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Abstract

In the thesis, the coarse-grained dissipative particle dynamics (DPD) is used for the
study of self-assembly of equimolar mixtures of oppositely charged symmetric block
PEs with one PE block (either strong polycation or strong polyanion) and one readily
water-soluble neutral block in aqueous media.

In the first part of the diploma thesis, the principles of DPD simulations are de-
scribed and the correct implementation of electrostatic interactions in the DPD method
is demonstrated on the example of counterion (Manning) condensation.

In the second main part, the effect of the blocks solubility, incompatibility and
the interplay of different forces on electrostatic assembly is investigated. The corre-
sponding neutral systems are also simulated for comparison. The study shows that the
hydrophobicity of the PE backbone and the incompatibility of blocks significantly af-
fects the electrsotatic co-assembly. The presence of opposite charges on different chains
promotes the aggregation process and the aggregation number increases in comparison
with the corresponding neutral system. In systems with well soluble charged blocks,
only dimers are formed, while in systems with hydrophobic charged blocks, core-shell
aggregates are formed for incompatible blocks and nano-gel particles for compatible
blocks.

Keywords: polyelectrolytes, block copolymers, computer simulations
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Abstrakt

V diplomové práci je studována spontánńı asociace ekvimolárńı směsi kladně a
záporně nabitých symetrických blokových kopolymer̊u s jedńım polyelektrolytovým
blokem (silný polykation nebo silný polyanion) a jedńım dobře rozpustným blokem
ve vodných roztoćıch pomoćı zhrubeného modelu a disipativńı částicové dynamiky
(DPD).

V prvńı části diplomové práce jsou popsány základy DPD simulaćı a správnost
implementace elektrostatických interakćı do DPD metody je ukázána na př́ıkladu kon-
denzace protiiont̊u (Manningovy kondenzace).

Ve druhé stěžejńı části je studován vliv rozpustnosti obou blok̊u, jejich nekompat-
ibility a vzájemné souhry r̊uzných sil na elektrostatickou asociaci. Pro srovnáńı jsou
uvedeny také simulace odpov́ıdaj́ıćıch neutrálńıch systémů. DPD studie ukázala, že
jak rozpustnost polyelektrolytového bloku tak nekompatibilita blok̊u hraj́ı při elek-
trostatické asociaci d̊uležitou roli. Př́ıtomnost opačných náboj̊u na r̊uzných řetězćıch
přisṕıvá k agregaci a vede k vyšš́ımu agregačńımu č́ıslu ve srovnáńı s odpov́ıdaj́ıćım
neutrálńım systémem. V systémech s dobře rozpustným nabitým blokem vznikaj́ı
pouze dimery, zat́ımco v systémech se špatně rozpustným polyelektrolytovým blokem
vznikaj́ı agregáty s jádrem a slupkou pro nekompatibilńı bloky a nanogelové částice
pro kompatibilńı bloky.

Kĺıčová slova: polyelektrolyty, blokové kopolymery, poč́ıtačové simulace
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List of symbols and abbreviations

ξ Manning parameter

lB Bjerrum length

l polymer contour length containing elementary charge

e electron charge

kB Boltzmann’s constant

ε0, εr dielectric constants

T temperature

fi force acting on the i-th particle

mi mass of the i-th particle

vi velocity vector of the i-th particle

ri position vector of the i-th particle

t time

FC
ij conservative force between particles i and j

FD
ij dissipative force between particles i and j

FR
ij random force between particles i and j

rc cut-off distance

UC soft repulsive potential

aij repulsion coefficient between particles i and j

rij distance between particles i and j

eij unit vector in a direction of particles’ separation

ωD weight function for dissipative force

γij friction coefficient

ωR weight function for random force

σij noise amplitude

ζij Gaussian random number

∆t simulation timestep

ρ particle number density

χij Flory-Huggins parameter

αρ proportionality constant

δi solubility parameter
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VDPD volume of a single DPD bead

FS
i,i+1 spring force between two adjacent beads i and i+ 1

ks spring constant

r0 equilibrium distance

N total number of particles

qi charge of i-th particle

L side length of a cubic simulation box

V volume of a simulation box

U el electrostatic potential

m, n integer vectors in Ewald sum

α convergence parameter in Ewald sum

k, k reciprocal vector and its magnitude

ρc charge density

re smearing radius for linear charge density

σ size of a Gaussian charge cloud

λe decay length for Slater-type charge density

U el
ij electrostatic potential with smeared charge

β electrostatic smearing constant

F el
ij electrostatic force with smeared charge

Nm number of molecules in one DPD particle

Cn number of monomers in one Kuhn segment

As aggregation number

Fw weight distribution function

Fn number distribution function

nDPD number of physical monomers in one DPD bead

M molar mass

τ relaxation time

Rg radius of gyration

rCM position vector of the center of mass of a chain or an aggragate

S gyration tensor

λ2x, λ
2
y, λ

2
z eigenvalues of the gyration tensor

b asphericity
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c acylindricity

κ2 relative shape anisotropy

g radial distribution function

PE polyelectrolyte

MD molecular dynamics

DPD dissipative particle dynamics

erfc complimentary error function

ACF autocorrelation function

8



1. Introduction

Polymers play an important role in everyday life of the human society. Synthetic
polymers are very prominent and widespread materials. Biopolymers are an important
component of biological structures.

Polymer is a molecule consisting of many repeating structural units called monomers,
which are connected by covalent bonds to form a chain. The number of monomers in
one chain is called the degree of polymerization. Polymer chain can consist of only one
type of monomer unit (homopolymer) or more types (copolymer). The two (or more)
monomer types in the copolymer can be arranged for example to alternate regularly or
to form blocks, where only one monomer type is present. Another important charac-
teristic of polymer structure is chain architecture: linear, star-branched, H-branched,
comb, dendrimer, etc. Due to the polymer chain’s flexibility it can adopt many differ-
ent conformations, making it practically impossible to describe its properties without
the use of statistical approaches.

The conformation of the polymer chain in solution greatly depends on its interac-
tions with a solvent [1, 2, 3]. If the interactions are favourable, the solvent is called
thermodynamically good solvent and the polymer dissolves. If the opposite is true, the
solvent is bad, the chain collpases and the polymer does not dissolve. A solvent, that
is a good solvent for one monomer type in a block copolymer and a bad one for the
second type of monomer, is called a selective solvent. In case of the block copolymer in
the selective solvent, multimolecular micelles or other types of nanostructures can ap-
pear. In such a solvent each block has different solubility and solvophobic blocks create
micellar cores, while solvophilic blocks form a soluble shell to decrease the number of
unfavourable contacts.

Polyelectrolytes (PEs), also called polyions, are polymers made of monomers car-
rying either positively or negatively charged ionizable group. The charge enormously
changes the behaviour of polymers. They usually contain fairly hydrophobic backbone
and their solubility is partly due to electrostatic interactions and to the release of small
counterions upon dissolution, which increases system entropy [4, 5]. Examples of PEs
include synthetic compounds such as polystyrene sulfonate or polyacrylic acid and its
salts and many natural polymers such as DNA or proteins.

Experimental study of polymer systems is often very difficult due to their complex-
ity and polydispersity (both in the number of monomer units and the composition)
and usually several methods have to be used to get reliable information. Theoretical
methods on the other hand use rough approximations, which are sometimes difficult
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1. INTRODUCTION

to verify in mathematical and physical terms. Computer simulations make the inter-
face between them. The adventage is that we can set up exact conditions and study
monodisperse polymer, which is very difficult to achieve in experiments. Simulations
give detailed and experimentally unreachable results, therefore they make it possible
to study different effects independently and thus test theoretical hypotheses. Simula-
tions therefore help both in interpreting experimental data and developing theoretical
models.

On the other hand simulations are very demanding both on the computational time
and the computer memory, so it is nearly impossible to simulate larger systems at the
atomic level. Therefore so-called coarse-grained methods, which group more atoms or
molecules into a single particle, are often used.
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2. Aim of the thesis

The aim of this work is to contribute the understanding of the electrostatic assembly
of diblock copolymers comprised of a water-soluble block and a polyelectrolyte block
charged either positively or negatively and the structure of nanoparticles formed. Al-
though a number of experimental studies of polyelectrolyte co-assembly exists, they
are focused mainly on development of nano-sized particles for drug delivery. Neither
the effect of hydrophobicity of the polyelectrolyte backbone nor the compatibility of
the copolymer blocks were studied systematically, because such studies would require a
series of samples differing in various parameters, which would be difficult and expansive
to prepare.

I study the effect of hydrophobicity of the A-block, incompatibility of the two
copolymer blocks, the electrostatics, and compatibility of ions with other components
on the aggregation number, structure and compactness of aggregates. The intricate
interplay of the above effects is analyzed.
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3. Theoretical background

3.1 Polymer self-assembly

Block copolymers in solutions tend to self-assemble and form microphases. In the
selective solvent less soluble blocks tend to reduce the number of their unfavourable
interactions with solvent by clumping together which drives the creation of a core com-
posed of these blocks and a shell consisting of well soluble blocks. It is therefore an
interplay of two forces acting against each other: decreasing enthalpy on one hand and
increasing entropy on the other. The structure and symmetry of the copolymer aggre-
gate depends on the relative strengths of the interactions as well as the composition
and the architecture of the block copolymers [6]. Block copolymers self-assemble into
micelles only above a threshold concentration, so-called critical micelle concentration.

For PEs the electrostatic interactions also affect the self-assembly. In electrostatic
assembly the oppositely charged chains (or blocks) tend to associate which comes with
a relatively low decrease of entropy that is compensated by the increased entropy of
small PE counterions which are released into the bulk solution.

3.2 Counterion condensation

Condensation of counterions plays an important part in PE systems – for example it
controls the stability of colloids [7] or self-assembly of biomolecules [8].

The electrostatic attraction between a PE chain and counterions in a solution can
result in the condensation of these counterions on the polyion chain [9]. The counte-
rion (Manning) condensation happens due to a fine interplay between the favourable
electrostatic attraction of the counterions to the polymer chain and the unfavourable
loss of the translational entropy by those counterions due to their localization in the
vicinity of the chain [5]. A condensed counterion layer emerges at a critical value of
polyion linear charge density and the process of counterion condensation occurs only
in the limit of low salt concentration [10].

The linear charge density is measured by the dimensionless Manning parameter
ξ = lB/l, where l is a polymer contour length containing one unit charge [11] and
lB = e2/(4πε0εrkBT ) is the Bjerrum length – e is electron charge, ε0 is the permittivity
of vacuum, εr is the dielectric constant, kB is Boltzmann’s constant and T represents
temperature. The Bjerrum length is defined as the separation at which the electrostatic
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3. THEORETICAL BACKGROUND 3.3. Comp. sim. of polymer solutions

interaction between two elementary charges is comparable in magnitude to the thermal
motion, kBT [12]. For a cylinder with a vanishing radius the Manning condensation
happens for ξ > 1, when the Coulomb interactions dominate over thermal motion. In
such case, the number of counterions in the vicinity of the polymer chain increases so
that the effective charge density on the polyion reduces to the critical value of ξ = 1
[10].

3.3 Computer simulations of polymer solutions

3.3.1 Coarse graining procedures

Even though computer resources are continually increasing, the large number of de-
grees of freedom and long relaxation times make it impossible to use fully atomistic
simulations to study many phenomena including polymer self-assembly. Various coarse-
grained models have been applied to tackle such problems and there are many reviews
of the used approaches [13, 14, 15].

Using coarse-grained simulations, much larger spatial and time scales can be ac-
cessed, which gets us much closer to experiments. Such simulations can also provide
a bridge between the atomistic scale and continuum. The ability to link directly the
molecular scale to the continuum can minimize errors in the continuum modelling
predictions by providing more accurate estimates of the thermodynamic states.

A general strategy of coarse graining is to reduce the number of degrees of freedom
through simplification of the model used, retaining only the degrees of freedom impor-
tant to the phenomena of interest. This comes with a loss of chemical detail, so the
trade-off is that the observation of atomistically detailed phenomena is impossible.

Basically, there are two ways to devise a coarse-grained model: bottom-up and
top-down approaches. The idea behind the bottom-up approach is to start from the
atomistic model and design an effective coarse-grained potential. By grouping several
atoms or molecules together, a coarse-grained bead is created, which has lower number
of degrees of freedom compared to the initial particles. A possible way to come up with
such larger particles for example for polyamide-6,6 is shown in Figure 3.1 [16]. In this
model the amide functional group plus one methylene group is replaced by one coarse-
grained particle (A), while two particles (B) centered at the second and fifth carbon of
the hexamethylene unit, respectively, are used to describe the aliphatic chain. Finally,
a third coarse-grained particle (C) is located at the center of mass of the remaining
two central methylene units of the tetramethylene unit. Other models with different
levels of coarse graining (i.e., different number of physical atoms put together to form
a coarse-grained particle) can of course be devised.

Having created these coarse-grained beads, an appropriate potential or force be-
tween these beads needs to be found. This is achieved either by structure matching or
force matching. The former approach seeks to match features of the structure of the
original (i.e., atomistic) system with those of the coarse-grained system that contains
less degrees of freedom and find an effective potential reproducing those features. The
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3.3. Comp. sim. of polymer solutions 3. THEORETICAL BACKGROUND

(CH ) (CH )NHCO CH2 CONHCH (CH )

A              C              A             B           B

2 2 2 3 2 3

Figure 3.1: Coarse-grained model of polyamide-6,6.

simplest structure feature to use is the radial distribution function (or pair correlation
function). This leads to matching of the pair-level structure between the atomistic
and the coarse-grained models. To match the structure more completely, higher order
correlation functions must be taken into account. In practice, only correlations up to
the third order are considered, because determining higher order correlations is not
currently feasible [13]. There is a number of methods that can be used to obtain the
coarse-grained potential from the known structural features [13].

The second way to obtain the potential is the force matching. As the name suggests,
it involves matching forces obtained from the atomistic model with those for the coarse-
grained model. This method can determine a pairwise effective forcefield from a given
trajectory and force data regardless of their origin, i.e., whether the initial data are
obtained from ab initio MD simulations [17] or fully atomistic simulations [18]. During
this initial simulation the average force acting on a predefined set of coarse-grained
sites (such as the center of mass of a group of atoms) is evaluated. Fitting the resulted
data provides parameters for the coarse-grained force [13].

Contrary to the above described bottom-up coarse graining, the top-down approach
takes experimental observables (macroscopic properties of the real system such as com-
pressibility, solubility, etc.) to come up with an effective coarse-grained forcefield. Such
as in the case of bottom-up coarse graining, some chemical and physical intuition is
used. A coarse-grained interaction model with free interaction parameters is assumed
and physical observables are fitted to obtain the parameters. A typical example is DPD
as derived by Groot and Warren [19], where a soft repulsive force between the coarse-
grained beads is assumed and compressibility of water at room temperature along with
mutual species solubility is used to obtain the needed parameters. Description of the
DPD method is presented in the next section.

14



3. THEORETICAL BACKGROUND 3.3. Comp. sim. of polymer solutions

3.3.2 Dissipative particle dynamics

DPD is a simulation method similar to molecular dynamics (MD) [19, 20, 21]. MD
is a computer simulation technique allowing us to follow the time evolution of a large
number of interacting particles. These particles obey the Newton’s laws of motion:

fi = mi
dvi
dt

= mi
d2ri
dt2

, (3.1)

where fi represents a sum of forces acting on a particle i with position vector ri, velocity
vector vi and mass mi; t denotes time. The force is calculated as a negative gradient of
an interaction potential. The equations of motion are numerically integrated and thus a
new set of particle coordinates and velocities is generated. Macroscopic properties can
be then obtained using statistical thermodynamics (see for example [22] for details).

DPD in contrast to MD is an approximate, coarse-grained method by design. This
allows us to cover longer time and space scales [23]. In DPD simulations the momentum
is conserved, while the total energy is not. DPD fluid is modelled by large beads, each
consisting of several molecules or monomers. They interact via force consisting of
several pairwise forces:

fi =
∑
j 6=i

[
FC
ij (rij) + FD

ij (rij, vij) + FR
ij (rij)

]
, (3.2)

where the sum goes over all neighbouring particles, which are within a certain cut-off
distance, rc. As this is the only length scale in the system, it is used as a unit of length.
Since even in a heterogeneous system, the same value of rc is used for all beads, it is
desirable to have all DPD particles with roughly the same volume [13]. The diameter
of these particles is equal to rc.

As noted before, Groot and Warren [19] assumed all beads interact via a pairwise
soft repulsive potential, which is given by equation:

uCij =


aij
2
rc

(
1− rij

rc

)2

for rij < rc

0 for rij ≥ rc

, (3.3)

where aij is the maximum repulsion between the particles i and j and rij is their
separation distance. Deriving a negative gradient of the potential gives rise to the
conservative force [19, 21]:

FC
ij = −

duCij
drij

eij, (3.4)

where eij is a unit vector in a direction of their separation distance [23]. This form
makes it possible to use longer simulation timestep [24]. This soft potential allows for
significant overlap of DPD particles.
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3.3. Comp. sim. of polymer solutions 3. THEORETICAL BACKGROUND

The dissipative force, FD
ij, represents a drag between two particles moving through

each other with the relative velocity vij [19]:

FD
ij = −γijωD(rij)(eij · vij)eij, (3.5)

where ωD denotes a weight function and γij is a friction coefficient. The random force,
FR, representing random collisions is given by [19]:

FR
ij = σijω

R(rij)
ζij√
∆t

eij, (3.6)

where ζij is a Gaussian random number with zero mean and unit standard deviation, σij
a noise amplitude, ωR denotes another weight function and ∆t a simulation timestep.

Español and Warren [25] showed that one of the two weight functions in equations
(3.5) and (3.6) can be chosen arbitrarily and that this choice fixes the other weight
function:

ωD =
(
ωR
)2

, (3.7)

There is also a relation between the coefficents in FD
ij and FR

ij [19]:

σ2
ij = 2kBTγij, (3.8)

where kB denotes Boltzmann’s constant and T is temperature. These two conditions
are derived from the fluctuation-dissipation theorem and the two forces act together
as a thermostat.

The repulsive parameter, aij, is the free interaction parameter in the sense men-
tioned at the end of the previous section. A macroscopic physical observable must be
used to derive the value of this parameter. Groot and Warren [19] utilised compress-
ibility of water at room temperature to derive the following formula:

aiirc
kBT

=
75

ρr3c
, (3.9)

where ρ = N/V is the particle number density (V being the volume of the system and
N the total number of particles). They have also shown that ρr3c = 3 is a good value
for the number density [19], therefore aiirc

kBT
= 25 is the usual choice.

Groot and Warren [19] have also mapped the repulsion parameter for unlike particles
onto the Flory-Huggins theory. Comparing the free energy of the DPD and Flory-
Huggins models they came up with a simple linear relationship between aij and the
Flory-Huggins parameter, χij:

χij = 2αρρr
3
c

(
aij −

aii + ajj
2

)
rc
kBT

, (3.10)

where αρ is a proportionality constant dependent on ρ. Taking aii = ajj and ρr3c = 3,
it can be shown [19] that:

aijrc
kBT

=
aiirc
kBT

+ 3.27χij = 25 + 3.27χij, (3.11)
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3. THEORETICAL BACKGROUND 3.3. Comp. sim. of polymer solutions

since aiirc
kBT

= 25 is the usual choice. To determine the Flory-Huggins parameter, χij,
solubility parameters δi can be used [26]:

χij =
VDPD

kBT
(δi − δj)2 , (3.12)

where VDPD is the volume of a DPD bead.
Polymers in the DPD method are represented by freely jointed chains, which means

no restrictions on bond angles is used. Since DPD is a highly coarse-grained method,
harmonic spring is sufficient to join the adjacent particles i and i+ 1:

FS
i,i+1 = ks (ri,i+1 − r0) , (3.13)

where ks is a spring constant and r0 is an equilibrium distance between the two beads.
This distance is often set to 0, because the repulsive force alone maintains the appro-
priate distance. The DPD chains are interpenetrating chains (or phantom chains), i.e.
the chains pass freely through each other [20].

To integrate the equations of motion the velocity-Verlet algorithm is used:

ri (t+ ∆t) = ri(t) + vi(t)∆t+
1

2
(∆t)2

fi(t)

mi

,

ṽi

(
t+

∆t

2

)
= vi(t) +

1

2
∆t

fi(t)

mi

,

fi (t+ ∆t) = fi

[
ri (t+ ∆t) , ṽi

(
t+

∆t

2

)]
,

v (t+ ∆t) = vi(t) + ∆t
fi(t) + fi (t+ ∆t)

2mi

.

(3.14)

The velocity prediction, ṽi, is needed, because the forces are velocity-dependant. This
integrator renders good results and keeps the temperature constant within 1% of the
set value for a relatively long timestep of ∆t = 0.05 [27]. Other, more sophisticated
integrators developed for DPD simulations are shown in [27].

3.3.3 Electrostatic interactions

Long-range nature of electrostatic forces makes it impossible to simply apply a cut-off
radius as is normally done with short-range forces such as FC

ij, FR
ij and FD

ij. Widely
used method to calculate electrostatic forces is the Ewald sum, where overall charge
neutrality is necessary. Given N particles, each with a charge qi and a position vector
ri in a cubic simulation box of side L and volume V = L3, the total electrostatic energy
of the system is

U el
(
rN
)

=
1

4πε0εr

∑
i

∑
j≥i

∑
n

qiqj
|rij + nL|

, (3.15)
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3.3. Comp. sim. of polymer solutions 3. THEORETICAL BACKGROUND

where n is an integer vector, ε0 and εr are dielectric constants of vacuum and the
reference medium, respectively. The sum over n takes into account the periodic images
of the studied system and terms i = j are omitted for n = 0.

In the Ewald sum, the equation (3.15) is decomposed into two parts – a real space
sum and a reciprocal space sum [22, 28, 29]:

U el
(
rN
)

=
1

4πε0εr

(∑
i

∑
j>i

qiqj
erfc(αrij)

rij

+
2π

V

∞∑
k 6=0

Q(k)S(k)S(−k) − α√
π

N∑
i

q2i

)
,

(3.16)

with

Q(k) =
1

k2
exp

(
− k2

4α2

)
, S(k) =

N∑
i=1

qi exp(ik · ri), k =
2π

L
m. (3.17)

In these equations, erfc(x) is the complimentary error function; the parameter α con-
trols the contributions from the real and reciprocal space, assuring the convergence of
both; k is the magnitude of the reciprocal vector k; m is an integer vector [22, 28, 29].
Equation (3.16) aproximates 1/r given by equation (3.15) very well, capturing its long-
range nature.

The electrostatic potential in equation (3.15) diverges at r = 0. However the soft
DPD potential from equation (3.3) is mathematically well defined there, allowing for
a full particle overlap. This leads to a creation of artificial ionic pairs. To overcome
this problem, Groot proposed to spread out a point charge into a charged cloud [30].
Groot initially used the linear charge distribution:

ρc(r) =


3

πr3e

(
1− r

re

)
for r < re

0 for r ≥ re

, (3.18)

where re is the electrostatic smearing radius. The electrostatic field is then solved on
a lattice according to work of Beckers [32]. Other charge distributions were suggested.
Recently Warren et al. proposed a normalised Gaussean smearing [33]:

ρc(r) =
(
2πσ2

)− 3
2 exp

(
− r2

2σ2

)
, (3.19)

where σ is a size of the Gaussian charge cloud.
The charge density distribution implemented in the DL MESO simulation package

that I use for my simulations has a Slater-type charge distribution [28]:

ρc(r) =
1

πλ3e
exp

(
−2r

λe

)
, (3.20)
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where λe is the Slater decay length of the charge distribution. It is impossible to
calculate potentials and forces using this Slater-type charge density analytically, but
there are good aproximations [34]. The interaction potential between two charged
distributions separated by a distance rij is [28]:

U el
ij =

lBqiqj
rij

[
1− (1 + βrij) exp (−2βrij)

]
, (3.21)

where β = 5/(8λe). The Bjerrum length of lB = 1.1 (in reduced units) then represents
aqueous solution.

The reduced force between two charge distributions is [28]:

F el
ij =

lBqiqj
r2ij

{
1− exp (−2βrij)

[
1 + 2βrij(1 + βrij)

]}
. (3.22)

Using equations (3.21) and (3.22) the divergency of the classical Coulombic term at
rij = 0 is removed and the energy between two charged distributions at rij = 0 is a
finite quantity:

lim
rij→0

U el
ij = qiqjβlB. (3.23)

Therefore the force at rij = 0 is limrij→0 F
el
ij = 0.

Since the DPD method requires all beads to have roughly the same volume, a
charged polymer bead representing a Kuhn segment is of the same size as its small
counterion. In reality the counterion is much smaller and therefore in DPD this ion is
thought of as a solvated ion.

3.3.4 Reduced units and parameter mapping

Since it is impractical to use classical SI units in computer simulations, because they
are either too small or very large, a set of reduced units is employed [22]. The unit
of length is the cut-off distance of the repulsive DPD forces acting on the particles
rc. The energy is measured in units of kBT . The third one is the unit of mass of the
particle mi.

Where the reduced units are used, the noise amplitude σij and the particle density ρ
are both equal to 3 in accordance with Groot and Warren [19]. The friction coefficient
in the dissipative force γij = σ2

ij/2 = 4.5. The dimensionless timestep ∆t has been
chosen as 0.05 in all the simulations performed in this work.

The relations between these reduced units and the real units is (in contrast to the
rest of the text, an asterisk denotes reduced units):

a∗ij =
aijrc
kBT

, ρ∗ =
Nr3c
V

=
r3c

VDPD

, (3.24)

The time unit was calculated by Groot and Rabone [35] on the basis of self-diffusion
of water as:

t = (14.1± 0.1)N5/3
m [ps], (3.25)
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where Nm is the number of physical water molecules in one DPD bead. One simulation
timestep therefore corresponds to (t ·∆t) ps in real time.

To map a real polymer system onto the DPD model, several methods can be used
to determine the number of beads representing a specific polymer, nDPD [36]. For
example, the characteristic ratio of the polymer, Cn, representing in simple terms the
number of monomers in one Kuhn segment, can be used [37]:

nDPD =
Mn

MmCn

, (3.26)

where Mn and Mm are the molar masses of the polymer and monomer, respectively.
There are empirical methods to determine Cn [37], which is typically between 7 and
10.

Knowing the value of Cn, the volume of DPD particle can be determined as VDPD =
CnVm, where Vm is the volume of one monomer. From there, the number of water
molecules in one solvent bead and other real units can be easily calculated using the
relations in equations (3.24) and (3.25).
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4. Simulation details

All simulations were performed using the simulation software DL MESO [38]. This
simulation package has been developed at Daresbury Laboratory for the United King-
dom Collaborative Computational Project known as CCP5. It is a parallel mesoscale
simulation package capable of dissipative particle dynamics and the lattice Boltzmann
equation method. For data processing I have created my own software package.

4.1 Electrostatic smearing

The decay length of the charge distribution, λe, was chosen by González-Melchor [28]
to be 0.67 in accordance with the magnitude of Groot’s electrostatic force at r = 0
[30]. However, this means a significant part of the charge is localised outside a bead. I
have chosen a smearing constant λe = 0.2, which confines almost all the charge inside
the bead as shown in our recent paper [31]. Figure 4.1 depicts the distribution of the
charge in the charged cloud for both values of λe and it clearly shows the charge is
spread out up to the reduced distance r ≈ 3 for λe = 0.67, while for λe = 0.2 the charge
remains confined to the DPD bead (diameter of a DPD bead is r = 1 as explained
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λe = 0.20
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Figure 4.1: Distribution of charge, Q(r), inside a charged cloud with exponential charge
density for both values of Slater decay length, λe.
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above).

The definition of the Bjerrum length as stated in Section 3.2 requires the electro-
static interaction at distance of r = lB to be −kBT . Figure 4.2 clearly shows the value
of λe = 0.2 is the largest Slater decay length satisfying the condition in aqueous envi-
ronment (i.e., for lB = 1.1), while the potential for the value of λe = 0.67 is significantly
higher.

A comparison of electrostatic potential, Equation (3.21), and force, Equation (3.22),
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Figure 4.2: The dependence of the electrostatic potential between two smeared ele-
mentary charges of opposite sign for a separation distance r = lB = 1.1 (aqueous
conditions) as a function of the charge decay length, λe.
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Figure 4.3: (a) Electrostatic potential, U el, between two charged clouds with charges
+1 for the two values of λe and Coulombic potential in aqueous conditions (lB = 1.1).
(b) Electrostatic force, F el, between the same charged clouds, again for the two values
of λe and Coulombic force. Red and green lines represent the cases of λe = 0.2 and
0.67, respectively, while the black lines shows Coulombic potential (or force).
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for these two values of λe are shown in Figures 4.3a and 4.3b, respectively. Also a
Coulombic potential and force is added. The localisation of the whole charge within
the bead yields much steeper potential (and force) in the region of smaller distances.
Therefore it is more similar to the Coulombic potential (and force) and the electrostatics
plays more important role at short distances. Results for differently smeared systems
should differ for inter-particle distances of up to r = 3, since neither charged cloud
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Figure 4.4: Sum of the DPD repulsive potential with aij = 25 and the smeared elec-
trostatic potential of two oppositely charged clouds (with charges +1 and −1) for: (a)
λe = 0.2 and (b) λe = 0.67. Full lines represent the sum of electrostatic and repulsive
potential, which are drawn in dashed and dotted lines, respectively.
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Figure 4.5: Radial distribution function, g, for the mixture of opositely charged beads
for both types of charge smearing for: (a) aA,B = 0 and (b) aA,B = 25. Red lines
correspond to λe = 0.2, while the green lines represent λe = 0.67. Full lines are radial
distribution functions between unlike particles, gA-B, and the dashed ones are radial
distribution functions between like particles, gA-A and gB-B.
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extends beyond that and therefore the potential is the same for r > 3.

To further investigate the difference between the two potentials with different λe
I have performed simulations of a mixture of oppositely charged particles A and B
(i.e., salt melt), where qA = 1 and qB = −1, without DPD repulsion (aA,B = 0).
This is unphysical system, because the only interaction between the particles is the
electrostatic force (along with thermal motion represented by dissipative and random
forces), but it can be of some use. The radial distribution functions, g, are shown in
Figure 4.5a for both values of λe. There we see the thermal motion itself is enough to
cancel out the effect of opposite charges almost completely in the case of λe = 0.67. On
other hand the lower value of λe ensures every bead is surrounded by beads of opposite
charge, which is the result expected with the repulsive force turned off. Switching on
the inter-particle repulsion by setting aA,B = 25 significantly decreases the difference
as seen in Figure 4.5b.

I have carried out simulations for both values of λe and the comparison is presented
in Chapter 5.

4.2 Studied systems

Two different polymer systems were investigated in this thesis and the results are
presented and discussed in Chapter 5. Here only a short description is provided and a
more detailed one is shown in Section 4.4.

Firstly the counterion condensation was reproduced to show that DPD is suitable
to study PEs. The system comprised of a single linear polymer chain formed by 50
beads, A50, and 50 counterions (CI) in a box of solvent (S). The chain was solvophobic
which was represented by a high repulsion parameter aA,S. The polymer and counterion
beads had a unit charge of opposite magnitude. The volume of the simulation box was
303, so the total number of DPD beads was 81000. In this system the value of Bjerrum
length, lB, was varied. A neutral system was simulated for comparison.

The main purpose of this thesis is the study of PE self-assembly. The second
system therefore comprised of copolymer chains, A5B5, with one water-soluble neutral
block and one block charged either positively (A+ beads) or negatively (A− beads) and
counterions (CI or I+ and I−) in a box of solvent. All charged beads had a unit charge.
The volume of the simulation box was 253 with the total number of particles 46875.
This smaller box was chosen, because of the high number of simulations performed
and because long simulation runs had to be done to achieve good statistical results.
There was 5.1 vol% of polymer in the simulation box, which represents 240 copolymer
chains (half with positively charged A-block and half with negatively charged one).
The number of counterions varied to represent a system with and without added salt.
Also the solvophobicity of the A-block and the compatibility of the two blocks were
varied to study their effect on the self-assembly. Again, neutral systems were simulated
to show the effect of electrostatic assembly.
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4.3 Data analysis

4.3.1 Aggregation number

Aggregation (or association) number, As, is the number of chains in one aggregate.
Weight-average aggregation number is defined as

〈As〉w =

∑
im

2
i∑

imi

, (4.1)

where mi is the weight of an aggregate i.
Weight distribution function of aggregation numbers, Fw, is defined as:

Fw(As) =
mAsNAs∑
imiNi

, (4.2)

where mi is the mass of an aggregate with association number As = i and Ni is the
number of such aggegates. Similarly defined is the number distribution of aggregation
numbers, Fn:

Fn(As) =
NAs∑
iNi

. (4.3)

Both these functions are normalised, therefore the value of Fw (or Fn) provides infor-
mation of what fraction of aggregates with given mass (or aggregate number) is in the
system.

To obtain information about self-assembly of copolymers, aggregates have to be
defined first. In this work a simple criterium is used to discern aggregates from free
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Figure 4.6: Comparison of three possible aggregation criteria shown on the number
distribution function, Fn, of the charged copolymer system with aA,S = aB,S = aA,B =
25.
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chains. Number of contacts between every two chains is calculated, where the contact
is registered if two solvophobic beads from different chains have separation lower then
1 (in reduced units). Then, if the number of contacts of these two chains is higher or
equal than a predetermined value, these chains are in one aggregate.

Comparison of three such criteria (1, 2 and 3 contacts needed for two chains to form
an aggregate) is in Figure 4.6. The number distribution function, Fn(As), for a charged
system of double-hydrophilic copolymers, A5B5, with compatible blocks (aA,S = aA,B =
aB,S = 25) is plotted there. The system is described in detail in Section 4.4. The
differences between the three criteria in this case are significant for unimers, but much
smaller for higher aggregation numbers, As. Other simulated systems with higher
values of repulsion parameters between A beads and solvent, aA,S, show even smaller
differences. All results in Section 5.2 were obtained via the criterium of 2 contacts.

4.3.2 Gyration tensor

The radius of gyration is defined as the root mean square of the average squared
distance of beads in a chain or aggregate from its center of gravity, rCM (assuming all
particles have the same mass):

R2
g =

1

N

N∑
i=1

(ri − rCM)2, (4.4)

where N is the number of particles forming the chain or aggregate.
In this work, the radius of gyration is calculated using a gyration tensor, S, which

describes the second moments of the position vectors of the beads:

Smn =
1

N

N∑
i=1

(rmi − rmCM)(rni − rnCM), (4.5)

where rmi stands for the m-th Cartesian coordinate of ri and rmCM is the m-th Cartesian
coordinate of rCM. The gyration tensor is a symmetric matrix which can be diago-
nalised:

S =

 λ2x 0 0

0 λ2y 0

0 0 λ2z

 , (4.6)

where λ2x, λ
2
y and λ2z are eigenvalues chosen so that λ2x < λ2y < λ2z [39].

These eigenvalues may be used to determine several properties. The radius of
gyration is calculated as:

R2
g = λ2x + λ2y + λ2z. (4.7)

The shape descriptors, asphericity b and acylindricity c, are defined as [40]:

b = λ2z −
1

2
(λ2x + λ2y), c = λ2y − λ2x. (4.8)

26



4. SIMULATION DETAILS 4.3. Data analysis

The asphericity is always a non-negative value equalling zero only when the particles are
distributed with spherical symmetry (or symmetry with respect to all three coordinate
axes). The acylindricity is also non-negative and attains zero only when the distribution
of particles is cylindrically symmetric (or symmetric with respect to the two axes).

Using all three descriptors, Rg, b and c, the relative shape anisotropy, κ2 can be
obtained as: [40]:

κ2 =
b2 + 0.75c2

R4
g

. (4.9)

The relative shape anisotropy is bound between zero and one. For a structure of
tetrahedral or higher symmetry (for example a spherical aggregate, λx = λy = λy),
the relative shape anisotropy goes to 0. The value κ2 = 0.25 corresponds to a regular
planar structure (λx = 0 and λy = λz). Prolate cylindrical structures are characterised
by κ2 = 1 (λx = λy = 0) [41].

4.3.3 Autocorrelation function

The coordinates and velocities generated during the simulations are correlated, because
only a small change happens between two successive steps. Therefore the relaxation
time, τ , which represents the number of steps between two uncorrelated states, have
to be estimated for each physical property [42]. The ACF as a function of a time-lag i
for a quantity X is calculated as:

ACF(i) =
〈Xj+iXj〉 − 〈X〉2

σ2
, (4.10)

where 〈X〉 is the mean of the quantity X, 〈X2〉 is its mean square, 〈Xj+iXj〉 =
1
n−i
∑

j<n−iXj+iXj (n is the total number of “times”) and σ2 = 〈X2〉 − 〈X〉2 is the
variance.

It can be shown that the ACF asymptotically decreases as an exponential function
[42]. Thus to acquire an approximate τ , we may fit the ACF by the exponential curve
in the form a exp

(
−x
τ

)
; the constant a, which should approach 1, is added so that the

exponential curve gives a better fit. Using τ twice as large suffices and a deeper look
into the autocorrelation is unnecessary.

To determine how often to save the configurations during a simulation, a short
simulation run is done first with very frequent data gathering and autocorrelation
function is determined for some physical quantity. An example of an autocorrelation
function is shown in Figure 4.7, where the weight-average aggregation number for a
neutral copolymer system with mildly solvophobic A-block (aA,S = aA,B = 32.5 and
aB,S = 25) is used. Also an exponential fit can be seen there and the relaxation time
is τ = 9.8. In this short simulation, the configurations were saved every 50 timesteps.
The longer simulation is then performed and in this case every 1000-th configuration
is saved for analysis.
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Figure 4.7: Autocorrelation function of the weight-average aggregation number for the
neutral system in mildly solvophobic A-block. Fit: ACF(i) = 0.99 exp(−i/9.8).

4.4 Parameters of studied systems

In all the simulations, the repulsive coefficients between the same species, aii, were set
to 25 and the simulation timestep was ∆t = 0.05. The noise amplitude, σij, was 3 and
therefore the friction coefficient γij = 4.5. The particle density was ρ = 3 as is typical
in DPD. The mass of all beads was set to 1. For the harmonic spring potential, the
parameters were ks = 4 and r0 = 0.

The electrostatic forces were treated using the Ewald sum with the cut-off dis-
tance of 3, real-space convergence paramater α = 0.975 and reciprocal vector range
n = (5,5,5).

As described above, the first studied system consisted of a single solvophobic poly-
mer chain comprised of 50 beads, A50, 50 counterions and solvent particles. The charges
were qA = 1 and qCI = −1 in units of elementary charge. The value of the Bjerrum
length was varied between 0.1 and 7. Two sets of simulations with two values of
charge smearing, λe = 0.2 and 0.67, were performed. The repulsive parameters, aij,
and the corresponding Flory-Huggins parameters, χij are shown in Table 4.1. Also a

aij A CI S

A 25 40 40

CI 25 25

S 25

χij A CI S

A 0 4.5 4.5

CI 0 0

S 0

Table 4.1: Repulsion coefficients, aij, and the corresponding Flory-Huggins parameters,
χij, between all bead types for simulations of counterion condensation.

28



4. SIMULATION DETAILS 4.4. Parameters of studied systems

corresponding neutral system was simulated for comparison.

Figure 4.8 shows the sum of the repulsive and the electrostatic potential for three
values of the Bjerrum length, lB, for both values of λe. For lB = 7 and λe = 0.2,
the potential is negative from the beginning. Since DPD beads are soft particles, this
does not necessarily present a problem. However, the potential at r = 0 cannot be
too negative, because otherwise the thermal motion would not be strong enough to
separate the two beads and artificial ionic pairs might appear. Therefore lB = 7 is the
largest value used in this work, when the potential at r = 0 is approximately -1, which
is about the same magnitude as the thermal motion (kBT = 1). For higher values of
the Bjerrum length, the system is unphysical.

All simulations started from random configuration. In all the simulations, after
equillibrating for 105 timesteps I ran 106 timesteps, collecting data every 103 timestep.
This gave me 103 independent configurations for analysis. The results and discussion
of the counterion condensation are presented in Section 5.1.

The main purpose of this work is to investigate the self-assembly of diblock copoly-
mers, A5B5, containing one neutral water-soluble block (B-block) and one block with
varying solubility charged either positively or negatively (A+

5 or A−5 -block). I have stud-
ied a system consisting of A5B5 chains in a mixture of solvent (S) and counterion (CI
or I+ and I−) particles. All charged beads had a unit charge. As mentioned above, the
volume fraction of polymer beads was 5.1 vol%, which corresponds to 240 copolymer
chains in the simulation box with the size 253. Half of those were positively charged
and half negatively. To investigate the effect of electrostatic assembly, corresponding
neutral systems were simulated for comparison.

B-block was solvophilic with aB,S = 25 (corresponding to the Florry-Huggins pa-
rameter χB,S = 0). The solubility of the A-block, aA,S, was varied from 25 to 37.5 (from
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Figure 4.8: Sum of DPD repulsive potential (with aij = 40) and electrostatic potential
for different values of lB for both values of λe. Lines of one colour represent potentials
with the same lB, where a full line shows the potential with λe = 0.2 and a dashed line
the one with λe = 0.67.

29



4.4. Parameters of studied systems 4. SIMULATION DETAILS

aA,B

25.0 30.0 32.5 35.0 37.5

aA,S

25.0 ×a × ×a

32.5 × × × ×
35.0 ×a ×a ×a,b ×
37.5 × × × ×a

Table 4.2: Studied systems with different values of repulsion parameters aA,S and aA,B.
With the marked systems, three simulations were always performed: neutral system,
charged system without salt and charged system with 5 vol.% of salt; both for λe = 0.2.
a also simulated charged systems with λe = 0.67.
b also simulated charged systems with aCI,A = 25 for λe = 0.2.

well soluble χA,S = 0 to solvophobic χA,S = 3.8). Also the compatibility of the two
blocks, aA,B, was varied between 25 and 37.5. Typically, the values of aij for counteri-
ons were the same as those for solvent beads, but in some cases the counterions were
compatible with the solvophobic A beads (aA,CI = 25).

I have performed simulations with the number of counterions corresponding to the
number of A beads and simulations with 5 vol% of salt added. Simulations with
both values of charge smearing, λe = 0.2 and 0.67, were performed for some systems to
further compare the different electrostatic potentials. All simulated systems are clearly
shown in Table 4.2, where the symbol × represents the three simulations done for the
given pair of repulsion coefficients – neutral system and charged systems both with and
without salt for λe = 0.2.

Most simulations started from random configuration, but a few were initiated from
aggregated state to prove ergodicity of the simulations. The equilibration period was
106 timesteps and another (2− 5) · 107 timesteps were performed to collect data. The
results and discussion are presented in Section 5.2.
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5. Results and discussion

5.1 Counterion condensation

The simulation of counterion (or Manning) condensation was performed to show that
the electrostatics in the DPD method work correctly. The strength of the electrostatic
interactions in these simulations was controlled by the Bjerrum length.

Snapshots of typical conformations of the neutral and charged PE chain are shown
in Figure 5.1 and Figure 5.2, respectively. It can be seen that even a small value
of lB is enough to prevent the PE chain from collapsing due to its hydrophobicity.
With increasing value of lB the chain begins to collapse again due to the counterion
condensation which compensates the charges and therefore the hydrophobic nature of
the PE backbone prevails again. This is more pronounced for lesser charge smearing,
i.e. for simulations with λe = 0.2 (upper row of snapshots in Figure 5.2).

Figure 5.3 shows the fraction of counterions that are closer to the chain then r = 1
(full lines) and r = 3 (dashed lines) for different values of lB. The limit value of
distance r was set to three, because up to this distance the electrostatic potentials
with different charge smearing differ. The second limit value of distance r was set to
the cut-off distance of the DPD forces, because at this distance the polymer bead and
the counterion are in contact and therefore the counterion may be regarded as truly
condensed. The fraction of the condensed counterions increases with increasing value of
the Bjerrum length (i.e. with the strengthening of the electrostatic force) as expected,
but the increase is larger for λe = 0.2 in the case of contact distance r = 1. For the
systems with the highest value of lB, about 90% of the counterions are located on the
PE chain, while for λe = 0.67 only about 60% of the counterions are condensed. As
expected, the results for the limit value of distance r = 3 are the same for both charge

Figure 5.1: Snapshot of a typical conformation of the neutral polymer chain.
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(a) λe = 0.2, lB = 0.5 (b) lB = 1 (c) lB = 4 (d) lB = 7

(e) λe = 0.67, lB = 0.5 (f) lB = 1 (g) lB = 4 (h) lB = 7

Figure 5.2: Snapshots of typical conformations of the PE chain with the two values of
λe and different values of the Bjerrum length, lB. Violet beads represent the PE chain
and green ones the counterions.
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Figure 5.3: Average fraction of condensed counterions, 〈Nc〉, as a function of the
Bjerrum length, lB. Red lines represent systems with λe = 0.2 and green ones show
results for λe = 0.67. Full lines show fraction of counterion in the distance r ≤ 1 from
the PE chain, while the dashed lines represent their fraction in the distance r ≤ 3 from
PE chain.
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decay lengths as their electrostatic potentials differ at distances r ≤ 3.

Using the results from Figure 5.3 an effective charge on the PE chain can be cal-
culated as the net charge on the PE chain reduced by the charge of the condensed
counterions and therefore the value of the Manning parameter, ξ, can be determined.
Calculating the Manning parameter in the simulations with the highest value of the
Bjerrum length (lB = 7) for the systems with different charge smearing shows the sys-
tem with λe = 0.2 is closer to the expected value of ξ = 1 with ξ ≈ 0.8, while for the
system with λe = 0.67 the Manning parameter is ξ ≈ 3.

In Figure 5.4 the radius of gyration, Rg, and the relative shape anisotropy, κ2, are
plotted against the Bjerrum length, lB. These graphs show the neutral (or undissoci-
ated) chain is totally collapsed with the smallest value of Rg and spherical symmetry
(κ2 is near 0). With the increase of the Bjerrum length, both Rg and κ2 increase,
i.e. the PE chain expands. The value of κ2 indicates it is relatively close to cylindrical
symmetry. The PE chain is expected to be most expanded (or to have the largest value
of Rg) for the Manning parameter ξ = 1. The average separation distance between
neighbouring beads in the chain for lower values lB is l ≈ 0.8, so the value of Bjerrum
length should be lB = ξl = 0.8. Presence of the peak at lB = 1 therefore fulfills the
expectations. For higher values of the Bjerrum length, the counterion condensation
starts affecting the PE chain. The condensed counterions reduce the effective charge of
the PE chain to keep the Manning parameter near the value of one. Due to this com-
pensation of the charges the hydrophobic nature of the PE backbone starts to prevail
and the PE chain collapses.

The difference between the two types of charged clouds is clearly visible. For the
lower values of lB the systems with different charge smearing behave similarly, although
the chain in the systems with λe = 0.2 is slightly more expanded due to the steeper elec-
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Figure 5.4: Radius of gyration, Rg, and relative shape anisotropy, κ2, as functions of
the Bjerrum length, lB. Red lines represent systems with λe = 0.2 and green lines
systems with λe = 0.67
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trostatic potential. For larger values of lB this steeper electrostatic potential attracts
more counterions to the PE chain, forcing it to collapse more due to the hydrophobicity
of its backbone than in the case of systems with λe = 0.67.

These results show both that DPD has well implemented electrostatic interactions
and that the lower value of λe = 0.2 is a good choice to smear a point charge into a
cloud.

5.2 Self-assembly of copolymer chains

In this section, the main results of my work are presented. As explained above, the
electrostatic forces alone do not control the aggregate size or architecture. They affect
the polymer self-assembly, but the effect of hydrophobicity of the charged block and
the compatibility of the two blocks also play an important role.

The increase of the hydrophobicity of the A-block is expected to promote the cre-
ation of larger aggregates. Copolymers with incompatible A and B-blocks are expected
to form well pronounced core-shell structures, while in the systems with the compatible
A and B-blocks the aggregate core is expected to include both A and B-blocks.

Figure 5.5 shows the weight and number distribution functions for the double-
hydrophilic system (aA,S = 25) for all three possibilities (neutral system, 50%-to-50%
mixture of A+

5 B5 and A−5 B5 copolymers with the corresponding number of counterions
and the analogous charged system with 5 vol% of added salt). As both blocks are
soluble, the neutral copolymer is fully dissolved. The non-negligible number of small
aggregates with As equal to 2 and 3 is a result of random collisions.

The presence of opposite charges on different chains leads to the electrostatic self-
assembly. With the well soluble charged A-block, no large aggregates are expected to
form, because after the compensation of the charges the resulting dimer is soluble. As
the charges at the PE chains are mutually interconnected, the cooperative character of
electrostatics promotes the self-assembly. The change of electrostatic potential energy
is very small, because it depends on the charges and its distances, not on the type of
charge carrier. Since the diblock is well soluble, there is no advantage in the formation
of domains rich in A beads and the enthalpic term in this case is negligible. There-
fore the self-assembly is entropy controlled. The association of several copolymers is
accompanied by a translational entropy increase of liberated mobile counterions and
a small entropy decrease of the diblocks. In the case of charged systems without salt
(Figures 5.5b and 5.5e for the weight and number distributions, respectively) a very
large population of dimers is seen for λe = 0.2, which is in accordance with experimen-
tal knowledge. On the other hand, with the value of charge smearing λe = 0.67, the
number of dimers is far lower and the distributions are close to those of the neutral
system. For this value of smearing, the electrostatic cloud has a radius three times
grater than the bead size (see Figure 4.1), so such parameterization is not proper for
the description of electrostatic interactions of small ions. Adding salt to the system
dissolves the dimers just as expected. The effect of diblock incompatibilty is negligible
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Figure 5.5: Weight distribution function, Fw (figures (a) to (c)), and number distribu-
tion function, Fn (figures (d) to (f)), of aggregation numbers, As, for double-hydrophilic
systems (aA,S = aB,S = aA,CI = aB,CI = 25). Figures (a) and (d) show the neutral sys-
tem, (b) and (e) the charged system with the number of counterions corresponding to
the number of A beads, (c) and (f) the charged system with 5 vol% of salt added. Full
lines represent systems with compatible blocks (aA,B = 25) and dotted lines systems
with incompatible blocks (aA,B = 37.5), while the red lines are simulations with charge
smearing λe = 0.2 and the green ones with λe = 0.67.

(in some cases the dotted and full lines in Figure 5.5 overlap completely), because the
diblock as a whole is well soluble.

Next, the results for systems with slightly solvophobic A-blocks (aA,S = 32.5) are
presented. Figure 5.6 shows the weight distribution functions, Fw(As), for systems with
fully compatible blocks (aA,B = 25), slightly incompatible blocks (aA,B = 32.5) and
highly incompatible blocks (aA,B = 37.5). The weight distributions for neutral systems
(Figures 5.6a, 5.6d and 5.6g) are monotonously decreasing curves and the number of
non-aggregated chains prevails, but the fraction of low aggregates is not negligible.
This suggests the conditions are near the onset of the self-assembling process.

The electrostatic interactions promote the formation of larger aggregates. There is a
preference for aggregates with even number of copolymer chains, i.e. the same number
of positive A+

5 B5 and negative A−5 B5 chains, to minimize its electrostatic energy.
Adding salt to the system reduces the fraction of the large aggregates and the

difference between aggregates with odd and even aggregation numbers. This is also
in accordance with expectations and experimental knowledge. The difference between
the system with and without salt (i.e., the second and third column of Figure 5.6) is
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Figure 5.6: Weight distribution functions, Fw, for slightly selective solvent (aA,S =
aA,CI = 32.5; aB,S = aB,CI = 25). Figures (a), (b) and (c) show results for systems
with fully compatible blocks (aA,B = 25) for neutral system, charged system without
salt and charged system with 5 vol% of salt added, respectively. Figures (d), (e) and
(f) correspond to slightly incompatible blocks (aA,B = 32.5) for the neutral and both
charged systems. Figures (g), (h) and (i) are results for highly incompatible blocks
(aA,B = 37.5) again for all the three systems.

relatively small which is presumably due to the fact the counterions are incompatible
with A-blocks and therefore they tend to stay in the bulk solution. Later in this work
the comparison between the counterions compatible and incompatible with A beads is
presented.

It is interesting to compare the copolymer systems with compatible and incom-
patible blocks. The weight distribution functions of the two charged systems with
compatible blocks in Figures 5.6b and 5.6c show that aggregates up to the aggregation
number of about As = 100 exist in the solution. The comparison of structure of small
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Figure 5.7: Bead density, ρ(r), from aggregates’ center of mass for As = 5 (neutral
systems in (a) and (d)) and As = 10 (charged systems in the remaining figures) in a
marginally selective solvent (aA,S = aA,CI = 32.5 and aB,S = aB,CI = 25). The upper
row of figures (a), (b) and (c) shows the results for the systems with compatible blocks
(aA,B = 25) for the neutral system, the charged system without salt and the charged
system with 5 vol% of added salt, respectively. The lower row of figures (d), (e) and
(f) corresponds to the systems with highly incompatible blocks (aA,B = 37.5) again
for the neutral and the two charged systems. A beads are represented by violet lines
(neutral systems) or red (A+ beads) and blue lines (A− beads), while the violet dashed
lines depict the sum of A+ and A− beads to compare the cores of charged and neutral
aggregates. B beads are green lines; counterions are represented by brown (CI+) and
light blue lines (CI−); solvent are black lines.

aggregates for systems with compatible and incompatible A and B-blocks is presented
in Figure 5.7. The density of all the bead types from the center of mass of an aggregate
is depicted there. Figures 5.7a and 5.7d show the densities for neutral aggregates with
As = 5 for compatible and incompatible blocks, respectively. As expected, in the case
of compatible blocks the aggregate core is a mixture of A and B particles. On the other
hand in the the system with incompatible blocks the core-shell structure is more pro-
nounced. Also more solvent beads are in the core of the aggregate formed by the chains
with incompatible blocks. The same tendencies can be observed in charged systems.
In all cases the counterions tend to stay outside the aggregate which is understandable,
because the core as a whole is neutral and moreover the counterions are incompatible
with the A-block as mentioned above.

It should also be noticed the difference between fully compatible blocks and slightly

37



5.2. Self-assembly of copolymer chains 5. RESULTS AND DISCUSSION

0

0.02

0.04

0.06

0 60 120 180 240

Fw

As

(a)aA,B = 25

 

 

 

 

     

 

 

0

0.02

0.04

0.06

0 60 120 180 240

Fw

As

(b)

 

 

 

 

     

 

 

0

0.02

0.04

0.06

0 60 120 180 240

Fw

As

(c)

 

 

 

 

     

 

 

0

0.02

0.04

0.06

0 20 40 60 80

Fw

As

(d)aA,B = 30

 

 

 

 

     

 

 

0

0.02

0.04

0.06

0 20 40 60 80

Fw

As

(e)

 

 

 

 

     

 

 

0

0.02

0.04

0.06

0 20 40 60 80

Fw

As

(f)

 

 

 

 

     

 

 

0

0.02

0.04

0.06

0 20 40 60 80

Fw

As

(g)aA,B = 35

 

 

 

 

     

 

 

0

0.02

0.04

0.06

0 20 40 60 80

Fw

As

(h)

 

 

 

 

     

 

 

0

0.02

0.04

0.06

0 20 40 60 80

Fw

As

(i)

 

 

 

 

     

 

 

Figure 5.8: Weight distribution functions, Fw, for selective solvent (aA,S = aA,CI = 35;
aB,S = aB,CI = 25). Figures (a), (b) and (c) show the results for the systems with fully
compatible blocks (aA,B = 25) for the neutral system, the charged system without salt
and the charged system with 5 vol% salt added, respectively. Figures (d), (e) and (f)
correspond to slightly incompatible blocks (aA,B = 30) for the neutral and both charged
systems. Figures (g), (h) and (i) are results for more incompatible blocks (aA,B = 35)
again for all the three systems. Red lines corresponds to the charge smearing of λe = 0.2
and the green ones to λe = 0.67; black lines correspond to neutral systems.

incompatible blocks (i.e., the first and the second row of Figure 5.6) is far more pro-
nounced than that between slighly incompatible and highly incompatible blocks (i.e.,
the second and the third row of Figure 5.6).

Next, the results for more selective solvent (aA,S = 35) are presented and discussed.
Figure 5.8 shows the distribution functions for systems with different incompatibilities
of A- and B-blocks – the first row shows results for fully compatible blocks (aA,B = 25),
the second row for slightly incompatible blocks (aA,B = 30) and the third row for more
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incompatible blocks (aA,B = 35). In all cases the same three systems as above are
considered – the first column represents the neutral systems, the second column the
charged systems with the corresponding number of counterions and the third one the
charged systems with 5 vol% of salt added. The weight distributions for systems with
both values of charge smearing, λe = 0.2 (red lines) and 0.67 (green lines), are presented
for all the charged systems.

In this case considerable aggregation is happening, especially when A and B-blocks
are compatible (the upper row of Figure 5.8 with aA,B = 25). The weight distribution
function for the neutral system (Figure 5.8a) shows the creation of aggregates with sizes
of up to ca As = 200 and for the charged systems all chains may be in one aggregate
(Figures 5.8b and 5.8c). This shows that a detailed study of such systems would require
much larger simulation box with more diblock chains present. However, the systems
are not kinetically frozen as can be seen in Figure 5.9, where the fluctuations of the
weight-average aggregation number during the simulation is plotted for the neutral
and charged system (for distribution functions in Figures 5.8a and 5.8b). Figure 5.9a
shows the neutral system fluctuates fast and randomly, so the simulation yields well
equilibrated data. In the Figure 5.9b, there are slower fluctuations, but these are quite
large and random. These slower fluctuations suggest the aggregates are more stable
then in the neutral system and the exchange of chains between them is less frequent.
The upper part of this figure is cut, because the aggregate size is limited by the number
of chains in the simulation box. The large fluctuations show that aggregates with quite
wide range of As coexist in the system.

Figure 5.10 depicts four snapshots of the simulation box for the charged system
with aA,S = 35 and aA,B = 25, i.e. the same systems as in Figures 5.8b and 5.9b. The
coexistence of smaller aggregates as well as an aggregate composed of all 240 chains can
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Figure 5.9: Fluctuations of the weight-average aggregation number, 〈As〉w, in (a) neu-
tral and (b) charged system with aA,S = aA,CI = 35 and aA,B = aB,S = aB,CI = 25 in
equilibrated state.
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be seen there. Figure 5.10a and 5.10b show the coexistence of several similarly sized,
roughly spherical aggregates with several single chains. Figure 5.10c depicts one small
spherical aggregate with one large prolonged and curved aggregate. The last figure
shows an aggregate comprised of all the chains in the simulation box. The soluble B-
blocks form only a thin layer to protect the insoluble A-blocks from solvent particles,
because there is no preference for the B-S interaction over the A-B interaction and
therefore B-blocks are also present in the aggregate core.

Structure of several typical aggregates with As ≈ 100 and their comparison between
the ones with neutral and charged cores is depicted in Figures 5.11 (neutral system)
and 5.12 (charged system). It shows that large aggregates of various shapes (roughly
spherical, prolonged, curved and even vesicle-like) coexist with the smaller aggregates.
Comparing the neutral and charged aggregates we see the charged ones have cores
composed of A beads only partly intermixed with the soluble B beads, while the neutral
aggregates have more intermixed A and B-blocks. In all cases the B-blocks form only
a thin shell around the aggregate core, but the number of B beads on the outside of
the core is visibly higher for the charged aggregates.

These observations are supported by Figure 5.13, where density profiles for the
aggregates with As = 100 are depicted for both neutral (Figure 5.13a) and the two
charged systems (Figures 5.13b and 5.13c). The larger compactness of the core of the
charged aggregates is demonstrated by the value of reduced density in the aggregate
centre ρ(0) ≈ 2.5 and 2.0 for the charged systems without and with added salt, re-

(a) (b) (c) (d)

Figure 5.10: Typical snapshots of the simulation box for charged system without salt
with aA,S = 35 and aA,B = aB,S = 25. Upper row shows only charged A+ and A−-blocks,
while in the lower row the green beads correspond to the well soluble B-blocks.
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(a) (b) (c) (d)

Figure 5.11: Typical snapshots of aggregates with As ≈ 100 for the neutral system
with aA,S = 35 and aA,B = aB,S = 25. The violet beads represent insoluble A beads
and the green ones are soluble B beads.

(a) (b) (c) (d)

Figure 5.12: Typical snapshots of aggregates with As ≈ 100 for the charged system
with aA,S = 35 and aA,B = aB,S = 25. The red and blue beads represent insoluble
positively or negatively charged A beads, respectively, and the green ones are soluble
B beads.

spectively, as opposed to ρ(0) ≈ 1.5 for the neutral system. In the case of the charged
system with added salt (5.13c), there is more small ions and solvent particles present
in the core as compared to the system without the salt (5.13b). However, caution must
be taken with these observations, because the density profiles are averaged over all
aggregate shapes shown in Figures 5.11 and 5.12.

The hydrophobicity of the A-block in the systems with compatible A and B-blocks
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Figure 5.13: Bead density, ρ(r), from aggregate center of mass for As = 100 in a
selective solvent (aA,S = aA,CI = 35 and aB,S = aB,CI = 25) for compatible A and B-
blocks (aA,B = 25). Figure (a) shows neutral system, figure (b) charged system without
salt and figure (c) is charged system with 5 vol% of added salt. Line colors are same
as in Figure 5.7.

promotes the creation of A-domains with low interface to volume ratio, because the
A beads tend to minimize the unfavourable interactions with the solvent. Enthalpy
is therefore very important in this case and large aggregates are formed. Also the
increase in entropy due to the liberation of small counterions further promotes the
aggregation process. Furthermore, the electrostatic energy also requires to be minimal
(ideally zero), so aggregates with the same number of diblocks containing positive and
negative A-blocks should be preferred.

The behaviour of the systems with incompatible blocks (their weight distributions
are depicted in the second and third row of Figure 5.8 for two values of incompati-
bility, aA,B) is quite different. The neutral systems (Figure 5.8d and 5.8g) still show
monotously decreasing curves and aggregates with As of up to about 40 and 30 for
systems with aA,B = 30 and aA,B = 35, respectively, exist in the solution. Electrostatic
interactions tip the balance in favour of aggregation and there are evident peaks in
their weight distributions between As = 30 and 45 for all four systems. Adding salt
decreases the preference for aggregates with even As and slightly increases the fraction
of smaller aggregates.

Two typical snapshots of the simulation box containig the charged system with more
incompatible blocks (aA,B = 35) are shown in Figure 5.14. The coexistence of several
similarly sized and roughly sperical aggregates with dimers and other small aggregates
is obvious. Also the B-blocks are extended into the solvent and the aggregates have
well-defined core-shell structure.

Figure 5.15 shows density profiles for systems with aA,B = 35 for As = 20 (neutral
system) and As = 30 (charged systems). In all three figures core-shell structure is
clearly visible with compact core composed of only A-blocks.

All the results for charged systems with aA,S = 35 presented and discussed so far
only included systems with the charge smearing of λe = 0.2. However, in the second
and third column of Figure 5.8 there are presented the weight distributions for the

42



5. RESULTS AND DISCUSSION 5.2. Self-assembly of copolymer chains

(a) (b)

Figure 5.14: Typical snapshots of the simulation box for charged system without salt
with aA,S = aA,B = 35 and aB,S = 25. Upper row shows only charged A+ and A−

blocks, while in the lower row the green beads correspond to the well soluble B-blocks.
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Figure 5.15: Bead density, ρ(r), from aggregate center of mass for As = 20 (neutral
system) and As = 30 (both charged systems) in a selective solvent (aA,S = aA,B =
aA,CI = 35 and aB,S = aB,CI = 25) for incompatible A and B-blocks (aA,B = 35).
Figure (a) shows neutral system, figure (b) charged system without salt and figure (c)
is charged system with 5 vol% of added salt. Line colors are same as in Figure 5.7.

systems with λe = 0.67 as well (green lines). The difference is relatively large. In all
cases, the electrostatic interactions for systems with λe = 0.67 show lesser tendency for
aggregation – all green lines are shifted towards lower values of As and larger fractions
of smaller aggregates are present in the simulations. However, the tendencies are the
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Figure 5.16: Weight distribution functions, Fw, for charged systems with aA,S = aA,B =
35 and aB,S = aB,CI = 25. Figures (a) and (b) show systems without and with added
salt, respectively. Red lines represent systems with aA,CI = 35 and green lines the ones
with aA,CI = 25.
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Figure 5.17: Bead density, ρ(r), from aggregate center of mass for As = 30 in a selective
solvent for incompatible A and B-blocks (aA,S = aA,B = 35 and aB,S = aB,CI = 25) with
counterions compatible with A beads (aA,CI = 25). Figure (a) charged system without
salt and figure (b) is charged system with 5 vol% of added salt. Line colors are same
as in Figure 5.7.

same as for the systems with λe = 0.2.

Also, the repulsive parameters of the counterions are the same as that of the solvent
particles, therefore A beads are incompatible with the small ions. The effect of this
compatibility for the systems with aA,S = aA,B = 35 is shown in Figure 5.16, where the
weight distribution functions for small ions incompatible with A-blocks (aA,CI = 35; red
lines) and compatible with A-blocks (aA,CI = 25; green lines) for the charged systems
without (5.16a) and with added salt (5.16b) are presented. In the case of compatible
ions, these beads penetrate the A-domains of the aggregates, partially compensating
the charges on the A-blocks. This suppresses the aggregation of PE chains and reduced
the preference for even aggregation numbers. Adding salt affects more the system with
compatible ions, which is understandable, since more ions penetrate the aggregate core.

The effect of ions compatible with A beads on the aggregate structure is shown in
Figure 5.17, where the density profiles for aggregates with As = 30 for the charged
systems without and with salt are depicted. There we see more of small ions and
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solvent beads in the aggregate core then in Figures 5.15b and 5.15c, where systems
with aA,CI = 35 are presented. This makes the core-shell structure of the aggregates
less pronounced.

The last section describes the results for highly selective solvent, aA,S = aA,CI =
37.5 and aB,S = aB,CI = 25. Figure 5.18 shows the weight distribution functions for
the systems with slightly incompatible A and B-blocks (aA,B = 30; Figures 5.18a to
5.18c) and highly incompatible A and B-blocks (aA,B = 37.5; Figures 5.18d to 5.18f).
Result for fully compatible A and B-blocks are not presented, because they mirror the
behaviour of the systems with aA,S = 35 and aA,B = 25, but with even higher preference
for large aggregates.

0

0.02

0.04

0.06

0 30 60 90

Fw

As

(a)aA,B = 30

 

 

 

 

    

 

 

0

0.02

0.04

0.06

0 30 60 90

Fw

As

(b)

 

 

 

 

    

 

 

0

0.02

0.04

0.06

0 30 60 90

Fw

As

(c)

 

 

 

 

    

 

 

0

0.02

0.04

0.06

0 30 60 90

Fw

As

(d)aA,B = 37.5

 

 

 

 

    

 

 

0

0.02

0.04

0.06

0 30 60 90

Fw

As

(e)

 

 

 

 

    

 

 

0

0.02

0.04

0.06

0 30 60 90

Fw

As

(f)

 

 

 

 

    

 

 

Figure 5.18: Weight distribution functions, Fw, for highly selective solvent (aA,S =
aA,CI = 37.5; aB,S = aB,CI = 25). Figures (a), (b) and (c) show the results for the sys-
tems with slightly incompatible blocks (aA,B = 30) for the neutral system, the charged
system without salt and the charged system with 5 vol% salt added, respectively. Fig-
ures (d), (e) and (f) correspond to highly incompatible blocks (aA,B = 37.5) for the
neutral and both charged systems.

In this highly selective solvent the neutral systems show significant aggregation
(Figures 5.18a and 5.18d), but there is still a high fraction of free chains. Electrostatic
interactions again promote the self-assembling process, shifting the peak of the weight
distributions to higher As (Figures 5.18b and 5.18e). Also only a small fraction of
aggregates exist outside the larger aggregates (mainly in the form of dimers). Adding
salt again has the effect of slightly reducing the fraction of larger aggregates and partly
negating the preference for aggregates with even number of chains (Figures 5.18c and
5.18f). Comparing the results for slightly incompatible A and B-blocks (first row of
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Figure 5.19: Evolution of the weight-average aggregation number, 〈As〉w, from the
beginning of simulations for systems with different starting configurations. Red line
shows system with dissolved starting configuration and the green one system starting
highly aggregated state.

Figure 5.18) and highly incompatible A and B-blocks (second row of the figure) we can
see that increasing the incompatibility forces the weight distribution to slightly lower
As.

Lastly a proof of the ergodicity of the simulations is given. For the charged system
without added salt with aA,S = aA,B = 37.5 and aB,S = 25 two simulations were
performed. One started from a random configuration, where all chains were dissolved,
and the second was started from highly aggregated state containing only two large
aggregates. Figure 5.19 shows the evolution of the average aggregation number from
the simulation beginning for both systems. It is obvious that at the simulation timestep
of approximately 3·105 the two lines converge. Therefore the simulations are not in any
local minimum, because greatly different starting configurations give the same results.
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6. Conclusion

The electrostatic co-assembly of equimolar mixtures of oppositely charged symmetric
block PEs with one PE block (either strong polycation or strong polyanion) and one
readily water-soluble neutral block in aqueous media was studied via the DPD simu-
lation method. In our model, the interactions of the neutral block with the aqueous
solvent are always good, but those of the neutral PE backbone with water and the
compatibility of the blocks vary in a broad range. The Coulomb interactions between
the DPD units were described by the electrostatic potentials between the exponen-
tially smeared elementary charges delocalized exclusively inside the DPD units. The
results were compared with those for corresponding neutral systems to obtain informa-
tion on the roles of all the relevant effects (electrostatics, amphiphilicity of the neutral
analogous system and incompatibility of the blocks) and on their intricate interplay.

Copolymers with a highly soluble neutral B-block and a PE A-block which contains
a highly soluble neutral backbone electrostatically co-assemble, but do not form large
aggregates. Only dimers are formed, because the segments of the A+/A−-domains
interacts favourably with water irrespectively of the overall charge. The process is
both entropy-driven and entropy-controlled, but the contributions driving and control-
ling it are different. The main driving force reflects the appreciable entropy increase
due to the liberation of small counterions in the bulk solvent upon the formation of
dimers and mutual compensation of opposite charges on the different chains forming
the dimer. The controlling term consists of a relatively small entropy decrease due
to the aggregation of copolymer chains which is smaller for dimers than for higher
aggregates.

The mixtures of copolymers with hydrophobic backbone of the PE A-block (both
with A+ and A−-blocks) and a highly soluble neutral B-block exhibit different assem-
bling behaviour. For incompatible A and B-blocks, multimolecular core-shell aggre-
gates are formed in agreement with the results of a number of experimental studies.
The driving force consists of two contributions. The enthalpy contribution reflects min-
imization of the number of unfavourable interactions of A segments with water due to
the formation of compact spherical cores with minimum interface-to-volume ratio. The
entropy contribution is caused by the liberation of counterions analogously to the previ-
ously discussed case. The aggregation number and size of the aggregates are controlled
by a complex interplay of several contributions mostly of entropic origin, similarly to
neutral amphiphilic copolymers in selective solvents. The presence of opposite charges
on different chains promotes the assembling process. The density of the insoluble do-
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mains is higher due to the electrostatic attraction between A+ and A− beads and also
due to the cooperative effect of multiple charges on the flexible polyions. Both the
average aggregation number and the fraction of aggregates increse, but the increase in
the former is relatively small compared with the average aggregation number of the
neutral system.

The compatibility of the A and B-blocks together with bad solvent quality for
the A-block promotes the intermixing of the two copolymer blocks and results in the
formation of large microgel-like structures. Opposite electric charges on the A segments
suppress the intermixing of A and B segments, because they strengthen the atttractive
interaction between two A segments relative to A-B interaction.
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