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ukázaly, že naměřené nelineární síly pocházejí nejspíše od supratekuté složky.  
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Introduction 

The beginning of low-temperature physics can be traced back to July 10 1908, 

when the Dutch physicist Heike Kamerlingh Onnes liquefied helium for the first time 

in Leiden. After a series of experiments that followed over the years, low-temperature 

physicists knew that helium had remarkable properties which could not be explained 

by classical physics. It was clear that the behaviour of helium at temperatures above 

and below 2.17 K clearly differed. This temperature was named the λ-point because  

of the shape of the temperature dependence of the specific heat. Helium above  

and below this temperature was named He I and He II, respectively. 

In 1938, Pyotr Kapitsa published the  results of his hydrodynamic experiments  

with liquid helium [1]. Kapitsa observed that, although the flow of Helium in a gap 

between two optical-grinded discs is barely detectable after cooling below the λ-point, 

it may flow smoothly. This phenomenon was dubbed superfluidity.  

Kapitsa’s and later, Allen’s and Misener’s experiments [2] showed the dynamic 

viscosity of superfluid helium was significantly lower than the dynamic viscosity  

of normal liquid helium. However, experiments on torsionally oscillating cylinders in 

Toronto [3] showed that He II is able to flow without internal friction in certain cases, 

but in others, it appeared to behave as a normal viscous liquid. This was a serious 

problem which had to be resolved. 

A milestone in resolving these conflicting experiments was achieved  

by Andronikashvili [4]. He used an assembly of discs stacked very close to each other 

immersed in liquid helium and measured the resonant frequency of torsional vibrations 

in relation to temperature. The resonant frequency was found to be almost constant  

in He I, while in He II, it increased noticeably. This experimental result lead  

to Landau’s phenomenological two-fluid description of He II [5; 6], which tells us that 

He II behaves as a mixture of two independent components – a normal  

and a superfluid component. 

The last experiment relevant to my thesis was performed R. J. Donnelly  

and A. C. Hollis Hallett in 1958 [7]. In this experiment, a torsion oscillator consisting 

of a suspended disc was used to explore the flow of superfluid helium. My work  

is based on repeating their experiment using modern technology, such as imaging  

and data processing, which could provide more accurate results. 
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The Joint Low Temperature Laboratory established between the Faculty  

of Mathematics and Physics of Charles University in Prague and the Institute  

of Physics of the Academy of Sciences of the Czech Republic, where this work  

has been performed, has extensive experience in the exploration of He II using various 

oscillating bodies, like quartz tuning forks [8; 9; 10]. For this reason, I will compare 

the results of my work using a torsion oscillator with the results of my colleagues using 

other oscillators in He II. 
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1 Theoretical Background 

 

To plan our experiment, as well as the processing and interpretation  

of any measured quantities, it is necessary to have certain knowledge of the following 

fields of physics: classical hydrodynamics, superfluidity and the behaviour of torsional 

oscillators in fluids. 

 

1.1 Selected Parts of Classical Hydrodynamics 

To study the motion of the continuum, we can basically use two methods.  

The continuum can be divided into individual material points (volume elements),  

and track their movement – this is known as Lagrange’s method. We can also focus  

on the points of space and monitor the movement of the alternating material points  

of the continuum in which these points of space enter – this is the Euler’s method. 

Following Euler, we can describe the motion of fluids by deriving the equations 

of motion. The entire derivation can be found in ref. [11] on pages 44 – 46.  

The equation of motion of an incompressible viscous fluid can be written in the form: 

����
�� + ��� ∙ ���� = −1

��
 + �∆��� + ��, (1) 

where ��� is velocity, t time, ρ density of the fluid, p is pressure, ν kinematic  

viscosity, and �� is the sum of the forces acting on the fluid. This equation is called  

the Navier-Stokes equation. [11] 

 To fully describe the motion of fluids, it is required to supplement  

this equation with the continuity equation: 

��
�� + ∇ ∙ �� = 0, (2) 

where �	��� = 	����  is flux density of the fluid. This equation can be easily inferred from 

Gauss’s theorem. The derivation can be found in ref. [11] on pages 1 and 2. 

Although this equation system describes the mechanical behaviour  

of incompressible viscous fluids, an analytical solution exists only for some simple 

cases of flows. In more complex cases, it is necessary to solve the system numerically. 

Whether or not there are any analytical solutions depends on the following flow 

characteristics. 
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Time dependent flow variables can be divided into two categories; stable 

(stationary) and unsteady (transient) flows. Stationary flow variables at a given point 

of the liquid are time-independent, whereas in the case of unsteady (transient) flows, 

the flow variables are time-dependent. 

Accordingly, the motion of viscous fluid flow can be divided into two basic 

types: laminar and turbulent flow. In the case of laminar flow, the fluid particles move 

next to each other as if in layers that cannot mix. In turbulent flow, fluid particles carry 

the flow in addition to shifting and complex motion, which leads to the formation  

of vortices and the liquids mixing. The velocity of the individual fluid particles varies 

irregularly. Particles no longer have a constant velocity at all locations, so the turbulent 

flow is not stationary. 

Whether a (statistically) steady flow is laminar or turbulent depends  

on the Reynolds number Re: 

�� = ��
� , (3) 

where U is the mean velocity of the flow, l is the scale at which velocity changes occur 

(typically the size of a submerged body or the radius of a pipe) and ν is the kinematic 

viscosity. If the Reynolds number is smaller than a critical value, which must  

be determined for each type of flow experiments, the flow is laminar. If the Reynolds 

number is greater than this critical value, the flow is turbulent.  

Characteristic numbers such as Re express the dynamical similarity of different 

flows. Two flows are dynamically similar only if they are similar geometrically  

and the appropriate characteristic numbers have the same value.  

To characterise a steady flow, just one characteristic number is required.  

To characterise unsteady flows, it is necessary to add another characteristic number  

to the parameters describing stationary flow that would reflect the time-dependence  

or periodicity of the flow. Thus, periodic flows are dynamically similar if two 

corresponding characteristic numbers are equal. 

To the Reynolds number one might, for example, add the Strouhal number Sr: 

�� = ���� , (4) 

which relates the frequency of the formation of vortices in the wake behind  

an obstacle fV, its characteristic size D, and velocity, U. Other frequently used 

characteristic numbers are the Stokes and the Keulegan-Carpenter numbers.  
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The Stokes number β, corresponds to the ratio of the characteristic body dimension D, 

to the viscous penetration depth � and is defined by the following formula 

� = �� 
� = 1

π

� 
� , (5) 

where ν is the kinematic viscosity of the fluid and f is the frequency of oscillation.  

The Keulegan-Carpenter number KC, describes the relative importance  

of the non-linear drag forces over inertial forces for bluff objects in an oscillatory fluid 

flow or similarly, for objects that oscillate in a fluid at rest. It is defined by the formula: 

!" = �#
� = 2π	�

%� , (6) 

where U is the velocity amplitude, T is the period of the oscillation  

and l is a characteristic length scale.  

 These pairs of numbers are just the most frequently used combinations,  

but in principle, we can choose different pairs because it is possible to roam freely 

between the characteristic numbers. 

Note that if we substitute � = �, assuming that the velocity changes typically  

at the length scales corresponding to the body size, the following relation holds 

between the dimensionless numbers: �!" = ��. This is valid at low frequencies  

(low Stokes number), where the viscous penetration depth is much larger than the body 

dimensions. 

It is of interest that in the high frequency limit (� ≫ 1), only one characteristic 

number is required to describe the flow. Let us examine why it is possible to say that. 

Consider the Navier-Stokes equation, neglecting the volume forces ��, and put it into  

a dimensionless form using the following relations:  

��� = ��′����, ∇���= 1
� ∇′����, � = 1

% �), 
 = 	�� 
), (7) 

where U is the velocity amplitude, l some characteristic length at which the velocity  

is changing, ω is the angular frequency and the dashed quantities are the dimensionless 

counterparts. After multiplying by � � ⁄ , we obtain the dimensionless form  

of the Navier-Stokes equation: 

�%
�
��′����
��′ + �′���� ∙ �′�)���� + �′
) = �

�� ∆′�′����. (8) 

There are two prefactors in the dimensionless equation: (�%) �⁄ 	and	� (��)⁄ , 

which completely characterise the flow. The first one is the inverse  
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Keulegan-Carpenter number multiplied by 2π and the second is the inverse Reynolds 

number.  

However, in the limit of high frequencies, more significant velocity changes 

occur on the length scale of the viscous penetration depth � = 	-2� %⁄ 	  
than on the scale of the body dimensions, as for sufficiently high frequencies,  

we have � ≪ � [11]. Therefore, we will substitute δ for the characteristic length scale l, 

and we will show that the two characteristic prefactors are equal, except  

for a multiplier constant. After substituting the formula for the viscous penetration 

depth, the first prefactor is given by: 

2π
!/ =

�%
� = %02�%

� = √2√�%�  
(9) 

whilst the second is given by: 

1
�� =

�
�� =

%
�02�%

= 1
√2

√�%
� . (10) 

Equivalently, it is possible to say that !" = π	�� in the limit of high frequencies, 

which replaces the relation !"� = ��, valid in the low frequency limit. 

The fact that both terms characterizing the flow in the dimensionless  

Navier-Stokes equations are directly proportional in the limit of high frequencies, 

allows us to describe a flow only by one characteristic number. For this purpose,  

we shall choose the Reynolds number using δ for the characteristic length scale, 

similarly to the above calculation. We therefore define ��2 = �� ν⁄ = �-2 ν	%⁄ , 

understanding that (given the geometry of the oscillator and the bounding volume 

including their surface roughness); this is the only dimensionless parameter 

determining the oscillatory flow in the high frequency limit. 
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1.2 Liquid Helium and the Basics of Superfluidity 

Helium is the second most abundant element in the universe. Its atomic number 

is 2; it is an inert, tasteless, odourless gas. It has two stable isotopes; 4He and 3He. 

Helium has the lowest temperature of liquefaction at atmospheric pressure and displays 

unique behaviour in the liquid state. Helium is the only known liquid that undergoes  

a superfluid phase transition. Normal liquid helium and cooled helium gas are classical 

Newtonian fluids with the lowest kinematic viscosity of all known substances.  

For cold helium gas, it has a value of 3.21×10-8 m2·s-1 at a pressure of 2.5 bar  

and a temperature of 5.5 K. For normal liquid helium, it is 1.96×10-8 m2s-1 at saturated 

vapour pressure and at a temperature of 2.25 K. For comparison, the kinematic 

viscosity of water at 298.15 K is 1.016×10-6 m2s-1. 

Let us examine the differences between the stable helium isotopes. 3He is a rare 

isotope, in nature there are one million atoms of 4He to every atom of 3He. Although 

the two isotopes of helium behave similarly under normal conditions, they behave  

very differently under extreme conditions, such as low temperatures. This is due  

to the spin of the atoms governed by the number of nucleons in them. 4He atoms have 

four nucleons, therefore they are indistinguishable particles with integer spin - bosons 

and their behaviour is governed by Bose-Einstein statistics. In contrast, the 3He atom 

has three nucleons and is a representative of indistinguishable particles with half-

integer spin - Fermions and obeys Fermi-Dirac statistics. The difference of these 

statistics is highlighted under extreme conditions and results in the helium isotopes 

having different behaviour with varying temperature as well as the nature  

of the transition into the superfluid phase. The temperature of the superfluid transition  

in 4He is around 2.17 K at saturated vapour pressure. In the case of 3He, this phase 

transition occurs at temperatures between 0.93 mK and 2.7 mK, in the pressure  

range 0 to 34.5 bar. Throughout this discussion, we will only consider 4He  

and its superfluidity. 

The uniqueness of 4He is evident from its phase diagram (Fig. 1.1). Unlike other 

substances, 4He has no triple point, or indeed any sublimation curve. During cooling  

at atmospheric pressure, helium will not freeze, even if the sample were cooled down 

to absolute zero. To form solid 4He, an external pressure of at least 25 atmospheres  

is required. 
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Fig. 1.1: The phase diagram of 4He. 

 

Helium-4 in the superfluid phase (He II) gives us a wonderful opportunity  

to observe the direct manifestations of quantum physics on a macroscopic scale.  

It was the first substance found to undergo a superfluid transition, and as such,  

it was the first superfluid to be studied in detail. 

In the phase diagram, normal He I and superfluid helium He II are separated  

by the so-called λ-line, where the transition between the two fluids occurs. While 

looking into a glass cryostat containing liquid helium, the temperature is reduced along 

the saturated vapour curve by gradually pumping on the bath, the transition  

to the superfluid state is clearly evident. Suddenly, the heavy boiling of the liquid  

is completely suppressed. This phenomenon occurs due to the high thermal 

conductivity of He II, which is at least 3 million times higher than in He I  

and is sufficiently high to suppress the thermal gradients necessary for the existence  

of nucleation sites where bubbles form. Thus, a volume of He II is not cooled  

by boiling, but rather by superficial evaporation only. Furthermore, if we prevent  

the influence of mechanical vibrations, the surface of the He II is smooth to the level  

of one atomic layer, which is the smoothest naturally occurring surface. 

Another feature of He II is the ability to adhere to almost any contact material  

to create a nanoscopic layer on its surface – the superfluid film [12]. This feature  

is manifested in the phenomena known as thin film flow. If a tube is partially  
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submerged in a bath  

of superfluid helium, in time,  

it will itself be filled  

up to a height which 

corresponds to the level  

of the surrounding liquid bath 

(Fig. 1.2). If this tube is raised 

slightly above the surface  

of the bath, the liquid  

in the tube will then start to flow back into the bath through the superfluid film.  

If the tube were to be removed from the superfluid helium bath entirely, one could 

observe the formation of helium droplets on the bottom of the tube which drip back  

into the bath and the tube empties itself over time. 

In experiments where thermal gradients  

are induced, more unusual properties of He II  

can be observed, e. g. the fountain effect [13].  

Due to this effect, it is possible to observe  

how the superfluid component of He II leaks through 

a labyrinth of very narrow channels through which 

the normal fluid, which has a finite viscosity, flows 

only with great difficulty, if at all. Such devices  

can be made of sintered metals and are known  

as superleaks. It was demonstrated that a temperature 

increase would also result in an overpressure  

that will propel the contained fluid upward  

in a fountain jet (Fig. 1.3). There is also the opposite 

so-called mechano-caloric effect. Thus, in superfluid 

helium, any temperature gradient corresponds  

to a pressure gradient and vice versa. 

As mentioned above, during the 1930s, the results related to the viscosity 

 of He II were controversial. The results obtained by Allan and Misener [2]  

on capillary flow and from Kapitza’s experiments [1] with a chamber closed  

by optically smooth discs (Fig. 1.4), indicated that the viscosity of He II  

Fig. 1.3: The fountain effect. 

Fig. 1.2: Manifestation of the superfluid film. 
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is approximately 1500-times lower than that of the He I. In contrast, earlier work based 

on torsional oscillations of a cylinder suggested a viscosity comparable with He I. 

These seemingly contradictory results together with the other anomalous 

properties, outlined above, stimulated the first attempts of Tisza and Landau towards  

a theoretical description of He II. However, it was not until the work  

of Andronikashvili that the situation became somewhat clearer.  

Andronikashvili [4] used a system of discs 

suspended by a fibre under tension made from phosphor 

bronze which had a diameter of 340 µm and a length  

of approximately 100 cm (Fig. 1.4). The stack consisted  

of 100 discs of 0.013 mm thick aluminium foil , 

interleaved 0.21 mm thick aluminium washers strung  

onto an aluminium mandrel. When we submerge the stack 

of discs into liquid helium, the viscous penetration depth 

will be greater than the spacing of discs and the liquid  

will be clamped by the oscillator. The moment of inertia 

in a viscous fluid will be affected by the moment of inertia 

in vacuum and the oscillation period will be greater 

because of the increase of effective mass. Andronikashvili 

observed that upon cooling below the superfluid transition 

temperature, the period of oscillation significantly 

decreased.  

The observation that a portion of the fluid between 

the discs mechanically "decoupled" from the oscillator, 

led to the idea that He II consists of two components, one of which flows without 

friction, and that their ratio depends strongly on the temperature. This of course 

explains the previous controversy, since both components contribute to the friction 

acting on a torsionally oscillating cylinder, but only the superfluid component  

with zero viscosity can flow through tiny capillaries, or into Kapitza‘s experimental  

chamber. Eventually, the phenomenological two-fluid model was formulated, 

 as we still use it today.  

This model describes He II as a fluid composed of two components called  

the normal and superfluid components. The normal component has a finite viscosity, 

Fig. 1.4: Diagram  

of Kapitza’s (top)  

and Andronikashvilli’s 

(bottom) experiments. 
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transfers heat and has finite entropy. The superfluid component has zero viscosity, 

cannot transmit heat and has no entropy. These two components occupy the same 

space and are considered to have independent velocity fields. The density of He II,  

ρ is given by the sum of the densities of the two components, i.e., � = 	�3 + �4,  
where �3 is the density of normal component and �4	is the density of superfluid 

component (Fig. 1.5). 

 
Fig. 1.5: The dependence of the densities of the normal and superfluid components on temperature. 

 

The ratio of the normal and superfluid component is only dependent  

on temperature (and pressure). When we move along the saturated vapour curve  

from the lambda point to lower temperatures, the ratio of the densities shifts rapidly 

 in favour of the superfluid component. Because the normal component density 

decreases, the viscous forces acting on the surface of a body immersed will come  

from a lesser part of He II. 

The derivation of the hydrodynamic equations of the two-fluid model is quite 

complex. It can be found, for example, in ref. [14]. The linearised form of the dynamic 

equations for an incompressible flow at low counterflow velocities is as follows: 

�4 ��4������� + �4(�4�����∇)�4����� = −�4� ∇
 + �4�∇# − 534������, (11) 

�3 ��3������� + �3(�3�����∇)�3����� = −�3� ∇
 − �4�∇# + 534������ + 6∇ �3,������ (12) 
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where η is the dynamic viscosity of the normal component and 534������	 is a term 

representing the coupling force of mutual friction between the normal and superfluid 

components, if vortices are present in the superfluid. These need to be supplemented 

by an equation of continuity, for incompressible flow, this is given by: 

∇ ∙ (�3�3����� + �4�4�����) = 0, (13) 

and if we choose to neglect any energy dissipation, we also need an equation 

expressing the law of the conservation of entropy given by: 

�(�7)
�� + ∇ ∙ (�7�3�����) = 0, (14) 

where s is the specific entropy and �7�3����� expresses the entropy flux.  

If we assume that there are not any vortices in the liquid, we can neglect  

the mutual friction term and if we consider the flow to be isothermal, the equations 

will be reduced to their simplest form: 

�4 ��4������� + �4(�4�����∇)�4����� = −�4� ∇
, (15) 

�3 ��3������� + �3(�3�����∇�3�����) = −�3� ∇
 + 6∇ �3�����, (16) 

The first of these is the Euler equation for the superfluid component,  

and the second is the Navier-Stokes equations for the viscous normal component. 

These equations are no longer coupled, so the velocity fields of the two components 

are in the simplest case, independent. 

In his two-fluid model, Landau assumed that the normal component consists  

of thermally exited helium atoms, and proposes a description using the dispersion 

relations of thermal excitations. His dispersion relation showed two types  

of excitations called "phonons" and "rotons." Parameters depending on the momentum 

and energy were chosen to match the data measured by Andronikashvili because  

the number density of phonons and rotons can be used to estimate the density  

of the normal component. 

Another important result that can be derived from the correct form  

of the excitation spectra predicted by Landau is the ultimate critical velocity above 

which superfluidity in He II is no longer possible. Considering the change  

of dispersion relations in the Galilean transformation in the reference system  

of a moving body, we come to the same conclusion as Landau did that excitations 
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(rotons) will form continuously at velocities above 59 meters per second. This velocity 

value was later confirmed by ions moving in He II. [15] 

As it has two independent components, He II supports some regimes of flow 

which cannot exist in conventional liquids. For example, turning on a heater at a closed 

end of a channel causes the superfluid component to flow toward the heater  

where it absorbs heat and changes into the normal component, which must then flow  

in the opposite direction, away from the heater. A class of similar phenomena is known 

as thermal counterflow. This is characterised by zero mass transfer, but at sufficiently 

high velocities it leads to the formation of turbulence. 

The two-fluid model works well in the temperature range from the lambda point 

down to 1 K, where the normal component is already quite depleted. At temperatures 

below 0.7 K, the model fails completely, because there is so little normal component 

that it no longer represents a continuum, but must be described as ballistic thermal 

excitations. At temperatures below 0.2 K, the hydrodynamics of He II does not 

significantly change any more and we talk about the limit of zero temperature. 

While Landau [5; 6] published his phenomenological two-fluid model, Fritz 

London [16] and Laszlo Tisza [17] worked on the theory based on the Bose-Einstein 

condensation (BEC), which would explain the non-classical properties of He II. BEC 

is a process in which bosons will occupy the fundamental quantum-mechanical state 

(the lowest accessible energy state) on a macroscopic scale if they are cooled  

to a sufficiently low temperature, provided there is a sufficient density. Fritz London 

calculated that for an ideal gas composed of (non-interacting) helium atoms,  

the condensation should occur at 3.15 K, which is sufficiently close  

to the experimentally determined temperature, 2.17 K corresponding to the superfluid 

phase transition. The difference arises from the fact that atoms in liquid helium  

in fact interact rather strongly, whereas Fritz London’s calculation assumes  

no interactions at all. 

With this approach, it was possible to explain the fountain and mechano-caloric 

effects, since any temperature gradient in the newly formed condensate automatically 

implies a pressure gradient, and vice versa. Furthermore, it was assumed  

that the superfluid component consists of the atoms forming the Bose-Einstein 

condensate, while the rest of the atoms constitute the "normal component." However, 
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Landau’s model was more successful in describing the densities of the two 

components as inferred from Andronikashvili’s experiment.  

On the other hand, without a theory based on Bose-Einstein condensation, 

another peculiarity of He II - the existence of quantized vortices in the superfluid 

component – could not be explained. BEC theory suggests that the atoms in the ground 

state should be described by a single macroscopic quantum-mechanical wave function. 

If we try to calculate the velocity of the superfluid component, we find  

that no rotational movement should be possible, as the circulation around a loop 

bounding a continuous area of superfluid would be, by definition, zero.  

This is in contradiction with the experiment described in ref. [18], as uniform rotation 

of He II has been observed to be very similar to that in classical fluids. 

This discrepancy can be resolved if we consider that rotation in He II creates 

one-dimensional topological defects (lines), along which a violation of superfluidity 

occurs. These defects have been observed experimentally and are called quantized 

vortices, as follows from the theory that the circulation of the superfluid component 

around these lines can only have defined (quantized) values, which are equal  

to multiples of the quantum of circulation 8 = ℎ :⁄ , where h is Planck's constant  

and m the atomic mass of 4He. 

All quantized vortices in He II almost always have only one quantum  

of circulation, as this minimises the energy of the system. A complex tangle  

of these quantized vortices, which may arise at sufficiently high velocity, is called 

quantum turbulence.  
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1.3 Behaviour of a Torsionally Oscillating Disc in a Fluid 

To compare our results with the theory of the hydrodynamics of superfluids,  

it is necessary to derive the theoretical description of the studied problem,  

the torsionally oscillating disc. Generally, finding solutions to the Navier-Stokes 

equations describing the behaviour of a fluid around an oscillating disc is a complex 

mathematical task. For turbulent flow, no solution can be derived analytically; even 

numerical simulations of such time-dependent flow would be of great complexity. 

Therefore, we limit ourselves to laminar flow and two simplified cases; flow around 

a torsional oscillator in the form of a disc placed in infinite volume of fluid  

and between two stationary parallel plates. 

For this calculation, it is appropriate to start from the Navier-Stokes equations 

and the equation of continuity detailed in cylindrical polar coordinates r, φ, z.  

Then, the three components of the Navier-Stokes equation are as follows: 

��;�� + <��= ∙ ∇���>�; − �? � = −1
�
�

�� + � @∆�; − 2

� 
��?�A − �;� B, (17) 

��?�� + <��= ∙ ∇���>�? + �;�?� = − 1
��

�

�A + � C∆�? + 2

� 
��;�A − �?� D, (18) 

��E�� + <��= ∙ ∇���>�E = −1
�
�

�F + �∆�E . (19) 

where 

<��= ∙ ∇���>� = �; ���� +
�?�

��
�A + �E ���F, (20) 

∆� = 1
�
�
�� C�

��
��D +

1
� 

� �
�A + � �

�F , (21) 

and the equation of continuity is: 

1
�
�(��;)�� + 1

�
��?�A + ��E�F = 0. (22) 

 

Firstly, we will derive expressions describing the motion of a torsionally 

oscillating disc in infinite space. 

Consider a plane disc with large radius R which executes rotary oscillations 

with a small amplitude about its axis, the angle of rotation being G = 	GH cos(%�), 
where GH ≪ 1. For small amplitude oscillations, the term <��= ∙ ∇���>� in the equation  

of motion is always small compared with 	���� ��⁄ , whatever the frequency ω.  
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If 	� ≫ �, i.e., if the radius significantly exceeds the viscous penetration depth,  

the disc may be regarded as infinite in determining the velocity distribution. It is easy 

to see that the solution of the Navier-Stokes equation is such that �; = �E = 0,
�? = � = �L(F, �), where L(F, �) is the angular velocity of the fluid.  

Then the equation of continuity is satisfied identically and the three components  

of the Navier-Stokes equation in cylindrical polar coordinates are reduced  

to the single equation: 

�L
�� = � � L�F . (23) 

The solution of this equation, which satisfies the boundary condition  

L = LM ≡ −%GH sin(%�), where LM is the angular velocity of the disc, for F = 	0, 

and is equal to zero for F = ∞  is: 

L = −LH�RE2 sin S%� − F
�T, (24) 

where LH = %GH is the amplitude of the angular velocity of the disc  

and δ is the viscous penetration depth. 

The moment of the frictional forces on both sides of the disc is given by: 

U = 2V V �5W�XAX�
 Y
H

Z
H

= 4\6V � @�����FBE]H d�
Z

H
= \
√2LH-%�6�_ (cos(%�) + sin	(%�)), 

(25) 

where 5W is the local viscous drag force given by 5W = 6 S`a���`ETE]H. However, only  

the part of the viscous force in-phase with the velocity is responsible for the damping 

of the oscillations. One can therefore write for the dissipative part of the moment  

of forces: 

Ubc4 = \
√2LH-%�6�_ sin(%�), (26) 

from which it is possible to calculate the damping coefficient k and its effective 

value	deff given by averaging the dissipative forces over one period: 

d = −Ubc4L = \
√2-%�6�_, (27) 
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deff = d
#V |sin	(%�)|h

H
= 2
\ d = -2%�6�_, (28) 

which will be directly compared with experimental data. 

A factor often used to describe the fluid flow is the rate of energy dissipation.  

It can be derived analogically to the dissipative moment of the frictional forces: 

i = −Xj
X� = 2V V �	5W,bc4	�XAX�

 Y
H

Z
H

= \
√2LH -%�6�_ sin (%�), (29) 

where 5W,bc4 is the dissipative component of the viscous force (in-phase  

with velocity). An effective energy dissipation averaged over one period  

is then given by: 

ieff = \
2√2LH -%�6�_. (30) 

 

The same procedure as above is used to derive the relations describing the flow 

around the torsionally oscillating disc placed in the middle of two plates located  

at distance h on either side of the disc. The calculation will differ mostly  

by the boundary conditions – In this case, it is required that the solution  

of this equation is L = −LH sin(%�)	for F = 	0 and L = 0 for F	 = ℎ. Relations 

describing the desired variables will take a slightly different shape then: 

Lk = LH
cosh S2ℎ� T − cos S2ℎ� T

∙ Ccos(%�) Csinh SF�T sin C
F − 2ℎ
� D

− sin SF�T sinh C
F − 2ℎ
� DD

+ sin(%�) Ccosh SF�T cos C
F − 2ℎ
� D

− cos SF�T cosh C
F − 2ℎ
� DDD, 

(31) 

Uk = 1
√2

\LH-%�6�_

cosh S2ℎ� T − cos S2ℎ� T
∙ Csinh C2ℎ� D (cos(%�) + sin(%�))
+ sin C2ℎ� D (−cos(%�) + sin(%�))D, 

(32) 
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Ubc4k = \LH-%�6�_sin	(%�)
√2 ∙ sinh S

2ℎ� T + sin S2ℎ� T
cosh S2ℎ� T − cos S2ℎ� T

, (33) 

dk = \-%�6�_
√2 ∙ sinh S

2ℎ� T + sin S2ℎ� T
cosh S2ℎ� T − cos S2ℎ� T

, (34) 

deffk = -2%�6�_ ∙ sinh S
2ℎ� T + sin S2ℎ� T

cosh S2ℎ� T − cos S2ℎ� T
, (35) 

ik = \LH -%�6�_sin	 (%�)
√2 ∙ sinh S

2ℎ� T + sin S2ℎ� T
cosh S2ℎ� T − cos S2ℎ� T

, (36) 

ieffk = \LH -%�6�_
2√2 ∙ sinh S

2ℎ� T + sin S2ℎ� T
cosh S2ℎ� T − cos S2ℎ� T

. (37) 

As we would expect, in the limit h<<δ these relationships reduce exactly  

to those derived for the example of a torsionally oscillating disc in an infinite volume 

of fluid. Figure 1.6 shows this limiting behaviour of the effective damping 

coefficient. As in our case �mno = 0.475 mm and ℎ = 4.5 mm, it is evident  

that we can use the expressions derived in the first example. 

To compare with experimental data, an expression for the relaxation time, τ 

derived from the solution to the equation of motion of a linearly damped harmonic 

torsional oscillator, will be used: 

τ = 2r
d = 4r

\	deff. (38) 

where r = s
 :�  is the moment of inertia of the disc, : its mass and � its radius.  

One of the assumptions used in all the calculations is that the initial deflection is small; 

due to that, the inertial term of the Navier-Stokes equation can be neglected.  

The derived results thus apply only to the situation where laminar flow takes place 

around the disc. In the event that the flow is turbulent, we expect the frictional forces 

and energy dissipation to exceed the values derived above, and the damping 

coefficients k and keff will become functions of the angular velocity amplitude.  

Our goal will be, among others, to identify the critical values of relevant quantities  

at which this occurs. 
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Fig. 1.6:  Ratio of the damping coefficient calculated for the disc between two plates to the damping 

coefficient obtained for a disc in an infinite volume of fluid plotted against the distance of the disc 

from the plates divided by the viscous penetration depth. If the disc is moved away from the plates  

by at least five penetration depths, the two cases become essentially equivalent, whilst in the limit  

of low ℎ �⁄ , the ratio of the damping coefficients scales inversely proportional to this parameter,  

as illustrated by the thin straight line. 

 

To provide a means to handle non-linear drag forces arising if turbulence  

is present, we do the following. In analogy with the situation where a body moves 

linearly in a fluid experiencing a non-linear drag force 5 = s
 tM′ρu′� , where tM′  

is the dimensionless drag coefficient, u′ the cross-sectional area and U the velocity,  

it can be shown by evaluating a similar integral as we used to calculate the moment  

of drag forces, one may define a drag coefficient for the torsional motion of the disc: 

tM = 2	deff
ρ	�vLH =

4
��2 , (39) 

where � is the radius of the disc. This drag coefficient is expected to follow  

a 1 LH⁄  dependence in laminar flow, which starts to change gradually at the critical 

angular velocity to become a constant in developed turbulence. 

Finally, in the case of flow around the oscillator in superfluid helium,  

it is necessary to replace all the densities and viscosities by the values for the normal 

component (noting that the kinematic viscosity of the normal component νw = η �w⁄ ), 
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because unless quantized vortices are created and quantum turbulence occurs,  

the superfluid component will either stay at rest or exhibit potential flow  

and will not contribute to the dissipative forces acting on the disc. For the drag 

coefficient in superfluid helium, we will use both varieties with the density � replaced 

by �w or �x as needed:	tMw = 2deff ρwuLH⁄  and tMx = 2deff ρxuLH⁄ .  

In the next section, a description of the experimental setup  

and the measurement technique will be given. 
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2 Experimental Setup 

The experiment was conducted in a glass cryostat consisting of two Dewar 

flasks. The exterior one is opened outwards and serves for precooling by liquid 

nitrogen. This dewar is silver-plated in its vacuum space to reduce radiative heat 

transfer into the inner flask. In the layer of silver there are two vertical visors  

of a width of about 3 cm along the entire height of the cryostat. As we employed video 

recording to measure the motion of the disc, it was necessary to cover the visors  

with black paper leaving only a 1 cm high 

viewport at the level of the disc.  

Around the inner vessel, six white 

LEDs were placed at the level of the disc.  

The LEDs were distributed evenly around 

the circumference in such a way  

as to avoid the line-of-sight of the video 

camera. White paper was put around  

the inner dewar to provide soft diffuse 

lighting and a uniform image background.  

The experimental setup, shown  

in figure 2.1, was placed in the inner 

dewar, which can be filled with liquid 

helium and pumped on by a Roots pump 

to reduce the saturated vapour pressure 

down to about 1.5 Torr corresponding  

to temperatures just above 1.3 K.  

The top flange of the cryostat  

had three ports connecting to the interior 

of the helium vessel. Two of them were used for transferring helium and measuring  

the pressure, which was later used to infer the temperature from the saturated vapour 

pressure dependence as given by the HEPAK software [19; 20]. Through the central 

port, a small assembly consisting of a pipe with a threaded rod, a top nut, a counter nut, 

and a ball bearing was connected to the interior of the inner vessel. Inside  

it was connected to a thin-walled stainless steel tube that extended downwards  

and at its lower end held the tungsten wire, on which the disc was suspended.  

Fig. 2.1: A schematic sketch of the cryostat 

Insert housing the oscillating disc suspended 

on the tungsten torsional fibre.  
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The assembly at the top flange was used to apply tension to the tungsten wire  

as needed and also to rotate the disc freely without changing the tension of the wire.  

A support construction was fixed to the bottom side of the cryostat flange.  

The structure consisted of four thin-walled stainless steel tubes held together by brass 

rings and FR2 baffles. It was made of two parts, which had the oscillating disc  

in between them and were connected by three cylindrical brass spacers 10 mm  

in height. The upper part of the structure contained several baffles used to guide  

the tube connecting the tungsten wire to the top flange assembly and to reduce the heat 

leak. At the bottom of this part, a brass ring and a FR2 plate with polished surface  

was fixed, which provided the upper boundary to the volume of helium  

in the immediate vicinity of the disc. 

The lower part of the structure was almost a mirror image of the top part (around 

the plane of the disc), except that it was terminated at the bottom by another FR2 plate 

to which the other end of the tungsten wire was fixed. Below the lowest plate,  

a 50 Ω heater was placed. It was used to evaporate any helium left after the experiment 

has finished. 

The torsional oscillator itself consisted of a 0.05 mm tungsten wire 32 cm long 

and the disc fixed to the wire in the middle of its length using a thin 0.8 mm brass 

capillary and Stycast 1266. The disc itself was made of Plexiglas of 1 mm thickness 

and had a diameter of 50 mm. When the wire was pulled taut, the disc was positioned 

approximately midway between the two polished FR2 plates, i.e., roughly 4.5 mm 

away from either plate. Sixteen black marks were made evenly around  

the circumference of the disc, which would later be used to determine the deflection 

and angular velocity of the disc from the recorded sequences. 

The motion of the disc was recorded with a Canon EOS 600D digital camera 

fitted with a Canon EF-S 18-135 mm f / 1:3.5 - 5.6 IS lens. The recording  

was acquired in 1280x720 resolution at the framerate of 50 fps. 
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3 Experimental Results 

3.1 Data Processing 

Our raw data was in the form of video recordings of the motion of the disc 

during the experiments. Because the marks on the disc were relatively small 

compared to the entire field of view, with relatively low contrast  

to the not-entirely-uniform background, standard motion tracking software  

could not be used to process the videos. Hence, fairly complex post-processing  

was required to extract quantitative and interpretable data. 

Firstly, it was necessary crop the recorded video, cutting away the plates above 

and below the disc, as well as the cryostat shield and leaving only the area of interest 

in the immediate vicinity of the disc. The video was then split into individual frames, 

de-interlacing them in the process, which meant that only pixels recorded at exactly 

the same time were kept. To achieve both of these goals, the commercial program 

VideoMach was used.  

The obtained images were further processed in Adobe Photoshop CS2,  

where in a series of ten to fifteen steps, the colour images were converted  

to monochromatic bitmaps. These involved filtering the image in various ways, 

 using the colour information in such a way and enhancing the low contrast  

of the marks so that they would become black contiguous spots on white 

background. This process included blurring filters and the removal of small specks, 

which led to the fact that not all the captured marks were reproduced in each 

individual image, as the settings of all the filters and modifications were kept  

the same for each of the roughly 10,000 to 35,000 frames of a given recording.  

The resulting monochromatic bitmaps were used as input for a home-made 

program created in the NI LabView environment. In each image, the program 

localised the black areas evaluating their size and centre of mass. It then assigned 

individual dots between consecutive images to each other (making special 

arrangements for those not reproduced in some of the bitmaps) and calculated  

the average displacement between the two frames in pixels. This basically  

gave us a value of the circumference velocity in pixels per frame. At the same time,  

the software controlled the physical meaningfulness of the emerging pattern 

of motion, as it was known that the disc would exhibit damped oscillations.  
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The program output a text file containing records of the size, the position of each dot 

in each frame and the displacement between frames.  

The velocities obtained in the previous steps were then inserted into the Origin 

processing and graphing software. Here they were converted from pixels per frame  

to radians per second assuming that the optical effects due to several curved glass 

plates are negligible, as only the central region of the field of view was kept  

for processing, and the results were plotted against time. Based on the graphs, 

irrelevant data were removed; the beginning of each signal, where the disc had not 

yet been spun, and the signal end, where all meaningful information was lost  

in the noise. The remaining data were smoothed before further processing to improve 

accuracy. We used the Savitzky-Golay algorithm for curves dominated by random 

noise, or the low pass FFT filter with the cutoff frequency of 1 Hz for curves 

distorted by weak oscillations at other frequencies, such as the low amplitude  

(< 1 mm) pendular motion of the suspended disc, or generally any noise exhibiting 

periodic behaviour. Each smoothed signal was carefully checked against the original 

to avoid processing artifacts. 

The smoothed data were again exported as a text file and processed in a second 

program created in LabView. This program sought all extrema of the signal  

and returned their values and the times when they occurred, with the intent to extract 

the envelope of the decaying oscillating signal. If needed, additional filtering 

algorithms were employed before the extrema were extracted. The values and times 

of the extrema were found from a parabolic fit to the neighbourhood of a local 

discreet maximum or minimum in the signal. 

The resulting data were further processed and plotted in Origin. Comments  

for this process and its results along with their interpretation will be given  

in the following section. 
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3.2 Interpretation 

Before the actual measurement, preliminary tests were carried out at room 

temperature (in air at 1 bar and in vacuum) and near liquid nitrogen temperature  

in vacuum. The time evolutions of the angular velocities during tests are plotted  

in figure 3.1. We see that the damping of the oscillator is affected both by the change 

in temperature and pressure. This was an encouraging result, meaning that the disc 

should be sensitive to dissipative forces from the surrounding fluid,  

as well as that its intrinsic energy dissipation (mainly within the torsional fibre  

and connections) will be negligible at helium temperatures compared to both laminar 

and turbulent drag forces.  Note that the decay time in vacuum near LN2 temperature 

is already over 400 s, much larger than the signals subsequently measured,  

even in superfluid helium at the lowest temperatures. Moreover, the intrinsic 

damping, which is mainly due to the motion of vacancies and dislocations  

in the fibre, is expected to drop even further between LN2 and LHe temperatures. 

 

Fig. 3.1: Time traces of the signals of angular velocity recorded during test measurements at room 

temperature and liquid nitrogen temperature, as indicated. The decays are perfectly described  

by a damped sine function, i.e., no non-linearities are observed in this case. 
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During the tests, we ran into several problems. We found that it was 

necessary to improve the uniformity of the background. This was done by using 

white paper located on the outer side of the helium vessel. The exterior lighting 

reflecting on the glass of the cryostat made it very difficult to record usable videos. 

For the main measurements, we solved this by installing LEDs into the liquid 

nitrogen space of the cryostat, which significantly improved the lighting conditions 

during filming. Also, the bubbles caused by evaporation in the nitrogen tank had  

an adverse impact on the recording quality since they crossed the field of view, 

distorting the image. After initial unsuccessful attempts to prevent bubbles from 

passing through this area by placing obstacles below the field of view, we decided  

to try a different approach by creating a horseshoe-shaped bubble trap instead,  

which maintained the level of liquid nitrogen below the field of view. 

For these tests, the recordings were acquired at a frame rate of 25 fps  

with a resolution of 1920x1080. However, during processing, we found that the main 

measurement would require a frame rate of at least 50 fps. The camera was only 

capable of filming at this rate with a maximum resolution of 1280x720,  

but this was sufficient for our needs. 

 Measurements were only performed in the superfluid phase He II because 

measurements in He I would be very difficult due bubbles being formed throughout 

the entire volume of the liquid. Thus, our measurements began just below the lambda 

point and subsequently by reducing the vapour pressure the liquid temperature  

was lowered to selected values. During the measurements, it was necessary to correct  

the pumping rate such that the pressure in the vessel is as constant as possible.  

An example of the measured signal that was acquired at the lowest temperature  

that we achieved, 1.37 K, is plotted in figure 3.2. Along with the temporal  

evolution of the angular velocity, we also plot the logarithms of the signal maxima  

that will be used in further processing.  

From the lower plot, we clearly see the transition to the non-linear resistive 

force, indicating the onset of non-laminar flow at the highest amplitudes  

and the presence of some form of turbulence. By comparing figures 3.1 and 3.2,  

it can be seen that the oscillation amplitude in superfluid helium decays faster 

(τ ≈ 200	s) than in vacuum, even at liquid nitrogen temperature. Taking into account 

our  experience with other types of resonators,  such as the tuning forks,  we estimate 
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Fig. 3.2: (top) An example of a signal of angular velocity recorded in superfluid helium. The observed 

damping significantly exceeds that measured in vacuum at liquid nitrogen temperature (figure 3.1). 

(bottom) Logarithms of the maxima of the signal shown in the upper panel. Plain exponential decay 

characteristic of laminar flow is seen as a straight line dependence at late times, while the changes  

at around 100 s indicate instability in the flow. 

 

that the damping of the fibre at helium temperatures (in vacuum) would be roughly 

an order of magnitude lower than at nitrogen temperature, which justifies neglecting 

the intrinsic dissipation of the fibre in further processing.  Note that it would  

be difficult to measure the vacuum dissipation rate at helium temperature directly,  

as the tungsten wire would not be properly thermalised and a temperature profile 

ranging from room temperature (at the top flange) to LHe temperature would 

develop along its length. 

In figure 3.3, we show the logarithms of signal maxima for each measurement 

at different temperatures. The measurements are divided into groups according to  

the temperature and the behaviour of the signal. 

Notice how the logarithms of the signal maxima behave at various 

temperatures. For almost all measurements (exceptions will be discussed below),  

the slope of the linear part of the curve varies proportionally with temperature. This 

is because the dissipative forces in the laminar part originate in the normal component 
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Fig. 3.3: Logarithms of the amplitude of angular velocity as a function of time at various 

temperatures. The slope of the linear part should decrease with decreasing temperature,  

as does the drag force due to the normal component. Two of the data sets (1.37 K – group 2  

and 1.44 K) do not follow this tendency and have been removed from further processing  

as they are affected by the liquid helium level dropping near the upper plate above the disc (see text). 

  

and thus have to scale with its density according to equation (26), resulting  

in the smallest slope for the lowest temperature, etc. This is not true for measurements 

listed as “1.44 K” and “1.37 K – group 2”, because while filming these,  

the superfluid helium level was already very close to the disc and hence we have  

no knowledge of the temperature of the filament above it. Therefore,  

these measurements were removed from further analysis. 

Since we are mainly interested in the analysis of the non-linear part  

of the data for each temperature, the laminar part of the graph was fitted by a straight 

line, which was then withdrawn from the logarithms of the signal maxima. The area  

of fitting was selected manually with care taken to avoid influence from  

the non-laminar part as well as from the noisy signal at late times (low amplitudes). 

This process is illustrated, for example, in the data for 1.37 K shown in figure 3.4.   

In Table 3.1 we list the fit constants and relaxation times calculated in this way  

for all available temperatures. 
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Fig. 3.4: An example of fitting the linear part of the decay by a straight line. Care was taken to avoid 

the fit being distorted by the noisy part at the lowest amplitudes and by the onset of instability 

observed at early times. 

 

Tab. 3.1: Values of the fit parameters z and { for various temperatures together  

with the relaxation time | = −1 {⁄ . 

T [K] a b [ × 10
-3

 s
-1

] τ [s] 

1.37 -0.87 ± 0.05 -4.9 ± 0.2 203 ± 6 

1.60 -0.49 ± 0.03 -6.4 ± 0.1 156 ± 2 

1.62 -0.50 ± 0.03 -6.5 ± 0.1 153 ± 2 

1.66 -0.61 ± 0.06 -7.6 ± 0.2 131 ± 4 

1.95 0.26 ± 0.02 -10.0 ± 0.1 100 ± 1 

2.06 0.43 ± 0.03 -12.8 ± 0.2 78 ± 1 

2.16 1.16 ± 0.03 -18.4 ± 0.2 54 ± 1 

 

In the upper panel of figure 3.5, we plot the logarithms of the signal maxima 

(after subtracting their laminar contribution) against the amplitude of the angular 

velocity for all temperatures. The change of the slope of the non-laminar part 

with temperature suggests that the non-linear force may originate from the superfluid 

component as its magnitude might scale approximately with the density  

of the superfluid component. In the lower panel, we plot these curves normalised  

by the density of the superfluid component. The almost identical slopes  

of the non-laminar parts confirm our previous suggestion that the drag force  

in this regime scales with the density of the superfluid component, at least  
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for temperatures between 1.37 K and 1.95 K. This demonstrates that in the superfluid 

component, a significant amount of quantized vortices are present, since without  

them, the superfluid component has no means whatsoever to act dissipatively  

on the oscillating disc.  

At 2.16 K, the normal fluid fraction is over 90% and it dominates the fluid’s 

dynamics. Here, we see no hints of a non-linear dissipative force at all, except 

perhaps for the very highest angular velocities above 2 rad/s. This corresponds  

to a value of ��w2 = LH�-2	�w 6	%⁄ ≅ 450, which was only reached  

in our experiments at temperatures of 2.16 K, 2.06 K, and barely reached at 1.95 K. 

This means that at lower temperatures, the normal component could not become 

turbulent of its own accord in the examined range of angular velocities, without  

the influence of the superfluid component.  

This would, together with the scaling of the non-linear force at lower 

temperatures, seem to imply that under the given conditions the normal component  

is most likely still laminar. If this is shown to be true, it would represent  

an important result in the sense that it would provide an answer to one  

of the long-standing questions in two-fluid hydrodynamics, giving a direct proof  

of the existence of a situation where the superfluid component contains enough 

quantized vortices to induce a measurable non-linear drag force, while at the same 

time the normal component maintains laminar flow. However, before jumping  

to such conclusions, more careful analysis is required. 

From figure 3.5, we have also estimated the critical  

angular velocity for the decay of quantized vortices in the superfluid component.  

That is also the reason why we use the angular velocity as the independent variable 

rather than the dimensionless characteristic numbers, which are meaningful only  

for the normal component. As an example of the estimation of the critical angular 

velocity, we show figure 3.6. We should note that this estimation is subjective  

and prone to significant errors, perhaps up to a factor of 2. However, given the noise 

levels in the laminar part, we believe that the precision could not be increased 

significantly if more quantitative methods were used. 
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Fig. 3.5: (top) Logarithm of the angular velocity amplitude with the linear part withdrawn (as shown 

in figure 3.4) plotted against the angular velocity amplitude. At 2.16 K no signs of non-linear 

dissipation are present except at the very highest angular velocities. The non-linear drag (proportional 

to the slope of the dependence) seems to increase with decreasing temperature. (bottom) The same 

quantity as above divided by the superfluid component density, ρS. The non-linear drag has collapsed 

to the same slope of the dependence for all temperatures (except for the data taken at 2.06 K), showing 

that it is proportional to ρS and thus originates from the superfluid component. 

 

In figure 3.7, we plot the time derivative of the logarithms of the signal 

maxima, which is linked to the theoretical quantities by: XLH X� = 	− 1 |⁄⁄ , against  

the angular velocity amplitude and the arrow marks the critical velocity determined 

according to the procedure outlined above. Looking closely at the dependence  

of the time derivative above the critical velocity, a question immediately arises  

of whether only one critical velocity has been measured. These data would be readily 

interpreted if we assumed a region dominated by quasi-laminar flow (constant value  

of the time derivative) in the vicinity of 1 rad/s and a second transition near 2 rad/s. 

This second transition has only been observed reliably at the lowest temperature, 1.37 

K with only a hint of similar occurrence at temperatures near 1.6 K.  



32 

 

 
Fig. 3.6: An example of the determination of the critical angular velocity for the temperature 1.37 K. 

The critical velocity (black arrow with error bar) is estimated to be located at the point where the 

dependence first noticeably diverges from the horizontal line passing through zero on the y axis. We 

estimate the uncertainty of such a critical value determined from this type of graph to be below 20%. 

 
Fig. 3.7: The time derivative of the logarithm of the amplitude of the angular velocity plotted against  

the angular velocity amplitude for the temperature 1.37 K. The critical velocity, determined as explained 

in the text, is shown by the left black arrow and error bar, but we also see an indication of a second 

critical angular velocity between 1 and 2 rad/s. The solid lines are guides for the eye. 
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Fig. 3.8: The (lower) critical velocity plotted against temperature and for comparison, the results  

of Donnelly and Hollis Hallet [7]. Despite the uncertainties and the scatter of the data, it seems  

that in both cases the data display only a weak temperature dependence and that they are in mutual 

agreement. 

 

As we can see in figure 3.8, our values of the (lower) critical angular velocity 

seem to correspond to the values obtained by Donnelly and Hollis Hallett [7].  

If we assumed that it is the speed at the circumference which matters instead,  

the agreement would be worse because of the different radii of the discs used. Given 

also the scatter of the data, no strong conclusions about the observed critical angular 

velocities can be made at the moment, except perhaps that in both cases the same 

type of instability has been observed and that only a weak temperature dependence  

is found, which again supports the idea of an instability in the superfluid  

component, as the viscosity of helium and the density of the normal fluid  

both change dramatically with temperature, affecting the relevant flow parameters  

such as the Reynolds numbers �� or ��2.  

However, with the current knowledge at our disposal, our work leads  

to a somewhat different interpretation of the results than that given in ref. [7],  

as more information about the dissipative forces could be extracted from the digitally 

recorded data. Additionally, in their experiments with the torsionally oscillating disc, 
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Donnelly and Hollis Hallett never seemed to reach the second critical angular 

velocity [7], although they have seen it with other devices such as a torsionally 

oscillating sphere. From our results, it follows that at angular velocities higher  

than the first critical value and less than the second, quantized vortices are formed  

in the superfluid component causing a non-linear dissipative force. We shall now 

examine the dissipative forces in more detail and compare them to the theoretical 

predictions. 

In the two following figures, the experiments are compared with the theory  

of laminar flow around the oscillating disc. In figure 3.9 and 3.10, we plot  

the experimental and theoretical values of the effective damping coefficient keff  

and the effective energy dissipation εeff for three different temperatures: 1.37 K,  

1.95 K and 2.16 K against the angular velocity, respectively. 

 

 

 
Fig. 3.9: Comparison of the experimental effective damping coefficients with the theory for laminar 

flow of the normal component at the indicated temperatures. The theoretical values always seem  

to be lower than the experimental ones, the reasons for which are given in the text. In this plot,  

we also observe the two critical velocities in the data taken at 1.37 K. 
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Fig. 3.10: The effective energy dissipation rate plotted against the angular velocity amplitude  

for the indicated temperatures and for comparison, the corresponding predicted dependencies.  

The rates are sufficiently low to discount any significant heating of the superfluid in the vicinity  

of the oscillating disc.  

 

From both figures, it can be seen that the theory predicts a lower drag force 

from the surrounding fluid than we measured. This is hardly surprising since  

the theoretical calculations do not consider the presence of the cylindrical cryostat 

wall. Moreover, the disc did not exhibit perfect torsional motion during  

the experiment, as it was not completely perpendicular to its suspension fibre.  

Also, it would have experienced small sideways vibrations as a result of the cryostat 

being connected to the vibrating Roots pump or when the disc was spun. Furthermore, 

the disc also has a rough surface; in fact the surface roughness is likely to be on scales 

comparable to the viscous penetration depth, which would increase the drag 

noticeably. Theoretical values can be calculated from the relations (28) and (30)  

as the viscous penetration depth was almost ten times less than the distance  

of the plates from the disc. In both plots, we can also see the transition from the linear 

damping force. 

To further disentangle the contributions of the two components of He II  

and formulate a scenario for the behaviour of superfluid helium around a torsionally 
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oscillating disc, we will examine the drag coefficients defined for the torsional motion 

of the disc in Section 1.3.  

 

 
Fig. 3.11: The drag coefficient for the superfluid component plotted against the angular velocity 

amplitude for all the analysed temperatures (top) and for selected temperatures, as indicated,  

for clarity (bottom). The solid lines are guides for the eye and represent either inverse proportionality 

dependences or a constant value of the plotted drag coefficient. Two regions of quasi-laminar flow 

are clearly identified in the data taken at 1.37 K. Furthermore, the behaviour at angular velocities 

around 1 rad/s is almost identical for all temperatures below 2 K. Needless to say, the drag coefficient 

for the superfluid component is not a very meaningful quantity for interpreting the data taken  

at 2.16 K, as the fractional density of the superfluid component is very low – only about 7%. We plot 

this dependence for comparison, nonetheless. 
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In figure 3.11, the dependence of the superfluid drag coefficient is plotted 

against the angular velocity amplitude and again, we see that the data  

from the lowest temperatures collapse to a single dependence, once the (lower) 

critical angular velocity is exceeded. This is in agreement with our previous 

findings that the first non-linear damping force is due to the superfluid component.  

On the other hand, the laminar part at the lowest values of angular velocity  

does not collapse, as it is the normal fluid component that is responsible  

for the dissipative force.  

Furthermore, from this graph (selected data isolated in the lower panel)  

we clearly see that at the lowest temperature, there are two regions that exhibit 

laminar-like behaviour, which is recognized as the functional dependence 

tMx ∝	1 LH⁄ , in contrast to turbulent flow that would be characterised  

by tMx ≈ /��7�. This is essential for our understanding of the processes occurring 

near the critical angular velocity, as it shows that after the lower critical angular 

velocity is exceeded, He II behaves as if it were turbulent in a limited range of LH, 

where we already know that the non-linear drag arises from the superfluid 

component, but then again starts to exhibit quasi-laminar flow, despite the fact  

that there is a significant amount of quantized vortices already present  

in the superfluid component. All of this is best seen at the temperature 1.37 K 

where the fractional density of the superfluid component is highest  

and thus, its contribution towards the drag forces is the most significant. 

Figure 3.12, where the normal component drag coefficient is plotted against  

the angular velocity is perhaps only illustrative, but it still shows the dissipative force 

beginning to rise above the laminar contribution at approximately the same value  

as the critical angular velocity determined earlier. 
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Fig. 3.12: The drag coefficient for the normal component plotted against the angular velocity 

amplitude for all the analysed temperatures. While no portion of the data can be collapsed in this type 

of plot, it shows quite clearly the critical angular velocity and the quasi-viscous behaviour around 1 

rad/s as indicated for the data taken at 1.37 K (black arrow with error bar; upper black line, 

respectively). The lower black line corresponds to equation (39) for the temperature 2.16 K. 

 

It becomes more interesting if compared with figure 3.13, where the drag 

coefficient for the normal component is plotted against the Reynolds number 

calculated using the viscous penetration depth as the characteristic length scale.  

From the collapse of the laminar part, one can see that the viscous drag of the normal 

component does indeed scale as predicted and that we are really operating the disc  

in the “high frequency limit”, despite its very low natural frequency  

of about 0.22 Hz. If only the normal component had been responsible  

for the measured drag forces here, all dependences should have collapsed to a single 

line, similar to the data taken at 2.16 K that are indeed dominated by the action  

of the normal component (over 90% fractional density). Thus, any significant 

departure from the baseline approximately given by this measurement must again 

only be due to the superfluid component. 
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Fig. 3.13: The drag coefficient for the normal component plotted against the Reynolds number defined 

for the normal component using the viscous penetration depth, δ. This collapses the low amplitude 

drag forces, proving that this force originates from the laminar component and that we are indeed 

operating the oscillating disc in the high frequency limit, as mentioned in section 1.3. Without any 

significant error, we can consider the dependence taken at 2.16 K to correspond to the behaviour of 

the normal component alone. The parameter ��w2 is the only relevant dimensionless flow parameter 

in the high frequency limit. If only the normal component were involved in the flow (laminar or 

turbulent), all data should have collapsed to a single dependence similar to the data taken at 2.16 K. 

Thus, any departure from the data taken at 2.16 K is again shown to be necessarily due to the action  

of the superfluid component. As this plot does not collapse the dependence above the lower critical 

angular velocity, it is now clearly shown that a second quasi-laminar flow exist again for all 

temperatures below 2 K. The upper critical velocity is shown reliably only for 1.37 K. The purpose of 

the solid lines is the same as in figure 3.12. 

 

 

A synthesis of all the information gleaned from the presented data allows us  

to formulate the following likely scenario for the flow of He II around the oscillating 

disc - valid at least at the lower temperatures (1.37 K, 1.6 K, and 1.95 K).  

At the lowest angular velocities, the superfluid component stays either at rest  

or exhibits potential flow (not contributing towards the dissipative forces),  

while laminar flow of the normal component exists. This laminar flow  
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is approximately described by the presented theory, except for the differences  

in the drag forces explained above. The first instability that occurs is due  

to the emergence of a significant number of quantized vortices in the superfluid 

component (likely generated from remnant vortices attached to the surface  

of the disc), and leads to a non-linear increase of the measured drag force that scales 

with the density of the superfluid component. The presence of these quantized 

vortices then causes an increase of the mutual friction force (since it acts between  

the vortices and the normal component) which eventually causes the superfluid 

component to adapt to the flow of the normal component. We therefore believe  

that He II exhibits a coupled quasi-laminar flow of both components, resulting  

in a motion that can be (on length scales exceeding the inter-vortex distance) 

approximately described as that of a classical viscous fluid with its density equal  

to the total density of He II and an effective viscosity equal to, or higher  

than that of the normal component alone (higher drag coefficient). An increase  

in the effective viscosity might be due to the quantized vortices in the superfluid 

component also dissipating some part of the kinetic energy, regardless of the specific 

mechanism by which it occurs. At the highest angular velocities, this quasi-classical 

fluid will likely eventually undergo further instabilities, as any classical fluid would, 

triggering the transition to turbulence. This scenario can be found to agree  

with the original interpretation of Donnelly and Hollis Hallett, although  

from the current experiment, further information has been obtained about the scaling 

of the non-linear force. A similar idea has also been discussed and investigated  

in a recent paper by Skrbek and Vinen summarizing the behaviour of oscillatory 

structures in He II and 3He-B [21]. 

Having described the scenario which can be advocated convincingly based  

on the presented data, it is also fair to say that if one considers the non-ideal motion 

of the disc, the noise levels at low amplitudes and other adverse effects, this scenario 

should perhaps be thought of as a likely possibility rather than well-proven fact. 

Nevertheless, a very similar scenario was formulated for the behaviour of quartz 

tuning forks in He II in the same temperature range [9], where efforts were also made 

to quantify the degree of coupling between the normal and superfluid component. 

Although the data presented in ref. [9] are less affected by noise and similar effects, 
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at the time they have not been processed in the same fashion as in the present work 

and do not seem to show the two laminar-like flow regimes too convincingly. 

 

 

 

3.3 Suggestions for Improving the Experiment 

For future work on the oscillating disc, it would be desirable to focus  

on the following aspects: It would be appropriate to use a heavier, more stable  

glass disc mounted on the fibre at an angle as close to 90 degrees as possible.  

It would also be advisable to improve the contrast, reliability and spacing  

of the marks on the disc. For example, the choice of a dark opaque paint  

would significantly help to increase the contrast of the dots against the background, 

which could be complimented by better lighting inside the cryostat as well.  

It will be necessary to reduce any mechanical vibrations due to the pump;  

For example, this could be done by selecting a longer, more flexible hose  

and by fitting the cryostat with rubber dampers. Unwanted lateral vibrations should 

be limited even more by an adapted drive mechanism, as the present manual one may 

cause significant vibration during the initial movement, leading to increased noise. 

Such a drive mechanism should also allow higher initial amplitudes, which would 

also be essential in determining when the coupled components become turbulent  

at higher temperatures. 

After these improvements are made, it would also be possible to think of better 

data processing methods. For example; to allow a more precise determination  

of the actual angular displacement, rather than angular velocity only, which is its 

derivative and thus is more prone to random noise.  

It would also be interesting to change the disc diameter and compare  

the behaviour, or perhaps to design a similar experiment with another axially 

symmetric body such as a sphere or cylinder and to compare with available results  

or even between different shapes of the torsionally oscillating bodies. 



42 

 

Conclusions 

After finishing all necessary tests at room temperature and at liquid nitrogen 

temperature which led to significant improvements of the apparatus and data 

acquisition, measurements with a torsionally oscillating disc were performed  

in superfluid helium at temperatures between 2.16 K and 1.37 K at saturated vapour 

pressure. We were able to measure the time dependence of the angular velocity  

of the disc and to determine a critical value of the angular velocity amplitude.  

The obtained temperature dependences also provide information on what the nature 

of the observed instabilities is likely to be.  

We have presented evidence showing that the measured non-linear forces 

originate from the superfluid component, which is an improvement over the original 

interpretation of a set of similar experiments performed by Donnelly and Hollis 

Hallett [7], where a similar concept called the “entrainment of the superfluid 

component” was presented, which seemed to be halfway between an assumption  

and experimental fact. Moreover, the described effect was not at all present  

in the data shown for the single oscillating disc, as sufficiently high amplitudes  

have not been reached. Thus, as far as we know, for the case of the single oscillating 

disc this is a new result and we are not aware of any previous work that would show 

the same.  

Based on our experience with other oscillatory structures, we have proposed  

a detailed scenario of the transition to turbulence for this experimental arrangement 

and present evidence in support of its validity within the limits of experimental 

accuracy, forming an overall picture of the characteristics of the flow of He II  

around a torsionally oscillating disc. This scenario is generally in agreement  

with the conjectures drawn by Donnelly and Hollis Hallett, but is now laid down  

in greater detail and supported by additional experimental results. Nevertheless,  

there is always room for improvement, and the torsional oscillator experiments  

will continue to be studied in the Superfluidity Laboratory. 
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