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Chapter 1

Introduction

Life on earth is inherently connected to the most ubiquitous solvent present, wa-

ter. The body of a grown specimen of homo sapiens consists of about 60 % water

(solutions). [1] The human cell’s major constituents by mass are water (65 %),

proteins (20 %), and lipids (12 %), while DNA only makes up roughly 0.1 %. [2]

An illustrative example of DNA damage by ionizing radiation is the G-irradiation

of an aqueous solution of 0.5 g/l of DNA. Only about 0.5 % of the radiation is

absorbed by the DNA and the rest by water. [3] Hence, in medical applications

such as radiation therapy, where ionizing radiation is used to kill malignant cells,

detailed understanding of the radiation-induced chemistry of water plays an im-

portant role. Below 1 MeV G- and X-rays lead to ionization of water, whereas for

higher energies pair-formation between electrons and positrons is observed. The

photoionization of water reads in a simplified manner [4, 5]:

H2O −−→ H2O·+ + e−pre (1.1)

H2O·+ + H2O −−→ .OH + H3O+ (1.2)

e−pre −−→ e−aq (1.3)

After the initial electron detachment two components are formed, the “cationic

hole” (H2O·+) and a pre-solvated electron e–
pre. The separation between the two

species is proportional to the ionization energy as seen in decreasing geminate

recombination rates with higher ionization energy. [6] The cationic hole reacts

within few tens of femtoseconds to form .OH radical and solvated proton. If it

happens, geminate recombination will to 80 % happen with .OH radicals and

only to 20 % with hydrated protons. [7] The pre-solvated electron e–
pre will at

first be delocalized and encompassing several-nm-sized regions of water but will

further on localize to form an equilibrated species, namely the hydrated electron

e–
aq. [8, 9] Both, .OH and eaq

– were invoked in explanations of DNA damage. [10,

11] However, hydrated electrons cannot be considered to play a primary role in
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direct DNA damage, because of their high reactivity towards diverse solutes and

hence very short lifetimes. [3, 5] They will even react with water to form H· and

OH–, on a sub-millisecond time scale. [12] Nevertheless, reactions of hydrated

electrons with solutes in water can lead to secondary products that can still be

harmful.

Besides biological interest, radiolysis of water takes place in applications like

nuclear waste remediation. [5] Reactions of the primary products, e.g., the hy-

drated electron lead to the formation of hydrogen gas which together with oxygen

forms explosive gas mixtures that one seeks to avoid, especially in vicinity of nu-

clear waste. If not quenched, primary products of water radiolysis, in particular

hydroxyl radicals, also lead to corrosion in water-cooled nuclear reactors due to

the formation of H2O2.

Because of the high reactivity of hydrated electrons with a manifold of other

solutes, it is important to attain a solid, in-depth understanding of structure and

energetics of products of water radio- or photolysis.

In this work, our focus lies on only one of the products of water ionization,

namely the hydrated electron. The first overall assumption is that we can treat

the species generated by water ionization separately. This works well for high

ionization energies when products of water ionization end up far away from each

other compared to their individual extent. [6] If no geminate recombination is

observed, both the hydrated electron and the cationic hole can be thought of as

two more or less independent systems. This allows for focusing our attention on

one problem at a time and hence treat the hydrated electron separately as an

excess electron in water. Since its first detection over 50 years ago [13], renewed

interest was shown in this elusive species, so also recently, as outlined below.

Elucidating the structure of the hydrated electron by experiment is only pos-

sible indirectly. One can estimate its overall extent by moment analysis of its

optical absorption spectrum which gives a radius of gyration of about 2.4 Å. [14]

Intimately connected with the structure is the binding energy of the hydrated

electron which can be measured by photoelectron spectroscopy (PES). Up until

recently measurements of vertical detachment energies (VDE) were only possible

on cluster systems due to the requirement of ultra-high vacuum conditions to

detect outgoing photoelectrons. Performing these experiments in a cluster-size

dependent fashion can be used to extrapolate measured quantities to the water

bulk. [14, 15] Observation of isomers with different binding energies and different

extrapolations to infinite cluster size led to the suggestion that in bulk water also

two different isomers might be observable - one high-binding isomer in the bulk

interior with a VDE of about 3.3 eV and one low-binding isomer at the water

surface with a VDE of about 1.6 eV. [16] In the experiment, water clusters are
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generated by expansion into vacuum, leading to cooling of the water clusters and

thus solidification, so that the investigated clusters are not representative of liq-

uid bulk water. This was recognized in different experimental [17, 18] as well as

theoretical studies [19, 20, 21]. Low-binding isomers disappear from the measured

spectra by changing the conditions of the vacuum expansion, e.g., use of different

carrier gases and pressures. [18] In the same spirit, only high-binding isomers sur-

vive upon annealing of the anionic water clusters up to their evaporation-ensemble

temperatures after cluster generation. [17] This suggests that low-binding isomers

actually exist only due to kinetic trapping in cold water clusters. The formation

of metastable structures at low temperatures was observed in theoretical studies

of electron attachment to cold water clusters. [19, 20] It was also found that elec-

tron attachment depends strongly on the thermal history of the water cluster. [21]

Furthermore, at ambient conditions only little correlation is found between the

location of an excess electron in medium-sized water clusters and its vertical de-

tachment energies. [22, 23, 24] Rather a correlation between size and VDE is

observed, i.e., the larger the hydrated electron the less it is bound and vice versa.

The advent of the liquid microjet technique allowed for actual measurement

of VDEs in highly volatile liquids as water, meaning both systems of extended

size and at temperatures above the freezing temperature of water. [25] Different

groups measured the bulk vertical detachment energy of the hydrated electron to

be within 3.3 to 3.6 eV. [26, 27, 28, 29] One of these groups also suggested that

there would be a stable low-binding isomer at the water surface, corresponding to

before-mentioned extrapolations, at 1.6 eV. [28] This excess electron would have

to be delocalized over the water surface according to the correlation between

size and VDE. In contrast to that there are surface-sensitive second-harmonic

generation spectroscopy measurements, where the hydrated electron was found

to be below the dividing surface of water. [30] Neither have the measurements

in ref. [28] ever been reproduced nor has anyone else up to now found a second,

low-binding isomer in liquid water. In particular, most recent investigations on

photoemission near a liquid water surface found no evidence of a low-binding

surface-isomer of the hydrated electron. [31]

Sometimes termed the most simple quantum solute in water [28, 32], theo-

retical description of the hydrated electron has relied to a large degree on the

use of so-called one-electron pseudopotential (OEPP) methods. [33] All-electron

studies of an excess electron in water have been performed with ab initio methods

mainly for small cluster systems [34] and for medium-sized anionic water clus-

ters in the range of a few tens of water molecules. [24, 35] Studies of extended

systems with ab initio methods have been performed, but were prone to arti-

facts due to very limited unit cell sizes. [36, 37] The OEPP methods map the
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many-electron problem onto a mixed quantum-classical description, where only

the excess electron is treated quantum mechanically. The interaction with the

surrounding solute is described by a pre-parametrized pseudopotential and inter-

actions of solute with solute by an effective pair-potential. 1 Quite a few of these

pseudopotential parameterizations exist [33], one of which recently initiated a de-

bate about the general structure of the hydrated electron. [38] Since the discovery

of the hydrated electron, people were more or less convinced that the electron

would localize to a cavity surrounded by water molecules with one OH bond each

polarized towards the center of this elusive cavity. [33, 39, 40] Many independent

pseudopotential parameterizations show this general picture but differ in details,

such as the coordination number of the hydrated electron. [33] The number of

water molecules in the first solvent shell is either four or six in these models. [33]

A recent pseudopotential on the other hand claimed that the electron would not

localize at all in a cavity. [38] Instead, a region of enhanced water density would

form over which the excess electron would be spread. Responses to that article

showed how sensitive these results are with respect to the parametrization and

how, with a little tweaking of the pseudopotential, a cavity-forming hydrated

electron would be recovered instead of the delocalized species. [41, 42, 43] Never-

theless, the delocalized model of a hydrated electron is capable of reproducing a

number of experimental observables correctly. Whereas vertical detachment en-

ergies and optical absorption spectra at ambient conditions are well reproduced

with different models [44], the temperature dependence of the optical absorp-

tion spectrum and the resonance Raman spectrum are best reproduced with the

OEPP yielding the delocalized model of a hydrated electron. [45]

Without relying on artificial splits between the excess electron and electrons

constituting the water molecules, in this thesis we explore the structure, dynam-

ics, and reactivity of the hydrated electron with ab initio methods. This shall

help us to perform our investigations in an as unbiased way as possible. The work

deals, among other things, with the controversial issues outlined above. Thus, we

investigate first the structure of the bulk-hydrated electron, and second, how the

latter differs from an electron solvated at the water/vapor interface. Small cluster

models serve benchmarking purposes as well as model systems for the reactiv-

ity of the hydrated electron with different quenchers, such as hydronium cation

and nitrous oxide. After having established an ab initio view on the hydrated

electron in thermal equilibrium we can then go one step further and investigate

the dynamics following water ionization. Again, we restrict ourselves to an ex-

cess electron in water, but this time following its time evolution after vertical

1To some degree this explains the misconception of the “most simple” quantum solute in
water.
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attachment to neat water.



Chapter 2

Methodology

In this chapter we explain in detail methods used in this work. It is not intended

to give a full review of all computational methods, but rather highlight some of

their important aspects and introduce employed approximations. References to

detailed reviews and books are provided. The main results of the thesis were

produced with ab initio molecular dynamics simulations of bulk and slab sys-

tems; minimum energy structures, and reaction paths were established in small

cluster systems. This chapter is organized as follows, sec. 2.1 gives an introduc-

tion to classical molecular dynamics (CMD), followed by a short introduction

to how energies and forces are obtained in the framework of density functional

theory (DFT), sec. 2.2. The next sections deal with minimum energy structures

and minimum energy paths (sec. 2.3) followed by a brief introduction to time-

dependent density functional theory (TDDFT) (sec. 2.4). In sec. 2.5 various

solvation models are described. Section 2.6 provides details of the analyzes used

to investigate the systems of interest, focusing on particular schemes that are

either considered non-standard or very special to the problem at hand, i.e., the

hydrated electron. The last subsection (sec. 2.7) gives the specific details of the

calculations.

2.1 Classical Molecular Dynamics

All systems in nature are driven by forces stemming from the interactions among

their constituents and possibly external potentials. Directly following the result-

ing time evolution of a system in form of molecular dynamics simulations can

be used for sampling of structures belonging to an ensemble in thermodynamic

equilibrium or to follow processes like chemical reactions in time. Good resources

for a detailed account are refs. 46, 47.

Ignoring relativistic effects and concerning ourselves with the level of detail

of electrons and protons, the time evolution of a system is given by the time-
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dependent Schrödinger equation (TDSE):

i
∂

∂t
Φ ({ri} , {RI}) = HΦ ({ri} , {RI}) . (2.1)

Atomic units are used here and in the following. 1 Here, Φ is the wavefunction

of our system and H the Hamiltonian consisting of the bare Coulomb potential

for electrons and nuclei and their kinetic energy terms. {ri} and {RI} are the

collection of electronic and nuclear coordinates, respectively. 2 The electronic

coordinates and corresponding indices are given as lowercase letters and the ones

for nuclear coordinates and corresponding indices as uppercase letters throughout

this work. The total Hamiltonian H is given as follows

H ({ri} , {RI}) =
∑

I

1

2MI

∇2
I

︸ ︷︷ ︸
TN

−
∑

i

1

2
∇2
i

︸ ︷︷ ︸
Te

+
∑

i

∑

j 6=i

1

|ri − rj|
︸ ︷︷ ︸

Vee

−
∑

i

∑

I

ZI
|RI − ri|

︸ ︷︷ ︸
VeN

+
∑

I

∑

J 6=I

ZIZJ
|Ri −RJ |

︸ ︷︷ ︸
VNN

. (2.2)

Operators T represent kinetic energy terms labeled with indices corresponding to

electronic (e) or nuclear (N) degrees of freedom and V represent operators for

Coulomb interaction between particles. ZI is the nuclear charge of atom I. Solving

the TDSE represents a complex problem that is tractable analytically only for

few model systems and numerically for low-dimensional systems. To tackle this

problem for non-trivial systems a set of approximations has to be introduced.

Instead of simultaneously solving the full TDSE for nuclei and electrons, one first

assumes that one can split the problem into a nuclear and an electronic part and

solve the electronic, time-independent Schrödinger equation (TISE) for a fixed

nuclear configuration (“clamped nuclei”). The electronic part of the TISE with

the Hamiltonian He = Tee + Vee + VeN is:

He ({ri} ; {RI}) Ψk ({ri} ; {RI}) = Ek ({RI}) Ψk ({ri} ; {RI}) . (2.3)

Ek are the eigenvalues corresponding to Ψk. The semicolon indicates a para-

metric dependence, i.e., although the electronic problem depends on the specific

nuclear configuration it is solved for, there is no explicit dependence on them.

Knowing the solutions to this equation we can write the full quantum-mechanical

wavefunction as expansion in the electronic wavefunctions Ψl, where the nuclear

1In atomic units the electron mass me, elementary charge e, reduced Planck’s constant ~
and Coulomb’s constant 1/4πε0 are set to unity.

2Vectors are given in bold face.
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wavefunctions χl can be understood as expansion coefficients:

Φ ({ri} , {RI}) =
∞∑

l=0

Ψl ({ri} ; {RI})χl ({RI} ; t) . (2.4)

Inserting eq. 2.4 into eq. 2.1, multiplying from left with Ψ∗k and integrating over

all electronic coordinates gives:

[
−
∑ 1

2MI

∇2
I + Ek ({RI})

]
χk +

∑

l

Cklχl = i
∂

∂t
χk. (2.5)

These are a set of coupled differential equations with Ek the eigenvalues of Ψk in

eq. 2.3. The non-adiabatic coupling operator Ckl is:

Ckl =

∫
Ψ∗k

[
−
∑ 1

2MI

∇2
I

]
Ψld

3r +
1

MI

∑

I

{∫
Ψ∗k [−i∇I ] Ψld

3r

}
[−i~∇I ] .

(2.6)

Up to this point no approximations have been introduced. The time-evolution of

the system is governed by the Hamiltonian with an exact wavefunction. This is

still too difficult to solve numerically. To make molecular dynamics feasible we

have to analyze the terms in Ckl. These non-adiabatic coupling elements com-

prise two contributions. First, the coupling between different electronic states

(off-diagonal terms Ckl) and second, the coupling between the electronic and nu-

clear degrees of freedom (diagonal terms Ckk). Neglecting the first term will lead

to dynamics in only one electronic state without any electronic transitions. This

is thus called the “adiabatic” approximation and works well for molecular dy-

namics in the ground state when it is well separated from higher lying electronic

states, e.g., as in insulators like water. The second term can be neglected in

most cases and will lead to errors smaller than 0.5% except for very unfavor-

able situations. [48] The latter is the famous “Born-Oppenheimer” approxima-

tion. [49] Together with the adiabatic approximation it allows us to approximate

our wavefunction Φ (eq. 2.4) as a single product of one electronic and one nuclear

wavefunction:

Φ ({ri} , {RI} ; t) ≈ Ψk ({ri} ; {RI})χk ({RI} ; t) . (2.7)

Up to this point we are still dealing with nuclear and electronic wavefunctions.

The next step, which leads to classical dynamics, is the simplification of the nu-

clear part of the problem. A rigorous derivation is beyond the scope of this short

introduction. For a good review see [47, 50]. For not-explicitly time-dependent

Hamiltonians the quantum-mechanical expectation values of position R and mo-
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mentum P, 〈R〉 and 〈P〉, are given by Ehrenfest’s theorem [51] as

i
d

dt
〈RI〉 = 〈[H,RI ]〉 = i

〈PI〉
MI

(2.8)

i
d

dt
〈PI〉 = 〈[H,PI ]〉 = −i 〈∇IEk ({RI})〉 (2.9)

where [, ] denotes the commutator. Combining these two equations leads to New-

tonian equations of motion for the expectation value of the nuclear wavefunction:

MI
d2 〈RI〉
dt2

= −〈∇IEk ({RI})〉 . (2.10)

Substituting for the nuclear wavefunction a product of Dirac’s δ-functions cen-

tered at the coordinates of the nuclei leads to the “classical-nuclei” approximation.

This is often a good approximation for systems at ambient conditions. The error

of this approximation is related to the extent of the nuclear wavefunction and is

small for tight wavefunctions. This simplification leads to our working equations

for the molecular dynamics:

MI
d2

dt2
RI (t) = −∇IEk ({RI (t)}) . (2.11)

These equations lead to dynamics referred to as “ab initio”, “first-principles”,

or also “Born-Oppenheimer” molecular dynamics (AIMD, FPMD, or BOMD).

Various methods are in principle available to solve the right-hand side of eq. 2.11.

Throughout this work we work with variational methods, density functional the-

ory in particular, which calculate the forces exerted on the nuclei by solving

a variational problem for the ground state wavefunction Ψ0 and thus eq. 2.11

changes to:

MI
d2

dt2
RI (t) = −∇Imin

Ψ0

{〈Ψ0|He |Ψ0〉} (2.12)

or in terms of the electron density n (r) in DFT:

MI
d2

dt2
RI (t) = −∇Imin

n0

{E0 [n]} . (2.13)

Here, E0 [n] represents the energy functional of the electron density n as detailed

in section 2.2.

Forces in eq. 2.12 can be calculated by differentiation of the expectation value

of the electronic Hamiltonian:

∇I 〈Ψ0|He |Ψ0〉 = 〈∇IΨ0|He |Ψ0〉+ 〈Ψ0|He |∇Ψ0〉+ 〈Ψ0| ∇He |Ψ0〉 . (2.14)

For stationary-state wavefunctions of He the first two contributions vanish and
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only the last term remains. This is true provided a complete basis set is used (the

Hellmann-Feynman theorem). [52, 53] In practice the exact ground state cannot

be obtained and the wavefunction has to be represented in a finite basis set.

Thus, actual force calculations are often more involved than only evaluating the

gradient of the Hamiltonian. Additional terms arise for basis functions with an

explicit origin (like atom-centered Gaussian functions), but not for originless basis

functions (like plane waves). In computational implementations of variational

methods errors are introduced due to incomplete self-consistency, but can be

made arbitrarily small with high convergence (at increased computational effort).

The exact magnitude of this error is unknown, but ways to estimate it exist (see

ref. 47 and references therein).

The equations of motion 2.11 have to be solved numerically by discretizing

time and step-by-step integration (propagation). Various algorithms exist for

that purpose and in this work the velocity-Verlet propagator (VVP) was used

throughout. [54] The most important properties that such an algorithm must ful-

fill are time-reversibility of the continuous equations of motion and good overall

energy conservation. Direct propagation of the equations of motion leads to sam-

pling of the microcanonical ensemble (NVE). To account for thermal and pressure

coupling additional algorithms are needed influencing the equations motions in a

way to reproduce other statistical ensembles like the canonical ensembles (NV T

and NpT ). [46]

Ab inito molecular dynamics simulations depend only on a few parameters,

as the name suggests. Nevertheless, these parameters can be determining for ac-

curacy and efficiency of the calculations. In particular, the convergence criterion

of the wavefunction optimization needs to be sufficiently tight to guarantee con-

verged forces and simultaneously not to be so demanding that the calculations

become inefficient. Neither should the conserved energy show significant drift,

compared to the fluctuations in the potential energy. Even if the wavefunction

of the previous MD step is used as initial guess for the current MD step, large

drifts in the conserved energy can be observed with tight wavefunction conver-

gence. [55] A method for obtaining good intial guesses for the initial wavefunction

that also improves overall energy conservation is the always stable predictor cor-

rector (ASPC) algorithm, developed originally in the context of polarizable force

field simulations. [56] Together with the APSC algorithm a convergence criterion

of 10−6 a.u. on the forces of each orbital represents a good compromise in accuracy

and efficiency of AIMD simulations. Furthermore, algorithms that avoid diago-

nalization of the wavefunction at each step in the self-consistent field cycle can be

used to improve overall performance (e.g., the so-called “orbital-transformation”

(OT) method [57]).
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2.2 How to get proper forces

Many different methods exist to approximately solve the electronic, time-inde-

pendent Schrödinger equation 2.3. In Hartree-Fock (HF) theory, which is the

basis of many other methods, the electronic problem is solved for an electronic

wavefunction given by a single Slater determinant. This leads to proper treatment

of Pauli repulsion between the electrons. Unless additional (most often perturba-

tive) corrections 1 are introduced, Hartree-Fock calculations lack any electronic

correlation. The treatment of correlation effects for wavefunction-based meth-

ods is generally very demanding in terms of computer time and has unfavorable

scaling with system size. Beyond tens of heavy atoms this very quickly becomes

unfeasible and it is intractable for extended systems like bulk water. Hence, the

major workhorse for ab initio molecular dynamics nowadays is density functional

theory, which allows for accurate calculations in a reasonable time frame and

includes electronic correlation effects. For a good review of DFT see ref. 58 or

with respect to AIMD refs. 47, 59. DFT is based on two theorems by Hohenberg

and Kohn. [60] In brief, the first theorem shows that a direct mapping between

the ground state electronic density n0 and the external potential vext (the nuclei)

exists. The external potential vext (and thus the Hamiltonian of the system) is a

unique functional of the electronic density. Therefore, the total energy of a system

can be written as functional of the electron density E [n]. The second theorem

states that a variational ansatz with respect to the electron density holds. The

first theorem leads to an expression of the total, electronic energy E [n] of the

system as a functional of the electronic density n (r):

E [n] = F [n] +

∫
n (r) vext (r) d3r. (2.15)

The exact form of the functional F [n] is not known and has to be approximated

for actual calculations. It includes the electronic kinetic energy ET [n] and the

interaction between the electrons. The latter is often split into two contribu-

tions, the classical electron-electron repulsion EH and the quantum-mechanical

exchange and correlation effects EXC. The last term in eq. 2.15 describes the in-

teraction of the electronic density with any kind of external potentials, including

the coulombic potential of the nuclei. The energy can be minimized variationally

with respect to the density to give the ground state energy E0:

E0 [n] = min
n

{
F [n] +

∫
n (r) vext (r)d3r

}
. (2.16)

1Reference calculations in this work were carried out with second-order Møller-Plesset per-
turbation theory.
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The minimization is subject to the constraint that the electronic density must

stem from an antisymmetric wavefunction and integrate to the number of elec-

trons (n-representability). Alone, the two Hohenberg-Kohn theorems do not al-

low for an accurate computational implementation. The main problem is that the

kinetic-energy ET is not known as a functional of the electron density. To rem-

edy this problem, Kohn and Sham introduced a non-interacting reference system

in form of a single Slater determinant Ψ ({ri}), constructed from one-particle

wavefunctions ψi, that reproduces the electron density of the fully interacting

system. [61] The electronic density is then given as:

n (r) =
n∑

i=1

fi |ψi (r)|2 , (2.17)

where fi are the occupation numbers of the one-particle orbitals. The kinetic

energy Es
T of the reference system can be calculated as:

Es
T =

n∑

i=i

〈ψi (r)| − 1

2
∇2 |ψi (r)〉 . (2.18)

This is not the full, electronic kinetic energy as it is only that for the non-

interacting reference system. It is a good approximation, though. The resid-

ual term ET [n] − Es
T [n] is approximatively included in the so-called exchange-

correlation (XC) functional. For interacting, many-electron systems the exact

form of the XC functional is not known either. Many approximate forms exist

based on different ideas, vide infra. Introduction of the single-particle orbitals ψi

leads to a set of effective, coupled single-particle equations:

[
1

2
∇2 + vs (r)

]
ψi (r) = εiψi (r) (2.19)

which have to be solved iteratively. εi are eigenvalues to the single-particle solu-

tions and vs is the Kohn-Sham (KS) potential. The KS-potential is constructed

from the external potential, the classical electron-electron repulsion, and the ex-

change correlation potential. Equations 2.19 are then solved iteratively in form

of a self-consistent field cycle until convergence is reached.

In the specific CP2K implementation of density functional theory a dual-

representation of the electron density is used. [62] Both, an atom-centered basis

set of Gaussian-type orbitals (GTO) and a plane-wave (PW) basis set are used to

expand the electron density. This way, the most effective procedures connected to

either basis-set representation can be used. Multi-center overlap integrals can be

calculated efficiently using recurrence relations in the GTO basis set, whereas in
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the plane-wave basis set (periodic) electrostatics are calculated using Fast Fourier

Transforms (FFT). FFTs are very efficient and linear scaling of computational

effort with respect to the system size is possible. The electronic density is given

in the GTO basis set as:

n (r) =
∑

µν

Pµνψ
∗
µ (r)ψν (r) . (2.20)

Pµν are density matrix elements and each orbital ψµ is expanded into primitive

Gaussian functions gi with pre-determined coefficients diµ as ψµ (r) =
∑

i diµgi (r).

The expansion coefficients n̄ (G) for the density in the plane-wave basis set n̄ (r)

are chosen to reproduce the density in the GTO basis set n (r) as:

n̄ (r) =
1

Ω

∑

G

n̄ (G) exp (iG · r). (2.21)

Ω is the volume of the unit cell and G are the reciprocal lattice vectors. The

use of the plane-wave basis set has the aforementioned advantage that the clas-

sical electrostatic energy can be evaluated efficiently using fast Fourier trans-

forms. The Hartree potential for the electronic density in reciprocal space is

vH (G) = 4πn̄ (G) /G2 and the electrostatic energy of the electron density is then

just Ω
2

∑
G n̄ (G) vH (G). The use of the plane-wave basis set has the drawback

that for all-electron calculations plane waves with high kinetic energy (small grid-

spacing in real space) would be needed. For practical calculations the atomic cores

are thus substituted by pseudopotentials (PPs). In CP2K, relativistic, norm-

conserving pseudopotentials of the Goedecker-Teter-Hutter type are used. [63]

This introduces additional terms to the electrostatic energy of the form

Pµν 〈ψµ (r)|VPP (r) |ψν (r)〉. The pseudopotentials VPP are split into a local and a

non-local part. The former consists of a short- and a long-ranged contribution.

Additionally, the nuclei are represented by Gaussian functions where parame-

ters for their width and pseudopotential parameters are chosen such that the

long-ranged part of the local pseudopotential cancels the respective core charge

distribution. This specific choice of parameters makes a range separation possi-

ble, such that total electrostatics can be evaluated using the Ewald summation

technique, i.e., the short-ranged part is evaluated directly in real space and the

long-ranged part in reciprocal space using FFTs as mentioned above (see also

sec. 2.5.2).

Despite its overwhelming success, density functional theory has several draw-

backs. The exact form of the exchange-correlation functional EXC is not known.

Commonly used approximations are the local density approximation (LDA) and

the generalized gradient approximation (GGA). The exchange-correlation energy
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in the local density approximation depends only on the density at a given point

in space r:

ELDA
XC =

∫
d3rεXC (n)n (r) (2.22)

and for the GGA-type functionals EXC additionally depends on the gradient of

the electron density at r:

EGGA
XC =

∫
d3rεXC (n,∇n)n (r). (2.23)

In both eq. 2.22 and 2.23 εXC denotes the energy density per particle. The

XC energy definitions are given excluding spin-dependent terms which can be

included and one obtains the local spin density (LSD) formalism.

On a general level, two classes of errors can be identified in KS-DFT calcu-

lations. As pointed out above, in practical DFT calculations the functional F [n]

has to be approximated, say by F̃ [n]. Hence the minimizing density in eq. 2.16

is also approximate, denoted as ñ(r). The resulting error of the DFT calculation

can then be given as [64]:

∆E = Ẽ − E = ∆EF + ∆ED. (2.24)

∆EF is the error introduced by approximating the exact density functional, i.e.,

the “functional error” F̃ [n] − F [n] and ∆ED is the “density-driven” error due

to the error in the electron density n (r) and is defined by eq. 2.24. In common

GGA KS-DFT calculations, the dominating error is usually ∆EF . [64] LDA and

GGA density functionals do not exhibit the correct long-range decay of the XC

potential. They decay faster, often in an exponential manner whereas the true

potential should decay as 1/r. [58, 65] Due to the self-interaction error (SIE) the

density-driven error can become the prominent problem for open-shell species.

The SIE is a remnant of the approximate exchange-correlation functionals used

in practice for which electrostatic and exchange-correlation energy do not cancel

out for a single electron, as they should in the exact density functional. Various

schemes have been introduced to counter this problem, i.e., the so-called self-

interaction corrections (SICs). [66, 67, 68] The SIE is in particular prominent for

open-shell species, e.g., doublet radicals like the hydrated electron. For AIMD

simulations presented in this work a semi-empirical SIC scheme was employed

that only acts on the density of the unpaired electron. [68] This is achieved by

adding two terms to the original energy functional E[n] that themselves depend

on the spin density m:

Ecorr[n] = E[n]− aEH[m]− bEXC[m, 0], (2.25)
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resulting in a corrected energy functional Ecorr, which can be tuned by adjusting

the two parameters a and b. 1 Corresponding parameter combinations used in

this work are given as, e.g., SIC(a = 0.3, b = 0.2). Correcting the spurious self-

interaction associated with singly occupied molecular orbital is the most impor-

tant for systems which are well described without the unpaired electron. [69, 70]

The parametrization can be done with respect to correlated ab initio methods

as in the original publication [68] and is system-dependent. Although this might

be viewed as not being “ab initio”, it has the advantage that one can adjust to

different situations where other schemes fail or are too costly. This methodology

is only slightly more costly compared to an uncorrected calculation with the same

density functional.

The SIE can also be reduced by employing hybrid functionals which include,

at least partially, exact Hartree-Fock exchange. Going one step further, one

can include exact exchange only beyond a specific range as is done in so-called

long-range corrected (LRC) hybrid DFs (for a good review see ref. 71). The

range-separation of the Coulomb operator takes following form:

1

r
=

erfc (µr)

r︸ ︷︷ ︸
short-range

+
erf (µr)

r︸ ︷︷ ︸
long-range

, (2.26)

using the error function (erf ) and its complimentary function (erfc ). The range-

separation parameter µ determines the reach of the regular DF description as in

eq. 2.22 or 2.23 (short-range part) and from where exact exchange is included

(long-range part, e.g., Hartree-Fock exchange). This cures the incorrect decay of

the XC potential and reduces the self-interaction error, but at significantly ele-

vated computational cost. The range-separation parameter µ needs to be chosen

properly. This can be done by benchmarking against high-level ab initio calcu-

lations [72] or by enforcing the IP-theorem from exact density functional theory

for the approximate density functionals [71]. The IP-theorem states that for the

exact DF the negative of the eigenvalue of the highest occupied molecular orbital

εHOMO coincides with the vertical ionization energy EIP [73, 74]:

−εHOMO = EIP. (2.27)

1The SIC is to be used within the restricted open-shell formalism of KS-DFT for doublet
radicals only. Artifacts are to be expected for fully spin-polarized wavefunction, where the spin
density does not necessarily coincide with the density of the singly occupied molecular orbital.
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2.3 Minimum energy structures and paths

Forces calculated according to secs 2.1 and 2.2 can also be used to obtain opti-

mized minimum energy structures. Although relevance of minimum energy struc-

tures diminishes with increasing system size as a plethora of local minima close in

energy exists and a single optimized structure looses its value, small model sys-

tems can be very useful for conceptual understanding and also for benchmarking

purposes.

Various algorithms for optimizing a system’s energy with respect to its molec-

ular geometry (“geometry optimization”) exist. Many of them stem from ma-

thematical function optimizations based on local line-search algorithms 1, like

conjugate gradients (CG) or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-

gorithm. More detailed information can be found, e.g., in ref. [75]. From these

methods only the BFGS algorithm was used in this work, because of its ability to

find the deepest local minimum within the vicinity of the starting configuration.

It belongs to the class of optimizers based on Newton’s method, i.e., approxima-

ting the function locally by a quadratic expansion around the current functional

value in the optimization procedure. Due to the high cost of calculating the full

Hessian matrix it is approximated and approximatively updated in each step of

a BFGS optimization.

Other algorithms, specifically designed for the search of minimum energy

structures have been designed in analogy to molecular dynamics algorithms. Two

examples are the projected velocity Verlet (PVV) algorithm [76] and the fast in-

ertial relaxation engine (FIRE) [77]. The former method propagates the system

according to the well-known velocity-Verlet molecular dynamics algorithm, but

only includes components of the velocity parallel to the actual force. This projec-

tion is done at every time step during the optimization. The velocity is zeroed if

force and velocity point in opposite directions, thus avoiding up-hill movements

in the respective direction. The latter, FIRE algorithm, also takes dynamical

steps according to an MD propagator, but with a variable time step. The veloc-

ity and time step are modified according to the projection of force on velocity.

The velocity in direction of the projection and the time step are increased if the

projection is larger than zero and the velocity is set to zero and the time step

decreased if the projection is smaller than or equal to zero. Thus, the optimiza-

tion avoids up-hill movements similarly to the PVV and, furthermore, speeds up

into the direction of decreasing energy. It is driven by the overall inertia of the

system and thus capable of handling shallow energy landscapes efficiently.

1Global optimization methods based on “trust-regions” or heuristic algorithms like “simu-
lated annealing” or “genetic algorithms” are less common.
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The optimization of reaction paths is more involved as the goal is to obtain

a full minimum energy path along an, in principle arbitrary, reaction coordinate.

The reaction coordinate can be for example the complete nuclear configuration

or just the distance between two atoms. Often used is the drag method, which

successively increases the reaction coordinate from reactant to product state and

at each step optimizes the structure around the constrained reaction coordinate.

This can become arbitrarily complex and cumbersome for systems where a re-

action coordinate is non-obvious and in principle simultaneous scans along all

nuclear degrees of freedom have to be done. Also, the use of pre-defined reaction

coordinates biases the optimization of the minimum energy paths without guar-

anteeing to find a (relevant) transition state. Methods working in the complete

configurational space without the need to assign pre-defined reaction coordinates

have been developed to circumvent this problem.

Reaction paths throughout this work were calculated with nudged elastic band

(NEB) methods. [78, 79] These methods employ a band of images, connected by

harmonic springs, that leads from reactants to products of a transformation,

not necessarily a chemical reaction. To extract meaningful barriers and relative

energetics both reactants and products have to be minimum energy structures. In

principle only the initial and final structures need to be known initially. They are

then connected by a band of intermediate images which can, e.g., be generated by

linear interpolation between initial and final state. The band is optimized with

forces from both the potential energy surface of the system as well as forces due

to the harmonic springs between neighboring images. The term “nudged” derives

from the fact that the force on an image is divided into components perpendicular

and parallel to the band. This removes problems with “corner-cutting” in the

original implementation of an elastic band. [80] The perpendicular component

in the NEB is due to the underlying potential energy surface and the parallel

component is due to the harmonic springs. Different ways of estimating the

tangent to the band at an image exist. In this work only the so-called “improved

tangents” version of the NEB (i.e., IT-NEB) was used. [78] The tangents τ are

calculated as the difference in configuration Ri
1 between the image and the

neighboring image with higher energy Rhi and normalized to give τ̂ :

τ̂ = ± Rhi −Ri

|Rhi −Ri|
. (2.28)

The sign depends on whether the previous image to i (minus) or the next image

to i (plus) has a higher energy than i. If both neighboring images have a higher

1In contrast to before Ri comprises all nuclear coordinates in one vector and not just the
coordinates of one atom.
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or lower energy than i, a weighted average of the vectors to the adjacent images

is taken. The weights are the relative energy differences between the images. The

force acting parallel to the path is calculated as:

Fi,para = k (|Ri+1 −Ri| − |Ri −Ri−1|) τ̂ i. (2.29)

The force acting perpendicular to the band Fi,perp is calculated from the potential

energy surface E (Ri) as:

Fi,perp = ∇E (Ri)−∇E (Ri) τ̂ i. (2.30)

The band is then optimized with respect to the sum of perpendicular and parallel

forces. The construction of the forces ensures equal spacing between the images

and that the band converges to the minimum energy path. Estimation of the

transition state can be done by interpolation between the optimized energies of

the band in the transition state region or by using a climbing image within the

band (i.e., CI-NEB). [79] The climbing image is identified as the image in the

band with the highest energy and the force on this image is:

Fi,CI = −∇E (Ri,CI) + 2∇E (Ri,CI) τ̂ i,CIτ̂ i,CI. (2.31)

The energy of the climbing image thus increases during the optimization. This

ensures that after optimization of the band the climbing image is a transition

state.

2.4 Time-dependent density functional theory

Time-dependent density functional theory 1 is by far too complex to allow for a

comprehensive overview in this section. For good reviews see, e.g., refs. [82, 83]

and references therein. Similarly to ground state DFT, TDDFT rests on the proof

that the external potential is a functional of the exact density. It can be shown

that this also holds for explicitly time-dependent densities and potentials. [84]

With this knowledge one can write single-particle equations for the time-evolution

of the Kohn-Sham single-particle orbitals analogously to eqs. 2.19:

i
∂ψjσ (r, t)

∂t
=

(
−∇

2

2
+ vs

σ (r, t)

)
ψjσ (r, t) (2.32)

1also known as “terribly difficult darned fine theory”, a phrase coined by André Ban-
drauk [81]
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but here with a time-dependent external potential vs
σ chosen to reproduce the

exact electron densities of the interacting system. σ labels the spin state, either

α- or β-spin. As in ground-state DFT, the potential comprises the electric field

of the nuclei in the system, the exchange-correlation, and the Hartree potential

of the electron density. Furthermore, an additional (commonly electric) field is

included. Equations 2.32 can be used to propagate the system forward in time.

Following the response of the electronic system then allows to calculate the time-

dependent dipole moment and from its Fourier transform the optical absorption

cross-section.

In contrast to ground state density functional theory, the potential is in prin-

ciple a functional of the entire history of electron densities over time, the initial

interacting wavefunction, and the initial Kohn-Sham wavefunction. Commonly,

the adiabatic approximation is used, i.e., the exact, time-dependent exchange-

correlation potential is substituted by the ground state exchange-correleation

potential (also termed “adiabatic approximation”). This is exact for infinitely

slowly varying external fields and has proven a good approximation also for real-

istic fields.

In common applications, instead of solving eqs. 2.32, linear response theory

is used to obtain excitation energies, oscillator strengths, and properties of an

excited state. [85] The first-order response of the electron density to an arbitrarily

weak perturbation, commonly an optical field δvext,σ, is examined:

δnσ (r, t) =
∑

σ

∫
dt′
∫
d3rχσσ′ [n0] (r, r′; t− t′) δvext,σ (r′, t′) (2.33)

and for applications in Kohn-Sham DFT the field δvext,σ is substituted by Kohn-

Sham potential vs
σ and the susceptibility χσσ′ by the Kohn-Sham response func-

tion χs
σσ′ . The response of the electron density δnσ (r, t) can also be written in

frequency space, expanded into the basis of KS transitions:

δnσ (r, ω) =
∑

q

(
Pqσ (ω)ψ∗qσ (r) + Pq̄σ (ω)ψqσ (r)

)
(2.34)

q is a double-index denoting a transition from an occupied orbital i to an un-

occupied orbital a, q = (i, a) and correspondingly the opposite case q̄ = (a, i).

Together with the response of the KS potential eqs. 2.33 and 2.34 can be combined

to yield coupled matrix equations:

{[
A B

B∗ A∗

]
− ω

[
−1 0

0 1

]}[
X

Y

]
= −

[
δv

δv∗

]
(2.35)
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that need to be solved iteratively. Out of the need to associate a physical in-

terpretation with the terms in eqs. 2.35, X and Y are commonly referred to as

excitations and de-excitations. They correspond to the perturbation in the den-

sity matrix P, with Xqσ = Pqσ and Yq̄σ = Pq̄σ. The matrices A and B are given

through the response of the XC kernel fXC to a perturbation:

Aia,jb = δijδab (εa − εi) + (ia|jb) + (ia|fXC|jb) (2.36)

Bia,jb = (ia|bj) + (ia|fXC|bj) (2.37)

The leading term in A is the difference in the orbital energies between occupied

and unoccupied orbitals, εi and εa respectively, and the last terms are two-electron

integrals in Mulliken notation. 1 The two-electron integrals in A and B corre-

spond to the response of the XC potential to the external perturbation. In the

adiabatic approximation this response is given by the second functional deriva-

tive of the energy functional. At the poles of the dynamic polarizability, i.e.,

when excitation energy corresponds to a resonance δv = 0 and eqs. 2.35 can be

arranged to give the working equations of linear-response TDDFT:

[
A B

B∗ A∗

][
X

Y

]
= ω

[
1 0

0 −1

][
X

Y

]
. (2.38)

From these equations excitation energies are calculated and corresponding os-

cillator strengths obey the Thomas-Reiche-Kuhn sum rule. [85] The neglect of

the B matrix is known as the Tamm-Dancoff approximation and often leads to

comparable results to TDDFT at reduced computational cost. [83]

Calculation of accurate properties in the excited state, like dipole moments

or nuclear gradients, necessitates account of electronic relaxation upon excita-

tion. [86] Properties in the excited state are therefore often distinguished into

unrelaxed (directly from the solution of eq. 2.38) and relaxed variants. It is

possible to reformulate TDDFT into a variational problem which also yields the

above linear-response equation. [86, 87] From this formulation of TDDFT one can

furthermore derive an additional set of, so-called, “z-vector” equations, solution

of which yields relaxed properties (i.e., derivatives of excited-state properties with

respect to an external perturbation).

1(ij|kl) =
∫ ∫

d3rd3r′ψ∗i (r)ψj (r) 1
|r−r′|ψ

∗
k (r′)ψl (r′)
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2.5 Extended systems

Treating extended systems, such as bulk water and water surfaces, requires the

use of special computational methods. Three different approaches are briefly

introduced in the following subsections.

2.5.1 Continuum solvation models

Efficient ways of including solvation effects have been developed in the context

of dielectric continuum models, see for example reviews 88, 89 and references

therein. These methods avoid explicit treatment of all molecular degrees of free-

dom of a solvent. The explicit solvent is substituted by a dielectric continuum

responding to the charge density of the solute in form of an apparent surface-

charge distribution at the interface between implicit solvent and explicit solute.

The screening charge density σ (r) is given by:

4πεσ (r) = (ε− 1) n (r) E (r) (2.39)

with E (r) the electric field inside the solute cavity, n (r) a surface normal, and

ε the dielectric constant of the solvent. For arbitrarily shaped solutes, no closed,

analytical solution to eq. 2.39 exists and different approximations have been sug-

gested.

In this work, we employed models based on the screening in a perfect conduc-

tor (i.e., ε =∞), in particular the conductor-like screening model (COSMO) [90]

and the conductor-like polarizable continuum model (C-PCM) [91, 92]. The start-

ing point for these models is the calculation of the screening energy ∆E of an

arbitrary distribution of point charges qi (collected in the vector Q) 1 in a spher-

ical cavity of radius R immersed in a dielectric continuum:

∆E = −1

2
QDQ, (2.40)

Dij =
R√

R4 − 2R2rirj + r2
i r

2
j

. (2.41)

Vectors ri denote distances of the charges qi from the center of the sphere. The

assumption of a spherical cavity is too severe as most solutes come in more com-

plicated shapes. Thus, generalizations to arbitrary cavity shapes have been in-

troduced with the help of algorithms that construct molecular surfaces according

to the geometry of the solute and assumed radii of the constituting atoms (of-

ten (scaled) van-der-Waals-radii). For arbitrary surface shapes the charges in

1Generalization to continuous charge distributions is straightforward.
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expression 2.40 are calculated on planar segments on the surface and further

on approximated by point charges at the center of these surface segments. The

screening energy is then given by the Coulomb interaction of the source charge

distribution and the screening charges. The total energy is then calculated as the

sum of the screening energy and the self-energy of all source charges and all sur-

face charges. The screening charges are incorporated in the self-consistent field

iterations of variational methods like Hartree-Fock or density functional theory

in form of additional external fields.

An important modification is the use of a weakly ε-dependent correction for

the treatment of non-conducting solvent media, i.e., common solvents as water

and ethanol. For the model of point charges in a spherical cavity eq. 2.40 then

changes to:

∆E = −f (ε) QDQ. (2.42)

The specific form of this so-called reduced screening boundary condition and its

implied scaling factor f (ε) depends on the implementation at hand. The form of

the scaling factor is:

f (ε) =
ε− 1

ε+X
. (2.43)

For the C-PCM model X = 0.0 corresponding to the monopole term in a multi-

pole expansion of the solute’s charge density and was chosen for compliance with

Gauss’s law and X = 0.5 in the COSMO model, corresponding to a dipole scaling

factor. Both approximations generally work well for solvents with high dielectric

constants.

An important modification was introduced to treat vertical, i.e., fast, elec-

tronic transitions in continuum models. [93] It is observed that the dielectric

constant of a solvent can be split into a fast and a slow part, corresponding to

electronic and nuclear response, respectively. For vertical transitions or ionization

energies, only the electronic response is to be included as nuclear rearrangement

is not possible on this time scale. This split treatment has been included in

non-equilibrium variants of the continuum solvents.

The continuum solvation models work well for geometry optimization and en-

ergies of bulk-solvated species. Nevertheless, the use of these models always intro-

duces an explicit interface which can lead to artifacts when performing molecular

dynamics simulations.

2.5.2 Periodic boundary conditions

A conceptually simple, yet intriguing, way to treat bulk (and slab) systems is the

introduction of periodic boundary conditions, i.e., replicating a small system peri-



2. Methodology 23

odically in all three (or two) spatial directions. [46] Explicit interactions are then

only included in form of so-called minimum images of the periodic unit cell. That

is interactions are directly calculated for particles in range of half the length of the

unit cell basis vectors within the unit cell and the closest periodic image. Further

corrections for the periodic system are included in various ways. Of paramount

importance is the explicit treatment of electrostatic interactions. Summation of

coulombic interactions over all replicas of the unit cell is conditionally conver-

gent, i.e., depends on the order of the explicit summation, and converges very

slowly. To circumvent this issue, the class of Ewald summation techniques have

been introduced. For a good review see, e.g., ref. 94 and references therein. Al-

though originally developed in the context of periodic crystal lattices [95] it is

nowadays commonly used for solids and liquids alike. The Ewald summation

splits the 1/r operator of the Coulomb interaction into two parts by the same

decomposition as for range-separated hybrid density functionals in eq. 2.26. The

range-separation parameter is commonly denoted by α in literature when dealing

with Ewald summation (and not µ as in range-separated hybrid density function-

als). The range-separation is facilitated by the addition of Gaussian screening

charge distributions (and corresponding canceling distributions) with a width of

κ at the position of point charges qi in the simulation cell. Electrostatics can

thus be split into a quickly converging, direct sum within a pre-set cutoff and

an also quickly converging sum in reciprocal space for the interaction of particles

beyond the cutoff. The total electrostatic energy Etot
ES for a set of N point charges

qi located at ri, with rij the distance between two charges qi and qj, can then be

written as:

Etot
ES = Edir + Erec + E0 (2.44)

Edir =
1

2

N∑

i,j=1

∑

n∈Z3

qiqj
erf (αrij,n)

rij,n
(2.45)

Erec =
1

2Vbox

∑

k 6=0

4π

κ2
exp (−κ2/4α2) |ρ̄ (k)|2 (2.46)

E0 = − α√
π

N∑

i=1

q2
i . (2.47)

Vbox is the volume of the unit cell, ρ̄ is the Fourier transform of the real-space

charge density ρ and k are reciprocal lattice vectors. Again, generalization to

continuous charge densities is straightforward and is needed for use of the Ewald

summation techniques in the context of ab initio molecular dynamics. More

efficient treatment in the spirit of the Ewald summation techniques has been in-

troduced through use of grid-based methods that show much better scaling with



2. Methodology 24

system size. Examples are the particle-particle-particle-mesh, particle-mesh, and

smooth particle-mesh Ewald summation techniques. [94] For non-neutral systems

an additional term has to be included to avoid divergence of the Ewald summa-

tion. This correction corresponds to adding a uniform, neutralizing background

charge to the system.

A simple approach to treat slab geometries is to increase the lateral dimen-

sion of the unit cell and separate the system from its periodic images. Accurate

algorithms for descriptions of explicitly 2D-periodic systems have been developed

in the context of wavelet-based Poisson solvers [96] and 2D periodic Ewald sum-

mation techniques [97], but go beyond the scope of this section. Periodic slab

geometries with a net charge demand special attention. A neutralizing back-

ground charge can be added as in bulk systems. As a result the distribution of

charged species between surface and bulk in 2D-periodic systems is biased by the

homogeneously spread background charge in the inhomogeneous dielectric and

corrections have been developed to unbias the distribution. [98]

For disordered systems (like liquids) that at maximum have a short-range or-

der, but exhibit long-range disorder, a certain minimum size of the unit cell is

required. Also, fluctuations in temperature and pressure depend on the system

size and get smaller with increasing system size. For example, for simultaneously

well described bulk and surface properties of a water/vapor interface, slab ge-

ometries with at least 200 water molecules are needed. [99] Converged number

densities of bulk water in an NpT ensemble that compare well to experiment can

be achieved with at least 60 water molecules. [100]

2.5.3 Combined quantum mechanics and molecular me-

chanics

The combination of quantum mechanics with molecular mechanics (QM/MM)

originates from the necessity to treat systems of a minimum size. These systems

easily get so large that they become prohibitively expensive for treatment with

purely quantum-mechanical methods. The basic idea of QM/MM is to neglect

the quantum-mechanical nature of a big part of the investigated system and

treat this part with force-field based methods with pre-assigned partial charges,

pairwise descriptions for van-der-Waals interactions, and (commonly) harmonic

bond- and bending potentials (MM subsystem). [101] Only a small subsystem is

then treated with quantum-mechanical methods in the field of the surrounding

classical system (QM subsystem). The interaction between the two subsystems

can be included via mutual electrostatic coupling, i.e., the Coulomb interaction

between charge density of the quantum solute and the point charges surrounding
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it.

In the specific implementation in the CP2K program suite that we used,

the coupling between QM and MM subsystems that are in direct contact are

included, as well as long-range corrections in form of the Ewald summation (see

sec. 2.5.2). [102, 103] The total energy can then be written as a sum of the energy

of the QM subsystem in the field of the MM charges, the energy of the MM

subsystem, and a coupling term:

Etot ({Rα} , {Ra}) = EQM ({Rα}) + EMM ({Ra}) + EQM/MM ({Rα} , {Ra})
(2.48)

where Rα denotes the positions of the QM nuclei and Ra of the MM nuclei.

The QM subsystem is described using DFT methodology as implemented in the

Quickstep module of CP2K and the coupling energy between QM and MM

subsystem EQM/MM is calculated as:

EQM/MM ({Rα} , {Ra}) =
1

2

∫ ∫
ρMM (r, {Ra}) ρQM (r′, {Rα})

|r− r′| d3rd3r′

+
∑

a∈MM

∑

α∈QM

EvdW ({Rα} , {Ra}) . (2.49)

Here, ρMM (r, ra) is the charge density of the MM subsystem and ρQM (rα, ra) is

the total charge density of the QM part, including the nuclear charge density.

The first term of eq. 2.49 is the electrostatic interaction of the QM and MM

subsystems, whereas the second term, EvdW, is the van-der-Waals interaction en-

ergy between all pairs of QM and MM atoms calculated by a pairwise interaction

potential as, e.g., the 12-6 Lennard-Jones potential. To avoid the so-called “elec-

tron spill-out” problem, i.e., overpolarization of the QM charge density towards

the QM/MM boundary if a point charge representation of ρMM (r, ra) is used, the

MM charge density is represented by Gaussian functions centered at the positions

of the MM nuclei:

ρ (r, ra) =
1

(
√
πrc,a)

3 exp
(
(− |r− ra| /rc,a)

2) (2.50)

The radius rc,a is an atom-type specific parameter, often close to the covalent

radius of the atom. These radii have to be tuned for the investigated system, e.g.,

against radial distribution functions of an equivalent system described only by

MM. Smearing of the MM charges avoids the “spill-out” problem and can also be

shown to effectively account for Pauli-repulsion effects. [104] The potential VMM

exerted on the QM charge density can then be incorporated into the external

potential of a DFT calculation. Collocating this potential is computationally
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expensive as it generally scales as the product of the number of MM nuclei and

the number of grid points NMMNgrid, where NMM is easily on the order of a few

thousand and Ngrid on the order of a million points. In CP2K this is avoided

by expanding the MM electrostatic potential of each MM nucleus into a set of

NG Gaussian functions as in eq. 2.51 with different widths GG and corresponding

normalization AG, and a residual, smooth function Rlow. The potential va of

single Gaussian function as in eq. 2.50 is so given as:

va (r, ra) =
erf (|r− ra| /rc,a)

|r− ra|
=
∑

NG

AG exp
(
− (|r− ra| /GG)2)+Rlow (|r− ra|)

(2.51)

Then, each Gaussian function can be collocated on a separate grid of different

density of grid points according to the width of the Gaussian, i.e., for a wide

Gaussian a coarse grid is employed and for a tight Gaussian a fine grid. The

residual function Rlow is collocated on the coarsest grid level as it is constructed

to be slowly varying. The data on the individual grids are then put together on

the finest grid by interpolation with fast Fourier transform methods.

The expansion of the MM charge density and its electrostatic potential into

a sum of Gaussian functions has the distinct advantage that it can be included

in Ewald summation techniques. Thus, not just the direct coupling between the

MM and QM subsystem can be evaluated, but also contributions arising due to

a periodic charge density. The calculation of the MM potential in eq. 2.51 thus

has to be performed over the periodic real-space lattice. Then the summation

has the same convergence as the infinite sum in the Ewald summation scheme

(see sec. 2.5.2). The radii rc can be chosen to make the first part of the summa-

tion quickly convergent in real space, whereas the residual term Rlow is a slowly

varying function in real space. The latter property translates to a quickly decay-

ing function in reciprocal space and hence Rlow can be calculated efficiently by

summation over only few reciprocal lattice vectors.

Within this general scheme it is also possible to include the coupling be-

tween periodic images of the QM subsystem. This is of particular importance

for charged systems due to the long-ranged nature of the Coulomb potential. In

CP2K in particular, the electrostatic potential acting on the QM subsystem can

be modified by the potential of a model charge density that has the same multi-

pole moments as the original QM charge density. The calculation of the model

charge density was originally introduced to decouple periodic images in calcula-

tions using plane waves. [105] This decoupling of the periodic images has to be

performed anyway in QM/MM calculations in CP2K because of the use of intrin-

sically periodic plane wave basis set. The potential from the model charge density
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can then be re-incorporated into the electrostatic potential with periodicity of the

full system (re-coupling).

2.6 Analysis

Many structural analyzes like radial distribution functions were developed in the

context of spherical point particles. [46] An atom can be treated as point-like

particle also in molecules. This makes sense not just for the nuclei, but also for the

electronic distribution, which peaks at the corresponding positions of the nucleus

and both core and electrons can be identified together as a point-like particle at

the position of the nucleus. A hydrated electron, however, is one of the odd cases

where one is interested in a species that is not associated with a specific nucleus

and is far from being spherically distributed under finite temperature conditions.

In our molecular dynamics simulations a restricted open-shell formalism was used

(details see sec. 2.7), meaning that all electrons are treated as pairs and only the

singly occupied molecular orbital is described separately. The hydrated electron

is then identified as the spin density of the system and hence subsections below

deal mainly with analysis of the spin density itself.

Center and extent of the spin density are given by standard moment analy-

sis, sec. 2.6.1. We developed in this work a splitting scheme of the spin density

into different parts, sec. 2.6.2. This was specifically designed for analysis of the

hydrated electron and serves as semi-quantitative comparison for its structure in

different environments. Furthermore, the so-called “instantaneous liquid inter-

face” as introduced in ref. 106 is explained briefly in sec. 2.6.3 as it has been

introduced quite recently and is needed for the dissection of the spin density at

an interface. Lastly, the evaluation of excited state spin densities is presented in

sec. 2.6.4.

For all the below presented analysis electron and spin density distribution

were collected along ab initio molecular dynamics simulations in Gaussian cube

file format [107]. These are plain text files that contain data points distributed

over the unit cell of the simulation in form of voxels. That implies that every

data point encompasses the same volume. Every integral over the cube files is

calculated numerically using the mid-point rule.
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2.6.1 Moment analysis of the spin distribution

The nth moment of the spin density m (r) 1 about c is given by:

µn =

∫

Ω

(r− c)nm (r) d3r. (2.52)

The norm N of the spin density distribution m (r) is the 0th moment. For the

moment analysis of the hydrated electron the spin density is normalized to the

0th moment, which is only different from 1 due to numerical imprecision. The

first moment µ1 is used as the center of the spin density distribution rc, with c

being all zeros in eq. 2.52, and serves as point-particle descriptor of the hydrated

electron in calculations of radial distribution functions. The radius of gyration rg

is used to quantify the extent of the spin density distribution with respect to its

center rc. As the second moment µ2 represents a symmetric, real-valued matrix,

we can determine its eigenvalues λ2
1, λ2

2, and λ2
3. rg is then evaluated as:

rg =
√
λ2

1 + λ2
2 + λ2

3 (2.53)

or simply as the square root of the trace of µ2 as it is invariant under a unitary

transformation.

2.6.2 Dissection of the spin density distribution

The analysis presented in this section can be regarded as a population analysis of

the spin density, specifically tailored to the hydrated electron. It is an artificial

splitting that is only possible computationally and not experimentally observ-

able. Experimentally only the full electron density is accessible. This is similar

to atomic population analyzes that split the full electron density into atomic

contributions. These are in principle capable of describing the charge transfer

to the water molecules surrounding the hydrated electron, but will attribute all

spin density m (r) to the atoms surrounding the hydrated electron. Under the

assumption that something like a “cavity” exists, as has been the picture of the

hydrated electron over many decades, it is imperative to see how much of the

hydrated electron is located within this cavity. Comparison of the absolute val-

ues from the below decomposition only makes sense for the hydrated electron in

different situations like in bulk water and at the water/vapor interface.

First, the spin density located on water molecules is identified. A reference

calculation is performed without the hydrated electron, at the geometry obtained

from molecular dynamics including the hydrated electron. This is the neutral

1and in general any real-valued, continuous functions
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reference system. The next step is to identify an isosurface of the electron den-

sity in the reference system that encompasses a certain amount of its electron

density. A value of 90% of the total integrated electron density of the neutral

reference system was chosen. 1 The fraction of the spin distribution attributed to

water molecules is the part of m (r) that is encompassed by the aforementioned

isosurface. Secondly, in case an interface is present (in our simulations the wa-

ter/vapor interface), the instantaneous liquid interface (sec. 2.6.3) is determined

and the spin distribution located beyond this interface in the vapor phase is as-

signed to the “surface contribution”. Thirdly, the Voroni polyhedron generated

by the oxygen atom positions around the center of the spin density distribution

is constructed. The spin density contained in this polyhedron is what we refer to

as the “cavity contribution”. The remaining unassigned spin density is located

in interstitial spaces between water molecules and is called the “diffuse part”

as these are places where the spin distribution overall attains comparably small

values.

2.6.3 Instantaneous liquid interface

It is common to identify interfaces such as the water/vapor interface by Gibbs’

dividing surface. This does not account for the instantaneous fluctuations of

the molecular dynamics as it is calculated a posteriori to a simulation from the

average density profile and is then taken as the plane at half the bulk density

value. A flexible, molecularly based description of the water/vapor interface was

introduced recently. [106] Here, the coarse-grained density ρ̄ of the liquid is given

as a scalar field constructed by the superposition of normalized Gaussian functions

centered at the positions of the atoms i in the simulation. The coarse-grained

density ρ̄ is then:

ρ̄ (r) =
∑

i

1
(√

2πζ
)3 exp

(
− |ri − r|2 /2ζ2

)
(2.54)

The parameter ζ has to be determined for the system under investigation. It has

to be optimized to give as few voids as possible in the bulk of the liquid with the

smallest possible ζ in eq. 2.54. One can then compute the scalar field ρ̄ (r) and

identify the instantaneous interface by an isosurface of ρ̄ with a given value c.

This value is set to half the bulk density. For the specific case of a water/vapor

interface these parameters have been determined in the original publication and

are ζ = 2.4 Å for all oxygen atoms 2 and a value of c = 0.016 Å−3 for the

1The influence of this parameter on the overall analysis is shown in the supporting material
of ref. 108.

2No Gaussian functions are located on the hydrogen atoms.
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isosurface.

2.6.4 Excited state spin density

In the linear-response formulation of time-dependent density functional theory

introduced in section 2.4 excitation energies and oscillator strengths can be cal-

culated. From these calculations one also obtains coefficients of the unrelaxed

density difference matrix U , i.e., how much electron density is transferred from,

in the ground state calculation, occupied to unoccupied molecular orbitals:

Uabσ =
1

2

∑

i

(xiaσxibσ + yiaσyibσ) (2.55)

Uijσ = −1

2

∑

a

(xiaσxjaσ + yiaσyjaσ) (2.56)

Uiaσ = Uaiσ = 0 (2.57)

Occupied molecular orbitals are labeled with indices i and j and unoccupied

orbitals with a and b. Equations are given in spin-polarized form with the corre-

sponding index σ. The coefficients xiaσ and yiaσ are given as:

xiaσ = Xiaσ + Yiaσ (2.58)

yiaσ = Xiaσ − Yiaσ. (2.59)

Xiaσ and Yiaσ are deformation densities and are given here in the nomenclature

used in articles [83] and books [82] about TDDFT. Substituting eqs. 2.58 and

2.59 into eqs. 2.56 and 2.57 leads to:

Uabσ =
∑

i

(XiaσXibσ + YiaσYibσ) (2.60)

Uijσ = −
∑

a

(XiaσXjaσ + YiaσYjaσ) (2.61)

which can then directly be seen to be the difference in the density matrix upon

excitation. The unrelaxed difference density nu can then be constructed as:

nu (r) =
∑

rsσ

Ursσψ
∗
rσ (r)ψsσ (r) , (2.62)

with indices r and s running over all occupied and unoccupied molecular orbitals.

As mentioned in sec. 2.4 the linear response theory and the reconstruction of the

excited state density does not take into account any electronic relaxation upon

excitation. The change in electron density due to electronic relaxation nr can be

calculated [86, 87] as pointed out in sec. 2.4. One can then reconstruct the full
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electron density in the excited state nexc from the ground-state electron density

ngs:

nexc = ngs + nu + nr. (2.63)

In the case of the TDDFT calculations applied to structures of the hydrated elec-

tron only excitations from the singly occupied molecular orbital were observed.

This, together with the fact that no significant spin-contamination was observed,

allows us to reconstruct the spin density of the excited state mexc simply as:

mexc (r) = mgs (r) + nu (r) + nr (r) . (2.64)

2.7 Practical aspects and computational setup

In this section the practical schemes of the computations are detailed, i.e., the

approximations explained in the preceding sections are put together in their re-

spective context to provide working computational setups. Each type of calcu-

lation, be it ab initio molecular dynamics simulations, minimum energy path

optimization, or time-dependent density functional calculations is kept as consis-

tent as possible with the respective other types of calculations. Generally, the

force calculations for the molecular dynamics simulations, and structure and MEP

optimizations use Born-Oppenheimer and adiabatic approximations as described

in sec. 2.2. The Born-Oppenheimer potential energy Ek is described differently

though in these calculations. Due to reasons of computational efficiency, e.g., dif-

ferent basis sets were used for different systems. The density functional of choice

differs between AIMD and TDDFT due to spurious charge-transfer excitations

observed in TDDFT calculations with regular GGA density functionals. This is

a common observation for GGA density functionals, see, e.g., refs. 83, 109.

We start with the description of the setup for obtaining minimum energy

structures and optimizations of minimum energy paths in sec. 2.7.1, followed by

details on the ab initio molecular dynamics in sec. 2.7.2, and close with the setup

of the TDDFT calculations in sec. 2.7.3.

2.7.1 Minimum energy structures and reaction path op-

timizations

Geometry optimizations of individual structures were performed with the Broyden-

Fletcher-Goldfarb-Shanno algorithm as implemented in the Atomic Simulation

Environment (ASE). [110] For the minimum energy path calculations, geome-

tries of the reactants and products were optimized and an intial guess for the

band was obtained from linear interpolation between the structures. Minimum
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energy paths were obtained by first optimizing the band with the IT-NEB. A

climbing image was included after convergence of the IT-NEB calculation and

the band was again optimized to obtain the correct transition state. Optimiza-

tions of the bands were performed in ASE with the FIRE optimization when

post-Hartree-Fock methods were used to calculate forces and with the BAND

module in CP2K with a projected velocity Verlet optimizer for the band opti-

mization with forces from DFT as described in the next section (only the quantum

mechanics part).

Forces within the adiabatic and Born-Oppenheimer approximations were cal-

culated with second-order Møller-Plesset perturbation theory on a Hartree-Fock

reference wavefunction (MP2). For structures presented in sec. 3.1 the resolution

of identity was used and compares well with plain MP2. RI-MP2 calculations

were performed with the TURBOMOLE program package. [111] The wavefunc-

tion was expanded into atom-centered dual-ζ basis sets with polarization and

diffuse functions (aug-cc-pVDZ). [112] For the systems presented in sec. 3.2 the

MEPs were optimized with plain MP2 as implemented in ORCA [113] and the

wavefunction was also expanded into a double-ζ basis set with polarization and

diffuse basis functions on all atoms (6-31++G**). [114, 115] Basis sets used in

sec. 3.1 and sec. 3.2 do not differ significantly in the relative energetics in the

band optimization. The 6-31++G** basis set was more efficient for the calcula-

tions of the larger cluster system in sec 3.2. Also, the cluster systems in sec. 3.2

were embedded in a conductor-like solvent model for optimization and in a non-

equilibrium variant for calculation of vertical detachment energies and optical

spectra (see sec. 2.7.3).

2.7.2 Ab initio molecular dynamics simulations

All molecular dynamics simulations of extended systems were performed with

the QM/MM module of CP2K. Input structures were taken from force-field

molecular dynamics (FFMD) simulations of 1024 water molecules described by

an extended simple point charge (SPC/E) model. The bulk water systems were

equilibrated in the canonical, NpT , ensemble using both thermostat [116] and

barostat [117] resulting in densities around 1 g/cm3 (cubic unit cell with side

length of 31 Å). For simulations of a water slab the z-dimension of the unit cell

was elongated to 100 Å and the system was again equilibrated, but only coupled

to a thermostat [116] (i.e., NV T ensemble). These calculations were performed

with the GROMACS program. [118]

Several QM/MM molecular dynamics simulations were conducted of an excess

electron in both bulk and slab geometries of water. The QM system was either



2. Methodology 33

located in the water bulk or at the surface of the water slab. Statistics were

collected along trajectories of in total 10 ps simulation time each. In the produc-

tion QM/MM simulations QM and MM subsystems were coupled electrostatically

and also the periodicity of the QM subsystem was taken into account. Periodic

electrostatics were calculated using the smooth particle-mesh Ewald summation

technique. [119] Newton’s equations of motion were integrated with the velocity

Verlet propagator coupled to a global thermostat [116]. Again, point charges and

Lennard-Jones parameter from the SPC/E model were used to obtain forces on

the MM subsystem and describe non-bonded interactions between QM and MM

subsystem. The covalent radii of the hydrogen atoms in the MM subsystem were

0.44 Å and those of oxygen atoms 0.78 Å. These parameters lead to radial distri-

bution functions between QM and MM subsystem comparable to those from pure

force-field calculations for the flexible variant of the SPC/E water model we used.

The wavefunction of the QM subsystem was expanded into a triple-ζ basis set

with two polarization functions (molopt-TZV2P). [120] The basis set was specifi-

cally optimized for condensed phase systems, both with respect to computational

efficiency and accuracy. An additional set of space-fixed, diffuse functions was

placed in the middle of the QM subsystem to support the diffuse parts of the

hydrated electron (denoted as GGG, “grid of Gaussian ghosts”). Each of these

diffuse functions is spherically symmetric and constructed from single Gaussian

function with an exponent of 0.1 a.u. The kinetic energy cutoff for the auxiliary

plane-wave basis set was 280 Ry throughout the calculations. The collocation of

the electronic density on the corresponding grid was done using 4 multigrids with

different cutoffs for efficient calculations. All 1s core-electrons were replaced by

relativistic pseudopotentials of Goedecker-Teter-Hutter type. [63] Forces on the

QM atoms were obtained from the combined Becke exchange [121] and the Lee-

Yang-Parr correlation functional (BLYP) [122]. The density functional was aug-

mented with a semi-empirical self-interaction correction (SIC). Parameters for the

SIC were a = 0.3 and b = 0.2. The results compare well with results from RI-MP2

calculations of MEPs (see sec. 3.1). For calculation of the exchange-correlation

potential on a grid, the density was smoothed with a nearest-neighbor method

with 20 points and the derivatives were smoothed using cubic splines. This was

necessary for the combination of kinetic energy cutoff of the plane-wave basis set

and BLYP density functional. The smoothing procedures remove artifacts in the

exchange-correlation potential in the vicinity of the core region and provide re-

sults comparable to much higher (and much more costly) plane-wave cutoffs. [123]

An additional, semi-empirical term was included to effectively account for disper-

sion interactions between the nuclei, but had no direct influence on the electron

density. [124] The combination of BLYP density functional and aforementioned
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dispersion correction was shown to give water structure and number densities

close to experimental references. [125] In all the simulations the ASPC algorithm

in third order was used for wavefunction extrapolation together with the orbital

transformation method for wavefunction optimization and a preconditioner for

the minimization constructed from a Cholesky inversion of the overlap and ki-

netic energy matrices. The convergence criterion of the wavefunction optimization

was 10−6 a.u. for forces on each orbital.

2.7.3 Optical properties

Optical absorption spectra were calculated with TDDFT in its fully spin-polarized,

linear response formalism. Bulk and slab geometries were extracted from the

molecular dynamics simulations and similarly sized QM subsystems were used

(either the same size or larger). The MM subsystem was described by point

charges from a simple point charge model (SPC). [126] As we are currently un-

aware of an implementation that explicitly treats periodic QM/MM systems in

the context of TDDFT, the unit cell was simply replicated and included as point

charges in the calculation. For production runs different density functionals were

used. Long-range corrected hybrid density functionals LRC-BLYP [72] and LRC-

µBOP [127] were used for equilibrium spectra (secs. 3.2 and 3.6). The Tamm-

Dancoff approximation was used for all the final equilibrium spectra. Along

trajectories after vertical attachment of an excess electron to a neat water sys-

tem, the B3LYP [128, 129] density functional was used (sec. 3.7). For QM/MM

calculations a basis set with polarization functions only on the heavy nuclei was

used (6-31++G*). [114, 115] In small cluster systems, the wavefunction was ex-

panded into a double-ζ basis set with polarization and diffuse functions on all

atoms (6-31++G**).

TDDFT calculations were performed with NWChem [130], QChem [131]

and also Gaussian 09 [107]. Both NWChem and QChem were used for the

QM/MM TDDFT calculations and Gaussian 09 was used in the context of

small, embedded cluster systems coupled to a non-equilibrium solvent model [93].



Chapter 3

Results

This chapter provides an overview of the publications that comprise this thesis.

Each publication is introduced in brief and key points are highlighted. In case

previously unpublished results are included, this is highlighted. All presented

papers are attached in full.

The ordering corresponds to increasing system sizes investigated and complex-

ity of the topic of the publications. The first two publications deal with cluster

models of the hydrated electron and their reactivity, secs. 3.1 and 3.2. Two pub-

lications about the bulk- (sec. 3.3) and surface-solvation (sec. 3.4) of an excess

electron follow. The next section gives a brief introduction to a review article

on theoretical description of ions at the water/vapor interface, containing as a

case study a discussion of the similarity of bulk- and surface-hydrated electron

and implications for its surface propensity (sec. 3.5). We finish with two publi-

cations about optical properties of the hydrated electron, in thermal equilibrium

(sec. 3.6) and after attachment of an excess electron to bulk water (sec. 3.7).
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3.1 From a localized H3O radical to a delocal-

ized H3O
+ · · · e− solvent-separated pair by se-

quential hydration

Two issues are addressed in this publication. [132] First, the change in electronic

structure upon microsolvation of an H3O radical and second, the corresponding

change in reactivity and similarity to that of a hydrated electron.

Fig. 3.1 shows optimized molecular geometries of clusters investigated in this

publication together with isosurfaces of the spin density. Mimicking bulk solvation

of H3O by adding more water molecules to the isolated H3O moiety at the dangling

OH bonds, as shown in Fig. 3.1, leads to the formation of three hydrogen bonds

with H3O+ acting as donor and water molecules as acceptors. In the isolated

H3O radical the spin density is located mainly on the hydrogen atoms. Adding

more water molecules leads to a shift of the spin density towards the dangling

OH-bonds of the water molecules and between them. The addition of only one

water molecule donating a hydrogen bond to the H3O moiety does not lead to

a significant change in electronic structure. If a single water molecule is added,

accepting a hydrogen bond from H3O, the H3O moiety still resembles a H3O

radical, with the spin density located mainly on the two dangling OH of H3O.

The latter structure is lower in energy than the former by about 0.3 eV. Thus

the addition of a hydrogen bond donated by H3O is favored compared to the

inverse case. Upon further addition of water molecules the spin density shifts

towards the dangling OH bonds of the water molecules. The transition to a

hydrated H3O+ cation and a hydrated electron in form of a solvent-separated

pair is complete after the addition of three water molecules accepting hydrogen

bonds from the H3O moiety. The change in electronic structure is accompanied

by a change in VDE from 5.9 eV to 4.1 eV in H3O+(H2O)3e–. The latter value

is close to the VDE of a bulk-hydrated electron of 3.3 to 3.6 eV [26, 27, 28, 29],

with additional stabilization in the small model system from the positive charge

on H3O+. Without the stabilization due to the hydronium cation, the VDE of an

isolated system of four water molecules and an excess electron is about 0.2 eV. [34]

The change in character from a localized H3O radical to a model of the hy-

drated electron (H3O+(H2O)3e–) is accompanied by a change in reactivity. The

isolated H3O radical dissociates by cleavage of one of its OH-bonds upon for-

mation of hydrogen and water. The minimum energy paths for this process

are comparable between RI-MP2, CCSD(T), and CASPT2 (CASPT2 data from

ref. 133). Neglect of dynamic correlation effects (MEP calculated with UHF)

results in a higher barrier for the reaction. These two observations illustrate that
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5.88 eV 4.56 eV 4.11 eV 4.09 eV

Figure 3.1: Minimum energy structures of isolated clusters H3O+(H2O)n · · · e–

with n = 0− 3 increasing from left to right. Vertical detachment energies of the
respective structures are given below the individual pictures. Isosurfaces of the
spin density are shown at ±0.001 a−1

0 (transparent) and ±0.003 a0
−1 (diffuse).

Red isosurfaces correspond to negative and blue isosurface to positive isovalues.

treatment of dynamic correlation effects is important and sufficient at the level of

RI-MP2 and that no significant multi-determinantal character is observed. Clus-

ters containing one additional H2O molecule decompose similarly to the isolated

H3O radical as the H3O moiety still resembles an H3O radical as can be seen in

Fig. 3.1. As soon as two or three water molecules are added to the H3O moi-

ety the reactivity changes towards the recombination of a hydrated proton and

electron. One proton initially located on the H3O moiety transfers to one of the

water molecules and then one proton of the corresponding water molecule recom-

bines with the excess electron to form a hydrogen atom. During the reaction the

spin density becomes compact at the transition state. This is similar to what

has been observed in medium-sized clusters for this recombination reaction. [134]

The small model system works well, because the solvation structure is close to

the situation in bulk water both for a hydronium cation and an excess electron.

Fig. 3.2 shows minimum energy paths for the recombination reaction of a pro-

ton with the hydrated electron in H3O+(H2O)3e– obtained with different methods.

The paths were calculated independently with forces from DFT with optimized

SIC parameters (blue) and RI-MP2 (black) (see sec. 2.7 for details). Both paths

have comparable relative energetics in the region of reactant state and the bar-

rier for the reaction. The products of the reaction are overstabilized by the DFT

setup by about 0.15 eV. The minimum energy paths were also used to re-evaluate

the DFT methodology in terms of basis set and SIC parametrization. Fig. 3.2

also shows energies re-evaluated with different DFT setups along the MEP op-

timized with SIC(a = 0.3, b = 0.2) and molopt-TZV2P with GGG basis set.

Neglecting the SIC (red) leads to an artificial destabilization of the hydrogen

atom and shifted relative energetics that favor the reactant state. The original

parametrization of the SIC(a = 0.2, b = 0.0) [68] (green) underestimates the

barrier height of the reaction and stabilizes the products even further than with

SIC(a = 0.3, b = 0.2). The inclusion of diffuse basis functions is needed as
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Figure 3.2: Energies along the minimum energy path of hydrogen forma-
tion in H3O+(H2O)3e– (blue line, calculated with molopt-TZV2P basis + ad-
ditional space-fixed basis set GGG) and energies re-evaluated along this path
with different basis sets and parameters for the self-interaction correction (solid
lines). Three paths with molopt-TZV2P and GGG basis set were calculated with
SIC(a = 0.3, b = 0.2) (blue), SIC(a = 0.2, b = 0.0) (in green) and no SIC
(red). Path with only molopt-TZV2P basis set and SIC(a = 0.3, b = 0.2) in cyan
and with molopt-TZV2P basis set and no SIC in gray. For comparison the path
independently calculated with RI-MP2 and aug-cc-pVDZ basis set is shown as
dashed, black line.
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the excess electron localizes to a large extent between the molecules. Without

the additional set of diffuse basis functions the process of hydrogen formation is

barrier-less (cyan curve). Additionally ignoring the SIC leads to correct trends

in the relative energetics and a barrier for the reaction due to fortuitous error

canceling (gray).

The RI-MP2 MEP presented here compares well to previously reported re-

action profiles calculated with multi-reference methods including treatment of

dynamic correlation effects. [133] This, and the good correspondence between op-

timized DFT setup and RI-MP2 calculations led to the choice of SIC parameters

and basis set throughout this work.
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3.2 Embedded cluster models for reactivity of

the hydrated electron

(H2O)4
–

(H2O)6
–

Figure 3.3: D2d-

symmetrical minimum

structure of (H2O)4
– (top)

and S6-symmetrical mini-

mum structure of (H2O)6
–

(bottom) embedded in a

conductor-like screening

model. Isosurfaces of the

spin density shown in blue

at 0.001 a−1
0 (diffuse) and

0.0001 a−1
0 (transparent).

Similarly to the previous section, this publica-

tion [135] addresses model systems of the hydrated

electron and their reactivity. In contrast to the pre-

vious section the model systems considered here

are immersed in a continuum solvation environ-

ment. This way, we can obtain stable and localized

strutures of the hydrated electron in small cluster

systems of a few water molecules. It has been a

controversial issue whether the hydrated electron

at ambient conditions is solvated in its first solvent

shell by four or six water molecules. Experimental

measurements in concentrated alkaline glasses at

low temperatures suggested a coordination of the

excess electron by six water molecules. [40] Com-

putational studies supported this claim [136] or

could not locate a stable minimum for a four-fold

coordinated excess electron [137]. One-electron

pseudopotential models yield mainly a coordina-

tion number of four water molecules in the first

solvent shell around a bulk-hydrated electron, but

some yielded the number of six. [33] We were able

to obtain minimum energy structures for systems

with both four and six water molecules solvating

an excess electron. The two minimum energy struc-

tures of (H2O)4
– and (H2O)6

– are shown in Fig. 3.3.

In terms of experimental observables these struc-

tures do not differ significantly. VDEs are similar

for both structures, 2.9 eV for (H2O)4
– and 3.2 eV

for (H2O)6
–. The first three excitation energies are

similar as well. The first excited state for (H2O)4
–

is at 1.5 eV and for (H2O)6
– at 1.7 eV. The next two

higher lying states are degenerate for both struc-

tures and are at 1.9 eV.

Division of the spin density according to the scheme in sec. 2.6.2 shows no sig-

nificant difference between the two model systems. About half of the spin density

is located within a cavity, about a tenth on water molecules, and 40 % are within
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interstitial space. The diffuse contribution is overestimated and the contribution

on water molecules underestimated because explicit solvation is missing beyond

the first solvent shell around the excess electron.

The recombination reaction between a hydrated proton and electron was mod-

eled in similarly sized, embedded cluster models. Structures were prepared from

the optimized geometries shown in Fig. 3.3 by addition of H3O+ and additional

water molecules. No stable structure could be obtained for a hydronium cation

solvated at the six-fold coordinated excess electron. In preparatory energy mini-

mizations positions of the oxygen atoms forming the solvation cage of the excess

electron were fixed and only relaxation of hydrogen atoms and H3O+ was al-

lowed. Energy minimization started from these pre-optimized structures relaxed

to structures with four-fold coordination of the excess electron. In the optimized

structures the excess electron was either solvated by four water molecules or three

water molecules and the hydronium cation. This is an indication that including

further solvation shells beyond the first one leads to a four-fold coordinated excess

electron. Final MEPs for the recombination reaction were calculated for a cluster

consisting of six water molecules, a hydronium cation and an excess electron. The

excess electron is four-fold coordinated by water molecules. The H3O+ is coordi-

nated to one water molecule directly solvating the excess electron and two water

molecules solvating the solvation cage of the excess electron. The reaction itself

then proceeds in a comparable manner as before; a proton is transferred from

the hydronium cation to one of the water molecules solvating the excess electron

followed by a proton transfer from the newly formed hydronium to the excess

electron under formation of hydrogen and water. One-to-one comparison of this

reaction model and the H3O+(H2O)3e– model (sec. 3.1) is difficult quantitatively

due to the different solvation environments and cluster sizes. A compression of

the solvation cage and thus also the spin density can be observed at the transition

state of the reaction, as for the H3O+(H2O)3e– model. The barrier of the process

is higher by 0.1 eV than for the isolated cluster system H3O+(H2O)3e– and the

relative energies of reactants and products are shifted due to the stronger solva-

tion in the larger cluster models and additional stabilization of the reactants by

the continuum solvation model.

A second reaction investigated in this study was the addition of the excess

electron to an N2O molecule coordinated to the solvation cage pertinent to the

hydrated electron. This reaction is used in experimental studies to scavenge

hydrated electrons and form .OH radicals. [138] The addition of an excess electron

to N2O leads to the formation of .OH radical and OH– anion:

N2Oaq + eaq
− −−→ N2 + OHaq

· + OHaq
− (3.1)



3. Results 42

The reaction is close to being diffusion-limited. However, it is not truly

diffusion-limited due to a barrier associated with desolvation of the hydrated

electron. [139] Several clusters were optimized with N2O attached to the solva-

tion cage and also including several more water molecules solvating the N2O. The

geometry optimizations all led to transfer of the excess electron to the N2O moi-

ety under formation of a bent N2O– anion. The reaction paths obtained for this

species are very similar to those of an N2O– anion solvated solely in a continuum

solvation model. [139] A small barrier of 0.1 eV, associated with the cleavage of

NO, is present and subsequent stabilization is accompanied by rearrangement of

water molecules solvating the O– anion. Modeling of this reaction including the

actual separated species thus requires larger systems to completely solvate both

excess electron and N2O. A further reaction between water and O– is expected

and would produce .OH radical and OH– anion 1, but was not observed in the

cluster systems.

1Only at high pH, pH≥12, the solvated O– anion can be observed. [3]
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3.3 Unraveling the complex nature of the hy-

drated electron

The traditional picture of the hydrated electron is that of an excess electron lo-

cated in a polarized cavity, i.e., space not occupied by water molecules, with OH

bonds of water pointing towards the center of the cavity. This model was ques-

tioned recently by simulations of a specific parametrization of a one-electron pseu-

dopotential that predicts that the hydrated electron would not occupy a cavity,

but would rather be delocalized around a region of enhanced water density. [38]

We performed QM/MM molecular dynamics simulations of a bulk-hydrated elec-

tron, among other things, to address this issue. [108] To be as unbiased as possi-

ble towards the discussion in the literature, a single excess electron was attached

to structures from molecular dynamics simulations of neat water obtained with

the same QM/MM methodology. The attachment of the electron is simply per-

formed by decreasing the charge by one in the input and following the subsequent

molecular dynamics. The excess electron initially delocalizes over the QM region

but forms within a few picoseconds structures that resemble the traditional pic-

ture of an electron solvated in a cavity, as depicted in Fig. 3.4. About four

0 ps 1.5 ps 3 ps

Figure 3.4: Snapshots after decreasing charge of neat water QM/MM system by
one and follow-up dynamics at 0 ps, 1.5 ps and 3 ps. Water molecules treated
with QM methodology are shown as opaque balls and sticks and water molecules
treated with MM methodology as transparent sticks. Spin density is depicted as
isosurfaces at values of 0.0001 a−1

0 (transparent blue) and 0.001 a−1
0 (diffuse blue).

water molecules are on average located within the first solvent shell, which com-

pares well with many of the one-electron pseudopotential calculations [33] and

the model systems in sec. 3.2. This number was obtained from integrating the

radial distribution functions of oxygen and hydrogen atoms up to their respective

first minima. The RDFs indicate zero distribution of hydrogen atoms up to 0.6 Å

and of oxygen atoms up to 1.6 Å distance from the center of the spin density dis-

tribution. Together with the localization depicted in Fig. 3.4 this is a very strong

indication of the presence of a cavity. The use of RDFs implies the treatment
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of the hydrated electron as a spherical point particle with a well-defined center.

This is a somewhat oversimplified representation of the hydrated electron as it is

far from spherical at each instant in the molecular dynamics simulations and also

rather diffuse, as can be seen from the snapshot at 3 ps in Fig. 3.4. Only upon

averaging the structure over the whole trajectory one would obtain a spherically

symmetric picture of the hydrated electron. The hydrated electron is intrinsically

coupled to all other electrons in the system and important contributions to its

structure and energetics arise from the charge transfer of parts of the excess elec-

tron to the surrounding water molecules. From our spin decomposition scheme

explained in sec. 2.6.2 one can determine that about 40 % of the spin density are

located within the cavity, about 25 % on the water molecules and about 35 %

within interstitial space between the water molecules. Although the part of the

hydrated electron located in a cavity is larger than all other parts individually,

it contributes less than half to the whole spin density and the large amount of

the excess electron located on water molecules indicates that a treatment of the

species in full detail requires an approach that includes the quantum nature of

the water molecules. Spin density located in the cavity has higher values in a

smaller volume than the other two parts which contribute with smaller values

over a larger volume. Hence the large contributions outside of the cavity are a

mere volume effect.

The hydrated electron in our simulations also reproduces several experimental

quantities. In particular, the radius of gyration rg is on average about 2.8 Å

(thermal spread about 0.4 Å) while from moment analysis of the experimental,

optical absorption spectra one can determine an rg of about 2.4 Å. [14] Also,

the optical absorption spectrum is well reproduced as detailed in sec. 3.6. The

vertical detachment energies are on average 3 eV (thermal spread about 0.5 eV)

while the experimental value is between 3.3 and 3.6 eV. As previously reported,

the size and vertical detachment energy show an anti-correlation, i.e., the larger

the electron in size, the weaker it is bound and vice versa. [22]

These simulations highlight the complex character of the hydrated electron.

Using the ab initio description a picture of the hydrated electron emerges that is

somewhat between the results from different one-electron pseudopotential calcu-

lations. A cavity is present, as in many of the pseudopotential calculations [33],

but the ab initio description also shows a certain similarity to a delocalized elec-

tron [38] due to its significant contributions from the diffuse, interstitial parts

and overlap with water molecules.



3. Results 45

3.4 Electron at the surface of water: Dehydrated

or not?

Figure 3.5: Snapshot of an ex-

cess electron solvated at the wa-

ter/vapor interface. Black wire-

frame depicts the instantaneous

liquid interface and isosurfaces

of the spin density are shown

at 0.0001 a−1
0 (transparent blue)

and 0.001 a−1
0 (diffuse blue).

The hydrated electron is a highly polarizable

charged particle due to the lack of an associ-

ated nucleus and it is known that large and

polarizable ions have a propensity to accumu-

late at the water/vapor interface. [140] Nev-

ertheless, the view of the hydrated electron

at the water/vapor interface is not well estab-

lished and computational studies have mainly

focused on cluster systems or liquid bulk wa-

ter. One study using one-electron pseudopo-

tential description showed that an excess elec-

tron attached to neutral water system localizes

to the interface and subsequently transfers to

the bulk interior. [141] We reported simulations

of a hydrated electron at the water surface [142]

with the same QM/MM methodology as before

for the bulk-hydrated electron, see sec. 3.3.

Neat water simulations were performed,

now with the QM subsystem directly being

part of the water surface. Decreasing the charge of the QM system by one led to

an initial attachment of the excess electron in a delocalized fashion, which quickly

localized (within 1-2 ps) to form a hydrated electron solvated, at least partially,

in a cavity. The properties of the hydrated electron at the water/vapor interface

are very similar to that in bulk water solution. The excess electron is comparable

in size (rg = 2.9 Å) and has a similar VDE (3.3 eV) to an excess electron in bulk

water. 1 No stable low-binding isomers with a VDE on the order of 1.6 eV as

suggested in ref. 28 were observed. The anti-correlation of size of the hydrated

electron and its binding energy is observed as in bulk water [108] and in anionic

water clusters [22].

The average solvation structure of the excess electron at the water surface is

similar to that of a bulk-hydrated electron with about four water molecules in its

first solvent shell. Due to the flexible/polarizable nature of the hydrated electron,

large fluctuations in the spin density can be observed and hence also in the parts

1The inconsistency of a similarly sized excess electron at the water surface with higher
vertical detachment energy compared to the simulations of the hydrated electron in bulk water
is due to the different boundary conditions in simulations of bulk and slab geometries. For more
information see sec. 4.1.
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protruding into vapor phase. Compared to the bulk-hydrated electron, only mi-

nor differences are observed in parts of the spin density within the cavity, on the

water molecules, and in the diffuse part. All decrease by about 3-4 % compared to

the hydrated electron in bulk water, due to the anisotropy of the water/vapor in-

terface and thus the part of the spin density protruding into the vapor phase. The

latter part amounts on average to 11 %.

0.5 1.0 1.5 2.0 2.5 3.0

de−aq−surface [Å]
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Figure 3.6: Correlated distributions of

distance of hydrated electron to instan-

taneous liquid interface de−aq−surface and

percentage of spin density protruding

into vapor phase. Inset shows correlated

distributions of de−aq−surface and vertical

detachment energy VDE.

Fig. 3.6 shows the percentage of spin

density in the vapor phase in depen-

dence of the distance of the center of

the spin density distribution from the

instantaneous liquid interface. The hy-

drated electron is mainly located be-

tween 1 and 2.5 Å from the instanta-

neous interface with only about 10 %

or less of its spin density protruding

into the vapor phase. Rarely, the elec-

tron is closer to the interface, but if so,

the spin density in the vapor phase can

gain up to 30 %. The inset of Fig. 3.6

shows correlated distributions of the

VDE of the hydrated electron and its

distance to the surface of water. No

systematic correlation is observed for

these two quantities. This is in stark

contrast to the suggestion that the hy-

drated electron at the water surface would be weakly bound (1.6 eV) [28].

In summary, an excess electron, when solvated at the water/vapor interface,

is structurally and energetically very similar to that of a bulk-hydrated electron.

The first solvation shell is kept upon surface-hydration and only starting from the

second solvation shell the anisotropy due to the interface present causes changes.
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3.5 Charges at aqueous interfaces: Development

of computational approaches in direct con-

tact with experiment

This review [143] highlights some of the latest developments in molecular dynam-

ics simulations of ions in solutions with emphasis on the behavior of different ions

with respect to interfacial hydration (in particular at the water/vapor interface).

Traditionally, derived from continuum theories, the water/vapor interface was

thought to be free of ions. [144] Recent investigations show the contrary, in par-

ticular large and soft (polarizable) ions show a propensity to accumulate at the

water/vapor interface. [140] Small and hard (less polarizable) ions on the other

hand stay within the bulk solution. Thus proper treatment of polarization effects

is of paramount importance to capture these differences.

In the realm of force-field based methods several options to explicitly account

for polarization effects exist. For a comparative review see, e.g., ref 145. Most

of them are based on linear response to the field of the surrounding molecules

and the corresponding response of the surrounding molecules to this induced

change. Hence, this leads to self-consistent procedures that significantly increase

the computational time and can in principle not just be added on top of existing

models. Existing, non-polarizable models often effectively include polarization

effects due to their parametrization with respect to experimental data.

Proper treatment of electronic polarization is included in AIMD simulations,

from which nowadays only the ones using DFT for force calculations are afford-

able. As a showcase for proper treatment of polarization in the context of AIMD

simulations, we chose the surface- vs. bulk-solvation of the hydrated electron.

The hydrated electron can be seen as “poster-child” for polarizable ions due to

the absence of an associated nucleus. Similarly to the two preceeding sections

the almost non-existent differences in the structure and energetics of an excess

electron in bulk water vs. at the water surface were detailed. As the hydrated

electron keeps its first solvation shell when solvated at the water/vapor interface

the differences between bulk- and surface-solvation are negligible. The structural

and energetical similarities between bulk- and surface-solvation led to the con-

clusion that no, or only little, energetic preference with respect to either of those

should be observed.
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3.6 Optical spectroscopy of the bulk and inter-

facial hydrated electron from ab initio cal-

culations

The optical absorption spectrum of the hydrated electron is an important ex-

perimental observable and serves both for general detection and time-dependent

monitoring. In an effort to further validate our methodology and strengthen

our argument of the minimal differences between bulk and surface solvation of a

hydrated electron, the optical absorption spectrum along the trajectories of the

bulk- and surface-solvated electron, presented in secs. 3.3 and 3.4, were carried

out. [146] This allowed us to obtain spectra appropriate to the thermal equilib-

rium and corresponding line-broadening. Previously, spectra of bulk-hydrated

electrons were calculated either directly from one-electron pseudopotentials or

with TDDFT along trajectories obtained from one-electron pseudopotential cal-

culations [44] and to the best of our knowledge never for an excess electron located

at the water/vapor interface.
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Figure 3.7: Optical absorp-

tion spectra of the hydrated elec-

tron at 300 K from experiment

(black) and from calculations on

structures of bulk- (blue) and

surface-hydrated (green) elec-

tron.

Benchmark calculations are provided for

the small cluster (H2O)4
– (see sec. 3.2) in a

non-equilibrium continuum solvent, for five iso-

lated, distinct (H2O)6
– clusters, and for struc-

tures from the bulk-hydrated electron pre-

sented in sec. 3.3 with a QM region reduced

to the first solvent shell (i.e., four QM wa-

ter molecules and 1020 MM water molecules).

Summarizing the results of the benchmark-

ing, excitation energies are converged within

tenths of eV for the investigated systems with

dual-ζ basis sets with polarization functions on

all atoms and diffuse functions on the oxygen

atoms. Hybrid density functionals, in partic-

ular their long-range corrected versions, are

needed for excitation energies that compare

well with equation-of-motion coupled cluster

calculations with singles and doubles (EOM-

CCSD).

All employed hybrid functionals perform well for the small benchmark sys-

tems. The situation is more complicated when turning to production TDDFT

calculations on bulk- and surface-hydrated electron with QM subsystems of simi-
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lar size as in the original molecular dynamics simulations. For the bulk-hydrated

electron the B3LYP density functional underestimates the peak of the optical

absorption spectrum, but has a width comparable to the experimental spectrum.

Also, calculations with the B3LYP density functional show artificial transfer of

spin density in the excited state beyond the QM/MM boundary. This can be seen

by calculating the amount of the excited state spin density located beyond the

instantaneous liquid interface as generated by the molecules in the MM subsys-

tem (i.e., providing a representation of the QM/MM interface). About 40 % of

the excited state spin density are contained within the MM region in calculations

with B3LYP, while only 20 % in calculations with LRC-BLYP. This charge-

transfer and accompanied underestimation of excitation energies is a well known

problem for density functionals like BLYP and B3LYP. [83, 109] Long-range cor-

rected hybrid density functionals remove this artifact. Both LRC-BLYP and

LRC-µBOP density functionals in their standard parametrization overestimate

the maximum of the absorption spectrum by about 1 eV. The default range-

separation parameter µ of these functionals was optimized with respect to sets

of small molecules and provides the lowest average errors for diverse properties

of these systems. [72, 127] µ is system- and especially system-size dependent.

To obtain good agreement with the experimental spectrum tuning of this range-

separation parameter proofed to be of paramount importance. As explained in

sec. 2.2 the tuning is performed with respect to the ionization theorem in DFT,

eq. 2.27. For the small QM/MM benchmark systems the optimal range-separation

is similar to the default parameter, i.e., the optimized µ = 0.30a−1
0 and the default

µ = 0.37a−1
0 , for the LRC-µBOP functional. The tuning procedure was repeated

for the bulk- and surface-hydrated electron. The optimal parameter for the bulk

system is µ = 0.165a−1
0 and for the interfacially hydrated electron µ = 0.180a−1

0 .

With these optimized parameters good comparison to the experimental spectrum

can be obtained as can be seen from the calculated and experimental optical

absorption spectra shown in Fig. 3.7. The computed spectra are histograms of

the first 15 excitation energies weighted by their respective oscillator strengths.

The differences in the spectra in bulk and at the interface are in the onset of the

spectra, which is steeper for the hydrated electron at the water/vapor interface

and in the high-frequency tail, which is less pronounced for the surface-hydrated

electron. Latter can be due to an insufficient basis set at the water surface. For

the calculations in the water bulk, space is equally well filled with basis func-

tions. At the interface, not as many basis functions penetrate into the vapor

phase which may lead to artifacts in the more diffuse excited states.
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[Å
−

1
]

Figure 3.8: Averaged radial profiles

of spin density in the first three ex-

cited states for the bulk- (solid lines) and

surface-hydrated (dotted lines) electron.

The origin is set to the center of the re-

spective excited-state spin density.

Radial profiles of the first three ex-

cited states in bulk water and at the

water surface are shown in Fig. 3.8.

Degeneracies in the first three excited

states as for the small model system

(H2O)4
– (D2d symmetry with two de-

generate excited states) are lifted due

to the finite temperature in the molec-

ular dynamics simulations. Both for

bulk- and surface-hydrated electron,

the first three excited state spin den-

sities are all of comparable extent,

amongst each other as well as com-

pared between surface and bulk. The

excited state spin densities are slightly

more diffuse at the surface. Dissect-

ing the first three excited state spin

densities at the water surface accord-

ing to sec. 2.6.2 shows that upon excitation about 25 % of the spin densities

protrudes into the vapor phase. Only minor parts are left in the original cavity

(≈ 5 %), the amount of spin density on water is comparable (≈ 30 %) and the

diffuse/interstitial part gains about 10 % compared to the ground state and thus

totals to about 40%. For the next two higher lying excited states at the water

surface, the average contribution of the spin density in the vapor phase is 5 %

less than for the first three excited states. This suggest that artifacts due to

insufficient basis sets may not be too pronounced for the first few excited states,

but become important only for the very diffuse, high-lying states.

In summary, when benchmarked properly, TDDFT calculations on structures

of the hydrated electron obtained from AIMD simulations compare well to ex-

perimental data. The optical absorption spectrum is strikingly similar between

a hydrated electron in bulk water and at the water/vapor interface.
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3.7 Direct observation of the collapse of the de-

localized excess electron in water

When water is ionized an initially delocalized electron is observed which gradu-

ally shrinks in size to form the hydrated electron. [9] During the localization not

only the size, but also the optical absorption of the excess electron changes dra-

matically. The localization after electron attachment can thus be monitored in

different frequency regimes. Starting from a delocalized and weakly bound elec-

tron absorbing at low frequencies in the radio frequency range, localization of the

excess electron leads to the hydrated electron, absorbing in the near-IR/VIS re-

gion. Here [147], we caught the electron in the initial stages after water ionization.

Experimentally, this is achieved with pump-probe spectroscopy on a time-scale of

a few ps, where relaxation of the excess electron is primarily due to solvent relax-

ation in the ground state.
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Figure 3.9: Average radius of gyration

rg as a function of time (solid blue), from

seven independent molecular dynamics

simulations. Exponential fit with time

constant τ = 1 ps (dashed blue). Av-

erage first excitation energy Eexc along

these trajectories in green. Standard de-

viation of the datasets is indicated by

shaded areas.

The lifetime of an initially photo-

excited electron was recently observed

to be ≈75 fs. [32] In the experimen-

tal part of the present work 1 different

photon energies were used for water

ionization and the probe frequency was

at 1.5 THz. Computationally, the at-

tachment of an excess electron to bulk

water is probed for seven trajectories

similar to those used for the prepara-

tion of the bulk- and surface-hydrated

electron in secs. 3.3 and 3.4. A sin-

gle excess electron was vertically at-

tached to geometries from neat wa-

ter simulations and the subsequent

ground-state dynamics were recorded.

TDDFT calculations were performed

along these “localization” trajectories

to obtain the time-dependent spectra.

The average time-evolution of the ra-

dius of gyration rg and the correspond-

ing average first excitation energy Eexc

are shown in Fig. 3.9. The excess electron localizes on average within 1-2 ps to

form the bulk-hydrated electron which is in good comparison to previous exper-

1Experiments were carried out by the group of Peter Hamm at the University of Zürich.
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iments. [9] As the excess electron shrinks in size the first excitation energy rises

until both rg and optical absorption correspond to that of a hydrated electron in

thermal equilibrium (for comparison see also spectra in Fig. 3.7 in sec. 3.6). In

these simulations the rg of the excess electron is limited by the size of the QM

region in the QM/MM simulations. The range of sizes was extended by vertically

attaching an excess electron to neat water systems with larger QM subsystems.

An excess electron was attached along trajectories of systems with 64 QM and

960 MM water molecules and 256 QM and 3886 MM water molecules, but only

the state of the excess electron at t = 0 was analyzed. The first excitation en-

ergy after vertical electron attachment was estimated for these system from their

HOMO/LUMO gap. 1 Artifacts due to spurious charge-transfer excitations are

not as pronounced for a delocalized excess electron in neat water as for an equi-

librated hydrated electron. For comparison of excited state spin densities with

different density functionals see Appx. A. Excitation energies Eexc and radii of gy-

ration rg from all simulations are plotted as correlated distributions in Fig. 3.10.

An anti-correlation similar to that observed between rg and VDE is present for

the first excitation energy and radius of gyration. Namely, the larger the excess

electron is, the smaller is its first excitation energy. This dependence has been ob-

served also in anionic water clusters. [23] The functional form of this dependence

is the same as for the correlation between the first excitation energy of particle

in a box and its radius of gyration (shown in green in Fig. 3.10 and derivation

given in Appx. B). 2 The data from our simulations can be fitted well to this

functional form, i.e., a/r2, which is also shown in Fig. 3.10 (red line). The good

correspondence between the particle in a box model and our ab initio data is en-

couraging in that the fit is meaningful and can be used further on. The fit can be

employed to extrapolate to excitation energies used to detect the excess electron

in the THz experiments. According to this extrapolation the excess electron has

rg ≈ 40 Å at the peak intensity of the THz beam (at Eexc = 1.5 THz). Via the

extrapolation we can provide estimates for the size of the excess electron over a

wide range of frequencies during the process of localization.

1The HOMO/LUMO gap was scaled down according to a factor obtained from comparison
to TDDFT calculations in smaller systems.

2Data from the particle-in-a-box model was not included in the original publication.
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Figure 3.10: Correlated distributions of first excitation energy Eexc and radius
of gyration rg (blue dots). Fit of the this data to a/r2 with a = 10.5 eVÅ2

(red line) and the analytical relationship for a particle in a box (green line) are
also shown. The inset depicts the same data on a double-logarithmic scale and
extrapolation of both particle in a box and fitted relationship shown as dashed
lines (same color-coding as in large plot).



Chapter 4

Tying up loose ends

This last chapter gives information on currently unfinished and ongoing work

and addresses some problematic issues of the work presented in chap. 3. We start

with a discussion on the direct comparison of vertical detachment energies of a

bulk- and surface-hydrated electron and corrections to their absolute values in

sec. 4.1. Section 4.2 gives an overview of current work related to the calculation

of absolute hydration free energies of a bulk-hydrated electron and differences be-

tween bulk- and surface-hydration. Section. 4.3 illustrates re-parametrization of

the self-interaction correction to remedy artifacts observed in ab initio molecular

dynamics simulations.

4.1 Effect of boundary conditions and finite con-

centration on bulk vertical detachment en-

ergy

The direct comparison of structure and energetics of an excess electron solvated

in bulk water (sec. 3.3) and at the water/vapor interface (sec. 3.4) is hampered by

the different boundary conditions used in these simulations. Simulations of a bulk-

hydrated electron were carried out for 3D-periodic systems with no interface while

simulations of a surface-hydrated electron were done in periodic systems with

elongated lateral dimensions to provide a water/vapor interface. This has an effect

both on the vertical detachment energy and on the normalization of the radial

distribution functions. Two additional QM/MM molecular dynamics simulations

were conducted with consistent boundary conditions. One with an electron in the

bulk and one at the surface of a water slab geometry. Unit cells were of the same

size in both cases (cell dimensions: 31.4 Å, 31.4 Å, and 100.0 Å). The systems

consisted again of 1024 water molecules, from which 32 were treated with the QM
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and 992 with the MM methodology. Results after equilibration were collected in

short runs of 2.5 ps length. Fig. 4.1 shows the radial distribution functions of

oxygen atoms around the center of the excess electron both in bulk water (blue)

and at the water/vapor interface (green). Even for the short simulation time,

these RDFs closely resemble those obtained from our production simulations of

a bulk- and surface-hydrated electron with a length of about 10 ps. The direct

comparison illustrates how close to each other the solvation structure are in the

two hydration environments. Four water molecules comprise the first solvent shell

in both cases and only at larger distances from the excess electron the asymmetry

of the water/vapor interface leads to significant differences in the RDFs.
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Figure 4.1: Radial distribution functions g(r) of oxygen atoms around center
of the spin density rc (solid lines) of an excess electron solvated in bulk water
(blue) and at the water/vapor interface (green). Running coordination numbers
(4πρ

∫ r
0
g(r′)r′2dr′) are shown as dashed lines in respective color coding. ρ is the

number density of water molecules in the simulations.

The consistent boundary conditions now allow for a direct comparison be-

tween vertical detachment energies of an excess electron at the water surface and

in bulk water. Furthermore, corrections to the VDE that account for effects of

finite concentration can be introduced and compared. In published articles VDEs

were calculated as the difference between periodic neutral and periodic anionic

system, i.e., the difference in potential energies upon removal of an effectively

infinite number of electrons from the system. Two options are available to rem-
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Table 4.1: Differences in vertical detachment energies obtained from “finite
concentration” and “infinite dilution” corrections as introduced in the text. All
energy differencs in eV. The corrections are given as differences of corrected and
uncorrected VDE. For the periodic inifinte dilution correction, differences are not
uniformly positive or negative and corresponding percentages of structures are
indicated.

correction bulk water/vapor interface

non-periodic infinite dilution
90 %: 0.32 80 %: 0.19
10 % -0.11 20 % -0.09

periodic infinite dilution -0.06 -0.05
finite concentration -0.07 -0.06

edy resulting artifacts. First, one could run molecular dynamics simulations of

a non-periodic QM system in a periodic MM system (i.e., “non-periodic infinite

dilution”). As the systems investigated here carry a net charge, this will likely

lead to other artifacts. Trajectories of the fully periodic QM/MM system were

hence only resampled ignoring the periodicity of both anionic and neutral QM

subsystem. Second, a correction can be added taking into account the periodic

nature of the system. The QM/MM framework as implemented in CP2K is well

suited for this and we implemented a modification to the electrostatic coupling

of periodic QM subsystems. As explained in sec. 2.5.3, in a general QM/MM

calculation the QM charge density is first decoupled from its periodic images

which have the periodicity of the QM subsystem and then re-coupled with the

periodicity of the full QM/MM system. The re-coupling is performed using the

electrostatic potential of a model charge density that reproduces the multipole

moments of the original charge density of the QM subsystem. In principle any

model charge density can be included in this routine. If the model charge den-

sity for re-coupling of the anionic and neutral system comes from a calculation

including the excess electron, the resulting VDE corresponds to removing one

electron from the system. Similarly, if the QM charge densities are re-coupled

to the model charge density of the neutral system, we obtain a periodic version

of the “infinite dilution” correction. Again, trajectories obtained from the fully

periodic simulations were resampled, now re-coupling the charge density of the

QM subsystem to either the model charge density obtained for the QM subsys-

tem containing the excess charge (referred to as “finite concentration”) or to the

model charge density of the neutral system (“periodic infinite dilution”).

The resulting corrections to the VDEs are collected in Table 4.1. The non-

periodic infinite dilution leads to a non-uniform trend in the difference in VDE.

Resulting VDEs are higher than uncorrected ones by 0.2-0.3 eV for 80-90 % of

the resampled structures. For 10-20 % of the structures corrected VDEs are
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about 0.1 eV lower. This already points to artifacts in the calculations due to the

neglect of periodicity of the QM subsystem. Both periodic infinite dilution and

finite concentration correction lead to lower VDEs by about 0.1 eV compared to

uncorrected ones. The former increases the energy of the anionic system and the

latter decreases the energy of the neutral system, while energies of neutral and

anionic system stay the same, respectively. This is somewhat counterintuitive as

one could expect lowering of the energy of the anionic system for the periodic

infinite dilution due to missing repulsion between excess electron and its periodic

images. The situation is complicated by the homogeneous, neutralizing back-

ground charge in the anionic system. The effect on the energies has not yet been

accounted for in our correction scheme. Nevertheless, from our initial correction

scheme it can be seen that effects on the VDEs are small at the unit cell sizes

employed in the QM/MM calculations.

Figure 4.2 shows the correlated distributions of rg and VDE including the

finite concentration correction, again for the excess charge in bulk water (blue)

and at the water vapor interface (green). The consistent boundary conditions in

both simulations lead to a close match in distributions of VDE for both bulk-

and surface-hydrated electron. The average VDE for bulk- and surface-hydrated

electron are 3.2 and 3.4 eV, respectively. Further sampling is required to ob-

tain fully converged distributions of VDE and rg. In particular, the tail towards

lower VDEs and higher rg is more pronounced in our production simulations of a

surface-hydrated electron in ref. 142. This would lead to a lower average VDE of

the surface-hydrated electron and hence to even better agreement between bulk-

and surface-hydration of the excess electron upon additional sampling. The di-

rect comparison nevertheless illustrates convincingly how closely energetics match

between bulk- and surface-hydration.
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Figure 4.2: Correlated distributions of V DE and rg of bulk- (blue) and surface-
hydrated (green) electron.
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4.2 Free energy of hydration of a solvated elec-

tron

The similarity in energetics of bulk- and surface-solvation of a hydrated electron

serves as strong argument for a negligible difference in hydration free energies in

the two environments. Nevertheless, determining the absolute numbers and dif-

ference upon moving an electron from bulk water to the water surface is of great

interest. The experimental value of the hydration free energy of an excess elec-

tron in bulk water was determined by different groups to be −39.4 kcal/mol [148]

or −34.6 kcal/mol [149]. The former is based on extrapolations from aqueous

monoatomic cations [150] while the latter on extrapolations from cluster ion

data [151]. A value of −35.5 kcal/mol was determined from quantum chem-

istry studies of small, anionic water clusters. [137] The spread in experimental

values illustrates the order of errors that range up to a few kcal/mol. These errors

are common for both calculations and experimental measurements.

Rvac

Raq

e−vac

eaq
–

∆Ghyd(R) ∆Ghyd(e−)

∆∆G(Rvac → e−vac)

∆∆G(Raq → e−aq)

Figure 4.3: Thermodynamic cycle for free energy perturbation calculations. The
aqueous phase is indicated by the blue area. R is a reference system. ∆Ghyd(R) is
the hydration free energy of the reference system, while ∆Ghyd(e−) the one of an
excess electron. ∆∆G (Rs → e−s ) is the difference in free energies of the reference
and the excess electron. The subscript s indicates the phase the reference or
excess electron are in.

One can construct a thermodynamic cycle as shown in Fig. 4.3 which al-

lows to calculate the absolute free energy of hydration of an excess electron

using a reference species R. If the absolute hydration free energy is known for

this reference, one can obtain the free energy of hydration of an excess electron.

∆∆G(Raq → eaq
−) can be calculated with free energy perturbation [152] by al-

chemically changing R into a hydrated electron. The free energy of hydration of

the hydrated electron can then be calculated as ∆Ghyd(eaq
−) = ∆∆G(Raq → eaq

−)−
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∆∆G(Rvac → e−vac)+∆G(Raq). The choice of reference system is of particular im-

portance as the perturbation should be small. After perturbation from R, the

resulting structures need to be representative of structures sampled by a hydrated

electron. Resampling of trajectories from the solvated reference system, with the

reference substituted by a single excess electron yields potential energy differences

∆U that are input to the free energy perturbation formula:

∆∆G
(
R→ e−

)
= −kBT ln

〈
exp

(
−∆U

kBT

)〉

R

, (4.1)

with the difference in potential energies ∆U defined in our case as:

∆U = Epot

(
e−aq

)
− Epot (Raq) . (4.2)

In eq. 4.1 kB is the Boltzmann constant, T is the temperature, and <>R repre-

sents the ensemble average taken over structures extracted from the equilibrium

ensemble of the solvated reference system. These equations hold for calculations

with the same methodology for both hydrated reference and hydrated electron.

If perturbation is performed from a reference described with a different metho-

dology than the hydrated electron, this change needs to be accounted for as well.

This can be done by subtracting the potential energies of the systems without the

reference or excess electron from respective potential energies including reference

or excess electron. Thus ∆U then corresponds to the difference in the interac-

tion energies of hydrated reference and hydrated electron with the surrounding

solvent. The interaction energy of a hydrated electron is the negative of its VDE.

Two reference systems were considered. The first reference system is a flu-

oride ion in water (AIMD simulations of 95 water molecules and one fluoride

ion). 1 270 structures in a stride of 50 fs along the MD trajectory were taken

as input for the free energy perturbation. Structurally, the hydrated electron

is somewhat similar to a hydrated fluoride ion. The electron is more diffuse in

nature, but the average solvation structure of both ions is comparable. The sec-

ond reference system is a hypothetical particle in water, called “HYP”, which

was parametrized to provide water structures that resemble those surrounding a

hydrated electron. 2 Force-field molecular dynamics simulations in the NV T en-

semble were performed for one HYP in 1024 SPC/E water molecules, after NpT

equilibration. The SPC/E geometry was slightly modified to reproduce bond

lengths and angles of AIMD simulations of neat water and thus reduce errors

in the perturbation. 3 This had a negligible effect on properties of the water

1Courtesy of Christopher Mundy.
2Parameters for Lennard-Jones 12-6 potential are: q = 0.6 e, σ = 3.15 Å, ε = 0.05 kJ/mol
3OH bond length of 1.00 Å and HH distance of 1.59 Å.
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model like number densities and dielectric constant. 500 structures with a stride

of 2 ps were taken as input for the free energy perturbation. Perturbation from

both reference systems results in structures that closely resemble the ones of a

hydrated electron. Figure 4.4 shows radial distribution functions of oxygen atoms

around the hydrated electron from our bulk production simulations [108] and af-

ter perturbation to the hydrated electron from both above mentioned reference

systems. Radial distribution functions from both references are more structured

than that of the hydrated electron (blue). The position of the first peak in the

RDF of a bulk-hydrated electron is well reproduced with the HYP model (red),

but the number of water molecules in the first solvent shell is slightly higher for

the latter structures. Structures after perturbation from the fluoride simulations

(green) give a slightly shifted peak position for the first maximum, but better

reproduce the coordination numbers in the first solvent shell. The RDF beyond

the first solvent shell is better reproduced with the HYP model.
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Figure 4.4: Radial distribution functions of oxygen atoms around the center of
spin density from bulk-hydrated electron (blue), after perturbation from hydrated
fluoride (green), and after perturbation from hydrated hypothetical particle HYP
(red). Running coordination numbers (4πρ

∫ r
0
g(r′)r′2dr′) are shown as dashed

lines in respective color coding. ρ is the number density of water molecules in the
respective simulations.

Free energies of hydration of the solvated electron ∆Ghyd(eaq
−) calculated with

the above mentioned reference systems are given in Table 4.2. Also included are
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Table 4.2: Free energies of hydration of hydrated electron (in kcal/mol) with
different references and methods.

from to ∆G
eaq
−

hyd

QM/MM eaq
–a QM/MM F– @ eaq

–a -33.8
QM/MM eaq

–a QM/MM Cl– @ eaq
–a -55.1

QM F– QM eaq
– -41.6

MM HYPb QM/MM eaq
–c -33.1

a64 QM water molecules and 960 MM water molecules
b1024 MM water molecules
c32 QM water molecules and 992 MM water molecules

perturbations starting from dynamics of a bulk-hydrated electron to fluoride and

chloride ion in water (structures taken every 5 fs from bulk QM/MM simulations

of eaq
–). The chloride and fluoride ions were put at the center of the spin density

in these calculations. The value of the hydration free energy of the fluoride

and chloride ion were taken from ref. 153. Hydration free energies based on

perturbation calculations from a hydrated electron to a chloride ion lead to a too

low hydration free energy of -55 kcal/mol of the excess electron. Perturbation

to fluoride leads to a hydration free energy of about -34 kcal/mol which is in

good agreement with literature values mentioned at the beginning. The chloride

ion as a reference system is included mainly for comparison and illustrates the

importance of a proper choice for the reference system. Perturbation from AIMD

simulations of a hydrated flouride to a hydrated electron yielded a hydration free

energy ∆Ghyd(eaq
−) of about 42 kcal/mol. This value is about 8 kcal/mol lower

than perturbation performed vice versa. Last, but not least, perturbation from

the HYP reference system (MM) to a hydrated electron (QM/MM) yielded a

hydration free energy of about 33 kcal/mol.

Statistical convergence of the presented values can be estimated from the

difference in ∆G values when only half the number of snapshots are included.

This difference is on the order of 0.5 kcal/mol for perturbation from hydrated

HYP and fluoride. It is larger, about 1 kcal/mol, for perturbation from hydrated

electron to fluoride. Structures used for the latter calculations were taken with

a smaller stride and are likely more correlated. Free energy perturbation should

give the same hydration free energies when performed from a hydrated fluoride ion

to electron and vice versa. Nevertheless, it is known that in practice convergence

depends on the direction of the perturbation. [154]

Following sources of errors exist in the computations. The free energy pertur-

bation calculation involving QM/MM calculations depends on the convergence
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of the interaction energies of hydrated reference and electron with respect to size

of QM subsystem. If convergence is the same for both species, then this effect

will cancel. This is not the case for the systems considered here. The conver-

gence differs due to the diffuse nature of the hydrated electron compared to a

more compact hydrated fluoride (and HYP). Vertical detachment energies (and

hence interaction energies) of the hydrated electron are converged within 0.3 to

0.4 eV for QM subsystems consisting of 32 water molecules compared to sys-

tems with up to 300 QM water molecules. As the interaction energies between

excess electron and surrounding water molecules get smaller in magnitude with

larger QM size, the difference to the reference system gets larger. Fully converged

VDEs will thus lead to an increase in hydration free energy of the hydrated elec-

tron. A counteracting effect is observed for the HYP model. It does not take

into account the flexible nature of the water molecules. If it were accounted for,

the VDE would increase. Thus, the hydration free energy would decrease. The

change in water geometry around a hydrated electron is nevertheless a local ef-

fect. This is evident from the red-shift in OH-stretch frequencies observed only

for water molecules directly surrounding a hydrated electron. The corresponding

power spectra are given in ref. 143. The good agreement with literature values

of hydration free energies calculated with the HYP reference is hence to some

degree due to fortuitous error cancellation of the two counteracting effects of not

fully converged VDEs and the not accounted for local change in water geometry

around the HYP model. Both effects will cancel individually when investigating

the difference in free energies of a hydrated electron in bulk water and at the

water/vapor interface.

The difference in free energies for a bulk- and surface-hydrated electron were

calculated with the HYP model. First, the free energy profile along the distance

of one HYP from the center of a water slab consisting of 215 water molecules was

calculated with umbrella sampling [155] (using 50 windows and 10 ns simulation

time each). Second, two free energy perturbation calculations were performed.

The reference system was one HYP solvated in a slab geometry of 1024 water

molecules (32 QM and 992 MM). In one calculation HYP was located in the

middle of the slab of water and in the other about 3 Å from Gibbs’ dividing

surface. The free energy difference upon moving HYP up to this distance from the

interface is about 0.5 kcal/mol. With the latter value the free energy perturbation

calculations give a preference for surface solvation of the excess electron by about

0.2 kcal/mol, which is within the error of the calculation. This value is not yet

unbiased for the spurious effect of the uniform background charge. [98] Removing

the bias will lead to a smaller difference or even inverted tendencies.

Computations are currently being extended also to other reference systems
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that avoid the mixture of methods. The small difference in hydration free energy

also suggests that a direct sampling approach to the free energy difference would

be feasible. Methods to enhance sampling are designed to effectively flatten the

free energy landscape and have no direct benefit for an already flat landscape. 1

The remaining problem is the computational cost associated with running these

molecular dynamics simulations. Namely, at least 200 water molecules are needed

to simultaneously get converged bulk properties in presence of a water surface.

1These methods also involve constraints or restraints on the coordinate of interest. This
could in principle be achieved with constraints/restraints on occupation numbers, or similar
schemes. It would nevertheless involve computationally intense benchmarking.
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4.3 Why not full ab initio molecular dynamics?

The original plan of this work was to carry out straightforward ab initio molecular

dynamics simulations with pure QM methods of an excess electron solvated in

bulk and slab geometries. This failed with regular GGA density functionals.

Running direct dynamics led to delocalization of the excess electron over the

whole simulation box within picoseconds. Figure 4.5 shows the radius of gyration

as function of time for several such simulations. Two simulations were carried

out using the BLYP density functional plus SIC(a = 0.3, b = 0.2), one in a 3D

periodic bulk system consisting of 96 water molecules (green) and one in a 2D

periodic slab geometry of 128 water molecules (cyan). The initial conditions for

both systems were prepared from force-field based MD simulations that included

either the HYP particle introduced in the previous section (bulk system) or an

iodide ion (slab system). These ions were removed for the AIMD simulations and

substituted by a single electron. This preparation provides an initial cavity for

the excess electron to localize in. Although this initial localization happened in

all cases, subsequently the excess electron delocalized over the whole simulation

cell. In both simulations a strong increase in radius of gyration of the spin density

rg up to about half the cell lengths is observed. The density in the bulk system

corresponds to water density at 300 K but with one water molecule removed

and substituted by a single electron. Delocalization of the excess electron in

the slab geometry excludes the possibility of a significant influence due to the

wrong number density. Also simulations of a bulk-hydrated electron in an NpT

ensemble were carried out and yielded a persistently delocalized excess electron

(data not shown). The two AIMD simulations of 96 water molecules in bulk and

128 molecules in a slab geometry are short and one could potentially expect a

return to a more localized species. Thus we performed simulations of an excess

electron vertically attached to a neat water system. The inset in Fig. 4.5 shows the

radius of gyration after electron attachment to a 3D-periodic system consisting

of 64 water molecules at a density of 1 g/cm3. The radius of gyration fluctuates

around half the cell lengths for over 10 ps and shows no localization of the excess

electron.

The delocalization is understood as artifact in the simulations. The delo-

calized excess electron is different from structures observed with a particular

parametrization of a one-electron pseudopotential [38]. In the above described

AIMD simulations, the spin density is spread over interstitial space and (what

would be) anti-bonding orbitals of water molecules. The center of the spin den-

sity 1 shows erratic movement from one water molecule to another, which are not

1The center of the periodic spin density in one unit cell is estimated using minimum images
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necessarily close to each other. The delocalization artifact was to some extent

observed in other publications [36, 37] as exemplified by the short lifetimes of tens

of femtoseconds of a localized excess electron in these AIMD simulations. Addi-

tionally, the parameter combination of the SIC(a = 0.2, b = 0.0) (red in Fig. 4.5)

led to generation of hydrogen. This is also seen as an artifact in the simulations

and it is attributed to an overly localized electron with the SIC(a = 0.2, b = 0.0).

Although the reaction between an excess electron and neat water is observed in

experiment, it happens on a much slower, sub-millisecond time scale. [12]
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Figure 4.5: Radius of gyration rg along trajectories of 96 bulk water molecules
calculated with PBE0 (blue), BLYP + SIC(a = 0.3, b = 0.2) (green) BLYP
+ SIC(a = 0.2, b = 0.0) (red) and for an electron in a slab geometry of 128
water molecules (cyan), also with BLYP + SIC(a = 0.3, b = 0.2) methodology.
The inset shows the time evolution of rg for an equilibrated system of 64 water
molecules after vertical attachment of one excess electron with BLYP + SIC(a =
0.3, b = 0.2).

The artificial delocalization of the excess electron can be avoided by switch-

ing to a density functional which includes to some extent exact Hartree-Fock

exchange, which is, however, at a high computational cost. Therefore, another

AIMD simulation of 96 water molecules and an excess electron was conducted

using the hybrid density functional PBE0 [156]. The simulation was started from

around the highest value of the spin density. Only considering the original unit cell for a
delocalized electron leads to the center of the spin density always being close to the center of
the unit cell.
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the same initial conditions as the previously mentioned bulk simulations of 96

water molecules and one excess electron. PBE0 includes 25 % of exact Hartree-

Fock exchange. No delocalization of the excess electron was observed in this

simulation in 2.5 ps (blue curve in Fig. 4.5). The average radius of gyration of

the spin density in this simulation is about 2.6 Å, i.e., only about 0.2 Å smaller

than in our bulk QM/MM simulations. The average amount of spin density in

a cavity is 45 %, on water 25 %, and in interstitial space 30 %. The cavity is

slightly more pronounced than in the QM/MM simulations in favor of a reduced

amount of spin density in interstitial space. The success of this simulation, even

on the short time scale, points to a problem related to the self-interaction error in

the simulations using BLYP + SIC. The partial inclusion of exact Hartree-Fock

exchange is known to reduce the self-interaction error. Thus, we re-examined the

parametrization of the self-interaction correction.

In the further discussion we refer to classical electrostatic self- and exchange-

correlation energy of a single electron. In reality these do not exist for a single

electron and should cancel out in calculations with the exact density functional.

In computations they are explicitely calculated and do not cancel out due to the

approximate nature of the density functional. Hence, from a purely electrostatic

point of view it is favorable for a single electron to delocalize to minimize its asso-

ciated self-energy. This effect is in general present in all GGA density functionals.

The extent to which artifacts are observed depends among other things on the

size of the system. The delocalization is enhanced in small periodic simulation

cells, compared to larger ones (vide infra). In our QM/MM simulations the elec-

tron could in principle delocalize as well over the QM subsystem, but artifacts are

reduced due to the large unit cells employed. Brief delocalization of the excess

electron occurred occasionally in these simulations, but was always followed by

re-localization within tens of femtoseconds.

The SIC was re-parametrized for both bulk and small cluster geometries.

The BLYP density functional was used throughout. Optimal parameters for

the PBE density functional [157] are similar to those for BLYP. Parametrization

of the self-interaction correction was previously done in comparison to reaction

profiles in small cluster systems, see sec. 3.1. Another way of parameterizing the

SIC is to enforce the IP theorem (eq. 2.27) as in benchmarking done for long-

range corrected density functionals in sec. 3.6 and in literature (e.g., ref. 71 and

references therein). Figure 4.6 (top) shows the absolute values of sums of vertical

detachment energies and eigenvalues of the singly occupied molecular orbital for

the cluster H3O+(H2O)3e– as shown in Fig. 3.1 in sec. 3.1. The calculations were

performed in a periodic cubic box of 16 Å side length. Thus, possible artifacts due

to periodic boundary conditions are included. The periodic boundary conditions
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Figure 4.6: Several quantities for H3O+(H2O)3e– cluster (see sec. 3.1) calculated
with different parameter combinations in self-interaction correction in ref. 68. Top
panel shows absolute values of sum of V DE and εSOMO, middle panel the V DE
itself, and bottom panel the rg of the spin density. Parameter combinations
that lead to compliance with IP theorem in DFT are plotted as black dots in
each plot. The empty region is due to non-convergent self-consistent field cycle
within 50 iterations (using diagonalization of Fock matrix, started from optimized
wavefunction obtained with orbital-transformation in preparatory calculations).
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at this cell size lead to lower VDEs (calculated as difference in potential energy

of periodic neutral and periodic anionic system) compared to those in isolated

clusters. Energies were calculated for combinations of a and b with a stride of

0.1. For each value of the parameter a there is an optimal value of b that leads

to compliance with the IP theorem, i.e., V DE + εSOMO = 0 (given by black

dots in Fig. 4.6). Energies of the singly occupied molecular orbital and vertical

detachment energy in dependence of b are smooth and can be fitted using cubic

splines to facilitate estimation of the optimal parameter combination. For a = 0.3

the optimal value of b = 0.45. The same parameter combination was obtained in

analogous parameter scans for the cluster model (H2O)4
– in sec. 3.2. Figure 4.6

also shows the VDE (middle panel) and radii of gyration (bottom panel) for the

different parameter combinations. Parameter combinations leading to compliance

with the IP theorem are again indicated by black dots. VDEs are similar along

the course of optimal parameter combinations for the SIC. In contrast, tendencies

within rg are more skewed with respect to the optimal SIC parameters. Larger

artifacts are thus to be expected for the extent of the spin density when deviating

from the optimal parameters.

Along the line of optimal parameter combinations an increase in rg and a

decrease in VDE can be seen towards smaller a. Generally, rg tends to smaller

values for larger values of a at constant b and to larger values vice versa. The

reverse holds, and to a larger extent, for the VDEs. Hence, relative deviations

in VDE and rg along optimal parameter combinations are similar, nevertheless

still larger for rg. For none of the parameter combinations electrostatic and

exchange-correlation energy of the spin density cancel out perfectly (see Fig. C.1

in Appx. C). Deviations from complete cancellation of the latter energies are

larger for parameter combinations complying with the IP theorem with small

a. These deviations along the path of optimal SIC parameters point to the fact

that simulations with different parameter combinations that all comply with the

IP theorem need not yield equivalent results. Furthermore, calculations with

SIC(a = 0.3, b = 0.45) in unit cells of 10 Å side lengths gave radii of gyration

about 10 % larger than in the larger unit cells. Corresponding calculations with

SIC(a = 1.0, b = 0.86) gave relative errors of about 25 % in rg in the smaller unit

cells. The rg in the small unit cells is comparable for both parameterizations. It

is significantly smaller for SIC(a = 1.0, b = 0.86) in the larger unit cell compared

to SIC(a = 0.3, b = 0.45) (see Fig. 4.6). The finite size of the unit cells thus also

affects the delocalization of the excess electron.

A similar self-interaction correction was proposed in the literature that also

removes the electrostatic self-energy of the spin density, but substitutes the

exchange-correlation energy of the full system by the one for the system without
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the unpaired electron. [67] This SIC can also be cast into a parametrized form

similar to ref. 68 with parameters a for scaling the removal of electrostatic self-

energy and b for the exchange-correlation contribution. At a = 1.0 and b = 1.0

the parametrization corresponds to its original form in ref. 67. We performed the

same parameter-scan as above for this SIC (shown in Fig. C.2 in Appx. C). The

parameter combination a = 1.0 and b = 1.0 is one of those that comply with the

IP theorem. Nevertheless, the resulting VDE is artificially low due to the com-

plete neglect of exchange-correlation interaction between the unpaired and all

other electrons in the system. The unpaired electron thus effectively behaves as a

single electron in the electric field of all other electrons. And for all one-electron

systems the parameter combination of SIC(a = 1.0, b = 1.0) gives the exact solu-

tion. The VDEs between the two variants of SIC hence also differ by about 2 eV

for parameters close to unity. This shows that these parameter combinations are

not suited for use with the SIC in ref. 67. The SIC used throughout this work [68]

generally includes the exchange-correlation interaction between all electrons and

can hence also be used for parameters close to unity as both electrostatic and

exchange-correlation interactions between the unpaired and all other electrons

are present.

The parametrization may show a significant size dependence similar to the

one observed in parametrization of the range-separation parameter in long-range

corrected hybrid density functionals. Thus it needs to be repeated for the bulk

systems. Parameter scans were performed for five snapshots extracted from the

bulk simulation using the PBE0 density functional. Energies were calculated

for combinations of a and b with a stride of 0.1 for b, and a set to either 0.3 or

1.0. Figure 4.7 shows the resulting absolute values of sums of vertical detachment

energies and eigenvalues of the singly occupied molecular orbital for five individual

snapshots (gray) and their average (blue) for a = 0.3. The average optimal value

of b for the five snapshots is 0.30. The resulting SIC(a = 0.3, b = 0.3) is close

to our original parametrization (SIC(a = 0.3, b = 0.2)). Simulations with both

parameter combinations led to delocalization of an excess electron in water in

the purely QM simulations within less than a picosecond. This is in accord

with the artificially large rg observed in the small cluster system for optimized

parameter combinations with small a. It suggests that, as in the small cluster,

not all parameterizations of the SIC with respect to the IP theorem lead to the

correct cancellation of electrostatic and exchange-correlation energy of a single

electron. On the other hand, setting a = 1.0 guarantees the complete removal

of the electrostatic self-energy of the single electron. For BLYP the optimal

parameter combination then is SIC(a = 1.0, b = 0.74). 1 Figure 4.8 shows the

1The tuning was repeated for the same snapshots with PBE density functional. The average
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Figure 4.7: Plot of absolute values of sum of vertical detachment energy and
eigenvalue of singly occupied molecular orbital εSOMO as a function of SIC pa-
rameter b at a constant value of a = 0.3. Curves for five individual snapshots
shown as gray dashed lines and their average as blue line.
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difference in spin densities calculated with optimized parameter combinations I:

SIC(a = 0.3, b = 0.3) and II: SIC(a = 1.0, b = 0.74) for one particular snapshot.

The red isosurface encompasses regions where the spin density in I attains higher

values than in II and vice versa for the blue isosurface. The calculations with

SIC(a = 1.0, b = 0.74) yields a much more compact electron with higher values of

the spin density inside the cavity of the hydrated electron. In contrast, the density

is much more diffuse with SIC(a = 0.3, b = 0.3). The latter parametrization

shows significant charge transfer to water molecules in the second solvent shell

around the hydrated electron. The radius of gyration of the spin density is

4.0 Å for SIC(a = 0.3, b = 0.3) and 2.6 Å for SIC(a = 1.0, b = 0.74). The

delocalization is thus still favored for SIC(a = 0.3, b = 0.3) and points again

to a residual influence of the not completely canceled classical self-energy of the

spin density. We are currently in the progress of generating trajectories of a

bulk-hydrated electron with the newly parametrized SIC(a = 1.0, b = 0.74).

Further simulations with SIC(a = 1.0, b = 0.7) and SIC(a = 1.0, b = 0.8) are

being produced to check sensitivity of results with respect to b parameter. Up to

now all of these simulations produced trajectories with excess electrons localized

within a cavity for at least 3 ps, similar to our bulk QM/MM calculations. They

are currently being extended.

In summary, two different ways exist to avoid the delocalization artifact. First,

large unit cells as in the QM/MM simulations lead to reduced finite-size effects.

Second, careful re-parametrization of the SIC that avoids spurious effects due

to the electrostatic self-repulsion lead to stable simulations of a bulk-hydrated

electron, even in comparably small unit cells. It should also be noted that a

minor residual effect of the self-interaction error might still be present in our

QM/MM simulations due to the use of SIC with small values of a leading to

more extended spin densities. This explains the slightly larger radii of gyration in

the QM/MM simulations compared to experimental values and values obtained

from AIMD simulations using the PBE0 density functional. Nevertheless, the

qualitative structure of the spin density in the QM/MM simulations compares

well to the simulations with the PBE0 density functional.

optimal parameter combination for these is SIC(a = 1.0, b = 0.72).
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Figure 4.8: Difference density between two SIC parametrizations calculated for
a snapshot from AIMD simulation with PBE0 DF. Isosurfaces show difference in
spin density re-calculated with two SIC parameter sets I: SIC(a = 0.3, b = 0.3)
and II: SIC(a = 1.0, b = 0.74). The difference density ∆m (r) is calculated as
mI (r)−mII (r). Red isosurface is at a value of 0.0005 a.u. and blue isosurface at
−0.0005 a.u.



Chapter 5

Conclusions and outlook

The presented work provides a detailed view on the structure, dynamics, and

reactivity of an excess electron in water, i.e., the hydrated electron using ab

initio methods. Calculations on small clusters allowed us to benchmark the DFT

methodology which could then be transferred to model equilibrium properties of

an excess electron in bulk water and at the water/vapor interface. Furthermore,

dynamics after vertical electron attachment to neat water could be modeled with

the same DFT methodology in bulk water. The small cluster systems themselves

also yielded results relevant for the reactivity of a hydrated electron.

An excess electron in small water clusters already resembles to some extent

a bulk-hydrated electron. Such systems can thus also be used to investigate the

reactivity of the hydrated electron. By successive solvation of an H3O radical

a solvent-separated pair of hydrated proton and electron can be obtained. The

main features of the recombination reaction between the latter two can be re-

covered in this small cluster system as both electron and proton are already well

solvated. The reaction is thus not barrierless, because of the penalty associated

with desolvating the reaction partners (similarly observed in medium-sized water

cluster anions [134]).

Cluster models of pure water and an excess electron were obtained by em-

bedding structures in a continuum solvent. Stable structures can be obtained for

both a four- and six-fold coordination of an excess electron by water molecules.

Nevertheless, extending the cluster sizes led to re-arrangement to clusters that

support a four-fold coordination of the excess electron. This is in good correspon-

dence to most simulations with one-electron pseudopotentials [33] and actually

corresponds well to one of the earliest suggestions for the structure of a hydrated

electron [39]. Properties like vertical detachment energy and main features of the

optical absorption spectrum are in good comparison to experimental data.

The hydrated electron is a diffuse species and explicit account of solvent shells

beyond the first one is needed to completely describe its solvation. We mod-
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eled the hydrated electron using QM/MM molecular dynamics simulations. In

the water bulk this elusive species can be decomposed into three spatially non-

overlapping parts. First and foremost, about 40 % of the hydrated electron is

localized in a cavity-like structure surrounded by water molecules with OH bonds

polarized towards the center of this cavity. Albeit being the largest contribution

overall, more than half of the electron spreads elsewhere. Namely, part of it

overlaps with water molecules (25 %) and the rest is found between the water

molecules (35 %). Due to their comparable magnitudes all these contributions are

equally important and can only be faithfully recovered using ab initio methods

that treat not only the excess electron, but also the surrounding water molecules

quantum mechanically. The picture of the hydrated electron we obtained can

be seen as a happy medium between the traditional view of a hydrated elec-

tron mainly solvated in a cavity [33] and a recent model of a largely delocalized

hydrated electron [38].

Upon moving the electron to the water surface only little change is observed

in comparison to bulk solvation. The hydrated electron keeps its first solvent

shell and thus contributions from parts of the electron in cavity, on water, and in

interstitial space stay on average similar to those for bulk solvation. Only about

10 % of the electron leaks beyond the water/vapor interface. This similarity in

solvation structures leads to comparable vertical detachment energies for bulk-

and surface-hydrated electron. The VDEs show no correlation to the position of

the hydrated electron with respect to the interface. Thus it is to be expected

that preferences towards solvation either in bulk water or at the water surface

are minimal. Initial investigations indeed show that the difference in hydration

free energies between bulk- and surface-solvation is about 0 kcal/mol. We are

currently in the process of extending these calculations. Overall, these findings

do not support the existence of a stable, weakly hydrated excess electron at the

surface with low binding energies, that was suggested in ref. 28.

Monitoring dynamics after the attachment of an excess electron to neat water

allowed us to model processes following photoionization for the first time in bulk

solution using ab initio methods. The electron attachment is followed by a fast

localization of the spin density to a cavity within 1-2 ps and hence the formation

of the hydrated electron. Due to reasons of computational expense, modeling

the process in the regime of our experimental colleagues (i.e., THz absorption

and several-nm-sized excess electrons) is not possible. Nevertheless, employing

an analogy to a particle in a box allows for extrapolations over a wide frequency

range of the absorption spectrum and provides reasonable estimates for the size

of the excess electron during the localization process. These extrapolations yield

an estimate for rg of about 40 Å for an excess electron absorbing at 1.5 THz.
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Validity of the present conclusions on a hydrated electron in equilibrium and

its dynamics after vertical attachment to water is supported by the fact that

the simulations reproduce several experimental observables well. Quantities like

vertical detachment energy, radius of gyration, and optical absorption spectrum

of the hydrated electron are all in accord with experimental data. Finite con-

centration corrections to the VDE have been introduced. As it turns out, these

corrections are minimal for the simulation cell sizes employed. The radii of gyra-

tion in our QM/MM simulations tend to slightly larger values compared to the

experiment. Our latest results concerning benchmarking of the self-interaction

correction indicate that some residual, albeit small, size and methodological ef-

fects are present in both VDE and radius of gyration. The new parameterizations

suggest a slightly smaller and more strongly bound excess electron, which is in

even better correspondence to the experiment.

The calculated optical absorption spectrum is in quantitative agreement with

the experimental one. Extensive benchmarking was carried out to obtain the

former and the good agreement can only be achieved with tuned, range-separated

hybrid density functionals. This adjustment of the range-separation parameter

µ to comply with the IP theorem in DFT is of paramount importance. In our

large systems, the optimal value of µ is only about half of its default value. The

tuning procedure has proven to be a reliable benchmark for our large systems,

for which comparison to calculations with highly correlated quantum chemistry

methods are hardly possible due to their prohibitive computational expense.

Similar re-parametrization of the self-interaction correction [68] with respect

to the IP theorem, while enforcing the complete removal of the spurious electro-

static self-energy of the spin density, looks also very promising. Further AIMD

simulations are necessary to investigate the long-term stability of corresponding

simulations of an excess electron in water. Although in a different sense, long-

term stability is also an issue in QM/MM simulations. In these simulations it

can happen that the excess electron diffuses to the boundary between QM and

MM regions on a time-scale of tens of picoseconds which then leads to artifacts.

However, such long simulation times are needed, e.g., to determine the differ-

ence in free energy of hydration of an excess electron in bulk water and at the

water/vapor interface by direct molecular dynamics simulations.

The new parametrization of the SIC could be useful to investigate reactions of

a bulk-hydrated electron with various quenchers. Two interesting cases are reac-

tions of a hydrated electron with nitrous oxide (N2O) and hydroxyl radical (.OH).

Modeling the reaction of an excess electron with N2O was already attempted in

this work. The reaction cannot be described fully in small cluster systems, but

only the cleavage of ON-bond after electron attachment to N2O. Hydration of
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both N2O and the excess electron must be accounted for simultaneously. N2O is

not a strongly hydrated species and larger systems are thus required to separate

and solvate both nitrous oxide and hydrated electron. The reaction of the latter

with .OH is more complicated from a methodological point of view as it proceeds

from a singlet bi-radical (.OH and eaq
–) to a closed-shell species (OH–). Currently,

the SIC employed throughout this work is not suitable for this case. Neverthe-

less, a self-interaction correction is needed for proper description of both .OH [68]

and eaq
–. One possiblity would be to use a scaled, orbital-dependent SIC (i.e., a

combination of refs. 66 and 68) that only acts on the two highest-lying electrons

or, the much more costly alternative, hybrid density functionals. Further inves-

tigations on the reactivity of the hydrated electron are needed and can help to

stimulate methodological development as these problems go beyond capabilities

of affordable, present-day density functional theory.

In summary, the results in this thesis are a showcase example of, first, the

necessity of using ab initio methods in a particular context, here the hydrated

electron, and second, usefulness of these methods in providing detailed molecular

information that is not easily accessible from experiment or more approximate

computational methods.



Appendix A

Comparison of excited state spin

density after vertical electron

attachment

Two figures are included in this appendix. Both, Fig. A.1 and A.2, show excited-

state spin densities after vertical attachment of an excess electron to neat water.

The origin of the radial profiles is set to the center of the respective ground-

state spin density. The time-dependent density functional theory calculations

were performed with three different density functionals, BLYP, B3LYP and LRC-

BLYP. Figure A.1 shows the excited state spin density 0 fs after attachment of

the excess electron and Fig. A.2 after 500 fs. The comparison illustrates that

the different density functionals provide comparable excited state spin densities

for a delocalized excess electron at 0 fs. Artificial charge transfer of the excited

state spin density beyond the QM/MM boundary is observed for both BLYP

and B3LYP density functionals as the ground state excess electron shrinks in

size after its vertical attachment to water. The excited state spin densities are

much more extended when calculated with BLYP and B3LYP than with the

LRC-BLYP density functional 500 fs and later on after vertical attachment of

an excess electron. Thus, less artifacts are to be expected for calculations with

the computationally cheaper BLYP and B3LYP density functionals immediately

after vertical excess electron attachment.
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Figure A.1: Radial profiles of the first three excited-state spin densities with
respect to the center of the ground-state spin density 0 fs after vertical excess
electron attachment (solid lines). The cumulative integrals of the radial pro-
files are shown as dashed lines. The excited state spin densities were calculated
with different density functionals, BLYP (top), B3LYP (middle) and LRC-BLYP
(bottom).
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Figure A.2: Radial profiles of the first three excited-state spin densities with
respect to the center of the ground-state spin density 500 fs after vertical excess
electron attachment (solid lines). The cumulative integrals of the radial pro-
files are shown as dashed lines. The excited state spin densities were calculated
with different density functionals, BLYP (top), B3LYP (middle) and LRC-BLYP
(bottom).



Appendix B

Relationship between first

excitation energy and radius of

gyration for particle in a box

Here follows the derivation of the relationship between radius of gyration rg and

the first excitation energy for a particle in a (cubic) box. For a one-dimensional

particle in a box of length L, the wavefunction ψ0 reads:

ψ0(x) =

√
2

L
sin
(πx
L

)
; (B.1)

and the density:

ρ0(x) = |ψ0(x)|2 =
2

L
sin2

(πx
L

)
. (B.2)

The first moment µ1 of this distribution is half of the box length L:

µ1 =

∫ L

0

2

L
x sin2

(πx
L

)
dx (B.3)

=
L

2
. (B.4)

The second moment of the distribution, µ2, is related to the radius of gyration

(rg):

µ2 = r2
g (B.5)
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and is for the one-dimensional particle in a box:

µ2 =

∫ L

0

2

L
sin2(

(πx
L

)
)(x− µ1)2dx (B.6)

µ2 =
(π2 − 6)

12π2
L2 = r2

g. (B.7)

The energies for a one-dimensional particle of mass m in a box are:

E(n) =
hn2

8mL2
. (B.8)

Here, n is the quantum number. The excitation energy for a one-dimensional

particle in a box from the ground to the first excited state is:

∆E (1→ 2) =
3h2

8mL2
(B.9)

and can be used to eliminate the box length L in eq. B.7 to give:

r2
g =

(π2 − 6) ~2

8m∆E
. (B.10)

With a Hartree Eh = ~2
mea0

and a0 being the Bohr radius this gives:

∆E =
(π2 − 6)Eh

8 (rg/a0)2 . (B.11)

Now, this was all for a particle in a 1D box. For a particle in a cubic 3D box

eq B.7 changes to:

r2
g =

3 (π2 − 6)

12π2
L2 (B.12)

with the 3 lowest excitation energies being degenerate but still equal to B.9 and

thus the relation B.10 changes to:

∆E =
3 (π2 − 6)Eh

8 (rg/a0)2 . (B.13)
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Figure C.1: Several quantities for H3O+(H2O)3e– cluster (see sec. 3.1) calculated
with different parameter combinations in self-interaction correction from ref. 68.
Top panel shows exchange-correlation (XC) energy of the spin density, middle
panel the electrostatic (ES) self-energy of the spin density and bottom panel the
sum of both quantities. Parameter combinations that lead to compliance with
IP theorem in DFT are plotted as black dots in each plot. The empty region
is due to non-convergent self-consistent field cycle within 50 iterations (using
diagonalization of Fock matrix, started from optimized wavefunction obtained
with orbital-transformation in preparatory calculations).
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Figure C.2: Several quantities for H3O+(H2O)3e– cluster (see sec. 3.1) calculated
with different parameter combinations in self-interaction correction from ref. 67.
Top panel shows absolute values of sum of V DE and εSOMO, middle panel the
V DE itself, and bottom panel the rg of the spin density. Parameter combinations
that lead to compliance with IP theorem in DFT are plotted as black dots in
each plot. The empty region is due to non-convergent self-consistent field cycle
within 50 iterations (using diagonalization of Fock matrix, started from optimized
wavefunction obtained with orbital-transformation in preparatory calculations).
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