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Chapter 1

Introduction

In 2008 Adi Shamir et. al. [3] presented a new attack on the Trivium cryptosystem
with reduced number of initialisation rounds. It is called the Cube Attack and is based on
linearising of polynomials expressing the keystream bits, where the key and initial vector
bits are the variables. The technique presented in the paper was aiming to recover a linear
polynomial from a polynomial, the explicit representation of which is unkown. When
attacking the full Trivium cryptosystem only with reduced number of initialisation rounds,
this is an absolutely reasonable approach, since building the explicit representation of such
polynomials is not feasible by currently available technology. Moreover, it would be easier
to recover the key by brute force, since the polynomials in the cryptosystem after a higher
number of initialisation rounds can be considered to be random, the memory complexity
of expressing the keystream (and therefore naturally state) bits as polynomials in key and
initial vector would be more than 2160. The memory complexity of brute-force attack is
negligible and time complexity would be 280. That is still enough to comply with what is
demanded from a lightweight cryptosystem.

For this thesis we aimed to present a detailed description of the Cube Attack and then
to devise a generalisation, which could help push the boundaries of usability of the Cube
Attack. Other important target of ours are of course the polynomials as such. Therefore
we decided to actually compute the polynomial expression of the state and keystream bits
of Trivium reduced in the number of the bits used as variables and then to analyse them
without having to do any guessing. More specifically, we wanted to assess, whether the
polynomials are linearisable using the techniques devised by us and whether they are any
more effective than the original Cube Attack.

In the next chapter there is described the basic notation we use throughout the thesis.
Thereafter we ”translate” the Cube Attack into our notation and we present its detailed
description. In further sections we describe in the same manner another technique that
can be used for attack in a similar way to the Cube Attack, which we, due to its prob-
lematic computability, simplify into two easier, but nonetheless effective techniques and a
combination of both our method and the Cube Attack, one version of which proved to be
more effective than the Cube Attack. The details about analysis of the polynomials and a
description of the cryptosystem they represent can be found in the second to last chapter.
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Chapter 2

TC-linearisation of tweakable
polynomials

In this chapter we describe the theory behind the Cube Attack. Further in the text
we define a technique, which is in itself very simple, but in its full variant could prove
to be a very powerful way of linearising polynomials, if it was not for the computational
complexity of the algorithm the equivalent condition yields. Nevertheless, we also present
two simple variants, one of which proves in the next chapter to be quite powerful, when
teamed up with the Cube Attack.

2.1 Tweakable polynomials
In this section, we introduce some notation and define the classes of polynomials we

will be working with.
Throughout this theses, we denote by [n] the set {0, 1, . . . , n− 1} for any n ∈ N.

Definition 2.1.1. A Boolean function in n ∈ N variables is a function of the form f :
Fn

2 → F2. The set of all Boolean functions in n variables is denoted by Bn, i.e.

Bn = {f : Fn
2 → F2}.

Algebraic normal form (ANF) of a Boolean function f is its representation as a poly-
nomial f(x0, . . . , xn−1) ∈ F2[x0, . . . , xn−1] such that none of its monomials contain any
variable in degree greater than one.

Theorem 2.1.2. For each Boolean function, there exist a unique algebraic normal form.

Proof of the theorem can be found in [1].

For I ⊆ [n], we will use xI to denote the monomial ∏
i∈I xi. So for every Boolean

function f ∈ Bn there exists a unique set I ⊆ P([n]) such that

f(x0, . . . , xn−1) =
∑
I∈I

xI .
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We will write xI ∈ f if I ∈ I.

Definition 2.1.3. Let m, n ∈ N. We define set of secret variables X = {xi; i ∈ [n]} and
set of public variables Y = {yj; j ∈ [m]}.

Later on, the secret variables will represent the secret key, while the public variables will
represent the initialisation vector of a stream cipher, which is public and can be potentially
set by an attacker.

In the rest of the thesis we will use the ANF representation of Boolean functions and
use the notation B[X], B[Y ], B[X, Y ] for Boolean functions (polynomials) in variables X,
Y or X ∪ Y respectively.

Definition 2.1.4. We call a polynomial p tweakable, if p ∈ B[X, Y ] and fully tweakable,
if p ∈ B[Y ].

2.2 Basic Cube Attack
This section describes the basic principles of the Cube Attack in the same way it was

done in [3] to introduce the basic principles. For demonstration purposes we will not be
distinguishing secret and public variables and thus we use fully tweakable polynomials. We
also present a more formal proof of the main theorem from [3].

Definition 2.2.1. [3] Let p ∈ B[Y ] be a polynomial and J ⊆ [m] a variable index subset.
A superpoly of J in p is a polynomial pS(J) ∈ B[Y ] such that

p(Y ) = yJ · pS(J)(Y ) + qJ(Y ) (2.2.1)

where q = ∑
J 6⊆J ′

bJ ′yJ ′ , bJ ′ ∈ F2. We call yJ a maxterm, if the superpoly pS(J) is a linear,

non-constant polynomial.

Note. The superpoly pS(J) does not contain any variables indexed by J .

Example 2.2.2. Let p ∈ B[Y ] be a polynomial

p = y0y3y4y5 + y1y3y4y5 + y0y3y5 + y0y2y3y4 + y0y1 + y1y2y4 + y2y3y4 + y3y4 + y3y5 + y3 + y4 .

We can factor out the monomial yJ = y3y4y5 so we get

p = y3y4y5︸ ︷︷ ︸
yJ

·

pS(J)(Y )︷ ︸︸ ︷
(y0 + y1) + y0y3y5 + y0y2y3y4 + y0y1 + y1y2y4 + y2y3y4 + y3y4 + y3y5 + y3 + y4︸ ︷︷ ︸

qJ (Y )

In this case, yJ is a maxterm of J in p.
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Definition 2.2.3. For an index subset J ⊆ [m], |J | = k we define a summation cube CJ

as the set of k-tuples of variables yj : j ∈ J where all possible combinations of values of
variables yj are assigned. We can also understand CJ as a vector space Fk

2 with information
about indices of the variables. Hence we set dim(CJ) = k.

Definition 2.2.4. [3] For every polynomial p ∈ B[Y ] and for any k-dimensional summation
cube CJ , J ⊆ [m] we define

pJ := ∑
v∈CJ

p|v

where p|v is a derived polynomial with m− k variables {yj : j ∈ [m] \ J} and the variables
indexed with J are assigned values from the k-tuple v.

Now we can present and prove a vital property of the superpoly of J in p, which is the
main theorem in [3].

Proposition 2.2.5. [3] For any polynomial p ∈ B[Y ] and variable subset J , pJ = pS(J).

Proof. First, we use the expression of the polynomial p from (2.2.1) and the fact, that the
polynomial pS(J) does not contain variables with indices from J :

pJ = ∑
v∈CJ

p|v = ∑
v∈CJ

(yJpS(J) + q)|v = ∑
v∈CJ

(yJ |vpS(J) + q|v) = ∑
v∈CJ

yJ |vpS(J) + ∑
v∈CJ

q|v .

Now we have to realize, that pS(J) will be added if and only if all the cube variables are all
set to 1, so

pJ = pS(J) + ∑
v∈CJ

q|v = pS(J) + ∑
v∈CJ

( ∑
J ′⊆[m]

bJ ′yJ ′)|v = pS(J) + ∑
J ′⊆[m]

∑
v∈CJ

(bJ ′yJ ′)|v .

For J ′ we have J 6⊆ J ′ and hence each bJ ′yJ ′ will be added up an even number of times
and hence ∑

v∈CJ

(bJ ′yJ ′)|v = 0 for all J ′. This leaves us with pJ = pS(J).

For our purposes, from now on, we shall call this technique of summing (partial) eval-
uations of a polynomial the C-linearisation of fully tweakable polynomials.

2.3 C-linearisation of tweakable polynomials
In this section we describe the C-linearisation (cube attack) on tweakable polynomials.

We present a clear description of what makes a polynomial C-linearisable. In [3] this part
was skipped, for they dealt with black box polynomials which demand a different approach
than polynomials the explicit representation of which is known.

Definition 2.3.1. We call a polynomial p ∈ B[X, Y ] C-linearisable, if there exists J ⊆ [m]
such that pJ(X, Y = (1, ..., 1)) is linear.

For purposes of C-linearisation we present the following grouping of monomials: Let
p ∈ B[X, Y ] be a tweakable polynomial. Then we can write
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p = ∑
(I,J)∈I

xIyJ = ∑
l∈Lp

l + ∑
b∈Bp

b + ∑
h∈Hp

h

where I ⊆ P([n])× P([m]) and

Bp = {xIyJ ∈ p : |I| = 0}
Lp = {xIyJ ∈ p : |I| = 1}
Hp = {xIyJ ∈ p : |I| > 1}.

The set Bp contains all monomials consisting purely of public variables and the free
monomial. Lp contains all monomials consisting of exactly one secret and any number
and combination of public variables. Hp consists of monomials with two or more secret
variables. We can plainly see that Lp ∪Bp ∪Hp contains all monomials of p.

Before we present the condition which describes precisely a C-linearisable polynomial,
we present a simple lemma about C-linearisability:

Lemma 2.3.2. Let p ∈ B[X, Y ] be a tweakable polynomial. If Lp = ∅, then p is not
C-linearisable.

Proof. If there is no monomial that is linear in secret variables, there is definitely no
monomial yJ , J ⊆ [m], such that pS(J) is linear in secret variables.

Now we can propose an equivalent definition of a C-linearisable tweakable polynomial:

Proposition 2.3.3. A tweakable polynomial p ∈ B[X, Y ] is C-linearisable if and only if

∃xiyJ ∈ Lp, : (∀yJ ′xI ∈ Hp : yJ 6 |yJ ′)

Proof. We shall prove the first implication by contradiction, the second directly:
”⇒”: For contradiction, we assume that p is C-linearisable and ∀yJxi ∈ Lp∃yJ ′xI ∈ Hp :
yJ |yJ ′ . This implies that for every choice of J will in the superpoly pS(J) remain a monomial
that is non-linear in secret variables, i.e. the superpoly will contain yJ′

yJ
xI and |I| ≥ 2 as

yJ ′xI ∈ Hp. Thus the contradiction.
”⇐”: We assume that ∃yJxi ∈ Lp ∀yJ ′xI ∈ Hp : yJ 6 |yJ ′ . That implies yJ is a maxterm,
which yields a superpoly pS(J) that is linear in secret variables.

This proposition yields a straightforward Algorithm 1 that checks if p(X, Y ) is C-
linearisable.

Example 2.3.4. In this example we rewrite the polynomial from previous example into
the notation of the tweakable polynomials with distinguished secret and public variables.
We shall have m = n = 3. So let p ∈ B[X, Y ] be a tweakable polynomial:

p = x0y0y1y2 + x1y0y1y2 + x0y0y2 + x0x1y0y1 + x1x2y1 + x2y0y1 + y0y1 + y0y2 + y0 + y2

We can factor out yI = y0y1y2, so we obtain

p = y0y1y2 · (x0 + x1) + x0y0y2 + x0x1y0y1 + x1x2y1 + x2y0y1 + y0y1 + y0y2 + y0 + y2

where x0 + x1 is the linear superpoly of I = {0, 1, 2} in p and yI is a maxterm.
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Algorithm 1 C-linearisation
for xiyJ ∈ Lp do

C-linearisable = True
for xI′yJ ′ ∈ Hp do

if J ⊆ J ′ then
C-linearisable = False
break

end if
end for
if C-linearisable == True then return J
end if

end for
return False

2.4 T-linearisation of tweakable polynomials
Now we present T-linearisation, a technique we devised and describe to aid the C-

linearisation to be as effective as possible when linearising a polynomial.

Definition 2.4.1. We call a polynomial p ∈ B[X, Y ] T-linearisable, if

∃J ⊆ [m] : (∃v ∈ CJ : p|v is linear in secret variables)

In other words there exists a (partial) evaluation of the polynomial in public variables that
results in p|v being linear in secret variables.

Proposition 2.4.2. Let p ∈ B[X, Y ]. If

∃l ∈ Lp, l = xiyJ : (∀h ∈ Hp ∃j ∈ [m] \ J : yj|h)

then p is T-linearisable. Specially, we say that p is T1-linearisable.

Proof. If there is such l that the condition holds, then every h ∈ Hp can be eliminated by
setting respective yj = 0 while the secret part of l will be kept in the polynomial by setting
the public variables indexed by J to one.

As with C-linearisation, this proposition basically constructs a simple T1-linearisation
algorithm Alg. 2.

We recall the polynomial from previous example to demonstrate the T1-linearisation:

Example 2.4.3. Let

p = x0y0y1y2 + x1y0y1y2 + x0y0y2 + x0x1y0y1 + x1x2y1 + x2y0y1 + y0y1 + y0y2 + y0 + y2

We can linearise this polynomial in secret variables by setting y1 = 0, which gives us a
non-constant polynomial, that is linear in secret variables

7



Algorithm 2 T1-linearisation
for xiyJ ∈ Lp do

T1-linearisable = True
for xI′yJ ′ ∈ Hp do

if J ′ \ J == ∅ then
T1-linearisable = False
break

end if
end for
if T1-linearisable == True then return J
end if

end for
return False

p|y1=0 = x0y0y2 + y0y2 + y0 + y2

and finally, by setting y0 = y2 = 1 we get

p|y1=0,y0=y2=1 = x0 + 1

which is a linear polynomial in secret variables only.

Corollary 2.4.4. C-linearisability does not imply T1-linearisability.

Proof. Consider polynomial p = x0y0y1 + x0x1y1. This polynomial is clearly not T1-
linearisable, but it is obviously C-linearisable using J = {0, 1}.

Clearly T1-linearisability is not a necessary condition for T-linearisability. Consider
p ∈ B[X, Y ],

p = x0x1y0 + x0x1 + x2 = (y0 + 1)x0x1 + x2.

This polynomial obviously is T-linearisable by setting y0 = 1, but due to the monomial
x0x1 T1-linearisation does not work here.

Definition 2.4.5. For any index subset I ⊆ [n] and polynomial p ∈ B[X, Y ] we define the
set of public monomials of p relative to I as

Ep(I) = {yJ : xIyJ ∈ p}

and the tweaking polynomial pEp(I) ∈ B[Y ] as

pEp(I) = ∑
yJ∈Ep(I)

yJ .

Using this we can express any tweakable polynomial p ∈ B[X, Y ] as

p = ∑
I⊆[n]

pEp(I)xI .
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In other words, pEp(I) is the coefficient of xI in p if seen as p ∈ B[Y ][X].
Clearly, if we want to obtain a linear polynomial in X, we need to evaluate all B[Y ]

coefficients of xI , |I| ≥ 2 to zero. In the following proposition we use this to present an
equivalent definition of T-linearisation.

Proposition 2.4.6. Tweakable polynomial p ∈ B[X, Y ] is T-linearisable if and only if

∃J ⊆ [m] :
(∃v ∈ CJ : [∀I ⊆ [n], |I| ≥ 2 : pEp(I)|v = 0
∧ (∃I ′ ⊆ [n], |I ′| = 1 : pE(I′)|v 6= 0)])

In other words, a tweakable polynomial is T-linearisable, if there is a solution to the
system of polynomial equations yielded by pEp(I)’s, where |I| ≥ 2 for that some of the
pEp(I′), |I ′| = 1 does not evaluate to zero.

Proof. We prove the forward implication by contradiction, the backward directly.
”⇒”: Let’s assume that p is T-linearisable and

∀J ⊆ [m] :
∀a ∈ Fm

2 [(∃I ⊆ [n], |I| ≥ 2 : pEp(I)(a) = 1)
∨ (∀I ′ ⊆ [n], |I ′| = 1 : pE(I′)(a) = 0)]

That means that after any partial evaluation in public variables there either remains some
monomial that is not linear in secret variables or the resulting polynomial is a constant.
Hence the contradiction.
”⇐”: If there exists such J and v ∈ CJ , then we can eliminate all the monomials that are
non-linear in secret variables by partial evaluation in v and there is at least one monomial,
that is linear in secret variables that remains in the polynomial after the partial evaluation.
So p|v is a polynomial that is linear in secret variables, hence p is T-linearisable.

This proposition yields a very compelling way of T-linearising a tweakable polynomial.
First, we find the solutions for the system of polynomial equations defined by the pEp(I)’s
for |I| ≥ 2. Then we choose those solutions, for which there exist I ′ such that |I ′| = 1 and
pEp(I′) is non-zero after the partial evaluation. Naturally, this may be ineffective or even
impossible, as shown in following example:

Example 2.4.7. Because our usual example polynomial is, as demonstrated, T-linearisable,
for purposes of this example, we present a different polynomial, q ∈ B[X, Y ], q = x0 +
x0x1y0 + x1x2y0 + x1x2. Obviously,

q = x0 + x0x1 · y0 + x1x2 · (y0 + 1)

which yields an equation system

y0 + 1 = 0
y0 = 0

which has no solution.

9



Because solving a system of polynomial equations over F2 in general is computationally
ineffective, we present a simpler version, which we might be able to solve in a more efficient
manner (given that the system of equations actually has a solution, otherwise we just
conclude that there is none).

Proposition 2.4.8. Let p ∈ B[X, Y ]. If

∀xIyJ ∈ Hp : |J | ≤ 1 ∧
∧ [∃a ∈ Fm

2 : (∀I ′ ⊆ [n], |I ′| ≥ 2 : pE(I′)(a) = 0) ∧ (∃i ∈ [n] : pE({i})(a) = 1)]

then p is T-linearisable. Specially, we say that p is T2-linearisable.

This means, that a polynomial is T2-linearisable, if is T-linearisable and the tweaking
polynomials for all I’s, such that |I| ≥ 2, are linear or constant.

Proof. Corollary of previous proposition.

The algorithm Alg. 3 this proposition yields is quite straightforward, but a little more
complex, because it consists of three main parts. First, we check if all monomials from Hp

are linear or constant in Y . Then we create and solve an equation system consisting of
pE(I) = 0 equations for all I ⊆ [n] : |I| ≥ 2. Finally we look for a solution of this system
that evaluates to one on at least one pE(i), i ∈ [n].

Algorithm 3 T2-linearisation
// Check for linearity
for xIyJ ∈ Hp do

if |J | ≥ 2 then return False
end if

end for
// Create and solve the equation system
EquationSystem = ∅
for I ⊆ [n] : ∃J ⊆ [m] : xIyJ ∈ Hp do

EquationSystem.add(pEp(I) = 0)
end for
Solutions = Solve (EquationSystem)
//Search for a suitable solution
for a ∈ Solutions do

if ∃i ∈ [n] : pE({i})(a) = 1 then return a
end if

end for
return False

Corollary 2.4.9. T2-linearisability does not imply T1-linearisability.

10



Proof. Polynomial p = x0y0y1 + x0x1y0 + x0x1 = x0y0y1 + x0x1(y0 + 1) is clearly T2-
linearisable (set y0 = y1 = 1), but not T1-linearisable.

Corollary 2.4.10. T1-linearisability does not imply T2-linearisability

Proof. Polynomial p = x0y0 + x0x1y0y1 is clearly T1-linearisable (set y1 = 0), but not
T2-linearisable.

2.5 TC-linearisation of tweakable polynomials
In this section we present TC-linearisation, our generalisation of Shamir’s Cube Attack’s

C-linearisation.
In order to proceed to the definition of a TC-linearisable polynomial, we first define

more general version of a maxterm.

Definition 2.5.1. Let J ⊆ [m] be an index subset. We call the monomial yJ a T1-/T2-
/T-maxterm, if the superpoly of J in p is a T1-/T2-/T-linearisable polynomial.

Definition 2.5.2. Let p ∈ B[X, Y ] be a tweakable polynomial. Then p is TC1-/TC2-/TC-
linearisable if and only if

∃J ⊆ [m] : yJ is a T1-/T2-/T-maxterm respectively.

Note, that TC1-/TC2-/TC-linearisation with J = ∅ equals T1-/T2-/T-linearisation
since pS(∅) = p.

Example 2.5.3. In this example we use the same polynomial p ∈ B[X, Y ] as previously:

p = x0y0y1y2 + x1y0y1y2 + x0y0y2 + x0x1y0y1 + x1x2y1 + x2y0y1 + y0y1 + y0y2 + y0 + y2

This polynomial is TC-linearisable, because we can either set y0 = y2 = 1 and obtain a
non-constant linear polynomial x0 + 1 by T-linearisation only or get for example x0 + x1
by summing over the cube defined by J = {0, 1, 2}. There is also the possibility of using
a combination of both, as is made possible using TC-linearisation:

p = y0 · (x0y1y2 + x1y1y2 + x0y2 + x0x1y1 + x2y1 + y1 + y2 + 1) + x1x2y1 + y2

and then we set y1 = 0 ∧ y2 = 1 to get x0 as our linear polynomial. In this particular
case it would of course be more efficient to use T-linearisation only, because x0 is obviously
linearly dependent on x0 + 1.

Note. We call a tweakable polynomial p ∈ B[X, Y ] TC1-/TC2-/TC-linearisable, if we can
derive a polynomial that is linear in secret variables from it by using partial evaluation
as described in the equivalent definitions of T1-/T2-/T-linearisation and cube summation
presented as C-linearisation combined.
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In this case the algorithmisation is simple again. At first we choose an index subset
J ⊆ [m] and then we attempt to linearise the superpoly of J in the polynomial using
respective T-linearisation variant. We use either T1- or T2-linearisation, because we have
no effective way of solving polynomial systems of equations.

Clearly, if a tweakable polynomial does not contain any monomials linear in secret
variables, then we can not apply any of the presented techniques:

Corollary 2.5.4. Let p ∈ B[X, Y ] be a tweakable polynomial. If Lp = ∅, then p is not T-,
C- or TC-linearisable.

2.5.1 Minimizing the cube
Let’s have an index subset J ⊆ [m]. We now assume, that p ∈ B[X, Y ], p(X, Y ) =

yJ · pS(J)(X, Y ) + qJ(X, Y ) is a TC-linearisable polynomial and that yJ is a T-maxterm.
The monomial yJ or, more precisely, the index subset J may not be minimal with this
property. We want to have it as small as possible though, because it means summing fewer
equations because of smaller cube while summing the partially evaluated polynomials.

The following example illustrates the properties we are looking for when trying to
reduce the size of J .

Example 2.5.5. Let p ∈ B[X, Y ] be the same polynomial as in previous example:

p = x0y0y1y2 + x1y0y1y2 + x0y0y2 + x0x1y0y1 + x1x2y1 + x2y0y1 + y0y1 + y0y2 + y0 + y2

The obvious first choice of a monomial to factor out of this polynomial to obtain a superpoly
is y0y1y2:

y0y1y2 · (x0 + x1) + x0y0y2 + x0x1y0y1 + x1x2y1 + x2y0y1 + y0y1 + y0y2 + y0 + y2

This way we get a superpoly x0 + x1 by using C-linearisation only. However, we have to
sum over a cube of dimension three.

But if we wanted to use TC-linearisation, nothing stand in the way of using y0y2:

y0y2 · (x0y1 + x1y1 + x0 + 1) + x0x1y0y1 + x1x2y1 + y0y1 + y0 + y2

and obtaining non-constant linear polynomial x0 + 1 by setting y1 zero or x1 + 1 by setting
y1 = 1.

We can even use y0 only:

y0 · (x0y1y2 + x1y1y2 + x0y2 + x0x1y1 + x2y1 + y1 + y2 + 1) + x1x2y1 + y2

and set y1 = 0 ∧ y2 = 1 to get x0 as our linear polynomial.

And in this very particular case we do not have to factor out anything, just set y1 = 0:

12



x0y0 · 0 · y2 + x1y0 · 0 · y2 + x0y0y2 + x0x1y0 · 0 + x1x2 · 0 + x2y0 · 0 + y0 · 0 + y0y2 + y0 + y2 =
= x0y0y2 + y0y2 + y0 + y2

set y0 = y2 = 1 and the function we have is x0 + 1 again, using T-linearisation only.

Plainly, we cannot use y0y1:

y0y1 · (x0y2 + x1y2 + x0x1 + x2 + 1) + x0y0y2 + x1x2y1 + y0y2 + y0 + y2

due to the non-linear monomial x0x1 in pS(I) that does not contain any public variable.

Nor can we use y1 alone:

y1 · (x0y0y2 + x1y0y2 + x0x1y0 + x1x2 + x2y0 + y0) + x0y0y2 + y0y2 + y0 + y2

because of x1x2 for the same reason as with the previous cube.

But again, y2 alone:

y2 · (x0y0y1 + x1y0y1 + x0y0 + y0 + 1) + x0x1y0y1 + x1x2y1 + x2y0y1 + y0y1 + y0

and y1y2:

y1y2 · (x0y0 + x1y0) + x0y0y2 + x0x1y0y1 + x1x2y1 + x2y0y1 + y0y1 + y0y2 + y0 + y2

are perfectly fine too, because we now have x1 + 1 by setting y0 = y1 = 1 and x0 + x1 by
y0 = 1 respectively.

However improbable this situation can be, we get many ways of choosing the cube variables.
In this case, when efficiency is key, we would naturally go for the empty cube.

When outlining the conditions of the minimality of index subsets for TC-linearisation,
we begin with the C-linearisation to illustrate the matter.

Definition 2.5.6. For any index subset J ⊆ [m] such that yJ is a maxterm we define the
C-minimal-candidate subset J ′ ⊆ J as a minimal one in terms of the count of its elements
while yJ ′ remains a maxterm.

For respective versions of TC-linearisation we define the minimal subsets analogically.
But before we do that, we present a lemma as to what makes an index subset a C-minimal-
candidate:

Lemma 2.5.7. Let yJ be a maxterm. The index subset J is a C-minimal-candidate if and
only if

∀J ′ ( J ∃h ∈ Hp : yJ ′ |h

Proof. Trivial corollary of the proposition outlining the C-linearisation conditions.
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Based on this, we can define a C-minimal subset:

Definition 2.5.8. We define the C-minimal subset as a minimal one in terms of the count
of its elements among the C-minimal-candidates.

The rules for T1-linearisability are clear and quite simple, so we can actually define a
TC1-minimal subset as well:

Definition 2.5.9. For any index subset J ⊆ [m] such that yJ is a T1-maxterm we define
the TC1-minimal candidate subset J ′ ⊆ J as a minimal one in terms of the count of its
elements while yJ ′ remains a T1-maxterm.

The following proposition provides constructive guide to determining, whether an index
subset is a TC1-minimal candidate.

Proposition 2.5.10. Let yJ be a T1-maxterm. The index subset J is a TC1-minimal-
candidate if and only if

∀(J ′ ( J : ∃s ∈ Hp : yJ ′ |s ∧ yJ 6 |s)

Basically, an index subset stops defining a T1-maxterm precisely at the moment when
such a monomial ”slips” into the superpoly, such that it cannot be eliminated by partial
evaluation as described in the equivalent definitions of T1-linearisation.

Proof. The implication ”⇐” is trivial, we prove the other by contradiction. ”⇒”: If for
some J ′ ( J existed such y for every s ∈ Hp, yj|s ∧ yJ 6 |s, we could use J ′, that is smaller
than J which contradicts J ’s minimality.

Definition 2.5.11. We define a TC1-minimal subset as a minimal one in the count of its
elements among the TC1-minimal candidates.

Example 2.5.12. We shall now examine the different superpolys we got in the previous
example. To be as efficient as possible, we use the smallest cubes we can so that the
superpolys we get are linearly independent:

• yI = 1: p|y1=0,y0=y2=1 = x0 + 1

• yI = y2: pS(I) = x1 + 1

These are obviously linearly independent and given an RHS bit we can solve the equation
system, leaving us with the need to guess x2. In this case we could even solve the equations
independently.

Now we present the same definition and proposition for T2 linearisation and we shall
see, whether we can get any further using it. Since we are unable to tell, whether a
polynomial really is T2-linearisable without actually solving the system of equations, we
can only determine, whether the system of equations fulfills the basic conditions of the
T2-linearisation. Thus we present yet the following definitions:
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Definition 2.5.13. We call a monomial yJ , J ⊆ [m] a T2-maxterm candidate, if the system
of polynomial equations yielded by the respective tweaking polynomials is linear.

Definition 2.5.14. For any index subset J ⊆ [m] such that yJ is a T2-maxterm candidate
we define the TC2-attempt-minimal-candidate subset J ′ ⊆ J as a minimal one in terms of
the count of its elements while yJ ′ remains a T2-maxterm candidate.

Proposition 2.5.15. Let yJ be a T2-maxterm candidate. The index subset J is TC2-
attempt-minimal-candidate if and only if

∀J ′ ( J ∃yJ ′′xI ∈ HpS(J′) : |J ′′| ≥ 2.

In other words, an index subset stops defining a T2-maxterm candidate when there
is such a polynomial in the set of tweaking polynomials, that it does not fulfill the T2-
linearisation conditions.

Proof. We prove the forward implication by contradiction, the other directly.
”⇒”: We assume, that J is T2-attempt-minimal and

∃J ′ ( J : (∀yJ ′′xI ∈ HpS(J′) : |J ′′| ≤ 1)
But that implies, that there is another, smaller subset of J , namely J ′, which means, that
J was not minimal after all.
”⇐”: If the RHS holds, for any J ′ ( J we get a system of equations that does not fulfill
the T2-linearisation conditions, which means, that J really is TC2-attempt-minimal.

At last, we define the TC2-attempt minimal subset:

Definition 2.5.16. We call J ⊆ [m] TC2-attempt-minimal, if J is a smallest TC2-attempt-
minimal-candidate in terms of the count of its elements.
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Chapter 3

Linearising Trivium keystream
polynomials

With the previous one dealing with the underlying theory, this chapter describes the
experimental part of the thesis. At first we present in detail the description of the cryp-
tosystem, a derived variant of which we take on. It is Trivium, a cipher presented within
the eSTREAM project, that got into the final phase. The original description is to be
found in [2], we have modified it to fit our purpose and notation.

After that we present the attack itself. Since we in this case only wanted to test our
linearisation methods, we have not attempted the key-recovery, which is the aim of the full
attack. In other words we show, how far we got with the techniques devised by us and
compare them to the Cube Attack.

3.1 Trivium
Before we present the attack itself, we describe the cryptosystem we are about to attack.

It is a reduced variation of a stream cipher called Trivium [2]. At first we describe the
original cryptosystem and after that we describe reduced variation we will attack.

3.1.1 Trivium cipher description
Trivium is a very simple stream cipher with three non-linear feedback registers, 80 bit

key and 80 bit initialisation vector (IV). The cipher produces a keystream {zi}, zi ∈ F2
which is added to the plaintext to produce the ciphertext.

The three registers of Trivium are of lengths 93, 84 and 111 respectively and form the
inner state of the cipher. The state is updated every step and we will use the notation
Si, ∈ F288

2 to denote the state at the beginning of the i-th step for i ≥ 0:
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Si = (si,0, ..., si,92,

si,93, ..., si,176,

si,177, ..., si,287).

(si,0, ..., si,92) is the first register, (si,93, ..., si,176) the second and (si,177, ..., si,287) the third.
The cipher defines a state update function F : Si 7→ Si+1 which is a non-linear function
that shifts all three registers by one to the left and sets the first bits of the registers to
f3(Si), f1(Si), f2(Si). I.e.

Si+1 = (f3(Si), si,0, ..., si,91,

f1(Si), si,93, ..., si,175,

f2(Si), si,177, ..., si,286)

where

f1(Si) = si,65 + si,92 + si,90 · si,91 + si,170

f2(Si) = si,161 + si,176 + si,174 · si,175 + si,263

f3(Si) = si,242 + si,287 + si,285 · si,286 + si,68

are the feedback function.
The cipher’s operation can be divided into two parts: the initialization algorithm and

the keystream generation algorithm. The initialisation starts by setting the initial inner
state S0 = (s0,0, . . . , s0,287) as

s0,0 = k0, . . . , s0,79 = k79, s0,93 = IV0, . . . , s0,172 = IV79, s0,285 = s0,286 = s0,287 = 1

and the all the other s0,i = 0. I.e. the key (k0, . . . , k79) is loaded into the beginning of the
first register, the IV = (IV0, . . . , IV79) into the beginning of the second register and the
last three bits of the third register are set to one. Then it updates the state 1152 times to
produce the state S1152 in the end. Afterwards, the keystream generation starts. On each
step i ≥ 1152, the keystream bit is generated as

zi = si,65 + si,92 + si,161 + si,1768 + si,242 + si,287 (3.1.1)

and then the state Si is updated by the state-update function F to Si+1. The cipher is
depicted in Figure 3.1.

Let us denote the key variables by X = (x0, . . . , x79) and IV by Y = (y0, . . . , y79).
Then, for each bit si,j of the inner state Si there exists a polynomial gi,j ∈ B[X, Y ] such
that

si,j = gi,j(K, IV ).
Similarly, for each keystream bit zi there exist a polynomial pi ∈ B[X, Y ] such that

zi = pi(K, IV )
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zi

Figure 3.1: Stream cipher Trivium

and by using (3.1.1) we get

pi(X, Y ) = gi,65(X, Y )+gi,92(X, Y )+gi,170(X, Y )+gi,176(X, Y )+gi,242(X, Y )+gi,287(X, Y ).

So for an unknown key X and known initialisation vector IV , an attacker can create a
system of polynomial equations zi = pi(X, IV ) in X by observing the keystream zi. In
Trivium, the initialisation has 1152 steps, hence the attacker knows zi, i ≥ 1152. Intuitively,
the shorter the initialisation, the easier it should be to attack the cipher as polynomials
pi(X, Y ) become more complex with increasing i.

In order to demonstrate the capabilities of the presented techniques we will assume that
the keystream generation starts already from the state S0, i.e. the keystream is {zi}i≥0.

3.1.2 Trivium-8
Trivium-8 is a version of Trivium with shortened key and IV to 8 bits each. Aside

from the shortened key and IV, it is the same Trivium as described above, so it has a 288
bit inner state. The length of the key and IV was chosen to be 8, i.e. K = (k0, . . . , k7)
and IV = (IV0, . . . , IV7), since this should be enough to make the polynomials pi(X, Y )
reasonably complex (interesting) while maintaining them small enough for the computation
to be feasible with a standard PC.
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3.2 Attack description
As already mentioned, we will use the described linearisation methods to attack Trivium-

8, a Trivium reduced in key and IV bits.
We assume that an attacker has access to Trivium-8 with fixed unknown key K. He can

repeatedly choose the IV and obtain the keystream zi = pi(K, IV ) (chosen IV attack). His
goal is to find K by solving the respective equation systems.

For this purpose we need to compute the polynomials gi,j(X, Y ) for all inner state bits
and use them to compute the polynomials pi(X, Y ) expressing the keystream bits. To
obtain the actual values of zi, we need an implementation of Trivium-8 that computes the
keystream bits from the K and IV.

3.2.1 Attack using T-linearisation
This part is pretty straightforward. Assume that IV ∈ Fm

2 and i ≥ 0 such that
pi(X, IV ) is linear in X. Then we get the value of zi = pi(K, IV ) and form a linear
equation pi(X, IV ) = zi.

If the J from the definition of T-linearisation is such that J 6= [m], we add to the values
of respective v ∈ CJ values for the remaining public variables arbitrarily.

3.2.2 Attack using C-linearisation
Assume that for an J ⊆ [m] the yJ is a maxterm of pi(X, Y ) so by assigning ones to all

yj, j /∈ J we obtain a linear superpoly. We set U = {(u0, . . . , um−1) ∈ Fm
2 ; uj = 1 ∀j /∈ J}

and obtain zi(a) = pi(K, u) for all u ∈ U . The equation obtained by C-linearisation is then

pS(J)(X, v) =
∑
u∈U

zi(u)

where v is an element of U . Note that pS(J)(X, Y ) can depend only on public variables with
indices not in J , hence the equation does not depend on the particular choice of v ∈ U .

3.2.3 Attack using TC-linearisation
In C-linearisation, we set all public variables with indices not in J to one. In TC-

linearisation, we assume that there exists w ∈ C[m]\J , such that pS(J)|w is linear. I.e. when
summing over all k-tuples from the cube CJ , we have to extend each k-tuple with the
T-linearising bits for partial evaluation, that remain fixed during the whole summing.

3.3 Experimental results
In this chapter we present results we got when we applied the presented linearisation

techniques on reduced Trivium as presented in respective chapter.
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Since solving a system of linear equations is simple, in our experiments we shall concen-
trate on whether we can actually obtain any linear, non-constant polynomials, from which
we could build such.

For polynomial multiplication to build the representation we used a variant of algorithm
from [4].

3.3.1 C-linearisation
The C-linearisation proved to be, as expected, very effective. We could use it to linearise

the polynomials representing keystream bits with indices up to 609. It is important to note,
that by no means all keystream polynomials up to the 610th are C-linearisable. Moreover,
although the aforementioned polynomial technically is C-linearisable, it is highly ineffective,
because the cube contains all 8 public variables. That results in the complexity of summing
over the cube being approximately the same as of exhaustive search for the key. The last
polynomial, for which C-linearisation is actually useful, is that with index 582. For the
polynomials representing up to 575th keystream bit there is a lot of maxterms to be found.
However, after the half of the full initialisation (576 rounds) the C-linearisable polynomials
are starting to appear rather sparsely and after 609 rounds they stop appearing altogether.

3.3.2 T1-linearisation
T1-linearisation did not prove to be especially effective. We could T1-linearise polyno-

mials representing up to the 361st keystream bit.
This is actually a result we expected: If T1-linearisation would be effective on the

polynomials, even if in relatively early stages of the initialisation, it would mean, that
there would be no monomial xIy∅, I ⊆ [n]. This is highly improbable though, because
it would mean that none of a set of 2n monomials would be present, which happens with
probability of 2−2n if dealing with a random polynomial, which we assume the polynomials
in the later stages of initialisation to be.

3.3.3 T2-linearisation
In spite of T2-linearisation using an approach that significantly differs from that used

in T1-linearisation, we managed to linearise using it keystream polynomials up to p361. It
is easy to see, why this technique was not any more successful: it demands, that for the
polynomial p ∈ B[X, Y ] that we are attempting to linearise every monomial in Hp has
degree at most one in secret variables. In fact then, this is a surprisingly good result.

3.3.4 TC1-linearisation
With TC1-linearisation, the situation is a bit more complicated. It is at least as effective

as C-linearisation, but it could at some point prove to be able to reduce the cube and
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therefore the complexity of the linearisation. This happened only when the polynomial
was T1-linearisable, so this technique turned out to be a bit disappointing.

3.3.5 TC2-linearisation
As we already hinted, TC2-linearisation is the technique, that really does improve the C-

linearisation. We managed to linearise polynomials representing the keystream of Trivium-
8 with indices up to 622, which is slightly more, than we managed using C-linearisation
(609). Despite the TC2-linearisable polynomials not appearing significantly more often
than the C-linearisable ones, the cubes to sum over in TC2-linearisation are, especially
for the later keystream polynomials, smaller than those for C-linearisation. This proves
our hypothesis, that TC2-linearisation is more efficient than C-linearisation. Good exam-
ple of this is the p622(X, Y ), which is C-linearisable with the cube of dimension 8, i.e. the
maximal one, but there are T2-maxterms with degree 6, i.e. the dimension of the cube is 6.

The linearisation attempts we made have rather met our expectations. Neither T1-, nor
T2-linearisation proved to be effective in any interesting extent. Also TC1-linearisation did
not bring any improvement over C-linearisation beyond the union with T1-linearisation.
However, aside from the expected success of C-linearisation, which surprised by being
able to linearise as far as the keystream polynomial with index 609, we were able to
linearise the polynomial representing the 623rd keystream bit (p622(X, Y )) using TC2-
linearisation, which we consider to be a success, since it is a clear improvement over C-
linearisation (p609(X, Y )). Moreover, the C-linearisability of the polynomial representing
the 610th keystream bit has an ambivalent meaning in terms of an attack, the last C-
linearisable polynomial, that could actually be useful for an attack is that with index 582.
In figure 3.2 we show the results graphically.

z1152z0 z57 z361 z609 z622

T1

T2

C

TC1

TC2

full Trivium

keystream

output

z582

Figure 3.2: Range of effectiveness of linearisation techniques
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Chapter 4

Conclusion

In this thesis we presented a detailed description of Cube Attack devised by Adi Shamir
et. al. and its generalisation that proved to be slightly more effective when tested on key-
and IV-reduced Trivium variant. None of these techniques is advanced enough to linearise
keystream polynomials after full 1152 initialisation rounds, but the fact, that well after
the initialisation there remain some monomials that are linear in secret variables hint, that
under some circumstances and using more advanced techniques, that are to be discovered,
could be linearised, or at least significantly simplified in similar manner too.

These more advanced techniques are subject of further research of ours. We already
have some ideas, where we could be looking for improvements, that might stretch the
effectiveness well beyond the current 622 initialisation rounds of reduced Trivium. Natu-
rally, its application on full Trivium or another cryptosystem is an obvious aim of all these
efforts. One way to attempt that lies in a more detailed analysis of the polynomials for
key- and IV-reduced Trivium, which could yield some interesting properties of the original
cryptosystem.
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