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Abstrakt

Teorie skladu je d·leºitou sou£ástí n¥kterých druh· podnikání.

Slouºí k efektivnímu sníºení náklad· spojených s objednáváním a

skladováním zboºí. V této práci jsou popisovány algoritmy a mod-

ely, které jsou pouºívány k ur£ení optimálního pohybu zboºí ve

skladu. Také je prezentováno n¥kolik rozdílných metod ur£ených

k p°edpov¥di poptávky. Tyto algoritmy a metody jsou aplikovány

na reálná data. Cílem je ukázat zp·sob, jakým lze dosáhnout op-

timálního pohybu zboºí ve skladu.
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Abstract

The inventory theory is important for certain kinds of business.

Using the models from the inventory theory, we can e�ectively

lower the costs associated with ordering and storing the goods. In

this thesis, we describe the basic algorithms and models that are

used to determine the optimal inventory policy. We also present

several di�erent methods used for the demand forecast. Finally,

we use these algorithms and methods with the real data to show

the possible way to propose the best inventory policy.
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Bachelor Thesis Proposal

In the thesis, the author will describe models suitable for mod-

eling utilization of inventory capacity, material consumption (de-

mand) and system of purchase orders. First, the author will sum-

marize model with known demand, �xed or variable. Then, based

on several time-series prediction techniques, the author will gen-

eralize the model to incorporate also stochastic demand. In the

last part, the author will illustrate described solution techniques

on an academic or a practical example. The theoretical part of

the thesis will be based primarily on [1] and [2] and references

therein.
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2. Inventory Control Problem with Constant Demand
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6. Conclusion
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1 Introduction

The inventory theory is a very important part of almost every

business that operates with the physical goods. For the whole-

salers and the retailers, it is necessary to have enough goods ready

for sale in order to avoid shortage and losses connected with it.

The manufacturers need to have enough raw materials for pro-

duction in order to avoid the penalties for the late deliveries.

Many algorithms, formulas, and models have been developed to

optimize these issues.

The year 1913, in which Wilson introduced the �rst formula

for optimal quantity of the inventory, can be considered as a be-

ginning of the inventory theory. However, the most important

impulse for a new research came after the 2nd World War. In

that time, the US Navy supported the research, as they wanted

to optimize the number of spare parts carried on the ships. The

producers and retailers starter to be interested in the inventory

theory during the 1970's. Due to the increasing interest rates, the

producers and retailers did not want to hold excessive inventory

and they rather invested the spare capital. With the era of the

modern computers, the process of solving the inventory control

problems has become easier. Even small business can a�ord to

have some software program that can help to optimize the inven-

tory level.

The typical division of the models is into two large groups ac-
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cording to the nature of the demand. The deterministic models

are based on a known (or a forecasted) demand. In the stochastic

models, we know only the distribution of the demand. In the

thesis we elaborate only on the deterministic models. We de-

scribe several di�erent methods of the demand forecast, as it is

important part of the inventory theory.

The goal of the thesis is to show that even with the simple

methods, one can propose the e�ective inventory policy.

The thesis is structured as follows. First, we describe the basic

deterministic model-the Wilson economic order quantity model

for the static demand. In Section 3, we present the dynamic (the

demand varies over the time) deterministic model developed by

Wagner and Whitin. The forecasting methods are described in

the Section 4. In the last section we apply the methods described

in the thesis on the real data to show a possible way to optimize

the inventory policy. The conclusion summarizes our �ndings.
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2 Economic order quantity model

The family of deterministic models is very large, as over the 120

years many scientists have been trying to improve the algorithms

and the models. All models are more or less based on the classical

economic order quantity model developed by Harris (1915) and

Wilson (1934) which will be described further in this chapter.

The deterministic models operate with a known demand that can

be either constant or it can vary over time periods. The downfall

of deterministic models is their strong dependency on the quality

of the demand forecast. Although there are many algorithms

for e�ective demand forecasting, there will always be an error in

the forecasts that can bias the results. In this chapter we will

introduce classical economic order quantity model with constant

demand. In the next chapter we will describe Wagner-Whitin

model which allows the demand to vary. We will also present the

heuristics that are used as an approximations for the Wagner-

Whitin model.

2.1 Variables in our analysis

Before describing the models, we need to introduce all the vari-

ables we will use in the inventory optimization problem:

Customer demand (D) characterizes the number of units cus-

tomers demand during certain time period.
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Replenishment rate (P ) characterizes the number of units

that are �lled into the storage room and are ready to be sold

to the customers during certain time period.

Cycle time (T ) characterizes the length of the time period

between two deliveries.

Amount of units ordered (q0) characterizes number of units

that are delivered by one order. It is the control variable we

want to optimize.

Order cost (C(q0)) involves all costs that occur in the period

between placing the initial order and the �nal delivery of the

goods from the supplier. It consists of reorder cost r(q0) (ad-

ministration work, transportation, quality check at the time

of delivery) and price of the ordered goods that is propor-

tional to the amount ordered. Therefore, we can therefore

write the order cost such as:

C(q0) =


r(q0) + c(q0)q0 q0 > 0,

0 q0 = 0,

where c(q0) is the cost of a single unit.

Storage cost (s) is the cost of storing one unit during cer-

tain time period. Storage costs are, e.g. depreciation of the

goods, insurance payments, costs due to the damage, inter-

est charges. It can be expressed as a proportion of the unit
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cost. Therefore we can write

s(q0) = αc(q0),

where α is the inventory holding cost rate. The value of the

constant α is usually lower than 1 (it can excess 1 in certain

extreme cases, e.g., when the holding cost is larger that the

unit cost).

Shortage costs (g) arise when the business is unable to meet

the customer demand. Shortage costs are, e.g., general loss

in sales, cost of additional fast delivery, or loss of goodwill.

Lead time (l) characterizes the time needed for order to be

delivered from the supplier.

2.2 Economic order quantity model

The classical economic order quantity model is the simplest among

all models in the inventory theory due to the many restrictions

imposed on it. The classical EOQ model and all its variations

optimize the quantity ordered and the length of the time cycle

to minimize the total costs per unit of time. Ford W. Harris and

R. H. Wilson independently developed the same model, thus the

model is often called Wilson-Harris. We will introduce the classi-

cal EOQ model here. The simplifying assumptions of the classical

EOQ model are following:

A.1 The customer demand is known, continuous and constant.
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A.2 All costs are known and constant.

A.3 No shortage is allowed.

A.4 Goods are delivered instantly after placing the order (no

lead time).

A.5 The replenishment of goods is instant (in�nite replenish-

ment rate).

A.6 We order single-unit only.

A.1 and A.2 �x all variables at constant levels except for the

quantity and the length of the time cycle. Further A.1 guar-

antees that the rate at which the goods leave the inventory is

constant and steady without any unexpected step-falls. A.4 and

A.5 directly imply that the order is placed at the end of the cycle

when the level of the inventory drops to zero, q = 0. At every

moment t, t ∈ [0, T ], the inventory level q can be expressed as

q(t) = q0−Dt where q0 is initial level of the inventory. At the end

of the cycle we need to have q(T ) = 0; therefore, we can express

length of the cycle as T = q0
D .

To minimize the total costs per unit of time, we �rst express

the total cost per cycle as a sum of the order cost per cycle and

the holding cost per cycle. The order cost per cycle with �xed

reorder and unit costs is:

b(q0) = r + cq0. (1)
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The holding cost per cycle can be expressed as a sum of the

holding costs at every moment t, t ∈ [0, T ]. We can write:

h(q0) = s

∫ T

0

[q0 −Dt] dt =
sq20
2D

. (2)

Now we can express the total cost per cycle by adding (1) and

(2):

p(q0) = r + cq0 +
sq20
2D

. (3)

To obtain the total cost per unit of time, we divide the expres-

sion in (3) by q0
D . We get:

f(q0) =
rD

q0
+ cD +

sq0
2
.

The function f(q0) is strictly convex since ∂2f(q0)
∂q20

> 0 for all

q0 > 0. Thus by taking derivative of f(q0) with respect to q0 and

setting it equal to zero, we obtain optimal ordered quantity that

minimizes total costs per unit of time:

q∗0 =

√
2rd

s
.

By plugging q∗0 into T = q0
d we obtain optimal length of the

time cycle

T ∗ =

√
2r

sd
.

We can now check the properties of the values q∗0 and T
∗. With

rising reorder cost, both optimal ordered quantity and optimal
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length of the cycle rise, as it is bene�cial to make larger orders

for longer time periods. With rising storage cost both optimal

ordered quantity and optimal length of the cycle decrease, as it is

desirable to make smaller orders for shorter time periods. With

rising demand, the optimal ordered quantity rises and optimal

length of the cycle decreases, as it is bene�cial to make larger

orders for shorter time periods.

We illustrate the use of the formulas for the optimal ordered

quantity and optimal length of the cycle on the academic example.

Example 1

We have monthly demand for dental implants that is D = 200.

The reorder cost associated with delivering the package of dental

implants from the supplier by post service is approximatelly 350

CZK. The price of one dental implant is c = 3500 CZK. The

shortage cost is 1.5% per year (α = 0.015). Thus the monthly

storage cost can be expressed as s = 0.015×3500
12 .

The resulting optimal ordered quantity is q∗0 = 179 and the

optimal length of the time cycle is T ∗ = 0.89. In the view of

the EOQ model described above, to minimize total cost we need

to place an order for 179 dental implants that covers demand

approximately for 27 days.
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2.3 Reorder level

The assumption of no lead time is very unrealistic, as always there

is a necessity at least to transport the goods from the supplier.

We assume that the lead time is constant. To meet the demand

on time we have to make an order in advance to have it delivered

at the time when q = 0. This ensures that the storage cost is

minimized, as we do not hold more goods than it is necessary

for current demand. The question is when to make an order. For

this purpose, the most useful is to de�ne reorder level of inventory.

When the level of inventory drops to the reorder level we make an

order. The lead time can be longer than one time cycle but every

time it falls between two cycles. If the lead time falls between nth

and (n + 1)th cycle (nT < L < (n + 1)T ) we de�ne the reorder

level (R) as following:

R = dl − nq∗ (4)

Similarly to the EOQ model, we illustrate the use of the for-

mula for the reorder level on the academic example.

Example 2

Let us now modify Example 1 in such a way that we consider a

lead time l = 3 days. The lead time is shorter than the optimal

length of the time cycle. Thus n = 0 and reorder level is R =

200 3
30 = 20. Thus we need to place an order when inventory level
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falls to 20 units of dental implants.

The EOQ model has been expanded in many ways since it

was �rstly presented. We have models with allowed shortage,

back-orders, or quantity discounts. One can �nd these models

described, e.g., in Inventory Control and Management by Waters

(2003).
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3 Dynamic model

To this point we assumed that the demand is constant over time.

In this section we describe the dynamic version of the determinis-

tic inventory model with varying demand. It was �rstly suggested

by Wilson and Whitin (1934). The model has been improved in

many ways since. We focus on the original model and heuris-

tics that have been developed as an approximation for the rather

complicated Wilson-Whitin (W-W) model.

3.1 Wagner-Whitin model

The W-W model considers demand to vary over the time. We

assume that in each period t, t = 1, ..., n, the demand is denoted

as Dt. We usually work with �nite time horizon, as in the in-

ventory control problems we rarely need to look more than one

year ahead. For longer time horizons, we use statistical forecast-

ing instead of inventory models. In the W-W model we want to

�nd the optimal order quantity to minimize the total costs. If we

order goods for the whole planning horizon through 1 to n, we

could face high holding cost. On the contrary, if we make frequent

orders, we could face high reorder costs. Thus we want to �nd

optimal combinations of the time periods for which to make an

order at once to have the reorder and the holding costs in balance.

The assumptions of the W-W model are following:
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A.1a The customer demand is known and strictly positive in

every time period t, t = 1, ..., n.

A.2a The costs are known, strictly positive, and can vary in

every time period t.

A.3a No shortage is allowed.

A.4a The goods are delivered instantly after placing the order

(no lead time).

A.5a The replenishment of goods is instant (recall replenishment

rate from Section 1.1).

A.6a The orders are for a single-unit only.

A.7a The time periods are discrete.

A.8a There is no capacity or investment constraint.

A.9a The beginning inventory equals to zero.

A.10a The storage costs are paid only for the inventory that is

left at the end of the certain time period (if we order 200

units for two months ahead and sell 150 units during the

�rst month, we will pay storage cost only for the 50 units).

Wagner and Whitin proposed an algorithm to solve the dy-

namic version of the classical EOQ model. The principle is to

divide the problem into several sub-problems and solve it by the

forward recursive method.
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First, we solve the model only for t = 1. The beginning in-

ventory equals to zero, so from A.3a and A.9a and from the

fact that the demand D1 is positive we always decide to place

an order in t = 1. The question is whether to order for the �rst

period only, or whether to order for more periods ahead. We add

second time period and we solve two sub-problems-either we or-

der in the �rst period for the �rst and the second period at once

(we would not place an order in the second period); or we order

in the �rst period for the �rst period only and consequently we

have to place an order in the second period to cover D2. Then

we add the third period and we proceed in the same way up to

the end of the planning horizon.This method was thought to be

rather complicated, as we get 2n−1 possibilities to examine. It is

the reason why many heuristics have been developed to ease the

computation. However, with the modern computers and software

packages the solving process becomes easier. Despite the fact that

the W-W algorithm can be implemented easily using MS Excel,

the heuristics are still widely used in practice. Axsater (2000)

argues that it is because the heuristics are easier to understand

and one can check the computation manually.

3.2 Heuristics

The W-W algorithm gives us the optimal solution to the dynamic

inventory problem but it has been viewed by many researchers as

14



too complex and di�cult to solve for large n and many goods.

Therefore, we can �nd several heuristics that are easier to solve

but give us only an approximation of the right solution. The

advantage of the heuristics is that they do not use the whole

planning horizon which gives us less possibilities to examine. We

consider initial order at t = 1 and then we examine whether it is

bene�cial to order for periods t = 2, 3, .., n, along with this order.

If it is bene�cial to order for k periods at once, we place an order

and solve the problem again in the same way but taking t = k+1

as the initial time period. We repeat this algorithm till we get to

the end of the planning horizon.

Lot-for-lot heuristic

The most straightforward and the simplest method is the lot-for-

lot heuristic. The main idea is to order exactly the amount of

goods that is needed in the next period. Thus q0t = Dt in every

period t. Although this approach does not look very elaborate,

it can be e�ectively used in the cases when the reorder costs are

low. Using the lot-for-lot approach, we completely avoid holding

costs which combined with possibly low reorder costs can result

in the low total costs. On the other hand, if the reorder cost is

high, this approach could lead to very ine�ective results.
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Part-period balancing heuristic

Part-period balancing heuristic was �rstly proposed by Dematteis

and Mendoza (1968). It balances the holding and reorder costs to

�nd optimal number of time periods for which to place an order

at once. We want to �nd the maximal number of periods with the

holding cost is less or equal to the reorder cost for the period in

which we place the order. We seek the highest τ , τ = t+ 1, ..., n

such that
τ∑

m=t+1

m−1∑
n=t

snDm ≤ rt,

where t is the initial period in which we place an order. If we

�nd such τ , we order for periods from t to τ . We set τ + 1 as

the current period and repeat the computation to the end of the

planning horizon. If we do not �nd such τ , we order for one period

only.

Silver-Meal heuristic

Silver and Meal (1973) suggested a heuristic that is close to the

classical EOQ model, as it tries to minimize average cost per

period. This heuristic is generally best known and by many re-

searchers it is considered as the most accurate. Baker (1989)

shows that in most situations the cost increase is only about 1-

2%. The Silver-Meal heuristic tries to �nd when the average per

period cost increases for the �rst time. We place an order at the

time t and we want to �nd for how many periods it is optimal to
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place an order at once. We seek the highest τ , τ = t + 1, ..., n,

such that

rt +
τ∑

m=t+1

m−1∑
n=t

snDm

τ − t+ 1
<

rt +
τ+1∑

m=t+1

m−1∑
n=t

snDm

τ − t+ 2
. (5)

Before we start to seek for τ , we need to check the following

condition
rt + stDt+1

2
< rt (6)

If condition (6) does not hold, it is optimal to order only for the

�rst period t. If condition (6) holds and we �nd such τ for which

(5) holds, we order for periods from t to τ . Then we set τ + 1 as

the current period and repeat the computation to the end of the

planning horizon. If condition (6) holds and we do not �nd any τ

for which (5) holds, we order for periods from t to τ = t+ 1 (for

two periods at once). Then we set τ + 1 as the current period

and repeat the computation to the end of the planning horizon.

Least-unit-cost heuristic

The least-unit-cost heuristic is very similar to the Silver-Meal

heuristic. It was �rstly suggested by Gro� (1979). In the least-

unit-cost heuristic we want to minimize the average per unit costs.

In other words we want to �nd when the average per unit cost

increases for the �rst time. We place an order at the time t and

we want to �nd for how many periods it is optimal to place an
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order at once. We seek the highest τ , τ = t+ 1, ..., n such that:

rt +
τ∑

m=t+1

m−1∑
n=t

snDm

τ∑
m=t

Dm

<

rt +
τ+1∑

m=t+1

m−1∑
n=t

snDm

τ+1∑
m=t

Dm

(7)

Before we start to seek for τ , we need to check the following

condition
rt + stDt+1

Dt +Dt+1
<

rt
Dt

(8)

If condition (8) does not hold, it is optimal to order only for the

�rst period t. If condition (8) holds and we �nd such τ for which

(7) holds, we order for periods from t to τ . Then we set τ + 1 as

the current period and repeat the computation to the end of the

planning horizon. If condition (8) holds and we do not �nd any τ

for which (7) holds, we order for periods from t to τ = t+ 1 (for

two periods at once). Then we set τ + 1 as the current period

and repeat the computation to the end of the planning horizon.

In this section we described the basics of solving the dynamic

inventory problems. The important variable in all methods is the

demand. Thus in the next section we will focus on the di�erent

techniques of the demand forecasting.

18



4 Demand forecast

The demand forecast is very important part of the inventory con-

trol problem. There are two main reasons why we need an ac-

curate demand forecast. Firstly, the assumption of no lead time

that we used frequently in the previous models, will not often

hold in the reality. Thus, it is desirable to have the information

about the future demand, as we have to place the orders in ad-

vance. Secondly, if we have a demand that varies over time, it

can be bene�cial to order for more time periods at once. For

this purpose, we again need the information about the future de-

mand to be able to evaluate the costs associated with di�erent

combinations of ordering patterns.

The collection of the historical data is an important part of the

forecasting. It is di�cult to know the past demand precisely, so

it is tempting to use the past sales instead. Past sales re�ect the

true demand only if there was no shortage in the past. Otherwise,

the past sales underestimate the true demand and we should be

careful about using them for the optimization.

The good demand forecast can help to lower the costs, as we

can derive optimal ordering patterns and avoid the shortages.

It is certainly one of the reasons why many techniques and ap-

proaches of the demand forecast have been developed. We can

divide di�erent approaches into the following four groups:

Judgemental approach-the judgemental approach is based on
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the subjective forecast of the future demand. This approach

is usually implemented when there are no historical data. It

can be a case while introducing a new product. The com-

mon procedure of the judgemental approach is the consensus

method where a group of people who understand the market

well, creates a general forecast through a discussion. This

approach is not widely used in the inventory theory but can

be used as a source of additional information for the fore-

casting by di�erent and more precise techniques.

Experimental approach-the experimental approach is similar

to the judgemental approach. It is used mainly when there

is a new product and we need an estimate of its future de-

mand. Common procedure of the experimental approach is

a customer survey or a test marketing. In test marketing,

the product is launched only in certain isolated area. Based

on the results, the general forecast for the whole market is

made. Again, in inventory theory, this approach is consid-

ered an addition to more precise forecasting techniques.

Causal approach-the causal approach tries to �nd a reason

why certain product is purchased. If we �nd the factors that

in�uence the sales (e.g., when we want to forecast demand

for umbrellas, we need to collect data of rainfalls in certain

area), we can develop the demand forecast. For this purpose

we can use regression analysis. This approach can be very

20



useful in understanding future demand but its use is very

limited by the amount of the necessary data.

Time series approach-the time series approach uses math-

ematical methods to forecast the demand. The main ad-

vantage of this approach is that it can be conducted very

easily with the computer. The downfall of the time series

approach is an unexpected change in the demand pattern.

The typical example can be a big advertisement campaign

in next time period. The advertisement campaign can cause

demand to be higher. Such a situation cannot be e�ectively

forecasted by time series approach. Nevertheless, the time

series forecast can be supported by the judgemental or the

causal approach.

When conducting the demand forecast the important decision

is how far in the future we want to look. The quality of forecast

decreases with the longer horizon. Also di�erent techniques are

suitable only for a certain time horizon. The demand forecasts

can be divided into three categories based on the length of their

time horizon:

Short term forecast-looks from one week up to three months

ahead. The technique mostly used is the time series ap-

proach.

Medium term forecast-looks from three months up to one
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year ahead. The technique mostly used is the causal and the

time series approach.

Long term forecast-looks several years ahead. The technique

mostly used is the judgemental approach.

In inventory theory we rarely look more than one year ahead

therefore short and medium term forecasts are mostly used.

4.1 Time series forecasting

In this section we describe 6 basic forecasting methods. We start

with the simple ones such as the naive forecast or the cumula-

tive mean method. We also describe Brown's double exponential

smoothing that can re�ect a trend in the demand or the method

of seasonal indices that can re�ect a seasonality in the demand.

Naive forecast

The simplest method for the demand forecasting is the naive fore-

cast. We can write the demand forecast in the period t+ 1 as

Df
t+1 = Dt + εt,

where εt is a random variable with zero mean and constant vari-

ance. Thus the demand forecast in period t + 1 is simply the

actual demand in period t. The naive forecast works well when

the demand follows a random walk process (no trend, no season-

ality). In the real market, we usually can detect certain pattern
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in the demand for goods. Thus the naive forecast is not suitable

for inventory control problems.

The cumulative mean

Another very simple method for the demand forecasting is the

cumulative mean method. To e�ectively use it we need to have

relatively stable demand over the time, preferably with no trend

and no seasonality. The demand in period t+ 1 is de�ned by the

independent random deviations from the historical average. We

can write the demand forecast in period t+ 1 as

Df
t+1 =

1

n

∑n

t=1
Dt + εt,

where εt is a random variable with zero mean and constant vari-

ance. This method works well for relatively stable demand and

is not suitable for the data that contains trend or seasonality.

The moving average

The simple moving average method is similar to the cumulative

mean with the di�erence that we do not use as many observations

as possible for computing the average demand. We forecast the

future demand by taking average of the demand for the last m

periods.

Df
t+1 =

1

m

∑t

i=t−m+1
Di + εt.

The advantage of this method is that for every forecast we use

only m latest demands. Thus the forecast can relatively quickly
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adapt to the changing patterns or trends. The problem is what

m to choose. If we choose large m, the forecast will not respond

quickly to the changing patterns but will cancel out the random

variations in the demand. If we choose small m, the forecast will

response quickly to the changing patterns but will not cancel out

random variation in the demand. One possibility is choosing m

with the smallest mean square error (for about the mean square

error see Section 4.2). In general, we can say that a large m

should be used in case of relatively stable demand and a small m

when there is �uctuation or trend in the demand.

Moreover, it is reasonable to assume that the older the observa-

tion of demand is, the less in�uence it has to the future demand.

The weighted moving average method works with the latest m

observations in the same way as the moving average method but

considers newer data as more signi�cant for the forecast. We can

write

Df
t+1 =

t∑
i=t−m+1

wt−i−1Di + εt,

where wi ∈ N, i = 1, ..,m are the weights and
m∑
i=1

wi = 1 .

Similarly to the simple moving average, we have to choose the

optimal number of periods for the forecast. Additionally, we need

to choose the right value of the parameters wi. Again it can be

done by the minimization of the mean square error.
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Simple exponential smoothing

The method of moving averages demands relatively large amount

of data to be stored to perform the forecast. To avoid this prob-

lem, Brown (1956) suggested the method of the simple exponen-

tial smoothing. It was further improved by Holt (1957). The

method of exponential smoothing works only with one parame-

ter α and to conduct the forecast we need less data than in the

case of moving average. The forecast consists of weighted lin-

ear combination of the actual demand in the last period and of

the forecast in the last period. Therefore, we can drop all the

older data because they are already contained in the last period

forecast. We can write

Df
t+1 = αDt + (1− α)Df

t + εt,

where α ∈ (0, 1) is a parameter we have to choose. In practice,

we usually choose the value of α between 0.1 and 0.5. However,

it is prefered to test di�erent values of α on historical data and

choose the one which provides the lowest mean square error. The

value of α in�uences the nature of the forecast. With a large

value of α, the forecast will be sensitive to the changing pattern

of the demand but also will be very sensitive to random variations

in demand. With a low value of α, the forecast will slowly adapt

to the changing patterns but will not respond to the random

variations.

The exponential smoothing is not suitable for long term fore-
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cast. We can write the forecasted demand for the period t + h

such as Df
t+h = Df

t+1 for h > 1. The forecast will be the same

for all the periods in the future. That could deliver poor results

in case that there is a seasonality or a trend in the data.

Brown's double exponential smoothing

Brown (1963) suggested the method that is similar to the simple

exponential smoothing but can work better with the trended data.

The method is still simple as we need only one parameter α. We

can write the demand forecast in period t+ 1 as

Df
t+1 = 2at − bt +

α

1− α
(at − bt) + εt,

where at = αDt + (1 − α)at−1, bt = αat + (1 − α)bt−1 and

a1 = b1 = D1. Similarly to the simple exponential smoothing,

we only have to decide what value of α to choose. If we want a

forecast for more than one period ahead (for period t + h), the

formula is as follows:

Df
t+h = at + hbt,

for h > 1.

Method of seasonal indices

If we have trended data, we can e�ectively use the Brown's double

exponential smoothing. For the data with seasonality we can

use the method of seasonal indices. For each month (it can be
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also done for other time period such as quarter of the year) we

construct the seasonal index which will be used for the forecast.

The seasonal index for the month i in the year 1 looks as follows:

s1i =
Di
12∑
i=1

Di

12

, i = 1, ..., 12.

It is desired to have the data for more than one year back. Then

we can get di�erent values of the seasonal index for the ith month

s1i, s2i, ..., sni. With the average of the seasonal indices for the ith

month, we can write the forecast as:

Df
t+i = s̄iD̄ + εt

4.2 Safety stock

The forecasted data will never be 100% same as the reality. It

is the reason why the businesses usually have the extra stock

referred as the safety stock (or the bu�er stock). With the safety

stock we can lower the risk of the shortage. The formula for the

level of the safety stock is following:

Z = fσ,

where f is a service factor and σ is the standard deviation of the

demand. To obtain the service factor, we need to determine the

service level. It expresses the probability that a certain level of

safety stock will not lead to stock-out. We need to convert the

service level to the service factor. To do so we use the inverse
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normal distribution. E.g., the service level of 0.95 means that we

want to avoid the shortage in 95% of the time. In the statistical

tables we can �nd the z-value for the service level which turns to

be the service factor (1.645 in our case).

4.3 Accuracy measures

The quality of the forecast can be quanti�ed by the so-called accu-

racy measures. The accuracy measures can be used as a criterion

for choosing the best forecasting method or for choosing the right

coe�cients of the particular methods. The accuracy measures

can also be used to quantify uncertainty of the forecast. The ac-

curacy measures are based on the forecasting error that is de�ned

as et = Dt−D̂f
t . Makridakis and Hibon (1995) mention 14 di�er-

ent accuracy measures. They recommend the mean square error

(MSE) and symmetric mean absolute percentage error (sMAPE)

as the most useful ones. These two will be described here and

used later in the last part of the thesis devoted to a case study.

The MSE is de�ned as follows:

MSE =
1

n

n∑
t=1

e2t .

The MSE gives more weight to the large errors due to the squar-

ing. Thus it is widely used in inventory theory where large error

is less desirable than two or more smaller errors. The formula for

the MSE also provides information about the uncertainty of the

forecast, as it is similar to the statistical measure of the variance.
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The sMAPE is de�ned as follows:

sMAPE =
100

n

n∑
t=1

|et|
(dt+d

f
t )

2

.

The sMAPE measures average relative size of the absolute fore-

casting error as a percentage of the corresponding actual data.

The sMAPE is a relative measure. It means that can use it for

comparison across forecasting horizon and di�erent series.

The rule of thumb for sMAPE is that we have a very good

forecast if sMAPE < 10%, we have a reasonable forecast with

sMAPE < 30%, and we have an inaccurate forecast with sMAPE

> 50%.
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5 Application of the models to the real life

problem

In the last section of the thesis, we show how the previously

described methods can be used in practice. We collected the

monthly data for the number of dental implants introduced in

a dental center in the Czech Republic for the past three years

(2011-2013). During those three years, the average waiting time

to get the implants was at maximum one month and no customer

wanted to switch the dental center due to the waiting time. Thus

it is possible to consider the number of dental implants introduced

in a month as a monthly demand for dental implants. We also

collected the values of the variables, such as the unit cost, the

holding cost, and the reorder cost, which are necessary for the

inventory optimization problem.

We show the possible procedure for determining the optimal

forecasting method and the way of choosing the best ordering

policy according to the forecasted data. First, we examine the

accuracy of the forecasting methods on the historical data. We

will choose the best methods according to the sMAPE. With these

methods we will make forecasts for 12 month ahead. Then we will

use the heuristics and W-W algorithm to decide the best ordering

policy. Also, we will compare the accuracy of these methods. We

will go through the same procedure with the actual data that

corresponds to the 12 months for which we make the forecast. We
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will calculate the total costs of the inventory policies and compare

them. Our goal is to show that even with the basic methods

described in the thesis, the forecasted data will not signi�cantly

di�er from the reality.

Demand forecasting

The monthly demand for dental implants is depicted in the Fig-

ure 1. We can detect a possible seasonality from the pattern of

the demand. Every year during the July and August, there is a

signi�cant drop in the demand. On the other hand, we can rule

out any trend, as all values �uctuate around the mean 205 dental

implants per month. From this �rst insight we can assume that

the best forecasting method could be the forecast with seasonal

indices to cover the seasonality.

We divide our data into three groups. The data from 2011

represents the base data, as some forecasting methods require a

larger amount of the past data (mostly simple or weighted aver-

age). Based on the data from 2011 and 2012 we will conduct a

forecast for each month in 2012. This way we can determine the

accuracy of the di�erent methods the optimal coe�cients where

needed (e.g. exponential smoothing, weighted moving average).

To determine the optimal number of periods used in the mov-

ing average method, we compare the MSE of the forecast for 2012

using di�erent number of periods. The minimum number of pe-
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Figure 1: Actual data

riods is two. If we used only one period, we would have gotten

the naive forecast. The maximum number of periods is twelve,

as we are limited by the amount of historical data. The resulting

MSEs that correspond with the di�erent numbers of time periods

are depicted in the Appendix A in the Table 4. The lowest MSE

is for 12 periods. It provides us with rather smoothed forecast

that does not react to the changing pattern much. It is under-

standable as our data does not contain any trend. Thus there is

no need for a quick adaptation to the new values of the demand.

Similarly to the moving average method, we need to determine

the optimal number of periods used for weighted moving average.

We also need to determine the optimal weights. We can do this
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by using, e.g., the Solver in the MS Excel. All weights had to

satisfy a ≥ b ≥ c ≥ ... ≥ l, where a is the weight for the most

recent period, b is the weight for the second most recent period,

etc. We again compared the MSEs of the forecasts using di�erent

number of time periods combined with optimal weights. The

resulting MSEs that correspond to the di�erent number of time

periods and di�erent weights are depicted in the Appendix A in

the Table 5. The lowest MSE is for 12 periods and for the weights
1
26(15, 1, ..., 1). Again, it gives us rather smoothed forecast which

support our �ndings about �uctuations around the mean and no

trend.

The last coe�cients we need to determine are the values of

α in the exponential smoothing and Brown's double exponential

smoothing method. The forecast from these methods depends

on the last observation and on the last forecast. Therefore it

is important to decide what value to take as the last forecast

when conducting the �rst forecast. There is no strict rule for

choosing the starting point. We tried to use averages from 12, 9,

6 and 3 last periods and the demand from the last period (in this

case the last observation and the last forecast is the same). We

used the Solver to �nd the optimal values of α and we compared

the MSEs. The resulting MSEs that correspond with di�erent

starting periods are depicted in the Appendix A in the Table 6

and 7. For exponential smoothing in the view of the lowest MSE,

it is the best to use the average of last 12 months as the starting
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point and α = 0.01. For Brown's double exponential smoothing,

it is the best to use the average of last 9 months as the starting

point and α = 0.01. These values of α cause that the forecast

does not respond to recent changes in the demand almost at all

and we get the smoothed forecast again.

In the theoretical part, we explained that the value of alpha

can be chosen also based on the past experience. Thus we tried

also di�erent values of alpha that do not smooth the forecast so

much (we tried the value of alpha 0.1, 0.3, 0.5 and 0.7). But as we

need to make the forecast for the whole year 2013 ahead, we got

very similar results for each value of alpha (the di�erence was at

maximum 2 implants per month in the year 2013). Doing this for

the Brown's double exponential smoothing would yield the similar

results. Moreover the Brown's double exponential smoothing is

not suitable for our data, as we have no trend.

The Figures 2-8 in Appendix A show the di�erence between

the actual and the forecasted data for each method for the year

2012. Also, the graphs show the forecast for the year 2013 for

each method (the dashed line represents the actual data, the full

line represents the forecasted data).

The sMAPE for each method is depicted in the Table 1. For

each method it is between 11 and 15 percent. That means that

all our forecasts are reasonable. The Table 1 shows the lowest

sMAPE in case of the weighted moving average method and the

method of seasonal indices. These two forecasts are not smoothed
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Table 1: sMAPE

Forecasting method sMAPE (%)

Naive forecast 14.29

Cumulative mean 13.76

Moving average 14.46

Weighted moving average 11.15

Exponential smoothing 13.98

Brown's smoothing 13.72

Seasonality 11.45

as much as the other forecasts. This fact can be a cause of

the better sMAPE. The smoothed forecasts (exponential smooth-

ing, Brown's double exponential smoothing, cumulative mean and

moving average) feature very similar sMAPE around 14%. In the

next part we will use the forecasted data from the weighted mov-

ing average method and from the method of seasonal indices as

they feature the lowest sMAPE.

Optimal ordering pattern and optimal costs

In this section we determine the optimal ordering pattern based

on the previously forecasted data. We work with the assumption

that we have to place an order at the beginning of the year 2013

and we cannot change the order during the year. It implies that

the forecast cannot be updated with new data obtained during

the 2013. The forecast is based only on the data from 2011 and

2012. We will apply the W-W algorithm and the heuristics to the
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forecasted data presented in the previous section. We will �nd the

optimal ordering policy for this forecasted data to determine the

total variable costs. We will also determine the optimal ordering

policy for the actual data from 2013 to be able to compare how

costly it is to use the forecasted data.

To use the W-W algorithm and the heuristics properly we need

to know the reorder and storage cost of the dental implants. The

costs were estimated by consulting with several dentist. They are

based mainly on their experience. The reorder cost is estimated

to be 650CZK. It includes the shipment fees, the packaging, the

insurance, and the administration work. The storage cost is es-

timated to be 1.5CZK per month (18CZK per year). The cost

of the single dental implant is aproximatelly 3000CZK thus the

storage cost is only 0.6% of the unit cost. Such low storage cost

is not very common in the inventory theory. The storage cost in

our case prevents from ordering many implants at once. More-

over, the dental implants do not depreciate over time. They are

very small, so we do not need any special storage room which

also lower the storage cost. The storage cost will be calculated

from the inventory remaining at the end of each month. As men-

tioned above, we assume that the order for 2013 is placed at the

beginning of the year. The delivery is instant and is made at

the beginning of the month (therefore, we have maximum of 12

deliveries).

To determine the total variable cost we sum up all the reorder
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costs and all the storage costs that occur during the 12 months.

The forecasted data over/underestimates the actual demand in

certain months. In some month we can have more implants stored

than it is necessary or on the other hand we can face a shortage.

To correct a possible overestimation, the ending inventory in each

month will be calculated as a di�erence between the total inven-

tory at the beginning of the month t and actual demand in the

month t. With this we obtain the actual storage costs rather

than the estimated storage costs. To avoid shortage we need to

establish a safety stock. We want as little shortage as possible,

thus the service level will be set to 99.9%. Corresponding service

factor is 3.09. Together with standard deviation of 32, the safety

stock is 99 dental implants. At the beginning of the 2013 we need

to order additional 99 dental implants to cover for possible short-

age. Each month, we will pay the storage cost of what is left from

the safety stock. The variable costs for the actual data will be

calculated without the safety stock, as it is not needed.

The complete results that capture the total variable costs of

certain ordering pattern for each forecasted series and for each

heuristics can be found in Appendix A in the Tables 8-10. The

ordering pattern is described by series of 0s and 1s where 1 stands

for ordering in a certain period and 0 stands for not ordering in

the period. In the Table 2 one can �nd the lowest variable costs

for each forecasted series together with the ordering pattern.

With the actual data we got di�erent ordering pattern with
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Table 2: Optimal ordering pattern and variable costs I

Forecasting method Ordering policy Var. cost (CZK)

Actual demand (1,1,0,1,0,1,0,0,1,0,1,0) 5781

Weighted moving average (1,0,1,0,1,0,1,0,1,0,1,0) 6379.5

Seasonality (1,0,1,0,1,0,1,0,1,0,1,0) 6622.5

each heuristic. The lot-for-lot heuristic proved to be worst �t

(7800CZK). It would be more suitable if the storage costs were

high and reorder cost was low. The other three heuristics-Silver-

Meal, part-period-balancing and least-unit-cost-are much closer

to the optimum derived by W-W algorithm. The variable cost

derived by the least-unit-cost heuristic, which is the worst one

from the three heuristic mentioned earlier, is only by 6% more

expensive than policy derived by W-W algorithm. We can see

that the usage of heuristics does not dramatically higher the ex-

penditures.

For the forecasted data we got the same ordering pattern in

all cases, except for the Silver-Meal heuristic applied on the data

forecasted by the seasonal indices. The reason of the same or-

dering pattern could lie in the nature of the forecasted data. Al-

though the data forecasted by seasonal indices and by weighted

moving average is not smoothed as much as the data from other

methods, still they do not vary as much as the actual data. In

each month, the forecasted demand is very similar to the other

months. We, therefore, get the same repeating ordering pattern

where we order for two months every time.

38



If we knew the demand in advance precisely, the total variable

cost would be 5781CZK. The variable costs of the forecasted data

are only 10-15% higher. The higher costs are caused mainly by the

safety stock, which is not needed in the case of known demand.

Surprisingly the costs are lower for the data computed by the

weighted moving average method. It is only the result of the

safety stock. Using the data from the weighted moving average

method we almost deplete the safety stock after 5 month. Thus

the storage cost for the safety stock is low. For the data from the

seasonal indices method we never deplete the safety stock only

to the 60 dental implants at maximum. Thus we have to pay

high storage cost for the safety stock. It would be more than

enough to have the safety stock of 50 units (approximately one

half of the original safety stock). The total variable costs are

then only 6181.5CZK. This reasoning is possible for us to do only

because we have the actual data for 2013. Without them we

would probably keep the larger safety stock in order to avoid the

shortage. Consequently we could lower the safety stock in the

next years based on the past experience.

So far we assumed that we have to place the order for a whole

year ahead. Now we can look what will happen if we are abble

to place updated orders throughout the year. More speci�cally,

before each delivery we will be able to re-forecast the demand

with the additional data from the 2013 and place the new order.
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We will do this for the two forecasting methods with the lowest

sMAPE and only for W-W algorithm. Additionally we will try

to calculate the variable costs also with the data forecasted by

the simple exponential smoothing using di�erent values of alpha

(0.01, 0.1, 0.3, 0.5, and 0.7). The forecast for the year 2013

using the simple exponential smoothing would not be a constant

anymore as we can use the new data obtained during the year

2013. We also want to examine whether it is better to use the

value of alpha found above by comparing the MSE or it is better

to use alpha based, e.g., on the past experience. The results can

be found in Table 3.

Table 3: Optimal ordering pattern and variable costs II

Forecasting method Ordering policy Var. cost (CZK)

Actual demand (1,1,0,1,0,1,0,0,1,0,1,0) 5781

Weighted moving average (1,0,1,0,1,0,1,0,1,0,1,0) 6907.5

Seasonality (1,0,1,0,1,0,1,0,1,0,1,0) 6622.5

Exp. smoothing (α = 0.01) (1,0,1,0,1,0,1,0,1,0,1,0) 6516

Exp. smoothing (α = 0.1) (1,0,1,0,1,0,1,0,1,0,1,0) 6591

Exp. smoothing (α = 0.3) (1,0,1,0,1,0,1,0,1,0,1,0) 6717

Exp. smoothing (α = 0.5) (1,0,1,0,1,0,1,0,1,0,1,0) 6999

Exp. smoothing (α = 0.7) (1,0,1,0,1,0,1,0,1,0,1,0) 7164

The safety stock is again implemented (99 units of dental im-

plants delivered in the �rst period). The cost for seasonal indices

method is not changed, as we would need new data for a whole

year at once to update it. Again, the cost is relatively high be-

cause of the safety stock. For the exponential smoothing the
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lowest cost is for the value of alpha 0.01 which was found by

comparing the MSE. For the value of alpha 0.5 and 0.7 there is

no need for safety stock of 99 units. Similarly to the method of

seasonal indices the safety stock of 50 units would be su�cient

enough. However the costs would be still larger than the cost for

the value of alpha 0.01 (6558CZK for the value of alpha 0.5 and

6723CZK for the value of alpha 0.7). The cost for the weighted

moving average method is signi�cantly higher than the previous

cost calculated above. But again it would be su�cient enough to

use the safety stock of 50 units. The cost is then 6465.5CZK. It is

still higher than the previous one but only for less than 100CZK.

It is surprising that the possibility of updating the forecast do

not lower the costs for the weighted moving average. One possible

explanation would be that the forecasted data are lagged behind

the actual data. E.g., the low demand in July and August is

projected also to September when the actual demand is back on

the value somewhere around the average.

In the last part of the case study we examine how the change

in the reorder and storage cost in�uence the ordering pattern.

From the analysis above we can conclude that the forecast that

is closest to the reality is produced by the method of seasonal

indices. Thus in this part we will compare the ordering pattern of

the actual data to the ordering pattern forecasted by the method

of the seasonal indices. First, we changed the reorder cost keeping

41



the storage cost �xed. The results can be found in Table 11. We

changed also the storage cost keeping the reorder cost �xed. The

results can be found in Table 12.

The results are very similar both for the actual and the fore-

casted data. If the reorder cost is four times lower (162.5CZK)

than the original one, it is optimal to place the order every month

both for actual and forecasted data. The same ordering pattern

is for the storage cost that is six times higher (6CZK) than the

original one. The other extreme case, ordering only in the �rst

period for the whole year, occurs if we have the reorder cost 17

times higher (11050CZK) than the original one for the actual data

and 18 times higher (11700CZK) for the forecasted data. The

same ordering pattern is for storage cost that is 17 times lower

(0.088CZK) for the actual data and 18 times lower (0.083CZK)

for the forecasted data.

Brie�y, we describe the way of managing the inventory on the

dental clinic from which we have the data. They use the software

that alerts them whenever the number of the dental implants fall

under certain level. Then they make the order. The orders are

made at least once a month. Moreover, they do not keep any

safety stock. Thus, few times a year, they face the shortage. To

avoid the possible delays caused by the shortage, the implants

are quickly delivered. The cost of the express delivery is approxi-

mately the same as for the standard delivery. Only a few implants
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is ordered with the express delivery to avoid the shortage before

the standard order is delivered (the standart order has longer de-

livery time). Thus this procedure doubles the reorder cost. In

the best scenario the variable cost is 7800 CZK (no shortage dur-

ing the whole year and twelve orders per year). The cost is still

higher than the cost computed above. By using the W-W algo-

rithm or the heuristics they would be able to lower the costs by

more than 1000CZK. Another possible solution to lower poten-

tial high variable cost could be at least to implement the safety

stock. They would not need to worry about the shortage and

express deliveries.

In this part of the thesis we showed that even with the simple

tools such as MS Excel and with the basic methods, one can

propose the inventory policy that is close to the reality and could

be applied in small businesses without any need to buy expensive

inventory control software.
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6 Summary

The inventory theory should be without any doubt an impor-

tant part of the business. We can lower the costs associated with

holding and ordering the goods using the methods described in

the thesis. The business should pay attention to the right inven-

tory policy. The spare capital can be used, e.g., to invest to the

advertisement campaign.

In the thesis, we present the algorithms to determine the best

ordering policy. The heuristics work well and their results are sim-

ilar to the results derived by the W-W algorithm. Nevertheless it

seems better to use the W-W algorithm. It is easily implemented

while using the Excel and it provides the most accurate result.

We also described several di�erent methods of demand fore-

cast. Each method is suitable for di�erent nature of the demand

data. Therefore, it is desirable to try the methods on the his-

torical data to �nd the best �t. The past experience with the

forecasting can be important, as we can support the time series

forecast with the additional information.

In the case study we suggest the ordering policy that could

lower the cost for the dental clinic we have the data from. At

least we recommend to implement the safety stock to avoid the

unnecessary express deliveries.

In general, we show the simple method of solving the inventory

problem that can be easily implemented by the small businesses.
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Figure 2: Naive forecast
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Figure 5: Weighted moving average
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Figure 8: Forecast with seasonal indices
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Table 4: MSE for di�erent number of periods

Number of periods MSE

2 1487

3 1617

4 1665

5 1538

6 1432

7 1432

8 1426

9 1492

10 1568

11 1516

12 1392

Table 5: MSE for di�erent weights and di�erent number of periods

Number of periods Optimal weights MSE

2 1
9
(8,1) 1285

3 1
12
(10,1,1) 1260

4 1
13
(10,1,1,1) 1215

5 1
13
(9,1,1,1,1) 1139

6 1
14
(9,1,...,1) 1097

7 1
16
(10,1,...,1) 1097

8 1
18
(11,1,...,1) 1082

9 1
22
(14,1,...,1) 1103

10 1
26
(17,1,...,1) 1114

11 1
26
(16,1,...,1) 1074

12 1
26
(15,1,...,1) 1024
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Table 6: MSE for di�erent starting point - exp. smoothing

First value Optimal alpha MSE

Actual last period value 0.01 1205

3-month average 0.77 1272

6-month average 0.79 1269

9-month average 0.79 1269

12-month average 0.01 1182

Table 7: MSE for di�erent starting point - Brown's double exp. sm.

First value Optimal alpha MSE

Actual last period value 0.05 1284

3-month average 0.01 1177

6-month average 0.01 1196

9-month average 0.01 1291

12-month average 0.01 1211

Table 8: Optimal cost and ordering pattern for actual data

Type of heuristic Ordering pattern Variable cost (CZK)

W-W algorithm (1,1,0,1,0,1,0,0,1,0,1,0) 5781

Silver-Meal (1,0,1,0,1,0,0,1,0,1,0,1) 6027

Least unit cost (1,0,1,0,1,0,1,0,0,1,0,1) 6127.5

Part period balancing (1,0,1,0,1,0,1,0,1,0,1,0) 5818.5

Lot for lot (1,1,1,1,1,1,1,1,1,1,1,1) 7800
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Table 9: Optimal cost and ordering pattern for weighted moving average

Type of heuristic Ordering pattern Variable cost (CZK)

W-W algorithm (1,0,1,0,1,0,1,0,1,0,1,0) 6379.5

Silver-Meal (1,0,1,0,1,0,1,0,1,0,1,0) 6379.5

Least unit cost (1,0,1,0,1,0,1,0,1,0,1,0) 6379.5

Part period balancing (1,0,1,0,1,0,1,0,1,0,1,0) 6379.5

Lot for lot (1,1,1,1,1,1,1,1,1,1,1,1) 9007.5

Table 10: Optimal cost and ordering pattern for method of seasonal indices

Type of heuristic Ordering pattern Variable cost (CZK)

W-W algorithm (1,0,1,0,1,0,1,0,1,0,1,0) 6622.5

Silver-Meal (1,0,1,0,1,0,0,1,0,1,0,1) 6768

Least unit cost (1,0,1,0,1,0,1,0,1,0,1,0) 6622.5

Part period balancing (1,0,1,0,1,0,1,0,1,0,1,0) 6622.5

Lot for lot (1,1,1,1,1,1,1,1,1,1,1,1) 9429

Table 11: Optimal ordering pattern for di�erent reorder cost

Reorder cost Actual data Seasonal indices

162.5 (1,1,1,1,1,1,1,1,1,1,1,1) (1,1,1,1,1,1,1,1,1,1,1,1)

217 (1,1,1,1,1,1,1,0,1,1,1,1) (1,1,1,1,1,1,1,0,1,1,1,1)

325 (1,1,0,1,1,0,1,0,1,1,1,0) (1,1,1,1,1,1,0,1,1,1,1,0)

1300 (1,0,0,1,0,0,1,0,0,1,0,0) (1,0,0,1,0,0,1,0,0,1,0,0)

2600 (1,0,0,1,0,0,0,0,1,0,0,0) (1,0,0,1,0,0,0,0,1,0,0,0)

4550 (1,0,0,0,0,0,0,1,0,0,0,0) (1,0,0,0,0,0,0,1,0,0,0,0)

11050 (1,0,0,0,0,0,0,0,0,0,0,0) (1,0,0,0,0,0,0,1,0,0,0,0)
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Table 12: Optimal ordering pattern for di�erent storage cost

Storage cost Actual data Seasonal indices

1.5
17

(1,0,0,0,0,0,0,0,0,0,0,0) (1,0,0,0,0,0,0,1,0,0,0,0)

1.5
17

(1,0,0,0,0,0,0,1,0,0,0,0) (1,0,0,0,0,0,0,1,0,0,0,0)

0.375 (1,0,0,1,0,0,0,0,1,0,0,0) (1,0,0,1,0,0,0,0,1,0,0,0)

0.75 (1,0,0,1,0,0,1,0,0,1,0,0) (1,0,0,1,0,0,1,0,0,1,0,0)

3 (1,1,0,1,1,0,1,0,1,1,1,0) (1,1,1,1,1,1,0,1,1,1,1,0)

4.5 (1,1,1,1,1,1,1,0,1,1,1,1) (1,1,1,1,1,1,1,0,1,1,1,1)

6 (1,1,1,1,1,1,1,1,1,1,1,1) (1,1,1,1,1,1,1,0,1,1,1,1)
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