

as illustrated by the thin straight line.

To provide a means to handle non-linear drag formesing if turbulence
is present, we do the following. In analogy witte tsituation where a body moves
linearly in a fluid experiencing a non-linear drigce F = %CD’pA’UZ, whereCp’
is the dimensionless drag coefficiedt, the cross-sectional area addthe velocity,
it can be shown by evaluating a similar integralv@sused to calculate the moment
of drag forces, one may define a drag coefficienttie torsional motion of the disc:

B 2 kesp 4

DT HR50, Res
where R is the radius of the disc. This drag coefficieat eéxpected to follow

(39)

a 1/0, dependence in laminar flow, which starts to chagigelually at the critical
angular velocity to become a constant in develdpdzlilence.

Finally, in the case of flow around the oscillator superfluid helium,
it is necessary to replace all the densities aadogities by the values for the normal

component (noting that the kinematic viscosityhaf hormal componenty = 7/py),
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because unless quantized vortices are created aadtugn turbulence occurs,
the superfluid component will either stay at rest exhibit potential flow
and will not contribute to the dissipative forcediray on the disc. For the drag
coefficient in superfluid helium, we will use bothrieties with the density replaced
by pi Or ps as neededipy = 2kqrr/py Ay andCps = 2kopp/ peALdy.

In the next section, a description of the experiaen setup

and the measurement technique will be given.
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2 Experimental Setup

The experiment was conducted in a glass cryostasistng of two Dewar
flasks. The exterior one is opened outwards andesefor precooling by liquid
nitrogen. This dewar is silver-plated in its vacuspace to reduce radiative heat
transfer into the inner flask. In the layer of eilvthere are two vertical visors
of a width of about 3 cm along the entire heighthef cryostat. As we employed video
recording to measure the motion of the disc, it wasessary to cover the visors

tension and drive ~ with black paper leaving only a 1 cm high

mechanism viewport at the level of the disc.

= —————— cryostat top flange

Around the inner vessel, six white
thin-walled LEDs were placed at the level of the disc.

5 stainless steel tubes
1 % The LEDs were distributed evenly around

FR2 baffles
8 the circumference in such a way

as to avoid the line-of-sight of the video

tungsten fibre
camera. White paper was put around

the inner dewar to provide soft diffuse
) lighting and a uniform image background.
polished FR2 plates
SZ . . The experimental setup, shown
E oscillating disc

in figure 2.1, was placed in the inner

dewar, which can be filled with liquid
helium and pumped on by a Roots pump

to reduce the saturated vapour pressure

bottom FR2 plate

down to about 1.5 Torr corresponding

Fig. 2.1: A schematic sketch of the cryostatto temperatures just above 1.3 K.

Insert housing the oscillating disc suspended The top flange of the cryostat

on the tungsten torsional fibre. . . .
g had three ports connecting to the interior

of the helium vessel. Two of them were used fondferring helium and measuring
the pressure, which was later used to infer thepéeature from the saturated vapour
pressure dependence as given by the HEPAK softi&8re20]. Through the central
port, a small assembly consisting of a pipe withraaded rod, a top nut, a counter nut,
and a ball bearing was connected to the interiorth@ inner vessel. Inside
it was connected to a thin-walled stainless stebk tthat extended downwards
and at its lower end held the tungsten wire, onctwvhihe disc was suspended.
21



The assembly at the top flange was used to appigicee to the tungsten wire
as needed and also to rotate the disc freely wittimanging the tension of the wire.

A support construction was fixed to the bottom safethe cryostat flange.
The structure consisted of four thin-walled stasnlsteel tubes held together by brass
rings and FR2 baffles. It was made of two partsiciwthad the oscillating disc
in between them and were connected by three cidmdbrass spacers 10 mm
in height. The upper part of the structure conthiseveral baffles used to guide
the tube connecting the tungsten wire to the tapg assembly and to reduce the heat
leak. At the bottom of this part, a brass ring @anBR2 plate with polished surface
was fixed, which provided the upper boundary to thelume of helium
in the immediate vicinity of the disc.

The lower part of the structure was almost a mimage of the top part (around
the plane of the disc), except that it was terneidatt the bottom by another FR2 plate
to which the other end of the tungsten wire wagdixBelow the lowest plate,
a 50Q heater was placed. It was used to evaporate diyrhieft after the experiment
has finished.

The torsional oscillator itself consisted of a O tungsten wire 32 cm long
and the disc fixed to the wire in the middle of l#egth using a thin 0.8 mm brass
capillary and Stycast 1266. The disc itself was enatdPlexiglas of 1 mm thickness
and had a diameter of 50 mm. When the wire wagg@uéut, the disc was positioned
approximately midway between the two polished FR#epg, i.e., roughly 4.5 mm
away from either plate. Sixteen black marks weredenaevenly around
the circumference of the disc, which would laterused to determine the deflection
and angular velocity of the disc from the recordequences.

The motion of the disc was recorded with a Canors BOOD digital camera
fitted with a Canon EF-S 18-135 mm f / 1:3.5 - 3% lens. The recording
was acquired in 1280x720 resolution at the franees&60 fps.
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3 Experimental Results

3.1 Data Processing

Our raw data was in the form of video recordingghe motion of the disc
during the experiments. Because the marks on tke diere relatively small
compared to the entire field of view, with relative low contrast
to the not-entirely-uniform background, standard tiovo tracking software
could not be used to process the videos. Hencdy fabomplex post-processing
was required to extract quantitative and interpetaata.

Firstly, it was necessary crop the recorded videttjng away the plates above
and below the disc, as well as the cryostat shaettlleaving only the area of interest
in the immediate vicinity of the disc. The videosathen split into individual frames,
de-interlacing them in the process, which mearit dindy pixels recorded at exactly
the same time were kept. To achieve both of thesdsgthe commercial program
VideoMach was used.

The obtained images were further processed in AdBhetoshop CS2,
where in a series of ten to fifteen steps, the wolomages were converted
to monochromatic bitmaps. These involved filteritigg image in various ways,
using the colour information in such a way and amng the low contrast
of the marks so that they would become black caotig spots on white
background. This process included blurring filtar&l the removal of small specks,
which led to the fact that not all the captured ksawere reproduced in each
individual image, as the settings of all the fdteand modifications were kept
the same for each of the roughly 10,000 to 35,08®és of a given recording.

The resulting monochromatic bitmaps were used patifor a home-made
program created in the NI LabView environment. lkacle image, the program
localised the black areas evaluating their size @mire of mass. It then assigned
individual dots between consecutive images to eather (making special
arrangements for those not reproduced in some @fbitmaps) and calculated
the average displacement between the two framegixels. This basically
gave us a value of the circumference velocity kefs per frame. At the same time,
the software controlled the physical meaningfulnedsthe emerging pattern

of motion, as it was known that the disc would ékthidamped oscillations.
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The program output a text file containing recortithe size, the position of each dot
in each frame and the displacement between frames.

The velocities obtained in the previous steps Weee inserted into the Origin
processing and graphing software. Here they wenearted from pixels per frame
to radians per second assuming that the opticatisffdue to several curved glass
plates are negligible, as only the central regidnthe field of view was kept
for processing, and the results were plotted agdinge. Based on the graphs,
irrelevant data were removed; the beginning of esaghal, where the disc had not
yet been spun, and the signal end, where all mganinnformation was lost
in the noise. The remaining data were smoothedredfwther processing to improve
accuracy. We used the Savitzky-Golay algorithmdarves dominated by random
noise, or the low pass FFT filter with the cutoféduency of 1 Hz for curves
distorted by weak oscillations at other frequenciesch as the low amplitude
(< 1 mm) pendular motion of the suspended dis@emrerally any noise exhibiting
periodic behaviour. Each smoothed signal was clyetbecked against the original
to avoid processing artifacts.

The smoothed data were again exported as a texrfd processed in a second
program created in LabView. This program sought ealtrema of the signal
and returned their values and the times when teeyiroed, with the intent to extract
the envelope of the decaying oscillating signal.ndeded, additional filtering
algorithms were employed before the extrema weteeted. The values and times
of the extrema were found from a parabolic fit ke theighbourhood of a local
discreet maximum or minimum in the signal.

The resulting data were further processed andeaalott Origin. Comments
for this process and its results along with thaiteipretation will be given

in the following section.
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3.2 Interpretation

Before the actual measurement, preliminary teste warried out at room
temperature (in air at 1 bar and in vacuum) and hgaid nitrogen temperature
in vacuum. The time evolutions of the angular vitles during tests are plotted
in figure 3.1. We see that the damping of the tsoit is affected both by the change
in temperature and pressure. This was an encogyagsult, meaning that the disc
should be sensitive to dissipative forces from tlsairrounding fluid,
as well as that its intrinsic energy dissipationaifmy within the torsional fibre
and connections) will beegligible at helium temperatures compared to kethinar
and turbulent drag forces. Note that the decag timvacuum near LNtemperature
is already over 400 s, much larger than the sigmsalbsequently measured,
even in superfluid helium at the lowest temperaurloreover, the intrinsic
damping, which is mainly due to the motion of vages and dislocations

in the fibre, is expected to drop even further lestw LN and LHe temperatures.

1 —— SG smoothed data, 1 bar, air, RT
z A
E 0 ll’ Il “Avlwuu' MM
G \ —— damped sine function fit;
-1 f=0.225219 Hz, 7=110.29 s
11 —— SG smoothed data, 0 bar, RT
z‘ |
B o i ——.
G —— damped sine function fit;
-1r f=0.225594 Hz, r=157.8 s
50 —— SG smoothed data, 0 bar, LN, temp.
I ‘
g of
G 5l ‘ ‘ | —— damped sine function fit;
. . . _ . f=0.229016 Hz, 7=429.3s
0 100 200 300 400 500 600 700

t[s]
Fig. 3.1: Time traces of the signals of angulawoe#y recorded during test measurements at room

temperature and liquid nitrogen temperature, ascated. The decays are perfectly described

by a damped sine function, i.e., no non-linearigies observed in this case.
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During the tests, we ran into several problems. Wfend that it was
necessary to improve the uniformity of the backgauThis was done by using
white paper located on the outer side of the heluessel. The exterior lighting
reflecting on the glass of the cryostat made iy \aifficult to record usable videos.
For the main measurements, we solved this by ImsjaLEDs into the liquid
nitrogen space of the cryostat, which significamthproved the lighting conditions
during filming. Also, the bubbles caused by evaporain the nitrogen tank had
an adverse impact on the recording quality sin@y ttrossed the field of view,
distorting the image. After initial unsuccessfuteatpts to prevent bubbles from
passing through this area by placing obstacleswbébe field of view, we decided
to try a different approach by creating a horsestimped bubble trap instead,
which maintained the level of liquid nitrogen beltve field of view.

For these teststhe recordings were acquired at a frame rate off&5
with a resolution of 1920x1080. However, duringgassing, we found that the main
measurement would require a frame rate of at |18@skps. The camera was only
capable of filming at this rate with a maximum ifdeson of 1280x720,
but this was sufficient for our needs.

Measurements were only performed in the superfphdse He Il because
measurements in He | would be very difficult dudlbles being formed throughout
the entire volume of the liquid. Thus, our measuweets began just below the lambda
point and subsequently by reducing the vapour presshe liquid temperature
was lowered to selected values. During the measemmemnit was necessary to correct
the pumping rate such that the pressure in theeléssas constant as possible.
An example of the measured signal that was acquatethe lowest temperature
that we achieved, 1.37 K, is plotted in figure 3&ong with the temporal
evolution of the angular velocity, we also plot tbgarithms of the signal maxima
that will be used in further processing.

From the lower plot, we clearly see the transitiorthe non-linear resistive
force, indicating the onset of non-laminar flow #te highest amplitudes
and the presence of some form of turbulence. Bypeomg figures 3.1 and 3.2,
it can be seen that the oscillation amplitude ipesfiuid helium decays faster
(z= 200 s) than in vacuum, even at liquid nitrogen tempegatTaking into account

our experience with other types of resonatorgh s1s the tuning forks, we estimate
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Fig. 3.2: (top) An example of a signal of angulaltocity recorded in superfluid helium. The observed
damping significantly exceeds that measured in wacat liquid nitrogen temperature (figure 3.1).
(bottom) Logarithms of the maxima of the signalwhan the upper panel. Plain exponential decay
characteristic of laminar flow is seen as a stralgie dependence at late times, while the changes

at around 100 s indicate instability in the flow.

that the damping of the fibre at helium temperayre vacuum) would be roughly
an order of magnitude lower than at nitrogen temoee, which justifies neglecting

the intrinsic dissipation of the fibre in furtherogessing. Note that it would

be difficult to measure the vacuum dissipation mtdnelium temperature directly,
as the tungsten wire would not be properly thersedliand a temperature profile
ranging from room temperature (at the top flange)LHe temperature would

develop along its length.

In figure 3.3, we show the logarithms of signal i@ for each measurement
at different temperatures. The measurements aidedivinto groups according to
the temperature and the behaviour of the signal.

Notice how the logarithms of the signal maxima ehaat various
temperatures. For almost all measurements (exceptioll be discussed below),
the slope of the linear part of the curve variegpprtionally with temperature. This

Is because the dissipative forces in the lamindrguaginate in the normal component

27



2 -
X + 1.37K-group 1 1.66 K
s, « 137K-group2 - 195K
1.44 K 2.06 K
or 1.60 K - 216K
. 1.62 K
Q)
B 2f
9? ety s« 1.37 K - group 1
E y N o‘:f. 3‘{‘.“:.5.’?.:?" ,.. o0
'4 r N o e ’a.',:\o; o‘.\— ‘:‘.:M.:
U Re N ST, ) Sep e B e W o0 BTSN AT
. .‘#:' P X A *‘,. °®
oo’y ® Ul wit gt et s 1.62 K
1.37 K- group 2% #3°° e e ety 1.95K
s : 144 K 1.60 K
216 K 2.UC
0 100 200 300 400 500 600 700
t[s]

Fig. 3.3: Logarithms of the amplitude of angularloey as a function of time at various
temperatures. The slope of the linear part shoultrehse with decreasing temperature,
as does the drag force due to the normal comporfemb. of the data sets (1.37 K — group 2
and 1.44 K) do not follow this tendency and haveerbe@emoved from further processing

as they are affected by the liquid helium levelpgiog near the upper plate above the disc (sep text

and thus have to scale with its density accordiogetjuation(26), resulting
in the smallest slope for the lowest temperatuce, his is not true for measurements
listed as “1.44 K” and “1.37 K — group 2", becaus#ile filming these,
the superfluid helium level was already very clésehe disc and hence we have
no knowledge of the temperature of the filament vaboit. Therefore,
these measurements were removed from further asalys

Since we are mainly interested in the analysis f#d hon-linear part
of the data for each temperature, the laminargfatie graph was fitted by a straight
line, which was then withdrawn from the logarithofghe signal maxima. The area
of fitting was selected manually with care taken &woid influence from
the non-laminar part as well as from the noisy @@t late times (low amplitudes).
This process is illustrated, for example, in théadar 1.37 K shown in figure 3.4.
In Table 3.1 we list the fit constants and relaxattimes calculated in this way

for all available temperatures.
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Fig. 3.4: An example of fitting the linear partthe decay by a straight line. Care was taken tadavo
the fit being distorted by the noisy part at thevést amplitudes and by the onset of instability

observed at early times.

Tab. 3.1: Values of the fit parameters and b for various temperatures together
with the relaxation time = — 1/b.
T [K] a b[x107s"] T [s]

1.37 | -0.87+0.05 -4.9+0.2 2036

1.60 | -0.49+0.03 -6.4+0.1 156+ 2

1.62 | -0.50+0.03 -6.5+0.1 153+2

1.66 | -0.61+0.06 -7.6+0.2 1314

1.95 0.26 £ 0.02 -10.0+0.1 1001

2.06 0.43+0.03 -12.8+0.2 781

2.16 1.16 £ 0.03 -18.4+0.2 54+1

In the upper panel of figure 3.5, we plot the ladns of the signal maxima
(after subtracting their laminar contribution) agsithe amplitude of the angular
velocity for all temperatures. The change of thepsl of the non-laminar part
with temperature suggests that the non-linear forag originate from the superfluid
component as its magnitude might scale approximateith the density
of the superfluid component. In the lower panel, plet these curves normalised
by the density of the superfluid component. The caiimidentical slopes
of the non-laminar parts confirm our previous swjige that the drag force

in this regime scales with the density of the sfiper component, at least
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for temperatures between 1.37 K and 1.99 Kis demonstratebat in the superfluid
component, a significant amount of quantized vegi@are present, since without
them, the superfluid component has no means whasd® act dissipatively
on the oscillating disc.

At 2.16 K, the normal fluid fraction is over 90%cdai dominates the fluid’s
dynamics. Here, we see no hints of a non-lineasighsive force at all, except
perhaps for the very highest angular velocitiesvab@ rad/s. This corresponds
to a value of Reys =12yR\2py/nw =450, which was only reached
in our experiments at temperatures of 2.16 K, Xp&nd barely reached at 1.95 K.
This means that at lower temperatures, the normalponent could not become
turbulent of its own accord in the examined ranfeamgular velocities, without
the influence of the superfluid component.

This would, together with the scaling of the namelr force at lower
temperatures, seem to imply that under the giverditions the normal component
is most likely still laminar. If this is shown toebtrue, it would represent
an important result in the sense that it would mlevan answer to one
of the long-standing questions in two-fluid hydrodynics, giving a direct proof
of the existence of a situation where the supetflcomponent contains enough
quantized vortices to induce a measurable nonHidesg force, while at the same
time the normal component maintains laminar flonowsdver, before jumping
to such conclusions, more careful analysis is requi

From figure 3.5, we have also estimated the critical
angular velocity for the decay of quantized voride the superfluid component.
That is also the reason why we use the angulaciglas the independent variable
rather than the dimensionless characteristic nuspbghich are meaningful only
for the normal component. As an example of theresion of the critical angular
velocity, we show figure 3.6. We should note thait testimation is subjective
and prone to significant errors, perhaps up toctofeof 2. However, given the noise
levels in the laminar part, we believe that thecigien could not be increased

significantly if more quantitative methods were dise
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Fig. 3.5: (top) Logarithm of the angular velocitylitude with the linear part withdrawn (as shown
in figure 3.4) plotted against the angular velocitsplitude. At 2.16 K no signs of non-linear
dissipation are present except at the very higlwegtilar velocities. The non-linear drag (propoion
to the slope of the dependence) seems to incrediBedecreasing temperature. (bottom) The same
quantity as above divided by the superfluid compbrensity ps. The non-linear drag has collapsed
to the same slope of the dependence for all terhpesa(except for the data taken at 2.06 K), shgwin

that it is proportional tps and thus originates from the superfluid component.

In figure 3.7, we plot the time derivative of thegarithms of the signal
maxima, which is linked to the theoretical quaestiby:dn,/dt = —1/1, against
the angular velocity amplitude and the arrow madHes critical velocity determined
according to the procedure outlined above. Lookahgsely at the dependence
of the time derivative above the critical velocity, question immediately arises
of whether only one critical velocity has been nueed. These data would be readily
interpreted if we assumed a region dominated byidaminar flow (constant value
of the time derivative) in the vicinity of 1 raddsd a second transition near 2 rad/s.
This second transition has only been observedbtgle the lowest temperature, 1.37

K with only a hint of similar occurrence at temgderas near 1.6 K.
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Fig. 3.6: An example of the determination of thitical angular velocity for the temperature 1.37 K.
The critical velocity (black arrow with error bai§ estimated to be located at the point where the
dependence first noticeably diverges from the loottal line passing through zero on the y axis. We

estimate the uncertainty of such a critical valegednined from this type of graph to be below 20%.
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Fig. 3.7: The time derivative of the logarithm b&tamplitude of the angular velocity plotted agains
the angular velocity amplitude for the temperatu®¥ K. The critical velocity, determined as expéad
in the text, is shown by the left black arrow amtbebar, but we also see an indication of a second

critical angular velocity between 1 and 2 rad/se blid lines are guides for the eye.
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Fig. 3.8: The (lower) critical velocity plotted agst temperature and for comparison, the results
of Donnelly and Hollis Hallet [7]. Despite the uni@énties and the scatter of the data, it seems
that in both cases the data display only a wealpé¢eature dependence and that they are in mutual

agreement.

As we can see in figure 3.8, our values of the @weritical angular velocity
seem to correspond to the values obtained by Dhniaeld Hollis Hallett [7].
If we assumed that it is the speed at the circusnize which matters instead,
the agreement would be worse because of the diffeaglii of the discs used. Given
also the scatter of the data, no strong conclusaosit the observed critical angular
velocities can be made at the moment, except pertiegi in both cases the same
type of instability has been observed and that anlyeak temperature dependence
is found, which again supports the idea of an hita in the superfluid
component, as the viscosity of helium and the dgnef the normal fluid
both change dramatically with temperature, affectine relevant flow parameters
such as the Reynolds numb&esor Reg.

However, with the current knowledge at our disposair work leads
to a somewhat different interpretation of the ressdhan that given in ref. [7],
as more information about the dissipative forcadatbe extracted from the digitally

recorded data. Additionally, in their experimentghwvthe torsionally oscillating disc,
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Donnelly and Hollis Hallett never seemed to reabb second critical angular
velocity [7], although they have seen it with otld®vices such as a torsionally
oscillating sphere. From our results, it followsatthat angular velocities higher
than the first critical value and less than theogseg quantized vortices are formed
in the superfluid component causing a non-lineasigative force. We shall now
examine the dissipative forces in more detail aochgare them to the theoretical
predictions.

In the two following figures, the experiments ammpared with the theory
of laminar flow around the oscillating disc. In dig 3.9 and 3.10, we plot
the experimental and theoretical values of thectffe damping coefficienkqs
and the effective energy dissipatieg: for three different temperatures: 1.37 K,

1.95 K and 2.16 K against the angular velocitypeesively.

1E-7 ¢
e exp.1.37 K-group 1 theory 1.37 K - group 1
e exp.1.95K theory 1.95 K
e exp.2.16 K theory 2.16 K .

=
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Fig. 3.9: Comparison of the experimental effectienping coefficients with the theory for laminar

flow of the normal component at the indicated terapees. The theoretical values always seem
to be lower than the experimental ones, the reafomsvhich are given in the text. In this plot,

we also observe the two critical velocities in tlata taken at 1.37 K.
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Fig. 3.10: The effective energy dissipation ratetteld against the angular velocity amplitude

1E-13

for the indicated temperatures and for comparisiie, corresponding predicted dependencies.
The rates are sufficiently low to discount any ffigant heating of the superfluid in the vicinity

of the oscillating disc.

From both figures, it can be seen that the theoegdipts a lower drag force
from the surrounding fluid than we measured. Thishardly surprising since
the theoretical calculations do not consider thes@nce of the cylindrical cryostat
wall. Moreover, the disc did not exhibit perfectrsional motion during
the experiment, as it was not completely perpemalicto its suspension fibre.
Also, it would have experienced small sidewaysatibns as a result of the cryostat
being connected to the vibrating Roots pump or wherdisc was spun. Furthermore,
the disc also has a rough surface; in fact theaseanfoughness is likely to be on scales
comparableto the viscous penetration depth, which would iasee the drag
noticeably. Theoretical values can be calculatesnfithe relations (28and (30)
as the viscous penetration depth was almost temstihess than the distance
of the plates from the disc. In both plots, we atso see the transition from the linear
damping force.

To further disentangle the contributions of the temmponents of He I

and formulate a scenario for the behaviour of diypérhelium around a torsionally
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oscillating disc, we will examine the drag coetiais defined for the torsional motion

of the disc in Section 1.3.
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Fig. 3.11: The drag coefficient for the superflddmponent plotted against the angular velocity
amplitude for all the analysed temperatures (top)l #or selected temperatures, as indicated,
for clarity (bottom). The solid lines are guides fbe eye and represent either inverse proporiignal
dependences or a constant value of the plotted abafjicient. Two regions of quasi-laminar flow
are clearly identified in the data taken at 1.37Hgrthermore, the behaviour at angular velocities
around 1 rad/s is almost identical for all tempemes below 2 K. Needless to say, the drag coefficie
for the superfluid component is not a very meanihgfuantity for interpreting the data taken
at 2.16 K, as the fractional density of the supifcomponent is very low — only about 7%. We plot

this dependence for comparison, nonetheless.
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In figure 3.11, the dependence of the superfluidgdcoefficient is plotted
against the angular velocity amplitude and agaire see that the data
from the lowest temperatures collapse to a singlpeddence, once the (lower)
critical angular velocity is exceeded. This is igreement with our previous
findings that the first non-linear damping forcedise to the superfluid component.
On the other hand, the laminar part at the lowedtias of angular velocity
does not collapse, as it is the normal fluid congminthat is responsible
for the dissipative force.

Furthermore, from this graph (selected data isdlate the lower panel)
we clearly see that at the lowest temperature etlage two regions that exhibit
laminar-like behaviour, which is recognized as thenctional dependence
Cps < 1/0,, in contrast to turbulent flow that would be claesised
by Cps = const. This is essential for our understanding of thecpsses occurring
near the critical angular velocity, as it showstthfier the lower critical angular
velocity is exceeded, He Il behaves as if it wambdlent in a limited range di,,
where we already know that the non-linear dragearisrom the superfluid
component, but then again starts to exhibit quasithar flow, despite the fact
that there is a significant amount of quantized tices already present
in the superfluid component. All of this is beseseat the temperature 1.37 K
where the fractional density of the superfluid com@nt is highest
and thus, its contribution towards the drag forsetie most significant.

Figure 3.12, where the normal component drag aoefft is plotted against
the angular velocity is perhaps only illustratifet it still shows the dissipative force
beginning to rise above the laminar contributiorapproximately the same value

as the critical angular velocity determined earlier
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Fig. 3.12: The drag coefficient for the normal cament plotted against the angular velocity
amplitude for all the analysed temperatures. Wihilgoortion of the data can be collapsed in thig typ
of plot, it shows quite clearly the critical angulzlocity and the quasi-viscous behaviour around 1
rad/s as indicated for the data taken at 1.37 kcfblarrow with error bar; upper black line,

respectively). The lower black line correspondsdaation (39) for the temperature 2.16 K.

It becomes more interesting if compared with fig®.¢3, where the drag
coefficient for the normal component is plotted iaga the Reynolds number
calculated using the viscous penetration depthhascharacteristic length scale.
From the collapse of the laminar part, one cartlsatethe viscous drag of the normal
component does indeed scale as predicted and thatrevreally operating the disc
in the *“high frequency Ilimit”, despite its very lownatural frequency
of about 0.22 Hz. If only the normal component haéen responsible
for the measured drag forces here, all dependesiemdd have collapsed to a single
line, similar to the data taken at 2.16 K that smdeed dominated by the action
of the normal component (over 90% fractional demsiThus, any significant
departure from the baseline approximately giventthy measurement must again

only be due to the superfluid component.
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Fig. 3.13: The drag coefficient for the normal cament plotted against the Reynolds number defined
for the normal component using the viscous perietratepth,s. This collapses the low amplitude
drag forces, proving that this force originatestirthe laminar component and that we are indeed
operating the oscillating disc in the high frequetimit, as mentioned in section 1.3. Without any
significant error, we can consider the dependeakert at 2.16 K to correspond to the behaviour of
the normal component alone. The parame&tgys is the only relevant dimensionless flow parameter
in the high frequency limit. If only the normal cpoment were involved in the flow (laminar or
turbulent), all data should have collapsed to glsinlependence similar to the data taken at 2.16 K.
Thus, any departure from the data taken at 2.16 &gain shown to be necessarily due to the action
of the superfluid component. As this plot does caitapse the dependence above the lower critical
angular velocity, it is now clearly shown that ac@med quasi-laminar flow exist again for all
temperatures below 2 K. The upper critical velo@gtghown reliably only for 1.37 K. The purpose of

the solid lines is the same as in figure 3.12.

A synthesis of all the information gleaned from flresented data allows us
to formulate the following likely scenario for tflew of He Il around the oscillating
disc - valid at least at the lower temperatureS871K, 1.6 K, and 1.95 K).
At the lowest angular velocities, the superfluidngmnent stays either at rest
or exhibits potential flow (not contributing towardthe dissipative forces),

while laminar flow of the normal component exist$his laminar flow
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iIs approximately described by the presented theergept for the differences
in the drag forces explained above. The first imfitg that occurs is due
to the emergence of a significant number of quadtizortices in the superfluid
component (likely generated from remnant vorticatached to the surface
of the disc), and leads to a non-linear increash®imeasured drag force that scales
with the density of the superfluid componeite presence of these quantized
vortices then causes an increase of the mutudlofmidorce (since it acts between
the vortices and the normal component) which ewdlytucauses the superfluid
component to adapt to the flow of the normal congmbnWe therefore believe
that He Il exhibits a coupled quasi-laminar flow lebth components, resulting
in a motion that can be (on length scales exceetleginter-vortex distance)
approximately described as that of a classicalouscfluid with its density equal
to the total density of He Il and an effective wasity equal to, or higher
than that of the normal component alone (higheg draefficient). An increase
in the effective viscosity might be due to the dumed vortices in the superfluid
component also dissipating some part of the kiretergy, regardless of the specific
mechanism by which it occurs. At the highest anguédocities, this quasi-classical
fluid will likely eventually undergo further instdities, as any classical fluid would,
triggering the transition to turbulence. This seemacan be found to agree
with the original interpretation of Donnelly and & Hallett, although
from the current experiment, further informatiors lteeen obtained about the scaling
of the non-linear force. A similar idea has alsermaliscussed and investigated
in a recent paper by Skrbek and Vinen summariziveg iehaviour of oscillatory
structures in He 1l antHe-B [21].

Having described the scenario which can be advdcetavincingly based
on the presented data, it is also fair to sayithate considers the non-ideal motion
of the disc, the noise levels at low amplitudes atier adverse effects, this scenario
should perhaps be thought of as a likely posgybilither than well-proven fact.
Nevertheless, a very similar scenario was formdldte the behaviour of quartz
tuning forks in He Il in the same temperature raj@jewhere efforts were also made
to quantify the degree of coupling between the rabramd superfluid component.
Although the data presented in ref. [9] are le$scédd by noise and similar effects,
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at the time they have not been processed in the $ashion as in the present work

and do not seem to show the two laminar-like flegimes too convincingly.

3.3 Suggestions for Improving the Experiment

For future work on the oscillating disc, it woulde ldesirable to focus
on the following aspects: It would be appropriabeuse a heavier, more stable
glass disc mounted on the fibre at an angle asedos90 degrees as possible.
It would also be advisable to improve the contragtjability and spacing
of the marks on the disc. For example, the choiteaodark opaque paint
would significantly help to increase the contrasthe dots against the background,
which could be complimented by better lighting desthe cryostat as well.

It will be necessary to reduce any mechanical titna due to the pump;
For example, this could be done by selecting a dongnore flexible hose
and by fitting the cryostat with rubber damperswanted lateral vibrations should
be limited even more by an adapted drive mecharasnhe present manual one may
cause significant vibration during the initial movent, leading to increased noise.
Such a drive mechanism should also allow highdralnamplitudes, which would
also be essential in determining when the coupledponents become turbulent
at higher temperatures.

After these improvements are made, it would alspdssible to think of better
data processing methods. For example; to allow a&enprecise determination
of the actual angular displacement, rather tharulangrelocity only, which is its
derivative and thus is more prone to random noise.

It would also be interestingo changethe disc diameterand compare
the behaviour, orperhaps to desiga similar experimentwith another axially
symmetricbody such as sphereor cylinder andto comparewith available results

or evenbetween differenshapes of the torsionally oscillating bodies.
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Conclusions

After finishing all necessary tests at room tempeeaand at liquid nitrogen
temperature which led to significant improvemenfstioe apparatus and data
acquisition, measurements with a torsionally ostilg disc were performed
in superfluid helium at temperatures between 2.1&nK 1.37 K at saturated vapour
pressure. We were able to measure the time depemdenthe angular velocity
of the disc and to determine a critical value o# @ingular velocity amplitude.
The obtained temperature dependences also pravidiemiation on what the nature
of the observed instabilities is likely to be.

We have presented evidence showing that the mehswe-linear forces
originate from the superfluid component, which msimprovement over the original
interpretation of a set of similar experiments perfed by Donnelly and Hollis
Hallett [7], where a similar concept called the tftamment of the superfluid
component” was presented, which seemed to be halbwetween an assumption
and experimental fact. Moreover, the described ceffeas not at all present
in the data shown for the single oscillating dias, sufficiently high amplitudes
have not been reached. Thus, as far as we knowhdarase of the single oscillating
disc this is a new result and we are not awarengfpaievious work that would show
the same.

Based on our experience with other oscillatory cttmes, we have proposed
a detailed scenario of the transition to turbulefuzethis experimental arrangement
and present evidence in support of its validityhwitthe limits of experimental
accuracy, forming an overall picture of the chaedstics of the flow of He I
around a torsionally oscillating disc. This sceoars generally in agreement
with the conjectures drawn by Donnelly and Hollialltt, but is now laid down
in greater detail and supported by additional expemtal results. Nevertheless,
there is always room for improvement, and the torai oscillator experiments

will continue to be studied in the Superfluiditydaatory.
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