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Abstract

Using the Heterogeneous Agent Model framework, we develop and incorporate

an extension based on Prospect Theory into a popular agent-based asset pric-

ing model. The extension covers the phenomenon of loss aversion manifested

mainly in risk aversion and asymmetric treatment of gains and losses. Ad-

ditionally, we explore a special case of the model’s intrinsic dynamics termed

Asynchronous Updating that affects agents’ selection of trading strategies and

mimics the investor inertia effect. Using Monte Carlo methods, we investigate

behavior and statistical properties of the extended versions of the model and

assess relevance of the extensions with respect to empirical data and stylized

facts of financial time series. We find that the Prospect Theory extension is fea-

sible, that it keeps the essential underlying mechanics of the model intact, and

that it changes the model’s dynamics considerably. Moreover, the extension

shifts the model closer to the behavior of real-world stock markets. Contrar-

ily, the Asynchronous Updating feature does not produce statistically different

empirical distributions of most of the main variables. However, it dramati-

cally increases chances of fundamentalists to survive in the market even when

changes to more profitable strategies are increasingly facile.
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Abstrakt

V bakalářské práci je vytvořeno rozš́ı̌reńı populárńıho heterogenńıho agentńıho

modelu oceňováńı kapitálových aktiv založené na Prospect Theory. Toto roz-

š́ı̌reńı zahrnuje zejména averzi ke ztrátám, která zp̊usobuje averzi k riziku a

asymetrické reakce v̊uči zisk̊um a ztrátám. Součást́ı práce je také posouzeńı

speciálńıho př́ıpadu výběru tržńıch strategíı agenty, který ovlivňuje celkovou

dynamiku modelu, označovaného jako Asynchronńı obnovováńı. Toto rozš́ı̌reńı

má za ćıl modelovat setrvačnost investor̊u (investor inertia). Následně je po-

moćı metod Monte Carlo zkoumáno chováńı modelu s těmito rozš́ı̌reńımi—

zejména pak statistické vlastnosti výstupńıch dat—a posouzena relevantnost

těchto rozš́ı̌reńı ve vztahu k empirickým dat̊um a stylizovaným fakt̊um. Výsled-

kem je zjǐstěńı, že rozš́ı̌reńı modelu založené na Prospect Theory je proveditelné

a umožňuje zachováńı p̊uvodńı jednoduchosti modelu, aniž by došlo ke ztrátě

jeho d̊uležitých charakteristik. Rozš́ı̌reńı dále měńı kvalitativńı chováńı mod-

elu, produkuje statisticky odlǐsná rozděleńı nejd̊uležitěǰśıch proměnných a po-

souvá model bĺıže k reálné dynamice trh̊u. Asynchronńı obnovováńı na druhou

stranu ve většině př́ıpad̊u nevytvář́ı statisticky odlǐsná empirická rozděleńı pro-

měnných modelu, avšak znatelně ovlivňuje poměry tržńıch strategíı, zejména

pak zvyšuje tržńı pod́ıl fundamentalist̊u a jejich šance udržet se na trhu i za

situaćı, ve kterých je přechod k ziskověǰśım strategíım stále jednodušš́ı.
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Jǐŕı Kukačka.
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sahuj́ıćı nav́ıc prvek asynchronńıho obnovováńı. V závěru práce budou obě vari-
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Chapter 1

Introduction

This thesis introduces the phenomena of loss aversion and gain–loss asymmetry

into the popular Brock & Hommes (1998) asset pricing model and explores

relevance and impacts of this extension. Our work is based on findings of the

iconic Prospect Theory of Kahneman & Tversky (1979) which describes the

way people choose between probabilistic alternatives that involve risk and is

per se a critique of other, rather prescriptive decision-making economic theories.

Already in 1979, Kahneman & Tversky found that the actual behavior of human

beings might be very dissimilar to what major economic theories assumed,

namely in terms of risk and attitude towards losses. According to Prospect

Theory, people decide in terms of gains and losses rather than of the final

outcome—the extension that we develop in the thesis therefore aims to account

for these empirically observed irrationalities. Throughout the years, Prospect

Theory has become one of the most influential works that merged psychology

with economics. As Belsky & Gilovich (2010, p. 52) aptly remark, “If Richard

Thaler’s concept of mental accounting is one of two pillars upon which the

whole of behavioral economics rests, then Prospect Theory is the other.” The

Kahneman & Tversky’s (1979) paper is the most cited paper ever to appear in

Econometrica (Chang et al., 2011, p. 30).

The primary objective of this thesis is thus to extend the original model

with features of Prospect Theory and, at the same time, keep the intrinsic

mechanics intact in order to preserve the stylized, simple nature of the model.

Additionally, we provide an in-depth analysis of a special case of the model’s

intrinsic dynamics termed Asynchronous Updating, a technical feature which

causes inactivity of a certain number of traders. The concept of Asynchronous

Updating aims to mimic the phenomenon of investor inertia present in real-
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world markets. This empirically observed behavior of investors is manifested

in wrong investment decisions, especially in incorrect ‘timing’ of investment

actions; for instance, holding onto a losing stock too long and selling a winning

stock too soon—this behavior of some investors is called the disposition effect.

Secondary focus of the thesis is hence exploration of the model’s behavior under

Asynchronous Updating. The two main topics of the thesis—Prospect Theory

and Asynchronous Updating—are related: the disposition effect based on the

Prospect Theory’s value function might in reality be one of the important

sources of the investor inertia phenomenon. Our analysis consists in using

Monte Carlo methods to investigate behavior and statistical properties of the

extended versions of the model and assess relevance of the extensions with

respect to empirical data and stylized facts of financial time series.

The thesis is structured as follows: following the Introduction, Chapter 2

summarizes current literature on computational economics, agent-based model-

ing, and Prospect Theory and Chapter 3 describes mathematical structure and

underlying mechanics of the original Brock & Hommes (1998) model. Chapter 4

and Chapter 5 represent the core of the thesis: Chapter 4 develops the behav-

ioral extension based on Prospect Theory and introduces the Asynchronous

Updating feature while Chapter 5 describes the numerical simulations using

Monte Carlo methods and illustrates the main differences related to the pro-

posed extensions along with the results of statistical tests and their implica-

tions. Chapter 6 highlights main results of the simulations and compares the

model’s behavior with empirical, real-world data. Additionally, introductory

hypotheses specified in the Thesis proposal are assessed and summarized in this

chapter. The Conclusion highlights the most important results of the analysis

and hence concludes the thesis.



Chapter 2

Literature Review

In the following chapter, important milestones in the history of heterogeneous

agent modeling (and, more generally, of agent-based modeling) and Prospect

Theory are presented to the interested reader. First section of this chapter is

focused on the former, second section offers some insight into the most essential

proceeds and findings of the latter. Encompassing a vast amount of literature,

both fields are described using chiefly the works of the most influential authors;

within the scope of this thesis, the current writer cannot hope to cover all the

available literature.

2.1 Agent-based Modeling

Generally, agent-based modeling deals with construction of models which con-

sist of several autonomous agents who interact with one another and thus cre-

ate micro-level patterns. Such agents might represent not only individuals, but

also various collective entities whose interactions the model maker wishes to

study; these interactions subsequently cause emergence of certain macro-level

phenomena which are of ultimate interest but which cannot be deduced simply

by aggregating the properties of the agents (Axelrod & Tesfatsion, 2006). As

Page (2008) aptly remarks, “Agent-based models allow us to consider richer

environments that include micro features with greater fidelity than do existing

techniques.” Agent-based Model (ABM) approaches are used in several sci-

entific disciplines, for instance in economics, ecology, demography, and traffic

planning to mention but a few. Gustafsson & Sternad (2010) list four funda-

mental properties of micro-level ABMs:

1. The non-negative (integer) quantity of the entities.
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2. The continuous nature of time, which should at least be sufficiently well

approximated in the model.

3. The structural and temporal relations creating the dynamics of the sys-

tem.

4. The irregularly occurring events of the system which have to be char-

acterized by an appropriate probabilistic representation in the model as

they cannot be described in detail.

To illustrate the considerably wide scope of possible usage of ABMs, the

present writer refers the interested reader to the work of Joshua M. Epstein, a

pioneer in agent-based computational modeling of biomedical and social phe-

nomena. Epstein (2002) developed an ABM of civil violence—in this model, a

central authority tries to eradicate decentralized riots and communal violence

between rival ethnic groups—visual representation can be found online.

ABMs described and used in this thesis have naturally economic or financial

nature. The fields of economics and finance which try to make use of such

models are called Agent-based Computational Economics (ACE) and Agent-

based Computational Finance (ACF), respectively. One of the first research

efforts to use the pure ACE framework can be found in Marks (1992) in which

the author makes use of a genetic algorithm to investigate behavior of firms in

an oligopolistic market and address the issue of market self-organization. This

work is especially contributive since the agents are assumed to be ‘only’ bound-

edly rational. As a clarifying note on terminology, ACE is de facto agent-based

modeling specialized to computational economics purposes. A comprehensi-

ble survey on methodology and aspects of ACE provides Tesfatsion (2006) who

highlights four primary strands of the research in the field:

1. Empirical understanding investigates why certain global regularities have

evolved and persisted, in spite of absence of centralized planning and

control that could support such regularities.

2. Normative understanding attempts to use ABMs in a process of discovery

of good economic designs.

3. Qualitative insight puts emphasis on changes in dynamical behavior of

economic systems with modified initial conditions.

http://vimeo.com/33714209
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4. Methodological advancement tries to provide scholars in the field with

superior methods and tools they need to make their work as rigorous as

possible.

One of the most important stimuli which induced development of ABMs in

economics was certainly an erosion of trust in the Efficient Market Hypothesis

(EMH)—the EMH asserts, in Eugene Fama’s words, that “. . . security prices at

any time ‘fully reflect’ all available information . . . ” (Fama, 1970, p. 383)—

and in Rational Expectations (RE) theory in the late 1970s and early 1980s

which was due to increased focus on study of several stylized empirical facts—

according to Cont (2001, p. 224), “The seemingly random variations of asset

prices do share some quite nontrivial statistical properties. Such properties,

common across a wide range of instruments, markets and time periods are

called stylized empirical facts.” The most essential difference between natural

sciences and economics is arguably the fact that decisions of economic agents

are determined by their expectations of the future and contingent on them—

hence, the study of how these beliefs are formed plays a vital part of any

economic theory.

Several scholars have published papers which confronted the EMH with em-

pirical data mainly from the perspective of non-normal returns,1 systematic

deviations of asset prices from their fundamental value, and presumably ex-

cessive amount of stock price volatility—it was impossible to attribute these

phenomena to the EMH or explain them within the RE framework. Offering an

insightful survey on the volatility issue at that time, West (1988) summarizes

and interprets literature related to this field. The author finds out that nei-

ther rational bubbles nor any standard models for expected returns adequately

explain stock price volatility and emphasizes the necessity to introduce alterna-

tive models which would offer better explanation of the apparent contradiction

between the EMH, RE theory, and empirical findings.

As for the normality of logarithmic returns assumed by the EMH, the inter-

ested reader is referred to Mandelbrot (1963) who offers a detailed theoretical

and empirical discussion about the topic. For illustrative purposes, Table 2.1

summarizes daily logarithmic returns of the S&P 500 stock market index for

four different periods in the past century. The Jarque–Berra (JB) ALM test

for normality of distribution was used to test whether the objection of non-

normality is relevant (or, more precisely, was—at the respective time periods).

1According to Ehrentreich (2007, p. 56), at the time when the foundations of the EMH

were laid, logarithmic asset returns were thought to be normally distributed.
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Clearly, the JB test strongly rejects the null hypothesis of normally distributed

returns in all six periods.

Table 2.1: S&P 500 Summary statistics and test statistic of the JB test.

Period Mean St. dev. Min. Max. Skew. Kurt. JB
1960–1965 0.000 0.007 -0.067 0.046 -0.536 15.86 8832
1970–1975 0.000 0.009 -0.037 0.050 0.384 5.532 372
1980–1985 0.000 0.009 -0.039 0.048 0.307 4.317 112
1990–1995 0.000 0.007 -0.037 0.037 -0.014 5.182 255
2000–2005 0.000 0.012 -0.058 0.057 0.194 4.821 185
2010–2015 0.001 0.010 -0.066 0.047 -0.380 7.449 1082

In Figure A.1 of the Appendix A, an estimated Probability Density Func-

tion (PDF) of S&P 500 returns, used in Table 2.1, is plotted along with the

theoretical PDF of normally distributed random variable with the same mean

and variance as the S&P 500 returns.

2.2 Agents’ design and taxonomy

It appears that there is no generally accepted consensus on financial ABMs’

taxonomy. LeBaron (2006) provides categorization using historical approach

by presenting gradually improved models as time passes, while Hommes (2006)

uses only narrower scope and focuses chiefly on Adaptive Belief System (ABS)

models.2 The Brock & Hommes (1998) model is of central interest to this thesis

and hence for the purposes of ABMs’ taxonomy, we will use a different, more

general segmentation offered by Chen et al. (2012). In this work, using com-

plexity as the main selection criterion, the authors categorize economic ABMs

chiefly by number of trading strategies and level of agents’ autonomy—two

cardinal groups are ultimately distinguished: N-type models and Autonomous

Agent Models. Furthermore, the authors specify three main elements which

contribute to the overall complexity: level of heterogeneity, learning, and in-

teractions.

2Here the term ABS corresponds to the behavioral strategy switching system introduced
in Brock & Hommes (1997; 1998) which uses simple, stylized models of market with hetero-
geneous beliefs. Heterogeneity as such is naturally also present in the models described in
Subsection 2.2.1 Subsection 2.2.2.
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2.2.1 N-type models

N-type models represent the first of the two main groups of economic ABMs.

The most essential property of this group is the fact that, as opposed to Au-

tonomous Agent Models, all the types and rules of agents are specified at the

beginning of the design—hence, the heterogeneity of agents consists in switch-

ing of among predefined strategies, not in development of new trading rules.

The simplest category of N-type models (in terms of the three aforemen-

tioned main elements) that Chen et al. (2012) give is two- and three-type de-

signs. As the name suggest, this segment offers the most rudimentary version

of heterogeneity—two-type models are characterized by presence of mere two

traders or trading strategies, three-type models offer an additional strategy.

Usually, a precise behavioral rule is associated with each type of strategy; sub-

sequently, in every time period, all agents have to choose one of these types. For

every agent, the choice is then evaluated in the next time period and the agent

chooses a strategy according to the result of this evaluation process, which is

commonly based on a binary choice model. Hence, switching among strategies

is possible and desirable and it is the source of heterogeneity in the model.

Traditionally, one of the strategy types is called a fundamentalist. Funda-

mentalists are inclined to think that the price of an asset is determined namely

by underlying economic fundamentals and to predict that the asset price will

move in the direction of its fundamental value. In the two- and three-type

models, the second and third strategy is typically called a chartist, a technical

analyst, or a noise trader (Hommes, 2013). Agents of this type are of the opin-

ion that prices are not determined by fundamentals only, but that they can

be predicted by unsophisticated technical trading rules based upon observed

patterns in past prices, such as trends or cycles. In practice, a chartist is mod-

eled to be either a trend follower or a contrarian—the former tries to make use

of a persistent trend while the latter intentionally trades against the ongoing

market sentiment. To illustrate the difference between fundamentalists and

chartists, Chen et al. (2012) specify simple forecasting rules for fundamental-

ists and chartists regarding future price of an asset as follows: led to be either

a trend follower or a contrarian—the former tries to make use of a persistent

trend while the latter intentionally trades against the ongoing market senti-

ment. To illustrate the difference between fundamentalists and chartists, Chen

et al. (2012) specify simple forecasting rules for fundamentalists and chartists

regarding future price of an asset as follows:
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Ef,t (pt+1) = pt + αf ·
(
pft − pt

)
, 0 6 αf 6 1 (2.1)

Ec,t (pt+1) = pt + αc · (pt − pt−1) , (2.2)

where the former corresponds to fundamentalists and the latter to chartists

(with 0 6 αc to trend followers and αc 6 0 to contrarians). αf is a mean-

reverting coefficient—fundamentalists assume that any price pt 6= pft of an

asset will sooner or later converge to the fundamental price pft . On the other

hand, chartists are characterized by an extrapolating coefficient αc which they

use to predict the future price with the assistance of past and present prices.

Magnitudes of both of the coefficients naturally measure the intensity of mean-

reversion and extrapolation, respectively.

To capture the real-world complexity of financial markets, it is often nec-

essary to modify the basic two- and three-type design in an appropriate way.

Most frequent generalizations of this category rely on inclusion of memory to

the model; the aim of this effort is to mimic certain psychological features

known to have been present in human behavior—these are chiefly phenomena

called ‘law of small numbers’ and ‘representativeness’. These terms mean, in

layman’s terms, that people hope to infer generally valid characteristics even

if they only have a small sample of observations at hand (Kahneman & Tver-

sky, 1972). This relates to financial markets by the fact that some investors

incorrectly consider short-term above-average profits to be permanent also in

the long run. Another feature that model makers often include in the model

is more sophisticated adaptive behavior. Such an element can be incorporated

into the design by modeling e.g. potential profits from a strategy rather than

realized profits, as is often the case in simpler models. The interested reader

is referred to Chen et al. (2012, pp. 192–194) for a more detailed discussion

about two- and three-type models generalizations. In the same paper, one can

find several other appealing N-type models, e.g. the Large Type Limit (LTL)

or the Continuous Belief System (CBS). For the LTL, see e.g. Brock & Hommes

(2001) or Brock et al. (2005), for the CBS e.g. Diks & Weide (2005). ling e.g.

potential profits from a strategy rather than realized profits, as is often the

case in simpler models. The interested reader is referred to Chen et al. (2012,

pp. 192–194) for a more detailed discussion about two- and three-type models

generalizations. In the same paper, one can find several other appealing N-type

models, e.g. the LTL or the CBS. For the LTL, see e.g. Brock & Hommes (2001)
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or Brock et al. (2005), for the CBS e.g. Diks & Weide (2005).

Last part of this subsection introduces two of the three most fundamental

N-type designs which the subsequently developed ABMs more or less strictly

follow: so-called Ant model and Lux’s model. The third major scheme, ABS

model developed by Brock & Hommes (1997) and Brock & Hommes (1998), is

described in more detail in Chapter 3.

Kirman’s ‘Ant model’ Kirman (1993) developed a model which aimed to explain

apparently ‘strange’ behavior of ant colonies which the author fittingly

compares to similarly irrational (at first glance) examples of human con-

duct. One such peculiarity might be choosing a restaurant. Becker (1991)

gives an example of two restaurants with similar food, prices, service, and

other amenities which are located just across the street. Yet, one of the

restaurants is always full while the other always empty. Kirman (1993)

observed a similar behavioral pattern in ant colonies—in spite of being

offered two identical food sources, the ants would at first focus on only

one of those but, after some time, “. . . the ants switched their attention

to the source they had previously neglected.” (Kirman, 1993, p. 137).

The ‘Ant model’ differs from the general setting given in the second para-

graph of Subsection 2.2.1 by the switching mechanism—in this case, the

behavior of agents is driven by a herding mechanism rather than financial

success; behavior of the majority is the main ‘recruitment’ determinant.

The author characterizes the switching potential of an individual by two

parameters—probability of self-conversion and probability of being con-

verted. The former refers to a chance of the individual of selecting the

other ‘strategy’ without being influenced by other agents, the latter to

a chance of the individual of being persuaded to select the strategy of a

different agent with whom the individual is randomly matched. In terms

of financial markets, the self-conversion might be viewed as a reaction of

a trader to arrival of exogenous news while the persuasion could be con-

sidered a replacement of one trader by another one who share a different

opinion than the original.

The development of the system is described by a simple Markov chain.

Suppose there are two sources of food, say black and white, and N ants—

this translates to economic terms as existence of two trading strategies

and N distinct traders. Then the state of the system at every moment

is described by k, a number of ants feeding at the black source, and the
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system evolves as follows: two ants meet at random and the first one

is converted to the belief of the other one with probability 1 − δ. The

system, starting at state k, develops either to

k + 1 with prob. p1 =
(
1− k

N

)
·
(
ε+ (1− δ) · k

N−1

)
(2.3)

or to

k − 1 with prob. p2 = k
N
·
(
ε+ (1− δ) · N−k

N−1

)
, (2.4)

where ε is the self-conversion probability. The system might also remain

unchanged (i.e. at state k) with probability 1− p1 − p2.

The ‘Ant model’ is relevant for economics and finance as it tries to explain

the herding behavior—a well documented process supported by numerous

empirical findings (see e.g. Devenow & Welch, 1996). One of the first

authors to point out this tendency was Keynes (1936). In this work,

Keynes suggested that the stock market was similar to a beauty contest

in which the judges picked who they thought other judges would select,

rather than who they regarded as the most beautiful. Such an observation

is consistent with Avery & Zemsky (1998) who define the herding behavior

as occurring when individuals trade against their initial beliefs and follow

the majority trend in previous trade instead. For a more detailed analysis

and specific examples of herding in financial markets, such as bubbles and

crashes, the interested reader is referred to Brunnermeier (2001).

Lux’s model Lux (1995) introduced a model with a herding element as well.

In this model however, rather than by pairwise micro interactions, each

trader is influenced by prevailing market sentiment, which is assumed to

be represented by an average of all other traders’ influence. As opposed

to the models described above, Lux’s model employs continuous time.

This characteristic makes the model naturally mathematically very dif-

ferent from the Ant model or the ABS model. Yet, similarly to the Ant

model, the total population of traders is segmented into 2 major groups:

fundamentalists and noise traders. Lux & Marchesi (2000) consider a to-

tal number of N traders who are either fundamentalists or chartists. The

latter group of traders is further divided into optimistic and pessimistic—

or, as Lux (2008) remarks, bullish and bearish—subgroups. Suppose the

number of fundamentalists is nf , number of chartists nc, number of op-

timistic chartists n+, and number of pessimistic chartists n−. Hence,
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N = nf + nc and nc = n+ + n−. What follows is a brief analysis of

‘contagion’ and switching between the two subgroups within the chartist

group, as well as between fundamentalist and chartist belief.

The prevailing ‘market sentiment’ of chartists takes the following form:

x =
n+ − n−

nc
. (2.5)

It is useful to note that x ∈ 〈−1, 1〉—x = 0 corresponds to a situation

of balanced opinions among the noise traders in the market, while the

extreme cases x = −1 and x = 1 to a situation in which pessimism or

optimism, respectively, is the sole opinion among them.

It is assumed by Lux (1995; 1998) that all agents have an influence of

the same strength—the overall ‘aggregate’ impact subsequently leads to

migration between the two subgroups of optimists and pessimists. These

transitions are modeled by Poisson processes with rates p+− and p−+ for

an individual to switch to the optimistic belief and to the pessimistic

belief, respectively.

Lux & Marchesi (2000) use the following setting:

p+− = υ1 ·
(nc
N
· exp (U1)

)
p−+ = υ1 ·

(nc
N
· exp (−U1)

)
,

(2.6)

where υ1 is a parameter which characterizes the general inclination to

switching opinions,3 U1 = α1x + α2
p′

υ1
a function of x, the prevailing

market sentiment, and p′ = dp/dt, the change in the price of the asset.

α1 is a parameter which captures the effect and significance of herding

behavior and α2 a parameter which measures the importance placed on

actual price development by the chartists.

If we denote ∆t a certain time interval, then the probability of an agent to

switch from one subgroup to the other converges to ∆t ·p+− (or ∆t ·p−+)

for ∆t→ 0. Provided that the Poisson processes specified in Equation 2.6

are indeed identical for each member of the two subgroups, the transition

rates for subgroup occupation numbers can be derived from conditional

probabilities w (n+ + 1, t+ ∆t|n+, t) and w (n− + 1, t+ ∆t|n−, t) as fol-

3This parameter is somewhat analogical to the intensity of choice parameter β used in
ABS models by e.g. Brock & Hommes (1998); Hommes (2006; 2013).
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lows (Lux, 2008, pp. 40–41):

lim
∆t→0

w (n+ + 1, t+ ∆t|n+, t)

∆t
≡ w (n+ + 1|n+, t) = n− · p+−

lim
∆t→0

w (n− + 1, t+ ∆t|n−, t)
∆t

≡ w (n− + 1|n−, t) = n+ · p−+.

(2.7)

Furthermore, the agents might also switch between the fundamentalist

and chartist belief based on myopic comparison of excess profits from

the respective strategies with probability which depends on the profits’

difference. Again, the transition probabilities are modeled similarly as

in Equation 2.6; we refer the interested reader e.g. to Lux & Marchesi

(2000, p. 683) or to Lux (2008) who offer an in-depth survey on the me-

chanics of the model. To summarize, the herding behavior only matters

for switches within the noise traders’ group while profit differential is the

key determinant for fundamentalists—chartists transitions.

2.2.2 Autonomous Agent Models

As opposed to those based on N-type designs, agents present in an Autonomous

Agent Model (AAM) are, as time goes by, able to discover and develop new

strategies. This possibility arguably allows this category of ABMs to resemble

the reality more accurately. Having merely the option to select from a class of

pre-determined strategies, the agents in N-type designs are severely restricted

in the level of autonomy (Chen et al., 2012); AAM’s agents are on the other

hand allowed to behave more like financial agents of the real world.

Santa Fe Institute Artificial Stock Market (SFI-ASM) At the outset of the 1990s,

“. . . rational expectations approach to economic theory has been challenged

from several quarters, and increasing interest has been shown in an al-

ternative evolutionary economics viewpoint.” (Palmer et al., 1994, p.

264). The SFI-ASM, an example of the evolutionary approach, is the most

prominent representative of AAMs.

SFI-ASM uses a lot of trading strategies which are gradually enhanced as

(discrete) time passes. It is the emphasis on learning and on development

of strategies that is essential for this model and that makes it unique. The

structure is built as follows: there are N traders initially endowed with

certain amount of money. Each period, the traders allocate their funds

between cash, which bears a risk-free return rf , and a risky stock, which
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pays stochastic dividend generated by a mean-reverting autoregressive

process dt+1 = d̄+ ρ ·
(
dt − d̄

)
+ ut+1 in which d̄ is the dividend mean, ρ

a strength of the mean-reversion, and ut+1, ut+1 ∼ N (0, σ2
u), a random

shock. All agents maximize the same Constant Absolute Risk Aversion

(CARA) utility function of expected total wealth of the form

U (Wi,t+1) = − exp (−λ ·Wi,t+1) , (2.8)

where λ represents the extent of risk aversion, and Wi,t+1 the expected

wealth of ith agent in the subsequent period. Maximization of individual

agents’ utility is subject to a budget constraint. Specifically,

Wi,t+1 = xi,t · (pt+1 + dt+1) + (1 + rf ) · (Wi,t − ptxi,t) , (2.9)

where xi,t is the amount of stock agent i holds in period t, and p the

stock’s price. Provided the stock returns are normally distributed,4 the

optimal amount of stock the ith agent desires to hold is then

x̃i,t =
Ei,t (pt+1 + dt+1)− pt · (1 + rf )

λ · σ2
t,p+d

, (2.10)

where Ei,t (pt+1 + dt+1) is ith agent’s expectation formed at time t about

the sum of next period’s dividend and price of the stock, and σ2
t,p+d the

variance of the stock’s combined dividend and price time series. When all

agents decide upon the optimal amount of stock, a market specialist then

tries to balance the market by setting a clearing price. In SFI-ASM, the

heterogeneity of agents is captured in the term Ei,t (pt+1 + dt+1); while

it is true that all agents do have the same utility function specified in

Equation 2.8, they differ in derivation of the expectation term. Such

forecasts are conducted using individual trading rules of the basic form

condition met→ derive forecast. (2.11)

More specifically, each agent is equipped with 100 trading rules—jth rule

4Ehrentreich (2007) and Arthur et al. (1997) point out that this assumption might not
hold in the absence of homogeneous RE equilibrium. See the respective works for details and
further discussion.
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of ith agent then takes the following form:

rulei,j =
{

(cond. part) , (predictor) ,Φt,i,j, υ
2
t,i,j

}
, (2.12)

where Φt,i,j is a measure of the forecast’s fitness, and υ2
t,i,j is the forecast’s

accuracy. Simply put, the ‘condition part’ may contain either value 1 or

0—then, in order for the condition to be met, a market descriptor5 must

also contain either 1 or 0, respectively—or value # which means that the

rule ignores a particular market descriptor. Usually, condition parts of

several rules satisfy the market descriptor. Agents then choose the best

rule according to the value of accuracy measure υ2
t,i,j of each rule—this

measure captures how well the rule predicts the actually realized sum

of price and dividend of the stock. Finally, the term Ei,t (pt+1 + dt+1)

is formed as at,i,j · (pt + dt) + bt,i,j where at,i,j and bt,i,j are real-valued

parameters contained in the ‘predictor’ part of each rule.

Additionally, agents gradually improve their prediction rules by altering

them and possibly replacing the poorly performing ones using a so-called

Genetic Algorithm (GA). New trading rules might be formed either by

mutation or by crossover. For details about the GA, we refer the reader to

Holland (1975); Goldberg (1989); Eshelman (2000), or Ehrentreich (2007,

chap. 4).

Numerical simulations of the SFI-ASM are characterized by two distinct

‘modes’: in the first one, one can identify periods of lower volatility with

prices close to the fundamental price6 while in the second one, consider-

able deviations from the fundamental price and excessive volatility char-

acterize the market which is inevitably dominated by chartists.

2.3 Prospect Theory

Created by Kahneman & Tversky (1979), Prospect Theory (PT) is an alterna-

tive to expected utility theory as a decision making model under risk. Some of

the most fundamental foundations of the expected utility theory are inconsis-

tent with real-world human behavior, “In particular, people underweight out-

5Market descriptor is a simple true-or-false statement coded either as 1 or 0; such descrip-
tor might be e.g. whether the stock’s instantaneous price is greater than its fundamental
value.

6Essentially, the EMH holds in this first mode.
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comes that are merely probable in comparison with outcomes that are obtained

with certainty.” (Kahneman & Tversky, 1979, p. 263). Moreover, according to

PT, people decide in terms of gains and losses rather than of the final outcome;

the term ‘utility’ is replaced by the term ‘value’ which is associated with the

relative changes in wealth.

In the 1979 paper, Kahneman and Tversky—primarily psychologists—asses

and criticize the then-mainstream paradigm of expected utility using a ques-

tionnaire survey. The respondents, surprisingly, often gave answers which were

in sharp contrast to what they were supposed to answer according to the widely

accepted theory; presented with a pair of problems, the respondents answered

the second problem contradictorily to the first one, although the problems were

intrinsically identical. One such example goes as follows (Kahneman & Tver-

sky, 1979, pp. 265–266): there are two problems (1 and 2) and the respondents

are, in each problem, asked to select one from two possible ‘prospects’, A or B.

The term ‘prospect’ here refers to a gamble—respondents obtain certain sum

of money with some probability.

� Problem 1:
A : 2500 with. prob. 0.33

2400 with. prob. 0.66

0 with. prob. 0.01

B : 2400 with. prob. 1

(2.13)

� Problem 2:
A : 2500 with. prob. 0.33

0 with. prob. 0.67

B : 2400 with. prob. 0.34

0 with. prob. 0.66

(2.14)

While 82 % of respondents chose prospect B in Problem 1, 83 % of them

selected prospect A in Problem 2. However, letting u (•) be the utility, the for-

mer preference implies u (2400) > 0.33u (2500)+0.66u (2400) or 0.34u (2400) >

0.33u (2500), while the latter the opposite thus violating the expected util-

ity theory. Listing several more problems, Kahneman & Tversky (1979) dis-

cover the similar contradictory patterns and distinguish three major effects that

emerge from them:

Certainty Effect The certainty effect corresponds to the set of problems given

in Equation 2.13 and Equation 2.14 and asserts that people tend to over-
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weight outcomes regarded as certain relative to outcomes which are only

probable.

Reflection Effect The reflection effect addresses diametrically different attitudes

of people towards gains and losses. While arguably most people are risk-

averse in the ‘positive domain’ (i.e. when choosing among prospects which

offer gains), they are mostly risk-seeking in the negative domain. Letting

(x, p) denote a prospect that pays x units of cash with probability p and

0 units of cash with probability 1 − p, then while most people prefer

e.g. (3000, 1) to (4000, 0.8), majority of them also prefers (−4000, 0.8) to

(−3000, 1) although higher expected value is associated with the other

prospect in both cases. In more recent economic literature, the reflection

effect is often termed gain and loss asymmetry.

Isolation Effect The isolation effect refers to a situation in which alternative

prospects share a common component—people often do not take such a

component into account and only focus on the differences between the

alternatives. However, prospects can usually be decomposed in more than

one way and ignorance of this fact produces inconsistent preferences.

According to PT, selection process consists of two parts: editing and eval-

uation. In the former, the individual conducts a preliminary analysis of the

available prospects in order to facilitate the selection, and in the latter, the

individual evaluates the edited prospects, assigns a value to each of them, and

makes the final decision. The interested reader might find details about the

editing phase in Kahneman & Tversky (1979, pp. 274–275), here we will present

the most essential properties of the evaluation phase.

The overall value V of an edited prospect is formulated in terms of π (•)
and v (•). The former is called a weighting function and it is a function of

probability of the prospect’s respective outcomes, the latter is called a value

function and it assigns a number v (•) to each outcome. Letting (x, p; y, q)

denote a prospect which pays x, y, or 0 with probability p, q, and 1 − p − q,
respectively, the basic equation which assigns value to a regular prospect7 is

then given as follows:

V (x, p; y, q) = π (p) · v (x) + π (q) · v (y) , (2.15)

7Regular prospect is a prospect such that either p + q < 1, x > 0 > y, or x 6 0 6 y.
Evaluation of prospects which are not regular follows a different rule—details are provided
in Kahneman & Tversky (1979, p. 276).
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where it is assumed that v (0) = 0, π (0) = 0, and π (1) = 1. It is important

to note that the weighting function is not a probability measure and typical

properties of probability need not be valid here, and that the value function is

defined with respect to a reference point which is usually given as x = 0, i.e.

the point in which a gain changes to a loss and vice versa.

Figure 2.1: Estimates of the weighting function π (p).
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0.2 0.4 0.6 0.8 1.0
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Source: Author’s computations using results of Tversky & Kahneman (1992), Camerer &

Ho (1994), and Wu & Gonzalez (1996).

Kahneman & Tversky (1979) defined the weighting function π (p) relatively

vaguely (from the mathematical point of view, not from the psychological one)

as an increasing function of p, overweighting ‘small’ probabilities and ‘under-

weighting’ large ones. Moreover, the function was discontinuous near p = 0

and p = 1 to reflect that there is a limit to how little a decision weight can

be associated with an event. Several attempts have been made to estimate the

weighting function; Tversky & Kahneman (1992) fitted a model of the form

pγ

(pγ + (1− p)γ)1/γ
, (2.16)

where γ is a parameter that controls for curvature of the weighting function,

and obtained γ̂ = 0.61. Camerer & Ho (1994) used the same framework and
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reported γ̂ = 0.56, and Wu & Gonzalez (1996) gave γ̂ = 0.71, using again the

model specified in Equation 2.16. The graphs of the weighting function with

the parameter γ specified by these three results are plotted in Figure 2.1.

Figure 2.2: Estimates of the value function v (x).
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Source: Author’s computations using results of Tversky & Kahneman (1992), Harrison &

Rutström (2009), and Tu (2005).

The value function v (x) satisfies the following properties: it is increasing

∀x, i.e. v′ (x) > 0 always holds, convex below the reference point, i.e. v′′ (x) > 0

for x < 0, and concave above it, i.e. v′′ (x) < 0 for x > 0. Additionally, the

value function is usually thought to be steeper for losses than for gains. Several

scholars have estimated the value function, too, most often using a piecewise

power function proposed by Tversky & Kahneman (1992). The function is of

the following form:

v (x) =

{
xα x > 0

−λ · (−x)β x < 0,
(2.17)

where the parameters α and β determine curvature of the value function for

gains and for losses, respectively, relative to the reference point of x = 0, and

λ is a parameter understood as loss aversion characterization.

Estimating the Equation 2.17, Tversky & Kahneman (1992) reported α̂ =

0.88, β̂ = 0.88, and λ̂ = 2.25, Tu (2005) α̂ = 0.68, β̂ = 0.74, and λ̂ = 3.2, and,
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e.g., Harrison & Rutström (2009) α̂ = 0.71, β̂ = 0.72, and λ̂ = 1.38; all versions

are plotted in Figure 2.2.

An interesting application of PT is offered by Barberis et al. (2001) who

construct an economy in which investors are loss averse and derive their utility

not only from mere instantaneous consumption, but also from variations in the

value of their total wealth. Here the degree of loss aversion is given by previous

investment successes or failures of an investor and hence captures the fact that

“After prior gains, the investor becomes less loss averse: the prior gains will

cushion any subsequent loss, making it more bearable. Conversely, after a prior

loss, he becomes more loss averse: after being burned by the initial loss, he is

more sensitive to additional setbacks.” (Barberis et al., 2001, p. 2).

To find more about relevance of PT for financial markets and its applications

thereat, the interested reader might consult Subsection 4.1.1 of Chapter 4.



Chapter 3

Framework of the model

In the following chapter, general features and framework of the original Hete-

rogeneous Agent Model (HAM) proposed by Brock & Hommes (1998) will be

described. The main characteristic of the model is undoubtedly presence of

heterogeneity—as was already pointed out in Chapter 2, the differences among

the agents’ beliefs make up an essential part of the model’s design and play a

vital role in the emergence of inter-agent interactions.1

In today’s economic theory, there is little doubt that economic agents are

heterogeneous to some extent. Frankel & Froot (1990) attribute the appar-

ent divergence of US dollar interest rate from the then macroeconomic funda-

mentals at the beginning of the 1980s to the existence of speculative traders,

Vissing-Jorgensen (2004) conducts a thorough analysis of chiefly qualitative

data2 on US stock markets from 1998 to 2002 and concludes that there is

significant disagreement among the investors regarding expected profits, and,

for instance, Hommes (2011) provides ‘evidence from the lab’ of presence of

heterogeneous expectations in an experimental financial market.

3.1 Evolutionary selection

Before the financial market application, ‘preliminary’ research in the field of

heterogeneous beliefs was done by Brock & Hommes (1997). In this paper, the

authors proposed a system used by agents to switch among different expec-

1Heterogeneity is indeed crucial for the models listed in Chapter 2 and Chapter 3, gener-
ally, however, ABMs need not have such property.

2Data was collected during telephone surveys and respondents were asked questions of
qualitative type, e.g. “What overall rate of return do you think the stock market will provide
investors during the coming twelve months?” (Vissing-Jorgensen, 2004, p. 6).
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tation rules according to the relative profitability of these rules—the system

was termed evolutionary selection or reinforcement learning. Being founded

on cobweb model,3 the switching system was not restricted to sole economic

applications but was rather intended as a general framework for description

of formation of expectations under heterogeneous beliefs. In a simple supply–

demand cobweb model with such beliefs, producers select from H different

forecasting rules of the form peh,t = fh (•), where peh,t is a price predicted by

rule h, and fh (•) a forecasting function, 1 6 h 6 H. Furthermore, nh,t de-

notes the fraction of agents using the forecasting function h for prediction. The

switching among the forecasting functions is then driven by a performance or

fitness measure specific and unique for each forecasting function, e.g. realized

net profits attained with the respective forecasting function.

Generally, the fitness measure takes the form4

Ũh,t = Uh,t + εi,h,t, (3.1)

where Uh,t is the non-random, deterministic part, and εi,h,t independent, iden-

tically distributed noise. Typically, the term Uh,t depends on past realizations

of a market indicator such as market price. Finally, the switching of rules is

based on probabilities—associated with each rule—that an agent will select the

rule. These probabilities are modeled using the multinomial logit model: led

using the multinomial logit model:

nh,t =
exp (β · Uh,t−1)

Zt−1

, (3.2)

where Zt−1 ≡
∑H

h=1 exp (β · Uh,t−1) is a normalization factor such that the frac-

tions nh,t add up to 1, and β, β > 0,5 is a parameter called intensity of choice

which measures the agents’ ‘sensitivity’ to the selection of optimal (i.e. the

best-performing) forecasting rule. Two extreme cases may be distinguished—if

β =∞, all agents unerringly choose the best rule, while if β = 0, the fractions

nh,t will remain constant over time and fixed to 1/H, i.e. nh,t = 1/H ∀h, t. The

former extreme case corresponds to the situation in which there is no noise and

thus all agents select the optimal strategy while the latter extreme case im-

3Cobweb model explains the origin of price fluctuations in a simple demand–supply model
in which the there is a time lag between supply and demand decisions.

4The term εi,h,t represents individual agents’ forecasting errors.
5Value of β might generally be negative—such setting would, however, make little eco-

nomic sense as the logic of the model would be shifted ‘upside down’ and unprofitable strate-
gies would be preferred to profitable one.
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plies presence of noise with infinite variance and inability of agents to switch

strategies at all.

3.2 Adaptive Belief System

Adaptive Belief System (ABS), originally introduced in Brock & Hommes

(1998) and slightly reformulated in Hommes (2006),6 is a financial market ap-

plication of the Evolutionary selection system of forecasting rules described in

Section 3.1. Essentially, the ABS is a discounted value asset pricing model—

extended to heterogeneous beliefs—in which the agents employ (myopic) mean-

variance optimization while having the possibility to invest in either a risk-free

or a risky asset. The agents are (only) boundedly rational and, in compliance

with the Evolutionary selection system, select from a set of predictors based

on the predictors’ past performance.

3.2.1 Model mechanics

The risk-free asset pays a fixed rate of return r and is perfectly elastically

supplied while the risky asset pays an uncertain dividend. Letting pt and yt

denote the ex-dividend price of the risky asset and its random dividend process,

respectively, and zt the ‘amount’7 of risky asset the agent purchased at time t,

each agent’s wealth dynamics is of the following form:

Wt+1 = R ·Wt + zt · (pt+1 + yt+1 −R · pt) , (3.3)

where R is the gross risk-free return rate equal to 1 + r and random vari-

ables are typeset in bold face. There are H forecasting rules—this fact im-

plies existence of H different strategies or, equivalently, H distinct classes of

agents. Let Eh,t and Vh,t, respectively, denote the belief of agent who uses

forecasting rule h about conditional mean and conditional variance8 of wealth,

1 6 h 6 H. It is assumed that all agents maximize the same, exponential-type

CARA utility function of wealth of the form U (W ) = − exp (−a ·W ), where a

6This reformulation consists in slightly different notation of terms which include the vari-
able ‘time’; the ‘time’ subscripts are shifted and the model becomes more comprehensible. For
the purposes of this thesis, we will therefore use this ‘shifted’ formulation given in Hommes
(2006).

7Such ‘amount’ might be, e.g., a number of shares of a certain stock.
8In contrast to Chapter 2, we will not use bold face to denote expectation in order to

avoid confusion with random variables’ denotation.
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is a risk-aversion parameter. Given the mean-variance maximization, the opti-

mal demand z∗h,t for the risky asset of agents of type h then solves the following

maximization problem:9

max
zh,t

{
Eh,t (Wt+1)− a

2
· Vh,t (Wt+1)

}
. (3.4)

The demand z∗h,t is then

z∗h,t =
Eh,t (pt+1 + yt+1 −R · pt)
a · Vh,t (pt+1 + yt+1 −R · pt)

, (3.5)

which, assuming that Vh,t ≡ σ2 ∀h, t, simplifies to

z∗h,t =
Eh,t (pt+1 + yt+1 −R · pt)

a · σ2
. (3.6)

Denoting zs the supply of outside risky shares per investor, and nh,t the

fraction of agents using forecasting rule h, the demand–supply equilibrium is

H∑
h=1

nh,t ·
Eh,t (pt+1 + yt+1 −R · pt)

a · σ2
= zs, (3.7)

where, again, H is the total number of forecasting rules (i.e. strategies). In

case of zero supply of outside shares, i.e. zs = 0, Equation 3.7 becomes

R · pt =
H∑
h=1

nh,t · Eh,t (pt+1 + yt+1). (3.8)

Now, should all traders be identical and their expectations homogeneous,

we would obtain a simplified version of Equation 3.8 called arbitrage market

equilibrium of the form

R · pt = Eh,t (pt+1 + yt+1) . (3.9)

Equation 3.9 asserts that this period’s price of the risky asset is equal to the

sum of next period’s expected price and dividend, discounted by the gross risk-

free interest rate. In this homogeneous-expectations case, provided that the

transversality condition

lim
t→∞

Et (pt+k)

(1 + r)k
= 0 (3.10)

9Proof of this result is given in Section A.1 of the Appendix A.
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holds,10 the fundamental price of the risky asset is given as

p∗t =
∞∑
k=1

Et (yt+k)

(1 + r)k
, (3.11)

where Et is the conditional expectation operator. The price p∗t is the equilib-

rium price of the risky asset in a perfectly efficient market with fully rational

traders and, as can be seen directly from Equation 3.11, it depends on the ex-

pectation of the stochastic dividend process yt, Et (yt). Assuming the dividend

process yt is independent, identically distributed with mean ȳ, the fundamental

price p∗t becomes constant ∀t and is given by

p∗ =
∞∑
k=1

ȳ

(1 + r)k
=
ȳ

r
. (3.12)

The deviation from the fundamental price is defined as follows:

xt = pt − p∗t . (3.13)

There are now two additional assumptions Brock & Hommes (1998) make:

1. Expectations about future dividends yt+1 are the same for all agents,

regardless of the specific forecasting rule they use, and equal to the true

conditional expectation. In other words, Eh,t (yt+1) = Et (yt+1) ∀h, t.

2. Agents believe that the stock price might deviate from the fundamental

price p∗t by some function fh which depends on previous deviations from

the fundamental price, i.e. on xt−1, . . . , xt−K . This assumption might be

stated as

Eh,t (pt+1) = Et
(
p∗t+1

)
+ fh (xt−1, . . . , xt−K) ∀h, t. (3.14)

It is now important to note two crucial facts: firstly, the assumption number

one above implies that all agents have homogeneous expectations about future

dividends, i.e. the heterogeneity of the model lies in the assumption number

two. Secondly, the asset price in period t + 1, pt+1, is predicted using price

realized in period t − 1—not in period t—as the agents are yet unaware of

10Hommes (2013, p. 162) remarks that the Equation 3.9 is also satisfied by the so-called
rational bubble solution of the form pt = p∗t + (1 + r)

t · (p0 − p∗0). However, this solution does
not satisfy the transversality (or ‘no-bubbles’) condition
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the price pt when they make the prediction. This fact follows directly from

Equation 3.7.

Using the facts that pt = xt + p∗t and that the fundamental price p∗t satisfies

R · p∗t = Et
(
p∗t+1 + yt+1

)
, (3.15)

Equation 3.8 can be reformulated in deviations from the fundamental price by

a substitution using Equation 3.14 as

R · xt =
H∑
h=1

nh,t · Eh,t (xt+1) ≡
H∑
h=1

nh,t · fh (xt−1, . . . , xt−K). (3.16)

The fractions nh,t are given by Equation 3.2. Next, Brock & Hommes

(1998) define realized excess return, which, for the purpose of this thesis, will

be denoted as Rt+1 = pt+1 + yt+1 − R · pt. The realized excess return over

period t to period t+ 1 might be expressed in deviations from the fundamental

value as follows:

Rt+1 = pt+1 + yt+1 −R · pt = xt+1 + p∗t+1 + yt+1 −R · xt −R · p∗t
= xt+1 −R · xt + p∗t+1 + yt+1 − Et

(
p∗t+1 + yt+1

)︸ ︷︷ ︸
δt+1

+Et
(
p∗t+1 + yt+1

)
−R · p∗t︸ ︷︷ ︸

=0

= xt+1 −R · xt + δt+1,

(3.17)

where the latter underbrace holds because Equation 3.15 is satisfied. The term

δt+1 is a Martingale Difference Sequence with respect to some information set

Ft, i.e. E (δt+1|Ft) = 0 ∀t.
Now, the fitness measure of strategy h, Uh,t, is defined as

Uh,t = Rt+1 · z∗h,t = (xt+1 −R · xt + δt+1) · z∗h,t. (3.18)

Two cases might be distinguished:

1. The case in which δt+1 = 0 corresponds to a deterministic nonlinear

pricing dynamics with constant dividend ȳ and, according to Hommes

(2006) who uses slightly modified notation,11 Equation 3.18, written in

11The notation difference consists in ‘shifting’ time subscripts of realized excess return by
one period—for this reason, Equation 3.18 reduces to Equation 3.19 only after this shift.
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deviations, reduces to

Uh,t = (xt −R · xt−1) · fh,t−1 −R · xt−1

a · σ2
, (3.19)

where fh,t−1 is the forecasting function of type h.

2. The case in which dividend is given by a stochastic process yt = ȳ +

εt where εt is independent, identically distributed random variable with

uniform distribution. In these circumstances, δt+1 = εt+1.

For the formation of expectations, the functions fh,t are crucial. Brock &

Hommes (1998) proposed simple forecasting rules of the form

fh,t = gh · xt−1 + bh (3.20)

since, as Hommes (2013, p. 167) explains, “. . . for a forecasting strategy to have

any impact in real markets, it has to be simple. For a complicated forecasting

rule it seems unlikely that enough traders will coordinate on that particular

rule so that it affects market equilibrium.” The term gh is a trend parameter

indicating the strength of the particular’s strategy trend following (or possibly

reverting), and the term bh is a bias parameter measuring the magnitude of

the strategy’s bias. For gh = bh = 0, the function fh,t reduces to fh,t ≡ 0

and corresponds to the fundamentalist belief of no price deviations from the

fundamental value. Additionally, if gh 6= 0, then such a trader type is called

a chartist. This class of traders can be further divided into four categories:

the type is called a pure trend chaser if 0 < gh 6 R, a strong trend chaser if

gh > R, a contrarian if −R 6 gh < 0, and a strong contrarian if gh < −R.

Finally, the term bh determines the nature (if bh 6= 0) of each agent class’s

bias—if bh < 0, the bias is downward, while if bh > 0, the bias is upward.

Provided the above-mentioned assumptions hold, the ABS is fully specified

by the following three equations:

R · xt =
H∑
h=1

nh,t · (gh · xt−1 + bh) + εt,

nh,t =
exp (β · Uh,t−1)
H∑
h=1

exp (β · Uh,t−1)

,

Uh,t−1 = (xt−1 −R · xt−2)
gh · xt−3 + bh −R · xt−2

a · σ2
,

(3.21)
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where εt is a (small) noise term which represents natural uncertainty about the

performance of economic fundamentals and replaces the term δt = εt defined

above.



Chapter 4

Extensions

In this chapter, we will introduce two major extensions of the original Brock &

Hommes (1998) model, which is described in detail in Chapter 3, investigate

several versions of them—mainly with respect to various different settings of

parameters—and evaluate on each such version. The goal of this effort is to

modify the mechanics of the model in a certain way but, at the same, try

to leave the model’s fundamental features intact. At the end of the chapter,

addition of traders’ memory to the model will be discussed. As the title of this

thesis suggests, the two extensions are

1. features of Prospect Theory, and

2. Asynchronous Updating.

4.1 Features of Prospect Theory

The reason for the attempt to merge the original HAM with PT is the indis-

putable relevance of findings of PT for study of human decision making and

choice theory.1 For the convenience of the interested reader, we will briefly re-

call the main findings and results of PT; for a more in-depth treatment, please

consult Section 2.3 of Chapter 2.

Proposed in the seminal paper of Kahneman & Tversky (1979), PT is a cri-

tique of then-mainstream expected utility theory. Using convincing evidence

obtained from questionnaires, Kahneman & Tversky (1979) illustrate several

issues with the expected utility and its applicability to real-life human deci-

sion making. The most critical objection consists in incapacity of the expected

1See Subsection 4.1.1.
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utility theory to explain certain ‘irrational’2 choices of people. As a result, Kah-

neman & Tversky (1979)—and later Tversky & Kahneman (1992)—propose a

brand new descriptive3 theory which takes all such ‘irrational’ choices into ac-

count and explains them rigorously using (chiefly) so-called value function and

weighting function. Graphical representations of both functions are provided

in Figure 2.2 and Figure 2.1, respectively. The three major features of PT are

1. Existence of a reference point. PT suggests that people make decisions

in terms of gains and losses with respect to some reference point, rather

than in terms of final wealth.

2. Differences in treatment of gains and losses. While most people are risk-

seeking towards losses, they are, at the same time, risk-averse towards

gains. Moreover, most people are generally loss-averse which explains

why the value function is steeper for losses than for gains. Figure 2.2

shows some notable estimates of the value function.

3. Distorted understanding of probability. According to PT, average per-

son underweights large probabilities and overweights small probabilities.

Given the proposed specification and shape of the weighting function,

value is not linear in probability.

4.1.1 Relevance for financial markets

In this subsection we point out several interesting studies and papers that deal

with applications of PT in financial markets. The main motivation is to show

that inclusion of PT features into the original HAM is meaningful and that it

may shift the model closer to the real-world markets.

Since the formulation of PT, several scholars have confirmed significant rele-

vance of it for financial markets. One of the most cited applications of PT is an

aid in explanation of so-called disposition effect. The term was first coined by

Shefrin & Statman (1985) and refers to a tendency to “. . . sell winners too early

and ride losers too long,” (Shefrin & Statman, 1985, p. 778) essentially mean-

ing that traders tend to hold value-loosing assets too long and value-gaining

assets too short. Already in 1985, the authors, using the PT’s value function,

2The ‘irrationality’ is meant within the expected utility theory. It may be claimed that
any possible choice individuals make is optimal—and hence rational—for them.

3PT is descriptive in a sense that it tries to capture the real-world decision making whereas
the expected utility theory is de facto prescriptive—it models how people are supposed to
decide.
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explain the disposition effect for an investor who owns a loosing stock as a

gamble between

1. selling the stock now and thereby realizing a loss, or

2. holding the stock for another period given, say, 50–50 chance between

loosing some additional value or breaking even.

As the investor finds himself in the ‘negative domain’ with respect to the

reference point given here as the break even point, the choice between the

two above-mentioned options is associated with the convex part of the value

function. This fact implies that the investor will select the second option and

thus ‘ride the loser too long’.

Li & Yang (2013) also attempt to explain the disposition effect using findings

of PT. In this paper, the authors build a general equilibrium model and, besides

the disposition effect, they also focus on trading volume and asset prices. The

results suggest that loss aversion implied by PT tends to predict a reversed

disposition effect and price reversal for stocks with non-skewed4 dividends.

Yao & Li (2013), on the other hand, investigate trading patterns in the

market with Prospect-theoretical investors who base their choices on the value

and weighting functions and related features of PT. The authors find out that

the three main features of PT (those described in the first part of this section)

can be regarded as behavioral causes of negative-feedback trading. The authors

subsequently construct a market populated by the PT traders and traders with

Constant Relative Risk Aversion (CRRA) utility function and discover that

individual PT preferences might cause contrarian noise trading.

Some other research efforts related to the study of PT traits in financial

markets are made by Grüne & Semmler (2008) who try to attribute some of

the most frequently observed asset price characteristics—yet unexplainable by

‘standard’ preferences—to the loss aversion feature of traders; Giorgi & Legg

(2012) make use of the weighting function and show that dynamic models

of portfolio choice might be consistently and meaningfully extended by the

probability weighting; Zhang & Semmler (2009) further investigate properties

of the model proposed by Barberis et al. (2001), which is shortly described

at the end of Section 2.3, using time series data and conclude that models

with PT features are able to better explain some financial ‘puzzles’, e.g. the

4‘Non-skewness’ is a property of a random variable’s distribution and means that this
distribution’s skewness is close to that of normal distribution.
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equity premium puzzle;5 and, for instance, Giorgi et al. (2010) explore aspects

of Cumulative Prospect Theory—a modification of the original PT developed by

Tversky & Kahneman (1992)—and find out that financial markets’ equilibria

need not exist under assumptions of PT.

4.1.2 Inclusion into the model

As the relevance of PT is—according to current literature—highly topical, we

may now proceed to the inclusion of certain PT features into the original HAM

described in detail in Chapter 3. At first, it is important to remark that the

current writer is not aware of any previous attempts to equip the original

Brock & Hommes (1998) HAM ‘as is’ with PT features. Although there is an

abundance of PT models—of which only a small minority was mentioned in

Subsection 4.1.1—there are apparently no PT extensions of the original Brock

& Hommes (1998) model.

The plausible reason for the absence of such ABM designs is relatively self-

evident: the HAM developed by Brock & Hommes (1998) is populated with

agents with CARA utility function and the most fundamental result—demand

for the risky asset—is derived by maximization of expected utility. Such a char-

acteristic is not unique for this particular model; generally, agent-based mod-

els with heterogeneous beliefs usually employ the exponential utility function

(Shimokawa et al., 2007, p. 208). As the origins of PT were based on critique

of the expected utility theory and subsequent development of diametrically

different approach to decisions under risk, the very basic component of the

ABS—CARA utility function—seems incompatible with PT. Yet, although the

authors did not use the original Brock & Hommes (1998) model, Shimokawa

et al. (2007) proposed a relatively straightforward method to implement PT

features into ABMs in which the agents have CARA preferences. This fact facil-

itates the research of PT features within the ABM framework as it essentially

enables the researcher to keep the intrinsic mechanics of the model unchanged.

The basic structure of the model remains the same, i.e. all agents maximize

a CARA utility function of wealth. However, as opposed to the original Brock

& Hommes (1998) model, we will introduce features of PT into the model as

5The equity premium puzzle is a phenomenon that the average return on equity is far
greater than return on a risk-free asset. Such a characteristic has been observed in many
markets. The term was first coined by Mehra & Prescott (1985).
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follows: PT traders maximize utility function of the general form

Ul (W ) = − exp (−a ·B ·W ) , (4.1)

where we will term B the loss aversion parameter. Generally, the loss aversion

parameter is distinct for each agent class and time period, therefore we will

denote it as Bh,t from now on. Furthermore, note that the subscript l distin-

guishes the utility function of these PT investors from that of ‘standard’ traders

specified in the original model—we will refer to the PT traders as loss-averse

traders since this characteristic is the main feature of PT which is possible to

incorporate into the model using the utility function defined in Equation 4.1.

Other letters present in Equation 4.1 have their usual meaning as given in

Subsection 3.2.1 of Chapter 3. We assume that the wealth dynamics (i.e. the

budget constraint) is of the same form as in Equation 3.3.

The crucial aspect of the utility function given in Equation 4.1 is the loss

aversion parameter Bh,t and its specification. Following the general idea pro-

posed by Shimokawa et al. (2007, p. 211), we will define the parameter as

follows:

Bh,t =

{
cg, Eh,t (pt+1) > p̃t = p̃t (pt−1, . . . , pt−K)

cl, Eh,t (pt+1) 6 p̃t = p̃t (pt−1, . . . , pt−K),
(4.2)

where cg and cl are gain and loss parameters, respectively, 0 < cg < cl, and

p̃t = p̃t (pt−1, . . . , pt−K) is a reference point as defined by PT.6 It is important

to emphasize that each agent might maximize either the original utility func-

tion U (W ) = − exp (−a ·W ) or the ‘augmented’ utility function Ul with the

loss aversion parameter given in Equation 4.1, however, the term Eh,t (pt+1),

i.e. a (loss-averse) agent’s forecast about next period’s price, is constructed

essentially in the same way as in Equation 3.14 in Chapter 3 whether the agent

is loss-averse or not.

Optimal demand z∗l,t of the loss-averse traders for the risky asset then solves

the familiar maximization problem

max
zl,t

{
Eh,t (Wt+1)− a ·Bh,t

2
· Vh,t (Wt+1)

}
, (4.3)

where Vh,t (Wt+1) is the (loss-averse) traders’ belief about next period’s condi-

6See, e.g., the beginning of Section 4.1 or Section 2.3.
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tional variance of wealth, and is thus given as7

z∗l,t =
Eh,t (pt+1 + yt+1 −R · pt)

a ·Bh,t · σ2
, (4.4)

where we used the assumption that

Vh,t (pt+1 + yt+1 −R · pt) ≡ σ2 ∀h, t, (4.5)

i.e. the assumption that beliefs of all traders about the conditional variance,

regardless of the agents’ loss-aversion feature, are identical and equal to σ2 for

all time periods.8

Note that the basic structure of the model remains the same: there are

H distinct trading (or, equivalently, price-forecasting) strategies (i.e. there

are essentially H classes of agents or traders), and each agent maximizes a

CARA utility function. Certain number of the H classes, say first L classes,

0 6 L 6 H, are endowed with the above-specified PT feature—optimal demand

of agents of these L classes for the risky asset is given by Equation 4.4—while

the agents of the H−L remaining classes are ‘standard’ in terms of the original

model’s construction and do not exhibit PT behavior. The general specification

of the optimal demand for the risky asset, z∗h,t, 1 6 h 6 H, thus remains the

same and is given by Equation 3.6 where, if hth class of agents has the PT

feature (i.e. for h 6 L, 1 6 h 6 H), we use z∗l,t given by Equation 4.4 instead

of z∗h,t.

In presence of strategies with the PT feature, the fitness measure of strategy

h, Uh,t, then becomes

Uh,t =

{
(xt −R · xt−1) gh·xt−2+bh−R·xt−1

a·σ2 , h > L

(xt −R · xt−1) gl·xt−2+bl−R·xt−1

a·Bh,t−1·σ2 , h 6 L,
(4.6)

where we used the notation gl and bl to indicate the trend and bias parameters

of the strategies with the PT feature. Note the timing of the loss aversion

parameter Bh,t: for fitness measure in time t, it is important to delay the

parameter and work with Bh,t−1 in order to use the correct reference point

p̃t−1 whose most recent deviation from the fundamental price occurs in time

7Proof of this result is very similar to that of the original model’s demand, which is given
in Section A.1 of the Appendix A.

8This assumption is identical to the one originally made by Brock & Hommes (1998) and
serves for better analytical tractability of the model.
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t− 2—this period’s price, pt−2, is the ‘freshest’ piece of information about the

price that the agents have when making the prediction about the price pt as

the price pt−1 is not revealed yet.

The definition of the parameterBh,t given in Equation 4.2 essentially enables

us to mimic the first two of the three major features of PT listed in the beginning

of Section 4.1, i.e. the loss aversion and biased treatment of gains and losses,

and relation of decisions under risk to a reference point, by using an ‘imitation’

of the value function. In this application, however, we omit the third major

feature of PT, the probability weighting and the weighting function, to keep

the model within the stylized, simple framework proposed by Brock & Hommes

(1998). Also the curvature of the value function per se will not be studied and

incorporated into the model as it can well approximated by a linear function

(see Figure 2.2).

The choice of specific numerical values of the gain and loss parameters cg

and cl is relatively unfettered and will be discussed later during the description

of the simulation process in Chapter 5—besides the positivity of both param-

eters, the only condition that has to be fulfilled is lower magnitude of the gain

parameter—i.e. the inequality cg < cl must always hold—in order to capture

the loss aversion feature properly. The choice of p̃t, the reference point, is more

interesting. Note that the subscript t indicates the fact that the reference point

is updated each time period to properly reflect the gain and loss treatment of

PT traders. Generally, the reference point is given by a deterministic function

of past performance of the model—one might make use of K previous real-

ized prices of the risky asset, i.e. pt−1, pt−2 . . . , pt−K , and define the reference

point—as Shimokawa et al. (2007) suggests—as the moving average of the form

p̃t =
a1 · pt−1 + a2 · pt−2 + . . .+ aK · pt−K

a1 + a2 + . . .+ aK
, (4.7)

where a1, a2, . . . , aK are constants ∈ R such that a1 > a2 > . . . > aK > 0

which allow for a stronger effect of the most recent prices of the risky asset.

The interpretation of the definition of the parameter Bh,t is straightforward in

such a case: if the traders with the PT feature expect the next period’s price to

be higher than the moving average of previous K prices, they find themselves

in the positive domain in terms of the gain–loss gamble and set the value Bh,t

to cg; if, on the other hand, they expect the next period’s price to be lower than

the moving average, i.e. they expect a loss, the loss aversion of PT manifests

itself by the parameter Bh,t which is set to cl. Definition of the reference point
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is not restricted to the (weighted) moving average of past prices only; one may

calculate a cumulative moving average which reflects all past prices—in such

a case, the reference point p̃t would be defined as

p̃t =
pt−1 + pt−2 + . . .+ p2 + p1

t− 1
, (4.8)

where—alternatively—e.g. exponential weights can be included to reflect the

effect of the most recent prices as in Equation 4.7.

4.2 Asynchronous updating

In this section we will evaluate on the so-called Asynchronous Updating (AU)

feature which will be added to the original model developed by Brock &

Hommes (1998). This feature—as the term suggests—affects the way in which

the fractions of traders using trading strategy h at time t, nh,t, 1 6 h 6 H,

are updated. These fractions, given by Equation 3.2 of Chapter 3, represent

the percentage of agents using the respective forecasting rule and hence might

be interpreted as a ‘snapshot’ of the current market situation and prevailing

market sentiment. The interactions and flow of the strategies, together with

the switching among them is the main driving force of the model, and, as

Hommes (2013, p. 23) points out, “Interactions and evolutionary switching be-

tween these strategies cause complicated dynamical behavior.” Hence, how the

fractions nh,t are defined at the beginning is the design’s crucial aspect which

determines the dynamics of the model thereafter.

In the original model, the fractions are specified as

nh,t =
exp (β · Uh,t−1)

Zt−1

, (4.9)

where Uh,t−1 is a fitness measure of strategy h and Zt−1 a normalization fac-

tor such that the fractions nh,t add up to 1 for 1 6 h 6 H.9 However, such

definition presupposes that all agents in all time periods switch among the

strategies. Yet, this assumption might not be realistic in the real world as sev-

eral studies have provided strong evidence of what is called investor inertia—a

finding which suggests that certain percentage of traders or investors are in

reality inactive, passive, and slow in making investment decisions, i.e. buying

or selling an asset.

9Consult, please, Section 3.1 of Chapter 3 for details.
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At first glance, the phenomenon of investor inertia appears closely related

to the disposition effect which was predicted by PT—the incorrect ‘timing’ of

investment decisions, i.e. holding onto a losing stock too long and selling a win-

ning stock too soon, is a well-documented fact.10 A vast amount of economic

literature deals with investor inertia in pension funds and individual employ-

ees’ pension plans. Madrian & Shea (2000) investigated investment behavior

of ‘401(k)’ savers11 and found that a considerable fraction of the 401(k) par-

ticipants hired under automatic enrollment remained largely inactive and inert

in a sense that they retained both the default contribution rate and allocation

of their funds despite the fact that only negligible percentage of participants

hired without the automatic enrollment had chosen this particular contribu-

tion rate and allocation. Madrian & Shea (2000, p. 1150) further remark that

“. . . procrastination is an extremely important factor in the widely perceived in-

adequacy of individual savings for retirement,” and explain such behavior is

due to high costs of gathering information and only a small short-run profit

from making the subsequent adequate investment decision.

Dow & Werlang (1992) researched investor inertia in stock markets from

the perspective of decisions under risk and found that there was a certain range

of prices at which the traders did not trade at all—if the prices went up and

beyond the range, the investors would buy hold a short position of an asset

(i.e. speculate on the asset’s price); on the other hand, if the prices decreased

substantially below the range, the investors would hold a long position. Dow &

Werlang (1992) attribute such trading patterns to so-called uncertainty aver-

sion meaning that the investors do not trade unless they are sufficiently sure

about the level of price, i.e. unless the price is below or above certain threshold

values. Simonsen & Werlang (1990) report existence of similar prices ranges at

which the traders are inactive.

Other evidence of investor inertia was documented on the New York Stock

Exchange (NYSE) for instance. Summarized in the Shareownership2000 re-

port,12 the NYSE’s survey of investors also reveals that many of them have

very low levels of trading activity—the report finds that “In 1998, for exam-

ple, 23 percent of stockholders with brokerage accounts report no trading, while

another 35 percent report trading only once or twice in the last year.” (Share-

ownership2000 report, p. 59).

10See Subsection 4.1.1 for definition and evidence of the disposition effect.
11‘401(k)’ is a pension plan of the United States under which retirement savings contribu-

tions are provided by an employer to its employees.
12Available online at http://www1.nyse.com/pdfs/shareho.pdf.

http://www1.nyse.com/pdfs/shareho.pdf
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The investor inertia phenomenon suggests that the assumption—made by

Brock & Hommes (1998)—that all fractions of all strategies update each period

might not be very realistic. To shift the model closer to the real-world market

structure, following the idea proposed by, e.g., Hommes (2013, p. 34) or Bolt

et al. (2011, p. 9), we may define a parameter δ as the fraction of inert,

inactive traders. Naturally, δ = 0 represents the case in which all traders are

active, while δ = 1 represents the other extreme of no active traders.13 Note

that in the stylized framework of the model, the traders are inactive in terms

of strategy-switching—they simply use the strategy they chose in the previous

period also in this period; the inactivity does not mean the agents do not trade,

they only, in economic terms, do not bother with gathering information about

their strategy’s profitability and ‘inertly’ choose the same strategy again.

The fractions nh,t are then in general form given as

nh,t = δ · nh,t−1 + (1− δ) · exp (β · Uh,t−1)

Zt−1

, (4.10)

where, for our application, we set Zt−1 ≡
∑H

h=1 exp (β · Uh,t−1) to guarantee

that the fractions nh,t add up to 1 ∀t.

4.3 Memory

The specification of the original Brock & Hommes (1998) model, namely the

fitness measure of strategies, Uh,t, takes into account only the very recent (past

three periods’, specifically) development of the market and does not allow for

evaluation of the strategies’ profitability over a greater number of past time

periods. This attribute of the original model might not be very realistic in

the real world. One could argue that at least chartists (i.e. noise traders)

generally use more than one previous price realization for the technical analysis,

which is based on various indicators of statistical character. Lo et al. (2000)

provide an in-depth introduction to this area and list several methods that were

traditionally frequently used in the financial markets by technical traders, e.g.

head-and-shoulders, broadening tops, triangle tops, and double tops, to name

a few. Other more recent popular indicators include e.g. the moving average

convergence divergence, Aroon Oscillator, or Stochastic Oscillator. To be able

13The case δ = 1 produces essentially the same behavior of the model as the case of β = 0
does—the fractions of strategies do not update at all.
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to use these methods, the trader must have many previous price realizations at

hand.

For the above-mentioned reasons, several authors have tried to extend the

original model with memory. Vošvrda & Vácha (2002) consider a settings in

which this period’s fitness measure is a weighted average of past periods’ fitness

measures, namely

nh,t =

exp

(
β ·

M∑
p=1

ηh,t · Uh,t−p
)

H∑
h=1

exp

(
β ·

M∑
p=1

ηh,t · Uh,t−p
) , (4.11)

where M is the memory length and ηh,t memory weights. The authors also

define the forecasting functions fh,t as fh,t = gh · 1
Kh
·
∑Kh

p=1 xt−p + bh. Vošvrda

& Vácha (2003); Vácha & Vošvrda (2005) use similar settings while Barunik

et al. (2009) consider only simple, unweighted average of past fitness measures.

Although we restrict our analysis to the original, ‘memoryless’ version and

PT extended version of the model specified in the systems of Equations 3.21

and 5.1, respectively, note that certain form of memory is also present in our

setup of the model—traders have to be able to calculate the reference point,

which is based on previous prices of the risky asset, to be able to properly de-

termine whether the next period’s expected price of the asset will bring them

a gain or a loss. The memory property of our model thus consists only in the

agents’ rudimentary analyses of the moving average of past prices and subse-

quent ‘shift’ of their reference points, not in the more advanced calculations of

the strategies’ fitness measures as specified in Equation 4.11.



Chapter 5

Simulations

In this chapter, we will investigate, compare, and interpret performance of

the Brock & Hommes (1998) model and its extended versions (consult, please,

Chapter 4) using Monte Carlo methods based on repeated random sampling.

For this purpose, an algorithm was written in Wolfram Mathematica. The

main motivation for our effort is to assess the impact of the PT and AU features

on chiefly the qualitative behavior of the original version of the model—or,

in other words, the extended model’s capabilities to mimic real-world market

characteristics and some stylized facts. The original model, as it is defined

in Chapter 3, has already been studied minutely—see e.g. Brock & Hommes

(1998); Hommes (2006); Hommes & Wagener (2009); Hommes (2013); Kukacka

& Barunik (2013); Barunik et al. (2009); Vácha & Vošvrda (2005); Vošvrda &

Vácha (2003).

We have already pointed out in Chapter 2 that one of the mainsprings of

the development of ABMs and HAMs was undoubtedly the effort to explain

some of the most common statistical properties of financial time series called

stylized facts. Cont (2001) lists the following phenomena as the most frequent:

absence of autocorrelations, heavy or fat tails,1 volatility clustering, intermit-

tency, gain–loss asymmetry, and several others. We will focus on the first three

stylized facts as the original Brock & Hommes (1998) was found capable of

explaining them soundly (Chen et al., 2012).

1The two adjectives related to a distribution’s tails—heavy and fat—are sometimes used
loosely and interchangeably. While a heavy-tailed distribution is one whose tails are heavier
than those of the exponential distribution, fat-tailed distributions make up a subclass of the
heavy-tailed distributions. The fat-tailed distributions are characterized by larger skewness
and/or kurtosis relative to the normal distribution. Additionally, the distribution of a random
variable is said to have a fat tail if P (X > x) ∼ x−α as x → ∞, α > 0. Some fat-tailed
distributions have power law decay in the tail of the distribution (i.e. they have the fat tail),
but do not necessarily follow a power law elsewhere.
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1. Absence of autocorrelations. This fact emphasizes that autocorrelations

of returns of an asset are insignificant at most times and for most time

scales, except for very small time scales of approximately 20 minutes in

which micro structures may have an effect on the autocorrelations (Cont,

2001).

2. Fat tails. According to this fact, probability distributions of many assets’

returns have large skewness or kurtosis relative to the normal distribu-

tion. Additionally, the distributions exhibit a power-law or Pareto-like

tails, with a tail index 2 6 α 6 5 (Cont, 2001), i.e. the (upper) tail

P (X > x) = F̄ (x) = x−α · G (x), where G (x) is a slowly varying func-

tion (Haas & Pigorsch, 2009).

3. Volatility clustering. This fact means, in words of Mandelbrot (1963,

p. 418), that “. . . large changes tend to be followed by large changes—of

either sign—and small changes tend to be followed by small changes.”

More mathematically, an asset’s absolute or squared returns are char-

acterized by a significant, slowly decaying autocorrelation function, i.e.

corr (|rt| , |rt+τ |) > 0 (or corr
(
r2
t , r

2
t+τ

)
> 0), where τ , the time span,

ranges from minutes to weeks or months (Cont, 2007).

5.1 General model setup

For the simulations, we will use the extended version of the original Brock &

Hommes (1998) model with no additional memory.2 To summarize the exten-

sions presented in Chapter 4, the ABS extended with the PT loss aversion and

the AU features becomes (in lines with the system of Equations 3.21)

R · xt =
H∑
h=1

nh,t · (gh · xt−1 + bh) + εt,

nh,t = δ · nh,t−1 + (1− δ) · exp (β · Uh,t−1)
H∑
h=1

(β · Uh,t−1)

,

Uh,t−1 =

{
(xt−1 −R · xt−2) gh·xt−3+bh−R·xt−2

a·σ2 , h > L

(xt−1 −R · xt−2) gh·xt−3+bh−R·xt−2

a·Bh,t−2·σ2 , h 6 L,

(5.1)

2See Section 4.3 for a short discussion about the role of memory in our extended version
of the original model. Note that memory is present in the original Brock & Hommes (1998)
model in the fitness measure of strategies, Uh,t, for which the agents have to know previous
price deviations up to xt−3.
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where first L of the H agent classes are endowed with the PT feature. The

system of Equations 5.1 is in essence a generalization of the original ABS given

in the system of Equations 3.21—for L = 0 and δ = 0, one might obtain the

original system which will be used as a ‘benchmark’ case for the simulations.

The inevitable ‘downside’ of the ABS (and of many other ABMs) is somewhat

excessive leeway in choice of the parameters of the model, especially of β, gh,

bh, and the distribution of the noise term εt. The possible variety of countless

different settings of the model enables us to study many different aspects of

it, at the same time, however, it presents a significant challenge of the proper

selection of the parameters should we want to manipulate with only one or

two remaining parameters. We will follow a number of previous studies—

e.g. Kukacka & Barunik (2013); Vácha & Vošvrda (2005); Vošvrda & Vácha

(2003)—and adopt the following settings:

1. Trend and bias parameters gh and bh will be drawn from the normal dis-

tributions N (0, 0.16) and N (0, 0.09), respectively—where the notation is

N (µ, σ2)—unless we state otherwise. The fundamentalist strategy—if it

is present in the model—is always the first of the H strategies (i.e. only

the term n1,t may ever correspond to the fraction of fundamentalists in

the market). Should we ex ante (i.e. before the start of the simulation)

indicate presence of fundamentalists in the model, the algorithm sets both

of the parameters g1 and b1 to 0.

2. The noise term for each time period, εt, will be drawn from the uni-

form distribution U (−0.05, 0.05). Benč́ık (2010) investigated behavior

of the model in which the noise term was drawn from different uniform

distributions and concluded that the behavior was similar.

3. Other parameters will be set as follows: the gross risk-free return rate,

R = 1 + r, to 1.0001 and the term 1
a·σ2 to 1. The choice of the gross

risk-free return rate allows us to compare results of the simulations with

real-world market data since 1.0001250 ∼= 1.025. Annual interest rate of

2.5 % can be considered a realistic risk-free rate.

The simulation per se consists of several runs ; each run is characterized by

a distinct intensity of choice parameter β. In our case, there will be 11 runs

and the parameter β will gradually take values from 5 to 505 in increments of

50. Additionally, there are a number of cycles in each run; for each cycle, the
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parameters gh and bh are changed (i.e. randomly drawn from the aforemen-

tioned distributions) to guarantee that the simulation results are robust. We

will work with 1000 repeat cycles. Finally, there are 500 ticks or iterations in

each cycle; the ticks represent trading days (or, e.g., months). To summarize,

we will have 475 · 1000 · 11 = 5225000 realizations of xt and some multiple of

5225000 of realizations of Uh,t and nh,t depending on H, the number of agent

classes, at hand after the end of the simulation.

5.1.1 Benchmark simulation

We ran a benchmark simulation of the original model specified by the system

of Equations 5.1 in which the parameter δ = 0 and the parameter L = 0, i.e.

the model with no PT feature and only synchronous updating; number of total

strategies H = 4 and fundamentalists were present in the model. Results are

summarized below.

Table 5.1: Benchmark simulation summary statistics and p–value of JB test
for normality of distribution for xt in 11 runs with different β.
There are fundamentalists and three other strategies in the model,
i.e. H = 4.

β Mean Var. Skew. Kurt. Min. Max. Med. JB

5 -0.0012 0.0224 -0.5389 7.1002 -1.6221 0.8397 0.0029 0.000
55 0.0059 0.1236 0.1880 5.9124 -1.9789 2.4209 0.0032 0.000

105 0.0119 0.1225 0.0306 4.5966 -1.7256 1.6157 0.0072 0.000
155 0.0036 0.1142 -0.0214 3.8254 -1.4534 1.5590 0.0068 0.000
205 0.0030 0.1005 0.0713 3.4390 -1.2670 1.2970 0.0018 0.000
255 0.0077 0.0979 -0.0210 3.2504 -1.2113 1.1175 0.0042 0.000
305 0.0002 0.0860 -0.0420 3.0802 -1.0447 1.0593 -0.0003 0.000
355 -0.0067 0.0845 -0.0942 3.1020 -1.0269 1.0099 -0.0003 0.000
405 0.0089 0.0766 0.0013 3.1255 -0.9395 0.9324 0.0059 0.000
455 -0.0026 0.0738 -0.0285 3.0397 -0.8961 0.8954 -0.0004 0.000
505 -0.0001 0.0673 -0.0380 2.9215 -0.8525 0.8532 0.0022 0.000

Table 5.1 shows selected descriptive statistics of the xt time series obtained

from the benchmark simulation. Note that in each repeat cycle, first 5 % of

realizations of xt were discarded as the model needed some initial time to ‘sta-

bilize’. Clearly, the distributions of the deviations from the fundamental price

are statistically different from the normal distribution, as is indicated by small

p–values of the JB test for all βs. For increasing values of β, the distributions

exhibit sample kurtosis closer to that of the normal distribution. Apparently,
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the behavior of the model was most dramatic for β ∈ {55, 105, 155}—values of

sample variance are highest, the same is true for minima and maxima of xt.

Figure 5.3 shows estimated PDFs of four selected time series corresponding to

the Table 5.1 along with its counterparts obtained from the simulation with

the PT feature. Kernel density estimation was used, with the Epanechnikov

kernel function and Silverman’s rule3 for bandwidth selection. Epanechnikov

kernel function was used as it is the most efficient kernel function (Wand &

Jones, 1994, p. 31).

Figure 5.1 shows 4 sample plots4 of the xt time series obtained from the

benchmark simulation. The interested reader might notice the gradually in-

creasing chaotic behavior of the series as β gets larger. Figure 5.2 shows, on a

log–log scale, the complementary CDF F̄|xt| (y), F̄|xt| (y) = P (|xt| > y), for the

150 largest absolute deviations |xt| corresponding, respectively, to the time se-

ries plotted in Figure 5.1, along with a regression-based linear fit. Although not

rigorously, the slopes of the regression lines are, in absolute values, estimates

of the respective tail indices. These are equal to 10.77 for β = 5 (R2 = 0.849),

9.13 for β = 105 (R2 = 0.979), 8.74 for β = 305 (R2 = 0.953), and 5.16 for

β = 505 (R2 = 0.948).

Having only an informative character, the plots nonetheless show possible

existence of a power law in tails of the empirical distribution of |xt|. It is im-

portant to emphasize, however, that the power law apparently does not hold

universally for the whole tail; most extreme observations, for which the imagi-

nary curvature is relatively significant and the realizations clearly do not follow

the linear pattern estimated for the complete collection of the 150 observations,

might exhibit a different tail index than the remaining observations do—the

‘break point’ is evidently around F̄|xt| (y) = 0.05.

5.2 Employment of PT

This section summarizes our findings from a simulation with PT investors.

Again, there are four trading strategies (i.e. H = 4), first of which is the fun-

damentalist strategy, and fractions of traders, nh,t, update synchronously (i.e.

δ = 0). The simulation was run together with the benchmark case from Sub-

section 5.1.1 meaning that for each repeat cycle, exactly the same parameters

3Consult Silverman (1986) for details regarding the bandwidth selection rule.
4These particular 4 plots were selected ‘randomly’ from the pool of the 11000 plots which

comprise one simulation.
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Figure 5.1: Plots of sample xt time series for one repeat cycle.
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Source: Author’s computations.

gh and bh, along with the noise term εt, were used—therefore any differences

between the benchmark and the PT simulations can be attributed to the PT

feature completely and unreservedly. The same approach is adopted in all

simulations which compare the extended version of the model with its original

predecessor. Important parameters, exclusive for the PT simulation, were given

as follows:

1. The gain and loss parameters cg and cl were set to 1 and 2.5, respectively,

to properly account for the gain–loss asymmetry. These particular nu-

merical values were chosen based on the facts that “. . . the disutility of

giving something up is twice great as the utility of acquiring it,” (Benartzi

& Thaler, 1993), and that “. . . losses hurt more than equal gains please;

typically two to two-and-a-half times more.” (van Kersbergen & Vis,

2014, p. 163). Moreover, such setting of the respective parameters is well

justified by Figure 2.2 which shows estimates of the PT value function.

Initially, all strategies exhibit the PT feature, i.e. L = 4.

2. Length of the ‘memory’ used for the moving average of past prices, K,

essential for determination of the reference point, was—initially—set to

10. Traders do not attach greater importance to the most recent past
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Figure 5.2: Plots of the tails of sample xt time series’ empirical distributions
and OLS fit. Benchmark case w/o the PT feature.
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prices relative to more distant ones—i.e. the parameters a1, a2, . . . , aK

were all set to 1.

Under these circumstances, the reference point Bh,t, specified in Equation 4.2,

becomes

Bh,t =

{
1, Eh,t (pt+1) > p̃t = p̃t (pt−1, . . . , pt−5)

2.5, Eh,t (pt+1) 6 p̃t = p̃t (pt−1, . . . , pt−5).
(5.2)

Table 5.2 summarizes descriptive statistics along with p–values of JB and

Kruskal–Wallis tests of the xt time series obtained from the simulation in which

all trading strategies are endowed with the PT feature. The Kruskal–Wallis

method tests, in layman’s terms,5 whether two samples originate from the

same distribution—here we compare the empirical distributions of the xt time

series obtained from the PT simulation with those of the xt time series obtained

from the benchmark simulation with no PT traders (consult, please, Table 5.1).

Again, the time series’ distributions are statistically strongly different from the

normal distribution. Moreover, addition of the PT feature causes, except for

the case of β = 5 in which the p–value of the Kruskal–Wallis test is large, sig-

nificant differences of the distributions with respect to those of the benchmark

simulation. Notice especially the smaller variance of the time series with re-

spect to the benchmark case (for lower values of β, the sample variance is about

25% smaller for the model with the PT feature than for the benchmark model

without the feature), and also smaller extreme (i.e. maximum and minimum)

values.

Figure 5.3 shows empirical PDFs of the xt time series obtained from simu-

lations of two models in question, i.e. the one with the PT feature and the one

without it. Notice that although the Kruskal–Wallis test rejects the equality

of the distributions for all values of β except for β = 5 (consult Table 5.2), the

PDFs look relatively similar.

Figure 5.4 shows 4 sample plots of the xt time series obtained from the PT

simulation. The same parameters gh, bh, εt, and β were used as in the Figure 5.1.

This fact means that any differences between the two figures are due solely to

the PT feature. For β ∈ {305, 505}, notice the conspicuously lower sample

variance of the time series and less dramatic appearance—the series is more

‘well-behaved’.

5In statistics jargon, the Kruskal–Wallis test effectively performs a one-way analysis of
variance on the ranks of the data. The test statistic is corrected for ties. The null hypothesis
of the Kruskal–Wallis test states that the mean ranks of the groups are the same.
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Table 5.2: PT simulation summary statistics of xt and p–values of JB and
Kruskal–Wallis tests in 11 runs with different β. There are fun-
damentalists and three other strategies in the model, i.e. H = 4,
and all strategies have the PT feature, i.e. L = 4.

β Mean Var. Skew. Kurt. Min. Max. JB KW

5 -0.0002 0.0201 -0.0691 3.2125 -0.7410 0.5000 0.000 0.747
55 0.0171 0.0933 0.0828 6.9381 -1.9744 2.3506 0.000 0.000

105 0.0178 0.0999 -0.0308 5.3802 -1.7316 1.6008 0.000 0.000
155 0.0109 0.0954 -0.0511 4.3116 -1.4001 1.4358 0.000 0.000
205 0.0129 0.0854 0.0808 3.8215 -1.2733 1.2907 0.000 0.000
255 0.0139 0.0841 -0.0224 3.5736 -1.2105 1.1040 0.000 0.000
305 0.0087 0.0742 -0.0307 3.3799 -1.0395 1.0301 0.000 0.000
355 0.0004 0.0731 -0.1115 3.4346 -1.0244 1.0022 0.000 0.000
405 0.0151 0.0670 0.0062 3.4075 -0.9194 0.9322 0.000 0.000
455 0.0032 0.0648 -0.0192 3.2903 -0.9092 0.8733 0.000 0.000
505 0.0072 0.0589 -0.0424 3.1610 -0.8529 0.8406 0.000 0.000

Figure 5.3: Plots of PDFs of the xt time series obtained from simulation with
(blue solid line) and without (red dashed line) the PT feature.
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Figure 5.4: Plots of sample xt time series of one repeat cycle with PT.
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Figure 5.5 shows, on a log–log scale, the complementary CDF F̄|xt| (y) for

the 300 largest absolute deviations |xt| corresponding, respectively, to the time

series plotted in Figure 5.4, along with a regression-based linear fit. The esti-

mates of the respective tail indices (i.e. the opposites of the estimated slope

coefficients) are equal to 10.33 for β = 5 (R2 = 0.835), 9.41 for β = 105

(R2 = 0.981), 7.52 for β = 305 (R2 = 0.937), and 5.28 for β = 505 (R2 = 0.934).

The OLS fits provide roughly the same R2, although the most extreme observa-

tions do, again, exhibit considerable curvature and departure from any power

law, mainly in the region for which F̄|xt| (y) < 0.05

These findings are summarized in Figure 5.6 which merges Figure 5.2 and

Figure 5.5 and shows, on a log–log scale, the complementary CDFs for largest

150 xt observations for one repeat cycle with and without the PT feature.

One might notice the similarity of the tails for the lowest value of β and the

subsequent departure of the tails the value of β increases.

Figure 5.7 shows autocorrelation and partial autocorrelation functions of the

empirical xt series for one repeat cycle without the PT feature and with it. The

same parameters gh, bh, εt, and β were used in both cases to maintain mutual

comparability. The series with β = 505 were used in this figure, the interested

reader might find the plots in Figure 5.1 and Figure 5.4. At first glance, no
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Figure 5.5: Plots of the tails of sample xt time series’ empirical distributions
with the PT feature employed and OLS fit.
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Figure 5.6: Plots of the tails of sample xt time series’ empirical distributions
with the PT feature (red squares) and without it (blue circles).
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Figure 5.7: Plots of autocorrelation and partial autocorrelation functions the
xt time series for β = 505.
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apparent striking differences are noticeable—yet, a closer look reveals a slightly

different structure for the ACFs for approximately first 5 lags, in which the time

series without the PT feature exhibits considerably higher autocorrelation. For

subsequent lags (i.e. for lags 6–50), absolute values of all autocorrelation and

partial autocorrelation functions are very low and clearly within the 95% white

noise band indicated by the red dashed lines.

5.2.1 Aggregate characteristics

This subsection summarizes aggregate qualitative characteristics of the price

deviations time series obtained from the simulations. The main aim of this

effort is to compare the model without the PT feature (i.e. the one in which

L = 0) and the one in which all trading strategies have the feature (i.e. L =

4) namely in terms of time dependence (autocorrelation and moving average

patterns) in the xt time series and x2
t time series, and incidence of fat tails.

The method we used for assessment of time dependence using aggregate

data was the following: in each repeat cycle and for all values of β, we fit-
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ted a time series model to the simulated xt (or x2
t ) data, saved the respec-

tive coefficients, and—using the kernel density estimation6—constructed an

empirical distribution of these coefficients. The optimal model was selected

based on the Akaike Information Criterion (AIC)—the simulations showed that

the data generally fitted an Autoregressive Moving Average (ARMA) model

best; therefore the coefficients saved were always those from this model, i.e.

α1, α2, . . . , αp, β1, β2, . . . , βq if the model is specified as7

Xt = c+

p∑
i=1

αi ·Xt−i +

q∑
i=1

βi · εt−i + εt. (5.3)

Finally, we compared PDFs of the distributions using the Kruskal–Wallis test.

Time dependence of xt

Table 5.3 summarizes expected values of the estimated distributions of α1 (first

autoregressive coefficient) and β1 (first moving average coefficient) and p–values

of the Kruskal–Wallis test applied to the xt time series obtained from models

with and without the PT feature. The distributions of the autoregressive coef-

ficient are—except for β = 305—statistically significantly different. This fact

further supports the finding that the PT extensions changes the behavior of

the HAM. On the other hand, p–values of the test applied to the first moving

average coefficient fail to reject the null hypothesis of equal distributions at a

reasonable significance level. This fact indicates that the PT extensions affects

the autoregressive structure of the xt time series more than it does the moving

average one. Notice that for most values of β, both coefficients tend to be

larger for the PT extended model; the realizations of xt seem to be slightly

more dependent on previous realizations xt−1.

Figure 5.8 shows estimated PDFs of the MA(1) coefficient β1 from the model

specified in Equation 5.3 for the xt time series. Note that for different repeat

cycles (and different values of β), the optimal models naturally exhibited dif-

ferent orders p and q—yet, the β1 coefficient always corresponds to the moving

average relationship of the first lag, regardless of the value of q. The same is

true for the AR(1) coefficient α1 and the value of p.8 The figure suggests that

6Silverman’s (1986) rule for bandwidth selection was used, along with the Epanechnikov
kernel function.

7Or, alternatively, X2
t = c+

∑p
i=1 αi ·X2

t−i +
∑q
i=1 βi · εt−i + εt if the squared deviations

are in question.
8In other words, we let the AIC determine the best model. If we had instead chosen e.g.

AR(1) or MA(1) model, we could have omitted a better model with lower AIC.
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overall, the behavior of both models is relatively similar—yet, for β ∈ {5, 505},
the series exhibit somewhat less moving average dependence which is depicted

by the higher peaks of the respective PDFs and higher expected values (consult,

please, Table 5.3).

Table 5.3: Expected value of the empirical distributions of α1 (AR) and β1

(MA) coefficients and p–value of the Kruskal–Wallis test applied
to xt with and without the PT feature.

β MA MAPT MAKW AR ARPT ARKW

5 0.1883 0.1691 0.2137 0.3068 0.2578 0.0159
55 0.1908 0.2272 0.0157 0.2858 0.3546 0.0003

105 0.1668 0.2041 0.0274 0.2278 0.2891 0.0011
155 0.1607 0.1848 0.1386 0.1997 0.2797 0.0000
205 0.1418 0.1711 0.0203 0.1947 0.2814 0.0000
255 0.1344 0.1579 0.0724 0.1901 0.2523 0.0022
305 0.1253 0.1441 0.2213 0.2173 0.2481 0.2745
355 0.1336 0.1602 0.0524 0.1906 0.2815 0.0000
405 0.0971 0.1331 0.0130 0.1986 0.2415 0.0184
455 0.1008 0.1229 0.0753 0.2138 0.2639 0.0158
505 0.1188 0.1152 0.9492 0.2097 0.2659 0.0050

Time dependence of x2
t

Table 5.4 summarizes expected values of the estimated distributions of the

AR(1) coefficient α1 and MA(1) coefficient β1 and p–values of the Kruskal–

Wallis test applied to the x2
t time series obtained from models with and without

the PT feature. The empirical distributions of β1 are, again, not statistically

different. Moreover, the p–values of the Kruskal–Wallis test are even higher. On

the other hand, the distributions of α1 obtained from the PT extended model are

statistically different from their non-PT counterparts and their expected values

are greater than those obtained from the non-PT model. This fact implies that

the phenomenon of volatility clustering is more significant and recognizable in

our extended version of the HAM; such a finding is consistent with real-world

market data (Cont, 2001).
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Figure 5.8: Plots of PDFs of the MA(1) coefficient β1 of optimal ARMA models
fitted to xt time series with (blue line) and without (red dashed
line) the PT feature.
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Source: Author’s computations.

Table 5.4: Expected value of the empirical distributions of α1 (AR) and β1

(MA) coefficients and p–value of the Kruskal–Wallis test applied
to x2

t with and without the PT feature.

β MA MAPT MAKW AR ARPT ARKW

5 0.1718 0.1601 0.7209 0.2582 0.2266 0.0586
55 0.1756 0.2219 0.0047 0.1825 0.2415 0.0016

105 0.1598 0.1665 0.5712 0.1038 0.1884 0.0000
155 0.1199 0.1554 0.0151 0.1052 0.1758 0.0001
205 0.1534 0.1545 0.9527 0.1117 0.1816 0.0002
255 0.1079 0.1299 0.2425 0.0846 0.1567 0.0000
305 0.1009 0.1038 0.9450 0.0871 0.1339 0.0136
355 0.0993 0.0999 0.9752 0.0875 0.1614 0.0000
405 0.0895 0.1299 0.0092 0.1045 0.1394 0.0469
455 0.1029 0.1207 0.1957 0.0911 0.1639 0.0014
505 0.1044 0.1159 0.4161 0.0967 0.1836 0.0000
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Aggregate tails

Table 5.5 shows estimated tail indices of the xt time series for 500 repeat cycles9

with and without the PT feature; as many repeat cycles were used to generate

the data (i.e. 500 different setups for gh, bh, and εt were used), the estimates are

more robust than those for only one repeat cycle (shown e.g. in Figure 5.6).

The values of R2 can be considered relatively satisfactory for the power law

fit—moreover, the PT extended model’s tail indices are in most cases smaller

than those of the non-extended model (and thus closer to the real-world ones—

consult Section 6.3 of Chapter 6) and the coefficient of determination is higher.

Nonetheless, it is not clear whether the power law is really the ideal model for

this type of HAM as the coefficients of determination are smaller than those of

the real-world indices (consult e.g. Cont, 2001 for a discussion of real-world

tail indices).

Table 5.5: Estimated tail indices of the xt time series along with R2 for the
original and PT extended versions of the model.

With PT Without PT
β Tail R2 β Tail R2

5 6.842 0.933 5 6.401 0.966
105 8.731 0.938 105 7.736 0.955
205 8.469 0.918 205 9.381 0.903
305 10.652 0.955 305 11.643 0.936
405 11.636 0.967 405 12.491 0.963
505 10.824 0.933 505 11.438 0.916

5.2.2 PT vs. non-PT traders

We may now relax the assumption that all trading strategies are endowed

with the PT feature and examine behavior of the model by running additional

simulations with L 6 H, i.e. simulations in which some of the trading strategies

exhibit loss aversion and gain–loss asymmetry, and some do not. Additionally,

more values of the parameter K, length of the moving average considered for

reference point, can be inspected. Table 5.6 summarizes simulations with L =

1, L = 2, L = 3, and different values of K; fundamentalist strategy was present

in the model as the first strategy—i.e. L = 1 corresponds to a situation in

9For technical reasons, we have used only 500 repeat cycle as the process of obtaining the
tail index is difficult in terms of computational time which grows steadily with increasing
number of repeat cycles.
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the market in which there are PT fundamentalists and three other (non-PT)

chartist strategies, i.e. H = 4. The Kruskal–Wallis test compares, in this case,

the distributions obtained from the simulations with the PT feature with those

obtained from a simulation without it, i.e. the one for which L = 0.10 To

maintain mutual comparability, the same parameters gh, bh, and εt were used

for each value of L 6= 0 and for L = 0.

Table 5.6: P–value of the Kruskal–Wallis test for different L, K and β.

K = 1 K = 5
(L) (L)

β 1 2 3 β 1 2 3

5 0.99637 0.47500 0.72023 5 0.00000 0.00000 0.00000
55 0.08591 0.00000 0.00000 55 0.90140 0.79120 0.01819

105 0.04846 0.00000 0.00000 105 0.29019 0.00000 0.00000
155 0.02313 0.00000 0.00000 155 0.04389 0.00000 0.00000
205 0.04640 0.00000 0.00000 205 0.05195 0.00000 0.00000
255 0.00436 0.00000 0.00000 255 0.01827 0.00000 0.00000
305 0.00050 0.00000 0.00000 305 0.00003 0.00000 0.00000
355 0.00000 0.00000 0.00000 355 0.00003 0.00000 0.00000
405 0.00000 0.00000 0.00000 405 0.00000 0.00000 0.00000
455 0.00000 0.00000 0.00000 455 0.00000 0.00000 0.00000
505 0.00000 0.00000 0.00000 505 0.00000 0.00000 0.00000

K = 10 K = 15
(L) (L)

β 1 2 3 β 1 2 3

5 0.82531 0.66399 0.57620 5 0.94767 0.50089 0.04147
55 0.34511 0.00000 0.00000 55 0.90644 0.00000 0.00000

105 0.59452 0.00000 0.00000 105 0.64302 0.00000 0.00000
155 0.69513 0.00000 0.00000 155 0.81774 0.00000 0.00000
205 0.48258 0.00000 0.00000 205 0.13191 0.00000 0.00000
255 0.00112 0.00000 0.00000 255 0.00903 0.00000 0.00000
305 0.00896 0.00000 0.00000 305 0.01347 0.00000 0.00000
355 0.00102 0.00000 0.00000 355 0.00008 0.00000 0.00000
405 0.00004 0.00000 0.00000 405 0.00000 0.00000 0.00000
455 0.00000 0.00000 0.00000 455 0.00000 0.00000 0.00000
505 0.00000 0.00000 0.00000 505 0.00000 0.00000 0.00000

Figure 5.9 further examines, for β = 105 and K = 15, the cases in which

L = 1 and L = 4, i.e. the situation in which only the first strategy (i.e. the

10We ran another ‘benchmark’ simulation of the model without the proposed extensions,
i.e. for the KW test, we used different benchmark than that examined in Subsection 5.1.1.
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fundamentalist strategy) has the PT feature and the one in which all strategies

have the PT feature, respectively, and compares these situations to the bench-

mark case of L = 0. Estimated densities of the xt time series are plotted in the

left-hand side of the figure while the right-hand side of the figure shows esti-

mated densities of the n1,t time series, i.e. of the fraction of traders using the

fundamentalist strategy. Apparently—as can be also seen from Table 5.6—the

behavior of the model for L = 1 is relatively similar to that of the benchmark

case; Kruskal–Wallis test does not reject the null hypothesis and the estimated

densities of xt are very similar. Yet, PT fundamentalists are driven out of the

market more strongly—this finding can be inferred from higher peak of the

respective distribution around 0. The PT feature, manifested in significant loss

aversion, poses a relatively heavy ‘burden’ for the fundamentalists when they

face chartists who are not loss-averse. On the other hand, when all trading

strategies have the PT feature, the behavior of the model is significantly differ-

ent from the benchmark case—the PT feature stabilizes the market and rules

out a fraction of extreme price deviations which were present in the benchmark

case. Moreover, fundamentalists are able to survive in the market more easily

around the equilibrium fraction of n1,t = 0.25—such a finding is in contrast

with the benchmark case in which fundamentalists were driven off the mar-

ket by chartists more often (again, consider the ‘peakedness’ of the respective

distributions around 0 and 0.25).

Figure 5.10 shows estimated densities of n1,t and n4,t for L = 3 and K = 15,

i.e. fractions of PT fundamentalists and non-PT chartists in a model in which

one chartist trading strategy does not have the PT feature, for different values

of β. Notice that, as β gets larger, the non-PT chartist strategy becomes

increasingly popular and dominates the market (i.e. n4,t ≡ 1) at non-negligible

amount of time. Moreover, fundamentalists are less likely to be able to survive

in the market than they were when they faced only PT traders—this effect

can be best inferred from the case in which β = 105, i.e. β is the same as it

was in Figure 5.9—while for L = 4, p (n1,t) = 6 for n1,t → 0, for L = 3 we

have p (n1,t) = 7.6 for n1,t → 0 and the relatively frequent disappearance of

fundamentalists can thus be attributed the presence of non-PT chartists.
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Figure 5.9: Behavior of the model for different L versus the benchmark case
of L = 0; β = 105 and K = 15, L = 0 depicted by dashed lines.
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Figure 5.10: Estimated densities of n1,t (orange solid line) and n4,t (dashed
magenta line) for L = 3 and K = 15.
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5.3 Employment of Asynchronous Updating

We may now proceed to simulations with the AU feature. Let us remind the

interested reader that the fractions nh,t of trading strategies are given as

nh,t = δ · nh,t−1 + (1− δ) · exp (β · Uh,t−1)∑H
h=1 exp (β · Uh,t−1)

(5.4)

where δ will vary. All other parameters and settings remain the same as they

were specified in Section 5.1.

Table 5.7 shows summary statistics and p–value of the Kruskal–Wallis test

for the xt time series obtained from simulations with varying δ. The Kruskal–

Wallis test compares the models with the AU feature to those without it (i.e.

to those in which δ = 0). Apparently, the distributions are not significantly

different in majority of cases—for δ ∈ {0.2, 0.6}, empirical distribution of xt

are different from the that of the benchmark case for only one value of β out

of eleven possible; on the other hand, for δ ∈ {0.4, 0.8} the distributions are

statistically different for four values of β. The JB test produced p–values lower

than 0.0000 in all cases, therefore the null hypothesis of normally distributed

price deviations can be soundly rejected ∀δ, β. Figure 5.11 shows estimated

PDFs of the xt time series whose statistics are summarized in Table 5.7 along

with PDFs obtained from the benchmark simulation. Apparently, the PDFs

are—from the visual perspective at least—somewhat less similar than they

were in the PT extended models.

Although the ‘aggregate’ summary statistics do not show—in majority of

cases—significant differences, some qualitative variation between the original

version and that extended with AU certainly exists. Figure 5.12 shows plots

of autocorrelation function for β = 55 and different values of δ. The slowly

decaying, ‘sine’ pattern of the function is highly noticeable and striking—such

phenomenon was not apparent either for the default model without any exten-

sions or for the PT feature extended model (see Figure 5.7 for comparison) and

is a manifestation of the AU feature.

Figure 5.13 shows, on a log–log scale, complementary CDFs for 150 largest

absolute deviations |xt| obtained from one repeat cycle of simulations of the

aforementioned models. Clearly, AU stabilizes the model to some extent, larger

deviations from the fundamental price are somewhat less likely; such tendency

is most apparent for higher values of β. The estimates of the respective tail in-

dices (i.e. the opposites of the estimated slope coefficients) for the AU extended
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Figure 5.11: Plots of PDFs of the xt time series obtained from simulation with
(blue solid line) and without (red dashed line) the AU feature.
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Figure 5.12: ACF plots for β = 55.
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model (depicted with red squares) are equal to 15.32 for β = 5 (R2 = 0.907),

16.8 for β = 205 (R2 = 0.786), 4.19 for β = 255 (R2 = 0.908), and 9.46 for

β = 505 (R2 = 0.892). While the tails of the two compared models are practi-

cally the same for β ∈ {5, 205}, there is a marked difference between them for

β ∈ {255, 505}.
Most importantly, however, the simulations with the AU extended model

revealed certain economic implications, namely related to evolution and inci-

dence of the fundamentalist strategy n1,t. While in the default model with no

extensions and increasing β the fundamentalists survived in the market only

with dramatically increasing ‘difficulties’,11 they were able to realize profits

(and thus remain in the market) in the AU extended model. This phenomenon

is emphasized for larger values of δ. Figure 5.14 visually summarizes this find-

ing; the interested reader may compare it with Figure 5.9 to gain some insight

on how the AU extension differs from the PT extensions in this aspect.

11By ‘increasing difficulties’ we mean the fact that the expected value of the empirical
distributions of n1,t decreased with increasing β.
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Figure 5.13: Plots of the tails of sample xt time series’ empirical distributions
with AU (red squares) and and without it (blue circles) for one
repeat cycle.
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Figure 5.14: Incidence of the fundamentalist strategy n1,t; estimated PDFs,
benchmark model depicted with black dashed line.
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Chapter 6

Results and hypotheses

In this chapter, we will summarize and interpret results of the simulations from

Chapter 5 and assess the introductory hypotheses from the Thesis Proposal.

As we have already provided a relatively in-depth quantitative and qualitative

analyses of the simulations of the model with the PT and asynchronous updating

features in Chapter 5, the interpretation will namely consist in comparison of

the results with real-world market data in order to tell whether the proposed

extensions shift the model closer to reality.

6.1 PT feature

Implementation of the PT feature into the model evidently changes the be-

havior of the model significantly. Nonetheless, some of the key characteristics

remain the same as the underlying mathematical structure of model is intact—

the generated time series of the deviations from the fundamental price of the

asset, xt, exhibits decreased variance as the intensity of choice parameter β

increases, extreme price deviations (i.e. minimal and maximal) are less ‘ex-

treme’ for larger β, and, for instance, the deviations are still far from being

normally distributed—this fact stems from minuscule p–values of the JB test.

However—and most importantly—the differences are, too, considerable and

non-negligible—as indicated by very low p–values of the Kruskal–Wallis tests

as well. The main conclusions arising from the PT extension can be summarized

as follows:

1. Stability. Probably the most noticeable change evident from the PT ex-

tended model’s simulations—compared to the original version—is the

overall increased stability. Summarized in Table 5.2, the descriptive
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statistics of the xt time series alone provide evidence of this phenomenon.

The sample variance is usually 20 % to 30 % lower than it was in the

benchmark case; we consider this finding robust to large extent since

each sample contains 475000 realizations of xt (1000 repeat cycles with

500 iterations each, initial 5 % discarded). Figure 5.4 supports this con-

clusion as well, less dramatic behavior of the xt time series is apparent

compared to the original (but analogical) plots in Figure 5.1—we remind

the reader that the same bias and trend parameters bh and gh, respec-

tively, were used, along with identical noise term εt. The difference in

stability can therefore be attributed to the PT extension completely.

2. Loss aversion matters. Another apparent result of the simulations with

the PT extended model is the fact that the number of strategies endowed

with the PT feature, L, affects the performance of the model significantly.

Summarizing the Kruskal–Wallis tests for different L, Table 5.6 shows

that if only the fundamentalist strategy is loss-averse (i.e. L = 1), the

empirical distributions of xt are statistically different at a reasonable sig-

nificance level from those obtained from the model with L = 0 only for

higher values of β. On the other hand, for L > 1 the distributions are

statistically (and visually) different from those of the benchmark, L = 0

case.

3. Occurrence of fundamentalists is more extreme. Not as striking as the

previous two findings—yet probably of the strongest economic relevance—

is the ambiguous status of the fundamentalist strategy. In the original

model, fundamentalists were, with increasing β, less likely to survive in

the market than they were for low values of β—we found that this phe-

nomenon was even more emphasized for L = 1. The ‘burden’ of loss aver-

sion presents significant hindrance for fundamentalists when they have to

face a large number of non-PT strategies (chartists) and the cases in which

n1,t = 0 are more frequent than they were for L = 0. On the other hand,

for L = 4 (i.e. when all strategies are loss-averse), fundamentalists are

able to survive in the market more easily; this fact is in contrast with

the findings of the original model; consult, please, Figure 5.9 for an il-

lustration of this phenomenon. Moreover, fundamentalists survive in the

market also for L = 3—although not as easily as they did for L = 4. Yet,

the cases in which n1,t 6= 0 are still very frequent even for high values

of β—this finding might come as a surprise considering the fact that the
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fundamentalists face non-PT chartists who do not have the burden of loss

aversion. Figure 5.10 compares the occurrence of PT fundamentalists and

non-PT chartists and thus illustrates this finding.

6.2 Asynchronous updating feature

The most important finding of the asynchronous updating extended model’s

simulations is the fact that the feature—in majority of cases—does not pro-

duce statistically different distributions of the xt time series in comparison

with the original, non-extended model. The interested reader is referred to

Table 5.7 which summarizes, among other statistics, p–values of the Kruskal–

Wallis test applied to the xt time series with and without the AU feature.

Nonetheless, there are some qualitative differences regarding the distributions

of xt—see, e.g., Figure 5.13 which compares tails of these distributions for data

obtained from the AU extended model and benchmark model. The simulations

also revealed implications of the AU feature with respect to autocorrelations

in the xt series—Figure 5.12 shows that a slowly decaying, ‘sine’ pattern is

clearly visible—such a phenomenon was not found in the simulations with the

non-extended model. Most importantly, however, the AU feature—designed

to mimic the empirical finding of investor inertia—has dramatically improved

prospects for fundamentalist who are now able to survive in the market more

easily.

6.3 Hypotheses

This section presents evaluation of the five introductory hypotheses specified

ex ante in the Thesis Proposal.

The original HAM by Brock & Hommes (1998) can be consistently ex-

tended by Prospect-Theoretical features.

The proceedings of Chapter 4, along with the simulations in Chapter 5, clearly

show that this hypothesis is true. Using a general idea proposed by Shimokawa

et al. (2007), we developed a straightforward extension of the original model.

This extension enabled us to include the most important features of PT into the

model, namely the loss aversion with reference point dependence, and distorted

treatment of gains and losses. Subsequent simulations of the augmented model
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showed that the extensions were consistent with the original HAM and that

they changed the behavior of it dramatically.

Incorporation of Prospect Theory helps better explain some classical fi-

nancial stylized facts.

Answer to this hypothesis is somewhat intricate. We will try to assess the

extended model’s explanatory power chiefly with respect to the three stylized

facts specified at the beginning of Chapter 5, i.e. fat tails, absence of autocor-

relation of returns, and volatility clustering. The analysis will consist in com-

parison of the obtained time series and its properties with real-world market

data, namely with four stock market indices—S&P 500, FTSE 100 (London),

HSI (Hang Seng Index, Hong Kong), and Nikkei 225 (Tokyo).

The main characteristic of the indices that will be studied will be—contrarily

to most research in the field—daily close price differences. The time period that

the data comes from is January 1, 2009 to May 1, 2015. We do not choose the

more common logarithmic returns as the price differences1 better mimic the

‘deviation’ nature of the xt time series from the HAM. Table 6.1 summarizes

the most important statistics of the price differences times series of the four

indices and the best-fit time series model from the ARMA model family de-

termined by the AIC.2 The ‘*’ symbol indicates that the particular statistic

refers to a standardized time series—the standardization consists in division of

each price difference by mean value of the respective index to establish better

mutual comparability among the indices, i.e. the standardized series are of the

form

rt =
pt − pt−1

p̄
, (6.1)

where pt is the respective index’s daily close price, and p̄ is the arithmetic mean

of daily close prices of the index for the time period in question. The time series

models in Table 6.1 were fitted to nonstandardized price differences.

Apparently, two of the indices’ price differences time series are best char-

acterized by an autoregressive model—such a finding is in accordance with the

best-fit models from our simulations. On the other hand, FTSE 100 and HSI

are best described by a MA(0) process. This finding means that the time series

1We will nonetheless refer to these price differences as rt in plot labels.
2We chose AIC as the model selection criterion since, in our opinion, the analysis is

complex and exploratory-like. For this application, the AIC is optimal—unlike e.g. Bayesian
Information Criterion (BIC) which is more useful in confirmatory analyses of models with
lower dimension (Aho et al., 2014).
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Table 6.1: Summary statistics of real-world indices’ price differences and
best-fit time series model.

Ind. Mean Mean* Var. Var.* Skew. Kurt. Model

S&P 0.739 0.00052 194 0.00010 -0.336 5.029 AR(1)
FTSE 1.555 0.00027 3240 0.00010 -0.203 4.489 MA(0)
HSI 8.238 0.00039 67835 0.00015 -0.092 4.187 MA(0)

N225 6.706 0.00058 26923 0.00020 -0.555 6.967 AR(2)

is essentially a white noise process—a comparison of this result with Figure 5.8

reveals the fact that also the HAM simulations produced MA(1) coefficient equal

to 0 at non-negligible amount of times, although expected value of this coeffi-

cient is higher than 0. The estimated autoregressive coefficients for S&P 500

and Nikkei 225 are, respectively, equal to −0.068 and {−0.04, 0.04}—thus, they

are on average either slightly negative or zero. Comparison with Table 5.3 re-

veals that neither of our simulations were able to replicate this finding with

sufficient accuracy.

Table 6.2 shows best-fit models for squared price differences along with es-

timated α1 and β1, the AR(1) and MA(1) coefficients, respectively, and arith-

metic averages of all autoregressive and moving average coefficients. Clearly,

our simulations were able to replicate these findings in terms of the optimal

model (consult Table 5.4); both non-PT and PT x2
t time series were best charac-

terized by the same model family. Table 5.4 also reveals that the PT extended

model’s α1 AR(1) coefficient is—for β = 105—very close to the HSI’s estimated

α1 coefficient, and for β = 55 relatively close to the S&P 500’s estimated α1

coefficient. On the other hand, the moving average component of the real-

world indices exhibits considerably lower ‘expected’ values than our simulated

distributions of the β1 coefficients do.

Table 6.2: Best-fit models of real-world indices’ squared price differences.

Index Model α1 β1 ∅α ∅β
S&P ARMA(2,1) 0.329 -0.260 0.303 —

FTSE AR(6) 0.042 — 0.079 —
HSI ARMA(6,4) 0.182 -0.161 0.097 -0.079

N225 AR(6) 0.104 — 0.075 —

Figure 6.1 shows, on a log–log scale, tail plots of 10 % of largest absolute

price differences of the four aforementioned indices for the period from January

1, 2009 to May 1, 2015 are plotted. The estimated tail indices are 4.488 (S&P
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500, R2 = 0.89), 4.456 (FTSE 100, R2 = 0.961), 4.241 (HSI, R2 = 0.983), and

3.669 (Nikkei 225, R2 = 0.991). To the eye, the data fit the power law well,

and the tails of Nikkei 225 are almost perfect power law fit which is manifested

in extremely high value of R2.

Figure 6.1: Tails of real stock market indices’ close price differences distribu-
tions; log–log scale.
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(c) HSI
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(d) Nikkei 225

●

●
●

●●

●●●
●●

●●●●
●●●●

●●●●
●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

400 600 800 1000
k

5.×10-4
1.×10-3

5.×10-3
1.×10-2

0.05
0.10

P(Abs(rt)>k)

Source: Author’s computations using Yahoo Finance data.

A comparison of there results with those shown in Table 5.5 shows that in

most cases, the tail indices are lower than those of the simulated xt time series.

However, the same table provides evidence that the PT extension actually moves

the model a little bit closer to reality in terms of the tail indices’ magnitude for

most values of β. Nonetheless, we again emphasize that it is not absolutely clear

whether the power law is the ideal model for tails of the time series obtained

from this type of HAM as the coefficients of determination are smaller than

those of the real-world indices.
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Asynchronous updating modification changes the dynamics of the model

considerably.

The asynchronous updating extended model’s simulations reject this hypothesis

in most cases in terms of the distributions of price deviations xt. We have

showed that the empirical distributions of xt when δ 6= 0 are—in majority of

cases—not statistically different from those of the cases in which δ = 0, i.e. the

distributions are ‘similar’—nonetheless, especially for δ ∈ {0.4, 0.8}, almost

half of the distributions are statistically different from those of the benchmark

case.

On the other hand—and most importantly—incidence of the fundamentalist

strategy is dramatically different than it was in the non-extended model and

is arguably closer to the real-world market fraction of fundamentalists (see

e.g. Vissing-Jorgensen, 2004 for a survey of fractions of market strategies).

This finding is of significant economic importance and supports the following

hypothesis that the AU feature shifts the model closer to real market dynamics.

Asynchronous updating feature shifts the model closer to the real market

dynamics.

According to Table 5.7, distributions of the xt time series are not—in most

cases—different from those of the benchmark xt series. Yet, the AU extension

shifts the model closer to reality in terms of incidence of the fundamentalist

strategy, consider Figure 5.14. This finding is probably more interesting than

the similarity of the xt empirical distributions with respect to the original,

non-extended model and suggests that the investor inertia phenomenon might

actually be behind the empirically observed ability of fundamentalists to survive

in the market (see Figure 5.14 for comparison of survival of fundamentalists in

models with and without the AU extension).

The models with proposed behavioral features depict the empirical findings

more accurately than models without them do.

The effect of both extensions (i.e. the PT and AU extension) must be assessed

separately as they change the behavior of the original Brock & Hommes (1998)

model differently. While the AU extension does not produce—for most values of

β—significantly different distributions of xt (with respect to the non-extended

model) and the hypothesis is hence somewhat irrelevant, it is nonetheless able



6. Results and hypotheses 72

to better replicate the empirically observed fraction of fundamentalists in the

market, as we have already pointed out before.

The PT extension, on the other hand, produces xt time series that are

statistically different from those obtained from the non-extended version of the

model and evaluation of the hypothesis is therefore relevant. The three stylized

facts we have been exploring are weak autocorrelations of deviations from the

fundamental price,3 volatility clustering (i.e. autocorrelations of squared price

deviations), and fat tails. Results of Chapter 5 indicate that the PT extended

model is able to better replicate the latter two facts and slightly worse the

first fact, in comparison with the non-extended model. It is however important

to emphasize that these differences in replication of empirical findings are not

dramatically large.

3Normally, stylized facts are focused on time series of returns—the Brock & Hommes
(1998) models nonetheless makes use of time series of deviations from the fundamental price.



Chapter 7

Conclusion

Extending the popular Brock & Hommes (1998) agent-based asset pricing

model, we introduced features based on findings of Prospect Theory into the

framework and assess the impact of Asynchronous Updating—technical setting

of the model that aims to incorporate the empirically observed phenomenon of

investor inertia which causes faulty timing of investment decisions. For com-

parison of the extended versions of the model with its original version, we have

developed an algorithm which uses the methods of Monte Carlo simulations for

random generation of parameters of the model and subsequent estimation of

statistical distributions of the model’s major variables.

The main contribution of this thesis is the finding that the original model

can be consistently and meaningfully extended with the most relevant features

of Prospect Theory and—at the same time—its intrinsic ‘stylized’ (i.e. sim-

ple) structure kept essentially intact. We find that distributions of the main

variables are statistically different from those obtained from the non-extended

version of model; moreover, the extension based on Prospect Theory shifts the

original framework closer to real-world market dynamics in terms of two of the

three stylized empirical facts that the thesis focuses on.

The inclusion of Asynchronous Updating typically does not produce sta-

tistically different distributions of the main variables. Yet, it does produce

economically relevant implications regarding incidence of fundamentalists in

the market that were clearly absent in the original, non-extended model.

As the Brock & Hommes (1998) model is per se characterized by ‘many

degrees of freedom’ (i.e. countless possible options of settings of the main

parameters) and the extensions bring even more options in this regard, future

research might concentrate on exploration of other possible combinations of
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the parameters. Additionally, the extended model could be estimated using

real-world empirical data to reveal the natural values of some parameters, e.g.

of degree of loss aversion present in the markets. Other field that could be

explored with respect to the extended version of the model is a more in-depth

analysis of volatility structure of the xt time series.
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Appendix A

Supplements

A.1 Proof of optimal demand for risky asset

Given the utility function of wealth of the form U (W ) = − exp (−a ·W ),

where a is the risk aversion parameter, and the wealth dynamics equation

Wt+1 = R·Wt+zh,t ·(pt+1 + yt+1 −R · pt), which serves as a budget constraint,

the optimal quantity demanded for a myopic, mean–variance investor of the

risky asset, z∗h,t, maximizes the expected utility E (U (Wt+1)) of an agent:

E (U (Wt+1)) = E (− exp (−a ·Wt+1))

= − exp

(
−a · Eh,t (Wt+1) +

a2

2
· Vh,t (Wt+1)

)
,

(A.1)

where we used the assumption that Wt+1 ∼ N (Eh,t (Wt+1) , Vh,t (Wt+1)), and,

hence, the random variable Y = − exp (−a ·Wt+1) has a log-normal distribu-

tion.

Now, the maximization problem

max
zh,t

{
− exp

(
−a · Eh,t (Wt+1) +

a2

2
· Vh,t (Wt+1)

)}
(A.2)

is equivalent to the minimization problem

min
zh,t

{
exp

(
−a · Eh,t (Wt+1) +

a2

2
· Vh,t (Wt+1)

)}
, (A.3)

which is, moreover, equivalent to the minimization problem

min
zh,t

{
−a · Eh,t (Wt+1) +

a2

2
· Vh,t (Wt+1)

}
. (A.4)



A. Supplements II

Using the facts that Eh,t (Wt+1) = R ·Wt + zt · E (pt+1 + yt+1 −R · pt) and

Vh,t (Wt+1) = z2
h,t ·Vh,t (pt+1 + yt+1 −R · pt) ≡ σ2, and taking the derivative of

equation A.4 with respect to zh,t, we obtain the desired result

z∗h,t =
Eh,t (pt+1 + yt+1 −R · pt)

a · σ2
. (A.5)

A.2 PDFs of S&P 500 daily logarithmic returns

Figure A.1: S&P 500 daily logarithmic returns. Contrast the kurtosis of the
empirical returns’ distribution (blue solid line) to that of normal
distribution with the same mean and variance (orange dashed
line).
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Appendix B

Contents of enclosed ZIP archive

There is a ‘ZIP’ archive1 enclosed to this thesis which contains Wolfram Mathe-

matica source codes (‘.nb’ file extension) and all graphs and diagrams obtained

from the simulations.

� Folder 1: Mathematica source codes

� Folder 2: Graphs and diagrams

1Besides the official Charles University theses repository website, the archive—named
‘Thesis data.zip’—can be downloaded from OneDrive at http://1drv.ms/1dXbZd0.

http://1drv.ms/1dXbZd0
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