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Chapter 1

Preliminaries

1.1 Fibre bundles

We shall define basic notions we will need later.

Definition 1.1.1. C* fibre bundle consists of 3 C'*° manifolds F, F, M such that:

a) There exists a C* submersion 7 : £ — M

b) There exists an open covering U, of M such that Voo 3 a C* map ¢ : 7= 1(U,) — F
such that 7=1(U,) is diffeomorphic to U, x F via (m,1)).

F is called total space, F' standard fibre and M the base manifold. (m, 1)) is called bundle
chart on E over U, C M.

Definition 1.1.2. A morphism F of fibre bundles m : E — M and 7' : E' — M’ over
f:M— M isaC®map F — E'suchthat "o FF= fon

Definition 1.1.3. Let 7 : E'— M be a fibre bundle. A vector Xtangent to £ is called
vertical if and only if 7, X = 0.

Definition 1.1.4. Let p : P — M be a C'* fibre bundle, which standard fibre is a Lie
group GG. Then P is called a principal fibre bundle over M with group G, if there is given
a C™ right action of G on P such that for every bundle chart (p,) on P over U C M

P(b.g) =y(b)g, bep ' (U), geG

If P is a principal bundle over M with group G, then M = P/G and p is the canonical
projection.

Definition 1.1.5. A morphism of principal fibre bundles p : P — M with group G and
p': P' — M’ with group G’ according to a homomorphism f : G — G’ is a morphism of
fibre bundles F' : P — P’ which commutes with the principal right action of G and G’,
i.e. such that

F(bg) = F(b)f(9)



Definition 1.1.6. Let p : P — M be a principal bundle over M with group G and let
F be a C*° manifold endowed with a left action of G. Define the bundle P x F' as
(P x F)., where

(bg, &) ~ (b, g€), thatis (b,&) ~ (bg,g™ ')

for (b,€) € P x F,g € G. Denote the equivalence class of (b,€) by [b,€] and define
m([b,€]) = p(b). Then 7 : P xg F — M is a fibre bundle over M with fibre F associated
to P with the given action of G on F. If F is a vector space and the given left action is
a representation of GG, then we get a vector bundle.

Remark 1.1.1. If F carries any other structure then C'* structure, which is G-invariant,
then every fibre of P X4 F' also inherits this structure.

Definition 1.1.7. Let P be a principal bundle over M with group G and E a fibre bundle
over M with standard fibre S associated to P. Then every element u € P induces a
diffeomorphism u of S onto the fibre of E over p(u) defined by

u(s) = [u, 5]

This we will use very often when speaking about parabolic geometries.

1.2 Connections on fibre bundles

Here we will explain basic ideas of connection theory on fibred bundles.

Definition 1.2.1. Let P be a principal bundle over M with group G. Fundamental
vector field A* on P for A € g is the vector field (\y).A, where A\,g = byg.

Proposition 1.2.1. Let P be a principal bundle over M with group GG. Let X be a
fundamental vector field on P corresponding to A € g. Then (R,).X is a fundamental
vector field corresponding to Ad(g—*)A for g € G.

Proof. Let g, = exp(tA) be a curve in G. Then dg;/dt = A and

(Ry). X, = d/dt(bgg ' qi9) = (Ad(g7")A);,
]

Definition 1.2.2. Let E be a fibre bundle over M. A connection on E is a C* distri-
bution H on E, which is horizontal, i.e. complementary to the vertical bundle of E. A
connection on 7'M is usually called a connection on M.

Definition 1.2.3. Let P be a principal fibre bundle over M with group G. A principal
connection on P is a connection on P, which is right invariant in the sense that (R,).H, =

Hug WE P g €G.



Definition 1.2.4. Let P be a principal fibre bundle over M with group G and let H be
a principal connection on P. A connection form of principal connection H is a 1-form w
on P with values in Lie algebra g of G such that:

a) The kernel of w is exactly H

b) w reproduces generators of fundamental vector fields, that is w(A*) = A

Lemma 1.2.1. Let P be a principal fibre bundle over M with group G, H a principal
connection on P and w a connection form of H. Then Vg € G (R,)*w = Ad(g™") o w.

Proof. It is an immediate consequence of the fact that w is on vertical vector fields the
inverse of fundamental vector field map. ]

Remark 1.2.1. We will often refer to w as to connection on P.

Definition 1.2.5. Let P be a principal fibre bundle over M with group G and w a
connection form of some principal connection on P. The curvature € of the connection
w is a 2-form on P with values in g given by

QX,Y) =dw(X,Y) + [w(X),w(Y)]

Lemma 1.2.2. If X is a fundamental vector field corresponding to A € g and Y 1is a
horizontal vector field, then [X,Y] is horizontal.
Proof. Let g; = exp(tA) be a curve in G. Then A = dg;/dt. We have
)|

X,Y] = lim (Y = (Ry.).Y)
So [X, Y] is horizontal. O
Proposition 1.2.2. Let P be a principal fibre bundle over M with group G, w a con-
nection on P and € its curvature. Then € is horizontal, i.e. it vanishes upon inserting
one vertical vector field.

Proof. 1t is sufficient to prove the proposition for constant vector fields, i.e. for vector
fields such that w(X) is constant. First let us consider that X and Y are fundamental
vector fields corresponding to A, B € (¢). Then we have

QX,Y) = X(w(Y)) - Y(w(X)) - w([X,Y]) + [w(X),w(Y)]

But w(X) and w(Y') are constant functions on P, so we have Q(X,Y) = 0.
Now assume that X is fundamental vector field corresponding to A € g and Y is constant

horizontal. Then we have
QX,Y) = —w([X,Y])

since w(X) and w(Y') are constant. But [X, Y] is horizontal, so we have Q(X,Y) =0. O

Definition 1.2.6. Let P be a principal fibre bundle over M with group G, ‘H a principal
connection on P. Let E = P X4 F be a fibred bundle over M associated to P. Then H
induces an associated connection on E defined by

H[u,v] === W*(Hu X 03)

where m: Px F — P xg F.



1.3 Cartan connections

Here we shall develop some basic facts about Cartan connections, which will be needed
later.

Definition 1.3.1. Let G be a Lie group, H a closed subgroup of G and P a principal
H-bundle over M, dim M = dim G/H. A Cartan connection on P is a 1-form w on P
with values in Lie algebra g such that:

aVAehuw(d) =4
b Vhe H (Rp)'w = Ad(h~!) o w

¢ Vb € P wy induces a linear isomorphism of 7, P onto g

Definition 1.3.2. Let G be a Lie group, H a closed subgroup of GG and P a principal H-
bundle over M, dim M = dim G/H. Let w be a Cartan connection on P. The curvature
2 of Cartan connection w is a 2-form on P with values in g given by

QX,Y) = dw(X,Y) + [w(X),w(Y)]

Proposition 1.3.1. Let G, H, P and M be as above. Let w be a Cartan connection on
P and ) its curvature. Then ) is horizontal in the sense that it vanishes upon inserting
one vertical vector field.

Proof. It suffices to prove it for constant vector fields, i.e. vector fields such that w(X)
is constant on P. So assume that X is fundamental vector field corresponding to A € h
and Y =w™!(B), B€g\bh Wehave

QX,Y) = —w([X,Y]) + [w(X), w(Y)]
Let h;y = exp(tX) be a curve in H. Then dh;/dt = X and

X, Y] = }ing %(Y — (Rp,).Y) = }il](]} %(w—lA — w(Ad(h;')B)) =

1
lim 2w~ (A = Ad(h;)B) = w™! (|4, B))
So we see that Q(X,Y) = 0.
Since the Cartan connection trivializes TP, any differential form on P is determined by

its values on the constant vector fields w™'(X). O

Definition 1.3.3. Let P — M,w be a Cartan geometry and €2 its curvature form. Then
the curvature function k: P — A*g* ® g is defined by

k() (X,Y) = Q™ (X)(w), 0™ (V) (w)

or, equivalently
R()(X,Y) = [X,Y] - (™ (X), 0 (V)] (w)).

Since we know that €2 is horizontal, we can view k as a function on P with values in
A*(g/h)* ® .



1.4 Linear frame bundle and linear connections

Here we shall define the linear frame bundle of M and develop some theory about linear
connections on M.

Definition 1.4.1. A linear frame bundle LM of M is a principal bundle over M with
group GL(n; R), whose fibre over « € M consists of all bases of T, M.

A connection on LM induces a connection on every tensor bundle on M. These connec-
tions are usually referred to as linear connections.

Definition 1.4.2. Let w be a connection on LM and X a vector field on M. The
horizontal lift X" of X is a unique horizontal vector field on LM such that 7, X" = X.

Definition 1.4.3. Let E be a vector bundle on M associated to LM, ¢ a local cross
section of F, x; a curve in the domain U of definition of ¢, X = #,(0) € T,,M and
f =u"'¢ a function on p~'U. Then the covariant derivative V;,0yp = V x¢ is defined
by

Vxo =u(X"f)

Definition 1.4.4. Let E be as above, ¢ a cross section of E defined on M and X a
vector field on M. Then the covariant derivative V x ¢ of ¢ in the direction of (or with
respect to) X is defined by

(Vxp)(z) = Vx,p

Proposition 1.4.1. Let X, Y € T, M and let ¢ and v be cross sections of E defined in
a neighbourhood of x. Then

1. Vxyyp=Vxp+ Vyp
Vx(p+v)=Vxp+ Vxy
Vaxyp = AVxp, where A € R

VxAp = XNx)Vxp+ (XA).@, where X is an R-valued function defined on a neigh-
bourhood of x.

Proof. 1t follows directly from the definition. O

Similar proposition holds for covariant derivatives with respect to vector fields.

Proposition 1.4.2. Let M be the algebra of tensor fields on M. Then the covariant
differentiation has the following properties:

1. Vyx :IM — TM is a type-preserving derivation
2. Vx commutes with every contraction

3. Vxf = X[ for every function f on M



4. Vxyy = Vx + Vy
5. VixK = f.VxK for every function f on M and K € IM

Proof. See [8] O
Definition 1.4.5. The canonical form 0 of LM is a R"-valued 1-form, which is defined
by

0(X)=u"'m.X, Xe€T,LM

Definition 1.4.6. The torsion of linear connection w is a 2-form © on LM with values
in R" defined by

O(X,Y) = dO(X,Y) +w(X) - 0(Y) —w(Y) - §(X)

Definition 1.4.7. Let w be a linear connection on M with curvature €2 and torsion ©.
(a) The torsion tensor field or torsion is a tensor field defined on M by

T(X,Y) =uO(X" Y")

for X, Y € T,M and u any point of LM with w(u) = x
(b)The curvature tensor field or curvature is a tensor field defined on M by

R(X,Y)Z = uQ(X,Y)(u"'2)

Proposition 1.4.3. In terms of covariant differentiation the torsion T' and the curvature
R can be expressed as follows:

TX, V) = V¥ = VX —[X,¥]

and
R(X,Y)Z =[Vx,Vy]|Z - Vixy|Z
Proof. See [8] O
Let U be a coordinate neighbourhood in M with a local coordinate system z!, ... z™.

We denote by X; the vector field 8/9z',i = 1,...,n, defined in U. Every linear frame
at a point z € U can be uniquely expressed by

(ZX ZX‘ (Xi)a

where det(X!) # 0. We take (2%, X{) as a local coordinate system in 7='U C LM. Let

Y/ be the inverse matrix of X J
We can express the canonical form 6 in terms of the local coordinate system introduced
above. Let e1,...,e, be the natural basis of R" and set

= 29163



Proposition 1.4.4. In terms of the local coordinate system (x', X}), the canonical form
0 = > . 0%; can be expressed as follows:

9" = Z }"; dx’
v

Proof. See [8] O

Let w be a connection form of a linear connection on M. With respect to the basis
(EY) of gl(n; R), we write -
W = Z w; B
1,J

Definition 1.4.8. Let o be the cross section of LM over U, which assigns to each x € U
the linear frame ((X1).,...,(Xn)z). We set

Wy = 0w

Then wy is a gl(n; R)-valued 1-form on U. We define n* functions Fj-k, B 2o = Ly vl
on U by

Wy = Z( ;kdinj)Ef

i,J,k

The functions I‘jk are called components or Christoffel’s symbols of linear connection w

» T

with respect to the local coordinate system z!,..., 2"

Proposition 1.4.5. Let w be a linear connection on M. Let ij and T;k be the compo-

nents of w with respect to local coordinate systems x',...,z" and T', ..., T" respectively.
In the intersection of the two coordinate neighbourhoods, we have
—a . Oz Oz* Oz 0?2t 0T
% oy *@z0 dzx Oz —~ 01P07" O
Proof. See [8] O
Proposition 1.4.6. Let z',... x" be a local coordinate system in M with a linear con-
nection w. Set X; = 0/0x',i = 1,...,n. Then the components l";k of w with respect to
xl ..., x™ are given by
Vx, Xi=) TEX;
k
Proof. See [8] O

Proposition 1.4.7. Assume that a mapping I'(TM) x I'(TM) — I'(T M) denoted by
(X,Y) — VY, is given so as to satisfy the conditions on covariant derivative. Then
there is a unique linear connection w of M such that V xY is the covariant derivative of
Y in the direction of X with respect to w.

10



Proof. See (8] O

Proposition 1.4.8. Assume that, for each local coordinate system x',... , there 1is
gwen a set of functions F;-k, i,7,k=1,...,n, in such a way that they satzbfy th,e trans-
formation rule for Christoffel’s symbols. Then there exists a unique linear connection w
whose components with respect to ', ..., a™ are precisely the given functions I'.. More-
over, the connection formw =3, . *E" is given in terms of the local coordmate system
(z', X}) by
wh = Z Yi(dX$+ > T, Xida™)
[,m
Proof. See [8] O

11



Chapter 2

Definitions of projective structures

2.1 Classical definition

In this section we will give the classical definition of the projective structure.

Definition 2.1.1. Let V be a linear connection on a C* manifold M, x(t) a curve in
M. Then z(t) is called a geodesic of the linear connection V if and only if

vi,(f);'fﬁ'(t) = [
for all ¢ in the domain of definition of x(t).

Remark 2.1.1. In terms of Christoffel’s symbols this definition reads as

0% aw Oz (t)
8t2 ZF ot b

This definition clearly depends on the parametrization of the curve in question. If
x(t) is one parametrization of curve ¢ such that z(t) is a geodesic of V, then all other
such ’geodesic’ parametrizations of ¢ are given by ¢’ = at+ b, where a and b are arbitrary
real numbers, see [8].

Definition 2.1.2. Let M be a C*° manifold. A projective structure on M is a class of
torsion-free linear connections on M, which have the same geodesics up to parametriza-

tion.

Proposition 2.1.1. Two torsion-free connections on C*° manifold M have same geo-
desics up to parametrization if and only if there exists a one-form o on M such that

VxY = VxY + a(X)Y + a(Y)X

Proof. See [11] O
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Remark 2.1.2. In terms of Christoffel’s symbols this reads as

Here we would like to show how to compute the covariant derivative of a tensor in
local coordinates, because we will use it later. The convention is that contravariant
indices are the upper indices and covariant indices are the lower indices. Here, T for
instance means 7T'(dz®) and T}, means 7'(0/0z*). Similarly, V, denotes Vs,

First, consider a contravariant tensor 7'%t%n:

n
vaTal...a,, = O(LT(”M“” 4= E :I“(JI‘T(I]...('...{IH

ac
1=1

Next, consider a covariant tensor 7, , :

T
—— . E (&
V(I.Tﬂl...an, — 8(1711,]...(1” ]'—‘(J(II-T(I[..-C...{I”

=1

Now we would like to see how this covariant derivative behaves under the projective
change of connection. Here we are only interested in terms, which form the difference
between the old and the new covariant derivative, so all other terms we will write as
V. I or V,T . So first for the contravariant tensor 7*--%»:

-~

n
vaTal...an — VaTﬂ.]_..-afn_ + ?I-aaT”l“.an _|_ E 5:}13 (ICTO.]...C...G-”

r=1

Here the terms 6%« in the expression for I'¥. form the terms 6%, 7% % and the terms
e, 1) a

d%a; the others.

For covariant tensor 7,, ,,:

mn

~

vn.Tal...a,,, == VaTalu.a-,,, - naaTal...an - E aﬂiTal...a...a.-,,_

1=1

Here the terms §faj form the terms o, 7Ty, . 4.4, and the terms 5?’@,-_ form the others.

2.2 Projective structure as second order structure

In this section we will see how we can view projective structure as second order structure.
But first we shall see how we can realize projective structure on real projective space.

13



2.2.1 Projective space and projective groups

Let M be a real projective space of dimension n with homogeneous coordinate system
£90.&1 ... ,&" Here we will view M as space of lines through origin in R"*! and we will
consider the group SL(n + 1; R) acting on M by projective transformations induced by
its action on R"*!. Let 2!, ... 2" be the inhomogeneous coordinate system on M defined

.....

transformation is given, in terms of the inhomogeneous coordinate system xy,...,z, by
the following linear fractional transformation:

y' = (sh+ Do se)/(sh+ D sjr), i=lm 2:0)
J J

If ) # 0, then we set
i 0 i i 0 070 |
a' = sy/50,a; = s3/80,a; = 5; /55, 4, j=1,...,n

The preceding linear fractional transformation is then given by

' = (a* + Zaj,-:z:j)/(l + Zaj:z;j), E= .
g J

If n = 2k for some k € N, then we shall take (a';a};a;),4,j = 1,...,n as a local
coordinate system in the neighbourhood of identity of SL(n + 1; R) defined by sy # 0,

else we must restrict ourselves to sj > 0.

Proposition 2.2.1. Let w",w;-,wj,i,j = 1,...,n be the left invariant 1-forms on SL(n+
1; R) which coincide with da‘*,daj,dajat the identity. Then the equations of Maurer-
Cartan of SL(n + 1; R) are given by

do' = =) wiAwh (2.2)
k

dw;i = —Zw};/\wf—wi/\wj—}—éijk/\wk (2.3)
k !

dw; = — Zwk A wj‘ (2.4)
k

Proof. If we set (@§) = s~'ds, where s = (s§), then we have

i _ i i ~i_ si-0 =0
Ww'=ap, w;=w;— 00y, Wj=w;

Our proposition now follows from the following formula:

b

(dwg) = d(s™'ds) = —slds.stAds=—s"ldsAslds = —() @

14



The dual of this proposition may be formulated as follows. Let m = R™ and m* its
dual; an element of m will be a column vector and an element of m* will be a row vector.
Let gl(n; R) be the space of all n x n matrices. Then the Lie algebra sl(n + 1; R) of
SL(n + 1; R)is the direct sum:

siin+1; R) = m+ gl(n; R) + m*,

with the following bracket operation:If u,v € m, u*,v* € m* and U,V € gl(n; R), then
o] =0, [W54%]=10

[hu] =t [ U]=ul

U, V] =UV -VU

lu, u*| = uu* + u*ul,

where [,, denotes the identity matrix of degree n. There is an isomorphism between this
representation of sl(n + 1; R)and the standard one:

—trA Y - 0 Y (2.5)
X A X A+ ItrA =
Let o be the point of the projective space with homogeneous coordinates (1,0,...,0) or

inhomogeneous coordinates (0,...,0). Let H be the isotropy subgroup of SL(n + 1; R)
at o so that M = SL(n+ 1;R)/H = G/H, when n is even and let H be the isotropy
subgroup of SL(n 4+ 1; R) N ESL(n + 1; R) at o so that M = (SL(n + 1; R) N ESL(n +
1; R)/H = G/H), when n is odd and F is a diagonal matrix with +1 entries and number
of -1 is odd. In terms of the local coordinate system (a'; n.j; a;) of SL(n + 1; R) which
is valid in a neighbourhood containing H (n is even), the subgroup H is defined by
a' = 0.4 = 1,...,n. In the case when n is odd, our ’coordinate system’ (if we want
the ’coordinate neighbourhood’ to contain H, so we can’t restrict to sy > 0) is a 2-fold
covering (because I, and —1I, have same ’coordinates’ in (), but H is still given by
a' = 0. The linear fractional transformation induced by an element of H is therefore

given by an equation of the form:

ot = (Z a;;zrj)/(l + Z aj;rj) — Z aj-a:j - Z(a}ak + a.i.aj)arj:rk/Q + ... (2.6)
J J J:k

J

2.2.2 Jets and frames of higher order contact

Here we shall construct bundles of frames of higher order contact, especially the bundle
P?(M) and its canonical form.

Definition 2.2.1. Let M be a manifold of dimension n. Let U and V' be neighbourhoods
of the origin 0 in R". Two mappings f: U — M and g : V — M give rise to the same
r-jet at 0 if they have the same partial derivatives up to order r at 0. The r-jet given
by f is denoted by jI(f).

Definition 2.2.2. If f is a diffeomorphism of a neighbourhood of 0 onto an open subset
of M, then the r-jet j5(f) at 0 is called an r-frame at x = f(0).

15



Let G"(n) be the set of r-frames jj(g) at 0 € R", where ¢ is a diffeomorphism from a
neighbourhood of 0 in R™ onto a neighbourhood of 0 in R". Then G"(n) is a group with
multiplication defined by the composition of jets:

70(9).Jo(9") = Jo(go g).

Definition 2.2.3. The r-frame bundle P"(M) of M is a set of r-frames of M with
natural projection 7, 7(j"0(f)) = f(0) endowed with right action of G"(n) defined by

Jo(f)-3o(9) = Jo(fog), for jo(f) € P"(M) and jg(g) € G"(n)

We can easily see that P"(M) is a principal bundle over M with group G"(n). As a

special case, we have the so-called bundle of linear frames P*'(M) with structure group
G'(n) = GL(n; R).
From now on we shall be mainly interested in P?(M) and P'(M). Let A(n; R) be the
affine group acting on R". Considering A(n; R) as a principal fibre bundle over R" =
A(n; R)/GL(n; R) with structure group GL(n; R), we have a natural bundle isomorphism
between A(n; R) and P'(R") covering the identity of R". Under this isomorphism, the
identity e of A(n; R) corresponds to jg(id), where id denotes the identity transformation
of R". We shall therefore denote jj(id) by e. The tangent space of P!(R")at e will be
identified with that of A(n; R)at e, that is, with the Lie algebra

a(n;R) = R"+gl(n; R) of A(n;R)

. We shall now define a 1-form on P?(M) with values in a(n; R). First, we observe that
je(f) — jd(f) defines a homomorphism of the bundle P?(M) onto the bundle P!(M).
Let X be a vector tangent to P?(M) at j2(f). Denote by X’ the image of X under the
homomorphism P?(M) — PY(M); it is a vector tangent to P'(M) at ji(f). Since f
is a diffeomorphism of a neighbourhood of 0 € R"™ onto a neighbourhood of f(0) € M,
it induces a diffeomorphism of neighbourhood of ¢ € P*(R") onto a neighbourhood of
jd(f) € PY (M) given by ji(g) — ji(f o g). The latter induces an isomorphism of the
tangent space a(n; R) of P!(R") at e onto the tangent space of P'(M) at j}(f); this
isomorphism will be denoted by f.

Definition 2.2.4. The canonical form 6 on P*(M) is defined by
(X) = f1(X')

Since f depends only on j2(f), 8(X)is well defined. The 1-form 6 takes its values in
a(n; R).
Let j2(g) € G*(n) and j}(f) € P'(R"). The mapping of a neighbourhood of e € P!(R")
onto a neighbourhood of e € P'(R") defined by

jo(f) = Jolgo fog™)

induces a linear isomorphism of the tangent space a(n; R)of P'(R") at e onto itself. This
linear isomorphism depends only on j3(g) and will be denoted by ad(j2(g)).
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Proposition 2.2.2. Let 6 be the canonical form of P?(M). Then
(A*)= A", Ae€g’(n) (2.7)
where A" € gl(n; R) is the image of A under the homomorphism

6%(n) — g'(n) = gi(n; R);

and

(R.)*(0) = ad(a ") 08, a€ G*(n) (2.8)

Proof. 2.7 Let ji(g:) be a curve in G*(n) such that j2(go) = e. Then jl(g;) is a curve in
G*'(n) such that j3(go) = e. Then

0(d/dt(jo(f © g1))) = F~H(d/dt(Go(f o ¢1))) = d/dt(jp(gr)) = A’
2.8 Let in addition g € G*(n).Then

((R3)6)(d/dt(j5(f o gi))) = 0(d/dt(j§(f o g0 g))) =
= 1(]o(f°9°9 ogiog)) = (ad(g™") o 0)(d/dt(j§(f o ¢1)))
O

Proposition 2.2.3. Let M and M’ be manifolds of the same dimension n and let 6
and 6’ be the canonical forms on P?*(M) and P*(M') respectively. Let f : M — M’
be a diffeomorphism and denote by the same letter f the induced bundle isomorphism
P%(M) — P%*(M'). Then

[0y =0
Conversely, if F : P*(M) — P*(M’) is a bundle isomorphism such that F*(0') = 6, then
F' is induced by a diffeomorphism f of the base manifolds.

Proof. See [7] O

We shall now express the canonical form of P?(M) in terms of the local coordinate
system of P?(M) which arises in a natural way from a local coordinate system of M.
For this purpose we may restrict ourselves to the case M = R". Let ey,...,e, be the
natural basis for R" and (z1,...,z,)the natural coordinate system in R". Each 2-frame
w in R™ has a unique polynomial representation u = jé(f) of the form

)= z:(uI + Z ulz! + (Z ul lz*)/2)e
i j ik

where x = 3, a'e; and uf; = uj;. We take (u';uj;ul;) as the natural coordinate system
in P*(R™). Restricting ( J,uﬂt)to Gg( ) we obtain the natural coordinate system in
G?(n), which will be denoted by (s};s’;). The action of G*(n) on P?(R")is then given

by
(U. :?1_}1 ﬂ.,) _}? jk z :’Uip J’Zu[’ Jk+zuqr J
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In particular, the multiplication in G*(n) is given by

(553 556853 85) = (D 5355 D 5+ )
p P

q,r

Similarly, we can introduce a coordinate system (u'; u})in PI(R”) and a coordinate sys-
tem (u}) in G'(n) so that the homommphlsms Pz(R”) PY(R") and G*(n) — G'(n)
(

are given by (u'; u}; Jk) — (u';u}) and (s%; ij) s') respectively. Let Ej; E? the basis

for a(n; R) defined by |
= (0/0ui)e, E] = ((‘)/E)u;)f,

0=> 0'E+> 0.F
i ij
Let jg(f) = (u'sul;uly) € P2(M) and ji(g:) = (c't; 0% + cit) € P?(R"). Then

f(d/dtli=o(Go(ge))) = d/dt]—o(jo (f © gt))

Here we will use the representation of ji(f) = Y, (u'+ 3, uba’/ + (37 , ula’z*)/2)e; and
Jo(ge) = Doi(c't + (8% + ¢it)a)e;and composition of jets W111 correspond to composition
of these polynomials. Because we are differentiating it by ¢, we shall consider only those
terms, which contain ¢ only in the first power. To compute coefficient of E;, we are
only interested in terms, which contain no z¢, to compute coefficient of E,f , we are only
interested in terms containing z* in first power:

d/dt)s—o(Jo(f 0 g)) = (Z(U;C‘j)ﬂ' - Z (Z ULC; ) E‘J)
i ij \ k
From the definition of the canonical form #, we obtain the following formulae:
du' = Zujé’j (2.9)
J
du; = Zui@}‘ + Z uijﬁh (2.10)
k h

We set

Let (v}) be the inverse matrix of (u}). Then

0 = ) vidu* (2.11)

K
9; = Z 'deu Z 'kauhj (212)
k h,k,l

From these formulae we obtain the following important equation:
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Proposition 2.2.4. Let § = (6';6%) be the canonical form of P*(M). Then
o' =) 6, N6
’I‘.
Proof. We know that d(du') = 0. So we get
=D AU A =D ulde = =) e A0 =Y uldy =
) J Sk '

J
= — Z ’Uf'uj Hf_. AG* = Z -f,’f’u}(fﬁj =5 — Z 0. A 6% = db’
k

i,k i.j
]
2.2.3 Projective structures and projective connections
The subset H?(n) of G*(n) consists of elements (si;s;) with s', = —(sisp + sis;)

forms a subgroup of dimension n* + n. Let 0 be the point of the projective space with
homogeneous coordinates (1,0, ...,0) and let H be the isotropy group at 0 of SL(n+1; R)
acting on the projective space.

Proposition 2.2.5. For each element a € H, let f be the linear fractional transforma-
tion of R™ induced by a. Then in the case of even n a — j2(f) gives an isomorphism of
H onto H*(n). Moreover, if a € H has coordinates (a'; a’; a;), where a' = 0, with respect
to the local coordinate system in SL(n + 1; R) introduced above, then the corresponding
element of H*(n) has coordinates (a;; H(a,jak +aia;)). If n is odd, the mapping a — j5f
is a 2-fold covering of H onto H?*(n). Moreover H is isomorphic to Zo x H*(n). The

other statement is also true in this case, if we consider the ‘coordinate system’ in G.

Proof. The coordinates of j3(f) are evident from the explicit expression of the linear
fractional transformation f given by equation 2.6. Now in the case of even n we rewrite
an element of H using the local coordinate system in SL(n + 1; R):

det™(g}) gj) (1 det(gj-)w)
( 0 g; 0 det(g;)g; (2.13)

From this expression it is evident that there is an isomorphism H — H?(n) given by
a — jo(f). If n is odd, then using the 'coordinate system’ we get the same way a homo-
morphism, which is a 2-fold covering H — H?(n). The kernel of this homomorphism is
the subgroup —7I,,41, In41 of SL(n+ 1; R), which is a normal subgroup of G contained in

H. L

Definition 2.2.5. A projective structure P on manifold M is a subbundle P of P?(M)
with structure group H?(n) if n is even, and P[] P with structure group H, if n is odd.
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Definition 2.2.6. Let P be a projective structure on manifold M and P’ a projective
structure on M'. A mapping f : M — M’ is called projective, if, prolonged to P?(M),
maps P to F.

Remark 2.2.1. If dim M is odd, then since H = Z X H?*(n), we can prolong f uniquely
to P. So the definition makes sense also in this case.

Definition 2.2.7. Let 6 = (6';6}) be the canonical form on P*(M). Given a projective
structure on M, let (6;0 )be the restriction of (6%;6%) to P. A projective connection
associated with a plo.]ectlve structure P is a Cartan connoctlon w = (W;wiw;) in P
such that w' = 6.

Remark 2.2.2. In the case, when dim M is odd, this also defines w' on P by equivariancy.
Lemma 2.2.1. Let a € H and take the corresponding j2(f). Then
ad(j5(f)) : a(n; R) — a(n; R)

and
ad(a™) : m+ gl(n; R) — m+ gl(n; R)

where the latter is the mapping sl(n + 1; R)/m* — sl(n + 1; R)/m* induced by
ad(a™') :sl(n+ 1; R) — sl(n + 1; R)
coincide.

Proof. Let j¢(g) = (ul;uly) € H*(n) and j5(fi) = (c't; 0% + cit) € PY(R"). We will use
here the polynomial representation of jets. So we have

ad(j3(97"))(d/dt(js(f2))) = d/dt((g™" © frog)) = Z’U FJEi+ ) viduiEl

1,7,k
We see that it is exactly ad(a™!) as can be easily computed by matrix conjugation. [

Proposition 2.2.6. For each projective structure P of a manifold M, there is a unique
projective connection w = (w*;w};w;) such that

W = (2.14)
wi = 6 (2.15)
Zﬂj =0 (2.16)

Z iy = B (2.17)

where Qi = Y, | Kiw® AW,
Proof. See [7]. O

Definition 2.2.8. The unique projective connection described in the proposition above
is called normal projective connection.
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2.2.4 Equivalence of the two definitions

The group Gl(n) GL(n; R)can be considered as the subgroup of G?*(n)consisting of
elements (s*; $G) with sjk = 0. Thus G'(n) c H? (n) C G?*(n). Since G*(n) acts on
Pi(M), the subgroups G'(n) and H?*(n) act on P?(M). We consider the associated
bundles P*(M)/G'(n) and P*(M)/H?(n) with fibres G?(n)/G (n) and G?*(n)/H?*(n)

respectively.

Proposition 2.2.7. (1)The cross sections M — P*(M)/G'(n) are in one-to-one corre-
spondence with the affine connections without torsion of M.

(2)The cross sections M — P*(M)/H?(n) are in one-to-one correspondence with the
projective structures of M.

Proof. Let (u';u’; Jk) be the local coordinate system in P?(M) induced from a local
coordinate system z',... 2™ in M. We introduce a local coordinate system 2% ) 25 1N

P*(M)/G*(n) in such a way that the natural mapping P*(M) — P*(M)/G*(n) is given
by the equations
=t 2y = Zupqvaf, (vj) = ('u_.;)_l
X

Then a cross section I' : M — P%(M)/G*'(n) is given, locally, by a set of functions

T i 1 o 1 7
Zip = —Dilzy .. ,2"), T =Ty

Now consider the action of the group G%(n) on the fibre G*(n)/G*(n):

m n ,U
Z 'pqvjvk Z Sfuﬂm p YqS5S +Z Spq J

P,q l,m,n,p,q »dq
where (s%;s,) € G*(n) and (5) is the inverse matrix of (s}). So we have

T 0T’ rw OxP Oz B 0*T' OxP O0x9
A I L 0zPOx1 0TI OTF

pq,r pq

We must realize that
0?zP Ozt : 0’z OxP Ox9 B
Ox0xk OxP OTPOTI Ol Ok

p,q

what we can obtain by differentiating equation

ox oxt OxP

az* - OzP Ox*

So we see that the functions ij behave under the change of coordinate system as

Christoffel’s symbols must do. This proves (1).
Since the reductions of structure group to H*(n) and the cross sections M — P2(M)/H?(n)

are in one-to-one correspondence, (2) is evident.([7]) O
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Every affine connection without torsion I' : M — P?*(M)/G'(n), composed with
the natural mapping P*(M)/G*(n) — P*(M)/H?(n), gives a projective structure M —
P?(M)/H?*(n). Even in the case, when dim M is odd, knowing P is equivalent to knowing
P
Definition 2.2.9. An affine connection I without torsion is said to belong to a projective
structure P, if I induces P in the manner described above.

Definition 2.2.10. We say that two affine connections without torsion are projectively
related if they belong to the same projective structure.

Proposition 2.2.8. The above definition of projectively related connections is equivalent
to the classical one.

Proof. An element (a%; —(a%ax + aja;)) of H*(n) induces the transformation of P?(M)
given by

i
(u'5 ul; uly) — ('u E usal; — E u (ahay, + aja;) + E up,.a’ ak)

p

It induces a transformation of P?(M)/G*(n) given by
(2% 2) — (2% —(8ax + 6;a;))
where a; = ) ba,, (b%) = (aj)~". Our assertion is now clear. O

Let I' be the affine connection without torsion. It corresponds, in a natural manner,
to a reduction of the structure group to G*(n). In other words, it induces an isomorphism

of PY(M) into P*(M) given by

v (uhul) — (u"; i Z F;qufuz) (2.18)
P.g

Thus, an affine connection I" without torsion belongs to a projective structure P if and
only if the corresponding subbundle of P?(M) with structure group G*(n) is contained
in P. If dim M is odd, then we extend v : P}(M) — P*(M) to v : PY(M)[] P*(M) —
P?(M) [T P3(M).

Proposition 2.2.9. Let I be an affine connection without torsion and v : P*(M) —
P2(M) the corresponding isomorphism. Let (6;05) be the canonical form of P*(M).
Then v*0' is the canonical form of P'(M) and ’y"‘é‘t is the connection form of the affine
connection I'.

Proof. Consider a curve s(t) = (u' + c't;u} + cit) in P'(M). Then

v(s(t)) = (ui —|—c“'t;uj + cjt; - ZF 1‘ J(uf +el ))
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So

(v*0")ds(t)/dt = 6' (Zc d/ou" + Zc d/0u’; — Z Il + uf

i,7,k,p,q

and similarly

(v*0})ds(t)/dt = 6 (Zc d/0u’ + Z( 0/0u — Z o ul + uf

1,J,k,p,q

So we see that

v = Zv};du"’
7*9} = Zuﬁ‘du + Z t)kf‘hnu”‘d'u.l

1,7,k 1,7,k,l,m

what is exactly what we wanted to prove.
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Chapter 3

Projective structures as parabolic
geometries

3.1 Parabolic geometries

We start with a |k|-graded semisimple Lie algebras.

Definition 3.1.1. A |k|-graded semisimple Lie algebra g is a Lie algebra g with decom-
position
=9k DPPg- 1099 DY1 D D g

such that [g;, g;] C gi+;, where we set g; = 0 for |i| > k.

This gradation induces a filtration on g: g' = g;®- - - @gx. Every filtration component
g' is a subalgebra of g by grading property. We denote g° by p and g' by p,. From
the grading property it is evident that p, is an ideal of p. We also denote by g_ the
subalgebra g_, ® ... ® g_1.
Let now G be any Lie group with Lie algebra g. We define

Go = {9 € G, Ad(9)g: C 9:}

and , _
P={ge€G, Ad(g)g' Cg'}

Now we are ready to define parabolic geometry of type (G, P):

Definition 3.1.2. Let G be a semisimple Lie group with |k|-graded Lie algebra g, G,
and P the groups given by the |k|-grading. A parabolic geometry of type (G, P) on
manifold M is a Cartan geometry of type (G, P) on M, i.e. a principal P-bundle G on
M endowed with a Cartan connection with values in g.

We know that g_ and p, are subalgebras of g. By invariance of the Killing form of
g, they are dual as go-modules and if we consider g_ as g/p, then also as p-modules.
Now we can identify G x p g/p and TM using the Cartan connection on G. We define a
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map G x g/p — TM by (u, X) — T,pw ' (X), where p : G — M is a bundle projection.
By equivariancy of w this factors to a bundle map G xp g/p — T M, which restricts to
an isomorphism on each fibre and thus a vector bundle isomorphism. We see that TM
is associated to Cartan bundle G. Similarly, we can realize the cotangent bundle and all
tensor bundles as associated bundles.

Representing T'M as associated to the Cartan bundle we get an induced filtration on
it: T"M = G Xp g'/p. This induces an algebraic bracket on I'(T'M). Similarly, we can
define T"G = p~'T"M = {X € TG; wX € g;}.

3.2 Regular parabolic geometries.

Now we want to define regular and normal parabolic geometries. First, we have to look
on the structure of P.

Proposition 3.2.1. Let g be a |k|-graded semisimple Lie algebra, G a Lie group with Lie
algebra g, Gy and P the groups induced by the grading. Then P is a semidirect product
of Gy and vector group, i.e. for every g € P there exists a unique gy € Gy and unique
Zl, TET Zk; Zz € gi such that

g = goexp(Z1) ... exp(Z)
Proof. See [1] O

Let us denote the vector group from the latter proposition by P,. Now consider the
action of P. on G. We can form the orbit space Go = G/P,. Since P, is a normal
subgroup of P, we can define on G, a free right action of G simply by pulling down the
action of Gy on G. So we see that G is a principal Gy-bundle over M. But since Gy is a
subgroup of P, we can also associate T'M to Gp. But this induces a gradation on T'M,
which is compatible with filtration induced by P: T;M = Gy X, ;- Analogous to the
filtration on TG, we can define gradation on 7'Gy. Now the gradation on 7'M induces an
algebraic bracket on T'M.

Proposition 3.2.2. Let (p : G — M.w) be a parabolic geometry of type (G, P) corre-
sponding to the |k|-grading g = g_,®- - -Dgx of the Lie algebra g of G. Let (po : Go — M)
be the underlying Gq-principal bundle. Then for each @ = —k,... =1 the Cartan con-
nection w descends to a smooth section w) of the bundle L(T'Gy,g);. For each u € G,
and i = —k,...,—1 the kernel of W) : T:Gy — (g): is ezxactly T:T'Gy and each P is

equivariant in the sense that for g € Gy we have (R,)*w? = Ad(g™') o w?.

Proof. See [1] O

Definition 3.2.1. (1) An infinitesimal flag structure of type GG, P on a smooth manifold
M 1is given by

(i) A filtration TM = T*M > --- D T7'M of the tangent bundle of M such that
the rank of 7'M equals the dimension of g*/p for all i = —k,... —1.
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(ii) A principal Gy-bundle p: E — M.

(iii) A collection § = (f_y,...,0_,) of smooth sections ¢; € I'(L(T"E, g;)) which are
Go-equivariant in the sense that (R,)*0; = Ad(g™') o 6; for all g € Gy and such
that for each u € F and ¢« = —k, ..., —1 the kernel of §;(u) : T'E — g, is exactly
Ti+E C TiE.

(2)Let M and M be smooth manifolds endowed with infinitesimal flag structures {T°M}, p :
E — M,0 and {T'M},p: E — M., 8 of type (G, P). Then a morphism of infinitesimal
flag structures is a principal bundle homomorphism ® : F — E, which covers a local
diffeomorphism f : M — M such that Tf is filtration preserving and ®*6; = 6; for all
i=—k, ... —1.

Definition 3.2.2. A filtered manifold is a smooth manifold M together with a filtration
TM = T7*M > --- D T7'M of its tangent bundle by smooth subbundles, which is
compatible with the Lie bracket of vector fields in the sense that [£,7n] € T'(T"" M) for
any £ € I'(T"M) and n € T'(T"M).

Now assume that (M,T"M) is a filtered manifold and for each i = —k,..., —1 let us
denote by ¢; : T"M — T; M the natural projection, and consider the operator I'(T"M) x
DNT'M) — T(T;y;M) defined by (£,1) — ¢i+;([§,n]). For a smooth function f €
C>=(M, R) we have [£, fn] = (£&.f)n+ f[€,n]. Sincei < —1, we see that TVM C T*H+1M,
so the first term lies in the kernel of ¢;;;. Hence the mapping defined above is bilinear
over smooth functions, so it is given by a bundle map T°M x TV M — T;, ;M. Moreover,
for £ € T"H'M and n € T?M we have [£,7] € T" 1M, so again this lies in the kernel
of ¢i4+;, so this map further descends to a bundle map T;M x T;M — T;, ;M. Taking all
these maps together, we obtain a bundle map L : gr(TM) x gr(TM) — (T)M, which is
compatible with the grading.

Definition 3.2.3. (1) For a filtered manifold (M, T"M) the tensorial map L : gr(TM) x
gr(TM) — gr(TM) induced by the Lie bracket of vector fields as described above is

called the (generalized) Levi bracket.
(2) An infinitesimal flag structure (Go — M, ) is called regular, if the algebraic bracket

coincides with the Levi bracket £. (3) A parabolic geometry is called regular, if the
underlying infinitesimal flag structure is regular.

Definition 3.2.4. Multilinear mapping f : gx---xXg—gis said to have homogeneous
degree k, if f maps gt x -+ x gin to gt Fntk The k-th homogeneous component of

f will be denoted by f®*).

Proposition 3.2.3. Parabolic geometry (G — M, w) is regular, if and only if the curva-
ture k of w satisfies K9 = 0 for i < 0.

Proof. See [1] O
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3.3 Normal parabolic geometries.

Before we define normal parabolic geometries, we need to look a bit on Lie algebra
cohomology with values in some representation. The chain spaces are defined to be

C*(g,V) = A*(g* x V) and the differential 0 : C*(g, V) — C**1(g, V) is defined by

k
a(f)(Xo, AT :Xk) - - Z(—l)!p(xl)f(/\fo, C ey ‘”\’:"ia A E- z\'k) (3].)
=0
+ Y (DX X, Xoy - XKiy o, Ky oo, Xi)
i#]

where f : A¥g — V and p is a representation of g on V. By direct computation we get
that 9° = 0.

We know that the Killing form B of g induces an isomorphism (g/p)* = p, of P-modules.
Thus we can identify C’(p,,g) = A/p,. x g with the dual of P-module A’(g/p)* x g.
From the definition it is obvious that 9, : C7(p,, g) — C?*!(p,, g) is a P-homomorphism
and we know that 83 = (. Dualizing this homomorphism, we obtain a P-homomorphism
0" N(g/p)* ®@g — A~1(g/p)* ® g which satisfies 9* 0 9* = 0. This homomorphism is
called the Kostant codifferential.

We now obtain a formula for 0* on decomposable elements. We can write a decomposable
element of A"t (g/p)* xgas ZgA---ANZ, x Awith Z; € p; = (g/p)* and A € g. The
pairing of ¢ € C"*!(p,,g) with that element is given by B(¢(Zy,...,Z,), A). Thus for
¢ € C"(py,g) the pairing of 0¢ with our element is given by

fj(-—l)iB([Zi, N Zo,..., 2y oy Zn)], A)+

=0
SN=1)HB(¢([Zi, Zi), Zoy - s Ziy- s Ly v Zn), A)

1<j

-

Using invariance of B, we may rewrite each of the summands in the first sum as
(—I)H_IB(gb(ZOa wisliny Zia LS Zn)a [Zza A]) We get

mn

O (ZoA - NZn®A) = > (1)1 ZA...2i.. . N2, ® A (3.2)

=0
+ Y (D)2, Z\ANZo A Ly 2y N2y ® A
i<j
Definition 3.3.1. The parabolic geometry p : G — M, w is called normal, if its curvature

k satisfies 9*(k) = 0.

3.4 Adjoint tractor bundle.

We now return a bit to general Cartan geometries.
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Definition 3.4.1. A tractor bundle for Cartan geometry (p: G — M, w) of type (G, P)
is a vector bundle associated to G via a restriction to P of some representation of G.

We will use this definition with two different representations. In this paragraph we
will consider the adjoint representation of G on g.

Definition 3.4.2. Let p: G — M, w be a parabolic geometry of type G, P. The adjoint
tractor bundle for geometry G — M, w is the vector bundle G X p g, where g is considered

as a P-module via adjoint action. We will denote it by AM and call G the adapted
frame bundle for AM.

Definition 3.4.3. For every section s of a bundle associated to G we define a function

fson G by fi(u) = Q*I(S(x)),u € g,p(u) = .

A function on G, which corresponds to a section of some associated bundle, is P-
equivariant, i.e. f(ug) = g~ f(u).
Since Lie bracket on g is Ad(P)-invariant, we can define an algebraic bracket on AM by
frsy(u) = [fs(u), fi(u)]. This algebraic bracket makes AM into a bundle of filtered Lie
algebras, so we have a filtration on AMdefined by A'M = G xp g', which is compatible
with algebraic bracket of adjoint tractors. Since TM = G xp g/p and T"M = G Xp p.,
we see that AM contains T*M as a subbundle and T'M is a quotient of AM.
We can also consider the adjoint tractor bundle as associated to Gy. Then we have
an induced gradation on it: A;M = Gy X, g;- In this situation we can embed in it
both tangent and cotangent bundle in an obvious way. On the graded version of AM
the Killing form of g induces a pairing such that A’M = A_,M and the algebraic
codifferential 0* defines natural algebraic mappings

8*:Ak+1A1®A_>AkA1®A

Similarly as in the case of algebraic bracket we can define the algebraic action of AM on
any tractor bundle by f..: = p(fs)fi, where s is a section of AM and tis a section of any
tractor bundle. Visibly, the algebraic action of AM on itself is the algebraic bracket.

3.5 Existence and uniqueness of normal Cartan con-
nection.

First we need that any infinitesimal flag structure that comes from a parabolic geometry,
comes from a normal parabolic geometry.

Proposition 3.5.1. Let p: G — M,w be a reqular parabolic geometry with curvature
k € Q2(M, AM) and suppose that 9*(x) € Q' (M, AM)" for some ! > 1. Then there is
a normal Cartan connection & € QY(G,g) such that © —w € QY (M, AM)'. In partic-
ular, there is always a normal Cartan connection @ which induces the same underlying

infinitesimal flag structure as w.
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Proof. See [1] O

Proposition 3.5.2. Let g = g_1®- - -®gy be a |k|-graded semisimple Lie algebra, G a Lie
group with Lie algebra g and let Gy C P C G be the subgroups given by the |k|-grading.
Then any regqular infinitesimal flag structure or type (G, P) on a smooth manifold M 1s
induced by a normal parabolic geometry of type (G, P).

Proof. See [1] O

Now we want to have some result about uniqueness of normal parabolic geometry up
to isomorphism. For that purpose we will need the following lemma:

Lemma 3.5.1. Let p: G — M,w be a reqular parabolic geometry of type (G, P), let w be
another Cartan connection and put ® .= 0 —w € Q' (M, AM). Then the Cartan connec-
tions w and & induce the same filtration of T M if and only if ® € Q' (M, AM)? and they

induce the same underlying infinitesimal flag structure if and only if ® € Q'(M, AM)*.
Proof. See [1] O

Proposition 3.5.3. Letg=g_, D - ® gx be a |k|-graded semisimple Lie algebra such
that H'(g_, g)! = 0 for somel > 1. Let G be a Lie group with Lie algebra g, Gy C P C G
the subgroups defined by the grading, and let (p: G — M, w) be a normal reqular parabolic
geometry of type (G, P). Then the following folds:

If & € QYG, g) such that for eachi = —k,...,—1 the difference © —w maps T'G to g'*',
then there is an automorphism ¥ of the principal bundle G, which induces the identity
on the underlying infinitesimal flag structure such that V*w = w.

Proof. See [1] O

3.6 Weyl structures.

Now we will define the main notion needed to see that projective parabolic geometry
is equivalent to classical projective geometry. In this subsection we will consider the
adjoint tractor bundle as a bundle of graded Lie algebras, i.e. as associated to Gp. From
now on, we will also identify the section of some bundle associated to G or to Go and the

corresponding equivariant functions.

Definition 3.6.1. Let (p : G — M,w) be a parabolic geometry of type (G, P) on a
smooth manifold M, and consider the underlying principal Go-bundle py : Gy — M
and the canonical projection m : G — Go. A Weyl structure for (G,w) is a global G-
equivariant section o : Go — G of 7, where equivariancy means that o(ug) = o(u)g for

g € Go.

29



Proposition 3.6.1. For any parabolic geometry p : G — M, w there exists a Weyl
structure. Moreover, if 0 and 6 are two Weyl structures, then there is a unique smooth
section T = (Tq1,...,Tx) of AM @ ---® A M such that

o(u) = o(u)exp(Ti(u))...exp(Ti(u))

Finally, each Weyl structure o and each section Y define another Weyl structure & by
the above formula.

Proof. See (2] O

Consider the pullback o*w of the Cartan connection w along the section . Then o*w
is a g-valued one-form on Gj, which by construction is Gy-equivariant, i.e.(R,)*0*w =
Ad(g7 ') oo*w for all g € Gy. Since Ad(g~') preserves the grading of g, each component
o*w; of o*w is a Gy-equivariant one-form with values in g;.

Now consider a vertical tangent vector on Gy, i.e. the value A*(u) of a fundamental
vector field corresponding to some A € go. Since o is Gy-equivariant, we conclude
that g, 4! = ;(u), where the second fundamental vector field is on G. Thus we have
oc*w(A*) = w(A*) = A € go. We see that for ¢« # 0 the form o*w; is horizontal, while
o*wp reproduces the generators of fundamental vector fields. So for ¢ # 0 the form o*w;
descends to a smooth one-form on M with values in A; M, which we denote by the same

symbol, while o*wy defines a principal connection on Gy.

Definition 3.6.2. The principal connection c*wy on Gy is called the Weyl connection of
the Weyl structure o. The form P = o*w, is a one-form on M with values in 7*M and
is called the Rho-tensor of o.

The form oc*w_ = (6*w_y,...,0*w_1) induces an isomorphism
TM2A M - DA M = gr(TM)
We will denote this isomorphism by
£ (€ py.. . 6L EALMD - DA M

for € € TM. In particular, each fixed u € Gy provides the identification of T, )M = g_
compatible with the grading. Thus, the choice of a Weyl structureo provides a reduction
of the structure group of T'M to Gq (via the soldering form o*w_ on Gy), the linear
connection on M (the Weyl connection c*wy), and the Rho-tensor P.

Now we will also need some more notation. By j we denote a sequence (ji,..., ji)
of nonnegative integers, and we put ||j|| = j1 + 2j2 + -+ + kji. Moreover we define
it = ji!... gkl and (=1)L = (=1)*t"H%k and we define (j), to be the subsequence
(11, ..., jm) of j. By 0 we denote sequences of any length consisting entirely of zeros.

Proposition 3.6.2. Let 0 and 6 be two Weyl structures related by
6(u) = o(u) exp(Yi(u)) . ..exp(Tr(u)),
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where T = (Ty,...,Ty) is a smooth section of AM @ - & AcM. Then we have:

& = Z: Jadnwo -0 ad(Y1) (&) (3.3)
gl 4+l=1 =
15,,(5) = (= l)ind(TA )Yk o 0ad(Y) (&) + (3.4)
=i L
(_jll)‘l”d(TA-)“‘ o---oad(T ) (Py(§)) +
IIJII =
Z Z —ad(T) o0 ad(Y,)"" (Ve Yom)

.}H? }

m= l(J )i —1=0 —
m+|[j||=1

where ad denotes the adjoint action with respect to algebraic bracket {-,-}. If E is an
associated vector bundle to the principal bundle Gy, then we have:

1) (ad(Yi)* o---o0ad(Y,)"(&)) e s (3.5)

V,sS_VgS‘}‘ Z _]

il|+1=0 =

where o denotes the map AgM x E — E induced by the action of gy on the standard
fibre of E.

Proof. See [2] O

Ezample 3.6.1. For all |1|-graded parabolic geometries, the formulae from the proposition
above become very simple. The grading of 7'M is trivial, the connection transforms as

Ves = Ves —{Y,£} o5 (3.6)

where T is a section of A{M = T*M, and the bracket of T and £ is a field of endomor-
phisms of T'M acting on s in an obvious way, because these are the only terms in the
formula 3.5 which make sense. Next, the Rho-tensor transforms as

1
P(§) = P(§) + VT + 51T, {T, £} ) (3.7)
Definition 3.6.3. The Weyl curvature of a Weyl structure o is defined by

V(& n) =do*w(&,n) + [o7w(§), o w(n)]

We see that W is exactly the pullback of the curvature €2 of Cartan connection w.

Since € is O*-closed, we see that W is also 0*-closed.
Now we want to compare W<o(&,n) with curvature and torsion of any Weyl connection,

where W is the part of W with values in g_ (J go.
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Definition 3.6.4. Let § — M, w be a parabolic geometry of type (G, P), Gy the corre-
sponding Gy-bundle and o : Gy — G any Weyl structure. The total curvature K of o is
defined by K = K<y + K, where

K<o(€",n") = do*w<o(€", ") + [0*w<o (€"), 0*weo(n™)]

and
K, (6" n") = do*w (6" ") + [0 w4 (€"), 0" wi ("))

where £" is the horizontal lift of & with respect to principal connection o*wy.

Proposition 3.6.3. Let G — M,w be a parabolic geometry of type G, P, Gy the corre-
sponding Go-bundle, o : Gy — G any Weyl structure, P its Rho-tensor and W (&,n) its
Weyl curvature. Then

W& n) =K n)+{P(&).n} — {Pn),&}

Proof. For brevity we will denote oc*w by 7. By definition we have

W(E", n") = dr(&" ") + [r(€"),7(n")]

Because h denotes the horizontal lift, the go-components of 7(£") and 7(n") are auto-
matically zero, so we may write

[T (€M), 7(M)] = [m=(€"), —(")] + [r(€"), 7—(n")] +
+ [ (€M), T (") + [ (€M), 7 (n")]

On the other hand we have
K(€" ") = dr(€"n") + [r-(€"), 7-(n")] + [+ (€"), 74 (n")]

Now 74 (£") is exactly the function corresponding to P(§), while 7_(n") corresponds to 7.
Since the algebraic bracket is induced by the Lie bracket on g, the formula for W (¢, n)
is obvious. O

Erample 3.6.2. Let us look on the case of |1|-graded parabolic geometries. Then we have

W—l(£1 7}) = T(ga 77)

where T is the torsion of the corresponding Weyl connection. Now

Wo(€,m) = R(&n) +{P(&),n} — {P(), &} (3.8)

because the part of the total curvature K with values in go is exactly the curvature of
the corresponding Weyl connection.
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3.7 Bundles of scales.

Here we introduce bundles of scales, which will be a very important ingredient in com-
parison of classical and parabolic definition of projective structure. These bundles will
be principal R*-bundles associated to G,. Clearly, they will be associated via homomor-
phism A : Gy — R™ with derivative X' : gg = g5° @ 3(goy) — R, which automatically
vanishes on the semisimple part.

Definition 3.7.1. An element E\ of 3(go) is called a scaling element if and only if
E)\ acts by a nonzero real scalar on each Gy-irreducible component of p,.. A bundle of
scales is a principal RT-bundle £* — M, which is associated to G, via a homomorphism
A : Gy — R, whose derivative is given by N'(A) = B(FE), A) for some scaling element
E\ € 3(g0).

For any principal bundle £ — M there is a bundle QE — M, whose sections are
exactly the principal connections on E,| see [9)].

Proposition 3.7.1. Let p : G — M be a parabolic geometry on M, and let L> — M be
a bundle of scales.

(1) Each Weyl structure o : Go — G determines the principal connection on L induced
by the Weyl connection o*wy. This defines a bijective correspondence between the set of
Weyl structures and the set of principal connections on L.

(2) There is a canonical isomorphism G = piQL", where py : Go — M is the projection.
Under this isomorphism, the choice of a Weyl structure o : Gy — G is the pullback of
the principal connection on the bundle of scales L*, viewed as a section M — QL.
Moreover, the principal action of Gy is the canonical action on pyQL> induced from the
action on Gg, while the action of Py is described by equation 3.5.

Proof. See (2] O

3.8 Other tractor bundles.

Now we look a bit more closely on general tractor bundles and connections on them. We
know that all tractor bundles are associated to G via restriction to P of some representa-
tion of G. We can evidently form a principal G-bundle G = G x p G via left multiplication
in G. We can also expand the Cartan connection w on G by G-equivariancy to a principal
connection on G. This connection induces a linear connection on any associated vector
bundle and thus on any tractor bundle on M. This connection will be called the tractor
connection.

Now we will introduce another approach to parabolic geometries.

Definition 3.8.1. (1) Let M be a smooth manifold of the same dimension as g/p. An
adjoint tractor bundle over M is a smooth vector bundle A — M, which is endowed with
a decreasing filtration A = A% > A" 5 ... D A* by smooth subbundles and an
algebraic Lie bracket {—, —} : A® A — A, such that Ais locally trivial bundle of filtered
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Lie algebras modeled on g. This means that we have local trivializations A|y — U X g
for A which are compatible with the bracket.

(2) Let A — M be an adjoint tractor bundle over M, and let G be a group with Lie
algebra g with the subgroups Gy < P < G defined by the grading of g. An adapted
frame bundle for A corresponding to G is a smooth principal bundle § — M with
structure group P such that A = G xp g, the associated bundle with respect to the
adjoint representation of P on g.

Since we will only consider in applications the adjoint tractor bundles, which are
constructed from the Cartan bundle of given parabolic geometry, we can also assume
that we have a canonical adapted frame bundle for A.

Definition 3.8.2. Let A — M be an adjoint tractor bundle over M and let G — M
be an adapted frame bundle for A corresponding to a group G with Lie algebra g, and
consider the subgroup P < G as before. Let V be a finite-dimensional effective (g, P)-
module, i.e. a P-module such that the infinitesimal action of p on V extends to an
effective action of g. We define the V-tractor bundle V for A to be the associated bundle

gXPV.

Let V be a V-tractor bundle for A. Let us denote by p the effective (g, PP)-representation
on V. By definition, V is an associated bundle to G, so we identify smooth sections of V
with smooth maps G — V, which are P-equivariant. Here, we will denote the function
corresponding to t as f.
It is well known that there exists a unique element F € g called the grading element
such that [E, A] = jA holds for all elements A € g;,j = —k,... k. Clearly, F is always
contained in the centre of gq (since it preserves the grading and commutes with gy). This
implies that Ad(b) - E = FE for each b € Gy and consequently E acts by some scalar on
each irreducible Gy-module. Now we can split the space V according to eigenvalues of
the action of E, and we denote by V; the component corresponding to the eigenvalue j.
Then the action of Gy maps each V; to itself, while the infinitesimal action of g; maps
V; to V,,, for each ¢ = —k,... k.
Clearly, the decomposition V = @,V; is only Go-invariant and not P-invariant. On the
other hand, if we pass to associated filtration by putting V/ = @,V then from the
decomposition of P as a semidirect product of Gy and P, we see that this endows V
with a P-invariant decreasing filtration. Note that if V is irreducible as a g-module,
then it is generated by a highest weight vector, so the possible eigenvaluesj lie in the
set {jo — k,k € N}, where jp is an eigenvalue of highest weight vector. Thus, in the
general finite-dimensional case, the eigenvalues lie in the union of finitely many sets of
that type. Passing to the associated bundles, we see that for each eigenvalue j of E on
V, we get a smooth subbundle V/ C V corresponding to the P-submodule V7 of V, and
these subbundles form a decreasing filtration of V.
Suppose V is a linear connection on V. Consider a point u € G and a tangent vec-
tor € € T,G and let = p(u). For a smooth section ¢t € T'(V) we have a well
defined element V, ¢t(z) € V, and thus a point u™'(V, ¢t(z)) € V. On the other
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hand, we also have the well defined element & - t(u) € V. If f is a smooth real-valued
function on M, then V,, Efz‘( r) = t(x)p.€ - f(x) + f(2)V,.et(x). On the other hand,
ft = (p*f)t and thus ¢ - ft(u) =& (pf)(wit(u) + (p*f)(u)€ - t(u). But this implies
that the difference u=*(V,, ¢t(x)) — € - t(u) depends only on ¢(x) and thus only on #(u).

Hence ¢ induces a linear map 43(5) : V — V, which is characterized by the fact that
u ™ (Vp.et(x)) — € - t(u) = ®(€)(t(u)), for each smooth section t of V.

Definition 3.8.3. (1) A linear connection V on V is called a g-connection if and only
if for each tangent vector & € T,,G the linear map ®(£) : V — V defined above is given
by the action of some element of g.

(2) A linear connection on V is called nondegenerate if and only if for any point x € M
and any nonzero tangent vector £ € T, M there exists a number ¢ and a (local) smooth
section t of V* such that V, ¢t(z) ¢ V..

(3) A tractor connection on V is a nondegenerate g-connection.

Proposition 3.8.1. Let A — M be an adjoint tractor bundle, G — M an adapted
frame bundle corresponding to a choice of a group G with Lie algebra g, V an effective
(g, P)-module and V the V-tractor bundle for A.

1. A tractor connection V on A induces a Cartan connection on G.

2. Conwversely, a Cartan connection w on G induces tractor connections on all tractor

bundles for A.
Proof. See [4] O

Definition 3.8.4. Let V be a tractor bundle on M, V a tractor connection on V. The
curvature of the connection V is defined to be the End(V)-valued two-form R, which is
characterized by R(&,n)(t(z)) = (VeV, — V) Ve = Vi )t(x) for smooth vector fields &
and 7, and any smooth section ¢ of V.

Proposition 3.8.2. Let V be a tractor connection onV. Then there is an A-valued two-

form & on M, such that R(&,n)(t) = k(&,n) et for all t € V. Moreover, if w € Q'(G, g)
is the Cartan connection induced by V, then the function G — g representing k(&,n) is
dw(€,7) + [w(€),w(7)], where & and 7j are lifts of & and 1 to smooth vector fields on G.

Proof. See [4] O

This proposition says that the curvature of tractor connection is given by an algebraic
action of curvature of Cartan connection.

Definition 3.8.5. A tractor connection V on a tractor bundle V is called normal, if the
form x € Q*(M, A) representing its curvature has the property that 0*(x) = 0.

Before the next proposition we restrict ourselves to |1|-graded geometries.
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Proposition 3.8.3. Suppose that V — M is a vector bundle. and suppose that for each
Weyl connection V on M we can construct an isomorphism 'V — V = @;V;, which
we write as t — t = (- tjstis1,...) both on the level of elements and of sections.
Suppose farther jhat changing ¥V to ¥V with corresponding one-form Y, this isomorphism

changes to t — t = . ,fj, fjH, ... ), where

b= 3 2p(= 1) () (3.9)
i>0

Then for a point x € M the set A, of all linear maps ¢ : V, — V, for which there
erists an element q? e A, = A_1® Ay ® A, such that (,ﬁ_(?i = p((,g)(f') for all t € V,
is independent of the choice of the Weyl connection V. The spaces A, form a smooth
subbundle A of L(V,V) = V*®V, which is an adjoint tractor bundle on M isomorphic
to —.;1: Then V is a V-tractor bundle for an appropriate adapted frame bundle for A.
The expression (in the isomorphism corresponding to V)

VI = Vel + (p(€) + p(P(E)(D (3.10)

for& € XM andt € T'(V) defines a normal tractor connection on'V. ThusV is a normal
tractor bundle on M corresponding to V.
Finally, the curvature R of this connection is given by

R(&,n)(s) = (T(&,n) + Wo(&,n) + CY (1)) o (3.11)

where T', W and CY are torsion, Weyl curvature and the exterior covariant derivative
of the Rho-tensor.

Proof. See [3] O

3.9 Projective parabolic geometry.

Now we define the projective structure in terms of parabolic geometry and prove that
this is equivalent to definitions given in the second chapter.

Definition 3.9.1. Let M be an n-dimensional smooth manifold. If n is even, we define
the projective parabolic geometry on M to be the Cartan geometry on M of type (G, P),
where G = SL(n+ 1, R) and P is the isotropy subgroup of the line (z,0,...,0) through
origin in R"*'. If n is odd, we define the projective parabolic geometry to be the Cartan
geometry of type (G, P), where G = Sl(n+1,R)|J E-SL(n+1, R), where E was defined
in the second chapter and P is the isotropy subgroup of the line (z,0,...,0) through
origin in R"*1,
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In both cases the Lie algebra of G is g = sl(n + 1, R) with the block decomposition

—trA Y

( X 4 ) where X € g_, Y € g, the rest is gy and the blocks have sizes 1 and n.
Since we know that there is a unique (up to isomorphism) normal parabolic geometry of
type (G, P), we will restrict ourselves to normal projective parabolic geometry.

First, we observe that the nonclassical definition of projective structure given in previ-
ous chapter is in fact the parabolic definition given above if we prove that the normal
projective connection in the sense of previous chapter is the same as normal Cartan con-
nection in the sense of parabolic geometry. For that purpose we analyze the condition on
Cartan connection to be normal, i.e. the equation 9*Q2 = 0. Since projective geometry"
is |1]-graded, we see that the second term in the formula 3.2 vanishes, so it reads as

Z{n,, (X,&)} =0

=1

where {&;} is a basis of g_ and {7,} is the dual basis of p, with respect to the Killing
form of g. We will use the basis of matrices, which have only one entry equal 1 and
all other entries are 0. Then when we order the basis of g_ in such a way that first
vector has entry 1 in the second row, second vector in third row,...,and the last vector
in the last row. The corresponding ordering of the dual basis of p, is as follows: the first
vector will have 1 in the second column, the second vector in the third column,... the
last vector in the last column. Next, we will need the inverse of transformation 2.5 given

by
0 Y ﬂHfTA Y
( X A ) - ( X  A--LItrA (312)

Now we compute what gives the formula for normality. We rewrite the curvature €2 from
the previous chapter in matrix as follows (here we will use the transformation above):

o LK, Kij
i 1 ) n+1 1_} )'s, ’*J
(0, 95, Q) — ( KoK K1, ) (3.13)

gl n—l— 1

Finally the computation:

; ( 0 Y, ) ( - Kk Kiji )
e [ 0 0 K.*  Kjk— LK.,
—— K4 Kiji ) ( 0 Y )] _
- ( K.* K% =:3:K%0h 0 0
— ZT‘?—l ( 1{1.}} I{EJ l nill(zl k ) - ( 0 _,?’Tkl[&?’ ) -
j= 0 0 K;"®Y;

K..7 K.’
— n 1] ij 1
—Zj=l( 0 _szk®y} )

Since K;;* ® Y] is exactly the matrix of Q'(X, —), we see that the torsion must vanish.

The only remaining condition is on Qj Z K..f i =0. We kpow that the normal projec-
tive connection from the previous chapter satlsﬁes 2.14, so in particular it is normal.
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Up to now we have seen that the projective structure with the normal projective connec-
tion as defined in the previous chapter is a normal projective parabolic geometry. Now
we want to show that every normal projective parabolic geometry is isomorphic to some
projective structure with normal projective connection.

First we prove that the bundle G, for projective parabolic geometry is isomorphic to P* M
or P'M[] P*M, respectively. Consider the underlying infinitesimal flag structure for
projective parabolic geometry. From the definition we see that w?, is a smooth section of
L(TGy,9/p). Moreover, the kernel of w?, is exactly the subbundle 7°Gy, i.e. the vertical
subbundle of Gy — M. Hence for any point u € Gy with & = py(u) the form w®,(u) may
be viewed as a linear isomorphism 7,G,/T°Gy = T, M — g/p. Since dim M = dim g/p,
we may view the manifold M as being modeled on a vector space g/p. Associating to
u the inverse of the above linear isomorphism gives a bundle map ® : G, — P'M. By
construction this covers the identity on M and is equivariant for the homomorphism
Ad : Gy — GL(g/p). Since Gy has the structure group GL(n, R) or GL(n, R) x Z,,
respectively, and in the first case the homomorphism Ad : Gy — G L(g_) is isomorphism
and in the second case a two-fold covering, we see that G is really isomorphic to P'M
or to P'M [ P* M, respectively.

Now we prove that two isomorphic projective parabolic geometries induce the same Weyl
connections on M. Consider two parabolic geometries G — M,w and G — M, & and
consider the isomorphism ¢ : G — G such that ®*© = w. From G and G we may form
an orbit space Gy or Gy, respectively. The isomorphism @ factors to an isomorphism
® : Gy — Go, such that @ o = 7o ®, where 7 : } — G is the projection. Consider
any Weyl structure o : Gg — G and define o : Go — G by Poo =do®. They induce
the Weyl connections on M: o*wy and 6*wp. Since they are ®-related, we conclude that
they induce the same connection on M.

Now we assume that G is a subbundle of P*M or P?M [[P?*M - E. First we real-
ize, what are the Weyl structures for such geometries. The maps v : PM — P (or
v : PIM]]P'M — P]]P) obviously satisfy the definition of Weyl structure: it is
smooth section of G — Gy, since P'M or P*M [] P' M is exactly the orbit space of the
action of P, on G and it commutes with the action of GGy. (In fact, Weyl structure is an
embedding of Gy into G). To see that these are all Weyl structures, we need to compute
how in the projective case changes the Weyl connection when we change the Weyl struc-
ture. We compute it from formula 3.6, where we must realize that the algebraic action
is in fact algebraic bracket on adjoint tractor bundle:

(65)(¢0)-(¢0)(50)- 29
(Tg)g)“(gggr)=

(" —eor )
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So we have computed {T, £} and now we compute {{Y, £}, 7}
TE) 0 0 0 0 0 () 0 -
( ¢ ”5®T><72 0>_(r; 0)( 0 _5;:;'1‘)— (3.15)
0 0 0 0\
-T(n)§ 0 Yy 0 )~

(et o)

so we see that @,57) = Ven+T(E)n + T(n)€. So the Weyl connections of our Weyl
structures are by 2.18 exactly the torsion-free connections from the classical definition of
projective structures, because to any two such connections we can relate a one-form on M
and having one such connection and any one-form Y one gets another such connection,
so they are parametrized by one-forms on M and there are no other Weyl structures.
We see that any connection on M is a Weyl connection for some projective parabolic
geometry of special type-that of previous chapter. Now consider any projective parabolic
geometry and its Weyl connections. They are clearly the Weyl connections of projective
parabolic geometry of this special type, so we may hope that these two geometries are
isomorphic. From the Proposition 3.7.1 we know that since they have isomorphic bundles
Go as we have seen above, they have also isomorphic Cartan bundles. The only thing
we have to prove is that the normal Cartan connection on G satisfies >, Q! = 0. Since
Wo = J*Qj-, it will be sufficient to prove it for Wy: > (W), . = 0. This will follow
from the computation below.

Now we want to write the Weyl connection W) in terms of the curvature of some Weyl
connection and the associated Rho tensor. For this purpose we use 3.8. First, we compute

{P(&),n}:
(67 Go) () (0 757) -
(P(ég(n 3)—(8 n®OP(6)):

)
(P(ég(n) . @SP(g) )

Using the transformation 2.5 we get
Wo(€,n) = R(&,m) — P(E)(n)Id + P(n)(§)Id —n @ P(§) + £ ® P(n)
what in the abstract index notation reads as
(Wo)as'a = Bap’a — Pavdg + Pradyq — Paady + Pradg (3.16)
From this equation we easily get

(WO).[cab dleyel — 0
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what together with (1), , = 0 and antisymmetry of 1, in first two indices gives
(Wo)as « = 0, where together with the abstract index notation we use the Einstein
summation convention. Making the trace over indices ¢ and d in equation 3.16 gives

0= Rnb c ”Pnb + ”Phr: — Puh 1 Phu

Making the trace over indices b and ¢ in 3.16 gives

0= ‘ac rf Pﬂ-‘f =5 Pu’u - 'Hp”,f + me

Together we get
(n+ 1R © ’

ac b ab ¢

(n+1)(n—1)

Finally, we can compute the Weyl curvature

Pﬂb =

(IVO)a,bcd - Rgbcd _ P(Ib(st‘ + Pbu(s{. - Pudfs(. T Pbd(S:; —

= ¢ (’n—}-l)RM b Rub ¢ )( + (n+1) Hb Q Hbu(.c (Sf‘_
ab d (n+1)(n—1) (n+1)(n—1) d
_ (DR R L()f (n+DRy g—Rig ¢ 5
(n4+1)(n—1) (n+l)(n 1)

3.10 Standard tractor bundle and its dual.

In this section we will construct the standard tractor bundle and its dual. First, we will
introduce some line-bundles associated to G,.

Definition 3.10.1. Bundle £[w] is defined to be the bundle Gy x, R via representation
p(gg)r — det(Ad(go))71. The infinitesimal representation of go is given by p/(X)r =
r.tr(ad(X)). Here Ad is the adjoint representation of Gy on g_ and ad its derivative.

n+1

In matrices this definition reads as follows: If (a;;)7;_, is a matrix of go, then p(go)r =
(ago)™“r and if (A;;)}' ;o is a matrix of X, then p '(X)r = —w.Apy. We recall that a matrix
of go or X has the property that Ap; = Ajp=0fori=1,...,n
We start with dual of the standard tractor bundle - we will call it the co-standard tractor
bundle. It will correspond to the dual of the defining representation of the Lie algebra
g. The action of p(£) and p(P(€)) will be given by this representation. Consider the jet

exact sequence:
0— &[1] = JY(EN]) — €[] — 0 (3.17)

where &[1] = & ® E[1], & = T*M in the abstract index notation. Next, we will need
the transformation law for Weyl connections on bundles &[wl:

@ao' =Veo — {Y,£} 00 = Vo +wT(§)o (3.18)

Definition 3.10.2. The co-standard tractor bundle & is the bundle J&[1].
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Proposition 3.10.1. For a Weyl connection V, the map
jro = (o(x),Vio(x))

induces an isomorphism £ — E[1] & E;[1] of vector bundles. Moreover, changing V to V
with the corresponding one-form Y, we obtain a normal tractor bundle transformation
as required in section 3.8, i.e.

e

(o, 1) = (o, u; + Y;0)

Proof. Clearly, the formula in the proposition defines a bundle map J'E[1] — £[1] & &;[1]
which is injective. Since both bundles have the same rank, it is an isomorphism of vector

bundles.

If V is another Weyl connection corresponding to T, then the first component stays
the same, while for the second component we get V,o0 = V,o0 + T,0 - so we ge the
transformation law for the second component. [

Now we look on the tractor connection on the co-standard tractor bundle and its
curvature. By 3.10 the tractor connection is given by

_V) ‘

Vet = (Veo — &', Vi)
for £ = (o, j1;), which just means

—_—

V,,Vf = (V-;O' — M, V,j[LJ')

and by 3.11 its curvature is given by

X
7

RY(&,n)(t) = (0, ;W (&, m)] = oCY (&, m))

The standard tractor bundle is simply the dual £’ of the co-standard tractor bundle. We
could introduce it in a similar manner - starting with the splitting, but we don’t know
how to define it invariantly (the co-standard tractor bundle we defined as J'E[—1]).

As an interest we can define a very useful operator:

Definition 3.10.3. On a section f of £[w], the operator D; : £[w] — &£;[w—1] is defined
by
Dif =(Vif wf)
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Chapter 4

Differential operators.

4.1 Invariant operators.

We develop some basic theory about invariant operators. First, we concentrate on the
homogeneous case.

4.1.1 Homogeneous case
Homogeneous bundles

We have to introduce the concept of homogeneous vector bundles. Recall that on each
homogeneous space M = G/P we have the canonical left action of G' denoted by ¢ :

G x M — M given by ¢(g,q'P) = gg'P.

Definition 4.1.1. (1) A homogeneous bundle over M = G/P is a locally trivial fibre
bundle 7 : E — M together with a left action ¢: G x £ — E, which extends the action
on M, i.e. which satisfies 7(¢(g,¢)) = €(g,7(e)).

(2) A homogeneous vector bundle over M is a homogeneous bundle 7 : £ — M, which
is a vector bundle and such that for each element g € G the bundle map (1, . F— Fis
a vector bundle homomorphism, i.e. linear on each fibre.

(3) A morphism of homogeneous bundles (respectively homogeneous vector bundles) is a
G-equivariant bundle map (respectively G-equivariant homomorphism of vector bundles)

which covers the identity on M.

Proposition 4.1.1. Let M = G/P and let o € M be the distinguished element eP.
Then the mappings E — E, and f — f|, induces equivalences between the category of
homogeneous bundles on M and the category of manifolds endowed with left P-action
and P-equivariant maps, as well as between the category of homogeneous vector bundles
on M and the category of finite dimensional representations of P.

Proof. See [1] O
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Using this left action of G on E, we can easily define the action of G on the space
['(E) of all sections of E given by g-o(x) = g(o(¢g'z)). This action is clearly linear, so
we can view the space I'(F) as a representation of G.

Invariant operators

Definition 4.1.2. Let M be a homogeneous space G/P and let E, F be two homoge-
neous vector bundles over M. An invariant differential operator is a differential operator
D :T'(E) — T'(F), which is equivariant for the G-action, i.e. such that D(g-s) = g-D(s)
for all s e I'(F) and g € G.

The first step towards an algebraic description of such an operator is to pass to jet

prolongations. If M is a smooth manifold and V — M is any vector bundle, then for
k € N we have the k-jet prolongation J*V. The fibre of J*V at x € M is the vector
space of all k-jets at x of sections of V and [1] says that J*V is a vector bundle over M.
If W is another vector bundle over M, then a differential operator D : I'(V) — I'(W)
is of order < k if and only if for any two sections s,t € I'(V) and any point © € M,
the equation j*s(z) = j*t(x) implies D(s)(x) = D(t)(z). If D is such an operator,
then we get an induced bundle map D : J¥V — W over the identity on M, defined by
D(j*s(x)) := D(s)(x), where s is any representative of the jet. Conversely, this formula
associates to any bundle map D a differential operator D, which is linear if and only if
D is a homomorphism of vector bundles.
In the special case of a homogeneous vector bundle £ — G/P, each J*FE is again a
homogeneous vector bundle. The action of g € G is given by ¢-(j*s(z)) := j*(g-s)(x). By
construction, a differential operator D corresponding to the bundle map D:JE— F
is invariant if and only if D is a morphism of homogeneous vector bundles, i.e. G-
equivariant. Hence we have reduced the determination of linear invariant differential
operators to the determination of homomorphisms between homogeneous vector bundles.
For | < k we have the obvious projection 7} : J*E — J'E defined by 7} (j*s(z)) = j's(z)
for any homogeneous vector bundle £ over M. This projection is a homomorphism of
homogeneous vector bundles.

Definition 4.1.3. Let F, F' be two homogeneous vector bundles over M = G/P and
let D :T'(E) — I'(F) be a differential operator of order < k corresponding to a bundle
map D : J*E — F. Then the k-th order symbol of D is the vector bundle map o (D) :=

!' - k
Doy : kermi_; — F.

The kernel of 7¥_, is by [1] isomorphic to S*T*M @ V.
Now from the previous chapter we know that there is a correspondence between smooth
sections of E and smooth P-equivariant maps G — V, where V is the representation
inducing E. Similarly, there is a correspondence between £-jets of such sections in 0 = eP
and k-jets of P-equivariant smooth functions G — V' in e € G. Next, we define the
infinite jet prolongation J®E as the direct limit of the system - -- — J*E — J*1E — .
of vector bundles, where the maps are just the canonical projections from k-jets to k — 1-
jets. In particular, we may view the fibre J7°E over the base point o as the direct limit
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of the fibres of the finite jet prolongations. The identification for finite jets used above
then directly leads to the identification of J> E with the space J>(G, V)" of infinite jets
at e of P-equivariant smooth functions f : G — V. Given X € g, we consider the right
invariant vector field R_x on G with generator —X. For a smooth function f: G — V/,
we can now consider R_x - f, and of course the infinite jet of this function in e depends
only on the infinite jet of f in e. Since the flow of R_x up to time ¢ through a point
g € G is given by exp(—tX)g, we can compute R_y - f(g) as the derivative in t = 0 of
t — f(exp(—tX)g). On the one hand, together with the fact that P acts by linear maps
on V, this implies that for a P-equivariant function f also R_x - f is P-equivariant.
On the other hand, we see that f — R_x - f is simply the infinitesimal version of
the canonical G-action on C*(G, V)" corresponding to the action of G on I'(E), so it
defines a representation of the Lie algebra g. Thus we have seen that J>*(G, V)" is a
(g, P)-module, that is a P-module with given action of g, whose restriction to p is the
infinitesimal version of the P-action.

Definition 4.1.4. A generalized Verma module M,(V*) for p-module V' is the vector
space U(g) ®u(p) V*. This space is naturally a (g, P)-module (via left multiplication and
the corresponding left action).

Proposition 4.1.2. Let g be a semisimple Lie algebra, p < g a parabolic subalgebra,
G a Lie group with Lie algebra g, P the parabolic subgroup corresponding to p and V' a
finite dimensional representation of P with dual V*. Then

Y- Ya©A, 50 f) = ALy, -+~ Ly, - f(e))

forY; € g, A € V* and a P-equivariant smooth map f : G — V induces a well defined
pairing between the generalized Verma module M,(V*) = U(g) Qupy V™ and the space
J®(G, V) of infinite jets of P-equivariant maps. This pairing is compatible with the
natural (g, P)-module structures on both spaces and it identifies M,(V*) with the space
of those linear maps J*(G, V)Y — R, which factorize over one of the spaces J5(G,V)¥.

Proof. See [1] O

Corollary 4.1.1. Let G/P be a homogeneous model of some parabolic geometry and let
E and F be homogeneous vector bundles over G/ P corresponding to the representations
V and W of P. Then the space of finite order G-invariant differential operators D :
['(E) — I'(F) is isomorphic to the space Homg py(My(W*), Mp(V*)) of (g, P)-module
homomorphisms between generalized Verma modules.

Proof. See [1] O

Hasse diagram

Now we want to define the Hasse diagram associated to a parabolic subalgebra p in a
semisimple Lie algebra g. All what follows is valid for complex Lie algebras, but since
we will use it for the split form of a complex Lie algebra, there will be no complications
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and the results remain valid. First, we define 1V, to be the Weyl group of the semisimple
part go°. This is naturally a subgroup of the Weyl group W, of g. The Hasse diagram
associated to p will be a set of distinguished representatives for the set W,\Wj of right
cosets. Denote by A™(gy) and A*(p,) the set of those positive roots such that the
corresponding root spaces lie in the indicated subalgebra. Of course, A* is a disjoint
union of these two subsets and both subsets are saturated. Now any root space lies in
some g;. If o € g;, we put ht(a) = i. Since roots are the weights of adjoint representation
of g on itself, this function is additive because of Jacobi identity. Next, define ®,, := {a €
At :w ' (a) € —A*}. In [1] it is shown that w(\) is p-dominant for any g-dominant
weight A if and only if w™! () € AT for any o € A*(go), i.e. if and only if &, € A (p,).
Here p-dominance is simply dominance with respect to the semisimple part of go.

Definition 4.1.5. The Hasse diagram WP of the standard parabolic subalgebra p < g
is the subset of W consisting of all elements w such that ®,, C A*(p,) or equivalently
such that w(\) is p-dominant for any g-dominant weight \ together with the structure
of a directed graph induced from the structure on Wi,

To see the structure of a directed graph on W, we need a notion of length of an
element of W;. We know that the Weyl group of g is generated by simple root reflections.
That means that each w € W can be expressed as a composition of some simple root
reflections. The minimal length of such an expression is the length of w. The graph
structure is as follows: Vertices are the elements of W. For two elements w,w’ of W
there is an arrow w — w' if and only if /(w)+1 = ¢(w") and there exists a positive root a
such that w' = s, ow, where ¢(w) is the length of w and s, is a reflection corresponding
to a.

Recipe for determining the Hasse diagram

Now we give a recipe for general parabolics for determining the Hasse diagram.

(A) Determine the Dynkin diagram of the parabolic, i.e. the Dynkin diagram of g with
those simple roots crossed, whose root spaces are contained in g;.

(B) Take the weight ¢, i.e. the weight which has coefficient 1 over the crossed nodes
and zeros over the uncrossed nodes. Apply simple root reflections to this weight.
Since we are going to apply this recipe only in the projective case, the only rule
interesting for us is the following:

...+a}wi*1+bwi+cwi+l+...r—>---+(a—|—b)w,,;_1+(—b)wi+(b+c)wi+1+...

In each step one only has to apply reflections corresponding to nodes with non-zero
coefficients, and one should not apply the reflections that have led to the weight in
the last step. Record the reflection by putting the number of the simple root over

the arrow.
The resulting pattern gives all elements of the Hasse diagram and some of the
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arrows. The element corresponding to the weight obtained by applying first Sai, »
then Sa;, and so on up to Sa,, to 0P is given by Say, - -+ Say,» SO ONE has to reverse

g,y

the order of composition. The length of this element is .

(C) For each element w in pattern, determine the corresponding set ®,, of roots as well
as the labels of the arrows determined so far.
Start with the empty set for the point corresponding to ¢?. Having determined the
sets for all elements of length < ¢ and the labels of the arrows leading to these sets,
consider a point corresponding to an element of length ¢ in the original diagram
determined in step (B). Choose a path of arrows leading from ¢® to the given point,
take the simple root indicated on the last arrow in the path, and apply the simple
reflections corresponding to the other arrows in the path going back to 6°. The
resulting root has to be contained in A*(p,) and the set corresponding to the
chosen point is given by adding this root to the set corresponding to the source
of the last arrow. Now for any of the arrows determined so far which ends in the
given element, the set corresponding to the source of the arrow has to be obtained
by deleting one element from the set corresponding to the target of the arrow, and
this element is the right label of the arrow.

D Determine the remaining arrows. Here we will not write how to obtain remaining
arrows, because in the projective case we will obtain all arrows by the recipe above,
since the Hasse diagram will consist only of one row and all arrows are between
adjacent columns.

Justification of this algorithm can be found in [1].

BGG resolutions

It is known (see [1]) that isomorphism classes of finite-dimensional irreducible repre-
sentations of p are in bijective correspondence with p-dominant and p-integral highest
weights A, so generalized Verma modules are available only for such weights. Also, the
infinitesimal character restricts the possibilities for the existence of nonzero homomor-
phisms to the affine Weyl orbit of a weight (see [1]). However, it suffices to restrict to
the orbit under the Hasse diagram WP C W:

Lemma 4.1.1. Let \ be a weight for g such that X + 0 s g-dominant. Then all p-
dominant weights in the affine Weyl group orbit of X are contained in the set {w - \ :

w € WP},
Proof. See [1] O

The homomorphisms of generalized Verma modules are of two types. First, general-
ized Verma modules are quotients of true Verma modules (corresponding to the Borel
subalgebra), see [1]. In 1997 Lepowsky proved that any homomorphism of true verma
modules descends naturally to the homomorphism of corresponding generalized Verma
modules if they exist. These homomorphisms between generalized Verma modules are
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called standard homomorphisms and the corresponding operators are called standard
operators. Any other homomorphism is called nonstandard homomorphism and the cor-
responding operators are the nonstandard ones. The BGG resolution is a diagram of
standard homomorphisms between generalized Verma modules, which can be written as

e | @ A[p({{! . /\) —_— e — @ .\]p({p . ,\) =5 A"lp(/\) V=0

weW?r l(w)=i weWr:f(w)=1

where we compose the standard homomorphisms with + identity and add all these
homomorphisms together.

Now if A is g-dominant, we will get the full Hasse diagram of invariant operators. But if
A+4 is g-dominant and A itself not, i.e. if A+ ¢ lies on the wall of the fundamental Weyl
chamber, some weights in the Hasse diagram may coincide and they needn’t be always
p-dominant. In the first case, we say that A is of reqular infinitesimal character, while
in the second case we say that A is of singular infinitesimal character and the Hasse
diagram is degenerated.

This correspondence between invariant differential operators and homomorphisms of
generalized Verma modules is the reason why we will denote the natural bundles on any
parabolic geometry (given by a representation of P) by the highest weight of the dual
of the inducing representation. In this dual language it is a resolution of G-modules.
The modules are spaces of sections of homogeneous bundles and homomorphisms are
invariant differential operators.

4.1.2 General case

We have seen that in the homogeneous case there are many invariant differential op-
erators. Now we want to have some analogue of them in the case of general parabolic
geometry of given type. Given an invariant differential operator D : I'E' — TI'(F') on
G/P, we say that the differential operator D : I'(E) — ~(F) is a curved analogue of
D, if it has the same symbol as D. The bar over £ and F' means that it is the 'same’
natural bundle (induced by the same representation of P) but not over G/ P.

Definition 4.1.6. Consider a fixed category of real parabolic geometries and two repre-
sentations V and W of P. Let E and F' be the corresponding natural vector bundles. A
natural linear operator mapping sections of £ to sections of F'is defined to be a system
of linear operatorsDg, : ['(EM) — I'(F'M), where M is the base of G such that for any
morphism & : (G,w) — (G',w’) we have

(I)* O D(gf’w;) = D(g}w) o (I)*

We will only be interested in natural differential operators.
For the next section we will need the following fact: In the case of |1|-graded geome-
tries it is shown in [10] that naturality of (even non-linear) operators is equivalent to
the possibility to express them by a universal formula in terms of all underlying affine
connections (and their curvature). Any operator natural on all parabolic geometries of
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given type is obviously natural on all flat parabolic geometries of that type. If it is a
first-order operator, it is on flat geometries automatically strongly invariant (it can be
written in the dual language as homomorphism of generalized semi-holonomic Verma
modules - see [5]), so the corresponding weights which determine the Verma modules
must lie on the same affine Weyl group orbit.

4.1.3 Projective case

First, we determine the Hasse diagram for projective parabolic geometry. We use the
recipe for general parabolic geometries given above. By step (A) we see that the Dynkin
diagram of p is given by the Dynkin diagram of sl(n + 1) by crossing the first node in
the diagram corresponding to the root £, — 5. By step (B) we get a sequence

0 0 (23] -1 1 0 0 (8] 0 —1 1 0 8 ]
><~——o— —O——0 — ¥ —0—0—::: =0 — ¥—0—0—+4s =0 —
(}'3 Xy —1 0 {) ] i Yp {) 0 (} i 1

where «; is the simple root £; — ;1.

By step (C) we determine the ’vertices’ of the Hasse diagram. The first vertex is simply
the empty set. The second is by (C) the simple root «;. Next vertex is {ay, so,(2)} =
{e1 —e9,61 —£3}, since the simple root reflections act by transpositions i < i+ 1. For the
brevity we will denote the root £, —¢; by «;;. Going on through the sequence, we see that
in each step we will add the root «y; for the i-th vertex. Indeed, applying s,, - Sa, ,
to a;_; we get ay;, since we start with «;_;; and each root reflection changes the first
index by 7 +— j — 1 until j = 1. So the Hasse diagram for projective parabolic geometry
looks like

alg {a12} = ... {0“-12, . Oln} -y {012 ,('-1’1,n+1}

Now when we have the Hasse diagram, we can determine the BGG resolutions (and the
BGG sequences) for any g-dominant weight A\. Here we start with the representation of
G, the dual of which has the highest weight A. Consider the weight \ = S 2.5
with each a; nonnegative. Then A = >, (>°"_; a;)e;. Adding to A the weightp = 3. @,

J=1
we get
A p= Z(”'+ 1 -i—+—ZaJ-)si
i j=i

All weights on the WP-orbit of A + p := pu are obtained from p by taking the first
coefficient to e5, second to €3,..., (¢ — 1)-th to €; and i-th toeg;4; for e = 1,... n. Indeed,
the first reflection interchanges the first two coefficients. Combining with the second
reflection, which interchanges the first and the third coefficient, we get the weight 1 with
the first coefficient at €5, the second at £3 and the third coefficient at £,. Generally, when
we have p with first ¢ coefficients at €3, ...,€;41 and (7 4+ 1)-th coefficient at &;, and now
interchange the first and the (i 4+ 2)-th coefficient of this new weight, we get the weight
1, with first i + 1 coefficients at €, ..., €42 and (7 + 2)-th coefficient at &,.

The first weight in the sequence is simply A itself. To compute the second weight, we
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have Sam(;f,):(7?—l+zn 0 @;j)E1 + n+2 1” )Eo :Hl(n%—l—f—i—z L Q5)E;
Subtracting the weight p we get (—1 + 2 i=8i)er + (1 + Z} =1 @j)E2 + ey D =i GHEi
Translating it to fundamental weights, we get

—ay1 —2 ay+az+1 ag 1y
P —0 O—::+ =0

To compute the last weight, we have s, , ,()t) = Z”“(n +2-i+) ;. ;a;)€. Sub-

tracting the weight p we get —ne;+ 3 17 ( (1+>_7_,_; aj)i. Translating it to fundamental
weights, we get

n
-n—-1— 3 a;
J=1

] |
v =0

All other weights obtained f10m i are of the form (n + 1=k Z _ Q)€1 + Z?;Q('fl +
4 =1+ ZJ i 105)€+ D i n+1—id+ Z )e; for 2 < k < n + 1. Subtracting

the weight p we get (1 -k +3_7_, a;) Bk Yy, 1+Z) 18508 Dol (Dn i m5)E
Translating it to fundamental weights, we get

—k — a
Z J aj ap—-2 ap—1+ap+1 ag41 n

=1
R 5.0 o O—::+ —O

As we have seen above, the above equation holds also for & = 2, n + 1. Together we get

ay az An—1 ap —ay;—2 ay+ax+1 as ay
36O —o—o—> s o B 4% =8 =% 430 —5
—k - Ex a3 ai k-2 ap_1+ap+1 arq) n
ik i o Ol 50 ==
mn
—n—1-— aj
jg_l J aj n—1
Special example of such a complex is the Calabi complex - for A = w,. The first

operator in this complex is the operator D : T(T*M @ £[2]) — O° T*M ® £[2] given by
vy — V(,ap), which inspired us for the next section. Another standard example is the

de Rham complex
0 R ATMSNT*'MS ... SAT*M

Hypothesis 1. It seems that there are no nonstandard operators in the projective case,
at least up to order 10.

4.2 One family of operators

Here we introduce a very large family of differential operators which are invariant under
the change of Weyl connection but they are not invariant in the usual sense - we can’t

find them in any BGG sequence.
We start with an operator from [6] that inspired us. It is an operator from projectively
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weighted vector fields on M to projectively weighted symmetric bilinear forms on M.
Assume that M is a Riemannian manifold with Riemannian metric g. The Levi-Civita
connection of g induces a projective structure on M. It is known that there is a projec-
tively invariant operator D' : T*M & 8[2] — O*T*M ® 5[2] given by a; — V(!(lﬂ, Now
we compose it with g, so we get an operator

D:TM®E[2] - @*T*M ® &[2]

given by
X% = V(a(gp)cX)

where we use the abstract index notation and Einstein summation convention. It is very
easy to compute that it is invariant under the change of connection in the projective
structure:

Va(95eX6) + Vi(gacX€) =
= (Vagbe) X + 95 Va X + (Vgac) X + gucVpX€ =
= (Vagbe — 2T agbe — Togac — LeGoa) X + goe(Va X + 3To X + Ta X 65)+
+(Vs9ac — 2Ybg0c — Tagbe — Tegab) X + Gac(Ve X + 3Tp X + T,p\""(ig) _
= (Vagoe) X+ G Va X+ Vigae X+ 90 Vi X =
= Va(g6cX¢) + Vi(gacX€)

We saw, that we didn’t use the fact that ¢ is a Riemannian metric on A, but only the
fact that it is a bilinear form. So the first natural generalization is to replace the metric
by any bilinear form on M.

But this operator is not invariant in the sense of parabolic geometry, because the weights
of corresponding generalized Verma modules do not lie on same affine orbit of the Weyl
group of g. Indeed, the corresponding weights are 3¢, — ,,4; for the source space and
2e, for the target space, so shifting it by p gives (n +3)e; + (n — 1)ea + -+ + £, — €41
for the source space and (n + 2)e; + (n — 1)ey + - - - + &, for the target space. This two
weights clearly don’t lie on one orbit of the Weyl group, since in this notation the Weyl
group acts by permutations.

Now we are going to construct a very large family of operators in a similar spirit. Above,
we started with projectively weighted vector fields on M. The idea here is to start with
any projectively weighted positive tensor power of vector fields on M.

Theorem 4.2.1. Assume that n is some natural number. Consider the operator D :
XR"TM QE[2] — O’ T*M ® £[2] given by

X9 1 V(o Spyay . X7

where Spa,..a, is some (n + 1)-linear form on M. Then this operator is invariant under
the projective change of connection but not in the sense of the previous section.
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Proof. Invariance under the projective change of connection is casy:

V“(Sbal x>y ””_\'nl...u,.) 1 Vh(Smn Gn X '””) —
- (v“bhul--'”n)‘\—”Im““ + ‘S‘hnl...rln vn-\-ul -””+

A

+(vbsﬂ“lm”n )‘\-”Im”” + ‘S‘Hfll...Huvh-\.”lm”” —
n
= (Vasbal..‘un = (??. =+ 1)Tﬂa5‘{ml___”” - T!;'—S‘uul.,_u,t — Z T“ub}lr!;.. 0o )‘\‘u]_._u,,_i_

1=1

+(vb8a“1---“n o (”’ +t 1)Tbsmn...u” o Tf:Shu;...u“ = Z TH,SNUI...!’;.,,”,,)-\’”l'””“‘i'

=1

+Sﬂ.al...a,,(vb/Yu}m”” + (” 4 Q)Tb.\’”l”'“” 4 Z (»)‘;::T‘.‘\’ul_.::_.u,,) —
==

T : =
= (vasbn.l...n”)-\ Sxsnlin of S{ml‘_,”” V”,\ A ---Cn L
+(Vh8rm1___n”)z\fﬂl”'”” + Sru;l,__u,,v{,g\-ﬂl"'”” e
= Vﬂ-(Shn.l...un ‘X”lw””) + vh(brml...un X Pl )

Now we prove that this operator is not invariant in the sense of parabolic geometry.
Indeed, the target space is determined by A = —2w; + 23, so A + p = —w; + 3wy +
> . w;. Here, w; are the fundamental weights for sl(n + 1; R). Next, the complete list
of weights for TM (in fact, for g_) is given - in our dual notation - by 2w, — w@y; w; + w9 —
s, W1 + W3 — W4, ..., W1+ Wno1 — @Wn; @1 +@,. Now the weights for n-th tensor power
of TM are exactly the nonnegative linear combinations of weights for 7'M | since the n-th
tensor power of the dual of some representation V' is the dual of the n-th tensor power
of V and weights of any positive tensor power of V' are exactly the nonnegative linear
combinations of weights of V. Especially, all weights (also highest weights for irreducible
pieces) for ®” TM have positive coefficient at w;. Tensoring with £[2] adds 2 to this
coefficient and adding p to any such weight adds 1 to it. So this coefficient will be always
positive and at least 3. On the other hand, from the previous section we know that any
weight on the affine Weyl group orbit of —2w, 4+ 2w, has nonpositive coefficient at wy, so
shifting it by p makes it < 1. So when we restrict D to any irreducible subrepresentation
of Q" TM ® E£[2], we don’t get an invariant operator in the sense of parabolic geometry,
because the weights determining the source and target of this operator don’t lie on the

same affine Weyl group orbit. 0
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