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Chapter 1

Preliminaries

1.1 Fibre bundles

We shall define basic notions we will need later.

Definition 1.1.1. C'" fibre bundle consists of 3 C'" manifolds E ,F,~;J such that:
a) There exists a C'" submersion Jr : E ---7 M
b) There exists an open covering Ua of M such that Va 3 a C'" map 1/J : Jr -I (Ua) ---7 F
such that Jr-I (Ua) is diffeomorphic to Ua X F via (Jr, 1/J ).
E is called total space, F standard fibre and M the base manifold. (Jr , 1/J ) is called bundle
chart on E over c; c M.

Definition 1.1.2. A morphism F of fibre innulles Jr : E ---7 M and Jr' : E' ---7 M' over
f : M ---7 M' is a C'" map E ---7 E' such that Jr' o F == f o Jr

Definition 1.1.3. Let Jr : E ---7 M be a fibre bundle. A vector Xtangerlt to E is called
vertical if and only if Jr*X == o.

Definition 1.1.4. Let p : P ---7 M be a C'" fibre bundle, which standard fibre is a Lie
group G. Then P is called a principal fibre bundle over M with group G, if there is given
a C'" right action of G on P such that for every bundle chart (p, 1/J) on P over U c M

1/J(b.g) == 1/J(b)g·, b E p-I(U) , 9 E G

If P is a principal bundle over M with group G, then M == P / G and p is the canonical
projection.

Definition 1.1.5. A morphism of principal fibre bundles p : P ~ NI with group G and
p' : P' ---7 M' with group G' according to a homomorphism f : G ~ G' is a morphism of
fibre bundles F : P ~ P' which commutes with the principal right action af G and G',
i.e. such that

F(bg) == F(b)f(g)
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Definition 1.1.6. Let p : P ---t M b a principal bundl ov r 1 with gro up G and let
F be a C'" manifold endowed with a 1 ft action of G. D -fine t he bundle P <c F as
(P X F)~, where

(bg ~) r-:» (b,g~) t hat is ( b~) r-:» (bg g-l~)

for (b ,~) E P x F,9 E G. Denot e the equival nce class of (b ~ ) by [b ~] and d fine
Jr([b , ~]) == p(b). Then Jr : P <c F ---t NI is a fib re bundle over M with fibre F associated
to P with the given action of G on F. If F is a vector spac and t he giv II left act ion is
a representation of G, then we get a vector bundle.

Rernark 1.1.1. If F carries any other structure then C st ruc t ure, which is G-invariant ,
then every fibre of P Xc F also inherits this structure.

D efinition 1 .1 .7 . Let P be a principal bundle over NI with group G and E a fibre bundle
over M with standard fibre S associated to P. Then every lement II E P induces a
diffeomorphism u of S onto the fibre of E over p(u) defined by

u(s) == [u, s]

This we will use very often when speaking about parabolic geometries.

1.2 Connections on fibre bundles

Here we will explain basic ideas of connection theory on fibred bundles.

D efinition 1.2 .1 . Let P be a principal bundle over M with group G. Fundamental
vector field A * on P for A E 9 is the vector field (Ab) *A, where Abg == bg.

Proposit ion 1 .2 .1 . Let P be a principal bundle over M with group G. Let X be a
fundamental vector field on P corresponding to A Eg . Then (Rg ) *X is a fundamental
vector field corresponding to Ad(g-l)A for 9 E G.

Proof. Let gt == exp(tA ) be a curve in G. Then dgt/dt == A and

D

Definit ion 1.2 .2 . Let E be a fibre bundle over M. A connection on E is a C'" distri­
bution Ji on E, which is horizontal, i.e. complementary to the vertical bundle of E. A
connection on T M is usually called a connection on M.

Definit ion 1.2 .3 . Let P be a principal fibre bundle over M with group G. A principal
connection on P is a connection on P, which is right invariant in the sense that (R g ) *Hu ==
Jiu g , u E P, 9 EG.
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Definition 1.2.4. Let P be a principal fibre bundl over A1 with group G and let H b
a principal connection on P. A connection form of principal connection H i a 1-form w
on P with values in Lie a lgebra 9 of G such t hat :
a) The kernel of w is exactly H
b) w reproduces generators of fundament al vector fi Id , t hat is w(A*) == A

Lemma 1.2 .1. Let P be a principal fib re bundle ouer A1 unili group G) H a principal
connection on Pand w a connection form of H. Th en \lg E G (Rg) *w == Ad(g-l) o w .

Proof. It is an immediate consequence of t he fact t hat w is on vertical vector fields t he
inverse of fundamental vector field map. D

Rernark 1.2.1 . We will often refer to w as to connect ion on P.

D efinition 1.2 .5 . Let P be a principal fibre bundle over NI with gro up G and w a
connection form of some principal connection on P. The curvature D of t he connection
w is a 2-form on P with values in 9 given by

D(X,Y) == dw(X ,Y) + [w(X) ,w(Y) ]

Lemma 1.2 .2 . If X is a fundamental vector field corresponding to A E 9 and Y is a
horizontal vector field, then [X, Y] is horizontal.

Proof. Let gt == exp(tA) be a curve in G. Then A == dgt/dt. We have

1
[X, Y] == lim -(Y - (Rgt)*Y)

t~O t

So [X, Y] is horizontal. D

P roposition 1 .2 .2 . Let P be a principal fibre bundle ouer M with group G) w a con­
nection on Pand D its curvature. Then D is horizonial, i.e. it vanishes upon inserting
one vertical vector field .

Proof. It is sufficient to prove the proposition for constant vector fields, i.e. for vector
fields such that w(X) is constant . First let us consider that X and Y are fundamental
vector fields corresponding to A, B E (g). Then we have

D(X,Y) == X(w(Y)) - Y(w(X)) - w([X, Y]) + [w(X),w(Y)]

But w(X) and w(Y) are constant functions on P, so we have D(X, Y) == O.
Now assume that X is fundamental vector field corresponding to A E 9 and Y is constant
horizontal . Then we have

D(X ,Y) == -w([X, Y])

since w(X) and w(Y) are constant . But [X ,Y] is horizontal , so we have D(X,Y) == O. D

Definition 1. 2 .6 . Let P be a principal fibre bundle over M with group G, H a principal
connection on P. Let E == P Xc F be a fibred bundle over M associated to P . Then H
induces an associated connection on E defined by

H[u ,v] == 7r*(Hu X Os)

where 7r : P X F ~ P <c F.
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1.3 Cartan connections

Here we shall develop some basic facts about Cartan conn ctions, which will be needed
later.

Definition 1.3.1. Let G be a Lie group , H a closed subgroup of G and P a princip al
H-bundle over M, dim M == dim G / H. A Cartan connection on P i a l-form w on P
with values in Lie algebra 9 such t hat :

a \fA E f) w(A*) == A

b \fh E H (Rh)*w == Ad(h- 1) o W

c \fb E P Wb induces a linear isomorphism of TbP onto 9

Definition 1.3.2 . Let G be a Lie group , H a closed subgroup of G and P a principal H­
bundle over M, dim M == dim G / H. Let w be a Cartan connection on P. The curvature
n of Cartan connection w is a 2-form on P with values in 9 given by

D(X,Y) == dw(X,Y) + [w(X) ,w(Y )]

Proposit ion 1.3 .1 . Let G, H , Pand M be as above. Let w be a Cartan connection on
Pand n its curvature. Then n is horizontal in the sense that it vanishes upon inserting
one vertical vector field.

Proof. It suffices to prove it for constant vector fields , i.e. vector fields such that w(X)
is constant on P. So assume that X is fundamental vector field corresponding to A E f)
and Y == w-1(B), B E 9 \ f). We have

n(X,Y) == -w([X,Y]) + [w(X) ,w(Y)]

Let ht == exp(tX) be a curve in H. Then dht / dt == X and

1 1
[X, Y] == lim -(Y - (Rht)*Y) == lim -(w-1A - w- 1(Ad(h;:1)B)) ==

t-+Q t t-+Q t

lim !w-1(A - Ad(h;l)B) = w-1([A, Bl)
t-+Q t

So we see that n(X, Y) == O.
Since the Cartan connection trivializes T P, any differential form on P is determined by
its values on the constant vector fields w-1(X). D

Definit ion 1. 3 .3 . Let P ~ M ,w be a Cartan geometry and n its curvature form o Then
the curvature function K : P ~ A2g* ® 9 is defined by

or, equivalent ly
K(U)(X, Y) == [X ,Y] - w([w-1(X) ,W-1(y)](u)).

Since we know that n is horizontal, we can view K as a function on P with values in
A2 (g/ f) )* 0 g.
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1.4 Linear frame bundle and linear connections

Here we shall define t he linear frame bundle of A1 and d v lop om th ory about linear
connections on A1.

Definition 1.4.1. A linear fra m e bun dl e LA1 of A1 i a principal bundl over 1 with
group GL(n; R) , whose fibre over x E lVI consists of all bas of Ti M,

A connection on LM induces a connection on ev ry t nsor bund le on A1. T hese connec­
tions are usually referred to as linear cotmecti ons.

Definition 1.4.2 . Let w be a connection Oll L lvI and X a vector field on M . The
horizontal lift x» of X is a unique hori zontal vector field Oll L Al such that Jr.x- == X .

Definition 1.4.3 . Let E be a vector bundle on M associated t o L AJ , sp a local cross
section of E, x, a curve in the domain U of definition of .p, X == Xt( O) E TxolVI and
f == U-lep a function on p-lU. Then the covariant derivative \7Xt( O)ep == \7xep is defined
by

Definit ion 1.4.4. Let E be as above, .p a cross section of E defined on M and X a
vector field on M . Then the covariant derivative \7x ep of .p in the direction of (ar with
respect to) X is defined by

Proposition 1.4.1 . Let X, Y E TxM and let sp and ip be cross sections of E defined in

a neighbourhood of x. Then

3. \7)..xep == A.\7Xep, where A E R

4. \7xAep == A(X)\7xep+ (XA).ep, where A is an R-valuedjunction defined on a n eigh­

bourhood of x .

Proo]. It follows directly from the definition.

Similar proposition holds for covariant derivatives with respect to vector fields.

D

Proposition 1.4.2. Let 3M be the algebra oj tensor fi elds on M. Then th e covariant

difJerentiation has the following properties:

1. \7x : J M ~ 3M is a type-preserving derivation

2. \7x commutes with every contraction

3. \7x f == X f for every function f on M
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4· V x +y == V x + VY'

5. V f x K == f· V x J( for every fun ction f on Al and I( E J Al

Proof. See [8] D

Definition 1.4.5 . The canonical form eof LAl is a R n-vaIlled l-form, which is defined
by

Definition 1.4.6 . The torsion of linear connection w is a 2-form 8 on L M with values
in R" defined by

8(X,Y) == de(X ,Y) + w(X) . e(y) - w(Y) . e(X)

Definit ion 1.4. 7. Let w be a linear connection on M with eurvature rl and torsion 8.
(a) The torsion tensor field or torsion is a tensor fieId defined on M by

for X, Y E TxM and u any point of LM with 1f(u) == x
(b)The curvature tensor field or curvature is a tensor fieId defined on M by

R(X, Y)Z == url(X, Y)(u- 1Z)

Proposit ion 1.4 .3 . In terms of covariant differentiation the torsion T and the curvature
R can be expressed as follows:

T(X, Y) == Vxy - V yX - [X, Y]

and
R(X, Y)Z == [Vx ,Vy]Z - V [X,y]Z

Proof. See [8] D

Let U be a coordinate neighbourhood in M with a loeal coordinate system X l , ... , x" ,
We denote by X, the vector field 0/oxi

, i == 1, ... ,n, defined in U. Every linear frame
at a point x E U can be uniqueIy expressed by

i i

where det(Xj) -=I O. We take (Xi, xD as a loeal eoordinate system in Jr-lU C L M. Let

Yf be the inverse matrix of Xk·
We can express the eanonical form e in terms of the loeal coordinate system int rodueed
above. Let el, ... ,en be the natural basis of R" and set
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Proposition 1.4.4. In terms oj the local coorilinaie system (Xi X l) ) the canonical Jorm
e == L:i eiei can be expressed as Jollows:

ei = L~id. ,j

J

Proo]. See [8] D

Let w be a connection form of a linear conn etion on 1\1 . With r sp et to t he basis
(EI) of g[(n; R), we write

w == '"' wi.E!
~ J ~

i ,j

Definition 1.4.8. Let (J be the cross section of L M over U, whieh assigns to each x E U
the linear frame ((XI) x, ... , (Xn) x). We set

*Wu == (J W

Then Wu is a gr(n; R)-valued 1-form on U. We define n 3 funetions r~k ' i, j, k == 1, ... ,n
on U by

Wu = L(r;kdxj)E:
i,j,k

The functions r~k are called components or Christoffel )s symbols of linear conneetion w
with respect to the loeal coordinate system X l , . . . , x" ,

Proposition 1.4.5 . Let w be a linear connection on M. Let r;k and r;kbe the cotnpo­
nents oj w with respect to local coordinate systems X l , . .. . ti" and Xl , ... . ii" respectively.
In the intersection oj the two coordinate neiqhbourhoods, we have

- ex . GXj oxk 8ia 82 Xi Gin
r f3'Y = L fjk 8xf3 8x'Y 8xi + L 8xf38x'Y 8xi

i, j, k i

Proo]. See [8] D

Proposition 1.4.6 . Let X l , . .. .tc" be a .local coordinate system in M with a linear con­
nection w. Set X, == 8/8xi , i == 1, .. . ,n. Then the components r~k oj w with respect to
ln' bX , ... , X are gzven y

\7 X jXi = L r}iX k

k

Proo]. See [8] D

Proposition 1.4.7. Assume that a mapping r(TM) x f(TM) ~ r(TM) denoted by
(X ,Y) ~ \7x Y) is given so as to satisJy the conditions on covariant derivativ e. Then
there is a unique linear connection w oj M such that \7x Y is the covariant derivative oj
Y in the direction oj X with respect to w.
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Proof. See [8] o

Proposition 1.4.8. Assume that, for each local coordinate system X l, . .. ,xn
, there is

given a set of fun ctions r~ k ' i , j , k =: 1, . . . , n, in such a way that they satisfy the trans­
formation rule for Christoffel's sym bols. Then there exists a unique linear connection w
whose components with respect to X l , ... . it" are precisely the given functions r~k ' More-

ouer, the connection [orm w == l: . .w)i.E! is given in terms of the local coordinate system
2, ) 2

(Xi ,X~) by
i ~ \ / i( dx k +~ r: Xld lnl,)wj =: L L k j L lrri j X

k l,TIn

Proof. See [8]
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Chapter 2

Definitions of projective structures

2.1 Classical definition

In this seetion we will give the elassieal definition of the projeetive strueture.

Definition 2.1.1. Let \7 be a linear eonneetion on a C '" manifold lvI , x (t ) a eurve in
M. Then x(t) is ealled a geodesie of the linear eonneetion \7 if and only if

for all t in the domain of definition of x (t) .

Remark 2.1.1. In terms of Christoffel's symbols this definition reads as

This definition elearly depends on the parametrization of the eurve in question. If
x (t) is one parametrization of eurve c sueh that x (t) is a geodesie of \7, then all other
sueh 'geodesie' parametrizations of care given by t' == at+ b, where a and bare arbitrary
real numbers, see [8].

Definition 2.1.2. Let M be a C?' manifold. A projeciiue strueture on M is a elass of
torsion-free linear eonneetions on M, whieh have the same geodesies up to parametriza­
tion.

Proposition 2.1.1. Two torsion-free eonneetions on C '" manifold M have same geo­
desics up to parametrization if and only if there exists a one-form ex on M sueh that

\7xY == V xY + a(X)Y + a(Y)X

Proof. See [11]

12
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R emark 2.1.2. In t erms of Christoffe l's yrnbo l this r ad a

Here we would like to show how t o comput t h covariant d rivative of a tensor in
local coordinates , because we will use it lat er . Th conv ntion i t hat contravariant
indices are the upper indices and covariant indices ar t h lower indic s. Here, Ta for
instance means T (dxa) and Ta means T (fJ / fJxa). Similarly, \7a d not \7a/ éJx

a
•

First, consider a contravariant tensor T al...an :

n

\7 T al.. .an == fJ T al... an. +~ r a i Tal ... c ... a n
a a ~ ac

i=l

Next, consider a covariant tensor Tal".an :

ti

\7aT al ...an = OaTa l ...an - L r~a;Ta l ...c...a-,

i=l

Now we would like to see how this covariant derivative behaves under t he proj ective
change of connection. Here we are only interested in t erms, which form t he difference
between the old and the new covariant derivative, so all other t erms we will wri te as
\7.T': or \7aT. ... 80 first for the contravariant tensor T al...an:

ti

V aTal .. .an = \7aTa1...an + nO'.a Ta1 ...an + L 5~; O'.cTal ... c...an

i=l

Here the terms b~a' in the expression for r~ . form the terms baia T al ... c .. .an and the terms
~ J ~J a c

bjai the others.
For covariant tensor Tal".an :

ti

».i:...a-, = \7aT al ...an - nO'.aTal ...an - L O'.a;Ta l ...a ...an

i=l

Here the terms 6f aj form the terms a aiTal ...a...an and t he terms b.7ai form the others.

2.2 Projective structure as second order structure

In this section we will see how we can view projective structure as second order structure.
But first we shall see how we can realize projective structure on real projective space.

13



2.2.1 Projective space and projective groups

Let lVI be a real proj eetive space of dim nsion 17, wit h 110n10ge11 Oll coordinate system
~o , ~l , ... , ~n. Here we will view M as space of lin s t hrough rigin in R n+l and we will
consider the group SL(n + 1; R ) acting on lvI by proj etive t ran for mation ind ic d by
its action on R n+l. Let Xl , ... , x" be the inhomog n Ol l eoordinate sy t m on M defined
by X i == ~i/~O, i == 1, ... . ti. If (53)a,tJ=0 ,... ,n E S L(n + 1; R ) t h n t h ind 1 d projeetive
transformation is given, in terms of the inhomog neous coordinate syst m X l , .. . , x ; by
the following linear fraetional transformation:

yi = (sb + L s~ xj)/( s~ + L sJx
j
), i = 1, ... ,n

. .
J J

If 58 i= O, then we set

i i o i i o o oa == 5 o/ sO, aj == 5 j / 5 O, a, == 5 i / 5 0 , i , j == 1, . .. ti

The preeeding linear fractional transformation is then given by

(2.1)

J J

If ti == 2k for some k E N, then we shall take (ai;a~; aj) , i ,j == 1, ... ,n as a loeal
eoordinate system in the neighbourhood of identity of SL(n + 1; R) defined by 58# O,
else we must restriet ourselves to 58 > O.

Proposition 2.2. 1. Letwi,wj,wj,i,j == 1, ... ,n be the left invariant l-jorms on SL(n+
1; R) which coincide with do", da~, da.ja! the identity. Then the equations oj Maurer­
Cartan oj SL(n + 1; R) are given by

dwt
- L w~ 1\ wk

k

" . k' . " kdwj - L w1/\ wj - wt
/\ Wj + bj L wk /\ w

k k

dWj = - L Wk 1\ wJ
k

Proof. If we set (W$) == 5-
1ds, where s == (s~), then we have

(2.2)

(2.3)

(2.4)

i - i si - oW· == W· - u ,WoJ J J '

Our proposition now follows from the following formula:

ti

(dw$) = d(S-lds) = -s-1 .ds .s- 11\ ds = -s-lds 1\ s-lds = -(L w; 1\ wJ)
, =0

14
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The dual of t his propositi on may be fo rrnulat d a follow . L t m == H" and m* its
dual; an element of m will be a column vector and an 1 m 11 of m* will b row v ctor.
Let gr(n; R) be t he space of all n x n matric . Th 11 th Li - alg bra 5[ (n + 1· R) of
SL(n + 1; R)is the direct sum:

5[(n + 1; R) == m + g[(TL; R) + rn",

with the following bracket op eration:If u ,v E m, 1l * u' E m* and U V E g[ (n ; R), t hen
[u ,v] == O, [u* ,v*] == O
[U,u] == Uu , [u* ,U] == u*U
[U,V] == UV - VU
[u ,u*] == uu* + u*ul n

where In denotes the identity matrix of degree n . There is an isomorphism between t his
representation of sr(n + 1; R)and the standard one:

(
- trA Y) ( O Y)

X A f-7 X A + IntrA
(2.5)

Let o be the point of the projective spaee with homogeneous coordinates (1 ,O, ... , O) or
inhomogeneous coordinates (O , ... , O). Let H be the isotropy subgroup of SL (n + 1; R)
at o so that M == SL(n + 1; R)/H == G/ H, when n is even and let H be t he isotropy
subgroup of SL(n + 1; R) n ESL(n + 1; R) at o so that M == (SL(n + 1; R) n ESL(n +
1; R)/H == G/ H), when n is odd and E is a diagonal matrix with ±1 entries and number
of -1 is odd. In terms of the loeal coordinate system (ai

; a~ ; aj ) of SL(n + 1; R) which
is valid in a neighbourhood eontaining H (n is even), the subgroup H is defined by
ai == O. i == 1, ... , ti. In the case when n is odd , our 'coordinate system' (if we want
the 'coordinate neighbourhood' to contain H, so we can't restriet to 58> O) is a 2-fold
eovering (because In and -In have same 'coordinates' in G) , but H is still given by
ai == o. The linear fractional transformation induced by an element of H is therefore
given by an equation of the form:

yi = (2: a~ xj)/(1 + 2: aj x
j) = L a~ xj - L(a~ak + alaj )x

jxk/2 + ... (2.6)
j j j j,k

2.2.2 Jets and frarnes of higher order contact

Here we shall construct bundles of frames of higher order contact, especially the bundle
p 2(M) and its canonical formo

Definition 2.2.1. Let M be a manifold of dimension ti. Let U and V be neighbourhoods
of the origin O in R", Two mappings f : U ---* M and 9 : V -+ M give rise to the same
r-jet at O if they have the same partial derivatives up to order r at o. The r-jet given
by f is denoted by j~ (f) ·

Definition 2.2.2. If f is a diffeomorphism of a neighbourhood of Oonto an open subset
of M, t hen the r -jet j6(f) at O is called an r-frame at x == f (O).
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Let C' (n) be t he set of r -frames jó (g) at O E R"; wher 9 i a diffeomorphism from a
neighbourhood of Oin R" ont o a n ighbourhood of Oin R", Th n G"(n) i a group with
multiplication defined by t he composit ion of j t :

j ; (g) .j; (g' ) == jb" (g o g') .

Definition 2.2.3. The r-frame bundle Pl'(lvI) of lvI is a set of r -fram s of lVI with
natural projection Jr, Jr( j l'O(f)) == f(O ) endowed with right action of Cl'(n) defin d by

j;(f)·j~(g) == j;(f o g), for j~ ( f ) E Pl'( 1\/f) and j; (g ) E Gl'(n)

We can easily see that Pl'( M) is a principal bundle ov r NI with group Cl'(n) . As a
special case, we have the so-called bundle of linear frames pl (1\1/) with structure group
Gl(n) == GL(n; R).
From now on we shall be mainly interested in P2(M) and Pl( M ). Let A (n; R) be t he
affine group acting on R", Considering A(n; R) as a principal fibre bundle over R" ==

A(n; R) / GL(n; R) with structure group GL(n;R) , we have a natural bundle isomorphism
between A(n; R) and pl(Rn) covering the identity of R", Under this isomorphism, the
identitye of A(n; R) corresponds to jJ(id), where id denotes the identity transformation
of R", We shall therefore denote j6(id) by e. The t angent space of p l(Rn) at e will be
identified with that of A(n; R)at e , that is, with the Lie algebra

a(n; R) == R" + g((n; R) of A(n; R)

. We shall now define a l-form on P2(M) with values in a(n; R). First , we observe that
j5(f) ----+ j6(f) defines a homomorphism of the bundle P2( M) onto the bundle P I(M).
Let X be a vector tangent to p2(M) at j5(f). Denote by X' the image of X under the
homomorphism p2(M) ----+ Pl(M); it is a vector t angent to Pl(M) at j6(f). Since f
is a diffeomorphism of a neighbourhood of O E R" onto a neighbourhood of f(O) E M,
it induces a diffeomorphism of neighbourhood of e E pl(Rn) onto a neighbourhood of
j6(f) E Pl(M) given by j6(9) ----+ j6(f o g). The latter induces an isomorphism of the
tangent space a(n; R) of pl (Rn) at e onto the tangent space of pl (M) at jJ (f); this
isomorphism will be denoted by f.

Definition 2.2.4. The canonical form (). on p2(M) is defined by

Since J depends only on j5(f), 8(X)is well defined. T he l-form () takes it s values in
a(n; R).
Let j5(9) E G2(n) and jJ(f) E pl(Rn). The mapping of a neighbourhood of e E pl (Rn)
onto a neighbourhood of e E pl(Rn) defined by

)6 (f) ----+ j6 (g o f o g- l)

induces a linear isomorphism of the tangent space a(n; R)of p l (Rn) at e onto it self. This
linear isomorphism depends only on j3(g) and will be denoted by ad(j6(g)).
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Proposition 2.2.2. Let e be the canonical Jorm oj p2(l\1) . Th n

(2.7)

where A' E g[(n; R) is the imag e oj A under the homomorphism

and
(2.8)

Proo]. 2.7 Let j5(9t) be a curve in G2 (n ) such t hat j5(90) == . Then jJ(gt) is a curve in
Gl (n) such that jJ (go) == e. Then

e(d/dt(jg(J o gt))) == f -l(d/dt(jJ(J o gt))) == d/dt (j 6(gt)) == A'

2.8 Let in addition 9 E G2 (n ) .T hen

((R;)(J)(d/dt(j5(J o gt))) == e(d/dt(j5(J o gt o g))) ==
== J -l(jJ(f o 9 o g-l o gt o g)) == (ad(g-l) o (J)(d/dt(j5(f o gt)))

D

Proposition 2.2. 3 . Let M and M' be maniJolds oj the same dim ension n and let e
and (J' be the canonical forms on P2(M) and p 2(M ' ) respectively. Let f : M -t M'
be a diffeomorphism and denote by the same letier f the induced bundle isomorphism
P2(M) -t P2(M') . Then

f *(e)' == e

Conuerselu, iJ F : p2(M) -t p2(M') is a bundle isomorphism such that F*((JI) == (J) then
F is induced by a diffeomorphism f oj the base maniJolds.

Proof. See [7] D

We shall now express the canonical form of p2 (M) in terms of the local coordinate
system of P2(M) which arises in a natural way from a local coordinate system of M.
For this purpose we may restrict ourselves to the case M == R", Let el, ... ,en be the
natural basis for R" and (Xl, ' , , ,xn)the natural coordinatc system in H", Each 2-frame
u in R" has a unique polynomial representation u == j5(1') of the form

f( x) = 2:(ui + 2: ujx
j + (2: u~kxjxk)/2) ei

i j j ,k

where X == L::ix'e, and U~k == u1j · We take (ui
; u~; U~k) as the natural coordinate system

in p2(Rn), Restricting (u~; U~k)to G2 (n ) we obtain the natural coordinate system in
G2(n), which will be denoted by (s~; S~k)' The action of G2(n ) on p2(Rn)is t hen given
by

(ui; u~; U;k)(S~; S~k) = (ui
; 2: u~sj; 2: u~Sjk + 2: u~rsJsU

p p a.r
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In particular, the multiplication in C2 (n,) is giv 11 by

(s~; S~k ) ( S~ ; S~k ) = (L -~s~ ; L -~ ~k + L -~r J ~)
p P q .r

Similarly, we can introduce a coordinate system (ui ; 'ui.)in pl(Rn) and a coordinat sys­
tem (u;) in Cl (n) so that the homomorphisms p2(R1~) ---+ pl (Rn) and C2(n) ---+ Cl (n)
are given by (ui. u:.: u: ) ~ (ui. ui.) and (Si.: Si. ) ~ (Si.) respectiv ly L t E ·· E1 the basis, J' jk: , J J ' j k: J • '~ , 'L

for a(n; R) defined by

We set

i i, j

Letj5(f) == (ui;U;;U;k) E P2(JvI) andjJ(9t) == (cit;Ó}+ c;t) E p2(Rn). Then

!(d/dtl t==o(j6(9t))) == d/dtlt ==o(j~(f o 9t))

Here we will use the representation of j5(f) == L:i(Ui+ L: j u;x j + (L:j ,k U;kxjxk)/2) ei and
jÓ(9t) == L:i(Cit + (Ó} + c;t)xj)eiand composition of jets will correspond to composition
of these polynomials. Because we are differentiating it by t, we shall consider only those
terms, which contain t only in the first power. To compute coefficient of Ei , we are
only interested in terms, which contain no Xi, to compute coefficient of EI, we are only
interested in terms containing X i in first power:

From the definition of the canonical form e, we obtain the following formulae:

~ i ek+ '"' i ehz:». j z:».
k h

Let (v}) be the inverse matrix of (u;). Then

Lviduk

k

L vidu; - L VkU~jv~dul
k h ,k,l

From these formulae we obtain the following important equation:

18
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Proposition 2.2 .4. Let f) == (f) i; f))) be the canonical form of P2(l\if ). Then

dei = - L e1i\ ek

k

Prooj. We know that d(du i
) == o. So we get

- L du; r; ej = L u;dej ==? - L u; e~ i\ ek = L ujdej ==?
j j j,k j

==? - L viu;eL i\ ek = L viu;dej ==? - L ei i\ ek = del
i,j,k i, j k

D

2.2. 3 Projective structures and projective connections

The subset H 2(n) of G2(n ) consists of elements (s~; S;k) with S;k == - (S;Sk + stSj )
forms a subgroup of dimension n 2 + ti . Let O be the point of the projective spaee with
homogeneous eoordinates (1 , O, ... , O) and let H be the isotropy group at Oof SL(n+ 1; R)
aeting on the projeetive spaee.

Proposit ion .2 .2 .5 . For each element a E H, let f be the linear jractional transforma­
tion of R" induced by a. Then in the case oj even ti a -----7 ]5(f) gives an isomorphism oj
H onto H 2 (n ). Morcouer, ij a E H has coordinates (ai

; a~; aj), where ai == O, with respect
to the local coordinate system in SL(n + 1; R) introduced aboue, then the corresponding
element oj H 2(n) has coordinates (a;; - (a;ak +at aj)). If n is odd, the mapping a -----7 j5 j
is a 2-jold covering of H onto H 2(n). Moreover H is isomorphic to Z2 x H 2(n). The
other statement is also true in this case, ij we consider the 'coordituite system' in G.

Prooj. The eoordinates of j5(f) are evident from the explicit expression of the linear
fractional transformation f given by equation 2.6. Now in the ease of even ti we rewrite
an element of H using the loeal eoordinate system in SL(n + 1; R):

(
det - 1(g)) gj) -----7 (1 det(gj)gj)

O gj O det(gj)gj
(2.13)

From this expression it is evident that there is an isomorphism H -----7 H 2 (n) given by
a -----7 j5 (f). If n is odd, then using the 'eoordinate system' we get the same way a homo­
morphism, whieh is a 2-fold eovering H -----7 H 2

(n ). The kernel of this homomorphism is
the subgroup -!n+l , ! n+l of SL(n + 1; R), whieh is a normal subgroup of G contained in
H. D

Definition 2.2 .5. A projective structure P on manifold M is a subbundle P of P 2(M)
with structure group H 2 (n) if n is even, and Pll P with structure group H, if n is odd.
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Definition 2.2.6. Let P be a proj ective structure on manifold M and Pl a projective
structu!e on_MI. A mapping f : l--.1 ---t 1\11 is called projective, if, prolonged to P 2(1\1),

maps P to Pl.

Re'"}:ark 2.2.1. If dim M is odd, then since H == Z 2 x H 2 (n), w can prolong f uniquely
to P. 80 the definition makes sense also in this case.

Definition 2.2 .7 . Let_ fJ _ (fJi; fJ}) be the canonical form on P 2( lvI). Civ n a projective
structure on M, let (fJi; fJ}) be the restriction of (e i

; e~) t o P. A projective connection
associated with_a projective structure P is a Cartan connection W == (wi; w};Wj) in P
such that Wi == «.
Remark 2.2.2. In the case, when dim M is odd, this also defines Wi on P by equivariancy.

Lemma 2.2. 1. Let a E H and take the corresponding j5(f). Th en

ad(j6 (f)) : a(n ; R) ----* a(n; R)

and
ad(a- 1

) : m + gr(n; R) ----* m + gr(n; R)

where the latter is the mapping sr(n + 1; R)/m* ----* sr(n + 1; R)/m* induced by

ad(a- 1
) : sr(n + 1; R) ----* sr(n + 1; R)

coincide.

Proo]. Let )5(9) == (u;; U}k) E H 2(n) and jJ(ft) == (Cit; eS} + c;t) E p1(Rn). We will use
here the polynomial representation of jets . 80 we have

i,j i,j,k,l

We see that it is exactly ad(a- 1 ) as can be easily computed by matrix conjugation. D

Proposit ion 2.2 .6 . For each projective siruciure P of a manifold MJ there is a unique
projective connection W == (Wi; w;; Wj) such that

i i k lwhere O j == ~k,Z }(jkZW 1\ W .

Proo]. See [7].

.W~

w~
J

~

o

o

(2.14)

(2.15)

(2.16)

(2 .17)

D

Definition 2.2.8. The unique projective connection described in the proposition above
is called normal projective connection.

20



2.2.4 Equivalence of the two definitions

The group GI(n) == GL(n; R) can be con ider d a th ubgroup of G2(n)consi t ing of
elements (s;; S;k) with S;k == O. Thus G1(n) C H2(n/) C G2(n) . Sine G2(n) acts on
p2(M), the subgroups GI(n) and H 2(n) act on p 2(lvf). W con id r t h associated
bundles P2(M)/GI(n) and P2(lvI) / H 2(n ) with fibr s G2(7~)/GI(n) and G2(n)/H 2(n )
respectiveIy.

Proposition 2 .2 .7. (l)The cross sections Alf -t p 2(A1) / G1(n) are in one-to-one corre­
spondence with the affine connections without torsion oj Al.
(2)The cross sections M -t P2(M)/ H 2(n) are in on e-to -on e correspondence with the
projective structures oj M.

Pro o]. Let (ui
; u;; U;k) be the local coordinate system in P2(lvI) induced from a loeal

coordinate system Xl, . . . .řx" in M. We introduee a local eoordinate syst m Z i ; Z; k in
p2(M)/GI(n) in sueh a way that the natural mapping p 2( lvI) ----t p 2(M) / G1(n ) is given
by the equations

Then a eross seetion r : M ----t P2(M)/G1(n) is given, locally, by a set of functions

i r: ( I n)Zjk == - jk X , . . . , X ,

Now eonsider the action of the group G2(n) on the fibre G2(n)/GI(n):

where (s~; S;k) E G2(n) and (s;) is the inverse matrix of ( s~). So we have

. oji oxP8xq 82 Xi 8xP ox q

f;k = L ox r~r Oj) oxk - L oxpoxqox j oxk
Pp ,q,T p,q

We must realize that

what we ean obtain by differentiating equation

8x
i

'" ox
i

8xP

8xk - Z:: oi;P 8xk
P

80 we see that the functions r;k behave under the change of eoordinate system as
Christoffel's symbols must do. This proves (1).
Since the reductions of strueture group to H 2(n) and the eross seetions M ----t p2(M) / H2 (n)
are in one- to-one correspondenee , (2) is evident. ([7] ) D
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Every affine connection wit hout torsion r : ~1 ~ p 2 ( 1 )/ G I (n) compos d with
the natural mapping P2(NI) /G I (n) ~ P2(~1) /H2(n) giv a proj ctiv tructur 1 ~
J!.2( M)/ H 2(n). Even in the case, when dim ~1 is odd knowing P i quival n to knowing
P.

Definition 2.2.9. An affine connection r without torsion i aid to belong to a projective
structure P, if r induces P in t he manner described abov .

Definition 2.2.10. We say that two affine connections wit hout torsion are proj ectively
related if they belong to the same proj ective structure .

Proposition 2.2.8. The above definition oj projectively related connections is equivalent
to the classical one.

Prooj. An element (a~; -(a~ak + ataj )) of H 2(n) induces t he t ransformation of P2(M)
given by

(u
i

; u~; U~k) ~ (u
i; L u~a~; - L u~(a~ak + a~aj ) + L U~raja%)

p p q.r

It induces a transformation of P2(M)/GI (n) given by

(zi ; z;k) -7 (zi; - (6~ak + <51CL j ) )

where ai == ~p bfap , (b~) == (a~) -l. Our assertion is now clear. D

Let T be the affine connection without torsion. It corresponds, in a natural manner,
to a reduction ofthe structure group to GI(n). In other words, it induces an isomorphism
of PI(M) into P2(M) given by

(2.18)

Thus, an affine connection r without torsion belongs to a projective structure P if and
only if the corresponding subbundle of p 2(M ) with struct ure group GI(n) is contained
in P. If dim M is odd, then we extend , : PI(M) ~ P2(M) to řt : PI(M) II PI(M) ~
P2( lvI) II P2(M).

Proposition 2.2.9. Let r be an affine connection without torsion ond -» : PI(M) ~
P2(M ) the corresponding isomorphism. Let (Bi; Bj) be the canonical jorm oj P2(M).
Then -r« is the canonical jorm oj pl(M) and ,*B; is the connection jorm oj the affine
connection r.
Prooj. Consider a curve s(t) == (ui + ci t ;u~ + c~ t) in PI(M). Then

, (s(t )) == ( ui + cit ;u~ + c~ t ; - L r~q(u~ + st)(uk + ckt))
p,q
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80

(, *ei)ds(t)jdt == ei ('L CiO/OUi + 2; c~8/8uj - 'L r~q( ~Uk + uj k)8/8Ujk )

1, 1"J 'l-,J, k, p, q

and similarly

(,*e~)ds(t)jdt == e~ ('L cio/8ui + 2; c~8/8uj - .'L r~q(SUk + UjCk)8/8Uj k )

1, 1"J 1" J, k, p, q

80 we see that

what is exactly what we wanted to prove.
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Chapter 3

Projective structures as parabolic
geometries

3.1 Parabolic geometries

We start with a Ikl-graded semisimple Lie algebras.

Definition 3.1.1. A Ikl-graded semisimple Lie algebra 9 is a Lie algebra 9 with decom­
position

9 == 9-k EB ... EB g-l EB go EB gl EB ... EB 9k

such that [9i ' 9j] C gi+j, where we set 9i == O for li I > k.

This gradation induces a filtration on 9: 9i == 9i EB·· ·EB9k· Every filtration component
gi is a subalgebra of 9 by grading property. We denote gO by pand gl by P+. Prom
the grading property it is evident that p., is an ideal of p. We also denote by g_ the

subalgebra g-k E9 ... EB 9-1·
Let now C be any Lie group with Lie algebra g. We define

Co == {g E C , Ad(g)gi C 9i}

and
P == {g E C, Ad(g)gi Cgi}

Now we are ready to define parabolic geometry of type (C,P):

Definition 3.1.2. Let C be a semisimple Lie group with Ikl-graded Lie algebra g, Co
and P the groups given by the Ikl-grading. A parabolic geometry of type (C,P) on
manifold M is a Cartan geometry of type (C, P) on M, i.e. a principal P-bundle Q on
M endowed with a Cartan connection with values in g.

We know that g_ and p., are subalgebras of g. By invariance of the Killing form of
g, they are dual as go-modules and if we consider g- as g/p, then also as p-modules .
Now we can identify Q Xp g/p and TM using the Cartan connection on Q. We .define a
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map 9 x g/p ~ T M by (u ,X ) ~ Tup.w- l (X) wh r p: 9 ~ 1 is a bundl pro j ction .
By equivariancy of w t his factors to a bundl map 9 x p g/p ~ T 1, whi h re ricts to
an isomorphism on each fibre and t hus a vect or bundl i omorphi m . We e that T 1
is associated to Cartan bundle g. Similarly, we can r aliz t h cotang nt bundle and all
tensor bundles as associated bundles.
Representing T M as associat ed t o t he Cartan bundle w g t an induc d fi ltration on
it: T iM rv 9 xpgi/p. This induces an algebraic brack t 0 11 f (T l\1 ). Similarly, we can
define T ig == p-lTiM == {X E T9; wX E gi}'

3.2 Regular parabolic geometries.

Now we want to define regular and normal parabolic geometries. First , we have to look
on the structure of P.

Proposition 3.2.1. Let 9 be a Ik l-graded semisimple Li e algebra, G aLie group with Lie
algebra g, Go and P the groups induced by the grading. Then P is a semidirect product
of Co and vector qroup, i. e. for every 9 E P there exists a unique go E Go and unique
Zl , ... ,Zk; Z, E gi such that

Proof. See [1] D

Let us denote the vector group from the latt er proposition by P+. Now consider the
action of P+ on 9. We can form the orbit space 90 == 9/ P+. Since P+ is a normal
subgroup of P, we can define on 90 a free right ac tion of Co simply by pulling down the
action of Go on 9. So we see that 90 is a principal Go-bundle over M. But since Co is a
subgroup of P, we can also associate T M to 90' But this induces a gradation on T M ,
which is compatible with filtration induced by P: TiM rv 90 X Co gi' Analogous to the
filtration on T9, we can define gradation on Tgo. Now the gradation on T M induces an
algebraic bracket on T M.

Proposition 3.2.2. Let (p : 9 ~ M .w) .be a parabolic geometry of type (G, P) corre­
sponding to the Ikl-grading 9 == g- kEB" ·EBgk ofthe Lie algebra 9 oJG. Let (Po: go ~ M )
be the underlying Go-principal bundle. Then for each i == -k, . . . , - 1 the Cartan con­
nection wdescends to a smooth section wf of the bundle L(T i90, g) i. For each u E go
and i == - k , ... , -1 the kernel of wf : T~9o ~ (g)i is exactly T~+lgo and each wf is
equivariant in the sens e that for 9 E Go we have (Rg) *wf == Ad(g-l) o wf.
Proof. See [1] D

Definition 3.2.1. (1) An infinitesimal fiag structure of type G , P on a smooth manifold
M is given by

(i) A filtration T M == T - k M ~ ... ~ T - 1M of the tangent bundle of M such that
t he rank of T iM equals the dimension of gi/ p for all i == - k , ... , - 1.
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(ii) A prineipal Go-bundle p : E ~ lvI .

(iii) A eolleetion 8 == (8_k , ... , 8_1) of smooth etion 8i E r( L(TiE gi)) whieh are
Go-equivariant in the sense that (Rg)* Bi == Ad(g-l) o 8i for all 9 E Go and sueh
that for each u E E and i == -k ... - 1 t h kern I of 8i(u) : T~.E ----t gi is exaet ly
T~+lE C T~E.

(2)Let M and M be smooth manifolds endowed with infinit imal flag t ru t ures {TiM },p :
E ----t M,8 and {Ti M}, f5 : E ----t M, eof type (G,P). Then a morphism of infinitesimal
fiag structures is a prineip~l bundle homomorphism <P : E ----t E, whieh ~overs a loeal
diffeomorphism f : M ----t M sueh that Tf is filtration preserving and <p *Bi == Bi for all
i == -k, ... , -1.

Definition 3.2.2. A filtered manifold is a smooth manifold NI together with a filtration
T M == T- kM ~ ... ~ T-1M of its tangent bundle by smooth subbundles , whieh is
eompatible with the Lie braeket of veetor fields in the sense that [~ , 7]] E r(Ti+j M) for
any ~ E r(T i M) and 7] E r(Tj M).

Now assume that (M, TiM) is a filtered manifold and for eaeh i == - k, . . . , - 1 let us
denote by qi : Ti M ----t TiM the natural projeetion, and eonsider the operator r(Ti M) x
r(Tj M) ----t r(1i+jM) defined by (~ , 7]) ~ qi+j([~ , 7]]). For a smooth funetion f E

COO(M, R) we have [~, f7]] == (~.f)7]+ f[~ , 7]]. Since i < -1, we see that Tj M c T i+j+1 M,
so the first term lies in the kernel of qi+j' Hence t he mapping defined above is bilinear
over smooth funetions, so it is given by a bundle map T iM x TjM ----t Ti+jM. Moreover,
for ~ E T i+ 1M and 7] E Tj M we have [~, 7]] E T i+j+1 M, so again this lies in the kernel
of qi+j, so this map further deseends to a bundle map TiM x TjM ----t Ti+jM. Taking all
these maps together, we obtain a bundle map L : gr(TM) x gr(TM) ----t (T)M, which is
eompatible with the grading.

Definition 3.2.3. (1) For a filtered manifold (M, T iM) the tensorial map L : gr(TM) x
gr(TM) ----t gr(TM) indueed by the Lie bracket of vector fields as described above is
called the (generalized) Levi bracket.
(2) An infinitesimal flag structure (90 ----t M, B) is called regular, if the algebraie braeket
coineides with the Levi bracket L. (3) A parabolie geometry is ealled regular, if the
underlying infinitesimal flag structure is regular.

Definition 3.2.4. Multilinear mapping f : 9 x ... x 9 ----t 9 is said to have homogeneous
degree k, if f maps gi1 x ... X gin to gi1+···+in+k. The k-th homogeneous eomponent of
f will be denoted by f(k).

Proposition 3.2.3. Parabolic geometry (9 ----t M, w) is reqular, if and only if the curva­
ture r: of w satisfies r: (i) == O for i < O.

Proof. See [1]
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3.3 Normal paraholic geometries.

Before we define normal parabolic geometri s, w n ed t look a bit on Lie algebra
cohomology with values in some represent ati on . T h chain pac s r d fin d to be
Ck(g,V) == Ak(g* X V) and the differenti al éJ : Ck(g V) -t Ck+1(g V) i d fi ned by

k

I) - l )ip(X i)f (Xa, . . . ,Xil . . . 1 X k )

i==O

+ I) - l )i+j f([ X i, Xj], X a, . . . .x.,... 1 Xj , . . . , X d
i=lj

(3.1)

where f : Akg ---+ Vand p is a represent ation of 9 on V. By direct computation we get
that [)2 == O.
We know that the Killing form B of 9 induces an isomorphism (g/p) * rv p, of P-modules.
Thus we can identify c: (p+, g) == Ajp+ X 9 with the dual of P-module Aj (g/p) * x g.
From the definition it is obvious that [)p : cj (p+, g) -t C j + 1(p+, g) is a P-homomorphism
and we know that [); == O. Dualizing this homomorphism, we obtain a P-homomorphism
[)* : Aj (g/p)* ® 9 ---+ Aj-l (g/p)* ® 9 which satisfies [)* o [)* == O. This homomorphism is
called the K ostant codifferential.
We now obtain a formula for [)* on decomposable elements. We can write a decomposable
element of Ari-l-I (g/p)* X 9 as Zo 1\ ... 1\ Zn X A with Z, E P+ rv (g/p) * and A E g. The
pairing of 1/J E cn+1(p+,g) with that element is given by B(1/J(Zo , ... , Zn),A). Thus for
c/J E c n(p+, g) the pairing of [)c/J with our element is given by

n ~

2:(-l)iB([Zi, cjJ(Zo, .. . , Zi' " . ,Zn)], A)+
i== O

2:(-l)i+j B(c/J([Zi' Zj], ZO ,··· , t i ,"" z; ... ,Zn), A)
i<j

Using invariance of B, we may rewrite each of the summands in the first sum as
(_1) i+1 B(c/J(Zo , . . . ,Zi'" . , Zn), rZi, AJ). We get

[)*(Zo 1\ .. . 1\ Zn 0 A)
n

'"""'" i +1 ~c: (-1) Zo 1\ ... z, ... 1\ Zn ® A
i==O

+ 2:(-l)i+j[Zil Zjl 1\ Za 1\ ... z, ...Zj .. . 1\ Zn @ A
i<j

(3.2)

Definition 3.3.1. The parabolic geometry p : 9 -t M ,w is called normal, if its curvature
K satisfies [)* ( K) == O.

3.4 Adjoint tractor hundle.

We now return a bit to general Cartan geometries.
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Definition 3.4.1. A t ractor bundle for Cartan geornetry (1) : 9 -4 A1 w) of type (G P )
is a vector bundle associated to 9 via a r stric ion o P f om r pr ntat ion of G.

We will use this definition with two differ nt r pr s ntation . In thi paragraph we
will consider the adjoint represent ation of G on g.

Definition 3 .4.2. Let p : 9 -4 lVI, W be a parabolic g ornetry of typ G, P . The adjoint
tractor bundle for geometry 9 -4 NI, w is the vector bundle 9 x p g , wh r 9 is cons ide red
as aP-module via adjoint action. We will denote it by A M and call 9 t he adapted
frame bundle for AM.

Definition 3 .4.3. For every section s of a bundle associat d to 9 w d fi ne a funct ion
fs on 9 by fs(u) == u- 1 (s(x)),U E 9 ,p(u) == x.

A function on 9, which corresponds to a sect ion of some associated bundle, is P­
equivariant, i.e. f(ug) == g-lf(u).
Since Lie bracket on 9 is Ad(P)-invariant, we can define an algebraic bracket on A M by
f{s ,t}(u) == [fs(u), ft(u)] . This algebraic bracket makes A M into a bundle of filtered Lie
algebras, so we have a filtration on AMdefined by A iM == 9 x P gi, which is compatible
with algebraic bracket of adjoint tractors. Since T M rov 9 x p g/p and T *M rov 9 x p P+,
we see that AM contains T* M as a subbundle and T M is a quotient of A M.
We can also consider the adjoint tractor bundle as associated to 90. Then we have
an induced gradation on it: AiM == 90 XCo gi. In this situation we can embed in it
both tangent and cotangent bundle in an obvious way. On the graded version of AM
the Killing form of 9 induces a pairing such that A ; M == A - iM and the algebraic
codifferential ()* defines natural algebraic mappings

Similarly as in the case of algebraic bracket we can define the algebraic action of AM on
any tractor bundle by i.« == p(fs)ft, where s is a section of AM and tis a section of any
tractor bundle. Visibly, the algebraic action of AM on itself is the algebraic bracket.

3.5 Existence and uniqueness of normal Cartan con­
nection.

First we need that any infinitesimal flag structure that comes from a parabolic geometry,
comes from a normal parabolic geometry.

Proposition 3.5.1 . Let p : 9 -4 M ,w be a regular parabolic geometry with curvature
r: E [22(M , A M) and suppose that o*(ť;;) E D1(M, AM)(l) for som e l > 1. Then th ere is
a normal Cartan connection w E [21(9,g) such that w - w E [21(M,AM)l. In partie­
ular, there is always a normal Cartan connection w which induces the same underlying
infini tesim al flag structure as w.
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Proof. See [1] D

Proposition 3.5 .2. Let 9 == g- kEB·· ·EBgk be a Ikl-graded semisimple Lie algebra) C a Lie
group with Lie algebra 9 and let Co cPe G be the subgroups given by the Ik I-grading.
Then any regular infinitesimal fiag stru cture or type (G P) on a smooth manij old M is
induced by a normal parabolic geometry of type (G, P) .

Proof. See [1] D

Now we want to have some result about uniqueness of normal parabolic geomet ry up
to isornorphism. For that purpose we will need the following lemma:

Lemma 3.5.1. Let p : 9 ---+ M, w be a regular parabolic geometry oj type (C,P) ) let w be
another Cartan connection and put cp :== w - w E nl(M, A M). Th en the Cartan connec­
tionsw andw induce the samefiltration ofTM ifand only ifcp E Ol( M ,AM)O and they
induce the same underlying infinitesimal fiag structure ij and only if cp E nI(M, AM)l.

Proof. See [1] D

Prop osition 3.5.3. Let 9 == g-k EB ... EB gk be a Ikl-graded semisimple Lie algebra such
that Hl(g_, g)l == O for some l > 1. Let G be a Lie group with Lie algebra g) Co cPe G
the subgroups defined by the qradinq, arul let (p : 9 ---+ M ,w) be a normal regular parabolic
geometry of type (C, P) . Then the following folds:
If wE 01 (9, g) such that fOT each i == -k, .. . ,-1 the difJerence w - w maps T i 9 to g i+l)

then there is an automorphism \ll of the principal bundle Q) which induces the identity
on the underlying infinitesimal fiag structure such that \lJ *w == w.

Proof. See [1]

3.6 Weyl st r uct u r es .

D

Now we will define the main notion needed to see that projective parabolic geometry
is equivalent to classical projective geometry. In this subsection we will consider the
adjoint tractor bundle as a bundle of graded Lie algebras , i.e. as associated to 90 . From
now on, we will also identify the section of some bundle associat ed to 9 or to 90 and the
corresponding equivariant functions.

Definition 3.6.1 . Let (p : 9 ---+ M,w) be a parabolic geometry of type (G,P) on a
smooth manifold M, and consider the underlying principal Co-bundle Po : 90 ---+ M
and the canonical projection 1r : 9 ---+ 90· A Weyl siructure for (9, w) is a global Go­
equivariant section a : 90 ---+ 9 of 1r, where equivariancy means that (J(ug) == (J (u)g for

9 E 90·
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Proposition 3.6.1. For any parabolic 9 om try ]J : Y -+ if th r exi t a W eyl
struciure. M oreouer, iJ (J" and a- are two Weyl tructur th n tli r i a unique mooili
section 1 == (11 , ... , 1 k) oj A l NI E9 ... E9 A k if ucli that

Finally, each Weyl siructure (J" and each section 1 d fin anoth r W yl tructure a- by
the above [ormula.

Proo]. See [2] D

Consider the pullback (J" *W of the Cart an conn ction W al ng t h - t i 11 (J" . Th n ořW
is a g-valued one-form on 90, which by construct ion i Go- squivariant , i. -.(Rg)*(J" *w ==
Ad(g-l) o (J"*W for all 9 E Co. Since Ad(g- l) preserves the grad ing of 9, each component
(J"*Wi of oři» is a Go-equivariant one-form with values in 9i.
Now consider a vertical tangent vector on 90 , i.e. t he value A*(u) of a fundam ntal
vector field corresponding to some A E 90' Since (J" is G o-equivariant , w conclude
that (J"*A: == A:(u)' where the second fundamental vector field is on 9. Thus we have

(J"*w(A*) == w(A*) == A E 90' We see that for i # O the form (J" *Wi i horizontal , while
(J"*wo reproduces the generators of fundamental vector fields. So for i i- O th form (J" *Wi
descends to a smooth one-form on M with values in A iM, which we denote by the same
symbol, while (J"*wo defines a principal connection on Yo.

Definition 3.6.2. The principal connection (J" *wo on Yo is call ed the W eyl con nection of
the Weyl structure (J". The form P == (J"*w+ is a one-form on M with values in T *M and
is called the Rho- tensor of (J".

The form ařio: == ((J"*W-k, . .. ,(J"*W-l) induces an isomorphism

We will denote this isomorphism by

for ~ E T M . In particular, each fixed u E 90 provides the identification of Tpo(u)M r'V 9_
compatible with the grading. Thus, the choice of a Weyl structureo provides a reduction
of the structure group of TM to Co (via the soldering form ořco: on 90), the linear
connection on M (the Weyl connection (J"*Wo) , and the Rho-tensor P .
Now we will also need some more notation. By j we denote a sequence (jl,"" jk)
of nonnegative integers, and we put Iljll == jl + 2j2 + ... + kjk . Moreover we define
j! == jl! . . . jk! and (-1)2. == (-l)jl+· ··+jk, and we define (j )m to be the subsequence
(jl , . .. , jrn) of j. By O we denote sequences of any length consisting entirely of zeros.

Proposit ion 3.6.2. Let (J" and (j be two Weyl siructures related by

(j (u) == (J" (u) exp(Y1 ( U )) . .. exp(1k(U ) ) ,
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where Y == (Y 1 , ... , Y k) is a smooth section oj Al 1 EB . . . A k 1 . Th n 'Lve have:

'"
~i == (3.3)

(3.4)

k

LL

where ad denotes the adjoint action with respeci to algebraic bracket {-)-}. Jf E is an
associated vector bundle to the principal bundle 90 ) then we have:

(3.5)

uihere • denotes the map AoM x E --+ E induced by the action of 90 on the standard
jibre oj E .

P'roof. See [2] D

Example 3.6.1. For all/1/-graded parabolic geometries, the formulae from the proposition
above become very simple. The grading of T M is trivial, the connection transforms as

(3.6)

where Y is a section of A1M == T* M, and the bracket of Y and ~ is a field of endomor­
phisms of T M acting on s in an obvious way, because t hese are the only terms in the
formula 3.5 which make sense. Next , the Rho-tensor transforms as

'" 1
P(~) = P(~) + \7~Y + 2{Y, {Y ,O }·

Definition 3.6 .3. The Weyl curvature of a Weyl structure a is defined by

W(~, r;) == dO' *w(~ , 7]) + [O'*w(~), O'*ú}(7])]

(3.7)

We see that W is exactly the pullback of the curvature fl of Cartan connection w.
Since rl is 0*-closed, we see that W is also 0*-closed.
Now we want to compare W~O(~, r;) with curvature and torsion of any Weyl connection,
where W~o is the part of W with values in 9- U90'
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Definition 3.6.4. Let 9 ~ M w b a par b li g 111 - I' f P (G P) 90 1 orr-
sponding Go-bundle and a : 90 ~ 9 any I I' 1 Ul' - . Tll - total curuaiur J f a i
defi ned by K == K so+ J( +, W her

and
K+(~h , 1]h) == da*w+(~h 1]h) + [a*w+(~h) a*w+(rl't)]

where ~h is the horizontal lift of ~ with respect to principal conne t ion a*wo .

Proposition 3.6.3. Let 9 ~ M, w be a parabolic geometry oj type G P, 90 the corre­
sponding Go-bundle) a : 90 ~ 9 any Weyl siruciure, P its Rho-tensor and 1 (~TJ) its
Weyl curvature. Then

W(~ , 1]) == J((~ , 1]) + {P (~ ) TJ } - {P(TJ ) ~ }

Proo]. For brevity we will denote oři» by T. By definition we have

Because h denotes the horizontal lift, t he 90-components of T (~h) and T(Tlh) are auto­
matically zero, so we may write

[T(~h) , T(1]h)] [T_(~ h) , T_(1]h)] + [T+(~h) , T_(TJh )] +
+ [T_(~h) , T+(1]h) ] + [T+ (~h ), T+(1]h) ]

On the other hand we have

Now T+(~h) is exactly the function corresponding to P(~), while T_(TJh) corresponds to 1].
Since the algebraic bracket is induced by the Lie bracket on 9, the formula for W(~ , 1])
is obvious. D

Example 3.6.2 . Let us look on the case of [Il-graded parabolic geometries. Then we have

where T is the torsion of the corresponding Weyl connection. Now

Wo(~ , 1]) == R(~, 1]) + {P(~) , 1]} - {P(Tj) ,~} (3.8)

because the part of the total curvature K with values in 90 is exactly t he curvature of
the corresponding Weyl connection.
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3. 7 B undles of scales.

Here we int roduce bundles of scale whi h will b a er imp rt n in gr dien in om­
parison of classical and parabolic definit ion of proj - ive ru ure. Tl - bundl will
be principal R+-bundles assoc iated to 90 , Cl arly t 11 y will b - ia -d vi homomor­
phism A : Co -7 R+ with derivative AI : 90 == 90s EB 3(90) -7 R whi 11 au m i ally
vanishes on the semisimple part.

Definition 3.7.1. An element E)... of 3(90) is called a scaling l m nt if nd only if
E)... acts by a nonzero real scalar on each Go-ir reduc ib l orn pon nt f p+. A bundle oj
scales is a principal R +-bundle [,)... -7 lvI, which i a oc iated to 9 0 vir 110m morphi m
A : Co -7 R+, whose derivative is given by AI (A) == B(E)... A) f r m caling I m nt
E)...EJ(go).

For any principal bundle E -7 M t he re is a bundle QE -7 M, whose ections are
exactly the principal connections on E , see [9] .

Proposit ion 3.7. 1. Let P : 9 -7 M be a parabolu: geometry on M, and let 12)... -7 M be
a bundle oj scales.
(1) Bach Weyl structure (J : 90 -7 9 determines the principal connection on 12)... induced
by the Weyl connection o-*wo. This defines a bijective correspondence between the set oj
Weyl structures and the set oj principal conmeciions on [,A.

(2) There is a canonical isomorphism 9 rv p~Q[,A , uihere Po : 90 -7 M is the projection.
Under this isomorphism, the choice oj a Weyl structure (J : 90 -7 9 is the pullback oj
the principal connection on the bundle oj scales 12 )... , viewed as a section M -7 QLA.

Moreouer, the principal action oj Go is the canonical action on p~QL)... induced Jrom the
action on 90, while the action oj P+ is described by equation 3.5.

Proo]. See [2]

3.8 Other t ractor bundles .

D

Now we look a bit more closely on general tractor bundles and con nect ions on them. We
know that all tractor bundles are associated to 9 via re~triction to P of some representa­
tion of G . We can evidently form a principal G-bundle 9 == 9 xp C via left multiplication
in C . We can also expand the Cartan connection w on 9 by G-equivariancy to a princípal
connection on g. This connection induces a linear connection on any associated vector
bundle and thus on any tractor bundle on M. This connection will be called the tractor
connection.
Now we will introduce another approach to parabolic geometries.

Definition 3. 8.1. (1) Let M be a smooth manifold of the same dimension as g/p. An
adjoint tractor bundle over M is a smooth vector bundle A -7 M, which is endowed with
a decreasing filtration A == A-k ~ A- k+1 ~ ... => Ak by smooth subbundles and an
algebraic Lie bracket {-, - } : A 0A -7 A, such that A is locally trivial bundle of filt ered
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Lie algebras modeled on g. T his mean t hat w- h 1 rl i liz i n AI ~ U x 9
for A which are compatible with th bra k t .
(2) Let A ~ M be an adjoint t ractor bundl over 1\1 and 1 C b c gr up wi h Lie
algebra 9 with the subgroups Co < P < C d fined b t he gr ding f g. n adapted
frame bundle for A corresponding to C i a mooth prin ip 1 bun 1- Q ~ 1 with
structure group P such that A ~ 9 Xp g, th c o iated bundle wi 11 r p t to h
adjoint representation of P on g.

Since we will only consider in applications the adjoint tractor bun II , whi h ar
constructed from the Cartan bund le of given parabolic g - m try w 11 I o a um
that we have a canonical adapted frame bund le for A .

Definition 3.8.2. Let A ~ M be an acljoint t ractor b 111dl - ov r 1\1 nd 1 t 9 ~ 1\1/
be an adapted frame bundle for A corresponding to a group C with Lie alg bra g, and
consider the subgroup P < C as before. Let V be afinit -dim n ional ffect ive (g, P)­
module, i.e. a P-module such that t he infinitesimal action of p on V -xt nds to an
effective action of g. We define the V-tractor bundle V for A to be th as ociat d bundle
9 Xp v.

Let V be a V-tractor bundle for A. Let us denote by p t he eff ct ive (g , P)-representation
on V. By definition, V is an associated bundle t o g, so we identify smooth sections of V
with smooth maps 9 ~ V, which are P-equivari ant. Here, we will denote t he fun ction
corresponding to t as l.
It is well known that there exists a unique element EE g called t he grading element
such that [E,AJ == jA holds for all elements A E gj , j == -k, . . . ,k. Clearly, E is always
contained in the centre of go (since it preserves the grading and commutes with go). This
implies that Ad(b) . E ~ E for each b E Co and consequently E acts by some scalar on
each irreducible Co-module. Now we can split the space V according to eigenvalues of
the action of E, and we denote by Vj the component corresponding to the eigenvalue j.
Then the action of Co maps each Vj to itself, while the infinitesimal act ion of gi maps
Vj to Vi+j for each i == -k, ... , k .
Clearly, the decomposition V ~ EBj Vj is only Co-invariant and not P-invariant. On the
other hand, if we pass to associated Bltration by put ting vj == E9j / ~jV jl , then from the
decomposition of P as a semidirect product of Co and P+ we see that t his endows V
with aP-invariant decreasing filtration . Note that if V is irreducible as ag-module,
then it is generated by a highest weight vector, so the possible eigenvaluesj lie in t he
set {jo - k, k E N}, where jo is an eigenvalue of highest weight vector. Thus, in the
general finite-dimensional case, the eigenvalues lie in the union of finitely many sets of
that type. Passing to the associated bundles, we see that for each eigenvalue j of E on
V, we get a smooth subbundle vj c V corresponding to the P -submodule vj of V , and
these subbundles form a decreasing filtration of V.
Suppose \7 is a linear connection on V. Consider a point u E 9 and a tangent vec­
tor ~ E TuQ and let x == p(u). For a smooth section t E r(V) we have a well
defined element \7p*~ t(x) E Vx and thus a point U-l ( \7p*~t(x) ) E V. On t he other
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hand, we also have t he well defined 1 111 nt ~ . t('li) E V . If .l i f 11 11 I' I-valu d
function on M, t hen \7p* ~ft (x ) == t (x)p* ~ . f (. ·) + f(. ') P.~tC') . Oll h - h r h nd

ft == (p* f)t and thus ~ . f t(u) == ~ . (p*f) (rU) t( li ) + (J] f ) ( ll ) ~ . t('li) . u hi impli s
that the difference U -I (\7 p*~t(x)) - ~ . t( ll ) d P 11d 0111 11 t(.) 11d 1 1 nl on t(u).
Hence ~ induces a linear map <p (~ ) : V ----f V , whi h i har -riz cl by 11- fa h t
U- l ( \7p* ~ t (x ) ) - ~. t(u) == <p(~)( t(u ) ) , for each smooth - t i n t f V .

Definition 3.8.3. (1) A linear connection \7 on V i called g -connJ ction if and only
if for each tangent vector ~ E TuY the linear map <p (~ ) : V ----f V defin d bov - i given
by the action of some element of g.
(2) A linear connection on V is called n on degenerate if and only if for any point x E 1
and any nonzero tangent vector ~ E r TM there exist s a number i and , (10 al) smooth
section t of Vi such that \7P* ~ t (x) ~ V~.

(3) A tractor connection on V is a nondegenerate g-connecti on.

Proposition 3.8.1. Let A ----f M be an adjoint tractor burul le, Y ----f M an adapted
frame bundle corresponding to a choice of a group G with Lie algebra gJ V an effective
(g , P)-module and V the V-tractor bundle for A.

1. A iracior connection \7 on A induces a Cartan connection on Q.

2. Conversely, a Cartan connection w on y iiuluces tractor connections on all tractor
bundles for A.

Proo]. See [4] o

Definition 3.8.4. Let V be a tractor bundle on M, \7 a tractor connection on V. The
curvature of the connection \7 is defined to be the End(V)-valued two-form R , whi ch is
characterized by R(~, 1]) (t(x)) == (\7 ~ \777 - \777 \7~ - \7 [~, 77] )t(x) for smooth vector fields ~

and 1], and any smooth section t of V.

Proposition 3.8.2. Let \7 be a tractor connection on V. Then ihere is an A-valued two­
form r: on MJ such that R(~ , 1])(t) == ~(~, 1]) • t for all t E V. Moreou er, if WE nl(Q ,g)
is the Cartan connection induced by \7 , then the fun ction Q ----f 9 repres enting K(~ , 1]) is
dw ([, Tj) + [w ([) ,w(1])], where [ and Tj are lifts of ~ and 1] to smooth vector fields on y .

Proo]. See [4] o
This proposition says that the curvature of tractor connection is given by an algebraic

act ion of curvature of Cartan connection.

Definition 3.8.5. A tractor connection \7 on a tractor bundle V is called normal, if t he
form r: E n2 (M ,A) representing its curvature has the property that éJ* (~) == O.

Before the next proposition we restrict ourselves to [Ij-graded geometries.
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Proposition 3.8.3. Suppose that V ---t II i a v cior bundl and uppo that fo r each
---t

Weyl connection \7 on lVI we can construct an i otnorphi m V -7 V = EBjV j which
---t

we write as t ---t t == ( ... , t j t j+ l .. . ) both on th l l of l m nt ~ and oj ction .

Suppose [arther that changing \7 to V with corre ponding on -form Y thi i omorphi tn...-

changes to t -7 t= (... ,tj, tH l , ... ), uihere

(3 .9)

Then [or a point x E M th e set A x oj all linear maps cP : Vx ---t V. f or uihicli ihere
--+ --+ ------t --+

exists an element cP E A x == A _ I E9 Ao EB A l su ch that cjJ (t ) == p(cjJ )(f) [or all t E Vx
is independent oj the choice oj th e W eyl coruiectioti \7. T he spaces A x form a smooth
subbundle A oj L(V, V) == V* @ V J which is an adjo in t tra ctor bundl e on /\1 isomorphic

---t

to A . Then V is a V -tractor bundle [or an appropriate adapted f ram e bundle fo r A.
The expression (in the isomorphism correspondinq to \7)

------t

\1ťt == \7~[+ (p(~) + p(P(~)))(f) (3.10)

for ~ E X M and t E f(V) defines a tiormal tractor connec tion on V. Thus V is a normal
iractor bundle on M corresponding to V.
Fuuills], the curvature R oj this connection is given by

(3.11 )

where TJ W and GY are iorsion, Weyl curoaiure and th e exte rior covarian t derivative
oj the Rho-iensor.

Proof. See [3]

3.9 Project ive parabolic geom et r y.

D

Now we define the projective structure in terms of parabolic geometry and prove that
this is equivalent to definitions given in the second chapter.

Definition 3.9. 1. Let M be an n-dimensional smooth manifold. If n is even, we define
the projective parabolic geometry on M to be the Cartan geometry on M of type (G,P),
where G == SL(n + 1, R) and P is the isotropy subgroup of the line (x , 0, . .. , O) through
origin in Rn+l. If n is odd, we define the projective parabolic geometry to ~e the Cartan
geometry of type (G, P), where G == Sl(n+ 1, R) UE· SL(n+ 1, R), where E was defined
in the second chapter and P is the isotropy subgroup of the line (x, 0, . .. , O) through
origin in Rn+l.
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1 11d TL

mpo I IonIn both cases t he Lie alg bra of G i 9 == S[ (77. + 1 R ) v i h h -

( --trAY)
X A where X E 9- 1, Y E 91 hr r 1 90 nd h - bl k

Since we know that there is a uniqu (lIp to i ornorphi 111) 11 rrn: 1 p rcboli g - m e ry of
type (G ,P), we will restrict ourselv to normal pl' j iv - P I' b li g ln - I' .

First , we observe that the nonclassical defin it i 11 of pl' j - iv - ru ur -

ous chapter is in fact the parabolic definition giv -n c b v if w - pl' v 1a th n rmal
projective connection in the sense of previous hapt -I' i h - arn - norn 1C rt n on­
nection in the sense of parabolic geometry. For hat purpo - w I I I z- th ndit ion on
Cartan connection to be normal , i.e. t he quation [)*n == o. Si11 - pl' j - t iv g m ry
is 111-graded, we see that the second term in the formula 3.2 vani hr it I' d a

n

L{7]i ,n (X , ~J} = O
i= l

where {~i} is a basis of 9 _ and {1]i} is t he dual ba i of p, with r sp - t to th Killing
form of g. We will use the basis of matrices, which have 0111y one entry equal 1 and
all other entries are O. Then when we order the basis of 9 _ in uch a way t hat first
vector has entry 1 in the second row, second vector in t hird row,... ,and t he last v ctor
in the last row. The corresponding ordering of t he dual basis of p, is a follow : t he first
vector will have 1 in the second column, the second vector in t he t hird column, ... ,t he
last vector in the last column. Next , we will need the inverse of t rans formation 2.5 given
by

( O Y) ( --htrA Y ) (3.12)
X A --+ nX A - n~1 IntrA

Now we compute what gives the formula for normality. We rewrit e t he curvat ure n from
the previous chapter in matrix as follows (here we will use t he t rans format ion above):

(

1 K k K )- n+ 1 ij k i j l
(ni,n~,nj) --t K k K k 1 }( k l (3.13)

ij ij l - n+ 1 ij k n

Finally the computation:

[( ) (

1 K k K )L n O}j - n+l ij k i j l

j= l O O K í j k K í j 1- n~l K i j kkl n -

(

- _1 K k tc.; ) (O y.)]n-l- I ij k t j J _
- k k 1 k -

K i j K i j l - n+ 1 K i j kIn O O

(
K j K j - _ 1 K. k ) (O - _ 1 K. k )_ ",n i j i j l n-l- I t l k _ ri-l- I t l k

- új=l O O O K 'ij k 0 }j

_ ",n (Kíj j Kíj~ )
- ú j = l O-K.. k 0 Y

J
·

t j

Since K .. k 0 y . is exactly the matrix of ni(X, - ), we see that the torsion must vanish.
~J J .

The only remaining condition is on n;: L j K i j/ == O. We know that the normal projec-
t ive connection from the previous chapter satisfies 2.14 , so in particular it is normal.
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Up to now we have seen t hat the proje tiv tru ure wi h h - II rl lc1 I' j - i onn c­
t ion as defined in t he previous chapt r i a n 1'111 1 pl' j - i - pcr b li - ml' . ow
we want to show that every normal proje iv pcrcb li g - metr i I 111 rphi m
projective structure with normal projectiv nne i n.
First we prove that t he bundle 90 for projectiv - par boli g - 111 - ry i i 111 rpl i o pl ;J

or pl M II pl M, respectively. Consider the und rl ing infinite im 1 fl ag r 1 Ul' for
projective parabolic geometry. From the d finit ion w - - ha W~ l i mo 11 - ion of
L(T90, g/p). Moreover , the kernel of W~l is exactly th ubbundle Togo , i. -. t 11 ver i al
subbundle of 90 ----* M. Hence for any point u E go with z == ]JO( 1L) t 11 - f rm W~I(1L) may
be viewed as a linear isomorphism Tugo/T~go rv T.?;/\;J ---+ g/p. Sin dim /\1 == dim g/p
we may view the manifold NI as being model d 011 a v t I' pa - g/p. A o i ting to
u the inverse of the above linear isomorphism giv s a bundl II p <P : 90 ---+ pl 1. By
construction this covers the identity on NI and i quivariant for th - homomorp hism
Ad : Co ----* CL(g/p). Since 90 has the structur group GL(nJ R) or CL(n , R) x Z2'
respectively, and in the first case t he homomorphism Ad : Co ---+ GL(g_) is i omorphi m
and in the second case a two-fold covering , we see t hat 90 is really i ornorphic to pl A;J

or to pl M II plM, respectively.
Now we prove that two isomorphic projective parabolic geom t ries induc t h ame Weyl
connections on M. Consider two parabolic geometries 9 ---+ AJ, W and 9 ----* NI, W and

- -
consider the isomorphism <I> : 9 ---+ 9 such that <I> *w == w . From 9 and 9 we may form
an orbit space 90 or go, respectively. The isomorphism <I> factors to an isomorphism
<I> : 90 ----* 90, such that <P o Jr == iř o <P, where ~ : } ~ go is t he projection. Consider
any Weyl structure a : 90 ----* 9 and define O- : 90 ---+ 9 by <I> o a == O- o <I>. They induce
the Weyl connections on M: a*wo and 0-*00 , Since they are <P-relat ed , we conclude that
they induce the same connection on M .
Now we assume that 9 is a subbundle of p2M or p 2NI II p 2M . Ě . First we real­
ize, what are the Weyl structures for such geometries. The maps , : p l M ---+ P (or
, : p l M II pl M ---+ Pll P) obviously satisfy the definition of Weyl st ructure : it is
smooth section of 9 ---+ 90, since plM or plM II p l M is exact ly the orbit space of the
act ion of P+ on 9 and it commutes with the act ion of C«. (In fact , Weyl structure is an
embedding of 90 into 9). To see that these are all Weyl structures, we need to compute
how in the projective case changes the Weyl connection when we change t he Weyl struc­
ture. We compute it from formula 3.6, where we must realize that the algebraic action
is in fact algebraic bracket on adjoint tractor bundle:

(~~)(~ ~)-(~ ~)(~~)

(
y(~) O) _ ( O O ) ==

O O O ~ 0Y

(
y(~) O )

O -~ 0Y
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So we have computed {Y ~} and now w ornpu {{Y } 1] } :

(Y6~) _~ ~ y ) ( ~ ~) (~~) ( Y6~ )

( -y~~ ) ~ ~ ) -(.: ~)

( _Y(~ko_ Y (O~ ~ )

o
-~

(3.15)

'"

so we see t hat \7~ 7] \7~1] + Y (~) 1] + Y (1])~ . So t 11 - -yInII - i II f Ir I
structures are by 2.18 exact ly the torsion-fre 011n tion fr II tll la i I cl -finition of
projeetive structures, because to any two such eonne t ion II r -lat - a n --f rm Oll M
and having one such conneetion and any one-form Y on gets anoth r uch onn etion,
so they are parametrized by one-forms on M and th re ar - no II r W yl tructur .
We see that any eonneetion on M is a Weyl connection f r om - pl' j -etiv parabolie
geometry of speeial type-that of previous chapter . Noweon ider any proj ctiv parabolie
geometry and its Weyl eonnections. They are clearly t he Weyl eonn ctions of projective
parabolic geometry of this speeial type, so we may hope that th se two geometries are
isomorphie. From the Proposition 3.7.1 we know t hat since th y have isomorphic bundles
90 as we have seen above, they have also isomorphic Cartan bundl s. T he only thing
we have to prove is that the normal Cartan eonnect ion on 9 satisfies Ei 01== O. Since
Wo == (J*O~ , it will be suffieient to prove it for Mlo: E c(lVo)abCc == O. T his will follow
from the computation below.
Now we want to write the Weyl connection Wo in terms of t he curvature of some Weyl
eonnection and the associated Rho tensor. For this purpose we use 3.8. First , we eompute
{P(~) , 7]}:

(~ P~~)) (~ ~) - (~ ~) (~ P~~)) =

(
P(~)(1]) O) _ ( O O ) ==

O O O 1] ® P (~ )

(
P(~)(1]) O )

O -1] 0 P(~)

Using the t ransformation 2.5 we get

what in the abstract index notation reads as

(3.16)

From this equat ion we easily get

(WO) fabd]cycl == O
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what together with (l/l o)~c d == o and a11 i , 111111 - r f \l /o in fil' \ 111 gi
(WO) ~b C == O, where together with t h - ab t rč indr J~ n ( i II \ - h - ln ln
summation convention . Making 11 ra - \ -r indi - . an I rl in

O== Rab
c

C - n'Pab + 77, ba - al: + lui

Making the trace over indices band in 3.16 giV

O== R ac
c

d - P ad + P da - 71 ad -r . tul

Together we get

P _ (n + l)Rac 'b - R~b c
ab -

(nI + 1)(771- 1)

Finally, we can compute the Weyl curvatur

(WO) ab
C

d == R abcd - Pabod + PbaOd- Padob + bri0a ==
== R c _ (n+ 1)R~ c b - Ra bCc°c + (11. + 1) l i bc CCl - li lU L ' c 6 _

ab d (n +1)(n -1) d (n+ 1)(n- 1) d

_ (n+1 )R acC <i -Rqct c OC+ (n+ 1)Flbc d-R'bd c (SC
(n + 1)(n - 1) b (n+ 1)(n- 1) a

3.10 Standard tractor bundle and its dual.

(3.17)

In this section we will construct the standard t ractor bundle and it s dual. First , we will
introduce some line-bundles associated to 90 ,

Definition 3.10.1. Bundle E[w] is defined to be t he bundle 90 XCo R via representation
w

p(go)r == det(Ad(go)) n+l. The infinitesimal represent ation of 90 is given by p'(X) r ==

n~ l r . tr (ad (X ) ) . Here Ad is the adjoint representation of Co on 9- and ad its derivative.

In matrices this definition reads as follows: If ( aij) i~j ==o is a matrix of ,90 , then p(go)r ==

(aoo)-W r and if (Aij) ~j ==o is a matrix of X , then p'(X) r == -w .Aoo. We recall that a matrix
of go or X has the property that AOi == Aio == O for i == 1, ... , ti .

We start with dual of the standard tractor bundle - we will call it the co-stan dard t ractor
bundle. It will correspond to the dual of the defining represent ation of the Lie algebra
9. The action of p(~) and p(P(~)) will be given by this represent ation. Consider the jet

exact sequence:

where Ei [l ] == Ei ® [[1], [ i == T* M in the abstract index not ation. Next, we will need
the t ransformat ion law for Weyl connections on bundles [[w ]:

(3.18)

Definition 3.10.2. The co-standard tractor bundle [I is the bundle J1[ [1].
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Proposition 3.10.1. For a Weyl conn ction ,tlL tnap

,..

inducesan isomorphism[I ---+[ [l ]EB[i.[l ] of v ctor bundl . Mor ov r changing \7 to \7
with the corresponding one-form Y , we obtain a normal tractor bundle transformation
as required in section 3.8, i.e.

---(D" , /-L) == (D" /-Li + Y i D" )

Proo]. Clearly, the formula in the propo ition defi ne a bundl m ap J l [ [1] ---+ [ [1]EB [ i [1]
which is injective. Since both bundles have t h am rank , it i an i ornorphi m of v ctor
bundles.

»;

If \7 is another Weyl connection corresponding to Y , t hen t he fir t com ponent stays
the same, while for the second component we get V 'iD" == \7 i D" + Y 'iD" - o W g t h
transformation law for the second com ponent . D

Now we look on the tractor connection on the co-standard t ractor bundle and its
curvature. By 3.10 the tractor connection is given by

----t

\7~t == (\7ED" - ~ i /-L i , \7EJL )

for t== (O",/-Li), which just means

----t

\7':(t == (\7i D" - /-L i , \7iJLj )

and by 3.11 its curvature is given by

-----t) .

RV(~ , ?7)(t) == (O , -/-Lj W(~ , ?7) ~ - D"CY(~ , TJ))

The standard tractor bundle is simply the dual [I of the co-standard tractor bundle. We
could introduce it in a similar manner - starting with the splitting, but we don't know
how to define it invariantly (the co-standard tractor bundle we defined as Jl [[-1]).
As an interest we can define a very useful operator:

Definition 3.10.3. On a section f of [[w], the operator DI : [[w] ---+ [I[w-1] is defined

by
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Chapter 4

Differential operators.

4.1 Invariant operators.

We develop some basic theory about invariant operator . Fir t , w conc ntrate on the
homogeneous case.

4.1.1 Hornogeneous case

Homogeneous bundles

We have to introduce the concept of homogeneous vector bundles. Recall that on each
homogeneous space M == GIP we have the canonical left action of G denoted by ť :
G x M -----7 NI given by ť(g, g' P) == gg'P.

Definition 4.1.1. (1) A homogeneous bundle_over M == GIP is a locally trivial fibre
bundle Jr : E -----7 M together with a left action ť : G x E -----7 E, which extends the action
on M, i.e. which satisfies Jr(l(g,e)) == ť(g,1r(e)).

(2) A homogeneous vector bundle over M is a homogeneous bundle Jr : E _-----7 M, which
is a vector bundle and such that for each element 9 E G the bundle map ťg : E -----7 E is
a vector bundle homomorphism, i.e. linear on each fibre.
(3) A morphism of homogeneous bundles (respectively homogeneous vector bundles) is a
G-equivariant bundle map (respectively G-equivariant homomorphism of vector bundles)
which covers the identity on M.

Proposition 4.1.1. Let M == G I Pand let o E M be the distinguished element eP .
Then the mappings E -----7 E; and f -----7 flo induces equivalences between the category oj
homogeneous bundles on M and the category oj maniJolds endowed with left P -action
and P -equivariant maps, as well as between the category oj homogeneous vector bundles
on M and the category oj finite dimensional representations oj P.

Proof. See [1]
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Using this left action of G on E w an i1 d fin
f(E) of all sections of E giv n b g . a(.· ) == g(a(g -l. ')) .
we can view the space f (E ) as r pr n ( i II f

I nva r ia nt operators

h P
lin - r

Definition 4.1 .2. Let lvI be a homogencou pa - GI P c nd 1- E F - tw II mog ­
neous vector bundles over 1\1. An invariant dit! r ntial op raior i ' diff -r -II ial p r or
D: f(E) -t f(F) , which is equivariant for tll - G- ct i rl i . . II h th D(g ·) == g ·D( )
for all s E f(E) and 9 E G.

The first step towards an algebraic de cription of u h an p -r r 1 o p t j t
prolongations. If M is a smooth manifold ancl V -t 1\1 i any v - t r bundle, t ll n for
k E N we have the k-jet prolongati on JkV. T h fibr - of JkV at i: E 1\1 i t h v tor
space of all k-jets at x of sections of V and [1] ay t.hat JkV i a vec r bundl ov r M .
If W is another vector bundle over lvI, t hen a differenti a1 op ra tor D : f( V) -t f (W)
is of order < k if and only if for any two s ctions t E T(V) and any point x E 1\1,
the equation jks(x) == j kt(x) implies D(s)(x ) == D(t )(x ). If D i such an op rat or ,
then we get an induced bundle map Ď : JkV ~ W over t he identity Oll 1\1, d fin d by
Ď(ls(x)) := D(s)(x) , where s js any represent ative of t h j t . Conver ely, t hi formula
c:ssociates to any bundle map D a differential operator D , which is linear if and only if
D is a homomorphism of vector bundles.
In the special case of a homogeneous vector bundle E -t GIP, each JkE is again a
homogeneous vector bundle. The action of 9 E G is given by g. Cj ks (x)) :== i"(g. s )(x). By
construction, a differential operator D corres ponding to t he bundle map Ď : J "E -t F
is invariant if and only if D is a morphism of homogeneous vector bundles, i.e. G­
equivariant. Hence we have reduced the determination of linear invariant differential
operators to the determination of homomorphisms between homogeneous vector bundles.
For l < k we have the obvious projection 7rť : J kE -t J lE defined by 1rť (j ks (x)) == j ls (x)
for any homogeneous vector bundle E over 1\1. This projection is a homomorphism of
homogeneous vector bundles.

Definition 4.1.3. Let E, F be two homogeneous vector bundles over M == CIPand
let D : f(E) -t f(F) be a differential op erator of order < k correspond ing to a bundle
map Ď : J kE -t F. Then the k-th order symbol of D is t he vector bundle map a(D) :==
-. kD o 'l k : ker1rk _ 1 -t F.

The kernel of 1rZ- 1 is by [1] isomorphic to SkT*M ® V.
Now from the previous chapter we know that there is a correspondence between smooth
sections of E and smooth P-equivariant maps G -t V, where V is the represent ation
inducing E. Similarly, there is a correspondence between k-jet s of such sections in o == eP
and k-jets of P -equivariant smooth functions G -t V in e E C. Next, we define the
infinite jet prolongation 100 E as the direct limit of the system- .. -t 1k E -t 1 k- l E -t .. .

of vector bundles , where the maps are just the canonical projections from k-jet s t o k - 1­
jets. In particular, we may view the fibre Je: E over the base point o as t he direct limit
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of t he fibres of t he fin ite jet prolonga i II . II f r fini J II d b v
then directly leads to t he id ntif a ion of Jo E "\ i h - J ( ) f infini j

at e of P-equivariant smooth fun ion J :G ~ E 9 l1Lid I' h righ
invariant vector field R- x on G with g nera r - r 11 fun i II J : G ~
we can now consider R- x . J and of 0111' 11 infini - j - f I i f II i 11 in d -p nd
only on the infinite jet of J in . Sil1C 11 fl w f R _)( I I i11 - t hr 19h a p in

9 E G is given by exp(-tX)g, we can cornput R_J''< · J(g) leriv iv - in t == O f
t f---* f(exp( -tX)g). On t he one hand togeth -r wi h t11 - f b lin I' m p

on V, this implies that for a P-equivariant fun t iol1.f 1 P- -quiv r i nt .

On the other hand , we see t hat J f---* R- x . J i imply the infin i im 1 ver ion of
the canonical G-action on C (G ,V) P corr ponding o th - a i n f G n (E), o it
defines a representation of the Lie algebra g. T hu w - hav - e -n t h t J (G,V)P i a
(g, P)-module, that is aP-module with giv II act ion f 9 wh - re t ri t i II t P i 11
infinitesimal version of the P-action.

Definition 4.1.4. A generali zed Verma module .A1p(V*) for p-rnodule V i t he vector

space U(g) ®U(p) V *. This space is naturally a (g , P)-lllodule (via 1 ft m u ltiplication and
the corresponding left action).

Proposition 4.1.2. Let 9 be a semisimple Lie algebra, p < 9 a parabolic subalgebra,
GaLie group with Lie algebra 9, P the parabolu: subgroup corresponding to p and V a
finite dimensional representation oj P with dual V *. Th en

(Y1 · · · ~l ® A,j~J) :== A(LY'l ... LYn . J(e))

[or Yj E g , A E V" and a P-equivariant smooth map f : G ---t V induces a well defined
pairing between the generalized Verma module Nlp(V* ) == U(g) ®U(p) V * and the space
J~(G, V)P oj infinite jets oj P-equivariant maps. This pairing is compatible with the
naturel (g ,P)-module siructures on both spaces and it identifies M p(V* ) with the space
oj those linear maps J~ (G, V)P ~ R, which Jactori ze ouer one oj the spaces J: (G, V)p.

Proo]. See [1] D

Corollary 4.1.1. Let G / P be a homogeneous model oj some parabolic geometry and let
E and F be homogeneous uecior bundles ouer G/ P corresponding to the representations
Vand W oj P. Then the space oj finite order G-invaria'nlt differential operators D :
f(E) ---t f(F) is isomorphic to the space Hom (g ,p)(Mp(Ml *) , M p(V* )) oj (g , P)-module
homomorphisms between generalized Verma modules.

Proo]. See [1] D

Hasse diagram

Now we want to define the Hasse diagram associated to a parabolic subalgebra p in a
semisimple Lie algebra g. AIl what follows is valid for complex Lie a lgeb ras , but since
we will use it for the split form of a complex Lie algebra, there will be no complications
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and the result s rem ain valid . Fir w d -fin lil p b - h - f h - ml lm 1
part 90S

' This is naturally a ubgroup f h -, - 1 -1' III I' m
associated to p will be a et of di ingui h 1r -I r esen

casets. Denate by ~+ (g o ) and ~+ (p+ ) tl - f h
carrespanding root spaces lie i11 t11 i11 li c d IIbal .- ln
unian of these twa subsets and both sub -t ar a ur: t - . ln
same 9i. If a E 9i , we put ht(a ) == i . Sin - root ar h - weight re re en
af 9 on itself, this functian is additiv b c u of Ja bi id -11 i . -fine <P 1U : == { E
~+ : w-1(a) E -~+}. In [1] it is shawn t hat W( A) i p-d Ini11cI1 f I' ny g-d ruin nt
weight A if and only if w-1 (a) E ~+ for any ex E ~+ (go) 1. - . if c11d 111 if <P1U c ~+ (p+ ).
Bere p-dominance is simply daminanc wit h re p - t to 11 - smi im pl - p r f go.

Definition 4.1 .5. The Hass e diagram vVPof t h tandard par boli ub. 19 br p < 9
is the subset of W g cansisting of all el m nts w uch th t <P 1U C ~+ (p+ ) I' quival I tly
such that W(A) is p-dorninant for any g-dominant weight A togeth -r with t h t ructur
af a directed graph induced fram t he structur on Vl/ g.

To see the structure of a directed graph on W g we ne -d a notion of length of an
element of Wg. We know that the Weyl group of 9 is gen rated by impl ra at refi ctions .
That means that each W E W g can be expressed as a campositian of om simple root
refiections . The minimal length of such an expressian is t he lenqth. of w . The graph
structure is as follows: Vertices are the elements of Wg. For t wo 1 m nts w, W I of Wg

there is an arrow W ~ WI if and anly if ť (w)+ 1 == ť('u/) and t h re xists a po itiv roat a
such that WI == s.; o w, where ť(w) is the length af U J and Sa is a refiectian corres panding
to a .

Recipe for determining the Hasse diagram

Naw we give a recipe for general parabolics for determining the B asse di agram.

(A) Determine the Dynkin diagram af the parabalic, i.e. t he Dynkin di agr am af 9 with
those simple roots crossed, whose roat spaces are contained in g1.

(B) Take the weight ó"P, i.e. the weight which has coefficient 1 over the crassed nodes
and zeros aver the uncrossed nodes. Apply simple roat refiections to this weight.
Since we are going to apply this recipe only in the projective case, the only rule
interesting for us is the following:

... + aWi-1 + bto, + CWi+1 + ... r-t ... + (a + b)wi-1 + (-b)wi + (b + C)wi+1 + ...

In each step one only has to apply refiectians carresponding to nodes with non-zero
coefficients, and one should not apply the refiections that have led to the weight in
t he last step. Record the refiection by putting the number of the simple root aver
the arrow.
The resulting pattern gives all elements of the Basse diagram and some of t he
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arrows. The eleme nt cor r ponding
then S ec and so on up o . t c5 P i

l 2 1(

the order of composition. Th 1-Ilg h

ln pl in fi r
II h r r

wllf r'l lFor each element w in pat t rn d -rrnin - h - rl" n lin .
as the labels of t he arrows d t rrnin -d f .r.

Start with the empty set for t ll point rl' - p n ling ()p . Hr ing
sets for all elements of length < an 1 h - lcb -1 f h - ( rl' w 1-( Ing
consider a point corresponding to c rr elem -n f length in [1-

determined in step (B). Choos a path f arrow 1-c ling fr 111 c5 P

take the simple root indicat ed on t h la arr w in 11- I II n 1 h impl
refiections corresponding to t he oth I' arrow in t 11 pc t ll go ing br k o b"P. Th
resulting root has to be cont ained in ~+ (p+) nd 11- rr - p nding to t h
chosen point is given by adding t his root to t ll - -t rl' - p ndin h our e
of the last arrow. Now for any of t he arrows dctermincd o far whi h end in t h
given element, the set corresponding to t h our e of t l - arr w 11a to b obtain d
by deleting one element from the set corres ponding to t h targ -t of t h - rr w, and
this element is the right label of the arrow.

(C)

D Determine the remaining arrows. Here we will not wri t how to obtain r maining
arrows, because in the projective case we will obt ain all arrows by the r cip above,
since the Hasse diagram will consist only of Oll row and all arrows are b tw en
adjacent columns .

Justification of this algorithm can be found in [1 ].

B GG reso lut ions

It is known (see [1]) that isomorphism classes of finite-dimensional irreducible repre­
sentations of p are in bijective correspondence with p-dominant and p-integral highest
weights A, so generalized Verma modules are available only for such weights. Also , the
infinitesimal character restricts the possibilities for the existence of nonzero homomor­
phisms to the affine Weyl orbit of a weight (see [1]) . However, it suffices to restrict to
the orbit under the Hasse diagram WP C W ·:

Lemma 4. 1.1. Let A be a weight for 9 such that A + b" is g-dominant. Then all p­
dominant weights in the affine Weyl group orbit of A are contain ed in the set {w . A :

w E WP}.

Proof. See [1] D

The homomorphisms of generalized Verma modules are of two types. First, general­
ized Verma modules are quotients of true Verma modules (corresponding to the Borel
subalgebra) , see [1] . In 1997 Lepowsky proved that any homomorphism of true verma
modules descends naturally to the homomorphism of corresponding generalized Verma
modules if they exist. These homomorphisms between generalized Verma modules are
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wri sn

called standard hom om orphi ms and h - rl'- p II lin e I r r r - ..11- 1
operators. Any ot her homornorphi 111 i ( 11 -d 7107L tandard hotnon orphi tn 1

responding operators are th non tandard II - h - - 1u i II i
standard homomorphisms b tw n g -ll -raliz - I -1'111' II hi 1

tandard
h r-

f

... --+ EB NIp(W . A) --+ . .. --+ E9 Ip Cl . A) --+ I p( /\ ) --+ --+ O
wEW P : ť ('w ) = i 1uE\\ p :( (10 )= 1

where we compose t he standard hornomorphi 111 wi h ± i I II 1 c II I ' 11 II h
homomorphisms together.
Now if A is g-dominant , we will g t th - full Ha - li gr' 111 f ir Ve ri n r . Bll if
A+ 8 is g-dominant and A it self not , i.. if A+ eS li - II h - \v II f h - f mdr 111 - n 1 -yl
chamber , some weights in the Hasse diagram may c in i 1- é II I II -Y 11 - - d ll 't b - c 1way
p-dominant. In the first case , w say that A is of r qulcr infini im 1 .h. ra r whil
in the second case we say that A is of singular in fi ni t e imal ha ra -r an 1 t h - Ha e
diagram is degenerated.
This correspondence between invariant differential op ra tor and h In mo rphi m of
generalized Verma modules is the reason why we will d note t he naturt 1 bundl n any
parabolic geometry (given by a reprcscnt ati on of P) by t h - highe t w -ight of th dual
of the inducing representation. In this dual language it is a re olution of C -modul s .
The modules are spaces of sections of homogeneous bundles and homornorphi ms are
invariant differential operators.

4.1.2 General case

We have seen that in the homogeneous case there are m any invariant differential op­
erators. Now we want to have some analogue of them in t he case of gene ral parabolic
geometry of given type. Given an invariant differential op rator D : rE ~ r(F) on
CIP, we say that the differential operator D : f(E) ~ , (P ) is a curved analogue of
D, if it has the same symbol as D. The bar over E and F means that it is the 'same '
natural bundle (induced by the same representation of P) but not over CIP.

Definition 4.1.6. Consider a fixed category of real parabolic geometries and two repre­
sentations Vand W of P. Let E and F be the corresponding natural vector bundles. A
natural linear operator mapping sections of E to sections of F is defined to be a system
of linear operatorsDQ ,w : f(EM) --7 f(FM), where M is t he base of 9 such that for any
morphism <I> : (9, w) --7 (91

, Wl) we have

<I> * o D (Q/,w/) == D (Q,w) o <I> *

We will only be interested in natural differential operators,
For the next section we will need the following fact: In the case of [Ij-graded geome­
tries it is shown in [10] that naturality of (even non-linear) operators is equivalent t o
the possibility to express them by a universal formula in terms of all underlying affine
connections (and their curvature). Any operator natural on all parabolic geometries of
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given type is obviously natural 011 é II Ha I '. r b li
first-order oper át or , it i Oll fl a g - 111 - ri - é I I m.
written in t he dual languag a 1101n 111 rphi III f . II

modules - see [5]), so t he corr p nding w i 1 \ hi h
must lie on the same affi ne W yl group rbit

- I'Tl 111

( n
rl

-rl 1( 11111 -

4.1.3 Projective case

First, we determine the Hasse d iagram f r pl' je tiv pcrab li g - 111 - .r .
recipe for general parabolic geometri s giv -II b v -. I) ( ) w -
diagram of p is given by t he Dynkin diagram f .5 [( '17, + 1) b
the diagram corresponding to t h root Cl - C2. By -I (B) w - .

1 o o o O' 1 - 1 1 o o 0'2 o - 1 1 0 :3
~...-0--0 --7~-o- ... -o --7~ .. . -o --7

0'3 O'n -1 o o - 1 1 O'n o o 0 -1
--7 • •• --7~...-o--o --7~" '-O--O

where ai is the simple root Ci - Ci+1'
By step (C) we determine the 'vertices ' of t he Hasse diagram . Th - fi l' t vert -x is imply
the empty set. The second is by (C) t h simple root 1. ext vert.ex i {I 1( 2)} ==

{Cl - C2, Cl - c3}, since t he simple root refl ctions act by tran po itions i ~ 'i + 1. For t h
brevity we will denote the root Ci - Cj by Ctij . Going on t hroug h t he equence, w ee t hat
in each step we will add the root al'i for t he i-th vertex . In le d, apply ing 0'1 ' " O' i -2

to a i-l we get a li , since we start with a i-l ,i and each root reflection chang s t he fir t
index by j r----t j - 1 until j == 1. 80 t he Hasse di agram for proj ctiv parabolic g ometry
looks like

Now when we have the Hasse di agram, we can determine t he BGG r solutions (and t he
BGG sequences) for any g-dominant weight A. Here we start with t he representation of

a1 a2 an-l a n
G, the dual of which has the highest weight A. Consider t he weight A ==~...-0--0

with each a: nonnegative. Then A == "Li("L7=iaj )éi ' Adding t o A the weightp == "Li tiu,

we get
n

AIl weights on the WP-orbit of A + P :== j.L are obtained from j.L by t aking the first
coefficient to C2, second to C3," " (i - l)-th to Ci and i-t h tOci+l for i == 1, ... ,n. Indeed ,
the first refiection interchanges the first two coefficients. Combining with the second
ref1ection, which interchanges the first and the third coefficient, we get the weight j.L with
the first coefficient at C2, the second at C3 and the third coefficient at Cl. Generally, when
we have j.L with first i coefficients at C2, · · · ,éi+l and (i + l)-th coefficient at Cl, and now
interchange the first and the (i + 2)- th coefficient of this new weight , we get the weight
j.L with first i + 1 coefficients at C2," . , Ci+2 and (i + 2)-th coefficient at Cl .
The first weight in the sequence is simply A itself. To compute the second weight , we
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have Sa12(f1) = (71. - 1 + L~1=2 aj)E] + (11 + ~'=] aj) c2 +
Subtracting the weight p w- g (- 1 + ~'= _ aj)E] + (1 +
Translating it t o fund am nt al w-igh \\ - g-

11 1(
i == 3 77, + - i +
11) Jl 1
j == 1 aj E 2 + i == 3

Jl ). C" .. . a) ~ 1 ') ==1. .

71
. . a)·E.; .
) == ~ l-

- (q - 2 (ll + Cl2 + 1 0 :3 n II

X o 0- . . . -0

To compute the last weight , we hav - O' ' l(/l) == .~ ,- ?1 ( 77. + .... - li + 1.1_ ' _ 1 a)') Ei ' lb-
11 ,1l 1.- ... ) -1

tractingtheweightpweget -nE ] +L;~2] (1 +L~'= i _ l aj )ci' ran I, in u i fundamcnta l
weights , we get

11

- 71. - 1 - L a j
j = l 0.1 (1n - 1

)( 0- .. . -0

AU other weights obtained from f1 ar of the f rm (71. + 1 - k + L~'=k aJ El + L 7=2(n +
2 - i + L 7=i- l aj)Ei +L~k+l (71. + 1 - i + L~l=i aj)ci f r 2 < k < t i + 1. ubtr ting

the weight p we get (1 - k + L 7=k aj)cl + 2:7=2(1 + L~'=i - ] aj)Ei + L;~k+ ] (L~l=i aj )ci.
Translating it to fundamental weights , we get

0, 1 ak -2 (Lk-1 + cu; + 1 a k 1 (L 1I

>f----------o- . . . -O O O- . . . -O

k - I

-k - L aj
j = 1

)(

As we have seen above, the above equat ion holds also for li; == 2 TL + 1. T g -t h -r w- g t

0,1 ak -2 o,k -l + a,,: + 1 aJ..; - 1 a n
>f-------o- . . . -O 0;-.-- --0- . . . --O ---t

0,1 0,2 a n -l o,n - 0, 1 - 2 (L! + (12 + 1 0.3 (Ln

~ .. .--0---0 -t )( O O- . . . --O -t . . . ---t

k -I

- k - L aj
j =1

)(
n

-n - 1 - L aj
j = 1 0,1 o,n - l

---t . . . -t )( 0 - . . . --O

Special example of such a complex is the Calabi complex - for A == W 2. The first
operator in this complex is the operator D : r(T* J..!/ 0 [[2]) -t 0 2 T *M 0 [[2] given by
aa ~ \7 (aab), which inspired us for the next section. Another standard example is the
de Rham complex

Hypothesis 1. It seems that there are no nonstandard operators in the projective case,
at least up to order 10.

4.2 One family of operators

Here we introduce a very large family of differential operators which are invariant under
the change of Weyl connection but they are not invariant in the usual sense - we can't
find them in any BGG sequence.
We start with an operator from [6] that inspired us . It is an operator from projectively
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J -

n . 1.

I .

I

weighted veetor fie1ds on 1\1 o pl' j - i\ 1, \\ i 'h . In1l1 .n 1 ilin ' r f 1'n1
Assume t h at lvI is a Ri mannian l11 cnif I 1 \\ i .h i nn: nni 'l n II ri g. h
eonnection of 9 induces a proj - iv ru Ul' II \J. I , i kll \\11 ha
tiveIy invariant operat or DI : T * ,1 / f [.... ] -t O~ 1' J / [:...] -i\ n 1
we compose it with 9 , so we g t an operat I'

given by

x: I-t \7(a (9b)cj r )

where we use the abstract ind x no at ion cnd in t sin umnu .i n II 11-i ll . I - I'

easy to compute that it is invariant un 1-r h ch. ng - f nn - t i n in .h pl' IV

structure:

Va(9bcX C) + Vb(9a ./y ·) ==

== (Va9bc)X C+ 9bcVaX c + (Vb9ac)./"\ c + 9acVh

== (\7 a9bc - 21a9bc - Yb9ac - Y c9bn)./Y · + 9bc(\7 {J. ./Y c + 3Y a.// c + l d./,,\ ri6a)+

+(\7b9ac - 21b9ac - l a,9bc - l c9nb)X + 9nc(\7 b./Yc + 3Y b./ . + Y d / rl6b) ==
== (\7 a9bc )X C+ 9bc\7 a, X c + \7b9ac./Y ' + ga .\7 b c _

== \7a(9bcX C) + \7b(9n,c./Y )

We saw, that we didn't use the fact that 9 is a Ri man nian ln -trie 011 M', b i t on1y II
faet that it is a bilinear formo So the first natura1 gene raliz, t iOI1 i to rep1ae t h - 111 t rie

by any bilinear form on M.
But this operator is not invariant in the sense of parabolic geometry, because the weights
of eorresponding generaIized Verma modules do not lie on same affi n orbit of th Weyl

group of g. Indeed, the eorresponding weights are 3cl - Cn+l for th ourc spac and
2c2 for the target space, so shifting it by p gives (n + 3)Cl + (Tlj - 1)c2 + ... + Cn - Cn+l
for the souree space and (n + 2)cl + ('n -- 1)c2 + ... + e; for the targ t spaee. This two
weights clearly don't lie on one orbit of the Wey1 group , sinee in this notation the Weyl

group acts by permutations. .
Now we are going to construct a very Iarge family of opera t ors in a sirnilar spirit. Above ,
we started with projectively weighted vector fields on M. The idea here is to start with
any projeetively weighted positive tensor power of vector fi lds on lVI .

Theorem 4.2.1. Assume that n is some natural number. Consider the operator D
@nTM 0E[2] -+ 02T*M ®E[2] given by

where Sbal .. .an is some (n + l)-linear Jorm on M. Then this operator is invariant under
the projective change oj connection but not in the sense oj the previous section.
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Proo]. Invariance und I' t ll - pl' j - 1\ - .hauu f II II ti

"
\7 (Sa Q '\ ' '' 0 1 . . .( 71 ) +
V a b 1 · · · ' 11 j \

== (V S ) J\O I .. .rl Tl +a bt: 1 . .. 0 TI

+(V bS ) ){OI ... n
Tl +aal .. ·0 n

(
/ ll l .. . (l Tl) _

b (l(lI .. .0 Tl ~~ -

r o 1 ... a Tl +
lm 1 .. .a Tl o j

(l (1I .. · (l Tl

11

i== 1

y ) ~''' O I . . .(lTl+
(l l IHII .. .U . .. O TI -

+Sb . (\7 ../ya 1 . .. an + (17, + ?)Y / (1 1 .. . 0
71 +al .. ·a n a ...., o.«

11

i== 1
11

Y ) Ul . .. 0 Tl +
(l l (l(lI · · · b .. .0 71

i == I

+S (\7bx a l ... a -, + (17+ ?) 'Y' v «: .. ·a Tl + (\(1 1 Y ," (1 1 . . .C . .. lI 7/) -aa 1 .. .a n V ) .... 1 b ../\ }!J c:j -

'/:== 1

- (\7 S )X"a1 .. .an + X0 1 . .. OTl +- a ba 1 .. .a n ../ !J(LI . .. (In a ·/

+(\7 S )Xa. 1 ... a -, + S \7 /" 0 1 " .0 Tl _b aal ... a n (ULI . . .n Tl h../ -

== \7 (S X(J,I .. .a Tl ) + \7 (S .../y (J, I . ..(ln )a bal .. .(J. n b a(J,I ... oTl

Now we prove that this operator is not invarian in h -ns f I ar: 1 li g - 111 r .
Indeed, the target space is determin d by A == - 2W I + 2W2' A + P == -WI + 3w 2 +
L:~3 ci. , Here, to, are the fundamental weights for s[(n)+ 1; R). -xt , t 11 - mpl t li t
of weights for T M (in fact, for g_) is given - in our cl ual n tat ion - by 2wI - W 2 ; WI + W 2 ­

w3;wl+w3-w4; ... ;wl+wn- l - w n;w l + Wn' N w thr weigh for n-th sn rpow r
of T M are exactly the nonnegative linear combination of w -ights f r T lvI, in - t h n-th
tensor power of the dual of some represent ation V is the lu al of t he TL-th ten or pow r
of Vand weights of any positive tensor power of V are -xact ly t h - nonncgati v lin ar
combinations of weights of V. Especially, all weight s (also highe t weight for irr ducibl
pieces) for (g)nT M have positive coefficient at WI . Tensoring with [ [2] add 2 to t hi
coefficient and adding p to any such weight adds 1 to it. So t his coefficient will be always
positive and at least 3. On the other hand , from th previous section w know t hat any
weight on the affine Weyl group orbit of - 2w I + 2w 2 has nonpositiv co fficient at WI, so
shifting it by p makes it < 1. So when we restrict D to any irreducible ubrepresentation
of (g)nT M ® [[2], we don't get an invariant operator in the sense of parabolic geometry,
because the weights determining the source and target of this operator don 't lie on the

same affine Weyl group orbit. D
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