Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

Jaroslav Keznikl

Dynamic Software Architectures
for Resilient Distributed Systems

Department of Distributed and Dependable Systems

Advisor: Doc. RNDr. Tomas Bures, Ph.D.
Study program: Computer Science

Specialization: Software Systems

Prague 2014

Acknowledgments

I would like to thank all who supported me during my doctoral studies and without
whom this work would not have been possible. First of all, I sincerely thank my advisor
Tomas Bures for his indispensable guidance, support, and co-authorship of all the in-
cluded papers. Moreover, I thank him for instilling in me his passion for research. I am
also deeply grateful to Frantisek P1asil for his unending support in research and his pa-
tience, guidance, and collaboration in writing. I thank all the rest of my co-authors for
their valuable contributions and all my colleagues at the Department of Distributed and
Dependable Systems for creating such an inspiring and friendly working environment.
A particular thank-you goes to: Michal Kit, Ilias Gerostathopoulos, and Rima Al Ali for
their enthusiasm and fellowship in research; Michal Malohlava, Pavel Parizek, and Vi-
liam Simko for their valuable advice and encouragement; Lubomir Bulej, Petr Hnétynka,
Vojtéch Horky, Pavel Jancik, Pavel Jezek, Jan Kofron, Andrej Podzimek, Tomas Poch,
Tomés Pop, Ondiej Sery, and Petr Ttima for their feedback and fruitful discussions.

Furthermore, I am grateful to Nicklas Hoch and Henry Bensler, who allowed me to
spend four exciting months in their team at Volkswagen Research.

My thanks go also to the institutions that provided financial support for my research
work. Throughout my doctoral studies, my work was partially supported by the EU
project ASCENS 257414 under the ICT priority of the 7th Research Framework Pro-
gramme, the Grant Agency of the Czech Republic projects P103/11/1489, P202/11/0312,
and P202/10/J042, the Charles University institutional funding SVV-2011-263312, SVV-
2012-265312, and SVV-2013-267312, the Czech Science Foundation grant 201/09/H057,
and the Ministry of Education of the Czech Republic grant MSM0021620838.

Above all, I am deeply in debt to my girlfriend Lucie and my family for their endless
patience and encouragement, without which I could not have completed this work.

I declare that I carried out this doctoral thesis independently, and only with the cited

sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles
University in Prague has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In Prague, June2,2014

Jaroslav Keznikl

Annotation

Title Dynamic Software Architectures for Resilient Distributed Systems

Author Jaroslav Keznikl
keznikl@d3s.mff.cuni.cz
(+420) 221 914 236

Department Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics
Charles University in Prague

Advisor Doc. RNDr. Tomas Bures, Ph.D.
bures@d3s.mff.cuni.cz
(+420) 221 914 236

Mailing address = Department of Distributed and Dependable Systems
Charles University in Prague
Malostranské namésti 25
118 00 Prague, Czech Republic

WWW http://d3s.mff.cuni.cz/

Abstract

Resilient Distributed Systems (RDS) are large-scale distributed systems that remain dependable
despite their very dynamic, open-ended, and inherently unpredictable environments. This com-
bination of system and environment properties makes development of software architectures for
RDS using contemporary architecture models and abstractions very challenging.

Therefore, the thesis proposes: (1) new architecture abstractions that are tailored for building
dynamic software architectures for RDS, (2) design models and processes that endorse these ab-
stractions at design time, and (3) means for efficient implementation, execution, and analysis of
architectures based on these abstractions.

Specifically, the thesis delivers (1) by introducing the DEECo component model, based on
the concept of component ensembles. Contributing to (2), the thesis presents the Invariant Re-
finement Method, governing dependable, formally-grounded design of DEECo-based architec-
tures, and the ARCAS method, focusing on dependable realization of open-ended dynamic com-
ponent bindings typical for DEECo. Furthermore, it pursues (3) by presenting a formal opera-
tional semantics of DEECo and its mapping to Java in terms of an execution environment proto-
type — jDEECo. Additionally, the semantics is used as a basis for formal analysis via model check-
ing. Finally, the thesis validates DEECo by presenting a dynamic architecture of an RDS ensur-
ing adaptive task deployment in ad-hoc cloud systems.

Keywords

Software architecture, Adaptation, Component model, Formal semantics

mailto:keznikl@d3s.mff.cuni.cz
mailto:bures@d3s.mff.cuni.cz
http://d3s.mff.cuni.cz/

Anotace

Nazev prace Dynamické Softwarové Architektury pro Resilientni Distribuované Systémy

Autor Jaroslav Keznikl
keznikl@d3s.mff.cuni.cz
(+420) 221 914 236

Katedra Katedra distribuovanych a spolehlivych systémt
Matematicko-fyzikalni fakulta
Univerzita Karlova v Praze

Skolitel Doc. RNDr. Tom4s Bures, Ph.D.
bures@d3s.mff.cuni.cz
(+420) 221 914 236

Adresa Katedra distribuovanych a spolehlivych systémiui
Univerzita Karlova v Praze
Malostranské nameésti 25
118 00 Praha

WWW http://d3s.mff.cuni.cz/

Abstrakt

Resilientni Distribuované Systémy (RDS) jsou ty rozsihlé distribuované systémy, které funguji
spolehlivé navzdory svému znacné dynamickému, otevienému a z principu nepredvidatelnému
prostiedi. Takovito kombinace systémovych vlastnosti a vlastnosti prostiedi vsak velmi ztéZuje
vyvoj softwarovych architektur pomoci dnes dostupnyjch softwarovych modelii a abstrakci.

Proto se tato dizertacni price snaZi pfinést: (1) nové abstrakce, které jsou specidlné uzpiiso-
beny potiebam dynamickych softwarovych architektur RDS, (2) softwarové modely a procesy,
které usnadinuji pouZiti téchto abstrakci beéhem vyvoje, a (3) prostiedky pro efektivni implemen-
taci, provoz i analyzu softwarovych architektur postavenych na téchto abstrakcich.

Tato prace tesi bod (1) zavedenim komponentového modelu DEECo, jenz je zaloZen na kon-
ceptu ensemblii komponent. Prdce ddle ptispivd k (2) predstavenim metody Invariant Refinement
Method, kterd zajistuje spolehlivy formalizovany vyvoj softwarovych architektur postavenych na
DEECo, a uvedenim metody ARCAS, kterd se sousttedi na spolehlivou realizaci dynamickych
spojeni komponent, typickych pro DEECo. Price se vénuje (3) prostiednictvim formalizace ope-
racni sémantiky komponentového modelu DEECo a projekci této sémantiky do jazyka Java formou
prototypu béhového prostiedi — jDEECo. Tato sémantika je ddle vyuZita jako ziklad pro formdlni
analyzu pomoci model checkingu. Nakonec prdce validuje DEECo na ptikladu dynamické soft-
warové architektury pro RDS, ktery zajistuje adaptivni deployment v ad-hoc cloud systémech.

Klicova slova
Softwarova architektura, Adaptace, Komponentovy model, Formalni sémantika

vii

mailto:keznikl@d3s.mff.cuni.cz
mailto:bures@d3s.mff.cuni.cz
http://d3s.mff.cuni.cz/

Contents

1 Introduction 1
1.1 Towards Resilient Distributed Systems..........ccccocovvveviininininieeeieccccccce 1
1.1.1 Example of a Resilient Distributed System............ccccccovriiviniiinnicinnnnns 2

1.2 Software Architectures and RDS..........c.ccccccoiiiniiiininiiiiiiicce 3
1.3 Problem Statementccccoouveiiniiiiiiniiiiic s 5
1.4 Research Goals ... 7
1.5 Overview of ContribUtioncccccciviiiiiniiiiiiiiiic e 7
1.6 PUDLICAtIONSvviiiiiiiiiiciciiccc s 9
L7 SEUCHUTE ... s 11
2 State of the Art 13
2.1 Software Architecture AbStractions...........ccccccevueeininiicininccireeeeeeee 14
2.1.1 Component-Based Architecturescccovviiiininiiiiniiiinniiciene, 15
2.1.1.1 Component Model.........ccccoriiininiiiiniiiiircieeceeeeeee 15

2.1.1.2 Execution Environmentcccccccueviiiiiiiiiinininininiiiiceee 16

2.1.1.3 Component-Based Architectures at Design Time.......................... 17

2.1.1.4 Embedded and Real-Time Component Systems..............cccccc....... 18

2.1.1.5 Dynamic Component-Based Architectures.............ccceovvrurnnnncne. 20

2.1.2 Software CONNECLOTS........cccvviriiuiiiiiiiiiiicc s 20
2.1.2.1 Connector Synthesis ... 21

2.1.3 Components as SEIVICESccevuviiriininiiiiniiiiiinee e 22
2.1.3.1 Service COMPONENES.......ccevevriiieicicicicice e 23

2.1.4 Components as Software Agentsccccecevvvuiiciiiniiininiicininicieene 24
2.1.5 Service Component Ensembles ..o 25
2.1.6 Lessons Learned ..ot 26

2.2 Dependable Software Architecture (Self-) Adaptationccooveveieininnnnnn 28
2.2.1 Ad-hoc (Self-) Adaptation..........ccovueiiviiiiiiiniiiiiiicce 29
2.2.2 Bounded (Self-) Adaptation and Architecture Modes..........c.ccccccevvnnee. 29
2.2.2.1 Modes in Embedded and Real-Time Component Systems 30

2.2.2.2 Modes as COMPOSItES.........ccoueueueueueuriiiiiiiii e 31

ix

Contents

2.2.3 Dependable Unbounded (Self-) Adaptation..........ccccceveviviinnninnnnnnnn 31
2.2.3.1 Architecture (Self-) Adaptation Models at Runtime...................... 31
2.2.3.2 Architecture (Self-) Adaptation Models at Design Time............... 32
2.2.3.3 Automated Adaptation Planning...........ccccceeviviiiiinniniiininnnnne. 33
2.2.3.4 Autonomic and Self-Managed Adaptation...........cccceeeiiiinnnnnne. 33
2.2.4 Inherently Dynamic Architectures..........ccoocoiviiiniiniiiniiniiiiiiinns 34
2.2.5 Lessons Learned.........ccociiiiiiiiinininiieccc s 35
2.3 Formal Methods in (Dynamic) Software Architectures..........c.ccccceeeveeiruneencnene. 37
2.3.1 Structural Specification and Analysis..........cccccoviiiiniiiinniiiiiiiee, 37
2.3.1.1 Analysis of (Dynamic) Software Architectures with Alloy.......... 38
2.3.2 Behavior Specification and Analysis..........ccccccvvuiiiiniiiiininiiiiiccnen 40
2.3.2.1 Formal Specification and Analysis of Architecture Models......... 40
2.3.2.2 Code Verification...........cceeueciiiiininiiinincieeecccee 43
2.3.2.3 Formal Specification and Analysis of Requirements 44
2.3.3 Lessons Learned.........ccooiiiiiiiiininiiiicccecc s 45
3 Collection of Papers 47
3.1 Towards Dependable Emergent Ensembles of Components: The DEECo
Component Model ... 49
3.2 DEECo: an Ensemble-Based Component System...........cccccevvvviiriininiiininnnncnne. 57
3.3 Design of Ensemble-Based Component Systems by Invariant Refinement71
3.4 Automated Resolution of Connector Architectures Using Constraint Solving
(ARCAS MEthod) ..coveuiiiiiiiiiiiciiciiccce ettt 85
3.5 Towards Verification of Ensemble-Based Component Systems 119
3.6 Adaptive Deployment in Ad-Hoc Systems Using Emergent Component
Ensembles: Vision Paper ... 143
4 Conclusion & Open Challenges 151
References 155
Web References 177

Chapter 1

Introduction

1.1 Towards Resilient Distributed Systems

The recent significant increase in the ubiquity and connectivity of smart embedded and
mobile computing devices has opened new possibilities for addressing social and envi-
ronmental challenges, such as ambient assisted living, smart city infrastructures, emer-
gency coordination, and environmental monitoring. In particular, this progress has pro-
vided the infrastructure necessary for building pervasive software systems that harness
diverse data sources to respond to and influence the real world. An example could be an
intelligent traffic control that gathers data from cars and other sensors in a city so as to
navigate the cars, control traffic lights, and manage parking allocation.

As such, in addition to being closely bound to the real world, these systems typically
need to be decentralized, distributed, and heterogeneous. Moreover, they have to cope
with their very dynamic, open-ended, and inherently unpredictable environments (e.g.,
road networks, emergency sites). In the context of this thesis, we will call the systems
featuring these properties Resilient Distributed Systems (RDS).

An important desired feature of RDS is that they are distributed on a large scale,
while relying on a relative autonomy of individual system components, are inherently
dynamic so as to adapt to recurrently changing situations in their environment, and,
most importantly, are highly dependent on software, i.e., they are software-intensive
systems [BB12, HRWO08]. This means that software is by far their most important and the
most complex constituent.

Developing large-scale RDS via systematic software engineering approaches is a no-
toriously difficult task. This stems from the fact that the requirements of RDS invalidate
certain critical assumptions that typically hold in software engineering of conventional
distributed systems. A distinct challenge of RDS is that their software undergoes contin-
uous modifications as the real world evolves: components appear and disappear as de-
vices enter/exit the system, components form and dissolve cooperation groups as they
start/finish a particular joint activity, and communication links are established/released
depending on the actual network connectivity. Consequently, communication between
the components is opportunistic and there are no guarantees regarding the stability and
reliability of the established communication links. The network topology itself is ex-
tremely dynamic and often relies on ad-hoc means without any managing infrastructure.

Chapter 1. Introduction

2
y .- WDUDI
Lo © 6
Q 100001
iy ©_©6)
@ Firefighter Interaction between a firefighter and the computing

devices that measure temperature on the same floor

> Stationary device .
] Interaction among all firefighters

Mobile device participating in the same mission

Figure 1. RDS example: firefighter coordination scenario. Adopted from [BGAA14].

Moreover, the scale, dynamicity, and complexity of RDS introduces emergent behavior
(i.e., behavior that comes about as the joint product of behaviors and interactions of
many elements of a system). Finally, a particularly important concern in RDS is depend-
ability, as the close connection to the real world frequently renders the functionality of
RDS safety-critical.

At this point, it is important to note that, from a wider perspective, distributed soft-
ware systems closely interacting with their physical environment are called Cyber-Phys-
ical Systems (CPS) [RLSS10]. To this end, the above-outlined area of RDS partially over-
laps and shares many common software-engineering challenges with CPS. Nevertheless,
whereas the key concerns of RDS are distribution, dynamism/mobility, and safety-criti-
cality while acknowledging the role of the physical environment, the key concern of CPS
is the actual control of the physical environment. For the purpose of this thesis, we will
consider CPS as a particular case of RDS.

1.1.1 Example of a Resilient Distributed System

To better illustrate the context and challenges of RDS, the following text describes a sce-
nario (Figure 1) that is based on the firefighter emergency response operations [YYP13].
In the scenario, firefighters belong to teams corresponding to the mission at hand. A crit-
ical requirement is an efficient dissemination of information among team members —
every member has to be notified about important events and threats (e.g., low oxygen
level in a particular room, firefighter in danger because of high temperature level). To
achieve this, the firefighters are equipped with mobile computing devices that are inte-
grated into their personal protection equipment and communicate via wireless network

1.2. Software Architectures and RDS

interfaces. Using these devices, the firefighters coordinate within and across several mis-
sion sites (e.g., buildings) while also taking advantage of the heterogeneous stationary
and mobile computing devices existing in their vicinity (Figure 1). For instance, in addi-
tion to its team members, each firefighter interacts with all the reachable devices that
provide a temperature-monitoring feature and are located on the same floor. A key chal-
lenge of this scenario is that the whole firefighter coordination system needs to operate
in a distributed and decentralized manner, as there is no centrally managed infrastruc-
ture on the deployment site. In addition, the communication links continuously change
as the firefighters move across the floors, mobile devices get out of reach, new firefight-
ers are assigned to teams, etc. Finally, the system needs to be dependable and predicta-
ble, as the firefighters” safety depends on it.

1.2 Software Architectures and RDS

The distinct properties of RDS bring about a number of challenges pertaining to all
phases of software design and development. Although some of the challenges are re-
searched in various other domains, such as the domain of middleware for mobile ad-hoc
networks [FGR+07], this thesis focuses specifically on the area of software architectures,
since we believe that it provides “the required level of abstraction and generality to deal
with the challenges posed” [KM07]. Consequently, given the fact that the challenges of
RDS are mainly related to dynamic and open environments, the particular focus of this
thesis is on dynamic software architectures.

As such, software architecture is the set of principal design decisions made about
a system [TMD10]. Specifically, it governs (i) the high-level software structure, (ii) inter-
action of system components, (iii) core decisions about functional behavior, (iv) non-
functional properties, and (v) basic aspects of the system’s implementation.

Naturally, there is a large number of approaches to software architectures, including
various software-architecture models and software-engineering methods, many of
which partially address the above-outlined challenges. However, as we will show, none
of them can be readily applied for building RDS. In the remainder of this section, we
quickly look at how some of these approaches address particular architecture-related
challenges of RDS. As an aside, a more in-depth description of the hereby-discussed ap-
proaches is presented in Chapter 2.

One of the software-architecture approaches relevant to RDS is component-based de-
velopment (CBD). CBD originates from the necessity of reuse and relies on separation of
concerns to tame the complexity of building and maintaining large applications [CL02,
HCO01, Szy02]. Despite being successful in many domains, ranging from enterprise ap-
plications to embedded systems, CBD has a number of limitations when applied in
the domain of RDS. First, CBD typically makes the assumption of centralized component
deployment. Second, there is no widely accepted approach regarding dynamic changes
in a component-based architecture. Third, CBD assumes reliable communication among
components, which is not plausible for many RDS. Lastly, there is a strong conceptual

Chapter 1. Introduction

reliance of the components in a system on each other, which hinders the resilience of
the system as a whole (i.e., the system might stop working when one component be-
comes unavailable). The above holds for both academic component systems, such as
Fractal [BCL+06] and SOFA 2 [BHP06], and industrial ones, such as EJB [19] and
CCM [WSO01][18].

In an attempt to deal with the issues of centralized ownership and deployment of
component-based systems, as well as their static architectures, a shift has been observed
from components to services [HS05]. Service-oriented computing (SOC) provides
the means for dynamic service binding in face of changing service availability that are
typically based on a well-known service discovery mechanism. It also clearly separates
the responsibilities of the two sides involved in a distributed interaction — the service
provider and the service consumer (end-user or another service), thus rendering the ser-
vice-based architectures loosely coupled. Service platforms such as iPOJO [EHL07] and
service coordination languages such as WS-BPEL [JEA+07] feature the above ad-
vantages. Nevertheless, there are still serious limitations in the direct employment of
SOC in the domain of RDS. Specifically, there is a strong reliance on a (typically) central-
ized service platform for service discovery and binding. Also, SOC still assumes already-
connected services to communicate seamlessly. This makes service-based systems yet
not suitable for RDS.

To mitigate the strong reliance of components/services on each other, agent-oriented
computing (AOC) has introduced an abstraction that brings conceptual autonomy to
loosely coupled system components — software agents. Consequently, multi-agent sys-
tems [SLB09] have brought the autonomy to architecture organization and allowed
building self-organized systems that are heavily dynamic. To this end, AOC provides
useful concepts (e.g., groups and roles [FGMO04]) and models (e.g., Belief-Desire-Inten-
tion architectural model [RG+95]) for designing complex autonomic systems, such as
RDS. However, the problem yet to be tackled is that software agent implementations
and the related agent platforms (e.g., JACK [BRHL99] or JADE [BPRO01]) do not translate
the conceptual autonomy of the agent notions into proper software engineering con-
structs that deal with real-life constraints of autonomous behavior. In particular, these
platforms and the related development methods [BPG+04] rely on the assumption of
explicit (message-oriented) communication, existence of a (centralized) platform, and
relatively stable communication links among the agents, which is not plausible for RDS.
Moreover, AOC primarily focuses on harnessing autonomic agent behavior, rather than
on software architecture design.

This is partially addressed by the concept of service-component ensembles [HRWO0S],
which has been the key notion of the FP7 project ASCENS [5]. The underlying ideas are
embodied by the agent-oriented coordination language SCEL [DNFLP13, DNLPT14],
where attribute-based communication is employed to model dynamic interaction of ser-
vice components. However, although providing powerful coordination concepts with
precise semantics, this body of work still falls short in providing dedicated support for
appropriate software architecture abstractions, their implementation, and the related
software-engineering processes.

1.3. Problem Statement

Addressing the challenges of RDS from the perspective of architecture (self-) adap-
tation and exploiting the principles of control engineering [MPS08, PCHW12], a significant
body of work has been focusing on instantiation of a generic feedback-loop scheme (e.g.,
Monitor-Analyze-Plan-Execute — MAPE-K [KCO03]) at the level of software architecture
[BSG+09, CDLG+09, DLGM+13]. Examples are layered self-managing architec-
tures based on explicit adaptation-goal management [KM07, TGEM10] and approaches
that apply architectural-variability models at runtime [MBN]J09]. Nevertheless, these ap-
proaches primarily target the high-level architecture self-adaptation aspects (i.e., archi-
tecture monitoring, adaptation planning, and adaptation execution), rather than the au-
tonomic, dynamic, and distributed operation of RDS in the physical environment.

1.3 Problem Statement

Looking at the contemporary approaches to software architectures and the related soft-
ware engineering methods outlined in Section 1.2, the specifics of RDS make it difficult
to employ these approaches directly. In fact, the task of engineering dynamic software
architectures for RDS reaches the threshold when it is disputable whether we are still
dealing with a variant of traditional software engineering or whether we are encounter-
ing a new paradigm in computing. This is also reflected by the fact that software engi-
neering of systems akin to RDS is a widely recognized problem domain targeted by on-
going research agendas (e.g., EU Research and Innovation program Horizon 2020).

The main shortcoming of the existing approaches is that they have been designed to
work under assumptions that are simply unrealistic in the domain of RDS. As discussed
from the perspective of CPS in [GKB+14], the violated assumptions include, but are not
limited to, the assumption of static physical structure, stable connections, independence
on physical location, clique connectivity, focus on reactive behavior, stateful communi-
cation, and controlled architecture dynamism. This calls for tailored software architec-
ture models, their implementations, and software-engineering methods that address and
potentially take advantage of the RDS specifics.

To this end, the key concern of this thesis is to tackle this issue by addressing spe-
cifically the following software-architecture challenges:

C1 Recurrent context-driven adaptation. In the context of this thesis, the most
critical of the challenges pertains to the inherent dynamism and unpredicta-
bility of the physical environment of RDS. In fact, the physical substratum is
continuously evolving as mobile computing devices move in the environment.
This means that software architecture has to adapt automatically and dynam-
ically to the recurrently changing situations in the physical environment. In
addition, components are no longer purely virtual software entities but often
have their representations in the physical environment and thus have to be
treated as autonomous entities that cannot always be explicitly managed (e.g.,
created or connected). Consequently, the task of architecture adaptation can

Chapter 1. Introduction

be no longer perceived as a single step or a temporary phase that is fully con-
trolled by the decisions of the system itself or its administrator. Instead, it has
to be a continuous activity that is driven by the observable changes in the
physical, as well as virtual, environment. For this purpose, the architecture
also needs to allow for continuous interaction with the physical environment.

C2 Resilience to unstable communication links. The mobility of the computing
devices in the physical environment of RDS renders communication links in-
herently unstable. A communication link may become (un)available at any
time. Hence, errors in communication are the rule, not the exception, and thus
they cannot be handled as such any more. The property of unstable commu-
nication links has to be acknowledged and ideally reflected in software archi-
tecture. From the point of view of an individual system component, the archi-
tecture needs to allow for correct functioning of the component even when
fully detached from the rest of the system, i.e., in full autonomy. From
the global perspective, the architecture needs to be decentralized.

C3 Scalability and open-endedness. Since heterogeneous components may
join/leave an RDS (or its partition) as a result of the mobility of the computing
devices they are deployed on, the set of components that may constitute
the RDS is open and essentially unbounded. Consequently, software architec-
ture of RDS has to be open-ended so as to support new components coming
from devices appearing in the physical environment. This also implies that
the architecture needs to be scalable at both design time and runtime. The ac-
tual scale of the architecture is limited only by the distribution of the compu-
ting devices in the physical environment.

C4 Dependability. Being frequently safety-critical, RDS require software archi-
tecture to provide a certain degree of dependability — both at the design time
and runtime. This implies the need for well-defined formal semantics of ar-
chitecture models and their implementations, as well as formally grounded
analysis methods exploiting these semantics. This requirement itself is not
unique; however, a combination of dependability with open-endedness, auto-
nomic behavior, distribution, and self-adaptivity is very challenging, since
these concerns are to an extent contradictory. While open-endedness and self-
adaptivity typically require facilitating emergent behavior, addressing de-
pendability needs describing and limiting the emergent behavior.

In order to manage the scale and dynamism of RDS, these challenges need to be
addressed at both design time, in terms of appropriate architecture models and software-
engineering methods, and runtime, in terms of appropriate computational models and
execution environments.

1.5. Overview of Contribution

1.4 Research Goals

Responding to the challenges presented in Section 1.3, this thesis focuses on the area of
dynamic, self-adaptive software architectures for RDS. Specifically, the thesis aims at
providing appropriate software architecture models and abstractions that would ad-
dress these challenges. The primary intention is to adopt the ideas of component-based
development [CL02, HCO01, Szy02], agent-based computing [SLB09], and ensemble-
based systems [HRWO08], while focusing on the software engineering aspects.

Since this area is very broad, the thesis primarily focuses on clarifying the crucial
aspects concerning architecture abstractions, their semantics, and the related software-
engineering concerns. The thesis thus targets the following research goals:

G1 The first goal is to propose architecture abstractions that are tailored for de-
signing dynamic architectures for RDS. The focus is on a proper semantics of
these abstractions w.r.t. the specific challenges of RDS, the challenges C1-C3
in particular.

G2 The second goal is to endorse these abstractions at design time by providing
appropriate design models and processes. The focus here is on formal aspects
of these models and processes in order to enable formal model analysis and
process automation, while also accounting for design scalability and open-
endedness. Thus, this goal primarily relates to the challenges C3-C4.

G3 The last goal, pertaining to the challenges C1-C4, is to detail the semantics of
the architecture abstractions so that it is suitable for distributed and decen-
tralized execution in the dynamic physical environment of RDS and, at the
same time, allows for formal analysis to ensure dependability. This goal also
includes a realization of this detailed semantics in terms of a mapping to a pro-
gramming language and an execution environment prototype.

1.5 Overview of Contribution

The main contribution presented in this thesis consists of a commented collection of co-
authored publications. Most of the results presented in these publications stem from re-
search work and collaboration within the EU FP7 project ASCENS [5]. The results were
also applied as a part of the project’s industrial demonstrators [SRA+11].

First, in [KBPK12] and [BGH+13] we have proposed architecture abstractions tai-
lored for designing open, inherently dynamic software architectures that adapt based on
the current observable system context. The benefit is that these abstractions, the compo-
nent ensemble abstraction in particular, enable declaratively capturing the invariant ar-
chitecture patterns that recurrently appear in RDS at runtime in a way that governs re-
silience to extensive architecture dynamism and communication link instability. This in
turn makes the runtime state of the dynamic RDS architectures more predictable and

Chapter 1. Introduction

dependable. We have summarized these abstractions into the newly introduced DEECo
component model [8] (Dependable Emergent Ensembles of Components). Moreover, we
have equipped DEECo with a rigorously defined computational model, facilitating for-
mal analysis. We have also provided a Java-based execution environment prototype —
jDEECo [13], supporting these abstractions at runtime.

Second, in [KBP+13] we have further supported the DEECo abstractions at design
time by providing a tailored design method — Invariant Refinement Method (IRM). IRM
helps effectively exploiting the DEECo abstractions during design and governs a trace-
ability between system requirements and DEECo-based architectures. The benefit is that
this traceability enables design validation and analysis, thus facilitating dependability.
IRM builds on goal-oriented requirements elaboration, while integrating aspects of com-
ponent-based architecture design and software control system design.

Third, in [KBPH14] we have presented ARCAS — a method for open-ended design
and automated synthesis of software connectors that is particularly suitable for realiza-
tion of dynamic, emergent component bindings, which are the cornerstone of RDS ar-
chitectures. The main contribution lies in the idea of structuring software connectors as
hierarchical composites of reusable connector elements and the idea of automated con-
nector composition via constraint solving. This way, while providing proper separation
of concerns, ARCAS allows for taking into account factors such as extra-functional re-
quirements on the connectors and capabilities of the heterogeneous deployment nodes.

Fourth, we have focused on the dependability aspects of the DEECo component
model and the resulting challenges for verification. Specifically, in [BBB+13] we have
presented a formalization of the general operational semantics of DEECo and discussed
the opportunities for verification of DEECo-based applications via mapping the seman-
tics onto DCCL [BBCP13]. DCCL is a semantic model embodying abstractions suitable
for model checking of ensemble-based systems, introducing, however, additional ab-
straction and simplification. On one hand, we have identified a list of properties observ-
able under the DEECo semantics that can be verified using the simplified model-check-
ing semantics. On the other hand, we have identified the limitations of the model-check-
ing semantics both in terms of expressiveness, as it introduces additional abstraction,
and performance, as the highly concurrent and dynamic DEECo-based systems generate
a very large state space.

Fifth, we have focused on application of DEECo in relevant problem domains. Spe-
cifically, in [BBHK13] we have proposed a DEECo-based architecture governing adap-
tive deployment in ad-hoc cloud systems. In [MKH+13] we have put the ideas presented
in [BBHK13] into the context of voluntary cloud computing researched within the AS-
CENS project. Moreover, in cooperation with Volkswagen AG, we have elaborated and
implemented several variants of the cooperative vehicle navigation scenario [SRA+11]
featured by the ASCENS project; the results, however, are not publicly available as they
fall under a non-disclosure agreement. An excerpt of these results can be found
in [SHP+13, SMP+12]. In all these cases, the experiments showed that the DEECo archi-
tecture abstractions are advantageous and effectively address the challenges of dyna-
mism, communication-link instability, and open-endedness typical for RDS.

1.6. Publications

1.6 Publications

The following reviewed publications form the core contribution presented in this thesis.
The summaries and full texts of these publications are included in Chapter 3.

[KBPK12] J. Keznikl, T. Bures, F. Plasil, and M. Kit. Towards Dependable Emergent En-
sembles of Components: The DEECo Component Model. In WICSA/ECSA "12:
Proceedings of the Joint 10th Working IEEE/IFIP Conference on Software

Architecture & 6th European Conference on Software Architecture, pages
249-252. IEEE CS, August 2012.

[BGH+13] T. Bures, I. Gerostathopoulos, P. Hnétynka, J. Keznikl, M. Kit, and F.
Plasil. DEECo: an Ensemble-Based Component System. In CBSE "13: Proceed-
ings of the 16th International ACM Sigsoft Symposium on Component-
based Software Engineering, pages 81-90. ACM, June 2013.

[KBP+13] J. Keznikl, T. Bures, F. P1asil, I. Gerostathopoulos, P. Hnétynka, and N.
Hoch. Design of Ensemble-Based Component Systems by Invariant Refinement.
In CBSE "13: Proceedings of the 16th International ACM Sigsoft Sympo-
sium on Component-based Software Engineering, pages 91-100. ACM,
June 2013. Awarded with the Distinguished Paper Award.

[KBPH14] J. Keznikl, T. Bures, F. P1&sil, and P. Hnétynka. Automated resolution of con-
nector architectures using constraint solving (ARCAS method). Software &
Systems Modeling, 13(2):843-872. Springer Berlin Heidelberg, May 2014.

[BBB+13] J. Barnat, N. Benes, T. Bures, I. Cern4, J. Keznikl, and F. Plagil. Towards
Verification of Ensemble-Based Component Systems. In FACS "13: Proceedings
of the 10th International Symposium on Formal Aspects of Component
Software, volume 8348 of Lecture Notes in Computer Science. Springer,
October 2013. In press.

[BBHK13] L. Bulej, T. Bures, V. Horky, and J. Keznikl. Adaptive Deployment in Ad-Hoc
Systems Using Emergent Component Ensembles: Vision Paper. In ICPE "13:
Proceedings of the 4th ACM/SPEC International Conference on Perfor-
mance Engineering, pages 343-346. ACM, April 2013.

The publications [BGH+13] and [KBPH14] are of equal authorship. In [KBPK12] and
[BBHK13], under helpful guidance and supervision of the other authors, I came up with
the main idea and authored most of the text. In [KBP+13] and [BBB+13], again under
helpful guidance and supervision of the other authors, I authored a majority of the text.
Additionally, in [KBP+13] I contributed by elaboration and formalization of the main
idea, while in [BBB+13] I elaborated the main idea and conducted the case study.

A summary of the contributions discussed in this thesis was also presented as
the following reviewed poster publication, which is of equal authorship.

Chapter 1. Introduction

[AABG+14a]

R. Al Ali, T. Bures, I. Gerostathopoulos, P. Hnétynka, J. Keznikl, M. Kit,
and F. P1asil. DEECo: an Ecosystem for Cyber-Physical Systems. In ICSE "14:
Companion Proceedings of the 36th International Conference on Software
Engineering. ACM, June 2014. Poster and extended abstract.

In addition, the following co-authored reviewed publications support the contribu-

tions listed above by sharing the underlying topics of (component-based) software ar-
chitecture and software adaptation.

[BGH+14a]

[AABG+14b]

[BBK14]

[SBK13]

[MKH+13]

[BBH+12]

[BBK+12]

T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F.
Plasil. Gossiping Components for Cyber-Physical Systems. In ECSA "14: Pro-
ceedings of the 8th European Conference on Software Architecture.
Springer, August 2014. Accepted for publication.

R. Al Ali, T. Bures, I. Gerostathopoulos, J. Keznikl, and F. P1asil. Architec-
ture Adaptation Based on Belief Inaccuracy Estimation. In WICSA "14: Pro-
ceedings of the 11th Working IEEE/IFIP Conference on Software Archi-
tecture. IEEE CS, April 2014.

M. Babka, T. Balyo, and J. Keznikl. Solving SMT Problems with a Costly De-
cision Procedure by Finding Minimum Satisfying Assignments of Boolean For-
mulas. InR. Lee, editor, Software Engineering Research, Management and
Applications, volume 496 of Studies in Computational Intelligence, pages
231-246. Springer International Publishing, 2014.

N. Serbedzija, T. Bures$, and]. Keznikl. Engineering Autonomous Systems.
In PCI’13: Proceedings of the 17th Panhellenic Conference on Informatics,
pages 128-135. ACM, September 2013.

P. Mayer, A. Klarl, R. Hennicker, M. Puviani, F. Tiezzi, R. Pugliese,]J. Kez-
nikl, and T. Bures. The Autonomic Cloud: A Vision of Voluntary, Peer-2-Peer
Cloud Computing. In SASOW "13: Proceedings of the IEEE 7th Interna-
tional Conference on Self-Adaptation and Self-Organizing Systems Work-
shops, pages 89 — 94. IEEE CS, September 2013.

L. Bulej, T. Bures, V. Horky, J. Keznikl, and P. Ttma. Performance Aware-
ness in Component Systems: Vision Paper. In COMPSACW "12: Proceedings
of the 36th IEEE Annual Computer Software and Applications Confer-
ence Workshops, pages 514-519. IEEE CS, July 2012.

L. Bulej, T. Bures, J. Keznikl, A. Koubkova, A. Podzimek, and P. Tima.
Capturing Performance Assumptions Using Stochastic Performance Logic. In
ICPE "12: Proceedings of the 3rd ACM/SPEC International Conference on
Performance Engineering, pages 311-322. ACM, April 2012.

10

1.7. Structure

[KMBH11] J. Keznikl, M. Malohlava, T. Bures, and P. Hnétynka. Extensible Polyglot
Programming Support in Existing Component Frameworks. In SEAA "11: Pro-
ceedings of the 37th EUROMICRO Conference on Software Engineering
and Advanced Applications, pages 107-115. IEEE CS, August 2011.

[PKH+11] T. Pop, J. Keznikl, P. Hosek, M. Malohlava, T. Bure$, and P. Hnétynka.
Introducing support for embedded and real-time devices into existing hierarchical
component system: Lessons learned. In SERA "11: Proceedings of the 9th In-
ternational Conference on Software Engineering Research, Management
and Applications, pages 3-11. IEEE CS, August 2011.

1.7 Structure

The thesis is divided into two main parts. First, Chapter 2 presents the state of the art in
design and analysis of dynamic software architectures of systems akin to RDS, with de-
tailed focus on the research goals G1-G3. In particular, Section 2.1 overviews the soft-
ware architecture abstractions, design models, and software-engineering processes that
can be potentially beneficial for building RDS. Further, while emphasizing predictability
and dependability, Section 2.2 outlines the approaches to architecture (self-) adaptation
that provide the driving force of contemporary dynamic software architectures. Finally,
Section 2.3 discusses the principal approaches to formal specification and analysis of
software architectures with the aim of providing a foundation for addressing the chal-
lenge of dependability in scope of the outlined research goals. The second part, Chap-
ter 3, includes a commented collection of six co-authored publications that contribute to
the goals G1-G3. Chapter 4 then concludes the thesis and gives the author’s subjective
vision of the promising research directions related to the area of dynamic software ar-
chitectures for RDS.

11

Chapter 1. Introduction

12

Chapter 2

State of the Art

This chapter includes an overview of the state-of-the-art approaches related to dynamic
software architectures of RDS in scope of the research goals G1-G3.

In general, dynamic software architectures represent a very popular research topic,
which by itself includes an overwhelming amount of work from different software en-
gineering disciplines. Consequently, as hinted in Section 1.2, the current state of the art
approaches already (at least partially) address the specific challenges of RDS discussed
in Section 1.3. However, because the area of RDS has emerged only recently, it is difficult
to employ these approaches directly, as they do not address all the challenges together.
Therefore, the objective of this chapter is to explore the related state-of-the-art ap-
proaches and identify the important points that can be advantageously employed for
building dynamic architectures for RDS. Specifically, the focus is on software architec-
ture abstractions, their implementations, and corresponding software-engineering
methods and processes that would address the requirements of distribution, resilience,
scalability, dynamicity, adaptability, and dependability.

Essentially, since this thesis focuses on various aspects of dynamic software archi-
tectures for RDS, the state of the art can be categorized into three (partially crosscutting)
topics:

e Software architecture abstractions. The key aspect of architecture design is the way
software parts are structured and organized within the overall architecture. This
is largely determined by the employed software architecture abstractions. Con-
temporary software architectures of large-scale distributed systems akin to RDS
employ a large variety of abstractions, each providing different properties and
following different objectives. To this end, this thesis focuses on the prevalent
idea of organizing large-scale distributed software architectures via a composi-
tion of well-defined software parts, which is the common foundation of many
component and service-oriented approaches. In particular, Section 2.1 overviews
the approaches focusing on component-based architectures, service-oriented ar-
chitectures, agent-based architectures, and service-component ensembles.

e Dependable software architecture (self-) adaptation. Orthogonally to the architecture
abstractions and their implementations, various software architecture (self-) ad-
aptation mechanisms have been proposed so as to provide the driving force of

13

Chapter 2. State of the Art

the contemporary dynamic software architectures. These approaches bring dif-
ferent tradeoffs between the scope of the adaptation and architecture predictabil-
ity, dependability, and scalability and, therefore, offer variable utility regarding
the specific needs of RDS. Adopting a view on architecture dynamism that is or-
thogonal to Section 2.1, Section 2.2 overviews architecture (self-) adaptation ap-
proaches ranging from virtually unrestricted ad-hoc (self-) adaptation, through
various kinds of restricted (self-) adaptation and autonomic (self-) adaptation, to
inherently dynamic architectures.

e Formal methods in (dynamic) software architectures. In order to ensure dependability
of (dynamic) software architectures, which is one of the key concerns present
throughout the goals of this thesis, a significant body of work focuses on appli-
cation of formal methods. To this end, Section 2.3 presents an overview of ap-
proaches to formal specification and analysis of (dynamic) software architec-
tures. In particular, the overview includes approaches focusing solely on struc-
tural aspects of (dynamic) architectures, as well as approaches considering also
the behaviors governed by the architectures.

2.1 Software Architecture Abstractions

In this section, we overview the approaches to software architectures in distributed sys-
tems, including the related software architecture abstractions, models, and software-en-
gineering processes, that are based on the prevalent concept of organizing the architec-
tures via a composition of well-defined software parts — components. As already indi-
cated in Section 1.2, although its primary goal is decomposition and separation of con-
cerns, the component abstraction brings many other software-architecture properties,
which are potentially beneficial for building RDS.

To this end, as a baseline for the work presented in this thesis, we first overview the
approaches to component-based software architectures, which target architecture-de-
sign scalability via (de)composition and reuse (Section 2.1.1). As is frequently the case in
today’s industrial applications, this also covers architecture design for embedded and
real-time systems, which is an important aspect of RDS. Focusing on the component
communication and coordination concerns, especially w.r.t. distribution, we then pro-
vide a discussion of software connectors (Section 2.1.2). Further, we investigate the spe-
cifics of service-based systems, which represent a conceptual shift towards loosely-cou-
pled, open-ended, and dynamically-composed software architectures (Section 2.1.3). To
respond the need for autonomy in RDS, we also overview architecture abstractions
based on the concept of software agents, which bring the autonomy to architecture or-
ganization (Section 2.1.4). Reflecting the recent progress in software architectures to-
wards a synergy of components, services, and agents, we also elaborate on the state-of-
the-art results based on the concept of service component ensembles (Section 2.1.5). Fi-
nally, we conclude this section with a discussion of how the presented architecture ab-
stractions can be used for building dynamic architectures for RDS (Section 2.1.6).

14

2.1. Software Architecture Abstractions

2.1.1 Component-Based Architectures

Component-Based Development (CBD) [CL02, HC01, Szy02] is a widely adopted ap-
proach to software architecture design. It relies on separation of concerns to tame
the complexity of building and maintaining large applications [CLO02]. Its main benefit
is that it provides abstractions for software (de)composition, interoperability, and reuse.

CBD has been adopted in many diverse domains including configuration platforms
(e.g., OSGi [HPMS11][21], Google Guice [12], Spring [22]), user interface frameworks
(e.g., WPF [FrelO], JavaBeans [20]), enterprise applications (e.g., EJB [19],
CCM [WSO01][18], Sofa 2 [BHP06]), systems software (e.g., OpenCOM [CBG+08]), grid
systems (e.g.,, GCM [BHR14]), and embedded systems (e.g., Koala [VOVDLKMO00], My-
CCM-HI [BHP09], ProCom [SVB+08], Sofa HI [PWT+08]).

The key notion of CBD is a component model, which defines (and gives semantic
meaning to) the component architecture abstraction and the mechanism of component
composition. In principle, a component is a software unit with contractually specified in-
terfaces and explicit context dependencies, which can be developed and deployed inde-
pendently and is subject to (third-party) composition [Szy02]. Due to the critical role of
the component model, a component can also be seen as a software element that conforms
to a component model and can be independently deployed and composed without mod-
ification according to a composition standard [HCO1].

At runtime, components rely on the services provided by an execution environment
(also referred as component platform). Essentially, an execution environment imple-
ments the corresponding component model. The joint product of a component model,
its execution environment, and the related tools (including tools for design, develop-
ment, and deployment), is frequently referred to as a component system [CL02].

2.1.1.1 Component Model

In general, a component model focuses on the concerns related to component interface,
composition, implementation, interaction, packaging, deployment, and execution.

The interface-related concerns determine how a component’s provisions/require-
ments are specified. For example, while OSGi [21] specifies the provisions/requirements
in terms of procedural provided/required interfaces, ProCom [SVB+08] employs the con-
cepts of data ports and triggering ports.

The composition-related concerns determine the support of component nesting, the
component abstraction level, and the way component bindings are captured and estab-
lished. For example, many component models, such as Sofa 2 [BHP06], Ko-
ala [VOVDLKMO00], and Fractal [BCL+06], allow for hierarchical component composition
(i.e., a component can consist of a composition of sub-components). Hierarchical com-
position also often relates to elaborate component abstractions. For instance,
Sofa 2 [BHP06] provides the abstractions of (i) component type, describing the outer
contract of a component (i.e., black-box view), (ii) component architecture, describing
the internal structure of a component (i.e., gray-box view), and (iii) component instance,

15

Chapter 2. State of the Art

representing a concrete instantiation of a component architecture within component hi-
erarchy. On the other side of the spectrum, component models such as OSGi [21] do not
support component nesting and perceive components as singletons (without any addi-
tional component abstractions). Also, while in the vast majority of component models
the component bindings are specified explicitly by the architecture, service-oriented
component models, such as OSGi [21] and iPOJO [EHL07], describe component bindings
implicitly by specifying the component-interface types and rules for their interconnec-
tion. (Service-oriented architectures are discussed separately in Section 2.1.3.)

The implementation-related concerns determine the way a component is defined
and implemented. For example, in the Java-based component platform of Fractal
— Julia [BCL+06] — a component can be implemented, among other options, in terms of a
specifically annotated Java class or in terms of an abstract composite defined via a dedi-
cated Architecture Definition Language (ADL).

The interaction-related concerns determine the communication styles based on
which components interact. For example, while Koala [VOVDLKMO00] relies solely on
synchronous method call, EJB [19] and CCM [18] also allow for asynchronous messag-
ing. Moreover, some component models, such as Sofa 2 [BHP06], Wright [AG97], and
Acme [GMWO00], employ the concept of software connectors [MMPO0] that encapsulates
and hides the specifics of a particular communication style. (Software connectors are
further discussed in Section 2.1.2.)

The concerns related to packaging and deployment determine how components are
treated during deployment. For example, components in OSGi [21] are packaged and
deployed as standalone JAR archives, whereas Sofa 2 [BHP06] provides a dedicated de-
ployment infrastructure relying on a component repository.

Finally, the execution-related concerns determine the programming model of a com-
ponent’s internal behavior and the contract w.r.t. to the component’s execution environ-
ment. For example, component models targeting real-time systems, such as MyCCM-
HI [BHP09], Sofa HI [PWT+08], and ProCom [SVB+08], ensure real-time scheduling of
component behaviors. In a similar vein, GCM [BCD+09, BHR14] provides mechanisms
for synchronization of asynchronous component execution in grid systems.

Naturally, there is a large variety of distinct component models. Though different
in many aspects, all the component models share the fundamental idea of components
as blocks of functionality with relatively well-defined architecture and interaction pat-
terns. A comprehensive survey can be found for example in [LWO07], [CVZ+11],
[HPB+10], and [PHH+13].

2.1.1.2 Execution Environment

At runtime, components are executed within an execution environment, which takes
care of their lifecycle, binding, interaction, and various non-functional concerns, such as
introspection and concurrency [CLO02]. Moreover, the execution environment needs to
take care of all the specific features of the corresponding component model. Depending
on the actual component model, this might include, for instance, real-time scheduling

16

2.1. Software Architecture Abstractions

(e.g., by employing scheduling capabilities of the underlying operating system), medi-
ating distributed communication (e.g., by employing suitable middleware), etc. Con-
versely, a component model can reflect certain specific services of its execution environ-
ment (e.g., introspection). For example, the Fractal component model [BCL+06] includes
the concept of component membrane, which exposes the capabilities of the Fractal exe-
cution environment. As an aside, an execution environment itself may be constructed as
a component-based system. For example, the execution environment of Sofa 2 [BHP06]
is partially based on a designated “micro-component” model [BHMO09]. Similarly, the
concept of software product lines [CN02, GS03, PBVDL05] may be employed for pro-
ducing families of component platforms tailored to various target application do-
mains [BHMO09, Mal12].

Execution environment is closely connected to deployment. In fact, it is at the de-
ployment stage of the CBD process [CCL06] when components, as well as the execution
environment, are being prepared for execution according to a system architecture. This
may include also synthesizing significant parts of the execution environment, such as
infrastructure ensuring component distribution [BP04, Bur06]. In principle, there are two
types of deployment: compile-time deployment and runtime deployment. During the
compile-time deployment, components and the execution environment are built and
linked together prior to execution. While bringing predictability and dependability, it
prevents changes in the architecture at runtime. (The architecture may still display lim-
ited dynamic capabilities, as discussed in Section 2.2.2.) This type of deployment is typ-
ical for embedded and real-time systems, running in constrained environments (e.g.,
MyCCM-HI [BHP09], Koala [VOVDLKMO00], PECOS [GCW+02], ProCom [SVB+08]). On
the other hand, the runtime deployment enables performing explicit changes to the ar-
chitecture during execution. Thus, it is critical for enabling architecture adaptation. This
type of deployment is advantageously employed in enterprise and pervasive systems
featuring continuous execution (e.g., EJB [19], Sofa 2 [BHPO06], Fractal [BCL+06],
CCM [18]).

2.1.1.3 Component-Based Architectures at Design Time

CBD introduces a specific architecture-design process that is based on the distinct life
cycle of software components [CCL06, CL02]. In particular, CBD focuses on building
systems by reusing already existing components. Therefore, the CBD development pro-
cess separates system development (i.e., development of systems by composition of
components) from component development (i.e., development of components).

Several component development processes may be on course simultaneously, thus
making it possible to develop several components at the same time. Consequently, since
the system development and component development are always to some extent paral-
lel processes, CBD puts a significant focus on component interoperability, composabil-
ity, and validation/verification thereof (verification is further discussed in Section 2.3).
Note that the interoperability and composability are to a major extent addressed by
proper selection of the underlying component model.

17

Chapter 2. State of the Art

From the perspective of architecture design, mainly focusing on the system devel-
opment, there are several approaches to the CBD process [CCL06, CL02]. The objective
of all these approaches is to determine the component instantiation, composition, and
interaction in a component-based software architecture.

The architecture-driven CBD process uses a top-down approach to component-
based system design. Specifically, components are identified during high-level analysis
and architecture design, e.g., by elaboration of system requirements [YLL+08], so as to
capture the essential architecture elements and their responsibilities. Such components
are thus rather specific to the architecture, with the focus on composability, and are not
primarily designed for reuse. The corresponding component model acts in this case as
a common design platform.

The CBD process based on software product lines [CN02, GS03, PBVDLO05] focuses
on systematic component reuse to produce a desired product family. The purpose of
a product line is to identify the common features and variation points of the desired
product family in advance. This is achieved by a combination of top-down and bottom-
up design approaches. The common features are embodied in a reference/platform ar-
chitecture, while the variation points are reflected via substitutable components. Com-
pared to the architecture-driven CBD process, the product-line-based approach empha-
sizes parallelism of the component development and system (i.e., product) development.
Here, component model is not only the common design platform facilitating component
reuse and integration, but it also reflects the specifics of the particular product family.
As a result, there are component models specifically developed for particular product
families (e.g., Koala [VOVDLKMO00]).

Finally, the CBD process based on third-party components focuses on component
reusability, separating component development and system development completely. It
relies primarily on bottom-up component design, thus making the component model
largely responsible for ensuring composability and interoperability [d]J09].

2114 Embedded and Real-Time Component Systems

As already hinted above, one of the domains in which CBD has been widely adopted is
the domain of real-time embedded systems (RTES) [Butl11, CL02]. Examples of embed-
ded and real-time component systems are numerous, including MyCCM-HI [BHP09],
Koala [VOVDLKMO00], PECOS [GCW+02], ProCom [SVB+08], SOFA HI [PWT+08], and
BlueArx [KRKHO09].

Despite following the main principles of CBD, such as reusability, compositionality,
well-defined architecture design, support for distributed communication, etc., compo-
nent-based design and development of RTES introduces several specifics [PKH+11].
These specifics are driven by the close interaction of RTES with their ever-changing
physical environment. Adopting the approach of control engineering, RTES achieve ro-
bustness w.r.t. the recurrent changes in their environment by maintaining operational
normalcy. Here, operational normalcy expresses the property of being within certain lim-
its that define the range of normal functioning of a system. Technically, this is achieved

18

2.1. Software Architecture Abstractions

by adequate scheduling of periodic or event-driven tasks representing sensors acquisi-
tion, control, and actuation, all performed in “real-time”. In this context, the embedded
and real-time component systems provide specific support for periodic and aperiodic
tasks within components, their composition, modeling of their real-time attributes, as
well as real-time task scheduling at run-time [But11]. Furthermore, as RTESs are often
deployed to hardware with limited resources (e.g., low amount of available memory,
low-frequency CPU with no memory management unit), the system demands of the cor-
responding component platforms (e.g., memory footprint) need to be analyzable and
configurable.

Another important aspect of RTES is that there is a very strong emphasis on depend-
ability, which brings the need for analysis and verification. The basis for this is twofold.
First, RTESs are commonly used in safety-critical applications, such as car systems. Sec-
ond, as updates of software in embedded devices can be complicated or even impossible,
it is desirable to ensure system validity during design. Although this includes also spec-
ification and verification of system behavior (discussed in Section 2.3.2), as in the tradi-
tional CBD, the primary focus is on analysis and verification of real-time properties, es-
pecially w.r.t. composition. The main representatives are (compositional) WCET (Worst-
Case Execution Time) analysis [LCS13] and schedulability analysis [Butl11, HZPKO07].

To further promote dependability, embedded and real-time component systems fre-
quently employ model-driven engineering (MDE) and code generation [CFMTSI10,
PKH+11]. The reason is that models facilitate analysis, while code generation allows re-
taining the analyzed models” properties in the implementation [BC11]. Also, the gener-
ated code itself can be made more suitable for analysis and verification and with more
configurable and predictable resource demands than a hand written code. For example,
in MyCCM-HI [BHP09] the component-based system design is transformed to the lower-
level Architecture Analysis and Design Language (AADL) [FGHO06, VPKO05]. Then,
the corresponding Ocarina tool suite [HZPK07, HZPKO08] can be used to produce exe-
cutable code or to mediate formal verification of behavior and schedulability analysis.
Another advantage of code generation is that the generated code can cover the OS and
platform-specific aspects, which are not covered by the abstraction layer of the execution
environment, and thus can help keeping the component implementation platform-inde-
pendent. Technically, code generation is typically employed for synthesis of component
interconnections (i.e., component connectors, see Section 2.1.2) and the component skel-
eton code, which is primarily responsible for handling real-time aspects of execution,
such as (periodic) real-time scheduling or handling of missed deadlines.

ProCom [SVB+08] is an example of an embedded and real-time component system,
which gives a strong emphasis on formal analysis and verification [LCS13, VSC+09,
VSCS10], as well as model-driven engineering and code generation [BC11]. The ProCom
component model distinguishes two levels of abstraction — ProSys and ProSave. ProSave
represents the lower level, focusing on passive, hierarchically structured components
communicating via pipe-and-filter style on top of the components” data ports and trig-
gering ports. ProSys, on the other hand, focuses on a description of potentially distrib-

19

Chapter 2. State of the Art

uted and concurrent (event-driven or periodic) subsystems communicating via asyn-
chronous message channels. A ProSys component can be represented as an assembly of
ProSave components.

Another example of a component system for embedded devices is Ko-
ala [VOVDLKMO0], developed by Philips and targeting consumer electronics. The com-
ponent model supports hierarchical component composition at design time and is
strongly oriented on capturing design-time variability in terms of software product
lines [dJ09]. The code generation in Koala is employed for generating component con-
nections. The generated code, as well as the execution platform, is strongly optimized
w.r.t. resource demands. However, Koala does not address real-time execution aspects.

Other examples are surveyed in [HPB+10, PHH+13].

2.1.1.5 Dynamic Component-Based Architectures

As outlined in Section 2.1.1.3, component-based software architectures are at design time
eventually captured in terms fully elaborated component compositions. This means that
component instantiation, composition, and interaction are typically fully determined at
design time. Consequently, this prevents CBD to address the concerns of architecture
dynamism directly. To enable dynamic architectures, component systems mostly exploit
the runtime deployment support of their execution environments, rather than reflecting
architecture dynamism explicitly in the component model.

Nevertheless, some component systems enable capturing dynamic integration and
reconfiguration of components at the level of component model so as to cope with dy-
namic, open-ended environments, while allowing for well-defined component-based ar-
chitecture design. For example, the AmbiComp approach [PS08] is based on dedicated
component controllers that enable ad-hoc instantiation of various pre-designed applica-
tion scenarios based on the current context of the deployed components. At runtime,
the controllers mediate ad-hoc component discovery, negotiation of component provi-
sions, requirements, and extra-functional properties, as well as instantiation of appro-
priate application scenarios by proper component composition. Moreover, any change
in the established component architecture (e.g., appearance/disappearance of a compo-
nent, change in a component’s provisions/requirements, change in the component’s
quality attributes, etc.) is reflected by the controllers, thus enabling the components to
react accordingly. Some other component systems, such as SOFA 2 [BHP06] and Frac-
tal [BCL+06], provide similar reflective capabilities that enable well-defined runtime ar-
chitecture reconfiguration at the level of component model. These can be then employed
by external adaptation mechanisms to achieve architecture dynamism, as discussed sep-
arately in Section 2.2.

2.1.2 Software Connectors

Software connectors are entities encapsulating interaction and coordination among soft-
ware components, thus separating these concerns from the actual component function-

20

2.1. Software Architecture Abstractions

ality [MMP00, TMD10]. In particular, connectors (i) ensure distribution of communi-
cating components by encapsulating middleware [BP04] (middleware-based connect-
ors), (ii) provide adaptation in order to achieve middleware-level [IBB11, NTER06] and
application-level [CCP11, IST11, SI10] interoperability (adaptors), and (iii) ensure syn-
chronization of component communication [BS08, IST11] (coordinators).

At a more technical level, there are various connector types, based on the way in
which they realize the distribution/adaptation/coordination. These types include proce-
dure call, event propagation, data access, linkage, stream, and distributor connect-
ors [MMP00, TMD10], to name just a few. Connectors can also provide additional ser-
vices concerning extra-functional properties of component interaction, such as persis-
tence, transactions, and encryption [BP04, Bur06].

The concept of software connectors is adopted as a generic abstraction generalizing
concrete communication styles by various existing component-based approaches to soft-
ware architectures, e.g.,, Wright [AG97], Acme [GMWO00], ArchJava [ASCNO3], and
Sofa 2 [BHPO6].

2.1.2.1 Connector Synthesis

The connector development process differs from the CBD process. Although connectors
are partially employed during the component/system design, fully specified connectors
emerge at the earliest in the component deployment phase. This is due to the strong
reliance of a connector’s architecture and implementation on its deployment (e.g., on the
available middleware). On the other hand, the separation of concerns makes connectors
rather independent on component functionality, thus rendering them suitable for auto-
mated synthesis. Although there are approaches focusing on explicit connector design
in combination with traditional CBD process [RCGT09, RRS+05], special focus has been
put on automated synthesis of connectors at deployment time and runtime.

Recently, a particular effort has been invested into research of automated synthesis
of connectors that ensures application-layer and middleware-layer interoperability
[BP04, Bur06, IBB11, IS]+09]. This is especially beneficial when connecting independently
developed or deployed components. The emergence of such connectors is particularly
advantageous at runtime when architecture and deployment reconfiguration takes place
(e.g., due to load balancing or mobility). Based on a specification of the connected com-
ponents and the middleware available for each of these components, the goal is to syn-
thesize (in an automated way) a connector implementation that ensures the components’
interoperability. Resembling CBD for connectors, an interesting prospective approach
is the synthesis based on automated composition of hierarchical connector architectures
from reusable elements, reflecting the available middleware, the desired communication
style, and certain extra-functional properties pertaining to communication concerns
(e.g., encryption) [BP04, Bur06]. As a specific case, a large body of work has been in-
vested in synthesis of the so-called emergent connectors [IBB11, ISJ+09], which is basically
a synthesis at runtime with limited (or without) preceding connector design. Specifica-
tion of such emergent connectors is to be programmatically derived from the specifica-
tion of the components to be connected.

21

Chapter 2. State of the Art

2.1.3 Components as Services

Service-Oriented Computing (SOC) represents a shift from components to services [BLO6,
HS05, Pap03] as the main building blocks of software architectures. Targeting open and
heterogeneous environments, SOC aims at eliminating the issues of strict (design-time
and runtime) dependencies and centralized deployment of component-based architec-
tures, while retaining the emphasis on (de)composition and interoperability. Although
there are many approaches to SOC (e.g., web services [CNWO01]), the approaches that
promote synergy of SOC and the component-based architectures are of particular inter-
est.

The core idea of SOC is based on clearly separating the responsibilities of the parties
involved in a service-oriented architecture (SOA): a service provider, a service consumer
(end-user or another service), and the service broker. Specifically, SOC separates the fol-
lowing concerns: (i) service publication (involving a provider and the broker), (ii) service
discovery (involving a consumer and the broker), and (iii) service invocation (involving
a producer and a consumer). For this purpose, SOC relies on explicit service specifica-
tion, describing the functionality provided by a service (e.g, WSDL [CCMWO1]).
An SOA is hence formed by composing service specifications, which get at runtime con-
cretized to actual services by the service broker. As such, service composition can be
realized in many ways, including regular code (e.g., OSGi [21]) and process-based ap-
proaches (e.g., WS-BPEL [JEA+07]). A composition of services can also itself implement
a service specification, thus enabling service nesting.

This brings about several important properties to a service-oriented software archi-
tecture [HSO05]. First, services in an SOA are at design time loosely coupled, which facil-
itates service autonomy, contributes to overall SOA robustness, and promotes independ-
ent service development and deployment. Further, due to the emphasis on a thorough,
implementation-oblivious service specification, SOA promotes service substitutability
and heterogeneity. Finally, relying on a service broker, bindings among services are es-
tablished late and dynamically, which brings resilience to dynamic availability of ser-
vices at runtime. These properties enable SOA to become very flexible.

At runtime, an SOA is supported by a (usually centralized) service-oriented plat-
form [WCL+05], which provides an infrastructure for service publication, discovery, and
invocation, relying of on a set of standardized protocols (e.g., SOAP, WSDL [WCL+05]).
The platform also takes care of tracking dynamic availability of services and ensures
notification of the affected service consumers. For example, the OSGi platform [21] pro-
vides a dedicated API enabling the service consumers to cope with dynamic availability
of service providers.

Nevertheless, SOC also brings limitations w.r.t. highly-dynamic adaptive sys-
tems [DNGM+08]. Namely, being conceptually centralized, service-oriented platforms
prevent efficient distribution and present a scalability bottleneck for service discovery
and binding [AZI09]. Moreover, although supporting dynamic availability, service com-
positions typically rely on stable communication channels once connected and do not
cope well with sudden disconnections.

22

2.1. Software Architecture Abstractions

2.1.3.1 Service Components

In principle, SOC does not primarily address the concerns of complexity and reuse
[MRO09, YP04]. This stems from the emphasis on loose coupling. Specifically, SOC, and
web services in particular, focuses on interaction of pieces of software (services) that
have nothing in common, i.e., they form “isolated islands of functionality” that interact
with each other. While this can be certainly considered an asset, it limits design scalabil-
ity and the potential for reuse. To compensate for this, the concept of service component
has been proposed [CH04].

The service-component approach promotes SOC-based composition while employ-
ing CBD for service implementation. In a service-oriented component model [CH04, EHLO07],
the concept of a service acts as a unit of provided/required functionality, characterized
by an explicit service specification (including syntactic, behavioral, and semantic con-
cerns, as well as service dependencies). A component acts as an implementation of po-
tentially multiple services and may feature its own implementation-specific service de-
pendencies, i.e.,, components interact by providing services and using the services of
other components. Component composition is described and established upon the com-
ponents” services via a combination of the SOC mechanisms and other techniques (e.g.,
message bus) implemented by the service-component platform. Hierarchical composi-
tion is achieved by allowing component compositions to implement further services.
Contrary to CBD, service-component instances are not necessarily declared at design
time, but emerge dynamically at runtime — either due to explicit activation or due to
implicit instantiation via dedicated factories (driven by the runtime platform to satisfy
the demand for provided services).

The service-component paradigm has been applied in a number of component
frameworks, such as Service Binder [CHO04] (now integrated into OSGi [21]) and iP-
OJO [EHLO7]. An interesting feature of Service Binder is that it enables runtime instan-
tiation of complex abstract composites by binding predefined service placeholders to
services of the available component instances (based on the service specifications and
component-specific properties). Conversely, iPOJO focuses on integrating simple POJO
components (Plain Old Java Objects) into a service-oriented framework, complemented
by externally-defined service-oriented compositions.

A different approach to service-components is portrayed by Service Component Ar-
chitecture (SCA) [MRO09][17]. In principle, SCA tries to combine explicitly-defined com-
ponent-based architectures with service-oriented composition [HP06]. The motivation is
an integrated composition and deployment of related services, while ensuring loose cou-
pling wr.t. services of third parties. Thus, in addition to adopting the traditional service-
component concepts (i.e., components as implementations of well-defined services),
SCA enables explicit (in the CBD sense) composition, instantiation, and deployment of
components implementing related services. In principle, SCA is a technology for assem-
bling service applications from components that are managed by a common infrastruc-
ture. Consequently, SCA focuses on the concerns of portability and reusability of heter-
ogeneous service components developed by different parties, on different platforms, us-
ing different communication protocols and paradigms. On the other hand, it leaves the

23

Chapter 2. State of the Art

other concerns, such as interoperability and runtime management, on external mecha-
nisms (e.g., interoperability via web services) and the particular implementations (e.g.,
FraSCAti [SMR+12][10] and Tuscany [4]). An in-depth comparison of SCA with a fully-
fledged component model - Fractal [BCL+06] — is presented in [HMM11].

2.1.4 Components as Software Agents

To mitigate the conceptual reliance of components/services on each other, Agent-Ori-
ented Computing (AOC) has introduced software agent as an abstraction that brings con-
ceptual autonomy to loosely coupled system components. An agent can be perceived as
a software abstraction that exhibits some degree of autonomic behavior and is capable
to cooperate in order to achieve both individual and collective goals. Each agent is de-
signed to operate with a partial view of the whole system, which is beneficial when the
global state is not available. For example, in the Belief-Desire-Intention (BDI) architec-
tural model [RG+95] the agents maintain a belief about the rest of the system to guide
their autonomous reasoning.

At the level of software architecture, agents are usually implemented and composed
via service-component mechanisms, while agent interaction is realized via targeted mes-
saging [BPRO1]. Building on the service-composition principles, multi-agent sys-
tems [SLB09] feature the concepts of agent roles and groups [FGM04]. By extending
the idea of abstract service-component composites, the concepts of roles and groups
bring the autonomy to architecture organization and allow building self-organized sys-
tems that are heavily dynamic. In principle, each agent autonomously decides, based on
its individual capabilities, which communication groups it will participate in and under
which role. The interaction of agents in a group is then determined by the respective
roles of the agents. These concepts are supported at runtime by the corresponding agent
platforms, such as JACK [BRHL99] and JADE [BPRO1].

As to agent-oriented component-based architectures, approaches such as
MetaSelf [DMSFR10] combine self-organization policies evaluated at runtime, agent-in-
spired autonomy, and rule-based reasoning with a service-oriented architectural frame-
work that is centered on the concepts of self-describing service components. Other ap-
proaches, such as the Accord framework [LPH04], focus on service-component auton-
omy achieved via smart, agent-based composition infrastructure. In particular, Accord
assigns to every autonomous component a set of composition rules (corresponding to
roles) derived from workflows (corresponding to groups) for driving composition-re-
lated aspects in a decentralized manner (including configuration, interaction and coor-
dination), while separating these aspects from computation behaviors provided by
the autonomous components.

AOC brings also specific design methods that are tailored to the autonomy and dy-
namism of agents. In particular, Tropos [BPG+04] is a methodology for designing agent-
oriented software systems based on the Goal-Oriented Requirements Engineering
(GORE) [RBAF10, VL01], thus aligning requirements analysis with system design and
implementation. Tropos is based on the idea of using GORE notions (actors, goals, plans)

24

2.1. Software Architecture Abstractions

in all software development phases: from early requirements, through design, down to
actual implementation. Specifically, based on the system requirements, Tropos captures
the relevant system actors and their interdependencies in terms of goals to be achieved.
This includes a specification of how the goals can be fulfilled through contributions of
the individual actors (by executing tasks). Such specification is then refined in terms of
independent sub-systems that are interconnected through data and control flows and
composed of actual software agents with their individual capabilities. This refinement
then directly leads to a detailed design of the agents” behavior and interaction protocols
that can be readily mapped to a concrete implementation on top of an agent platform
(e.g., JACK [BRHL99]). Similar approaches have been adopted also for design of (not
necessarily agent-oriented) adaptive architectures [MPP08, TPYZ09, YLL+08].

To summarize, AOC delivers at the conceptual level excellent means for implement-
ing large-scale distributed systems featuring advanced autonomic behaviors. Compared
to traditional component-based and service-component approaches, adaptation and dy-
namism are easier to achieve, since agents are more autonomous.

A problem arises at the software-engineering level. Specifically, agent-oriented ap-
proaches, as well as the agent-based platforms (e.g., JACK [BRHL99] and JADE [BPR01]),
do not translate the conceptual autonomy and other useful agent notions (i.e., goals, in-
tentions, roles, groups) into proper software engineering constructs. The reason is that
they are usually implemented via service-oriented mechanisms, thus sharing the limita-
tions. This includes reliance on an explicit (message-oriented) communication, a (cen-
tralized) agent platform, and reliable communication channels between the agents.

2.1.5 Service Component Ensembles

Extending the focus of service components (i.e., open-ended system design, dynamic
service availability, design scalability, and reusability) with the concerns of (i) efficient
design and distributed execution on a large scale, (ii) (self-) adaptation to changing re-
quirements and non-deterministic environments, and (iii) resilience to node failures, the
concept of service-component ensembles (SCEs) [HRWO08] has recently gained attention and
been investigated in the scope of the FP7 project ASCENS [5].

The objective is to build systems from dynamic, self-organizing groups — ensem-
bles — of self-aware, adaptive service components while controlling and engineering
their emergent behavior so as to facilitate dependability.

The underlying semantics of SCEs is captured by the SCEL coordination language
[DNFLP13, DNLPT14] (based on KLAIM [DNFPP98]) where attribute-based communication
is employed to model a context-driven, dynamic interaction of components. Specifically,
the target of communication is determined according to the attributes of both the source
and target (rather than by a direct identifier of the target). In terms of SOC, this corre-
sponds to promoting the mechanism of attribute-based service discovery from service
composition stage to individual service interaction, while extending the discovery to
consider the attributes of both the target and source of the communication (and their

25

Chapter 2. State of the Art

mutual relation). The service components in SCEs are portrayed as autonomous, self-
aware, and self-adaptive entities, closely resembling software agents.

Addressing, among others, the challenges of security and trust, the SCE paradigm
also allows for reflecting various interaction policies [MPT13], which are crucial when
building open, heterogeneous systems.

The SCE paradigm can be advantageously exploited to model a dynamic coordina-
tion of heterogeneous components on a large scale; moreover, it allows for dealing with
dynamic and open environments, as well as with limited reachability of components. A
particular benefit is that the concepts of SCEs are formally grounded due to their origins
in the SCEL specification language. Therefore, they are equipped with precise opera-
tional semantics that provides opportunities for formal analysis. (The formal aspects are
discussed separately in Section 2.3.)

In its current form, however, the SCE paradigm relies on strong consistency among
the components, which is not plausible in large, decentralized systems. Besides, the cur-
rent body of work still falls short in providing appropriate software architecture abstrac-
tions. Namely, the SCEs are currently not reflected at the architecture level but are em-
bedded within the low-level interaction logic of the components. Consequently, there is
a lack of suitable abstractions and software-engineering processes that would support
architecture design of SCEs. Also, being relatively novel, the concepts of component en-
sembles and attribute-based communication are not yet fully explored with regards to
appropriate programming models and runtime environments that would enable their
efficient implementation and distributed execution. To this end, jJRESP [DNLPT14][14],
a faithful implementation of the SCEL operational semantics, represents a promising
step in this direction.

2.1.6 Lessons Learned

To provide a foundation for pursuing the research goals G1-G3, the previous sections
have discussed several principal approaches towards software architectures in distrib-
uted systems akin to RDS. These approaches employ various software architecture ab-
stractions displaying distinct benefits and limitations. The discussion has revealed that
there is no readily-available solution to the challenges of RDS (i.e., challenges C1-C4) at
the level of software architecture. Nevertheless, the majority of the discussed approaches
provide valuable partial solutions.

Component-based development (CBD), discussed in Section 2.1.1, represents a solid
baseline for engineering well-defined software architectures for RDS. Specifically, struc-
turing software architectures in terms of well-encapsulated, composable, reusable, and
substitutable components enables addressing the challenges of scalability, while provid-
ing a base for ensuring dependability (as further discussed in Section 2.3). CBD also fa-
cilitates separation of behavior and interaction concerns, which is critical for efficiently
addressing the communication-related challenges in RDS. Furthermore, CBD in the area
of embedded and real-time systems provides mature techniques for achieving robust-
ness when interacting with the physical environment. In particular, the important idea

26

2.1. Software Architecture Abstractions

is to maintain operational normalcy by adequate real-time scheduling of periodic or
event-driven component tasks. Finally, CBD is equipped with various top-down and
bottom-up design processes, supporting component-based architectures at design time.
Nevertheless, CBD does not explicitly account for architecture adaptation and open-
ended architecture design. Neither does it cope well with communication and compo-
nent failures.

CBD can be advantageously supplemented with the concept of software connectors,
discussed in Section 2.1.2. In addition to separation of concerns, software connectors
bring about the possibility of automated synthesis of communication infrastructure in
face of heterogeneous deployments and architecture dynamism of RDS. However, com-
bining dynamic, open-ended architectures with connector synthesis is still an issue.

Certain drawbacks of CBD are addressed by service-oriented component models in
the context of service-oriented computing (SOC), discussed in Section 2.1.3. In general,
SOC provides the means for dynamic architecture adaptation in face of changing avail-
ability of services/components and enables loose service/component coupling and open-
ended architecture design. Specifically, SOC introduces the concept of implicit connec-
tions based on design-time service specification and runtime service discovery and bind-
ing. Nevertheless, in addition to not being intended for close integration with the phys-
ical environment, SOC still falls short in addressing the challenges of frequent commu-
nication and service/component failures. Also, it is challenging to achieve fully decen-
tralized operation of service-oriented architectures.

Agent-oriented computing (AOC), discussed in Section 2.1.4, well complements
CBD and SOC by focusing (at the conceptual level) on autonomous operation and dy-
namic organization of software agents based on the agents” partial view (belief) on the
whole system. Therefore, it facilitates resilience to agent failures and enables efficient
decentralized execution. This makes AOC very appealing for RDS. It is also equipped
with design methods based on goal-oriented requirements engineering that make de-
signing such decentralized, dynamic, and autonomic systems feasible. Nevertheless,
AQC is concerned primarily with taming the autonomic agents” behaviors, rather than
with the challenges pertaining to software architecture. In particular, AOC is at the tech-
nical level based on service-oriented mechanisms and thus still fails to address the chal-
lenge of frequent communication errors in RDS.

Building on the ideas of SOC and AOC, service component ensembles (SCEs), dis-
cussed in Section 2.1.5, present a promising approach towards dealing with very dy-
namic and open environments on a large scale, as well as with limited reachability of
components (including frequent communication errors). This is largely due to the re-
lated mechanism of attribute-based communication. Moreover, the concepts of SCEs are
formally grounded and thus provide opportunities for ensuring dependability via for-
mal analysis (discussed separately in Section 2.3). However, the issues of appropriate
software architecture abstractions, implementation, and design processes for SCEs are
still not yet fully investigated. To this end, due to the origins of SCEs in service-compo-
nent architectures, CBD presents a fitting candidate to draw from.

27

Chapter 2. State of the Art

2.2 Dependable Software Architecture (Self-) Adaptation

In this section, focusing on predictability and dependability, we outline various ap-
proaches to architecture (self-) adaptation that provide the driving force of contempo-
rary dynamic software architectures. Specifically, we do it in a way that is to some extent
orthogonal to the architecture abstractions discussed in Section 2.1. The reason for this
is that the core concepts of these approaches are not bound to any specific architecture
abstraction (even though some are more related). Here, adaptation means an arbitrary
change of software architecture at runtime (a.k.a. reconfiguration), including addi-
tion/removal of a component/service, change in component/service composition, change
of component/service configuration (if applicable), etc., whereas self-adaptation means
adaptation performed by the system itself in response to changes in its operating con-
text [OHJ+99]. This context may comprise both the external environment and the internal
state of the system itself, including both functional and extra-functional aspects (e.g.,
performance [BBH+12]). We specifically focus on architecture self-adaptation.

The common aspect of the discussed self-adaptation approaches is that they are
based on the concept of autonomic feedback loop [BSG+09, KC03, OHJ+99], taken from
the area of control engineering [MPS08, PCHW12]. Specifically, self-adaptation includes
monitoring (awareness) of the application context, detection of a situation requiring ad-
aptation, analysis and assessment of a desired adaptation (e.g., based on predefined ad-
aptation tactics), and execution of the adaptation. For the purpose of monitoring and
adaptation execution, self-adaptation typically relies on middleware-level or architec-
ture-level reflective capabilities of the execution environment [ADLMW(09], which in
turn often involves techniques based on models@runtime [BBF09].

The discussed approaches provide different tradeoffs between the scope of architec-
ture dynamism and its predictability, analyzability, and dependability. This means that
approaches enabling arbitrary architecture dynamism may suffer from absolute unpre-
dictability and even complete architecture erosion [BHH+06], while maintaining predict-
ability (and thus analyzability and dependability) limits the dynamism.

To this end, we first overview the ad-hoc approaches to architecture (self-) adapta-
tion, featuring maximum adaptation flexibility, but hindering predictability and de-
pendability (Section 2.2.1). Next, we discuss the approaches based on bounded architec-
ture (self-) adaptation, i.e., adaptation that is limited to a bounded number of pre-defined
architecture variants — modes; these approaches are primarily aimed at predictability
and analyzability (Section 2.2.2). Offering a balanced tradeoff between flexibility and
predictability, we further investigate approaches employing unbounded (but con-
strained) architecture (self-) adaptation (Section 2.2.3). Last but not least, we also over-
view inherently dynamic software architectures, enabling predictable (self-) adaptation
without changes to the architecture design (Section 2.2.4). We conclude this section with
an analysis of how the presented approaches can be utilized for building dynamic archi-
tectures of RDS (Section 2.2.5).

28

2.2. Dependable Software Architecture (Self-) Adaptation

2.2.1 Ad-hoc (Self-) Adaptation

In the context of this thesis, we use the term “ad-hoc adaptation” for all approaches in
which adaptation is not explicitly modeled at the level of software architecture, but is
captured at a lower level, e.g., in terms of adaptation API invocations in code.

Ad-hoc (self-) adaptation is frequently employed in combination with traditional
CBD. In particular, since component instantiation and composition is typically decided
during design or deployment [CCL06], CBD deals mostly with static architectures (as
discussed in Section 2.1.1.5). Hence, relying on the runtime-deployment support, archi-
tecture self-adaptation is usually handled in an ad-hoc manner via the reconfiguration
capabilities of the corresponding component platforms, such as the membrane control
API in Fractal [BCL+06, POS06], dedicated component controllers in Sofa 2 [BHP06,
KMBH11] and GCM [BCD+09], or the introspection and reconfiguration API in
OSGi [21]. In particular, the ad-hoc self-adaptation takes the form of low-level event-
condition-action rules that correspond to invocations of a reconfiguration mechanism
reacting to distinct (external or internal) changes in the system’s context.

However, hardwiring (self-) adaptation logic directly into the business code is not
plausible for development of large evolving applications. The reason is that such hard-
wiring mixes business concerns with adaptation tactics, which makes both initial devel-
opment and maintenance more difficult. Furthermore, it is hard to update the adaptation
tactics when the application logic evolves or new adaptation contexts are identified. To
address this issue, approaches such as [DL06] enable developing the (self-) adaptation
code separately and then integrating it dynamically into the business code so as to
achieve decoupling, both spatial and temporal. In particular, [DL06] employs aspect-
oriented programming [KLM+97] to dynamically extend Fractal-based systems with ad-
aptation tactics relying on low-level reconfiguration scripts based on Fractal’s introspec-
tion/reconfiguration capabilities.

The advantage of this type of (self-) adaptation is that it is extremely flexible, while
still enabling modularity and reusability. On the other hand, since the adaptation is not
explicitly modeled at the architecture level, it is hard or even impossible to perform anal-
ysis and validation. Furthermore, ad-hoc (self-) adaptation does not offer support for
determining interactions between different adaptation tactics. Consequently, it can lead
to “uncontrolled” architecture modification, which is inherently error-prone and may
result in architecture erosion.

2.2.2 Bounded (Self-) Adaptation and Architecture Modes

Complex systems can encounter a large variety of different contexts that require runtime
(self-) adaptation towards different architecture configurations. Addressing these glob-
ally is not plausible. As a remedy, a widely-adopted approach is to employ so-called
architecture modes [HKMUO06], which are in principle pre-defined architectural variants
specific to different situations that are switched at runtime based on the current context.

29

Chapter 2. State of the Art

Mode-based (self-) adaptation can be advantageously modeled at the level of archi-
tecture at design time by capturing the context-specific architecture variants in terms of
alternative component/service compositions. This strengthens the relation between de-
sign-time architecture models and runtime architecture evolution, and thus facilitates
design-time analysis. Consequently, mode-based (self-) adaptation prevents architecture
erosion and promotes predictability and dependability. On the other hand, it strictly
bounds the allowed architecture dynamism to the pre-designed configurations. (Note
that this can be complemented by mechanisms for wupdating modes at
runtime [BGF+08].)

At runtime, mode specifications can be either employed directly to drive the (self-)
adaptation [FHS+06] (i.e., models@runtime approach) or translated at design/deploy-
ment time to low-level adaptation code [BHP09].

2.2.2.1 Modes in Embedded and Real-Time Component Systems

The predictability and bounded scope of mode-based (self-) adaptation is especially uti-
lized in the domain of embedded and real-time component-based architectures (dis-
cussed in Section 2.1.1.4). This is mainly because the ad-hoc approach to architecture
(self-) adaptation is not viable due to the unpredictable performance and resource de-
mands, which is unacceptable for correct real-time execution and in face of resource lim-
itations.

To achieve the predictability, it is necessary to employ appropriate design-time ar-
chitecture models and analysis techniques. As to the architecture models, the focus is on
precise mode and mode-change specification that would facilitate analysis, as well as
efficient execution at runtime. For example, the approach of [YCH12, YQCH13] presents
a mode-aware extension to ProCom [SVB+08], focusing on rigorous, logic-based mode
specification. Another example represents MyCCM-HI [BHP09, VPK05], which is a com-
ponent-oriented extension of the AADL design language [FGHO06] and which focuses on
explicit specification of mode transitions. As to the analysis, a particular challenge in this
context is to ensure timely operation when a system is undergoing a mode change
[BDFR08, BHP09, RBF+08, YH13]. Another challenge stems from the requirement of
compositionality of real-time mode-change mechanisms along (hierarchical) component
composition [PPO+12, YQCH13].

Mode-based (self-) adaptation brings also efficiency w.r.t. resource constraints, since
it offers the possibility to optimize the mode change mechanisms [RC04] at design time.

At runtime, it is necessary to introduce explicit support for real-time mode-based
(self-) adaptation into the execution environment, as, e.g., in MyCCM-HI [BHP09] and
ProCom [YQCH13]. A comprehensive overview of component-based frameworks that,
to some extent, provide such support is given in [HPB+10, PHH+13].

Due to the requirements of predictability and resource efficiency, some embed-
ded/real-time component systems do not employ explicit representation of modes at
runtime; instead, mode specifications are at design time (e.g., in BlueArX [KRKHO09]) or
deployment time (e.g., in MyCCM-HI [BHP09]) transformed to an efficient, platform-
specific representation.

30

2.2. Dependable Software Architecture (Self-) Adaptation

2.2.2.2 Modes as Composites

In the cases where architecture (self-) adaptation involves variability w.r.t. a number of
features, treating modes as homogeneous architecture configurations introduces an ex-
plosion of the number of potential modes, which hinders development and maintenance.
Moreover, because such features are often partially independent, there is an explosion
of the (implicit) transitions between the modes.

To address this issue, the concepts of software product-lines [CNO02, GS03,
PBVDLO05] can be advantageously used for modeling the modes along the individual
variability points [BGF+08, FHS+06]. This is usually done by providing different variants
of individual system (sub-) components for different contexts so that, at runtime, the
architecture mode pertaining to the current context is dynamically composed from the
corresponding variants. For example, in the hierarchical component composition of
Madam [FHS+06], each sub-component may have multiple implementation variants.
Each variant is associated with a utility function that evaluates the variant w.r.t. to its
properties (e.g., memory consumption), or properties of its sub-components (recur-
sively), in a given context. The modes are composed from the variants with the highest
utility in a given context (when context changes). In Genie [BGF+08], coarse-grained ar-
chitecture modes, supplemented with explicit mode transition diagrams, are traced to
low-level component configurations via orthogonal variability models [PBVDLO05].

2.2.3 Dependable Unbounded (Self-) Adaptation

A significant body of work focuses on modeling architecture (self-) adaptation without
bounding the potential adaptation space while still guaranteeing structural correctness.
This is especially viable in domains that do not enable pre-designing all the architecture
variants but still require dependability and prevention of architecture erosion.

2.2.3.1 Architecture (Self-) Adaptation Models at Runtime

The prevalent approaches to dependable unbounded (self-) adaptation [BJC05, DFB+12,
GCH+04, HI10, KM07, KM09, MBNJ09, TGEM10] are based on modeling the adaptation
at runtime and analyzing it together with constraints on the permissible architecture
configurations so as to provide validation prior to the actual reconfiguration. Hence,
these approaches heavily rely on models@runtime [BBF09, MBJ+09]. Note that they also
typically involve formal methods, some of which are discussed in more detail in Sec-
tion 2.3.1.

As to examples, the architecture models in Plastik [BJC05] (based on
Acme [GMWO00] and OpenCOM [CBG+08]) are equipped with formally captured invar-
iants expressing consistency constraints on architecture (self-) adaptation. At runtime,
every adaptation action (either pre-designed at the level of architecture, or ad-hoc) is
tirst checked that it does not violate any architecture invariant.

Rainbow [GCH+04] presents a different view on unbounded (self-) adaptation. In
addition to using architecture models to validate the effects of adaptation actions at
runtime, a reflective middleware infrastructure is employed to update the architecture

31

Chapter 2. State of the Art

model by monitoring the executing system, while an adaptation layer analyzes the
model against pre-defined architecture constraints. If any of them is violated, the adap-
tation layer employs the associated adaptation tactics.

The key advantage of these techniques, especially the ones that support automated
adaptation planning — discussed further in Section 2.2.3.3, is that they allow for reason-
ing about the architecture (self-) adaptation at runtime. This is especially beneficial for
architecting self-managed and autonomic systems, as elaborated in Section 2.2.3.4.

2.2.3.2 Architecture (Self-) Adaptation Models at Design Time

Another family of approaches to dependable unbounded (self-) adaptation is focusing
on modeling the (self-) adaptation in such a way that correctness of all the potential ar-
chitecture (re)configurations can be guaranteed at design time.

For example, FracToy [TMS10] (based on Fractal [BCL+06]) formally models archi-
tecture configurations, as well as architecture constraints and (self-) adaptation tactics,
at design time so as to verify that the tactics will maintain the constraints at runtime. A
similar approach is presented in FracL [SA09]; the difference to FracToy is that FracL
models the adaptation tactics down to the level of the Fractal’s control API. Conversely,
in [GMKO02] dependable (self-) adaptation tactics are derived at design time from a for-
mal model of the desired architectural styles, represented via constraints on component
composition in Darwin [MDEK95]. (The formalisms used in [GMKO02], [SA09], and
[TMS10] are described in Section 2.3.1.)

The approach of [BJM+11] employs formalized adaptation actions that are tailored
to hierarchical component-based architectures (e.g., instantiation of a sub-component,
creation of a component binding). These adaptation actions help to describe at design
time when and how the architecture evolves at runtime in a way that facilitates formal
dependability analysis and “correct-by-construction” code generation. The adaptation
actions stem from well-defined reconfiguration patterns that are based on the authors’
experience with non-trivial case studies [HPO06].

Another similar approach is proposed in [EHH+13], where all the allowed architec-
ture adaptation actions (determining when and how the runtime architecture evolves)
are formally specified at design time. Dependability is then achieved by checking that
these actions yield only architecture configurations corresponding to the verified com-
ponent interaction patterns. In a similar vein, [HB13] proposes modeling (self-) adapta-
tion in hierarchical real-time component-based architectures via a design-time formali-
zation of the adaptation actions and their propagation along the component hierarchy.
Each adaptation action is rigorously specified and annotated with real-time properties,
thus governing both structural and real-time predictability. Correctness of such specifi-
cation is then verified prior to deployment. (The formal aspects of [EHH+13] and [HB13]
are discussed in Section 2.3.2).

By restricting (self-) adaptation to predefined actions/tactics, these approaches en-
sure predictability and dependability of all the potential architecture configurations at
design time. This is imperative in safety-critical systems, including (some) RDS.

32

2.2. Dependable Software Architecture (Self-) Adaptation

2.2.3.3 Automated Adaptation Planning

Some approaches that are based on modeling and analyzing architecture adaptation at
runtime (Section 2.2.3.1), such as [BJCO05], rely on explicit specification of low-level ad-
aptation actions (tactics). This hinders the high-level design view on (self-) adaptation,
binds the tactics to a given execution platform, and impedes determining the interactions
between the tactics. Nevertheless, when maintaining an explicit architecture model to-
gether with constraints on the permissible architecture configurations at runtime, it is
possible not only to validate the planned architecture adaptation tactics, but also to au-
tomate the planning itself. In this context, architecture adaptation planning determines
the necessary reconfiguration steps to drive the adaptation from the current architecture
to a given target architecture. In the following, we overview a few examples.

For instance, the approach of Plastik [BJC05] has been extended with support for
automated architecture adaptation planning at runtime in [MBB+12] (further discussed
in Section 2.3.1). A similar approach to adaptation planning is presented in [TGEM10].

In [MBN]J09], adopting an incremental approach to adaptation planning based on
aspect-oriented programming [KLM+97], the adaptation tactics are represented via high-
level aspect models that are woven into the explicit architecture model at runtime. The
resulting architecture model is then validated on the fly (allowing simple rollback if
needed). The actual adaptation is driven by low-level reconfiguration scripts that are
automatically generated based on the differences between the initial model and the
newly woven one. In addition to portability and appropriate abstraction level, using as-
pect models to represent adaptation tactics and automatically generate low-level recon-
figuration scripts allows analyzing the interactions between the adaptation tactics.

The approach of [MBN]J09] is further elaborated in the context of the Kevoree com-
ponent system [DFB+12][15], which focuses on runtime architecture models and adap-
tation planning for distributed, heterogeneous systems. Specifically, the runtime infra-
structure of Kevoree relies on model comparison between two architecture models to
generate an efficient reconfiguration script that adapts the architecture. Advantageously,
this approach can also be effectively extended to other domains, such as cyber-physical
systems [FMF+12].

Another example of adaptation planning is presented in [HI10], which (similarly to
[GMKO2] and FracToy [TMS10] mentioned in Section 2.2.3.2) relies on formal models of
both the architecture structure and the adaptation actions. This approach employs for-
mal analysis of the models at runtime (vs. design time) to enable online validation of
architecture constraints (e.g., architectural style) and to perform the actual adaptation
planning in the context of a generic component model based on OSGi [21]. For brevity,
the employed formal method is discussed separately, together with other similar tech-
niques, in Section 2.3.1.

2.2.3.4 Autonomic and Self-Managed Adaptation

A specific, partially crosscutting approach to architecture (self-) adaptation that has been
given progressively more attention [BBF09, CDLG+09, DLGM+13, GCH+04, KMO07,

33

Chapter 2. State of the Art

KMO09, MPS08, PMC+12] pertains to the concerns of autonomicity and self-manage-
ment [HMO08, KCO03]. In principle, the objective of autonomic and self-managed software
architectures is to employ automated techniques for preparing architecture (self-) adap-
tation tactics in order to minimize the necessity of explicit architecture management
while retaining compliance with overall architecture design and system goals in face of
changing system requirements and environment. This is achieved by employing explicit
autonomic feedback loops at the level of architecture models [BSG+09, MPS08].

The techniques that enable modeling and analyzing architecture adaptation at
runtime (Section 2.2.3.1) are especially fitting for this purpose. Specifically, they bring
the possibility to reason about architecture adaptation within the explicit autonomic
feedback loop. This particularly pertains to techniques supporting automated architec-
ture adaptation planning (Section 2.2.3.3), since the adaptation plans, and their rigorous
models and analysis, play a critical role in achieving reliability in autonomic and self-
managed systems. To react to a changing application context in an autonomic manner,
these techniques need to be complemented by adequate monitoring support in terms of
architecture reflection [ADLMWO09], such as the OSGi [21] reflective APL

To reduce the design complexity of autonomic adaptation, it is beneficial to employ
a more elaborate organization of feedback loops.

For example, layered self-managing architecture organization may help separate
different adaptation domains within a software architecture [KM07, KM09]. In this case,
a goal management layer is responsible for deriving adaptation plans from high-level
goals, such plans are managed and transformed into adaptation actions in the change
management layer, and, finally, the component control executes these actions and re-
ports on the status of the newly derived architecture.

Hierarchical organization, especially in combination with model-based approaches
to architecture adaptation [MBJ+09], can be efficiently employed to achieve self-man-
aged evolution of both software architectures and their adaptation facilities [PMC+12].
Specifically, this can be done by treating the architecture adaptation loop as another au-
tonomic and self-managed system equipped with its own adaptation feedback loop.
The goal of this second loop is meta-adaptation, i.e., adaptation of the original feedback
loop as a reaction to, e.g., new requirements or new adaptation dimensions.

2.2.4 Inherently Dynamic Architectures

In the previous subsections, we have been focusing on explicit architecture (self-) adap-
tation via reconfiguration. A distinct view on (self-) adaptation is embodied by ap-
proaches where the software architecture itself is inherently dynamic, i.e., it adapts (or
is being adapted) without explicit changes to the architecture design (e.g., by reconfigu-
ration). Naturally, these approaches rely heavily on an execution environment, which
manages all the actual architecture (self-) adaptation [EHL07]. Since an inherently dy-
namic architecture gets fully concretized as late as at runtime, it is often dubbed as an
implicit architecture (i.e., it only implicitly describes the actual runtime architecture). This
is advantageously utilized in pervasive distributed systems featuring high mobility or

34

2.2. Dependable Software Architecture (Self-) Adaptation

dynamic availability of components in an open environment, where adaptation via ex-
plicit reconfiguration may not be plausible due to the openness or large scale.

The concept of inherently dynamic architectures in fact stands behind most of the
approaches focusing on service-based systems. For example, each service binding in
a service-based architecture (Section 2.1.3) is based on dynamic service discovery man-
aged by a service broker. This way, although static in its design, the service-based archi-
tecture is adapted at runtime (by the service platform) according to the dynamic availa-
bility of the corresponding services [EHLO7].

Similarly, architectures of multi-agent systems (Section 2.1.4) are inherently dy-
namic in a sense that the static definition of groups and roles forming the architecture
design is interpreted by agents at runtime so as to achieve dynamic self-organization of
the architecture [FGMO04].

Finally, inherent dynamism is the key concept of architectures based on service-
component ensembles (Section 2.1.5). In particular, due to the attribute-based communi-
cation of components in an ensemble, every component interaction is interpreted dy-
namically based on the current runtime context of the (potentially) interacting compo-
nents [DNLPT14].

Note that inherently dynamic architectures can be advantageously combined with
architecture (self-) adaptation via reconfiguration (e.g., Section 2.2.3) so as to achieve
a higher degree of dynamism. This approach has been for example employed for dy-
namic reconfiguration of service-component architectures [[IFMWO08, TSP+04]. Such a
combination is especially important when designing self-managed and autonomic sys-
tems (Section 2.2.3.4) on top of inherently dynamic architectures.

2.2.5 Lessons Learned

Building on the discussion of architecture abstractions suitable for RDS in Section 2.1,
the previous sections have further detailed the fundamental approaches to architecture
(self-) adaptation. The approaches offer different tradeoffs between the scope of archi-
tecture dynamism (important w.r.t. the challenges C1-C3) and predictability, analyzabil-
ity, and dependability (relevant to the challenge C4), and thus provide different utility
for RDS. Note that although appropriate (self-) adaptation mechanisms are essential for
achieving the goals G1 and G3, they are equally important w.r.t. the goal G2.

Ad-hoc architecture (self-) adaptation, discussed in Section 2.2.1, is on one hand ex-
tremely flexible and open-ended. On the other hand, since it is not explicitly modeled at
the architecture level, it makes it hard or even impossible to ensure dependability, which
may result in architecture erosion. This makes ad-hoc adaptation inapplicable for RDS.

The other extreme is represented by bounded architecture (self-) adaptation, dis-
cussed in Section 2.2.2. It promotes predictability and dependability by limiting the ar-
chitecture dynamism to the pre-designed architecture configurations. Although this
makes architecture (self-) adaptation much more manageable at both design time and
runtime, it is too restrictive w.r.t. the extremely dynamic and open environments of RDS
to be generally applicable for their distributed architectures. Nevertheless, its wide

35

Chapter 2. State of the Art

spread in the area of embedded and real-time systems makes bounded (self-) adaptation
a feasible alternative for adaptation of local (i.e., non-distributed) RDS sub-systems that
are responsible for interaction with the physical environment.

The approaches to unbounded (but constrained) architecture (self-) adaptation, out-
lined in Section 2.2.3, offer a balanced tradeoff between flexibility and predictability. Es-
pecially appealing is the concept of modeling and analyzing architecture adaptation at
runtime, since it enables automated planning of complex reconfigurations, as well as
fully autonomic and self-managed adaptation in face of changing system requirements
and environment. In this context, employing explicit autonomic feedback loops at the
level of architecture appears to be one of the key ingredients. Nevertheless, since this
type of (self-) adaptation involves various reasoning and analysis techniques, it may not
be appropriate for addressing very frequent architecture adaptation that is caused by
changes of component reachability or context, regularly manifested in RDS. In fact, such
cases mainly require only small adjustments of the architecture in terms of component
re-connection rather than a full architecture reconfiguration. Moreover, unbounded
(self-) adaptation is based on modeling the overall system architecture at runtime, and
thus it is not amenable to efficient decentralized execution required for RDS. On
the other hand, it may still be a suitable alternative for coarse-grained architecture (self-
) adaptation (e.g.,, meta-adaptation — adaptation of adaptation mechanisms), where
a more costly or centralized approach is tolerable and where it can utilized to its full
potential. In this context, maintaining an architecture model at runtime and architecture
monitoring are the key prerequisites.

The closest match to the needs of RDS are actually the inherently dynamic architec-
tures discussed in Section 2.2.4, which are at design time specified only implicitly and
are fully concretized at runtime by the execution environment. Although this approach
is not flexible enough to express arbitrary architecture reconfigurations (i.e., the overall
design-time blueprint of the architecture is fixed), it is suitable for addressing the recur-
rent dynamism of component bindings w.r.t. dynamic component availability and
changes of context (e.g., due to high mobility or component/communication failures). It
also facilitates open-ended architecture design, while retaining predictability. However,
to fully exploit the potential of inherent architecture dynamism in face of recurrent ar-
chitecture adaptation and unstable communication links, it is necessary to provide ap-
propriate communication mechanisms that would mitigate the impact of frequent archi-
tecture changes on the individual components, which is one of the major weaknesses of
the state-of-the-art approaches in this area. To this end, a stateless, data-flow-based com-
munication is an appealing candidate. Further, the significant role of the execution envi-
ronment in establishing the actual architecture at runtime makes it problematic to ensure
dependability without a proper, rigorously-specified operational semantics of the exe-
cution environment (as elaborated further in Section 2.3).

36

2.3. Formal Methods in (Dynamic) Software Architectures

2.3 Formal Methods in (Dynamic) Software Architectures

Formal methods, formal specification and analysis in particular, play an important role
in ensuring dependability of (dynamic) software architectures, which is critical in RDS.
Since formal specification and analysis are not the primary objectives of this thesis, this
section overviews only certain influential examples. Specifically, we focus primarily on
the approaches that are related to Sections 2.1 and 2.2.

To this end, we first elaborate on approaches to structural specification and analysis
of (dynamic) software architectures (Section 2.3.1), which are concerned purely with ar-
chitecture (re)configurations without considering the behavior governed by the archi-
tectures. This also includes techniques for dependable automated construction of archi-
tecture configurations. Then, we discuss approaches to behavior specification and anal-
ysis (Section 2.3.2), which are concerned with the overall system behavior and properties
governed by the (dynamic) architectures. Specifically, we discuss three major directions:
(i) specification and analysis of a formal model of an architecture, (ii) specification and
analysis of an actual implementation following the architecture (a.k.a. code verification),
and (iii) specification and analysis of system requirements determining the architecture.
Finally, we conclude this section with a discussion of how the presented approaches
contribute to ensuring dependability in the dynamic architectures of RDS (Section 2.3.3).

Note that the domains of structural and behavior analysis of software architectures
are not necessarily exclusive. An interesting illustration of how formal methods can be
employed in the context of both is presented in [GS07].

2.3.1 Structural Specification and Analysis

When analyzing (dynamic) software architectures, a significant body of work primarily
focuses on the structural properties. In this context, the goal is to formally model and
analyze the (static) structure of software architecture configurations, potentially in com-
bination with the (dynamic) reconfiguration actions that drive architecture adaptation,
while abstracting the actual system behavior.

Logic-based constraint-solving techniques are especially suitable for this purpose.
Not only do they allow for convenient structural modeling of architecture configura-
tions, but they can be also advantageously employed for their automated construction
in a way that guarantees dependability (i.e., by interpreting a solution of a constraint-
satisfaction problem that properly encodes all admissible configurations as a concrete
configuration).

In this context, several approaches focus on SAT (propositional satisfiability)
[BHVvMWO(9]. In [LBP+08, MBDC+06] the idea is to employ a SAT solver to resolve soft-
ware dependencies; this approach was used in several contemporary software tools such
as Equinox p2 [9] (which is an implementation of OSGi [21]) and Maven [3]. Equally, the
approach of [TBKCO07] is based on formalizing the notion of a feature model by intro-
ducing a specific feature algebra. Using such formalization, a SAT solver is employed
for verification of safe feature-model composition in a product line.

37

Chapter 2. State of the Art

A very popular logic-based constraint-solving technique suitable for formal struc-
tural architecture specification and analysis is based on employing first-order finite
structures (i.e., first-order logic predicates upon finite sets and relations).

In this context, Alloy [Jac02, Jac12] stands as one of the most popular tools for struc-
tural specification and analysis of software architectures, as well as their automated con-
struction [DR14, GMKO02, HI10, JS00, KG10, MS+08, SA09, TMS10]. Due to the large num-
ber of applications, we discuss Alloy and the related approaches separately in Sec-
tion 2.3.1.1.

Another technique for structural analysis and automated construction of architec-
ture configurations based on first-order finite structures is logic programming. For ex-
ample, the approach of [Her10] uses first-order finite structures to describe component-
based architectures based on UML component diagrams. The formal description in-
cludes component ports and connectors, as well as individual methods of component
interfaces, their parameter types, and basic characteristics of their bodies (instances of
what classes/component a particular method can create/destroy, etc.). The same formal-
ism is employed to describe architecture rules, which act as architectural patterns, refer-
ence architecture constraints, guidelines and policies, etc. A Prolog-like logic-program-
ming framework is then used for design-time verification of a given architecture against
a given set of architecture rules. Another example is [BP04], where logic programming
is used in order to formalize hierarchical composition of software connectors from reus-
able elements in a way that reflects both functional (e.g., communication style, interface
signatures) and extra-functional (e.g., transactions, monitoring) concerns. Prolog is then
employed to construct a particular connector architecture.

Recently, approaches to structural architecture analysis and automated construction
based on automated planning [GNT04] have gained attention. This includes automated
adaptation planning in self-adaptive component-based software architectures [MBB+12,
TGEM10] (introduced in Section 2.2.3.3), composition of services in service-oriented ar-
chitectures [SW04], and automated architecture evolution [BPG13]. Analogously to the
previous techniques, these approaches describe software architecture via logic-based
predicates expressing relations among various finite structures (e.g., a predicate express-
ing that a given component and a given connector are connected to each other). Simi-
larly, the constraints to be maintained during adaptation (e.g., component model, archi-
tectural style) are expressed via first-order logic invariants restricting admissible recon-
figurations (with the option to also constraint whole reconfiguration paths). Advanta-
geously, the approaches based on automated planning enable also reflecting concerns
such as timing constraints and optimization w.r.t. to a custom metric (e.g., minimizing
the cost of reconfiguration).

2.3.1.1 Analysis of (Dynamic) Software Architectures with Alloy

Alloy [Jac02, Jac12][1] is a formal modeling language that is based on a first-order pred-
icate logic with operators from the set theory (e.g., intersection, cartesian product), rela-
tional algebra (e.g., relational join, transitive closure), and basic arithmetic (e.g., integer

38

2.3. Formal Methods in (Dynamic) Software Architectures

operations, set cardinality). The language is based on the notions of signature and rela-
tion. A signature is a set of abstract elements; relations are defined upon such sets. Alloy
allows constraining the relations by facts (first-order logic formulas). A fact can employ
named predicates and function symbols. In general, an Alloy specification, which con-
sists of definitions of signatures, relations, and facts, represents a first-order logic theory
(also called Alloy model). Alloy Analyzer — the associated solver — can either find an
instance of an Alloy model (i.e., assign elements to signatures and establish relations
among the elements in a way that satisfies the constraints), or check a model (i.e., all its
possible instances) against a given property (expressed as a constraint). Alloy Analyzer
converts each Alloy model to a SAT formula [BHvMWO09]; using an underlying general-
purpose SAT solver, it solves the formula and then interprets the result as an Alloy
model instance. Consequently, Alloy Analyzer requires the domains of signatures and
relations to be explicitly bounded (due to the mapping to SAT). The technique of trans-
lating a model analysis to SAT is sometimes called bounded model checking [BCC+09].

It is due to its syntax, compatible with the object-oriented paradigm, and features of
Alloy Analyzer that Alloy has been extensively used in the domain of software architec-
tures for the purpose of both architecture analysis (via property checking) and auto-
mated composition/synthesis (via instance finding).

The below-discussed approaches, some of which were already introduced in Sec-
tion 2.2.3, typically model architectures in the following way: Structural elements of an
architecture (e.g., components, interfaces) are represented via signatures and their or-
ganization via relations (e.g., a relation between a component and its interfaces). An ad-
aptation action (tactic) is then represented as a predicate describing pre- and post-con-
ditions of the action in terms of constraints over the source and target architecture con-
figurations. Consequently, the architecture adaptation process is modelled via a se-
quence of architecture configurations, where each two consecutive ones satisfy the pre-
and post- conditions of an adaptation action.

In [GMKO02] the authors employ Alloy for specification and analysis of structural
properties of self-adaptive architectures in Darwin [MDEK95, MK96]. In this context,
Alloy Analyzer is employed for analysis of a specified architecture configuration (en-
coded into an Alloy model) w.r.t. predefined architectural constraints (encoded into Al-
loy facts). The Analyzer is also used for determining suitable adaptation tactics (by find-
ing an instance of the corresponding Alloy model).

Another Alloy-based approach to verification of (self-) adaptation is Frac-
Toy [TMS10]. Similarly to [GMKO2], it is based on a formalization of a concrete self-
adaptive architecture and the corresponding adaptation tactics in terms of an Alloy
model so as to analyze the effect of the adaptation tactics on the architecture w.r.t. pre-
defined architecture constraints.

In a similar way, [LLC10] employs Alloy for specification and analysis of architec-
ture integrity constraints so as to validate architecture reconfiguration at runtime (in
terms of Section 2.2.3.1).

39

Chapter 2. State of the Art

The approach presented in [HI10] employs Alloy for specifications and analysis of
architecture adaptation in two ways: (a) verification of adaptation tactics and (b) adap-
tation planning. In alignment with the previous approaches, the former focuses on
soundness of the adaptation tactics and preservation of the properties specific to a par-
ticular architectural style when these tactics are applied to a particular architecture con-
tiguration (by checking against Alloy facts). The latter involves finding a fitting sequence
of adaptation actions from the current architecture configuration to a given configura-
tion while preserving a particular architectural style in all intermediate states (by finding
instances of the corresponding signatures and relations).

Although not directly based on Alloy, FracL [SA(09] also employs first-order finite
structures to formalize static architecture configurations and primitive adaptation ac-
tions, while focusing on design-time adaptation analysis. Alloy is used as one of the
analysis options (the other being the Focal [DHDGO06] proof framework) for verification
of the adaptation actions when applied to a concrete architecture configuration.
FracL also allows for specifying procedural reconfiguration scripts based on the primi-
tive adaptation actions. Their correctness, however, needs to be shown via formal proofs
based Hoare logic using theorem-proving tools.

As to other applications, Alloy is employed in [KG10] for formal specification and
design-time analysis of various architectural styles, with the focus on verifying con-
sistency, composability, and refinement of the architectural styles. The Alloy model of
an architectural style is obtained programmatically from its Acme [GMWO00] specifica-
tion.

Focusing on a higher level of abstraction, [JS00] introduces a formal Alloy specifica-
tion of valid component compositions in the COM component model [Box98]. Similarly,
[MS+08] presents a fully-fledged Alloy formalization of the Fractal component
model [BCL+06]. Both of these approaches focus primarily on analyzing the properties
of the component models themselves (rather than properties of particular architectures
based on the component models, as in the previous cases).

2.3.2 Behavior Specification and Analysis

2.3.2.1 Formal Specification and Analysis of Architecture Models

A large body of work focuses primarily on formal specification and analysis of overall
system behavior and properties governed by an architecture, especially in combination
with architecture dynamism. For this purpose, operational semantics of both the busi-
ness logic and the architecture (e.g., component communication protocols, execution
model) needs to be captured formally.

In the context of this thesis, formalization of the architecture operational semantics
is of primary interest, as it provides an important baseline for formal analysis of archi-
tecture dynamism. Moreover, it provides a rigorous, in-depth description of the key ar-
chitecture abstractions, their runtime behavior, and properties, which plays an im-
portant role when implementing or employing the abstractions. For example, the Dar-
win component model [MDEK95], as well as its dynamic fragment [MK96], is formalized

40

2.3. Formal Methods in (Dynamic) Software Architectures

in terms of m-calculus [MPW92] so as to capture a precise semantics of its concepts. An-
other example is Wright [AG97], semantics of which is based on the CSP [Hoa85] process
algebra. Similarly, [HKRO09] presents a precise formalization of the GCM component
model [BCD+09, BHR14], providing a reliable basis for potential implementation and
formal analysis; this formalization is then employed in [HK10] so as to verify correctness
of the GCM semantics w.r.t. asynchronous component execution using the theorem
prover Isabelle/HOL [NWP02].

As to formal analysis, a significant body of work focuses on analysis of formal ar-
chitecture specifications via model checking [CGP99], as surveyed, e.g., in [ZML10].
Model checking is an exhaustive automatic verification technique enabling verification
of conformance of a given model (e.g., architecture operational semantics) to expected
properties (e.g., safety, liveness) that is based on exploration of the state space deter-
mined by the model. The properties are usually expressed in a dedicated property lan-
guage (e.g., linear temporal logic — LTL [VW86]). Note that all the model-checking ap-
proaches typically need to deal with the issue of state space explosion. Following the
idea of architecture decomposition into separate components, when model checking
software architectures, this issue is often addressed via compositional verification that
is based on the assume-guarantee reasoning [CAC08, GPC04, Pnu85, PP10]. Since there
is a large body of work in this area, we briefly list only representative examples.

For instance, in [MKG99] the finite state process (FSP) algebra was used to capture
operational semantics of Darwin-based software architectures [MDEK95] in terms of la-
beled transition systems (LTS), in order to enable formal analysis (using the LTSA model
checker [MK99]) of safety and liveness properties (expressed in the corresponding FLTL
temporal logic).

Especially well known in this area is the behavior, interaction, priority (BIP) formal
component framework [BBB+11, BBS06]. It targets formal modeling and verification of
explicit component-based architectures that consist of hierarchically structured compo-
nents featuring formally defined interfaces and (real-time) behaviors (described via an-
notated finite-state automata). The explicit BIP connectors [BS08] determine the possible
interactions to synchronize the concurrently executing components. The priorities then
represent scheduling policies for these interactions. BIP is accompanied with a large va-
riety of tools, including the D-Finder [BBNS09] model checker for compositional verifi-
cation of deadlock-freedom and other safety properties, as well as tools for a “correct-
by-construction” generation of code from a BIP model. BIP has been also extended with
support for (bounded) architecture adaptation [BJMS12] and statistical model checking
[BBB+12] (employing stochastic abstractions to allow verification of large heterogeneous
systems).

Focusing on dynamic and mobile architectures, m-ADL [Oqu04] is a formally
grounded architecture description language based on higher-order typed m-calcu-
lus [San93] process algebra. Similar to BIP, it covers both structural and behavioral view-
point of component-based software architectures. The structural viewpoint offers hier-
archical composition of components with explicit component types and connectors. The

41

Chapter 2. State of the Art

behavioral viewpoint enables expressing behaviors of components (acting as autono-
mous agents), port protocols, as well as (bounded) architecture adaptation and compo-
nent mobility. It is also equipped with formal analysis techniques based on model check-
ing via CADP [GLMS11] and theorem proving via XSB Prolog [23]. The analyzable prop-
erties include general temporal properties, such as safety and liveness, as well as com-
patibility or equivalence between different components and connectors. The properties
are expressed in the dedicated property language -AAL [MO06], which combines pred-
icate logic with temporal logic,

The MECHATRONIC UML approach [BGTO05], targeting formal architectural mod-
eling of distributed safety-critical real-time component-based systems, also reflects both
structural viewpoint (through refined UML component diagrams) and behavioral view-
point (through real-time extension of UML state-chart diagrams). Advantageously, it al-
lows for specification of hybrid component behaviors (i.e., featuring both discrete and
continuous activities), interface contracts, and component coordination patterns. The
analysis is enabled through translation into timed automata and subsequent analysis
with UPPAAL [LPY97]. Thus, the analyzable properties, specified via a variant of
TCTL [ACD93], include safety properties and timed liveness properties of component
behaviors and coordination patterns. This approach has been extended in [BBG+06,
EHH+13] with support for formal analysis of (constrained) architecture (self-) adapta-
tion. This extension is based on formalizing allowed architecture reconfigurations (via
component story diagrams) and checking that they yield only architectures correspond-
ing to the predefined interaction patterns. The safety and liveness properties can be then
verified by individually analyzing the interaction patterns (formalized via real-time
state-charts). Similarly, [HB13] presents an extension focusing on formal modeling and
timed model checking of reconfigurations in hierarchical component-based architec-
tures. Specifically, it focuses on declarative formal specification of real-time architecture
reconfiguration and its propagation along the component hierarchy (based on propaga-
tion of reconfiguration messages that are associated with declarative reconfiguration
rules expressed via component story diagrams). This declarative specification is then
automatically operationalized in terms of real-time state-chart diagrams and, similar to
[BGTO05], verified w.r.t. deadlock freedom and timed safety properties (i.e., through
translation into timed automata and subsequent analysis with UPPAAL [LPY97]).

There is a plethora of other similar approaches to formal architecture specification
and analysis, from which we will name just a few. For example, [VSC+09] presents a for-
mal operational semantics of the ProCom component model [SVB+08] so as to clarify the
concepts and enable formal analysis. Further, component interaction in SOFA 2 [BHP06]
can be captured in terms of formal behavior protocols [PSPK13]. The protocols enable
compositional verification of correctness based on the absence of communication errors
and verification of hierarchical component compositions based on a formal notion of
refinement. A general approach to formal modeling and analysis of adaptive architec-
tures, focusing on separation of adaptation behavior and functional behavior, is pre-
sented in [ZC06]. In addition, there exists a number of well-established modeling lan-
guages and tools, such as AADL [FGHO06] and the Ocarina tool suite [HZPKO08], focusing

42

2.3. Formal Methods in (Dynamic) Software Architectures

primarily on timing and dependability analysis. Similarly, the CHESS [7] methodology
and toolset are mainly aiming at timing analysis, failure propagation, and dependability
analysis. Targeting embedded systems, the approach of Othello/OCRA [CDT13, CT12]
allows for checking refinement of contracts expressed in a variant of linear-time tem-
poral logic interpreted over hybrid traces (i.e., traces that contain both discrete events
and continuous-time state evolution). Assuming a different perspective — the software
performance perspective — the Palladio component model [BKR09] focuses on formal
specification, analysis, and prediction of performance-related extra-functional proper-
ties of component-based architectures. Note that, instead of model checking, the analysis
in Palladio primarily relies on simulation and techniques specific to the domain of per-
formance prediction.

There are also many approaches targeting specifically service-oriented architec-
tures. This includes techniques for formal specification and model checking of (web) ser-
vice compositions [FUMKO03] and choreographies [BWR09], as well as formal specifica-
tion and verification of service-oriented architectures in general [BBC+06, FL10].

The idea of providing formal foundation for the system design has been also applied
in the area of (multi) agent systems, employing, e.g., the concepts of declarative (logic)
programming to capture the dynamism in adaptive systems [LN11]. Similarly, there are
also approaches presenting formally grounded models for rigorous specification of
(multi) agent systems and their subsequent verification via model checking [BEVWO06,
LQR09, WFHP02].

As to the design of (self-) adaptive systems in general (not necessarily focusing on
the architecture), there is a large body of work focusing on formal modeling methods
that are based on process-algebraic coordination languages [CG98, DNFP98, DNLPT14],
including methods for modeling autonomic behavior based on the notion of feedback
loop [GLPT12]. These approaches also aim at addressing the challenges connected to
distribution, locality, and mobility [BLP01, CG98, CL10, DNL04]. A comprehensive over-
view of this domain is, however, outside the scope of this thesis.

Another large body of work focuses on quantitative verification [Kwi07] of software
architectures. For example, in [BBCO12] quantitative verification was employed for anal-
ysis of component-based systems modelled as Markov decision processes so as to verify
their reliability properties (e.g., probability of failure, failure frequency, or deadlock).
Quantitative verification can also be advantageously employed in the domain of self-
adaptive systems [CGKM12] in order to ensure correct adaptation at runtime. Neverthe-
less, detailed discussion of this domain is also beyond the scope of this thesis.

2.3.2.2 Code Verification

A very important approach in the context of behavior analysis of (dynamic) software
architectures is code verification, which targets software implementation. Specifically, it
can be advantageously employed to analyze behavior aspects of software architecture,
especially w.r.t. low-level implementation concerns. Code verification is also often com-
bined with model-based formal analysis, e.g., [ASCNO03, BHH+06, JPK12, PPKO06].

43

Chapter 2. State of the Art

In this context, one of the main approaches is code model checking, which is based
on exploration of the state space defined by the code. The explicit-state code model
checking techniques represent the model states so that their structure and transitions
directly correspond to the in-memory state of the analyzed code. As a result, they allow
addressing low-level concerns, such as null pointer and invalid memory accesses, asser-
tion violations, race conditions, and deadlocks. As to examples, Java Path-
Finder [VHB+03][16] is an explicit-state code model checker for Java, based on a modi-
tied Java virtual machine specialized for model checking of Java bytecode. Similarly,
GMC [11] focuses on explicit-state model checking of code in C and C++. Note that ar-
chitecture environment, including, e.g., the employed component platform and middle-
ware, needs to be reflected in the verified code, i.e., modeled or directly included.

In addition to explicit-state code model checking, many other techniques for code
verification exist. Examples are abstraction-based code model checking [BMMRO01], trad-
ing-off scalability for variable precision, or deductive code verification [BCC+05], based
on transforming the code and the verified property into a formal model and analyzing
it via a theorem prover. A comprehensive overview of code-model-checking techniques
can be found, e.g., in [Ser10].

2.3.2.3 Formal Specification and Analysis of Requirements

Similar to code verification (Section 2.3.2.2), formal specification and analysis of require-
ments is another area that is not directly bound to software architectures, but is essential
for ensuring correct architecture design. In particular, formal requirements specification
and analysis may help designing dependable software architectures [BPG+04, TPYZ09,
VLO03, YLL+08] and their intended high-level behaviors [PMM+07]. Since this area is rel-
evant to the presented contributions but its comprehensive discussion of is beyond
the scope of this thesis, we describe only a few influential examples.

The main body of work in this area is represented by the Goal-Oriented Require-
ments Engineering (GORE) [RBAF10, VLO1]. In this context, KAOS [PMM+07, VLL04] is
a prominent approach that is equipped with a rich set of formal analysis tech-
niques. The main idea of KAOS is based on goal refinement. High-level goals, capturing
global, strategic objectives, are systematically refined into low-level goals that capture
local, technical objectives, realizable by actual software or environment agents. (Thus,
KAOS explicitly distinguishes software requirements from expectations and assump-
tions.) Semantics of a goal can be formally captured in a real-time linear temporal logic,
as elaborated for example in [VLDL98, VLLOO]. This formalization helps ensuring cor-
rectness of goal refinement [DVL96] and goal operationalization [LVLO02], which is in
KAOS primarily achieved by application of refinement patterns, correctness of which is
formally proven (once and for all) via a theorem prover. The formalization also enables
automatic verification of consistency and completeness of the goal models via model
checking [PMM+07]. Moreover, formal analysis can be also employed for conflict man-
agement [VLDL98] and obstacle (hazard, threat) analysis [VLLOO]. Given an operation-
alized formal goal model, it is possible to derive a “correct-by-construction” architecture
model [VLO03] (similar to Tropos [BPG+04], discussed in Section 2.1.4). In this context,

44

2.3. Formal Methods in (Dynamic) Software Architectures

several approaches focus specifically on (self-) adaptive systems [BCGZ06, TPYZ09,
YLLA+08].

In a similar vein, [FPMTO01] presents an approach to formal specification and analy-
sis of requirements based on Tropos [BPG+04] that covers formal verification of invariant
properties and assertions via model checking.

State of the affairs (SOTA) [ABZ12] model represents an approach specifically tar-
geting high-level requirements in the domain of self-adaptive systems. The key idea of
SOTA is to abstract the behavior of a system in terms of a trajectory through a multi-
dimensional space — SOTA space — that reflects all the possible contexts of the system.
The requirements of a system in SOTA are captured in terms of goals. A goal is an area
in the SOTA space that a system should eventually reach, and it can be characterized by
its pre-condition, post-condition, and utilities (i.e., constraints on the path to the goal).
Compared to the informal approach of Tropos, SOTA directly provides the means for
formal modeling of early requirements and their operationalization. Consequently, it
also enables verification of goal operationalization and detection of inconsistencies or
implicit requirements via model checking [AZ12].

2.3.3 Lessons Learned

Focusing on the areas related to Sections 2.1 and 2.2, Section 2.3 has overviewed the prin-
cipal approaches to formal specification and analysis of software architectures with
the aim of providing a foundation for addressing the challenge of dependability (C4)
throughout the research goals G1-G3 (which themselves put a strong emphasis on
the formal and semantic aspects).

The part devoted to structural specification and analysis, i.e., Section 2.3.1, has
shown that formal methods can be conveniently employed for ensuring dependability
of dynamic architectures even when abstracting the actual system behavior. Especially
appealing is the idea of employing formal analysis, constraint solving in particular, not
only to verify structural correctness of architecture (re)configurations (primarily consid-
ered by the research goal G3), but also to automate their construction (which is part of
the research goal G2). Due to its wide spread and popularity in this area, the Alloy mod-
elling language appears to be a suitable tool for this purpose.

In the remaining part, i.e., Section 2.3.2, it has been shown that behavior specifica-
tion and analysis is a widely adopted technique for ensuring dependability of (dynamic)
software architectures. A key ingredient is in this case a formalized operational seman-
tics of the architectures (which is also part of the research goals G2 and G3). Not only
does it enable formal analysis of the overall behavior governed by an architecture, but it
also provides a rigorous description of the key architecture abstractions, which is im-
portant for their correct adoption and implementation. However, due to the need of tai-
lored architecture abstractions, there is no readily-applicable solution for RDS. As to for-
mal analysis (which is an important part of the research goal G3), model checking rep-
resents the dominant approach employed throughout various domains focusing on (dy-
namic) software architectures. Nevertheless, it still faces several unresolved issues w.r.t.

45

Chapter 2. State of the Art

the challenges posed by RDS, which need to be resolved in order to ensure dependability
of dynamic RDS architectures. In particular, it is disputable, whether the extremely open
and dynamic architectures of RDS are feasible in terms of scalability and expressive
power of the state-of-the-art model-checking techniques. Another useful analysis ap-
proach is code verification, which complements model checking by ensuring dependa-
bility of software architectures at the implementation level. In this context, explicit state
code model checking is of particular interest, as it enables addressing low-level concerns
stemming from distributed, decentralized execution of RDS, such as race conditions.
Note, however, that appropriate representation of the architecture environment in the
verified code (encapsulating the semantics of the corresponding architecture abstrac-
tions and execution platform) is the key for ensuring feasibility of code verification in
RDS. Finally, approaches to formal specification and analysis based on model checking
have been applied also in the domain of requirements engineering and agent-based sys-
tem design so as to provide dependability guarantees during the early architecture de-
sign. It appears that these approaches can be advantageously exploited in the context of
RDS-specific architecture abstractions, thus bringing the formal aspects to the RDS ar-
chitecture design process (as required by the research goal G2).

46

Chapter 3

Collection of Papers

The main contributions of this thesis were published separately in various international
journals and conference proceedings. This chapter includes both summaries and full ver-
sions of the selected relevant papers in the order presented in Section 1.5, as well as
comments on the journals and conferences where the papers were presented.

The first paper included in this chapter — Towards Dependable Emergent Ensembles of
Components: The DEECo Component Model [KBPK12] — portrays a vision of the DEECo
component model, which introduces novel architecture abstractions that enable design-
ing inherently dynamic software architectures for RDS, as further detailed in Section 3.1.
It was presented at the Working IEEE/IFIP Conference on Software Architecture
(WICSA) in 2012, ranked A in the CORE conference ranking [6]. The paper is cited in
[BBCP13].

The second included paper - DEECo: an Ensemble-Based Component Sys-
tem [BGH+13] — develops the vision of [KBPK12] by fully elaborating the architecture
abstractions of DEECo and supplementing them with an execution environment and
a software development process, as further summarized in Section 3.2. In 2013, the paper
was presented at the International ACM Sigsoft Symposium on Component-Based Soft-
ware Engineering (CBSE), which is one of the Federated Events on Component-Based
Software Engineering and Software Architecture (CompArch). The conference is ranked
A in the CORE conference ranking [6]. The paper is cited in [HK14] and [BHR14].

Design of Ensemble-Based Component Systems by Invariant Refinement [KBP+13] is the
third included paper. As described in Section 3.3, it presents the Invariant Refinement
Method (IRM) — a goal-oriented design method targeting systems built upon the archi-
tecture abstractions of DEECo, which were introduced in the previous two papers. Sim-
ilarly to [BGH+13], this paper was presented at the International ACM Sigsoft Sympo-
sium on Component-Based Software Engineering (CBSE) in 2013, ranked A in the CORE
conference ranking [6], where it was awarded with the Distinguished Paper Award.

The fourth paper — Automated resolution of connector architectures using constraint solv-
ing (ARCAS method) [KBPH14] — describes a method for open-ended design and auto-
mated synthesis of software connectors that is particularly suitable for realization of the
dynamic, emergent component bindings required in RDS, as further elaborated in Sec-
tion 3.4. It was published in the Software and Systems Modeling journal in 2014, which

47

Chapter 3. Collection of Papers

on the date the paper was accepted had impact factor 1,250 and acceptance ratio of 14%.
The paper is cited in [DR14].

In the fifth paper — Towards Verification of Ensemble-Based Component Sys-
tems [BBB+13] — we have presented a formalization of the general semantic model of
DEECo and discussed the opportunities for verification of DEECo-based applications, as
summarized in Section 3.5. The paper was presented in 2013 at the International Sympo-
sium on Formal Aspects of Component Software (FACS).

Finally, the last paper — Adaptive Deployment in Ad-Hoc Systems Using Emergent Com-
ponent Ensembles: Vision Paper [BBHK13] — describes a vision of a realistic DEECo-based
architecture for adaptive deployment in ad-hoc cloud systems, as overviewed in Sec-
tion 3.6. The paper was presented at the ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE) in 2013.

48

3.1 Towards Dependable Emergent
Ensembles of Components: The DEECo
Component Model

Jaroslav Keznikl,
Tomas Bures,
Frantisek Plasil,
Michal Kit

In proceedings of the Joint 10th Working IEEE/IFIP Conference on
Software Architecture & 6th European Conference on Software Ar-
chitecture (WICSA/ECSA “12).

Published by IEEE CS,
pages 249-252,

ISBN 978-0-7695-4827-2,
August 2012.

The original version is available electronically from the publisher's site
at http://dx.doi.org/10.1109/WICSA-ECSA.212.39.

49

http://dx.doi.org/10.1109/WICSA-ECSA.212.39

Chapter 3. Collection of Papers

Summary of the Paper

This paper, published as [KBPK12], is the baseline for the other contributions presented
in this thesis. It tackles the challenge of designing large-scale distributed software archi-
tectures that are composed of autonomous components and employ continuous archi-
tecture self-adaptation so as to cope with their open, highly dynamic environments (i.e.,
challenges C1-C3 outlined in Section 1.3). In particular, the focus is on the excessive com-
munication-link instability and architecture dynamism.

Attacking the research goal G1, the paper responds to this challenge by presenting
a vision of novel architecture abstractions — summarized in the thereby introduced
DEECo component model [8] (Dependable Emergent Ensembles of Components) — that
overcome the design complexity of such systems via proper separation of concerns.
The objective is to move the responsibility of dealing with excessive communication-link
instability and architecture dynamism from the system/component designer to the com-
ponent model (its execution environment in particular) in a way that reduces the design
complexity and allows efficiently dealing with these challenges in the execution envi-
ronment. By giving a clear description of the responsibilities of the execution environ-
ment, the paper also brings the first insights for tackling the research goal G3.

The basic idea of DEECo is to extract the concerns pertaining to adaptation of com-
ponent bindings at runtime into a declarative, design-time description and to manage
the adaptation in an automated way via the envisioned DEECo execution environment.
In this respect, as illustrated in [SBK13], DEECo is inspired by the idea of service-com-
ponent ensembles (SCEs) [HRWO08], adopting at the conceptual level the fundamentals
of the SCEL specification language [DNFLP13, DNLPT14]. Namely, it adopts the idea of
attribute-based communication, which is employed to model a dynamic interaction of
autonomous components within SCEs. To this end, DEECo brings two important contri-
butions. First, SCEs are explicitly captured as first-class citizens at the level of software
architecture, thus facilitating architecture design of SCEs. Second, the corresponding at-
tribute-based communication is implicit, i.e., driven by the execution environment.
Moreover, the attribute-based communication in DEECo takes the form of a stateless
data flow among the components within SCEs. Thus, a component can be considered as
an autonomous and self-aware entity, relying solely on its local state, which is modified
in the background by the execution environment according to the attribute-based com-
munication governed by the component’s involvement in SCEs. This promotes architec-
ture predictability, scalability, and resilience in face of unreliable communication links
and/or rapid architecture changes.

Going into more detail, a component in DEECo is an autonomous unit of design,
composition, and deployment, encapsulating its internal state — represented as a hierar-
chical data structure termed knowledge — and behavior — captured by a set of processes. A
process is essentially a soft-real-time, cyclic task that, similar to a feedback loop, recur-
rently manipulates the knowledge of the component.

Component composition is in DEECo expressed implicitly via a dynamic involve-
ment in ad-hoc groups of components called ensembles. As such, ensembles in DEECo

50

3.1. Towards Dependable Emergent Ensembles of Components: The DEECo Component Model

are first-class concepts. In general, the involvement in an ensemble is determined by the
ensemble’s membership condition — a declaratively-expressed condition specifying which
components are to participate in the ensemble, based on their attributes. (This also al-
lows the components to affect their involvement in the ensemble by modifying the rele-
vant attributes.) Communication among components is limited to implicit knowledge ex-
change — a stateless, best-effort data flow that is transferring part of the knowledge of one
component to another within the same ensemble. In this context, an ensemble plays the
role of a dynamic connector that enables DEECo architecture to emerge at runtime by
dynamically connecting the components that meet the membership condition and per-
forming the implicit knowledge exchange. Technically, each ensemble is instantiated by
the execution environment according to a design-time ensemble prescription specifying
the membership condition and knowledge exchange. Internally, an ensemble is struc-
tured to a unique coordinator and several member components. An ensemble prescrip-
tion defines membership as a condition (in the paper referred to as membership func-
tion), under which two components form a coordinator-member pair, and knowledge
exchange (in the paper referred to as mapping function) as a function mapping the co-
ordinator’s knowledge to the knowledge of a member (and vice versa). Note that the
definition of membership and knowledge exchange is limited to coordinator-member
pairs (rather than general tuples of one coordinator and multiple members) to decrease
the runtime complexity of establishing ensembles. To facilitate reusability and separa-
tion of concerns, coordinator/member components are in an ensemble prescription re-
ferred via interfaces, rather than being specified directly. The interfaces provide a partial
view on the components’ knowledge and are associated with the components via struc-
tural subtyping (i.e., duck typing).

Concerning the computational model of DEECo, execution of both the component
processes and ensemble knowledge exchange is driven in a cyclic, soft-real-time manner
by the envisioned execution environment. Thus, a DEECo-based architecture can be un-
derstood as a distributed system of conditionally interacting feedback loops (the condi-
tionality being given by the components” involvement in ensembles).

Comments on Authorship

My personal contribution to this paper lies in analyzing the advances in the area of SCEs
and the related formal specification languages (i.e., SCEL [DNFLP13, DNLPT14]) and,
under helpful guidance and supervision of the other authors, combining the promising
ideas with traditional approaches to component-based architecture design. Specifically,
I contributed with the idea of promoting the concept of component ensemble to a first-
class architecture concept that represents a dynamic, attribute-based component binding
and features stateless, data-flow-based, implicitly executed knowledge exchange. My
contribution also includes the runtime-environment-driven computational model.
Moreover, again under helpful guidance and supervision of the other authors, I au-
thored a majority of the text.

51

Chapter 3. Collection of Papers

52

Towards Dependable Emergent Ensembles of
Components: The DEECo Component Model

Jaroslav Keznikl"?, Tomas Bure§'~, Frantisek P14sil'*, Michal Kit'

! Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics, Charles University
Prague, Czech Republic
{keznikl, bures, plasil, kit} @d3s.mff.cuni.cz

Abstract—In the domain of dynamically evolving distributed
systems composed of autonomous and (self-) adaptive compo-
nents, the task of systematically managing the design complexi-
ty of their communication and composition is a pressing issue.
This stems from the dynamic nature of such systems, where
components and their bindings may appear and disappear
without anticipation. To address this challenge, we propose
employing separation of concerns via a mechanism of dynamic
implicit bindings with implicit communication. This way, we
strive for dynamically formed, implicitly interacting groups —
ensembles — of autonomous components. In this context, we
introduce the DEECo component model, where such bindings,
as well as the associated communication, are managed in an
automated way, enabling transparent handling of the dynamic
changes in the system.

Keywords—component; ensemble; adaptation;
architecture; implicit communication; implicit bindings

dynamic

L.

In component-based software architecture design, we still
face many challenges, particularly in the case of large, dis-
tributed and dynamically changing applications, where both
components and bindings may appear/disappear without
anticipation. Therefore, components are often designed as
autonomous [1] so that they stay operable regardless of the
changes in their operating environment. This in turn implies
the need for a (self-) adaptation mechanism [2].

In this context, a challenge is to find suitable paradigms
for engineering such systems to overcome the design com-
plexity of their communication and composition, specifically
in terms of their autonomic and dynamic nature.

As for autonomy and (self-) adaptation, these have been
partially addressed by agent-based approaches [3][4] where
actors leveraging on messaging establish explicit bindings
for data and code exchange. As for coping with dynamism,
techniques utilizing implicit bindings while focusing on
explicit communication have been proposed [S]. Further-
more, separation of concerns was to some extent achieved by
introducing implicit communication (driven by a third-party
entity) via explicit bindings [6]. Intuitively, it is desirable to
combine all of these approaches in order to take advantage of
the benefits they offer simultaneously.

The work was partially supported by the EU project ASCENS 257414, the
Grant Agency of the Czech Republic project P202/11/0312. The work was

partially supported by Charles University institutional funding SVV-2012-
265312.

INTRODUCTION

53

% Institute of Computer Science
Academy of Sciences of the Czech Republic
Prague, Czech Republic
{keznikl, bures, plasil}@cs.cas.cz

Contributing to the ASCENS project [7], our goal is to
respond to this challenge by elaborating on the idea of dy-
namic implicit bindings with implicit communication. To do
so, we introduce the DEECo component model (Dependable
Emergent Ensembles of Components).

The basic idea of DEECo is to facilitate separation of
concerns by extracting component bindings and communica-
tion from the component implementation, expressing them
implicitly, and managing them in an automated way via the
DEECo runtime framework. Specifically, we consider bind-
ings to be declaratively-expressed first-class entities, captur-
ing component communication by implicit data exchange.
This way, a component can be considered as an autonomous
and self-aware entity, relying solely on its local data, which
are modified in the background by the runtime framework
according to the implicit component bindings. Similar to
self-organizing architectures [8], such bindings facilitate
dynamic forming of implicit groups — ensembles — of auton-
omous components.

Moreover, stemming from the need for autonomy while
allowing for dependability, in DEECo we aim at supporting
(self-) adaptation, code mobility, and verification of safety
(reachability) properties.

The rest of this paper is structured as follows: Section II
describes our motivating case study, in Section III the re-
quirements for effectively addressing the outlined goals,
demonstrated by the case study, are summarized, Section IV
provides a brief description of the DEECo component model,
while the concluding Section V outlines a long term DEECo
vision and identifies the key challenges to be addressed.

1L

As our motivating case study we consider a robotic play-
ground scenario, stemming from the e-mobility demonstra-
tor [9] in ASCENS. Basically, it pertains to several
autonomous robots moving on roads with crossings. When
approaching a crossing, all the robots in the same situation,
or already on the crossing, have to cooperate in order to
avoid collision. An assumption is that the robots can com-
municate only with those within a short range, since they
typically have limited communication signal coverage. Thus
the architecture of the system of robots and crossings is dy-
namic, determined by their actual positions.

CASE STUDY

R1 R2

*-0—

R: Rl‘.FL
f
(a) ©)

[f
Robot Case Study: (a) autonomous robots, (b) robots advised by

e B . 2
R S —l_g®
1
2
(b
a crossing, (c) convoy

Figure 1.

In the basic case (Fig. 1.a), we assume that the robots
give priorities according to the “right-hand rule” (e.g., R1
has the highest priority). Furthermore, we consider also other
(more elaborate) variants for the crossing strategy (Fig. 1.b),
where the robots are advised by the crossing itself (similar to
crossings with specific arrangements of traffic lights; e.g.,
the robot R2 is advised by C to continue as the first). These
variants are handled by self-adaptation of the robots, includ-
ing both short-term and permanent adaptation. As an exam-
ple of the former case, the crossing provides the
corresponding robots with a strategy for interacting with it
only for the time the robots are at/in the crossing; in the latter
case, robots exchange strategies for interacting with new
variants of crossings, and these strategies are adopted per-
manently. Finally, we also expect the robots to form dynamic
convoys (Fig. 1.c); i.e., if two robots drive in the same direc-
tion, one behind the other, the robot behind (e.g., R1) should
adjust its speed to the one in front (e.g., R2). We will use this
robot playground case study as the running example
throughout this paper.

In addition to the robot scenario, we also seek inspiration
from a more elaborate case study of a self-aware and self-
adaptable cloud platform [9]. We consider several client
applications running on a cloud platform, continuously stor-
ing their logging data via a logging service. An important
part of the scenario is that the application processes, as well
as the processes implementing the logging service, can mi-
grate between the nodes of the cloud according to various
optimization criteria. These processes should migrate auton-
omously and be able to adapt the migration strategy accord-
ing to the impact of previous migrations. During migrations,
client applications should not be affected by the changes in
the cloud architecture.

1.

Based on the case studies, we have identified several
general requirements to be met by the DEECo component
model. These include the capability to:

OVERVIEW OF REQUIREMENTS

e allow for convenient design with a suitable level of
abstraction and proper concepts, coping efficiently
with dynamic and parallel activities.

provide appropriate means for continuous self-
adaptation of the system. This implies the need for
separation of concerns, so that adaptation is separat-
ed from business logic.

achieve dynamic updates of behavior by means of
both (self-) adaptation and code mobility.

ensure a high level of dependability by supporting
methods for formal verification of safety (reachabil-

ity) properties.

54

As the requirements are also partially targeted by the
SCEL [10] specification language proposed for ASCENS,
we will reuse some of its related concepts. However, since
SCEL is a low-level generic theoretical model, it does not
provide any higher-level abstractions for system design.
Supporting only low-level primitive operations for compo-
nent communication without considering any programming
environment, it is not, as such, suitable for direct develop-
ment of non-trivial software systems.

IV. DEEC0 COMPONENT MODEL

In this section, we target the requirements identified in
Section III by introducing the DEECo component model. Its
basic idea is to manage the dynamism of a system by exter-
nalizing the (potentially distributed) communication among
components. Specifically, a component accesses only its
local data, which are communicated in the background to
other components in an automated way by the DEECo
runtime framework. Hence, a component is logically an
autonomous unit, oblivious to the way data are exchanged,
which makes it robust and adaptable with respect to dyna-
mism. Moreover, the DEECo data exchange mechanism
supports code mobility and adaptation.

A. Component Structure

A component is a unit of design and deployment, consist-
ing of knowledge and processes.

Knowledge represents the internal state and functionality
of the component. It is a hierarchical data structure, similar
to a tuple space [10], mapping identifiers to (potentially
structured) values. Values are either statically-typed data or
functions; both being first-class entities. Only pure functions
with no global variables are considered.

A process, being essentially a “thread”, operates locally
upon the knowledge by calling a specific function (being a
part of the knowledge) to perform its task. Since global vari-
ables are disallowed, a process assigns a part of the
knowledge to the actual parameters of the function (input
knowledge), and on its completion updates a part of the
knowledge (output knowledge) by the return value.

The example from Fig. 2 describes the component Robot
(a singleton instance; multiple instances are expected to be
created by cloning) in the DEECo DSL. It illustrates that a
component is defined solely by its initial knowledge, which
also syntactically contains the definition of the component’s
processes. Here, the Robot component’s knowledge contains

component Robot = {
id: RobotId = “R1”;
info: RobotInfo = {
position: Position = { x = 1, y = 1};
path: list Position = [];

¥
otherRobots: map RobotId -> RobotInfo = {};
stepf: fun(inout i: RobotInfo, in o: map RobotId->RobotInfo) = {
4
processes = {
step: Process = {
function = stepf;
inputKnowledge=[info, otherRobots];
outputKnowledge=[info];
scheduling = PERIODIC(16@6éms);
L b

Figure 2. Example of a DEECo component

interface IRobot = {
id: RobotId;
info: RobotInfo;
otherRobots: map RobotId -> RobotInfo;

e;semble AutonomousRobotsEnsemble {

member-interface: IRobot;

coordinator-interface: IRobot;

membership: fun(in r: IRobot, in c: IRobot, out ret: Boolean) = {
ret = proximity(r.info.position, m.info.position) <= TRESHOLD;

35

coordinator-to-member: fun(inout m: IRobot, in c: IRobot) = {
m.otherRobots=m.otherRobots.merge(c.otherRobots).except(m.id);

¥

member-to-coordinator: fun(in m: IRobot, inout c: IRobot) = {
c.otherRobots[m.id] = m.info;

IR H

Figure 3. Example of an ensemble prescription

the actual position of the robot and the list of remaining
waypoints the robot has to drive through (info), and similar
information about the robots in its close perimeter
(otherRobots). The Robot’s only process step moves the
robot (via the stepf function) by updating its info.position
according to the info.path while considering otherRobots in
order to avoid a crash (by applying the right-hand rule).

B. Component Composition

In DEECo, the composition of components is flat, in the
form of component ensembles — groups of components,
consisting of a single (unique) coordinator and multiple
member components. At the same time, a component may
play the role of a coordinator or member in several ensem-
bles.

Supporting separation of concerns, an ensemble mediates
communication between the coordinator and members. In
consequence, two components can communicate only if they
are involved in the same ensemble and one of them is the
coordinator (direct communication among the members is
not possible). Most importantly, such an involvement is
expressed implicitly via a membership condition, evaluated
in an automated way by the runtime framework.

Similarly, the inter-component communication is realized
by implicit knowledge exchange (i.e., a part of the
knowledge of one component is copied to the other compo-
nent in an automated way). Such exchange may also include
a knowledge transformation.

In compliance with the principle of knowledge exchange
solely between the coordinator and a member, an ensemble
is described pair-wise, defining the couples coordinator —
member. Syntactically, an ensemble prescription consists of
the desired knowledge interface of the coordinator (coordi-
nator interface), the desired interface of a member (member
interface), membership function, and mapping function.

Interface constitutes a structural prescription for a partial
view on a component’s knowledge. Specifically, it is associ-
ated with the knowledge by means of duck typing (structural
subtyping); i.e., if a part of the component’s knowledge
matches the structure prescribed by the interface, then the
component reifies the interface. For example, Robot from
Fig. 2 reifies the IRobot interface from Fig. 3.

Membership function declaratively expresses the mem-
bership condition, under which two components form a pair

55

B OEH BN BH B
(a) (b © @

Figure 4. Ensemble Examples: (a) two-robot ensemble with coordinator
R3, (b) autonomous robots ensemble with coordinator R2, (c) autonomous
robots ensemble with coordinator R3, (d) crossing ensemble

coordinator — member of the ensemble. This condition is
defined upon the knowledges of the components and is to be
evaluated by the runtime framework (potentially in a distrib-
uted fashion). For example, in Fig. 3 the components r and c,
reifying the IRobot interface, have to be in the proximity
lower than THRESHOLD in order to form a coordinator-member
pair.

Mapping function determines the knowledge exchange
between the coordinator and a member. Specifically, it de-
scribes which part of the knowledge of one component is to
be transferred to the other and how it is potentially trans-
formed. We assume a separate mapping for each of the direc-
tions, coordinator-to-member and member-to-coordinator.
Also, the mapping function is to be executed by the runtime
framework. This basically ensures that relevant knowledge
changes in one component are propagated to the other in
the background. As an example, consider the coordinator-
to-member and member-to-coordinator mapping functions
from Fig. 3 which ensure an exchange of knowledge neces-
sary to avoid robot collisions (i.e., the positions and remain-
ing paths of the robots in a close perimeter).

In general, components form an ensemble whenever they
satisfy the ensemble condition of an ensemble prescription,
1.e., one of them reifies the coordinator interface, the other
components reify the member interface, and the membership
condition holds for each coordinator — member pair. There-
fore, multiple ensembles based on the same prescription can
be formed simultaneously.

As an example, consider an ensemble prescription of au-
tonomous robots where the membership condition requires
the member robots to be in close proximity to the coordina-
tor robot. In Fig. 4.a, R2 is too far from the coordinator R3
so it is not (yet) included in the ensemble [R1, R3]. After R2
reaches the required proximity, all three robots will form a
single ensemble as shown in Fig. 4.b and Fig. 4.c (bigger
ensembles are preferred to smaller ones and the coordinator
is selected randomly if multiple candidates are eligible).
Assuming the crossing strategy, where components are ad-
vised by the crossing, the ensemble will potentially look like
the one in Fig. 4.d, where the crossing component is the
coordinator.

In the situation where a component satisfies the ensemble
condition for multiple ensembles (Fig. 4.b and Fig. 4.c), we
envision a mechanism for deciding whether all or only a
subset of the candidate ensembles should be formed. Cur-
rently, we employ a mechanism based on a partial order over
ensembles (the ensemble with higher order is preferred;
incomparable ensembles are formed simultaneously).

C. Computational Model

The computational model of DEECo is based on asyn-
chronous knowledge exchange and process execution, stem-
ming from the asynchronous nature of dynamic distributed
systems. Specifically, the processes of all components exe-
cute in parallel as independent threads either periodically or
when triggered by modification of (a part of) their input
knowledge. In a similar vein, a binding in an ensemble is
accomplished by a separate activity, running the mapping
function again either periodically or when triggered by a
change in the knowledge of the coordinator/member.

Due to the asynchrony, it is necessary to ensure that
knowledge is accessed consistently. Thus, at its start, a pro-
cess is atomically provided with a copy of its input
knowledge so that its computation is not affected by later-
occurring knowledge modifications. When finishing, the
process atomically updates its output knowledge. The same
atomic copy-on-start and update-on-return semantics also
applies to the membership and mapping functions of ensem-
bles. Technically, this semantics can be implemented for
instance via messaging.

For the time being, we envision employing the “single
writer, multiple readers” rule for knowledge access, meaning
that at any time each value in the knowledge of a component
has at most one writer while being accessed by potentially
multiple readers. Note that this rule applies to obtaining input
and writing output knowledge of component processes, as
well as to knowledge exchange via mapping functions. Since
all the readers and writers are well defined, we envision that
compliance with this rule will be verified.

Consequently, based on the computational model, an en-
semble is created when the ensemble condition starts to hold,
and is discarded when the condition gets violated. Technical-
ly, as the whole system is asynchronous and potentially dis-
tributed, techniques for handling inherent delays, while
creating/discarding ensembles, have to be carefully chosen.

V. DISCUSSION: VISION AND CHALLENGES

We assume DEECo will be employed in the design of
systems of autonomous self-adaptive components, such as
a self-managing cloud platform and self-organizing car shar-
ing [9], where it aims at simplifying the design process.

Specifically, we expect DEECo to effectively handle
knowledge exchange among distributed components, includ-
ing code mobility in support of adaptation, while putting a
strong emphasis on separation of concerns. Although similar
to software connectors [11], DEECo ensembles capture
component composition implicitly and thus allow for han-
dling of dynamic changes in an automated way. Similar
benefits result from the implicit knowledge exchange.

Currently, we foresee two possible methods for handling
distributed knowledge exchange: message passing and dis-
tributed tuple spaces, both already adopted by the state-of-
the-art agent-oriented frameworks such as [3] and [12], re-
spectively. Although supporting dynamic features such as
code mobility, these frameworks lack high-level abstractions
allowing for implicit dynamic composition and communica-
tion. Nevertheless, since DEECo components resemble

56

agents with respect to autonomy, we consider partially em-
ploying these frameworks in the DEECo runtime framework.
Currently, we already have prototypes for both types of these
methods for handling knowledge exchange' .

In order to support controlled architecture evolution, we
aim to incorporate mechanisms for dynamic addition, modi-
fication, and removal of ensemble prescriptions.

In addition, we envision supporting formal verification of
DEECo applications. As for model checking of temporal
properties, we assume a mapping of applications to SCEL
and intend to exploit its means [12] for this purpose. Moreo-
ver, we anticipate also employing stochastic model check-
ing [13][14] for quantitative verification.

Finally, inspired by the cloud and e-mobility case studies,
we intend to introduce, in addition to abstractions for per-
formance awareness, other forms of implicit knowledge-
based communication such as distributed consensus.

REFERENCES

J. O. Kephart, and D. M. Chess, “The vision of autonomic compu-
ting,” Computer, vol. 36, IEEE CS, 2003, pp. 41-50.

R. N. Taylor, N. Medvidovic, and P. Oreizy, “Architectural styles for
runtime software adaptation,” Joint Working IEEE/IFIP Conference
on Software Architecture & European Conference on Software Archi-
tecture (WICSA/ECSA 2009), 2009, pp. 171-180.

F. Bellifemine, G. Caire, and D. Greenwood, “Developing multi-
agent systems with Jade,” John Wiley & Sons, 2007.

E. Gjondrekaj, M. Loreti, R. Pugliese, and F. Tiezzi, “Modeling
adaptation with a tuple-based coordination language,” Proc. of 27th
Symposium on Applied Computing (SAC 2012), 2012, in press.

(1

C. Escoffier and R. S. Hall, “Dynamically adaptable applications with
iPOJO service, ” Software Composition, 2007.

A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous real-
time components in BIP,” Proc. of Fourth IEEE International Confer-
ence on Software Engineering and Formal Methods (SEFM’06),
2006, pp. 3-12.

ASCENS [Online], http://www.ascens-ist.cu.

C. Villalba, M. Mamei, and F. Zambonelli, “A self-organizing archi-
tecture for pervasive ecosystems,” Self-Organizing Architectures,
volume 6090 of LNCS, pp. 275-300, 2010.

N Serbedzija, S. Reiter, M. Ahrens, J. Velasco, C. Pinciroli, N. Hoch,
and B. Werther, “Requirement specification and scenario descrip-
tion,” ASCENS Deliv. D7.1, November 2011.

R. De Nicola, G. Ferrari, M. Loreti , and R.Pugliese, “Languages
primitives for coordination, resource negotiation, and task descrip-
tion,” ASCENS Deliv. D1.1, 2011, http://rap.dsi.unifi.it/scel/.

R.N. Taylor, N. Medvidovic, and E.M. Dashofy: “Software architec-
ture: foundations, theory, and practice,” Wiley, 2010.

(9]

[10]

(11]
[12] L. Bettini et al. “The Klaim project: theory and practice,” In global
computing. Programming Environments, Languages, Security, and
Analysis of Systems, volume 2874 of LNCS, 2003, pp. 88-150.

M. Z. Kwiatkowska, G. Norman, D. Parker, and H. Qu, “Assume-
guarantee verification for probabilistic systems,” Proc. of Tools and
Algorithms ~ for Construction and Analysis of Systems
(TACAS 2010), Springer, 2010, pp. 23-37.

J. Barnat, L. Brim, I. Cerna, M. Ceska, and J. Tumova: “ProbDiVinE,
a parallel qualitative LTL model checker,” Quantitative Evaluation of
Systems (QEST 07), IEEE, 2007.

[13]

[14]

! http://d3s.mff.cuni.cz/projects/components_and_services/deeco/

3.2 DEECo0: an Ensemble-Based
Component System

Tomas Bures,

Ilias Gerostathopoulos,
Petr Hnétynka,
Jaroslav Keznikl,
Michal Kit,

Frantisek Plasil

In proceedings of the 16th International ACM Sigsoft Symposium
on Component-Based Software Engineering (CBSE “13).

Published by ACM,
pages 81-90,

ISBN 978-1-4503-2122-8,
June 2013.

The original version is available electronically from the publisher's site
at http://dx.doi.org/10.1145/2465449.2465462.

57

http://dx.doi.org/10.1145/2465449.2465462

Chapter 3. Collection of Papers

Summary of the Paper

This paper, published as [BGH+13], forms the central part of this thesis by focusing on
all the three research goals G1-G3 presented in Section 1.4 (considering to an extent all
the challenges outlined in Section 1.3). It builds on the vision described in Section 3.1
and presents a fully elaborated version of the DEECo component model [8], including
the corresponding execution environment and development process.

In particular, the paper advocates employing the component-based software engi-
neering perspective, which brings design-time scalability via well-defined architecture
design, while, at the same time, exploiting the specifics of DEECo to deal with the chal-
lenges of dynamicity, open-endedness, robustness, and autonomicity of RDS. To this
end, the paper presents DEECo as an instantiation of a thereby introduced class of com-
ponent-based systems — Ensemble-Based Component Systems (EBCS), defined as “Distrib-
uted systems composed of components that feature autonomic and (self-) adaptive behaviors and
are organized into emergent ensembles to achieve cooperation.” EBCS (including DEECo) are
viewed as a synergy of component-based software engineering, agent-oriented compu-
ting, ensemble-oriented systems, and control system engineering.

Contributing to the research goal G1, the paper presents an elaborate description of
the DEECo architecture abstractions and shows that the DEECo component model well
combines the encapsulation, composability, and reusability, brought by component-
based software architectures, with the needs of autonomic behavior and extreme archi-
tecture dynamism in RDS. The paper also promotes the explicit notion of belief as the part
of a component’s knowledge that represents the component's view of the environment
and the other components. Belief is updated in an asynchronous, best-effort manner via
ensemble knowledge exchange, and is thus treated with a certain level of uncertainty as
it might become obsolete or invalid.

A major part of the paper focuses on attacking the research goal G3. To this end, the
paper outlines a formalized computational model of DEECo emphasizing distributed
execution. While exploiting the stateless, best-effort nature of ensemble membership and
knowledge exchange, the computational model allows for various specializations, offer-
ing different tradeoffs between decentralization and performance. Due to space con-
straints, the formalization of the computational model is referred via a technical re-
port [AABG+13]. Further, the paper presents a realization of this computational model
in Java —jDEECo [13]. jDEECo includes a mapping of the DEECo abstractions (i.e., com-
ponents and ensembles) to Java language primitives in terms of an internal DSL based
on Java annotations. This way, the mapping does not require any language extensions
or external tools. The core of jDEECo is the Java implementation of the execution envi-
ronment and the corresponding tool support. The jJDEECo execution environment is pri-
marily responsible for scheduling component processes, forming ensembles, and per-
forming knowledge exchange. It also allows for distribution of components. The execu-
tion environment is internally divided into (i) a management layer, responsible for
scheduling and execution of component processes and ensemble knowledge exchange
within regular Java threads, and (ii) knowledge repository, storing and handling access

58

3.2. DEECo: an Ensemble-Based Component System

to component knowledge. The implementation described in the paper offers two vari-
ants of knowledge repository: a local one, employed for efficient simulation and verifi-
cation of jDEECo applications, and a distributed one, which is based on the Ja-
vaSpaces [2] middleware and is used when the execution environment needs to run in
a distributed setting. Hence, the distribution is achieved at the level of knowledge repos-
itory. (A fully decentralized implementation is subject to ongoing research [BGH+14a].)

Although primarily focusing on distributed execution, autonomy, and dynamism,
jDEECo also facilitates dependability by supporting formal analysis of DEECo-based ap-
plications at the level of implementation (i.e., challenge C4 in the context of the research
goal G3). Specifically, it is integrated with Java PathFinder [VHB+03][16] so as to enable
verification of knowledge-related LTL properties. In this context, the relatively restric-
tive computational model of DEECo and a PathFinder-optimized implementation of
the execution environment allowed making the verification efficient.

Finally, tackling the research goal G2, the paper elaborates on the component-based
development (CBD) process, while focusing on traceability between system require-
ments and architecture. Specifically, the paper advocates integration of the traditional
CBD process with the Invariant Refinement Method (IRM) — a requirements-driven, for-
mally-grounded method for designing DEECo-based architectures, presented separately
in Section 3.3. The main goal of IRM is identification of DEECo components and ensem-
bles by systematic decomposition and refinement of system requirements. This subse-
quently brings correct-by-construction guarantees of compliance with system require-
ments and the possibility of automated preparation of DEECo artifacts (e.g., component
skeletons, ensemble definitions). The CBD process, on the other hand, builds on separa-
tion of system development process from component development process. The inte-
grated development process proposed in the paper features requirements analysis and
high-level architecture design phases that are based on IRM, followed by separate
phases of component and ensemble development, concluded by traditional integration,
testing, and maintenance phases of the CBD process. The synergy of IRM with the CBD
process complements DEECo at design time by enabling the system-level design view
of IRM to be readily translated to a DEECo-based implementation. Moreover, the trace-
ability between system requirements and architecture provided by IRM is advanta-
geously exploited during component and system development as a baseline for unit and
integration testing, respectively.

The contributions of the paper are illustrated and evaluated on the electrical vehicle
navigation case study featured by the ASCENS project [SHP+13, SRA+11].

Comments on Authorship

Overall, the paper is of equal authorship. I specifically participated on the elaboration of
the DEECo abstractions and their realization in terms of jDEECo, as well as on the cor-
responding evaluation in terms of the electrical vehicle navigation case study. I also sig-
nificantly participated on the elaboration and formalization of the DEECo computational
model. Finally, I was responsible for enabling formal analysis of DEECo-based applica-
tions via the integration with Java PathFinder.

59

Chapter 3. Collection of Papers

60

DEECo — an Ensemble-Based Component System

Tomas Bures'?
bures@d3s.mff.cuni.cz

Jaroslav Keznikl'?
keznikl@d3s.mff.cuni.cz

'Charles University in Prague
Faculty of Mathematics and Physics
Prague, Czech Republic

ABSTRACT

The recent increase in the ubiquity and connectivity of computing
devices allows forming large-scale distributed systems that
respond to and influence activities in their environment.
Engineering of such systems is very complex because of their
inherent dynamicity, open-endedness, and autonomicity. In this
paper we propose a new class of component systems (Ensemble-
Based Component Systems — EBCS) which bind autonomic
components with cyclic execution via dynamic component
ensembles controlling data exchange. EBCS combine the key
ideas of agents, ensemble-oriented systems, and control systems
into software engineering concepts based on autonomic
components. In particular, we present an instantiation of EBCS —
the DEECo component model. In addition to DEECo main
concepts, we also describe its computation model and mapping to
Java. Lastly, we outline the basic principles of the EBCS/DEECo
development process.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems — distributed applications; D.2.6 [Software
Engineering]: Programming Environments — integrated

environments; D.2.9 [Software Engineering]: Management — life
cycle; D.2.11 [Software Engineering]: Software Architectures.

Keywords
Component model; emergent architecture; component ensembles;
autonomic systems; development process; runtime framework

1. INTRODUCTION

The significant increase in the ubiquity and connectivity of
computing devices has opened new possibilities for addressing
social and environmental challenges (e.g., ambient assisted living,
smart city infrastructures, emergency coordination, environmental
monitoring) by providing hardware and infrastructures necessary
for building large-scale Resilient Distributed Systems (RDS) that
respond to and influence activities in the real world. As RDS have
to cope with very dynamic and open-ended environments, they
exhibit a high degree of adaptivity and autonomicity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CBSE’13, June 17-21, 2013, Vancouver, BC, Canada.

Copyright © ACM 978-1-4503-2122-8/13/06...$15.00.

llias Gerostathopoulos'
iliasg@d3s.mff.cuni.cz

Michal Kit'
kit@d3s.mff.cuni.cz

61

Petr Hnetynka'
hnetynka@d3s.mff.cuni.cz

Frantisek Plasil’
plasil@d3s.mff.cuni.cz

%Institute of Computer Science
Academy of Sciences of the Czech Republic
Prague, Czech Republic

Although developing RDS has become relatively feasible from the
perspective of hardware and network infrastructures, there still
remain significant challenges in developing software for RDS. In
particular, the problem is to feature the appropriate computation
models and development processes which would address the
requirements of scalability, distribution, and well-defined
architecture, while, at the same time, would deal with the
requirements of dynamicity, open-endedness, robustness, and
autonomicity.

1.1 Towards EBCS

In this paper, we advocate using components for engineering
RDS. The use of components has been proven efficient for the
design and development of large-scale systems with well-defined
architectures. However, due to the dynamic and autonomic nature
of RDS, traditional approaches to component architectures [38] as
well as existing component models [6][7][30][31][32] do not
scale. Therefore, inspired by the work in the field of formal
coordination languages [14], in this paper we address this issue by
identifying a new class of component-based systems — Ensemble-
Based Component Systems (EBCS) — specifically tailored for
designing RDS. Moreover, we present the DEECo (Distributed
Emergent Ensembles of Components) component model [8][25]
as our instantiation of EBCS.

The characteristic of EBCS is that the “traditional” explicit
component architecture is replaced by the composition of
components into so-called ensembles [14][20], each of which is an
implicit, inherently dynamic group of components mutually
cooperating to achieve a particular goal. To cope with the
dynamism, the components in EBCS become autonomic entities,
building on agent-oriented concepts [39], while featuring
execution model based on feedback loops (e.g., MAPE-K [23],
soft real-time control systems [33]) in order to achieve (self-)
adaptive and resilient operation.

In this view, the EBCS can be defined as “Distributed systems
composed of components that feature autonomic and (self-)
adaptive behaviors and are organized into emergent ensembles to
achieve cooperation.”

EBCS thus naturally combine relevant concepts from a number of
research areas (Figure 1). Namely:

From component-based software engineering [11] EBCS adopt
the software engineering concepts of the system architecture
based on components (which themselves are seen as well-
encapsulated, reusable, and substitutable entities) and the
component-based development process.

Agent-oriented Computing
(autonomy)

Component-based engineering
(software engineering concepts)

EBCS

Ensemble-oriented systems
(attribute-based communication)

Control system engineering
(operational normalcy)

Figure 1: Areas combined into Ensemble-Based Component
Systems and their strong points.

From agent-oriented computing [39] EBCS derive the
autonomous aspects, where the individuals maintain only a partial
view on the whole system in order to guide their decisions — the
belief, and self-* behavior [10]. This way, the overall behavior of
EBCS is an emergent result of the behaviors of the individual
components, enabling thus for efficient decentralized execution.

Building on the ensemble-oriented systems [14][20] EBCS rely on
the attribute-based communication, which models the
communication as best-effort and localized to dynamically
changing ensembles of components; as opposed to existing agent-
based systems[4] which at the deployment level resemble
service-oriented architectures employing explicit communication
channels. This helps to effectively cope with the assumption that
the deployment (and thus also architecture) of RDS changes very
dynamically.

From control system engineering [33] EBCS adopt the idea of
achieving robustness by employing (soft real-time) control
feedback loops [23] that maintain the operational normalcy of a
component. Here, operational normalcy refers to the property of
being within certain limits that define the range of normal
functioning of the component. The required level of robustness is
achieved by adjusting the periods of the loops. As extreme
dynamism is assumed, the core attribute of EBCS is employing
the concept of feedback loops both at the level of individual
components and ensembles. Thus, an EBCS-based system can be
understood as a distributed system of conditionally interacting
feedback loops.

As a result, EBCS provide the following key features important
for development of RDS:

¢ System architecture (represented by components and
their bindings) emerges at runtime. The system
architecture is however not arbitrary — it complies with
explicit interaction patterns of ensembles specified at
design time.

¢ Components maintain a belief about the rest of the
system and the environment. The belief is managed
outside the component behavior by the underlying
runtime framework.

* Component execution is performed in isolation based
solely on the component’s belief. This strengthens the
autonomicity of components (e.g., in the context of
unreliable communication and/or rapid architecture
changes).

1.2 Goals and Structure of the Text

The goal of the paper is to describe our instance of EBCS — the
DEECo (Distributed Emergent Ensembles of Components)
component model [8][25] and its framework — and to share with
the reader our experience with its application.

62

Figure 2: E-mobility: Potential ensembles and their dynamic
changes (available parking stations close to respective POIs).

In particular, after describing a running example (Section 2), we
present: (i) the core DEECo concepts along with its abstract
execution model (Section 3), (ii) a Java-based DEECo framework,
which allows engineering DEECo components and ensembles in a
Java environment (Section 4), and (iii) an outline of a design
process, which drives the architectural design of EBCS (DEECo-
based systems in particular) from high-level requirements
(Section 5). Finally, we share with the reader our experience with
an industrial case study (Section 6). After presenting a survey of
related work (Section 7), the paper concludes with a summary and
a brief overview of our intentions in future work (Section 8).

2. RUNNING EXAMPLE

We illustrate the main concepts of EBCS/DEECo with the help of
the electrical vehicle navigation case study featured by the
ASCENS project [37]. We describe the fundamentals of the case
study in this section and articulate the running example that we
use in the rest of the paper.

The objective of the e-mobility case study is to coordinate the
planning of journeys in compliance with parking and charging
strategies in a highly dynamic and heterogeneous traffic
environment, where information is distributed. The case study
consists of drivers, navigating around a city in their electric
vehicles (e-vehicles). Drivers have to reach particular Points Of
Interest (POIs) within time constraints, specified as the expected
POI arrival and departure times. Every driver possesses his/her
daily meetings schedule (calendar), where POIs and their
respective constraints are listed. Vehicles are equipped with
sensors of basic capabilities, e.g., monitoring the battery level and
energy consumption of the car, but also more sophisticated ones,
e.g., monitoring the traffic level along the route. Vehicles can only
park and recharge in designated parking spaces and charging lots,
organized into parking/charging stations. They also communicate
with each other and with relevant parking/charging stations, e.g.
those that are close to their respective POIs. Such communication
is necessary, e.g., in order for a vehicle to obtain the availability
of the parking station and potentially reserve a place there. It is
important that in this setting no central coordination point is
assumed; there is no global control or global planning. Instead,
every e-vehicle plans and executes its route individually, based on
the data available.

The whole system can be seen as a set of (distributed) nodes,
which form ensembles (dynamic communication groups) in order
to allow drivers to arrive at their POIs in time while leveraging the
available resources in a close-to-optimal way. This is illustrated in
Figure 2 — each vehicle forms an ensemble with available parking
stations close to their respective POIs. Figure 2.b further shows an
evolution of the scenario, where vehicles have moved along the
route and a parking station has become unavailable leading to
dynamic changes of the ensembles.

As our running example, we consider a simplified version of the
case study by making the following assumptions: i) car sharing is
not allowed, so drivers are bound to the vehicles they drive, ii)
parking and charging stations are modeled together as Parking
Lot/Charging Station (PLCS) elements, iii) drivers do not reserve
a place in the PLCSs, but only obtain their availability
information in order to plan accordingly, and iv) PLCSs are
relevant w.r.t. a vehicle if they are within a fixed distance to one
of the vehicle’s POIs.

Although simplified, the running example features a number of
important challenges targeted by EBCS. In particular, the physical
architecture of the system constantly changes as the cars move
around the city; cars and PLCSs maintain a partial view over the
whole system, according to the information they obtain from
components they interact with; trip planning and decision making
in general is localized to the drivers (cars), as no central
coordination is assumed.

3. DEECo COMPONENT MODEL

To refine the principles of EBCS into a systematic approach for
building software for RDS, we have proposed a new component
model called DEECo [25]. DEECo embodies the main concepts of
EBCS, while giving them a suitable semantics in order to turn
them into proper software engineering constructs that can be
employed in the real-life development of RDS.

3.1 General Concepts

DEECo is built on top of two first-class concepts: component and
ensemble. A component is an independent and self-sustained unit
of development, deployment and computation. An ensemble acts
as a dynamic binding mechanism, which links a set of
components together and manages their interaction. A grounding
idea in DEECo is that the only way components bind and
communicate with one another is through ensembles. The two
first-class DEECo concepts are in detail elaborated below. An
integral part of the component model is also the runtime
framework providing the necessary management services for both
components and ensembles.

3.1.1 Component
A component in DEECo comprises knowledge, exposed via a set
of interfaces, and processes, as illustrated in Figure 3.

Knowledge reflects the state and available functionality of the
component (lines 8-16). It is organized as a hierarchical data
structure (resembling a tuple space [15]), which maps knowledge
identifiers to values. Specifically, values may be either potentially
structured data or executable functions. Technically, we use
structured identifiers to refer to internal parts of the structured
values (e.g., plan.isFeasible in line 18). In this context, the term
belief refers to the part of a component’s knowledge that
represents a copy of knowledge of another component, and is thus
treated with a certain level of uncertainty as it might become
obsolete or invalid.

A component’s knowledge is exposed to the other components
and environment via a set of interfaces (lines 7, 29). An interface
(e.g., lines 1-2) thus represents a partial view on the component’s
knowledge. Specifically, interfaces of a single component can
overlap and multiple components can provide the same interface,
thus allowing for polymorphism of components.

Component processes are essentially soft real-time tasks that
manipulate the knowledge of the component. A process is
characterized as a function (lines 19-21) associated with a list of
input and output knowledge fields (line 18). Operation of the

63

1. interface AvailabilityAggregator:

2. calendar, availabilities

3.

4. interface AvailabilityAwareParkingLot:

5. position, availability

6.

7. component Vehicle features AvailabilityAggregator:

8. knowledge:

9. batteryLevel = 90%,

10. position = GPS(...),

11. calendar = [POI(WORKPLACE, 9AM-1PM), POI(MALL, 2PM-3PM), ...],
12. availabilities =[],

13. plan={

14. route = ROUTE(...),

15. isFeasible = TRUE

16. }

17. process computePlan:

18. in plan.isFeasible, in availabilities, in calendar, inout plan.route
19. function:

20. if (!plan.isFeasible)

21 plan.route « Planner.computePlan(calendar, availabilities)
22 scheduling: triggered(changed(plan.isFeasible) V changed(availabilities))
23. process checkPlanFeasibility:

24. in plan.route, in batteryLevel, in position, out plan.isFeasible
25. function:

26. plan.isFeasible « Planner.isFeasible(plan.route, batteryLevel, position)
27. scheduling: periodic(5000ms)

28.

29. component PLCS features AvailabilityAwareParkingLot:

30. knowledge:

31. position = GPS(...) ,

32. availability = ...

33. process observeAvailability:

34. out availability

35. function:

36. availabilitye Sensors.getCurrentAvailability()

37. scheduling: periodic(2000ms)

Figure 3: Examples of DEECo component definitions in a DSL

process is managed by the runtime framework and consists of
atomically retrieving all input knowledge fields, computing the
process function, and atomically writing all output knowledge
fields. A process may have side effects in terms of sensing and
actuating, however, it is not supposed to explicitly communicate
with other components or other processes of the same component
in any other way than via knowledge.

Being active entities of computation implementing feedback
loops, component processes are subject to cyclic scheduling,
which is again managed by the runtime framework. A process can
be scheduled either periodically (line 27), i.e., repeatedly executed
once within a given period, or as triggered (line 22), i.e., executed
when a trigger condition is met. For brevity, we assume the
change of input knowledge value as the only trigger condition.

Referring to the e-mobility running example, the components
(each occurring in multiple instances) are the Vehicle and the PLCS
(Figure 3). A Vehicle maintains a belief over the availability of the
relevant PLCSs (availabilities, line 12). It uses a Planner library to
(re-) compute its journey plan according to the availability belief
and its calendar (line 17) every time the availability belief or plan
feasibility changes (line 22). The Vehicle also periodically checks
if its plan remains feasible, with respect to its battery level and its
current position (line 23). A PLCS just keeps track of its available
timeslots for vehicle parking and charging (lines 33-37).

3.1.2 Ensemble

An ensemble embodies a dynamic binding among a set of
components and thus determines their composition and
interaction. In DEECo, composition is flat, expressed implicitly

ensemble UpdateAvailabilitylnformation:
coordinator: AvailabilityAggregator
member: AvailabilityAwareParkingLot
membership:
3 poi € coordinator.calendar:
distance(member.position, poi.position) < TRESHOLD &&
isAvailable(poi, member.availability)
knowledge exchange:
coordinator.availabilities < { (m.id, m.availability) | m € members }
scheduling: periodic(5000ms)

BLOLONOUPAWNE

=]

Figure 4: An example of an ensemble definition in a DSL.

via a dynamic involvement in an ensemble. Among the
components involved in an ensemble, one always plays the role of
the ensemble’s coordinator while others play the role of the
members. This is determined dynamically (the task of the runtime
framework) according to the membership condition of the
ensemble. As to interaction, the individual components in an
ensemble are not capable of explicit communication with the
others. Instead, the interaction among the components forming the
ensemble takes the form of knowledge exchange, carried out
implicitly (by the runtime framework, Section 4.2).

Specifically, definition of an ensemble (Figure 4) consists of:

* Membership condition. Definition of a membership condition
includes the definition of the interface specific for the
coordinator role — coordinator interface (line 2), as well as
the interface specific for the member role (and thus featured
by each member component) — member interface (line 3),
and the definition of a membership predicate (lines 4-7).
A membership predicate declaratively expresses the
condition under which two components represent a
coordinator-member pair of the associated ensemble. The
predicate is defined upon the knowledge exposed via the
coordinator/member interfaces and is evaluated by the
runtime framework when necessary. In general, as illustrated
in Figure 5, a single component can be member/coordinator
of multiple ensembles, so that ensembles form overlapping
composition layers upon the components.

* Knowledge exchange. Knowledge exchange embodies the
interaction between the coordinator and all the members of
the ensemble (lines 8-9); i.e., it is a one-to-many interaction
(in contrast to the one-to-one form of the membership
predicate). Being limited to coordinator-member interaction,
knowledge exchange allows the coordinator to apply various
interaction policies. In principle, knowledge exchange is
carried out by the runtime framework; thus, it is up to the
runtime framework when/how often it is performed.
Similarly to component processes, knowledge exchange can
be carried out either periodically or when triggered (line 10).

Based on the ensemble definition, a new ensemble is dynamically

formed for each group of components that together satisfy the

membership condition.

In summary, each component operates only upon its own local
knowledge, which gets implicitly updated by the runtime
framework (via knowledge exchange) whenever the component is
part of an ensemble. This supports component encapsulation and
independence. Further details are elaborated in [2].

The sole ensemble of the running example is the
UpdateAvailabilityInformation ensemble listed in Figure 4. Its
purpose is to aggregate the availability information of the
members, i.e. PLCSs, on the side of the coordinator, i.e., Vehicle
(line 9). The ensemble is formed only when a PLCS is close
enough to at least one of the POIs of the Vehicle (line 6) and there

64

Memk;\é?\\Ensemble 2

,,afdi;iéiar
“~-Ensemble 1

! T
-
I Member .~

‘ \‘\,//Co%;)onenttl
S

Figure 5: Composition of components into multiple
overlapping ensembles in DEECo.

is an available slot in the PLCS, which can accommodate the
respective POI arrival and departure time (line 7).

3.2 Computational Model

To allow for formal reasoning about DEECo applications, we
have defined the operational semantics of DEECo, which models
a DEECo application as a label transition system (LTS) with
knowledge manipulation actions on transitions. The semantics
further associates time with the LTS run and defines periodic and
triggered processes and ensembles in terms of time constraints
over traces generated by the LTS.

We also define a subset relation over a set of traces of observable
changes in the components’ knowledge. This allows us to build
different implementations of DEECo (such as the tuple-space
based implementation described in Section 4 and a messaging-
based implementation following the protocol outlined in [2])
while accommodating for and benefiting from the specifics of the
communication middleware used.

Due to space constraints we do not include the definition of the
semantics in this paper, rather we refer the reader to the technical
report [2], which describes it in full extent.

4. DEECo REALIZATION IN JAVA

In order to bring DEECo abstractions to the practical use during
the development of real-life RDS we provide a framework called
JDEECo [13], which is a Java-based realization of DEECo
component model. JDEECo delivers the necessary programming
abstractions and the runtime environment to deploy and run
DEECo-based applications.

In this section, we describe how jDEECo maps definitions of
DEECo components and ensembles to Java language primitives.
In particular, we follow the developer’s perspective and show how
the running example gets implemented using the jDEECo
constructs. Further, we briefly discuss interesting aspects of the
JDEECo runtime framework and supporting tools and the in-
memory representation of the DEECo concepts.

4.1 Mapping of DEECo Concepts to Java

By building on Java annotations, the mapping of DEECo concepts
relies on standard Java language primitives and does not require
any language extensions or external tools.

4.1.1 Component

A component definition has the form of a Java class (Figure 6).
Such a class is marked by the @DEECoComponent annotation and
extends the ComponentKnowledge class. The initial knowledge

1. @DEECoComponent

2. public class Vehicle extends ComponentKnowledge {

3.

4. public List<CalendarEvent> calendar;

5 public Plan plan;

6 public EnergyLevel batteryLevel;

7 public Map<ID, Availability> availabilities;

8. public Position position;

9.

10. public Vehicle() {

11. // initialize the initial knowledge structure reflected by the class fields
12. }

13.

14. @DEECoProcess

15. public static void computePlan(

16. @DEEColIn("plan.isFeasible") @DEECoTriggered Boolean isPlanFeasible,
17. @DEEColIn("availabilities ") @DEECoTriggered Map<...> availabilities,
18. @DEEColIn("calendar") List<CalendarEvent> calendar,

19. @DEECoInOut("plan.route") Route plannedRoute

20. H

21. // re-compute the vehicle’s plan if it’s infeasible

22. }

23.

24. @DEECoProcess

25. @DEECoPeriodicScheduling(5000)

26. public static void checkPlanFeasibility(

27. @DEEColn("plan.route") Route plannedRoute,

28. @DEEColIn("batteryLevel") EnergyLevel batteryLevel,

29. @DEEColIn("position") Position position,

30. @DEECoOut("plan.isFeasible") OutWrapper<Boolean> isPlanFeasible
31)

32. // determine feasibility of the plan

33. }

34.

35. }

36. public class Plan extends Knowledge {

37. public Route route;

38. public Boolean isFeasible;

39. }

Figure 6: Example of a component definition in Java.

structure of the component is captured by means of the public,
non-static fields of the class (lines 4-8). The id knowledge field,
which is used for unique identification of a component, is
inherited from the ComponentKnowledge class. As knowledge
can be hierarchically structured, these fields represent the first
level of this hierarchy, where each can take the form of a
knowledge tree (recursively), map, or list. As for the knowledge
tree form, the non-leaf nodes of this tree need to be instances of a
class inheriting from Knowledge (lines 36-39). The non-structured
knowledge values are represented as serializeable Java objects. At
runtime, this initial knowledge structure is initialized either via
static initializers or via the constructor of the class (lines 10-12).

For convenience, the set of supported interfaces is implicit; i.e., all
interfaces that structurally match the component’s knowledge are
assumed to be featured by the component (similar to duck typing
in dynamic languages).

The component processes are defined as public static methods of
the class, annotated with @DEECoProcess (e.g., lines 14-22). The
requirement of the static modifier stems from the semantics of
component process execution (Section 3.1.1). In particular, except
for reading the input knowledge and writing the output knowledge
(which is anyway managed by the runtime framework),
a component process executes in isolation, without access to the
knowledge. Thus, declaring the method as static prevents it from
directly accessing the initial knowledge represented by the class
fields (which are non-static).

The input and output knowledge of the process is represented by
the methods’ parameters. The parameters are marked with one of

65

1. (@DEECoEnsemble

2. @DEECoPeriodicScheduling(4000)

3. public class UpdateAvailabilitylnformation extends Ensemble {

4.

5. @DEECoEnsembleMembership

6 public static boolean membership (

7 @DEECoIn("coord.calendar ") List<CalendarEvent> calendar,
8 @DEECoIn("member.position ") Position plcsPosition,

9. @DEECoIn("member.availability ") Availability availability
10.)

11. for (CalendarEvent ce : eventsCalendar) {

12. if (isClose(ce.poi.position, plcsPosition, DISTANCE_THRESHOLD)
13. && isAvailable(ce.poi, availability))

14. return true;

15. }

16. return false;

17. }

18.

19. @DEECoEnsembleKnowledgeExchange

20. public static void knowledgeExchange (

21. @DEEColIn("coord.calendar") List<CalendarEvent> calendar,
22. @DEECoInOut("coord. availabilities") Map<...> availabilities,
23. @DEECoIn("member.id]") ID memberID,

24, @DEECoIn("member.position") Position plcsPosition,

25. @DEECoIn("member.availability") Availability availability
26.)

27. availabilities.put (memberlD, availability.clone(currentTimestamp()));
28. }

29. }

Figure 7: Example of an ensemble definition in Java.

the annotations @DEEColn, @DEECoOut or @DEEColnOut, in
order to distinguish between input and output knowledge fields of
the process (e.g., lines 16-19). Each annotation also includes an
identifier of the knowledge field that the associated method
parameter represents. As the input/output knowledge can consist
of a knowledge field that is an internal node of a knowledge tree,
the identifier of such a knowledge field is a dot-separated
representation of the path to the node in the tree (e.g., line 16).
When a non-structured knowledge field constitutes an inout/out
knowledge of a process, the associated method parameter is for
technical reasons (related to Java immutable types) passed inside
an OutWrapper object (e.g., line 30).

Periodic scheduling of a process 1is defined via the
@DEECoPeriodicScheduling annotation of the process’s method,
which takes the period expressed in milliseconds in its parameter
(line 25). Triggered scheduling is defined via @DEECoTriggered
annotation of the method’s parameter, change of which should
trigger the execution of the process (lines 16-17).

4.1.2 Ensemble

The ensemble definition takes also the form of a Java class. In
particular, the class is marked with the @DEECoEnsemble
annotation and extends the Ensemble class (Figure 7).

Both the membership predicate and the knowledge exchange are
defined as specifically-annotated static methods of this class.
While the method representing the membership predicate is
annotated by @DEECoEnsembleMembership (line 5), the method
representing knowledge exchange is annotated by
@DEECoEnsembleKnowledgeExchange (line 19). Note that in the
prototype implementation of JDEECo we assume for simplicity
knowledge exchange between the coordinator and a single
member (applied for each member separately); this is a
simplification of the one-to-many knowledge exchange (one
coordinator vs. many members) as introduced in Section 3.1.2.
Thus, in the Java implementation of the
UpdateAvailabilitylnformation knowledge exchange we use a
timestamp to distinguish current elements of the availabilities

Component
processes &
Ensemble
knowledge
exchange T al T
T T 1
! Schedullng‘ ‘ :i Schedullng‘ : /Schedullng‘
Management | Knowledge ! I\ Knowledge :/ Knowledge
\ ‘access i access " access
T | T TT
v’i"”;’\ // \\ T [it
Knowledge | ® e N } | i
Repository }CK”} CKy 1= ! CKs ! 1 CK“}
i N L
Runtime framework
’ Java VM ‘ ’ Java VM ‘ e ’ Java VM

JDEECo Instance JDEECo Instance JDEECo Instance

Figure 8: JDEECo runtime framework architecture.

collection (line 27), instead of refreshing the whole collection
(Figure 4, line 9).

In contrast to the conceptual description of an ensemble
(Section 3.1.2), Java definition of an ensemble does not comprise
explicit definition of the member and coordinator interfaces.
Instead, these interfaces are defined implicitly as a union of the
knowledge fields represented by parameters of the methods
representing the membership predicate and knowledge exchange.
Since these parameters are annotated in the same way as
parameters of component processes, the parameters relevant to the
member/coordinator interface are distinguished by identifier
prefixes (i.e., identifiers of knowledge of a coordinator/member
interface are prefixed with “coord”/ “member”).

Scheduling of the knowledge exchange is defined similarly to
component processes. The only difference is that the
@DEECoPeriodicScheduling is applied to the whole class defining
the ensemble, while the @DEECoTriggered is applied to a
particular parameter of the membership method.

4.2 Runtime framework

The jDEECo runtime framework is primarily responsible for
scheduling component processes, forming ensembles, and
performing knowledge exchange. It also allows for distribution of
components.

As illustrated in Figure 8, it is internally composed of the
management part and the knowledge repository. The management
part is further composed of two modules. One is responsible for
scheduling and execution of component processes and knowledge
exchange of ensembles. The other is responsible for managing
access to the knowledge repository. Exploiting the fact that all
modules of the runtime framework implementation are loosely
coupled, we are able to introduce implementation variants for
each of them. As a result, different variants can be selected in
order to reflect specific requirements imposed to the platform.

The role of the knowledge repository is to store the component’s
knowledge (e.g., CK; — knowledge of component C; — in
Figure 8). Its responsibility is also to provide component
processes and knowledge exchange of ensembles with access to
this knowledge. In fact, we provide a local and a distributed
implementation of the knowledge repository; the former is
employed for simulation and verification of the code (Section 4.3)
while the latter is used in case the runtime framework needs to run
in a distributed setting (i.e., the distribution is achieved at the level
of knowledge repository). Specifically, the distributed
implementation of the knowledge repository allows each
component to run in a different Java virtual machine (as illustrated

66

in Figure 8). The distribution is achieved by employing the
JavaSpaces' middleware. JavaSpaces is a reification of the
LINDA [15] paradigm, which aligns well with the way DEECo
represents knowledge. For the time being, jDEECo relies on the
ApacheRiver? implementation of JavaSpaces.

As to the scheduling module, each component process (e.g., C{P;
— process P; of component C; — in Figure 8) is executed by the
runtime framework within a regular Java thread. Thus, threads
executing triggered processes are blocked till their triggering
condition holds true, while threads executing periodic processes
are blocked after completion till the beginning of their next
period. Concerning knowledge exchange of ensembles (e.g., E; in
Figure 8), the scheduling and execution is similar to component
processes. In addition, the membership predicate is evaluated
before each run of the knowledge exchange, so that it is applied
only to valid coordinator-member pairs of components.

Further, to enable dynamic deployment of DEECo-based
applications, Java classes with component/ensemble definitions
can be provided to the runtime framework both during
deployment and runtime.

4.3 Tool support

In addition to providing the runtime framework, jDEECo supports
the development of DEECo-based applications via the ASCENS
tool workbench (called SDE?), featuring modeling and analysis
tools for RDS.

Since SDE is based on Eclipse, the integration with jJDEECo
includes deploying jJDEECo as an Eclipse plugin and providing
additional Eclipse-specific features. Most importantly, these
include the possibility of packaging and deploying DEECo
components and ensembles as OSGi [17] bundles. This is
complemented by a graphical packaging tool and a discovery
mechanism based on OSGi service discovery.

Furthermore, the tool palette is enhanced by the integration of
JDEECo and Java PathFinder* [18] which supports verification of
properties related to knowledge. Currently, we are focusing on
verification of reachability properties, encoded via assertions and
exceptions in the component/ensemble code. Technically, we
perform model-checking on a compound consisting of code of
components and ensembles, and of the jDEECo runtime
framework. The latter is included to represent the DEECo
computational model. To minimize model-checking complexity,
we perform the verification on a special configuration of the
JDEECo runtime framework (its JPF-optimized variant);
particular, this concerns the local knowledge repository and
scheduling module.

5. SOFTWARE ENGINEERING PROCESS

INTEGRATION

To build EBCS-based systems (DEECo-based applications in
particular) and reason about their properties in a systematic way, a
high-level view of the target system is required. Such view should
trace the (latent) system architecture, which will naturally
comprise a number of DEECo components and ensembles, back
to system requirements.

! http://river.apache.org/doc/specs/html/js-spec.html

2 http://river.apache.org
3 http://sde.pst.ifi.lmu.de/trac/sde/
“ http://babelfish.arc.nasa.gov/trac/ipt/

To enable that, we have proposed a requirements-driven method
for designing EBCS, called Invariant Refinement Method — IRM
(elaborated in [9][24]). In this section, we augment the description
of the DEECo component model and its jDEECo runtime
framework implementation with a comprehensive development
process based on IRM. In particular, for convenience we first
provide a brief summary of IRM and then focus specifically on its
integration with traditional Component-Based Development
(CBD) process, as well as its strong points w.r.t. system evolution.

5.1 Basic Concepts of IRM

IRM is based on the systematic decomposition and refinement of
system specification, ending up with system architecture —
components and ensembles. It builds on the idea of iterative
refinement of system goals, employed in goal-oriented
requirements engineering. Contrary to classic goal-oriented
approaches though, like KAOS [27] and Tropos/i* [5], IRM is
tailored to the domain of EBCS. In particular, EBCS feature
emergent system architectures, which cannot be systematically
derived from system requirements using classic approaches [16].

The main goal of IRM is the identification of EBCS concepts of
components and ensembles based on system requirements. This
subsequently brings correct-by-construction guarantees of
compliance with system requirements, and the possibility of
automated preparation of EBCS artifacts (component skeletons,
ensemble code) in the programming language of choice.

IRM comprises system level design, ensemble level and
component level design, followed directly by implementation.

System level. As a starting point of the design process, IRM
focuses on the invariants to be preserved and the system
constituents (components) responsible for preserving them.
Invariants are descriptive statements of what should hold in the
system at every time instant (not only at some point in the future)
and reflect the system normalcy, i.e., the property of being within
the bounds of normal operation. For example, the “The
availability of relevant PLCSs is kept updated” invariant
expresses that vehicles should keep having up-to-date availability
information regarding the PLCSs close to their POIs. A
component in IRM is a design construct encapsulating knowledge
(its domain-specific data) that is referred from invariants; i.e., the
component takes a role in the invariants.

After identifying the invariants reflecting the top-level system
goals/requirements, the design process continues by their
refinement into sets of sub-invariants, forming a tree structure.
The invariant refinement has the typical semantics used in
software engineering, where the composition of the children
exhibits all the behavior expected from the parent and potentially
some more. An example of a possible decomposition of our
running example is depicted in Figure 10.a.

The iterative refinement process ends when all invariants are
directly mappable to DEECo component processes and
ensembles. In particular, an invariant needs no further refinement
when a) it involves a single component and can be ensured by
local manipulation of the component’s knowledge (via a
component process) — local invariant (e.g., (7) in Figure 10.a) —
or b) the invariant involves exactly two components and can be
ensured by mapping one component’s knowledge part(s) to the
other (via knowledge exchange of an ensemble) — exchange
invariant (e.g., (6) in Figure 10.a).

Ensemble level. At this level, ensembles are identified and fully
specified. For each exchange invariant, an ensemble is introduced.
In particular, the coordinator and member interfaces are directly

67

___Elicitation

—_ -
. -
~ Requlrem.ents
S Analysis

~\
~§
=) =

System
Development

Component &
Ensemble
Development

not changed — slightly modified e modified

Figure 9: Example of IRM integration into the reference CBD
process of [12].

derived from the roles the components take in the respective
invariant. The rest of the ensemble definition (membership
predicate, knowledge exchange function) needs to be extracted
from the invariant manually. For example, the “The availability of’
relevant PLCSs is kept updated” exchange invariant ((6) in
Figure 10.a) can be refined into the UpdateAvailabilityInformation
ensemble listed in Figure 4.

Component level. At this level, the components are concretized.
The component at this level necessarily comprises the knowledge
identified at the system level. The component processes are also
specified; these are derived from the local invariants the
component takes a role in. For example, the Vehicle component
from Figure 10.a can be concretized into the Vehicle component
of Figure 3, comprising knowledge and processes determined at
the system level.

5.2 Integration with CBD Process

Overall, the development process for EBCS as described above,
and IRM in particular, introduces specific aspects into the
traditional Component-Based Development (CBD) process. Thus,
in this section we elaborate on these specifics in the context of
general CBD process and provide a concrete example for the
waterfall-based CBD process as proposed in [12].

CBD process builds on separation of system development process
from component development process [11]. The traditional system
development process includes the phases of Requirements,

Analysis, Design, Implementation, Test, Release, and
Maintenance. The component development process includes
phases of Design, Implementation, Test, Delivery, and

Maintenance. Several component development processes may be
on course simultaneously, making it possible to develop several
components at the same time.

By employing IRM in design, we couple component development
(exemplified on the reference CBD process of [12] in Figure 9)
with ensemble development. To do so, we extend several phases
of CBD to accommodate IRM (Table 1). Since the extensions do
not rely on any specifics of CBD (they only assume requirements
analysis and architectural/system design, traditional parts of
development processes in general), we believe that they are
applicable to any development process which involves
components (e.g., agile variations of CBD).

- By applying the IRM method, the requirements are captured
o 2 __ |in terms of invariants and elaborated by iterative refinement.
Q E o~
&
<
The system architecture, in terms of (DEECo) ensembles and
components, is identified. The analysis is both structural
(which architectural entities should be present in the system)
= and behavioral (what should be their behavior, e.g., in terms
= of process & ensemble scheduling). It is important to
2 distinguish between the components’ internal and external
A interfaces. An external interface comprises a part of the
g knowledge that can be exchanged (read or written) by
2 ensembles. This knowledge must not be violated during
A implementation, as this would harm the system-wide
contractual design. On the contrary, an internal interface
comprises a part of the knowledge that must be present in the
component, for the purpose of an internal computation.
Components & ensembles are designed in detail. This step
g § _ |can include elaboration of representation of the knowledge
g ‘% . |belonging to internal interfaces.
oA
Components & ensembles are tested in isolation. The leaf]
=1 %ﬂ __, |invariants of the IRM tree can serve as a specification for unit
g 7 2 |testing.
O
System-wide tests are performed. The non-leaf invariants of]
g'%‘)ﬁ the IRM tree can serve as a specification for integration
2 2 2 |testing.
N =

Table 1: IRM injection points into the CBD process.

5.3 System Evolution

Since EBCS are inherently open-ended and evolving systems, the
aforementioned development process has to accommodate
additional requirements that arise after the initial development
cycle has been completed. A new requirement can arise when a
new or modified functionality is required from the system. IRM
provides an easy and effective way to deal with such evolution by
introducing new invariants into corresponding branches of the
IRM tree.

For illustration, we consider an evolution scenario where the
Traffic Information Provider component is added to the system, to
represent the traffic monitoring stations scattered around roads.
These stations provide information to the vehicles about traffic
congestions in their vicinity. Recall that the e-mobility system
from the running example has been originally designed and
implemented without considering traffic level information
(Figure 10.a). In this case, the IRM design captures just the
necessity to keep the vehicle’s plan updated ((4) in Figure 10.a)
and to check whether the current plan remains feasible with
respect to measured energy level ((5) in Figure 10.a).

To address the evolution, the IRM tree is modified as follows
(Figure 10.b): i) the new component is added, ii) the invariant (5)
is modified to account for the traffic level, iii) three new
invariants (i.e., (9), (10), (11)) are added. Out of these, one is an
exchange invariant (10) and one is a local invariant (11),
prescribing the addition of a new ensemble and a new process to
the Vehicle component.

To account for such kind of system evolution, the whole
development process needs to follow an iterative approach, where,
by integrating newly identified requirements, software is
incrementally built, tested, and released.

68

(1) Vehicle meets its
calendar

/(2) Vehicle has an up-to- (3) Driver follows the route b
\ of the plan

PLCS.

position
availability

| date and feasible plan
~— 1{ plannedRoute}

(4) Plan is kept updated 5) Plan feasibility w.r.t)
*{position, availability}

_= Vehicle
1{ batteryLevel,

calendar
position
plannedRoute

(8) Battery sufficiency”__— " 4

w.r.tplan is checked

attery level is checke
_—
©
(6) Availability of relevant
1 plannedRoute, _7|planFeasibility

Ve (7) Plan is kept computed __ planFeasibility, - availabilities

w.r.t. availability & feasibility availabilities, batterylLevel
T position} —
" 1{calendar, availabilities}

(a)

A
(2) Vehicle has an up-to-
date and feasible plan
N 1
calendar

(j\\\ position
Parking/Charging

,/
) (15) Plan feasibility w.r.t batterv>
station ARSI level, traffic level is checked
position A [y

availability / P

Vehicle

planFeasibility
availabilities
batteryLevel

(8) Battery sufficiency"", /(9) Traffic level assuptions X
w.r.t plan is checked w.r.t. plan are checked 1{ trafficLevel, |

planFeasibility} |
(11) Time constraints
w.r.t. traffic level are checked,

T 1{trafficLevel}

Traffic Information 1

Provider A
(10) Traffic level
information is kept updated

trafficLevel | *{trafficLevel}—

AND-
decomposition

—@exchange A

invariant

(b)
Figure 10: Capturing system evolution in IRM.

‘ E}Ege"‘) invariant 9 loc@!

role with
invariant

knowledge k

6. EXPERIENCE

We have evaluated the DEECo approach (together with IRM) by
developing a prototype of the e-mobility case study within the
ASCENS project. As this case study has been conceived in
cooperation with Volkswagen, the detailed designs and
implementation are proprietary. For a concise description of the
case study we refer the reader to [36]. Along with the case study,
we have also implemented a number of example applications and
a tutorial, which are all available at the JDEECo GitHub site [13].

Our experience shows that DEECo concepts well combine the
encapsulation and modularity brought by components with the
needs of autonomic behavior and highly dynamic architecture.
IRM process well complements the DEECo concepts in providing
an overall system-level view that can be easily translated to
components and ensembles. The mapping to Java (by jDEECo)
proved to be relatively straightforward.

Our experience also indicated that although there is a strong
conceptual difference between a component and an ensemble (in
the sense that a component is state-full while an ensemble is
stateless), the developers of the case-study had problems with
differentiating between responsibilities of a component process
and knowledge exchange. In particular, they incorrectly tended to
reduce autonomy of components by pushing some of their
functionality to ensembles (by employing complex knowledge
transformations in the knowledge exchange). As a remedy, we
adopted the following rule as a design guideline: The knowledge
exchange should be ideally 1:1 knowledge assignment; complex
knowledge transformations may be employed only in well-
justified cases (typically when integrating third-party
components).

Finally, our experiments with verification of jJDEECo applications
via JPF (performed on the example applications) indicate that the
relatively strict DEECo computational model can be effectively

exploited for increasing the performance of explicit model
checking.

7. RELATED WORK

Since EBCS are a relatively new class of systems, we are
currently not aware of any other approach that would be directly
related to IRM and DEECo. However, as EBCS is a software
engineering concept for developing Resilient Distributed Systems
(RDS), in this section we survey approaches that deal with
specific aspects of RDS.

At the computational level, control engineering methodologies
have been identified as a promising solution to implement self-
adaptive software systems [10] in a variety of application domains
and with different performance requirements and control
objectives [33]. In the domain of distributed systems,
decentralized solutions based on feedback loops, ranging from
cloud performance management [41] to embedded real-time
systems [40], have been proposed to keep the system in the
required steady state, while avoiding scalability issues and single
points of failure. EBCS employ similar idea of cyclic execution of
component processes and ensembles to maintain the operational
normalcy of the system. At the architectural level, attempts have
been made to instantiate the generic MAPE-K loop [23] to feature
adaptation at a larger scale. Self-managing architectures [26],
component-based approaches [3][34], and solutions that apply
architectural models at runtime [29] are examples of this. The
common denominator of these approaches is that they rely on
explicit bindings among the system components, which get re-
organized in response to runtime stimuli. EBCS, on the other
hand, do not consider explicit architecture, but let the architecture
“emerge” during runtime, fitting better the dynamic, constantly—
changing system landscapes.

Agent-oriented approaches provide useful notions (e.g., goals,
plans), models (e.g., Belief-Desire-Intention [35]) and algorithms
(e.g., DCOPs [21]) for reasoning in complex dynamic systems. In
a distributed setting, multi-agent analysis is based on the
conceptual autonomy and social ability of the parts constituting
the system. A problem is that current agent implementation
platforms [4] and methodologies [5] rely on guaranteed
communication and explicit bindings among the agents, which
typically take the form of messaging. In this view, EBCS/DEECo
stands as an agent engineering platform, which handles the
communication in an implicit and automatic way, making it
possible for agents to operate in opportunistic environments where
no guarantees are available.

The concept of service-component ensembles has been recently
proposed in order to allow for communication over unreliable
communication channels and at massive scale [20]. Ensembles
rely on attribute-based communication [14] to model a best-effort,
dynamic coordination of components. An attempt to formally
define this concept can be found in [19].

At the requirements phase, well-established methods and models
exist for capturing and analyzing early requirements in terms of
goals delegated to system agents. However, these models either
do not map effectively to the later development phases [27], or do
not support mapping to emergent architectures [5], which are
typical in EBCS. Recent attempts in the area of EBCS have
centered around a model termed Statement of the Affairs (SOTA),
which provides the means to capture and analyze the early
requirements of different component cooperation schemes, along
with the architectural patterns that satisfy them by
construction [1]. IRM stands as the intermediate method which

69

guides the transition from early (high-level) requirements to
system architecture in terms of components and ensembles.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have focused on Resilient Distributed Systems
(RDS). We have argued that classic component-based approaches
in design do not scale well in the area of RDS — mainly because
RDS exhibit very high degree of dynamicity, adaptivity, and
autonomy.

For component-based development of RDS, we have introduced
EBCS (Ensemble-Based Component Systems), a new class of
component-based systems, which combine concepts from agent-
oriented, ensemble-oriented and control systems. In particular, we
have presented an instance of EBCS — the DEECo component
model and its framework.

Overall, DEECo provides a comprehensive software engineering
solution comprising (i) component and ensemble paradigms with
well-defined formal semantics, (ii) mapping to Java, (iii)
distributed Java-based runtime framework (DEECo), (iv)
integration with analysis tools (SDE, JPF), (v) design method
(IRM) for deriving components and ensembles from high-level
requirements, and (vi) integration of the design method to
traditional component-based development processes. We have
successfully evaluated DEECo along with IRM on the e-mobility
case-study of the ASCENS project.

The experience with DEECo (and consequently EBCS) puts
forward several research directions. In particular we would like to
evaluate the robustness of DEECo in environments with highly
unreliable communication and heterogeneous network
infrastructure (e.g., MANETSs [28]). Although this will most likely
require employing some communication middleware for such
networks (e.g., EgoSpaces [22]) at the implementation level, it is
well aligned with the general DEECo computational model. Also,
we are currently investigating the possibility of using formalized
IRM invariants as the basis for monitoring the correctness and
performance of a DEECo-based system and for guiding
component adaptations. Furthermore, we intend to develop a
metamodel of DEECo and employ model-driven-engineering
techniques for elaborating the JDEECo implementation.

9. ACKNOWLEDGMENTS

The authors would like to thank Pavel Parizek and Pavel Jancik
for their input concerning JPF. This work was partially supported
by the EU project ASCENS 257414 and the Grant Agency of the
Czech Republic project P202/11/0312. The work was also
partially supported by Charles University institutional funding
SVV-2013-267312.

10. REFERENCES

[1] D. B. Abeywickrama, N. Bicocchi, and F. Zambonelli.
SOTA: Towards a General Model for Self-Adaptive
Systems. In Proc. of WETICE ’12,2012.

R. Al Ali, T. Bures, 1. Gerostathopoulos, P. Hnetynka, J.
Keznikl, M. Kit, and F. Plasil. DEECo computational model
— 1. Technical Report no. D3S-TR-2013-01. D38, Charles
University in Prague. Available at: http://d3s.mff.cuni.cz-
/publications, 2013.

L. Baresi, S. Guinea, and G. Tamburrelli. Towards
decentralized self-adaptive component-based systems. In
Proc. of SEAMS 08, 2008.

F. Bellifemine, G. Caire, and D. Greenwood. Developing
Multi-Agent Systems with JADE. John Wiley, 2007.

(2]

(3]

(4]

[5] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and
A. Perini. Tropos: An Agent-Oriented Software
Development Methodology. Autonomous Agents and Multi-
Agent Systems. 8, 3, 2004.

E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J.
Stefani. The Fractal component model and its support in
Java. Software: Practice & Experience. 36, 2006.

T. Bures, P. Hnetynka, and F. Plasil. SOFA 2.0 : Balancing
Advanced Features in a Hierarchical Component Model. In
Proc. of SERA '06, 2006.

T. Bures, 1. Gerostathopoulos, P. Hnetynka, J. Keznikl, M.
Kit, and F. Plasil. Autonomous components in dynamic
environments. Awareness Magazine. Online:
http://www.awareness-mag.eu, 2012

(6]

(7]

(8]

[9] T. Bures, I. Gerostathopoulos, V. Horky, J. Keznikl, J.
Kofron, M. Loreti, and F. Plasil. Language Extensions for
Implementation-Level Conformance Checking. ASCENS
Deliverable 1.5. Available at: http://www.ascens-
ist.eu/deliverables, 2012.

[10] B. Cheng et al. Software Engineering for Self-Adaptive
Systems: A Research Roadmap. Software Engineering for
Self-Adaptive Systems. Springer—Verlag, 2009.

[11] L. Crnkovic. Building Reliable Component-Based Software
Systems. Artech House, Inc., Norwood, MA, USA, 2002.

[12] L. Crnkovic, M. Chaudron, and S. Larsson. Component-based
development process and component lifecycle. Software
Engineering Advances, 44, 2006.

[13] D38, Charles University in Prague. jDEECo website.
Accessed April 17, 2013.
https://github.com/d3scomp/JDEECo, 2013.

[14] R. De Nicola, G. Ferrari, M. Loreti, and R. Pugliese. A
Language-based Approach to Autonomic Computing. In
Proc. of FMCO 11, 2012.

[15] D. Gelernter. Generative communication in Linda. Toplas. 7,
1, 1985.

[16] L. Gerostathopoulos, T. Bures, and P. Hnetynka. Position
Paper: Towards a Requirements-Driven Design of
Ensemble-Based Component Systems. In Proc. of
HotTopiCS Workshop, ICPE ’13,2013.

[17] R. Hall, K. Pauls, S. McCulloch, and D. Savage. OSGi in
Action: Creating Modular Applications in Java. Manning
Pubs Co Series. Manning Publications, 2011.

[18] K. Havelund, and T. Pressburger. Model Checking Java
Programs Using Java PathFinder. Software Tools for
Technology Trasfer. 2, 4, 2000.

[19] M. Holz, and M. Wirsing. Towards a System Model for
Ensembles. Formal modeling. 2012.

[20] M. Holzl, A. Rauschmayer, and M. Wirsing. Engineering of
software-intensive systems: State of the art and research
challenges. In Software-Intensive Systems and New
Computing Paradigms. Ser. LNCS, Springer Berlin,
Heidelberg, vol. 5380, 2008.

[21] M. Jain, M. Taylor, M. Tambe, and M. Yokoo. DCOPs meet
the real world: Exploring unknown reward matrices with
applications to mobile sensor networks. In Proc. of
1JCAI °09, 20009.

[22] C. Julien, and G.-C. Roman. EgoSpaces: Facilitating Rapid
Development of Context-Aware Mobile Applications. /EEE
Transactions on Software Engineering, 32, 5, 2006.

70

[23] J. Kephart, and D. Chess. The Vision of Autonomic
Computing. Computer. 36, 1, 2003.

[24] J. Keznikl, T. Bures, F. Plasil, I. Gerostathopoulos, P.
Hnetynka, and N. Hoch. Design of Ensemble-Based
Component Systems by Invariant Refinement. In Proc. of
CBSE 2013, ACM, 2013.

[25] J. Keznikl, T. Bures, F. Plasil, and M. Kit. Towards
Dependable Emergent Ensembles of Components: The
DEECo Component Model. In Proc. of WICSA/ECSA 2012,
IEEE CS, 2012.

[26] J. Kramer, and J. Magee. Self-managed systems: an
architectural challenge. In Proc. of FOSE "07, 2007.

[27] A. Lamsweerde. Requirements engineering: from craft to
discipline. In Proc. of SIGSOFT ’08/FSE-16, 2008.

[28] M. Mauve, A. Widmer and H. Hartenstein. A Survey on
Position-Based Routing in Mobile Ad Hoc Networks. /EEE
Network, 15, 6, 2001.

[29] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A.
Solberg. Models at Runtime to Support Dynamic Adaptation.
IEEE Computer. 42, 10, 2009.

[30] OMG. Unified Modeling Language 2.0: Superstructure.
Available online: http://www.omg.org/spec/UML/2.0/, 2005.

[31] OMG. CORBA Component Model Specification v4.0.
Available online: http://www.omg.org/spec/CCM/4.0/, 2006.

[32] OSGi Alliance. OSGi service platform core specification,
release 4. Available online: http://www.osgi.org/Spec-
ifications/HomePage, 2012.

[33] T. Patikirikorala, A. Coman, H. Jun, and W. Liuping . A
systematic survey on the design of self-adaptive software
systems using control engineering approaches. In Proc. of
SEAMS ’12, 2012.

[34] C. Peper, and D. Schneider. Component engineering for
adaptive ad-hoc systems. In Proc. of SEAMS 08, 2008.

[35] A. Rao, and M.P. Georgeff. BDI agents: From theory to
practice. In Proc. of ICMAS °95, 1995.

[36] N. Serbedzija et al. Ensemble Model Syntheses with Robot,
Cloud Computing and e-Mobility. ASCENS Deliverable 7.2.
Available at: http://www.ascens-ist.eu/deliverables, 2012.

[37] N. Serbedzija, S. Reiter, M. Ahrens, J. Velasco, C. Pinciroli,
N. Hoch, and B.Werther. Requirement Specification and
Scenario Description of the ASCENS Case Studies. ASCENS
Deliverable 7.1. Available at: http://www.ascens-
ist.eu/deliverables, 2011.

[38] M. Shaw, and D. Garlan. Sofiware Architecture: Perspectives
on an Emerging Discipline, Prentice-Hall, Englewood Cliffs,
NJ, 1996.

[39] Y. Shoham, and K. Leyton-Brown. Multiagent Systems:
Algorithmic, GameTheoretic, and Logical Foundations,
Cambridge University Press, 2008.

[40] J. A. Stankovic, T. He, T. Abdelzaher, M. Marley, G. Tao, S.
Son, and C. Lu. Feedback control scheduling in distributed
real-time systems. In Proc. of RTSS "01, 2002.

[41] R. Wang, and N. Kandasamy. A distributed control
framework for performance management of virtualized
computing environments. In Proc. of ICAC ’10, 2009.

3.3 Design of Ensemble-Based Component
Systems by Invariant Refinement

Jaroslav Keznikl,
Tomas Bures,
Frantisek Plasil,

Ilias Gerostathopoulos,
Petr Hnétynka,

Nicklas Hoch

In proceedings of the 16th International ACM Sigsoft Symposium
on Component-Based Software Engineering (CBSE “13).

Awarded with the Distinguished Paper Award.

Published by ACM,
pages 91-100,

ISBN 978-1-4503-2122-8,
June 2013.

The original version is available electronically from the publisher's site
at http://dx.doi.org/10.1145/2465449.2465457.

71

http://dx.doi.org/10.1145/2465449.2465457

Chapter 3. Collection of Papers

Summary of the Paper

The goal of this paper, published as [KBP+13], is to address the challenge of systematic
architecture design of dependable RDS (i.e., C4 in Section 1.3), DEECo-based systems in
particular. (Note that DEECo is presented under the umbrella of Ensemble-Based Com-
ponent Systems, similar to Section 3.2.) As discussed in [GBH13], this challenge stems
from the fact that, although effectively addressing the requirements of RDS at the level
of component model, the concept of ensemble cannot be properly exploited at design
time when using the traditional software engineering methods. Due to the dynamic and
stateless nature of the ensemble concept, it is especially problematic to systematically
determine a proper DEECo-based architecture (i.e., components, component processes,
and ensembles) of a system, given the system’s overall goals and requirements. This in
turn prevents validation and verification of design decisions. The root of this problem is
the conceptual gap between the high-level system goals and the architecture abstractions
of DEECo.

While pursuing the research goal G2, the paper responds to this challenge by intro-
ducing the Invariant Refinement Method (IRM). IRM is a formally-grounded design
method, building on goal-based requirements elaboration [RBAF10, VLO1], that em-
braces the specifics of the architecture abstractions of DEECo and exploits them for sys-
tematically driving the design from high-level requirements to a DEECO-based architec-
ture in a way that the compliance of design decisions with the overall system goals and
requirements is explicitly captured. Being formally grounded, the design process of IRM
allows for design validation and verification.

IRM exploits the fact that the objective of a component process/an ensemble in
DEECo is (adopting the perspective of real-time software control systems) to maintain
an operational normalcy of the corresponding component/group of components. Here, op-
erational normalcy expresses the property of being within certain limits that define
the range of normal functioning of the component/group of components. As a result,
a component process, as well as an ensemble, can be described in terms of the particular
operational normalcy it maintains. In IRM, this is expressed formally via invariants,
which describe how the normalcy projects onto the knowledge evolution of the corre-
sponding component/group of components. Assuming that the high-level system goals
can be also described via invariants, the objective of IRM is to start with the invariants
corresponding to the overall system goals and, by employing systematic refinement, end
up by determining the invariants reflecting detailed design of the particular system con-
stituents — components and ensembles. Reasoning along the lines of what needs to be
maintained (expressed via invariants) as opposed to what needs to be performed (ac-
tions) or what should hold in the future (goals) allows expressing the relation of a com-
ponent to its environment and itself. This is particularly valuable for the design of au-
tonomous adaptive RDS that continuously interact with their environment.

The refinement in IRM takes the form of gradual decomposition (i.e., structural elab-
oration) of a higher-level invariant into a conjunction of lower-level sub-invariants so
that, formally, the conjunction of the sub-invariants implies the parent invariant. This

72

3.3. Design of Ensemble-Based Component Systems by Invariant Refinement

complies with the traditional interpretation of refinement, where the composition of
the refinement products (e.g., sub-components) exhibits the behavior expected from
the refined concept (e.g., a composite component) and potentially more. This way, IRM
provides an appropriate level of abstraction and separation of concerns. Since there can
be many possible refinements, the decomposition step may involve a design decision.
The rule of thumb is that refinement is finalized when each leaf invariant of the refine-
ment tree represents either an assumption about the environment or captures normalcy
to be maintained by a single component process/ensemble, i.e., it is a process/exchange
invariant. Each process invariant is subsequently refined into a component process and
each exchange invariant into an ensemble.

Performing the decomposition step is a relatively complex task, since it has to bridge
different levels of abstraction (i.e., from high-level requirements to low-level architecture
aspects). This is especially true when requiring formal compliance with the refinement
semantics. To this end, the paper presents five formally defined patterns of invariants
capturing the specifics of invariants at different levels of abstraction. Based on these pat-
terns, and backed with a formal framework, the paper provides guidelines for invariant
decomposition at the same level or bridging adjacent levels of abstraction.

Similar to [BGH+13] (Section 3.2), the contributions of the paper are illustrated and
evaluated on the electrical vehicle navigation case study featured by the ASCENS pro-
ject [SMP+12, SRA+11].

Comments on Authorship

Although the main idea of the paper is of equal authorship, I contributed to this paper
by elaborating and formalizing the idea, as well as addressing the technical details. I also
personally contributed with the idea and formalization of the invariant patterns. Finally,
with the indispensable support of the other authors, I authored a majority of the text.

73

Chapter 3. Collection of Papers

74

Design of Ensemble-Based Component Systems by
Invariant Refinement

Jaroslav Keznikl'?

keznikl@d3s.mff.cuni.cz

llias Gerostathopoulos’
iliasg@d3s.mff.cuni.cz

'Charles University in Prague
Faculty of Mathematics and Physics
Prague, Czech Republic

Tomas Bures'?
bures@d3s.mff.cuni.cz

Petr Hnetynka'
hnetynka@d3s.mff.cuni.cz

%Institute of Computer Science
Academy of Sciences
of the Czech Republic

Frantisek Plasil’
plasil@d3s.mff.cuni.cz

Nicklas Hoch®
nicklas.hoch@volkswagen.de

3Corporate Research Group
Volkswagen AG
Wolfsburg, Germany

Prague, Czech Republic

ABSTRACT

The challenge of developing dynamically-evolving resilient
distributed systems that are composed of autonomous components
has been partially addressed by introducing the concept of
component ensembles. Nevertheless, systematic design of
complex ensemble-based systems is still a pressing issue. This
stems from the fact that contemporary design methods do not
scale in terms of the number and complexity of ensembles and
components, and do not efficiently cope with the dynamism
involved. To address this issue, we present a novel method —
Invariant Refinement Method (IRM) — for designing ensemble-
based component systems by building on goal-based requirements
elaboration, while integrating component architecture design and
software control system design.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems — distributed applications; C.3 [Special-purpose and
Application-based Systems]: real-time and embedded systems;
D.2.2 [Software Engineering]: Design Tools and Techniques —
miscellaneous; D.2.11 [Software Engineering]: Software
Architectures — patterns.

Keywords
Component; ensemble; refinement; requirements engineering;
system design

1. INTRODUCTION

Addressing the challenge of developing large-scale distributed
autonomic and adaptive systems [26], the EU FP-7 project
ASCENS [15] strives for modeling and designing such systems of
service components and service component ensembles. For large-
scale adaptive systems, the ASCENS case studies indicate the
need to deal with large amounts of distributed information both
highly dynamically and intelligently, while ensuring resilience to
changes in the environment. This has been partially targeted by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CBSE’13, June 17-21, 2013, Vancouver, BC, Canada.

Copyright © ACM 978-1-4503-2122-8/13/06...$15.00.

75

the work on resilient distributed systems (RDS) based on
ensembles [15] of autonomous adaptive [16] components. In this
context, an ensemble is seen as a dynamically formed group of
autonomous components which encapsulates knowledge,
interaction, and goals specific to the group.

The ASCENS project employs three case studies from different
domains, of which we target the e-mobility case study within the
scope of this paper. This case study aims at resource optimization,
such as travel time, energy consumption, and parking lot and
charging station usage of electric-powered vehicles. Its objective
is to coordinate planning of journeys in compliance with parking
and charging strategies in the highly-dynamic, complex, and
heterogeneous traffic environment, where information is
distributed.

Currently, widely accepted semantics of the ensemble concept is
still an open issue. In [5][19], we have contributed to this by
introducing the concept of Ensemble-Based Component Systems
(EBCS) and specifically the DEECo component model
(Dependable Emergent Ensembles of Components), our
contribution to the EBCS family. Although the concept of
ensemble in EBCS effectively addresses the distribution and
dynamism of RDS at a middleware level, the design of complex,
ensemble-based systems remains a significant challenge. Our
early experiments indicate that traditional software engineering
methods cannot be directly employed [13], since they cannot cope
with the dynamism involved and do not cover all the required
design steps. Specifically, it appears that the design of ensemble-
based systems requires a synergy of goal-oriented requirements
refinement, architecture design, and (real-time) process
scheduling. In response to this problem, this paper proposes a
novel method — Invariant Refinement Method (IRM) — for
systematical derivation of an EBCS-based RDS architecture from
high-level requirements. In particular, IRM builds on gradual
refinement of invariants that are employed as a concept for
reflecting both requirements and architectural elements.

The rest of this paper is structured as follows: Section 2 explains
the specifics of EBCS in the context of the e-mobility case study
in DEECo. Section 3 elaborates on the lessons learned from the
case study and articulates the problem statement. Section 4
presents an overall description of IRM, while Section 5 elaborates
on guidelines for refinement by presenting invariant patterns. The
evaluation and discussion is provided in Section 6 and related
work in Section 7. Section 8 concludes the paper and identifies
future research directions.

Ensemble-oriented
systems
attribute-based
communication

Agent-oriented
computing
autonomy

Component-based
engineering
software engineering

Control system
engineering
operational normalcy

Figure 1: Context of Ensemble-Based Component Systems
(EBCS).

2. ENSEMBLE-BASED COMPONENT
SYSTEMS: A CASE STUDY

To illustrate the challenges in RDS development, we exploit the e-
mobility case study mentioned in Section 1. Electric vehicles (e-
vehicles) compete for e-mobility resources, such as parking lots
and charging stations (infrastructure) in order to achieve optimal
journeys with respect to the drivers’ daily activities (calendars). A
calendar consists of a set of points of interest (POls), together
with timing constraints specifying the expected POI arrival and
departure times. For brevity, we assume that each driver is bound
to his/her own private vehicle and that parking lots are the only
infrastructure entities. An e-vehicle uses a planner in order to
create its individual journey plan, stemming from the driver’s
calendar and including parking/charging periods when necessary.
The system is fully decentralized — every e-vehicle plans and
executes its route individually.

Having outlined the application domain of EBCS, in the rest of
this section we first elaborate on the context of EBCS and then
illustrate the basic concepts on an example from the case study.

2.1 From Agent and Control-based Systems

to Ensemble-Based Component Systems
In principle, EBCS [5] combine the advantages of component-
based software engineering [9][10], ensemble-oriented
systems [14][15], agent-based computing [18][24], and (soft) real-
time embedded software control systems [7][25] in highly
dynamic, open-ended environments that lack reliable
communication channels (Figure 1).

Exploitation of the concepts from agent-oriented computing
allows for composing systems from a number of autonomous
entities, so that the overall behavior of the system is an emergent
result of behaviors of the entities. In particular, the autonomous
entities are designed to operate only with a partial view of the

whole system; i.e., BDI model [21] where agents maintain a belief

about the rest of the system to guide their autonomous decisions.

A disadvantage of the agent-oriented computing concepts at the
software-engineering level is its strong dependence on reliable
communication channels (as, e.g., in the case of JADE platform
[3]), which is, however, not achievable in the target application
domain due to the extreme dynamism. Instead, EBCS rely on the
concept of attribute-based communication [12] (i.e., the target of
communication is determined according to the values of attributes
rather than by a direct identifier), which models the
communication as best effort and localized to dynamically
changing groups — ensembles — of components.

The EBCS communication model however implies that the
components’ belief is essentially always outdated. To efficiently
cope with outdated belief, EBCS employ concepts of (soft) real-
time software control systems, which achieve robustness by

76

interface AvailabilityAggregator:
calendar, availabilityList

interface AvailabilityAwareParkingLot:
position, availability

component Vehicle0123 features AvailabilityAggregator, ... :
knowledge:
calendar, availabilityList, plan, planFeasibility, ...
process computePlan(in calendar, in availabilityList, out plan):
function:
plan « JourneyPlanner.computePlan(
calendar, availabilityList, planFeasibility)
scheduling: triggered(changed(planFeasibility) V changed(availabilityList))

component ParkinglLotO1 features AvailabilityAwareParkinglLot, ... :
knowledge:
position, availability, ...
process observeAvailability(out availability):
function:
availability« Sensors.getCurrentAvailability()
scheduling: periodic(2000ms)

ensemble UpdateAvailabilityInformation:

coordinator: AvailabilityAggregator
member: AvailabilityAwareParkingLot
membership:

3 poi € coordinator.calendar:

distance(member.position, poi.position) < TRESHOLD

knowledge exchange:

coordinator.availabilityList < members.reduce(member.availability)
scheduling: periodic(5000ms)

Figure 2: Example of a DEECo component and ensemble
definition in a DSL.

adequate scheduling of periodic tasks recurrently maintaining the
operational normalcy of the system. Here, operational normalcy
expresses the property of being within certain limits that define
the range of normal functioning of the system. The required level
of robustness is achieved by adjusting the periods of the tasks.

As extreme dynamism is involved, components should be also
capable of continuous self-adaptation, following the concept of
feedback loops [17]. An ensemble-based system can be thus
understood as a dynamic system of conditionally interacting
feedback loops.

In this context, components in EBCS are perceived as software-
engineering means for implementing resilient agents that deal
with ensemble-oriented, best-effort communication and outdated
belief.

2.2 Tllustration of the Concepts on the Case
Study

The case study has been implemented in our DEECo component
model — an instance of EBCS. Here, a component comprises
knowledge (i.e., the data of the component), exposed via a set of
interfaces, and processes, each of them being essentially a thread
operating upon the knowledge of the component. Figure 2
illustrates several artifacts we have developed for the case study.
In particular, it shows a specification of the Vehicle0123
component, featuring the AvailabilityAggregator interface and the
computePlan process. The latter is responsible for the computation
of the vehicle’s plan, which is based on the vehicle’s calendar
(calendar) and the availability information of the relevant parking
lots (availabilityList) and is executed whenever one of these inputs
changes.

For the purpose of separation of concerns and effective handling
of dynamism and communication errors, DEECo introduces
ensemble, a first-class concept, encapsulating dynamic grouping
of components and the interaction within the group. In an
ensemble a component plays the role of the ensemble’s
coordinator or one of the members. This is determined
dynamically (the task of the runtime framework) according to the
membership condition specified upon the interfaces expected for
the coordinator and members. Specifically, the membership
condition determines which components form the coordinator-
member pairs of an ensemble. The separation of concerns is
brought to such extent, that individual components are not capable
of explicit communication with other components. Instead, the
interaction among the components forming an ensemble takes the
form of knowledge exchange, carried out implicitly (by the
runtime framework). For example, Figure 2 shows a specification
of the UpdateAvailabilityinformation ensemble, an instance of
which is to be created for every coordinator, i.e., every component
that features the interface AvailabilityAggregator (such as the
component Vehicle0123). The members of such an ensemble are
all the components featuring AvailabilityAwareParkingLot that are
in the proximity (TRESHOLD) to one of the POIs of the
coordinating e-vehicle. This effectively includes all the parking
lots that are relevant to journey planning of the coordinating e-
vehicle. The knowledge exchange, scheduled periodically every
5000ms, ensures that the coordinating e-vehicle obtains the
current availability information of all the member parking lots.
This periodicity guarantees that the “belief” of the e-vehicle about
the availability of parking lot components is current enough.

In summary, a component operates only upon its own local
knowledge, which is implicitly updated via knowledge exchange
whenever the component is part of an ensemble (technically this is
handled by the underlying runtime framework).

3. PROBLEM STATEMENT

The lesson from implementing the case study is that it is
problematic to determine a proper EBCS architecture (i.e.,
components, component processes and ensembles) of the system
from the overall goals and requirements. This gets more difficult
when we take into account the extent to which knowledge can
become outdated (due to delays in knowledge exchange and
parallel execution of component processes) and its impact on the
overall system behavior.

This problem stems from the conceptual gap between the high-
level system goals and relatively low-level architectural concepts
of EBCS. A broad, high-level view of the goals is critical when
reasoning about global properties of a complex (distributed)
system as a whole; e.g., stability-related properties including
robustness, adaptability, non-functional properties such as tradeoff
between communication overhead and outdated knowledge, etc.
Focus on the low-level concepts is equally important for a detailed
design and implementation of components and ensembles.

Overall, the key objective of both the component process and
ensemble concepts is to maintain a form of operational normalcy
of the component/group of components. Therefore, they can be
described declaratively in terms of the particular operational
normalcy they maintain. In addition, we assume that the high-
level system goals can be also described declaratively. Thus, both
high-level requirements and low-level architectural concepts can
be reflected in the same declarative manner.

Hence, the key challenge we address in this paper is to guide the
EBCS design process transparently from high level goals to low-
level concepts of system architecture in such a way that the

77

Parking lot

: D
(4) an up-to-date plan can always
befollowed by the vehicle and it always
schedules reaching the destination in
time

(2) Up-to-date V::plan, w.r.t.
information fromP, reflecting
V::calendar is available

(3) V::position is in
alignment with the V::plan

knowledge

4P Gependency A invariant refinement

[comporert. O it
@ assumption

--[RI-

(9 exchange
invariant

role R

process
invariant

Figure 3: Top-level design of the case study.

compliance of design decisions with the overall system goals and
requirements is explicitly captured and (if possible) formally
verified. As a result, tracing a low-level design decision back to
its rationale in the system goals and requirements would allow for
design validation and verification.

4. DESIGNING ENSEMBLES VIA
INVARIANT REFINEMENT

To address this challenge, we propose IRM (Invariant Refinement
Method) — a novel design method specifically focused on EBCS.
Building on goal-based requirements elaboration [22], IRM is
based on systematic, gradual refinement (i.e., elaboration) of
invariants that reflect goals and requirements of the system-to-
be[l]. In this context, we are concerned with goals and
requirements from the global perspective of the system, rather
than the perspective of the individual components and ensembles.

In principle, the invariants describe a desired state of the system-
to-be at every time instant; i.e., describe the operational normalcy
of the system-to-be, essential for its continuous operation. For
example, the main goal of the case study is expressed by the
invariant (1): “All Vehicles meet their calendar” (Figure 3).

The objective of IRM is to start the refinement with the overall
system goal and end up by determining the invariants reflecting
detailed design of the particular system constituents —
components, component processes, and ensembles.

4.1 Invariants and Assumptions

A key concept of system design is component, i.e., a participant of
the system-to-be (e.g., Vehicle and Parking lot in Figure 3). Each
component comprises specific knowledge, i.e., its domain-specific
data (in Figure 3 left out for brevity). The valuation of
components’ knowledge evolves in time as a result of their
autonomous behavior (i.e., execution of the associated component
processes) and knowledge exchange. In principle, an invariant is a
condition on the knowledge valuation of a set of components that
captures the operational normalcy to be maintained by the system-
to-be (i.e., that should be preserved as knowledge valuation
evolves in time). If a component’s knowledge is referenced by an
invariant, we say the component takes a role in the invariant (e.g.,
in the invariant (1) from Figure 3 the component Vehicle takes the
role V, while Parking lot takes the role P).

As a special case, component knowledge may reflect information
about the environment. Consequently, an invariant may represent
an assumption about the environment, i.e., a condition that is
expected to hold during knowledge evolution and thus is not

Parking lot

. V:position
Vehicle ¢.oPo

using information from Parking lots so
at the Vehicles meet their V::calendar #

V:calendar

Viplan i : Vzposition

Vicalendar, ¢ Pi?

7" (2) Vehicle keeps its V:zplan (3) Vmoves according to the
i reflecting V::calendar up-to-date

“w.r.t. information from Parking I

— L
. computation A
component } activity

knowledge

knowledge ¢\
dependency

> flow

activity refinement

Figure 4: Dual, computation-activity-based view on the top-
level design of the case study from Figure 3.

intended to be maintained explicitly by the system-to-be (in
figures marked by A; e.g., (4) in Figure 3).

4.2 Invariants vs. Computation Activities

The underlying idea of IRM is that each invariant which is not an
assumption is essentially associated with a computation activity —
an abstract computation producing output knowledge given a
particular input knowledge. In fact, the computation activity
provides a dual view on the invariant — while the invariant reflects
an operational normalcy, the computation activity represents
means for maintaining it. For example, Figure 4 provides the dual
view on the invariants in Figure 3. The invariants thus express the
relation between the input and output knowledge of the
computation activity. A component process, as well as ensemble
knowledge exchange, is a specific form of computation activity.

This dual view gives the convenient option to refer to invariants
for the purpose of logic-based reasoning on system-to-be
properties and to refer to computation activities when low-level
implementation aspects are of concern.

As an aside, we will refer to the relation between component
knowledge and input/output knowledge of a computation activity
as knowledge flow. For example, Figure 4 shows the knowledge
flow between Vehicle and the computation activity associated with
(3) from Figure 3 (with V::plan, resp., V::position as its input, resp.,
output knowledge).

The activities associated with high-level system invariants (goals)
are abstract, representing the system implementation at a high
level of abstraction. For such an abstract computation activity, the
input knowledge constitutes the part of the components’
knowledge that is out of control of the system-to-be, while the
output knowledge is fully in its control. For example, as shown in
Figure 4, the input knowledge of the computation activity
associated with (1) from Figure 3 comprises V:calendar and
potentially some knowledge of parking lots (since it is not yet
clear at this level of abstraction, it is denoted by P::?), while its
output knowledge comprises V::position.

Thus, in the dual perspective of computation activities, the goal of
IRM is to refine such abstract activities into the very concrete
component processes and knowledge exchange.

4.3 Invariant Refinement

The core of IRM is a systematic, gradual refinement of a higher-
level invariant by means of its decomposition (i.e., structural
elaboration) into a conjunction of lower-level sub-invariants.
Formally, decomposition of a parent invariant [, into a

conjunction of sub-invariants Igq, ..., I, is a refinement if the

78

conjunction of the sub-invariants entails the parent invariant, i.e.,
if it holds that:

Lo Ig NNy = I,
2. Iy N Ag, # false

(entailment)
(consistency)

This definition complies with the traditional interpretation of
refinement, where the composition of the children exhibits all the
behavior expected from the parent and (potentially) some more.

The refinement is applied recursively, starting with high-level
invariants reflecting the overall system goals and involving a
number of components and ending with low-level ones involving
a single component or an ensemble of components. Note that
since a decomposition step may involve a design decision, it is
critical to ensure that this decision complies with the entailment
and consistency conditions.

During refinement, only the components that take a role in the
parent invariant may also take a role in the sub-invariants.
Nevertheless, as a part of the design decision, new knowledge can
be added into the components taking a role in the sub-invariants
(e.g., ViplanFeasibility in Figure 5).

In Figure 3, the design decision is to refine the invariant (1) into a
conjunction of three sub-invariants: (2) — having an up-to-date
plan, (3) — keeping the vehicle’s position in alignment with the
plan, and (4) — an assumption that an up-to-date plan can always
be followed by the vehicle (i.e., the environment dynamics —
traffic, parking availability, etc. — will never prevent the car from
following an up-to-date plan) and that it always schedules
reaching the destination in time.

The sub-invariants can exhibit knowledge dependency due to
references to the same knowledge of a specific component. For
example, in Figure 3 there is a knowledge dependency between
(2) and (3) due to references to V::plan.

From the dual (computation-activity-based) perspective of
refinement, a simultaneous (i.e., parallel) execution of the
computation activities associated with the sub-invariants forms
the computation activity of the parent. In a refinement with
knowledge dependencies, an adequate scheduling of these
activities is to be determined in the refinement.

4.4 Leaves of Refinement

The rule of thumb is that refinement is finalized when each leaf
invariant of the refinement tree is either an assumption or is
associated with a “real” computation activity — a process or
knowledge exchange.

Specifically, an invariant that is referring to a single component
captures only the operational normalcy to be maintained by a
process of the component. Such an invariant is called a process
invariant (in diagrams marked by P, e.g., (3) in Figure 3).

In a general case when several components take a role in an
invariant, e.g., (5) in Figure 5, the situation is more complex. To
refine an invariant I, referencing the components Cy, ..., Gy, into
sub-invariants I, ..., Is, that are eventually associated with “real”
computation activities need to apply the concept belief of C, over
the knowledge of C,, ..., Cp,: the belief Bg:""'cm (K) is knowledge
of C; that represents C;’s snapshot of a part K of the knowledge of
Cy, ..., Cp,. For instance, in Figure 5, the belief V::availabilityList of
Vehicle over the knowledge P::availability of Parking lots is an
example of such a knowledge snapshot (denoted as
V::availabilityList = Bi2e? ' (P::availability)).

information from

(5) Up-to-date V::plan, w.r.t.

O
(7) V::availabilityList - V's belief

(2) Up-to-date V:

V::calendar is available

P::availability and V::planFeasibility,
reflecting V::calendar is available

:plan, w.r.t.
P, reflecting

Vi:planFeasibility

(6) V::planFeasibility w.r.t.
V::energy and V::traffic is determined

over P::availability of trip-relevant
parking lots - is up-to-date

P
(8) Up-to-date V::plan, w.r.t.
V::availabilityList and V::planFeasibility,

reflecting V::calendar is available

=

Vehicle

'
/

\\
\
\
DY
(9) V::energy and V::traffic are (10) V::planFeasibility w.r.t. the monitored \!
monitored V::energy and V::traffic is determined |
/ 1\ x. Rl T

V:energy, Vitraffic

Figure 5: Invariant refinement of “V h

|:| component C) invariant

knowledge . .
““[Rt- roleR <p dependency invariant refinement
@) (9 process (9 exchange
assumption invariant invariant

Thus, I¢; formulates the operational normalcy properties of
Bgf""'c'", whereas I, ..., Ig, refine [, while substituting the

references to the knowledge of C,,...,C,, by references to
Bccf"“'Cm. Note that Bcclz""’c"‘ is a new knowledge introduced into
C;. For example, in Figure 5, (7) formulates the condition on
creating the belief V::availabilityList = B

Parking lot

Venicls . (P::availability),

whereas (8) refines (5) while substituting the references to
P::availability by references to V::availabilityList.

As a result, I;; becomes an exchange invariant (in diagrams
marked by X, such as (7) in Figure 5), since it corresponds to
knowledge exchange as its “real” computation activity.

Furthermore,

Iy, ., Iy are

potentially process/exchange
invariants, since, in general, the number of components taking a
role in Iy, ..., Iy, is, compared to L, decreased at least by one due

to references to the belief Bgf""'c'" (such as when comparing (5)
and (8) in Figure 5).

4.5 From Invariants to Final Architecture
After the set of components is identified and refinement tree of
invariants is completed, the design continues by refining each
process invariant into a component process and each exchange
invariant into an ensemble. For example, as illustrated in Figure 2,
Vehicle is reified by Vehicle0123, while (8) from Figure 5 is
refined into its computePlan process and (7) from Figure 5 is
refined into the UpdateAvailabilitylnformation ensemble. Thus,
determined by the invariant refinement, this step yields the final

architecture of the system. The details are beyond the scope of this
paper; we refer the interested reader to [4].

5. BRIDGING ABSTRACTION LEVELS
VIA INVARIANT PATTERNS

While high-level invariants capture general operational normalcy,
low-level ones — reflecting architectural elements — capture the

as an up-to-date V::plan reflecting V::calendar”.

processes and knowledge exchange). In this section we elaborate
on how to bridge this abstraction gap during refinement. In
particular, we describe five patterns of invariants we have
identified to reflect the way operational normalcy is captured at
four adjacent abstraction levels that bridge this abstraction gap.
The contribution lies in the fact that we are able to rigorously
describe (and provide guidelines for) the refinement between
invariants on the same/adjacent levels of abstraction by assuming
that each invariant is an instantiation of a corresponding invariant
pattern.

Thus, we can (iteratively) exploit these patterns and guidelines
during refinement to continuously lower the level of abstraction
until we reach the level of architectural elements. Namely, these
patterns are (from the most abstract to the least abstract): (i)
general invariants, (1) present-past invariants, (iii) activity
invariants, (iv) process invariants, and (v) exchange invariants

(as an exception, (iv) and (v) are at the same level of abstraction).
Figure 6 illustrates the patterns on the case study.

To give a more exact perspective of the patterns, we use
a predicate formalization of invariants. Note that in this paper the
goal of the formalization is to illustrate the conceptual differences
between the patterns rather than to provide their rigorous
description, which is beyond the scope of this paper. For formal
pattern definition, we refer the interested reader to [6]. Recall that
an invariant expresses the operational normalcy in terms of a
condition to be maintained during knowledge evolution in time
(Section 4.1). Thus, the formalization provides means for
referring to timed sequences of knowledge values, which gives a
complete view on the knowledge value evolution over time.
Specifically, since EBCS-based systems are inherently
asynchronous, we are interested in such a formalization that

captures the evolution in terms of asynchrony and delays. For

example, considering the knowledge evolution illustrated in
Figure 7, we are interested in a formalization of the form “The

EBCS-specific aspects (e.g., periodic scheduling of component value of V::pAvailable always equals the value of P::available

79

General
Invariants

Present-past
Invariants /
Assumptions

Activity
Invariants

1 =l

(10)

o)

A\ invariant refinement

Process/Ensemble
Invariants

C) invariant

Figure 6: Patterns of invariants in the case study.

that is not older than the period” rather than “V::pAvailable
equals P::available” (which does not always hold).

Thus, we formalize the invariants as follows. Time is represented
by a non-negative real number, i.e., T & R{. Knowledge is a set
K = {kq, ..., k,} of knowledge elements, where the domain of k;
is denoted as V;. Knowledge valuation of an element k; is a
function T — V; which for a time t yields a value of k; (denoted
as k;[t]). An invariant is thus a predicate (in a higher-order
predicate logic with arithmetic) over a knowledge valuations and
time.

Note that in general it is possible to use other forms of
formalization; e.g., real-time LTL [2]. However, in this paper the
choice of the formalization is driven by the aim of describing
invariant refinement rather than model checking. Thus, we
consider the proposed predicate formalization more practical (i.e.,
it is more suitable for formulating and proving relevant theorems).

5.1 General Invariants

General invariants at the top-level of abstraction capture the
operational normalcy in terms of relating the past and current
knowledge valuation to a future knowledge valuation.

An example of this pattern is the invariant (1) from Figure 3: “All
Vehicles meet their calendar”, which can be formalized as follows
(assuming only a single POI in the calendar, which does not
change in time for brevity):

3t € T, t < V::calendar.deadline[0]:
V::position[t] = V::calendar.destination[0]

Note that the invariant does not refer to current time; instead, it
refers to a particular time instant in the future.

5.2 Present-past Invariants

Less-general are present-past invariants capturing the operational
normalcy in terms of the current and/or past knowledge
valuations. This reflects the fact (abstracted away at the level of
general invariants) that software systems cannot cope with future
data, but have to depend on current and/or past data instead.
Further, to determine how much of past data is needed, we define
the lag of a present-past invariant as the maximal distance in the

80

Knowledge exchange

-
-

knowledge -—
valuwatioi hd V::pAvailable := P::available
1
0 r’—| ° knowledge valuation
P::available \ i at the given time instant
S)
0 \
Vi labl ~_
:p,
L
j - time
<period < period

Figure 7: Example of knowledge evolution in time when
employing (periodic) knowledge exchange.

past that is needed to formulate the operational normalcy of the
invariant. Similar to real-time software control systems, we
assume that the smaller the lag, the bigger precision and
robustness; lag equal to 0 denotes an idealized case where the
beliefs of all components are always up-to-date and their actions
are instant.

An example of this pattern is the invariant (2) from Figure 3: “Up-
to-date V:plan, w.r.t. information from P, reflecting V::calendar is
available”, which can be for parking lots P; ...P, and a lag L
formalized as follows:

“At any time, for the current valuation of V:plan there is
a valuation of knowledge of P ...P, and V:calendar not older
than the lag L such that they together meet the condition
expressed by the UpToDatePlan predicate.”

In the predicate logic, it can be captured as follows:
Vieyy € T, 3ty sty te €T, 0 <ty —t; <L i € {1..n,cal}:
UpToDatePlan(P,[t,], ..., P,[t,], V::calendar[t,q,], V::plan[t])

Here, L equal to O reflects the case where the V::plan is at each
time instant up-to-date with respect to the current knowledge of
the parking lots. The bigger L the more outdated parking-lot
knowledge valuation is considered.

For all present-past invariants of this syntactic structure, we can
use the following shortcut expressing the above-described
formalization of (2) from Figure 3 (note, that the “p-p” subscript
indicates that this shortcut pertains to the present-past invariant
pattern):

UpToDatePlany_,[P;, ..., P,, V::calendar][V::plan]

Such a shortcut can be also exploited during invariant refinement
for introducing new present-past invariants; it would serve as
a “macro” that transforms a time-oblivious predicate (e.g.,
UpToDatePlan) into a formalized present-past invariant of the
above-described structure.

5.3 Activity Invariants

Based on the dual concept of computation activities, an activity
invariant captures the operational normalcy in terms of the current
valuation of the output knowledge of the associated computation
activity and the current/past valuation of the input knowledge.
This follows the idea that a computation activity in EBCS
maintains the operational normalcy periodically by reading the
input knowledge, performing the computation and writing the
output knowledge.

Being relatively low-level, an activity invariant reflects detailed
properties of a computation activity that corresponds to software
computation. First, it captures the requirement that the output
knowledge changes only as a result of the computation activity.
Here, we assume that no activities have the same output
knowledge. Moreover, an activity invariant captures read
consistency of the input knowledge, i.e., that each output

knowledge valuation is based on the same or newer input
knowledge valuation than the previous one. In an ideal case, the
computation is instant, relating thus the current valuation of both
the input and output knowledge. Similarly to present-past
invariants, the maximal distance in the past needed to formulate
the operational normalcy is expressed by the lag of the invariant.

An example of this pattern is the invariant (5) from Figure 5: “Up-
to-date V::plan, w.r.t. P::availability and V::planFeasibility, reflecting
V::calendar is available”, which can be for parking lots P; ... P,
and lag L formalized as follows:

“There is an execution of the planning activity maintaining the
condition UpToDatePlan such that at any time the valuation of
V::plan corresponds to the outcome of the activity applied on the
valuation of the input knowledge P::availability, V::planFeasibility,
and V::calendar not older than lag L. Moreover, each valuation of
V::plan is based on newer valuation of the input knowledge than
the previous one.”
In the predicate logic, it can be captured as follows:
3ay, o) Ay Qppy Aeq: T T,
0<x—a;(x) <LVie{l.npF,cal},
a;(x) < a;(y) Vx,y: x < y Vi € {1..n,pF, cal},

vt eT:
P, ::availability[a, (£)],

P,::availability[a,, ()],
V::planFeasibility[a,r (t)],
V::calendar[a,q, (t)]
V::plan[t]

UpToDatePlan

Here, the usage of a non-decreasing function a;: T — T rather
than a particular t; € T captures the read consistency and the fact
that V:plan may change only as the result of an execution of
a planning activity.

Again, L equal to O reflects the case where the valuation of V::plan
is at each time instant up-to-date with respect to the current
valuation of P::availability of the parking lots and V::planFeasibility
of the vehicle. In other words, the associated computation activity
computes infinitely fast and infinitely often. The bigger L the
more outdated valuation of P::availability and V::planFeasibility is
considered; i.e., the slower/less often is the computation activity
expected to execute.

Similar to present-past invariants, the shortcut for the above-
described formalization of (5) from Figure 5 is:

P, ::availability,
UpToDatePlank .| P,::availability, [V::plan}
V::planFeasibility,
V::calendar

5.4 Process invariants

Refining an activity invariant at the lowest level of abstraction, an
invariant may take the form of a process invariant — referring to a
single component, capturing the operational normalcy to be
maintained by a (periodic) process of the component
(Section 4.4).

Such an invariant captures detailed properties of the periodic
scheduling of the process. The difference to activity invariants lies
in the fact that not only the output knowledge valuation may
change as a result of performing the computation activity alone
and must be based on current-enough input knowledge valuation,
but also that the computation activity is performed exactly once in
each period. In this context, the period is an elaboration of the
activity-predicate lag. Specifically, since we assume a component

81

process to be periodic and (soft) real-time, the output knowledge
valuation is determined by the release time and finish time of the
process in each period [7].

An example of this pattern is the invariant (8) from Figure 5: “Up-
to-date V:plan, w.rt. V:availabilityList and V:planFeasibility,
reflecting V::calendar is available”, which can be for period L
formalized as follows:

“If the current time is before the finish time of the process in the
current period, then the V:plan valuation is the same as in the
previous period; i.e., it corresponds to the outcome of the process
w.r.t. the inputs V:availabilityList, V:planFeasibility, and
V::calendar at the release time of the process in the previous
period. Otherwise, V:plan corresponds to the outcome of the
process w.r.t. the inputs at the release time in this period.”

In the predicate logic, it can be captured as follows:

3R, F:N - T,P(x — 1) < R(x) < F(x) < P(x),
vp € N,vt € (P(p — 1),P(p)):

V::availabilityList[R(p — 1)],
V::planFeasibility[R(p — 1)],
V::calendar[R(p — 1)],
V::plan[t]

V::availabilityList[R (p)],
V::planFeasibility[R (p)],
V::calendar[R (p)],
V::plan[t]

t < F(p) = UpToDatePlan

t = F(p) = UpToDatePlan

where P(n):Ny—>T=n=+L; ie., the end of the n-th
period. R(n) and F(n) denote the release and finish time of the
real-time process in the n-th period.

Here, L approaching 0 reflects the case, where the V::plan is at
each time instant infinitely close to the up-to-date plan with
respect to the current V:availabilityList, V::planFeasibility, and
V::calendar of the vehicle.

Again, the shortcut for the above-described formalization of (8)

from Figure 5 is:

V::availabilityList,

V::planFeasibility,
V::calendar

5.5 Ensemble invariants

An activity invariant may at the lowest level of abstraction be
refined also into an ensemble invariant — capturing the operational
normalcy to be maintained by (periodic) knowledge exchange of
an ensemble among the referred components (Section 4.4).

UpToDatePlan,,

V::plan]

Such an invariant captures detailed properties of the periodic
scheduling of knowledge exchange. Compared to process
invariants, an exchange invariant further accounts for the delay
connected with potential transfer of the knowledge over the
network (as required in distributed systems). The invariant thus
describes a composite computation activity consisting of the
knowledge transfer (with an upper time bound on its duration)
followed by periodic evaluation of the membership condition and
the knowledge exchange. Further, it is assumed that such
composite activities may be partially overlapping (mostly in
situations when the knowledge transfer takes longer than the
period of the knowledge exchange).

An example of this pattern is the invariant (7) from Figure 5:
“V::availabilityList — V’s belief over P::availability of trip-relevant
parking lots — is up-to-date”, which can be for parking lots P; ... B,
period L, and upper bound for knowledge transfer T formalized as
follows:

“If the current time is before the finish time of the knowledge
exchange for \ in the current period, then the V::availabilityList
valuation is the same as in the previous period. Otherwise,
V::availabilityList equals the set of P::availability for all relevant P;
as available at V at the release time in this period. It takes at most
T for the knowledge of P; to become available at\. Further
always the newest knowledge of P; is taken into account.”

In the predicate logic, it can be captured as follows:

3a,,...,a,,: T - T,
0<x—a(x)<TVvie{l..n},
a;(x) <a;(y) Vx,y:x <yVvie{l.n},
AR,F:N-> T,P(x —1) < R(x) < F(x) < P(x),
vp € N,vt € (P(p — 1), P(p)):

P, ::availability[a, (R(p — 1))],

P,::availability[a, (R(p — 1))],
V::availabilityList[¢]

t < F,(p) = EqualsRelevant

P, ::availability[a, (R(p — 1))],

P,::availability[a, (R(p — 1))],
V::availabilityList[¢]

t > F,(p) = EqualsRelevant

where P(n):Ny—->T=n=*L; ie, the end of the n-th
period. R(n) and F(n) denote the release and finish time of the
real-time knowledge exchange in the n-th period. Finally, a;(t)
denotes the time at which the value of knowledge from P; that is
available at V at time t has been sent to V.

Here, L approaching 0 reflects the case, where the
V::availabilityList is at each time instant infinitely close to the set of
the current P::availability of all the relevant parking lots.

The shortcut for the above-described formalization of (7) from
Figure 5 is:

P, ::availability,

EqualsRelevant’;, [V::availabilityList]

P, ::availability

5.6 Refinement among Invariant Patterns

Having described the invariant patterns, we will now briefly
elaborate on the refinement between invariants following the
patterns on the same/adjacent levels of abstraction in order to
provide guidelines for decomposition. In particular, we list the
expected variants of decomposition and discuss when each of the
variants is a refinement. This can serve as guidelines during
decomposition at the corresponding levels of abstraction in order
to guarantee refinement. Note that the claims below are articulated
in an informal way, while formal proofs can be found in [6].

General—Present-past. At the top level of abstraction, during
refinement of a general invariant into a conjunction of present-
past invariants, it is necessary to introduce assumption invariants
(e.g., (4) in Figure 3). Technically, these assumptions are
necessary to guarantee that maintaining the operational normalcy
based on the current and/or past knowledge valuation will
eventually result in reaching the operational normalcy based on a
future knowledge valuation. The correctness of this step has to be
proved for each case separately (e.g., via a theorem prover), which
makes it the most demanding from the formal point of view.

Present-past—Present-past. In a refinement of one present-past
invariant by means of other present-past invariants, it holds that
the combined lag of the sub-invariants is lesser or equal to the

82

parent’s lag. The combination is determined by the knowledge
dependencies among the sub-invariants.

Present-past— Activity. It holds that the activity invariant pattern
is a strict refinement of the present-past invariant pattern; i.e.,
PL . [1][0] = PpL_p[I][O] for each P, I, and O.

Activity—Activity. The refinement of one activity invariant by
means of other activity invariants is similar to the case present-
past—present-past. For our predicate formalization, it is possible
to determine this form of refinement solely based on the time-
oblivious skeletons of the invariants and the structure of the
decomposition (i.e., without interpreting the full invariants via a
theorem prover).

Activity—Process. It holds that the process invariant pattern is a
refinement of the activity invariant pattern with lag equal twice
the period of the process invariant pattern; i.e.,
Pprocl11[0] = PZE[I1[0] for each P, I, and O. This complies with
the well-known fact in the area of real-time scheduling: in order to
achieve a particular end-to-end response time with a real-time
periodic process with relative deadline equal to period, the period
needs to be at most half of the response time [7].

Activity—Exchange. Similarly, it holds that the exchange
invariant pattern is a refinement of the activity invariant pattern
with lag equal twice the period of the exchange invariant pattern
plus the time for distributed transfer of the knowledge; i.e.,
PETI1[0] = P2L*T[1][0] for each P, I, and O.

6. EVALUATION AND DISCUSSION
6.1 Case Study

To evaluate IRM, we have employed it during design of the case
study. As a final step, we have successfully validated the resulting
EBCS/DEECo architecture by implementing it in the jJDEECo
component framework'. Since the detailed models created within
the study are proprietary, we present only a summary and lessons
learned. For a concise version of the case study, which includes
detailed design, we refer the reader to [23].

While having a single top-level goal, the design included 2
components and 20 invariants in total. In particular, 4 of them
were exchange invariants, 8 process invariants, 2 present-past
invariants, and the other 5 (excluding the top-level goal) activity
invariants.

Eventually, the design led to an EBCS/DEECo architecture
consisting of 4 ensembles among the 2 components, where one
component constituted 3 processes maintaining 6 process
invariants, while the other component constituted 1 process
maintaining 2 process invariants.

As a significant benefit, not only we were able to gradually design
a desired architecture (which could be in fact potentially obtained
using conventional design methods), but the invariant
decomposition tree also constituted a “proof of correctness” of the
design with respect to the top-level goal.

Although IRM is in general a top-down process, the important
lesson learned from the case study was that refinement is
inherently too complex to be done correctly just this way. Thus,
several iterations, series of top-down and bottom-up steps, had to
be performed to get a satisfactory design.

' The current implementation of jDEECo is available at

https://github.com/d3scomp/JDEECo

6.2 Correctness by Construction

So far, we have used the predicate formalization only to illustrate
the individual invariant patterns. However, if applied consistently
throughout the whole design, it would be possible to formally
verify each of the refinement steps in support of achieving
correctness by construction.

An obvious obstacle of verification of such a complete predicate
formalization is that the predicate logic we use is fairly complex
(continuous time, quantifiers over function symbols, etc.). Thus,
verification via a theorem prover is not a viable option due to lack
of efficiency.

Nevertheless, as already indicated in Section 5.6, correctness of
particular kinds of refinement can be decided without interpreting
full invariants via a theorem prover. To date, we have formulated
and proved a theorem deciding correctness of activity—activity
predicate refinement. In particular, we have been focusing on so
called “flow decomposition” [6] where the sub-invariants
constitute a simple pipe-and-filter architecture (i.e., the kind of
decomposition used in the examples of Sections 4 and 5).

6.3 Runtime Verification

Unfortunately, not all forms of refinement can be verified via
application of theorems (e.g., general»>present-past refinement).
The correctness of such refinement can, however, be addressed by
runtime verification. Although this does not provide design-time
assurances, it at least helps in detection and localization of design
errors.

An important feature of IRM with respect to runtime verification
is that IRM refinement hierarchy actually over-specifies the
system-to-be. This is because there is an implies relationship
between the sub-invariants and the parent invariant in a
refinement (recursively up to the top-level invariant). However, at
runtime it is possible to evaluate not only the lower-level
invariants but also the parent. This allows distinguishing different
types of errors from unexpected behavior. In particular, given an
invariant | and its refinement into Iy, ..., I, (which means that by
definition Iy, ... I,, = I), we can distinguish 4 different cases:

(1) All I, ..., I, hold and I holds: Correct operation of the
system.

(2) All I, ..., I, hold and I does not hold: Error in design —
mostly because of neglecting a hidden assumption in
refinement of [.

(3) At least one Iy, ..., I, does not hold and I holds: Potential
for improvement of the design — refinement of [is likely
to have more strict assumptions than necessary.

(4) At least one I, ..., I, does not hold and I does not hold:
Incompatible environment — this particular refinement of I
cannot be used in the current environment.

Obviously a modification of the design may be needed when any
of cases (2) — (4) has been detected. However, the goals of the
redesign are different. While in (2) it is for correcting an obvious
error, in (3) it is to generalize the design and in (4) it is to either
extend the design or provide another design alternative suitable
for a given environment.

6.4 Novelty and Benefits

The strength of IRM lies in the fact that it directs reasoning along
the lines of what needs to hold at every time instant (expressed via
invariants) as opposed to what needs to be performed (actions) or
what should hold in the future (goals). Thus, it allows expressing
the relation of a component to its environment and itself, which is
particularly valuable for the design of autonomous adaptive RDS

83

that continuously interact with their environment to achieve the
desired goals.

Technically, IRM 1is novel in employing ensembles as a
systematic foundation for capturing knowledge interdependence
(logical and temporal) of otherwise autonomous components. This
allows keeping an appropriate level of abstraction and separation
of concerns when designing a component for an adaptive and
autonomous operation. In particular, IRM benefits from recursive
step-by-step top-down decomposition with precise refinement
semantics. The refinement semantics is special in the sense that it
reflects operational and communication delays (inherent to actual
RDS implementations) by exploiting the concepts of belief and
knowledge exchange.

7. RELATED WORK

The iterative refinement of invariants found in IRM is reminiscent
of goal-oriented requirements analysis from the field of
requirements engineering [22]. In particular, the Keep All Object
Satisfied (KAOS) method [20] is a well-established method for
capturing and analyzing system requirements in form of goals,
assumptions, and domain properties. The idea is to decompose the
abstract high-level goals into more concrete sub-goals up to the
level where goals represent requirements that can be handled by
individual system agents. Since goals can be formulated in first-
order linear temporal logic [2], the goal model can be formally
checked for consistency and completeness [20]. Pre-defined,
verified patterns can also be used to guide the goal decomposition
process [11]. A similar approach is employed within Tropos
method [8], where goals, soft-goals, tasks and dependencies are
modeled and analyzed from the perspective of the autonomous
agents. However, these models either do not map effectively to
the later development phases (KAOS), or do not support mapping
to emergent architectures (Tropos), which are typical in
EBCS [13].

Recent work in requirements modeling specifically targeting the
domain of EBCS has been carried out within the scope of the
ASCENS project and has been integrated into the Statement of the
Affairs (SOTA) [1] and POEM [15] models. The key idea of
SOTA is to abstract the behavior of a system with a single
trajectory through a state space, which represents the set of all
possible states of the system at a single point of time. The
requirements of a system in SOTA are captured in terms of goals.
A goal is an area of the SOTA space that a system should
eventually reach, and it can be characterized by its pre-condition,
post-condition, and utilities. Thus SOTA provides the means to
capture the early requirements of different component cooperation
schemes. IRM, on the other hand, stands as an intermediate
method, which guides the transition from early (high-level)
requirements to system architecture in terms of components and
ensembles.

8. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel Invariant Refinement
Method (IRM), targeting architectural design of Resilient
Distributed Systems (RDS) by building on the concepts of
Ensemble-Based Component Systems (EBCS). IRM is
a systematic design method which starts with the overall system
goal and ends up by establishing a system architecture composed
of components and ensembles. Building on goal-based
requirements elaboration, IRM integrates additional aspects such
as architecture refinement and (soft) real-time scheduling.

IRM raises a number of interesting questions for further research.
In particular, they include: (i) providing a formal framework (i.e.,

definitions and theorems) for deciding correctness of refinement
within a suitable predicate formalization of invariants, (ii)
focusing on RDS with respect to changes in the environment on
efficient representation of the environment during the design; (iii)
thoroughly exploring the application of IRM for runtime
verification. Also, as a future work, we aim at obtaining
automated tools for IRM that would help guide design decisions
during refinement and check correctness of the resulting design.
These include technical tools for checking (syntactic) consistency
of the design, as well as tools exploiting a formal framework
and/or employing formal reasoning for checking (semantic)
correctness.

9. ACKNOWLEDGMENTS

This work was partially supported by the EU project ASCENS
257414 and the Grant Agency of the Czech Republic project
P103/11/1489. The work was also partially supported by Charles
University institutional funding SVV-2013-267312.

10. REFERENCES

[1] D.B. Abeywickrama, N. Bicocchi, and F. Zambonelli.
SOTA: Towards a General Model for Self-Adaptive
Systems. In Proc. of WETICE ’12,2012.

A. Bauer, M. Leucker, and C. Schallhart. Monitoring of real-
time properties. In Proc. of FSTTCS ‘06, 2006.

F. Bellifemine, G. Caire, and D. Greenwood. Developing
Multi-Agent Systems with JADE. John Wiley, 2007.

T. Bures, 1. Gerostathopoulos, V. Horky, J. Keznikl, J.
Kofron, M. Loreti, and F. Plasil. Language Extensions for
Implementation-Level Conformance Checking. ASCENS
Deliverable 1.5. Available at: http://www.ascens-
ist.eu/deliverables, 2012.

T. Bures, 1. Gerostathopoulos, P. Hnetynka, J. Keznikl,
M. Kit, and F. Plasil. DEECo — an Ensemble-Based
Component System. In Proc. of CBSE 2013, ACM, 2013.

T. Bures, 1. Gerostathopoulos, J. Keznikl, and F. Plasil.
Formalization of Invariant Patterns for the Invariant
Refinement Method. Technical Report no. D3S-TR-2013-04.
D38, Charles University in Prague. Available at:
http://d3s.mff.cuni.cz/publications, 2013.

G. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo. Soft Real-
Time Systems: Predictability vs. Efficiency, ser. Series in
Computer Science, R. G. Melhem, Ed. Springer US, 2005.

J. Castro, M. Kolp, L. Liu, and A. Perini. Dealing with
Complexity Using Conceptual Models Based on Tropos. In
Conceptual Modeling: Foundations and Applications. Ser.
LNCS, Springer Berlin, Heidelberg, vol. 5600, 2009.

1. Crnkovic. Building Reliable Component-Based Software
Systems. Artech House, Inc., Norwood, MA, USA, 2002.

[10] I. Crnkovic, M. Chaudron, and S. Larsson. Component-based
development process and component lifecycle. Sofiware
Engineering Advances, 44, 2006.

(2]

(3]

(4]

(3]

(6]

(7]

(8]

[9]

84

[11] R. Darimont, and A. van Lamsweerde. Formal refinement
patterns for goal-driven requirements elaboration. In Proc. of
SIGSOFT 96, 1996.

[12] R. De Nicola, G. Ferrari, M. Loreti, and R. Pugliese. A
Language-based Approach to Autonomic Computing. In
Proc. of FMCO °11,2012.

[13] I. Gerostathopoulos, T. Bures, and P. Hnetynka. Position
Paper: Towards a requirements-driven design of ensemble-
based component systems. In Proc. of International
Workshop on Hot Topics in Cloud Services, ICPE °13,2013.

[14] M. Holzl, A. Rauschmayer, and M. Wirsing. Engineering of
software-intensive systems: State of the art and research
challenges. In Software-Intensive Systems and New
Computing Paradigms. Ser. LNCS, Springer Berlin,
Heidelberg, vol. 5380, 2008.

[15] M. Holzl, et al. Engineering Ensembles: A White Paper of
the ASCENS Project. ASCENS Deliverable JD1.1.
Available at: http://www.ascens-ist.eu/whitepapers, 2011.

[16] M. C. Huebscher and J. A. McCann. A survey of autonomic

computing—degrees, models, and applications. ACM
Computing Surveys, 40, 3, 2008.

[17] IBM. An architectural blueprint for autonomic computing.
IBM White Paper, 2003.

[18] N. R. Jennings. On agent-based software engineering.
Artificial intelligence. 117, 2000.

[19]J. Keznikl, T. Bures, F. Plasil, and M. Kit. Towards
Dependable Emergent Ensembles of Components: The
DEECo Component Model. In Proc. of WICSA/ECSA 2012,
IEEE CS, 2012.

[20] A. Lamsweerde. Requirements engineering: from craft to
discipline. In Proc. of SIGSOFT "08/FSE-16, 2008.

[21] A. Rao, and M.P. Georgeff. BDI agents: From theory to
practice. In Proc. of ICMAS °95, 1995.
[22] N. U. Rehman, S. Bibi, S. Asghar, and S. Fong. Comparative

Study of Goal-Oriented Requirements Engineering. In Proc.
of NISS 10, 2010.

[23] N. Serbedzija, et al. Ensemble Model Syntheses with Robot,
Cloud Computing and e-Mobility. ASCENS Deliverable 7.2.
Available at: http://www.ascens-ist.cu/deliverables, 2012.

[24] Y. Shoham, and K. Leyton-Brown. Multiagent Systems:
Algorithmic, GameTheoretic, and Logical Foundations,
Cambridge University Press, 2008.

[25] J. A. Stankovic, T. He , T. Abdelzaher , M. Marley , G. Tao,
S. Son , and C. Lu. Feedback control scheduling in
distributed real-time systems. In Proc. of RTSS ‘01, 2002.

[26] E. Vassev, and M. Hinchey. The Challenge of Developing
Autonomic Systems. Computer, 43, 12, 2010.

3.4 Automated Resolution of Connector

Architectures Using Constraint Solving
(ARCAS method)

Jaroslav Keznikl,
Tomas Bures,
Frantisek Plasil,
Petr Hnétynka

In the Software & Systems Modeling journal.

Volume 13, Issue 2,

published by Springer Berlin Heidelberg,
pages 843-872,

print ISSN 1619-1366,

online ISSN 1619-1374,

May 2014.

The original version is available electronically from the publisher's site
at http://dx.doi.org/10.1007/s10270-012-0274-8.

85

http://dx.doi.org/10.1007/s10270-012-0274-8

Chapter 3. Collection of Papers

Summary of the Paper

This paper, published as [KBPH14], addresses the challenge of automated synthesis of
software connectors that would enable building dependable, scalable, and open-ended
distributed software architectures with heterogeneous deployments (i.e., tackling
the challenges C3 and C4 outlined in Section 1.3). Moreover, the paper opts for support-
ing synthesis at runtime, thus providing a potential technical baseline for tackling
the challenge of recurrent architecture adaptation (i.e., C1).

Attacking the research goal G2, this paper responds to these challenges by present-
ing ARCAS (Automated Resolution of Connector Architectures using constraint Solv-
ing) — a novel, formally grounded method for open-ended design of middleware-based
connectors and their automated synthesis at deployment time/runtime. It allows reflect-
ing both (i) the connector-specific concerns [BP04, IBB11, TMD10], including the com-
munication style and non-functional properties (NFPs), and (ii) the current connector
context, including particular properties of the connected components and the current
deployment.

In principle, ARCAS is based on an automated composition of connectors from re-
usable elements that capture the common connector-implementation patterns related to
a particular communication style, middleware, and NFPs. Specifically, given a design
specification of a connector, including NFPs and deployment requirements imposed on
the components being connected, ARCAS produces a connector instance configuration
(CIC) that describes a particular composition (and parameterization) of elements to re-
alize the connector. From a big-picture perspective, ARCAS is the first phase in a two-
step connector generation process [Bur06]. In the second step, CIC is used as the input
for the actual code generation process [MPBH13] yielding a deployable connector code.

The key idea of ARCAS is to employ constraint solving for automated construction
of CIC. In particular, ARCAS employs the Alloy modeling language [Jac02, Jac12][1] to
capture the predefined elements, as well as the design and deployment requirements of
a connector, into a formal logic theory — connector theory. Then, it employs the model-
tinding feature of Alloy Analyzer to find a model of the connector theory (in the sense
of logic), representing a CIC for the specified connector. Semantically, a model of a con-
nector theory represents both a correct CIC (the elements in the CIC are able to cooperate
according to their predefined specification), and a desired CIC (the corresponding con-
nector complies with the design and deployment requirements). Note that ARCAS is in
the paper actually described in terms of first-order finite structures (i.e., first-order logic
predicates upon finite sets and relations) and Alloy is used only as a concrete representa-
tive that provides a convenient syntax and tooling.

To avoid manual construction of a connector theory, ARCAS uses a model-based
approach for obtaining the connector theory in an automated way by transformation of
a connector specification.

Building on previous work [BP04, Bur06], ARCAS facilitates separation of concerns
and enables open-ended connector design by separating the architecture-design per-

86

3.4. Automated Resolution of Connector Architectures Using Constraint Solving (ARCAS
method)

spective and connector-design perspective of a connector specification. The former fo-
cuses on the design and properties of a connector in the context of a particular compo-
nent-based architecture, relying on the concepts generally agreed in the area of middle-
ware-based connectors [CL02] (e.g., communication style, required NFPs, association of
connector endpoints with component interfaces, concrete deployment, the supported
middleware, etc.). The latter focuses strictly on the internal connector design and imple-
mentation via hierarchical composition of reusable, parametric elements, anticipated for
reuse, and is rather specific to ARCAS (e.g., realization of communication styles, internal
architecture of the elements, delegation of NFP support across element hierarchy, etc.).
The main benefit of this separation is that the architecture-design perspective is open-
ended and can be supplemented in an automated way with a proper connector imple-
mentation based on the required deployment, NFPs, etc.

In this context, one of the specific contributions of this paper is that it thoroughly
elaborates both perspectives. It also provides a concrete and abstract syntax for both per-
spectives (facilitating the automated transformation into a connector theory), as well as
a precise formal semantics given by the transformation into first-order finite structures
and Alloy.

Going into more detail, ARCAS describes a CIC in a connector theory using a meta-
model expressed in terms of sets and relations. Consequently, both the architecture-de-
sign perspective and connector-design perspective of a connector specification are rep-
resented as constraints on this meta-model. Given such constraints, while some of the
meta-model sets and relations forming the CIC are fully determined (e.g., the ones re-
lated to the architecture-design perspective), some are underspecified and, therefore, de-
termined only partially (e.g., the ones related to vertical composition of connector ele-
ments and valuation of the elements’ parameters). The problem of finding a CIC is then
interpreted as finding a realization of the underspecified sets and relations. If multiple
alternatives exist, an optimal one is chosen (the paper discusses several ways of achiev-
ing this).

The main body of the paper is focusing on a rigorous description of (i) the concrete
and abstract syntax for a connector specification, (ii) the transformations of the specifi-
cation into a connector theory in terms of parameterized templates (relying on first-order
finite structures), and (iii) the representation of a connector theory in Alloy.

Comments on Authorship

Although the key idea of the paper builds on previous work and the paper is of equal
authorship, I have contributed with a thorough elaboration of the connector specification
and its concrete and abstract syntax. Besides, I also elaborated in detail the initial idea of
representing a connector theory in Alloy. Further, I personally contributed with the in-
termediate encoding into first-order finite structures. Moreover, I have conducted
the evaluation. Finally, under the indispensable guidance and in collaboration with
the other authors, I authored a majority of the text.

87

Chapter 3. Collection of Papers

88

Softw Syst Model (2014) 13:843-872
DOI 10.1007/s10270-012-0274-8

REGULAR PAPER

Automated resolution of connector architectures using constraint

solving (ARCAS method)

Jaroslav Keznikl .- Tomas Bures
FrantiSek Plasil - Petr Hnétynka

Received: 11 August 2011 / Revised: 28 June 2012 / Accepted: 23 July 2012 / Published online: 9 September 2012

© Springer-Verlag 2012

Abstract In current software systems, connectors play an
important role by encapsulating the communication and
coordination logic. Since they share common patterns (ele-
ments) depending on characteristics of the connections, the
elements can be predefined and reused. A method of con-
nector implementation based on a composition of predefined
elements naturally comprises two steps: resolution of the con-
nector architecture, and creation of the actual connector code
based on the architecture. However, manual resolution of a
connector architecture is very difficult due to the number of
factors to be considered. Thus, the challenge is to come up
with an automated method, able to address all the important
factors. In this paper, we present a method for automated res-
olution of connector architectures based on constraint solving
techniques. We exploit a propositional logic with relational
calculus for defining a connector theory, a constraint specifi-
cation reflecting both the predefined parts and the important
resolution factors, and employ a constraint solver to find a
suitable connector architecture as a model of the theory. As a
proof of the concept, we show how the theory can be captured
in the Alloy language and resolved via the Alloy Analyzer.

Communicated by Prof. Marsha Chechik.

J. Keznikl - T. Bures - F. Plasil (<) - P. Hnétynka

Faculty of Mathematics and Physics, Charles University in Prague,
Malostranske Namesti 25, 118 00 Prague 1, Czech Republic
e-mail: plasil@d3s.mff.cuni.cz

J. Keznikl
e-mail: keznikl @d3s.mff.cuni.cz

T. Bures
e-mail: bures@d3s.mff.cuni.cz

P. Hnétynka
e-mail: hnetynka@d3s.mff.cuni.cz

Keywords Software architecture - Software connectors -
Constraint solving - Middleware-based connectors -
Connector theory - Alloy

1 Introduction

Proposed with the aim of supporting the separation of con-
cerns, software connectors are entities solely encapsulat-
ing communication and coordination among components, as
described, e.g., in [29,38]. In particular, connectors ensure
distribution of communicating components [7] while encap-
sulating middleware (middleware-based connectors), pro-
vide adaptation in order to achieve middleware-level [19,32]
and application-level [10,21,36] interoperability (adaptors),
and ensure synchronization of component communication
[9,21] (coordinators). In this paper, we focus particularly on
the middleware-based connectors.

Although the introduction of middleware-based connec-
tors provides benefits in terms of separation of concerns and
abstraction of particular middleware, it does not necessarily
simplify the code development effort, since, in principle, the
middleware-related code is moved from components to con-
nectors. In the component models that include connectors,
e.g., [34,38], the connector lifecycle differs from the com-
ponent lifecycle: although partially specified connectors are
employed during the application design phase, fully specified
connectors emerge at the earliest in the component deploy-
ment phase—after decisions on application architecture and
deployment have been made. Moreover, deployment of a par-
ticular component application may vary from time to time, so
that several variants of a connector may be required. Advan-
tageously, these variants typically share common patterns
related to a particular communication style [7,19,38], mid-
dleware, and non-functional properties (NFPs); therefore,

Connector e‘]\c
m
Component 1 © LJCommunica‘cicm Style Component 2
NFPs #‘ S
Design
Deployment
DockA DockB

Connector

2]

—

Il

Component 1 }

NFPs

Communication Style

Component 2

L]

Deployment 5w

®T 59

GJ
Runtime N § = 'g N
DockA ‘/‘ / DockB
Unit 1 Dlstrlbyteq g:‘
Component 1 @ Communication Component 2
Middleware!

Fig. 1 Role of automated connector synthesis in connector lifecycle

related parts of connectors can be predefined/designed in
advance.

Middleware-based connectors can also emerge later, even
after some of the components are already running. This
is particularly true in the case of independently deployed
components available as services (e.g., web services). In
principle, the task of a newly emerging connector is to medi-
ate a client component’s communication with such a ser-
vice while respecting the particular middleware employed
by the service. In this sense, services are middleware-
aware components. Similarly, the emergence of such con-
nectors can be desirable at runtime once architecture and
deployment reconfiguration takes place (e.g., due to load
balancing).

In this context, the challenge is to find an automated
method for synthesis of middleware-based connectors at
deployment time/run time, i.e., synthesis of emergent con-
nectors [20], in such a way, that reuse of predefined
connector parts is maximized. A related issue is to struc-
ture the predefined parts accordingly. Another challenge is
to support NFPs in the actual connector synthesis and to
structure the predefined parts in order to efficiently and flex-
ibly capture variability of NFP requirements. The context of
such automated connector synthesis in the design, deploy-
ment, and runtime phases of an application is illustrated in
Fig. 1.

Conforms to the
communication style

90

1.1 Goal of the paper

The goal of this paper is to respond to the challenges above
by introducing the ARCAS method (Automated Resolu-
tion of Connector Architectures using a constraint-Solving
technique). In general, ARCAS is based on an automated
composition of connectors from predefined hierarchical ele-
ments [7,34]. Tt produces a description of a hierarchical
composition of elements reflecting the connector design and
deployment requirements imposed on the components being
connected.

Technically, given a design specification of a connector,
including NFPs and decision on component deployment,
ARCAS produces a connector instance configuration (CIC),
describing a particular composition of available elements
to realize the connector. From a big-picture perspective,
ARCAS is the first phase in a two-step connector generation
process [2]. In the second step, CIC is used as the input for
the actual code generation process [30] yielding a deployable
connector code.

The basic idea of ARCAS (Fig. 2) is to employ a
constraint-solving technique for automated resolution of
CIC. For this purpose, we employ the Alloy modeling lan-
guage [22-24] for capturing a connector theory, i.e., a logic
theory playing the role of a constraint specification reflecting
both the predefined elements, and the design and deployment

Design

Predefined Deployment

parts specification decision ARCAS
of a connector
Search for a
i Connector Code
Creation of Connector Connector Theory cIC ! Code Generation
Connector Theory Theory
Model
E Data |:| Process C‘ Document

Fig. 2 ARCAS overview

requirements of the connector. Further, we employ the Alloy
Analyzer as a constraint solver to find a model of the theory,
representing a desired CIC. As an aside, the ARCAS method
has applicability also in other domains as discussed further
(Sect. 8).

1.2 Structure of the paper

The paper is structured as follows: Sect. 2 presents the basic
concepts of middleware connectors and illustrates these with
an example. Section 3 gives a brief overview of the whole
ARCAS method. Section 4 describes both abstract and con-
crete syntax of a middleware-connector specification. Sec-
tion 5 describes the construction of a connector theory in
terms of predicate logic and relational calculus. Section 6
provides a brief introduction to the Alloy modeling language
and describes ARCAS in terms of Alloy. Section 7 surveys
the related work, whereas Sect. 8 provides evaluation and
discussion of the ARCAS method, and Sect. 9 concludes the
paper while suggesting future work activities.

2 Middleware connectors: basic concepts

In this section, we introduce the basic concepts of mid-
dleware connectors. A connector can be viewed from: (i)
application designer perspective (requirements view and
deployment view) and (ii) connector designer perspective
(design view). While (i) focuses on the high-level task and
properties of a connector in a particular component applica-
tion, (ii) focuses strictly on the connector design and imple-
mentation. Here, the concepts in (i) are generally agreed in
the area of middleware-based connectors [11], whereas the
concepts in (ii) stem from our experience with connector
design and implementation [7] and are thus rather specific to
ARCAS. We recall and illustrate all the concepts on a sim-
ple example—a fragment of a distributed component-based
application [18] featuring the components CashDesk and
Inventory bound together by a single connector. This set-
ting will be used as a running example throughout the text.

91

2.1 Application designer perspective
2.1.1 Requirements view

From the application designer perspective, the requirements
view of a connector (Fig. 3a) focuses on describing the
required NFPs and the communication style of a compo-
nent connection. As to NFPs (e.g., logging of the connector
invocations, secure distributed communication), only those
which can be represented via structured/enumerable values
are considered. The representation of a NFP is called fea-
ture (e.g., the Logging feature in Fig. 3a has the structured
ToFile value comprising the £ile-name parameter). As
for the communication style, it defines roles—the connec-
tor’s endpoints for communicating with components [11],
e.g., the procedure-call communication style defines the roles
Caller and Callee. The components to be connected
communicate using instances of the roles. Therefore, in the
requirements view of a connector each role instance has to
reflect the associated component interface, e.g., the instance
of the role Caller is associated with the CashDesk’s
required interface, and the instance of the role Callee is
associated with the Inventory’s provided interface.

2.1.2 Deployment view

At the deployment time, a connector has to reflect the actual
deployment decision on the connected components. This is
the focus of the deployment view of a connector (Fig. 3b).
In the example, the distributed environment consists of two
component containers (deployment docks) A and B. Thus,
a connector is viewed as an assembly of distributed con-
nector units. The key purpose of a unit is to refine the role
instances associated with a particular component in such a
way that the communication between the unit and the corre-
sponding component is local, whereas the communication
among units is (typically) remote. For instance, the con-
nector defined in Fig. 3b is split into two units, attached
to CashDesk and Inventory components, respectively.
In compliance with the desired component deployment,
units have to conform to the capabilities of the selected

<<features>>
Logging = ToFile {

file-name: “CashDesk.log”

CashDesk_to_Inventory
} connector
(synchronous procedure call)

| <<features>>
Security = TLS1.2

<<associate>>

CashDesk [H <--------——-->[[J&mmmmmmmmeeed Inventory
Caller role Callee role
(a)
<<capabilities>> <<capabilities>>
VM: JDK1.4 VM: JDK1.6
OS: Linux 2.4.28 OS: Linux 2.6.36
Deployment Dock ‘A’ Deployment Dock ‘B’
! H
z Connector Unit Connector Unit z
{ for CashDesk Distributed for Inventory | 2 |
CashDesk communication Inventory
AN !
AN

Caller role refinement Iﬁ

Callee role refinement Iﬁ

(b)

Fig. 3 Example of the application designer perspective: a requirements view, b deployment view

deployment docks. Deployment dock capabilities are key
properties of the execution environment, driving selections
of middleware technology for remote communication and
are based on the OMG D&C standard [33]. For example,
the capabilities of the dock “A” indicate the availability of
Java virtual machine version JDK 1.4 and underlying Linux
2.4.28. Thus, the unit for the CashDesk component has to
be able to run and communicate in such runtime environment.

2.2 Connector designer perspective

From the connector designer perspective, the design view of
a connector focuses on describing the connector implemen-
tation by composition of (hierarchical) elements.

An important idea is that the individual parts of a con-
nector implementation are designed in advance, anticipated
for reuse. To allow this, the connector role in a particu-
lar application (i.e., connecting specific components while
considering their deployment) is abstracted away by para-
meterizing the design-view concepts. Namely, the para-
meters are the communication style, feature requirements,
and capabilities, being thus the only binding concepts of
the application-designer and connector-designer perspec-
tives.

At the top level, the structure of a connector is described
as a distribution architecture (Fig. 4a), defining units, their
interconnections, and a refinement of their requirements.
This refinement addresses the communication style by means
of assigning roles to units and also addresses the NFPs by
delegating required features to units. Further, each unit is
to be refined by an element. However, to keep the distrib-

92

ution architecture general and reusable, such an element is
determined just by means of the following characteristics: (a)
the black-box view of the element, the element type, and (b)
its features (including the ones delegated to it as explained
below). For example, the communication style in Fig. 4a is
procedure call and thus the unit For_Callee is assigned
the role Callee. Here, the Security feature requirement
is delegated to the For_Callee unit, implementation of
which is characterized by the ServerSkeleton element
type.

The (potentially) composite elements are further recur-
sively refined by a composition of sub-elements up to primi-
tive elements (Fig. 4b). For example, the composite element
LoggedClientStub refining the unit For_Caller is
further refined by a composition of FileLogger and
RMIStub primitive elements.

Elements interact via ports (Fig. 4b). A port can be either
local or remote. A local port (e.g., of FileLogger) serves
for internal communication of elements not directly partici-
pating in the communication among units. Since communi-
cation via local ports is based on local procedure calls, a local
port is specified either as provided or required to emphasize
where the communication is initiated. This also implies that
any role is implemented as a local port. A remote port (e.g.,
of RMIStub) serves for (potentially) distributed communi-
cation among units. In this case, the actual form of commu-
nication depends on the employed middleware and thus the
specifics of the communication are intentionally abstracted
at the level of unit (and corresponding element) specifica-
tion; in particular, there is no explicit distinction between
provided/required remote ports.

<<element type>>
ClientStub

<

<<element type>>
ServerSkeleton

o &
o 7
€ 2
3g
E=3
Caller role 23 Callee role
. S .
For_Caller Unit —T— For_Callee unit —{]
|
|
/ IS ! - .
<<features>> Conforms to the <<features>> > Local port
Logging = delegated communication style Security = delegated
geing = deee Y v-dees ¢ Remote port (a)

<<features>>

SocketFactoryProvider (Fixed)
Local call

|
s & SerializedServerSkeleton
S
[t - N SocketFactorySkeleton [,
: : LoggedClientStub ERN : :
o S
: ~ : FileLogger RMIStub g» - SocketFactoryProvider CallSerializer : > :
w ~
[3 > 8
	—	—t— >—	<
'E Tv	* A A A A . A A A /N 4 g		
8	7		5
: : i . RMiSkeleton : :			
I I h I N I I			
I ! I L1			
! V
," Inventoryltf :
’,’ Local call I
/
{ |
! . o, | R — o, , Inventoryltf
’/ \RMI { java-sig: ‘Inventoryltf’ } | RMI { java-sig: ‘Inventoryltf’ }/ Local call
/
/ Middleware call
<<features>>
Logging = ToFile {
file-name: $FileNameAttribute [1 Composed element > Local port b
} O Primitive element <& Remote port ()

Fig. 4 Example of the connector designer perspective: a distribution architecture, b a full composition of a connector

To capture the element hierarchy at design time, each
element is refined as a gray box by an element architec-
ture refining the element’s type by specifying the hori-
zontal composition of sub-elements. Here, a sub-element
is characterized just by its element type (defining its
ports) and its features. Each element architecture refin-
ing an element type has also to address the required fea-
tures either (i) directly, or (ii) by delegating them further
to its sub-elements. This facilitates automated synthesis
and reuse of hierarchically composable elements in a way
similar to hierarchical components [7,11,38]. The ele-
ment architecture also captures the port bindings, includ-
ing both bindings among sub-elements and port delegation
(illustrated below). For example, the element architecture
of the SocketFactorySkeleton element in Fig. 4b
defines two sub-elements: SocketFactoryProvider
and RMISkeleton. Here, according to the element archi-
tecture, SocketFactoryProvider is required to pro-
vide a single local port (as defined by its element type, for
brevity not captured in the figure), as well as to address
the Security feature (delegated here, being addressed

directly by the SocketFactoryProvider withthe value
TSL1.2). The element architecture also defines a bind-
ing between the sub-components (via the local port of the
SocketFactoryProvider and one of the local ports
of RMISkeleton), and the delegation of the remote port
of SocketFactorySkeleton to the remote port of the
RMISkeleton sub-element. The exact definitions of the
element architectures and element types of the elements in
Fig. 4b are in Sect. 4.1.

Eventually, every port is associated with a signature
(Fig. 4b), being in principle the interface type of the port.
In a regular case, the signatures are inferred from the inter-
face types associated with role instances. These types are
propagated through the element hierarchy via element bind-
ings (forming a call chain, e.g., InventoryItf determines
the signatures of FileLogger and other elements on the
call path up to CallSerializer). In a special case the
signature is explicitly defined (e.g., the port signature of
SocketFactoryProvider).

The process of signature propagation is subject to sig-
nature constraints, which determine the relation among

93

signatures of one element. For example, they may establish
the equality of signatures of provided and required ports—
as in case of FileLogger, or they may express how the
signature of a provided port has to be modified to become a
signature of a remote port—as in the case of RMIStub.

As for features, in general, a part of a feature value may be
left unspecified, to be later on determined from requirements
view by feature delegation. This is captured by the concept
of element attribute, serving to parameterize features (e.g.,
the file-name attribute of FileLogger parameterizes
the Logging feature).

In order to achieve abstraction of a particular deployment,
each element architecture contains its runtime-environment
requirements, expressed as constraints on dock capabilities.

2.3 Summary of the concepts and problem refinement

To summarize, a particular connector instance is repre-
sented as a fully fledged hierarchical composition of ele-
ments (involving their element architectures, refinement of
sub-elements, association of signatures to ports, and assign-
ment of element attributes), divided into units according to
the required deployment, while addressing the required fea-
tures. For the purpose of this paper, we describe such a con-
nector instance by a meta-model (Fig. 5), expressed in terms

of sets and relations. Note that the meta-model does not cap-
ture the design-only concepts such as element type, commu-
nication style, and dock capabilities. Instead, they are already
“blended” in the other meta-model concepts for brevity (e.g.,
the element type is blended in the element architecture).

In the rest of this paper, the representation of a particular
connector instance (and thus an instance of the meta-model)
will be referred to as a CIC.

A particular CIC is determined by both (a) the require-
ments and deployment view, and (b) the design view. Never-
theless, given both (a) and (b), while some of the meta-model
sets and relations forming the CIC are fully determined (solid
line), some are underspecified (dashed line), and therefore
determined only partially (alterable sets and relations). In
other words, multiple realizations of the alterable sets and
relations can satisfy the given (a) and (b), i.e., multiple vari-
ants of the CIC exist (for example, the variants can be intro-
duced by the existence of several element architectures suit-
able for refining a single sub-element). Note that while (a) is
connector-specific, (b) can be predefined and shared among
multiple connectors.

The level of underspecification of the alterable sets and
relations can be described in terms of constraints inferred
from (a) and (b). Some of these constraints are general
for all (a) and (b), e.g., an Element uses only those

Deployment Dock dock attributes
e . 1
. Feature Value
! I "
Element L elementArchitecture | —_————— L > Attribute
Architecture | | |
| | | features
* l * I I * Feature Value
— .1 _ T
* x| | |
Port [— == T T o Element rro— = > Feature
ports _________ _| A
Signature connectorFeatures Io*
|
Feature Value
| =
___________ 1
Feature Value wp | H I Units
3 Subelement |, Unit < — Connector
- . . *
Lo - . N |
)
M * |
rolelnstances! distributionArchitecture I
| * .
___________ . v '
| [
. . signature role P
I Signature g Role " Role Instance zz;:;z:tz::
Lo - - = —I

Fixed set/relation [] set
— - — Alterable set /relation <— Relation
= Parameterized Relation

Fig. 5 Sets and relations describing a connector: meta-model

94

ports, which are defined by the element type refined
by its elementArchitecture, while some are spe-
cific, e.g., an Element is deployed only on a dock,
capabilities of which are compatible with its runtime-
environment requirements. For the sake of brevity, we do
not explicitly represent the general constraints in the meta-
model.

Overall, the problem of finding a CIC can be interpreted
as finding a realization of the alterable sets and relations with
respect to (a) and (b). If multiple alternatives exist, an optimal
one should be chosen (a discussion on optimization criteria
isin Sect. 6.3). Specifically, such a realization of the alterable
sets and relations in CIC embodies the following:

e a particular distribution architecture that conforms to the
communication style specified in the requirements spec-
ification and definition of connector units,

vertical composition of element architectures (each of
them describing a horizontal composition of its sub-
elements) determining, which element architecture to
choose for each (sub-) element in a distribution archi-
tecture (recursively at all levels of element nesting),
actual parameters for the elements by providing actual
signatures for the elements’ ports and determining values
of the attributes.

However, depending on the (a) and (b), the number and
complexity of the constraints determining the alterable sets
and relations, as well as the actual size of the sets/relations,
can grow too much to be feasible in a “manual” way. There-
fore, there is a need for an automated method—ARCAS.

Technically, the requirement view of a connector is
assumed to be described by a requirements specification, the
deployment view by a deployment specification, and all the
concepts featured in the design view by an artifact specifica-
tion.

3 Overview of the ARCAS method

Following the ideas of Sect. 2.3, automated resolution of CIC
can be viewed as a relational constraint-solving problem.
Here, the constraint specification is formed by the realiza-
tion of the fixed sets and relations, as well as the constraints
over the alterable sets and relations. A realization of the alter-
able sets and relations represents a solution to the problem.
For this purpose, it is advantageous to employ a constraint-
solving technique based on a modeling language rich enough
to express the required concepts. In general, relational con-
straint solving languages such as relational logic are well
suited to this purpose.

Informally put, we create a constraint specification,
referred to as a connector theory (CT)—in the sense of logic,

95

capturing specification of a particular connector in terms of
a logic theory, so that a model of such a theory represents a
CIC of the specified connector. More precisely, since a CT
may have more than one model, this theory basically repre-
sents a description of a set of all the alternative CICs of the
specified connector. In other words, a model of a CT (in the
sense of logic) provides a representation of all the sets and
relations of the CIC meta-model from Fig. 5; thus, Fig. 5 also
represents the meta-model of the CT.

Specifically, a CT consists of four parts (Fig. 6) based
on the specifications determining a connector: (i) a defini-
tion of the abstractions global to all CT theories (reflecting
the meta-model), (ii) images of candidate element architec-
tures, (iii) images of candidate distribution architectures, (iv)
an image of the requirements imposed by requirements and
deployment specifications.

Here, an “image” means a projection of a particular spec-
ification artifact into the language of CT (e.g., projection of
a particular element architecture).

Semantically, a model of a CT represents (a) a correct
CIC (the elements in the CIC are able to cooperate), and (b)
a desired CIC (the corresponding connector complies with
the requirements and deployment specifications).

To keep the CT simple and feasible for CIC resolution,
the representation of communication styles, element types,
and deployment is subject to “inlining” (substitution). For
example, in (ii) and (iii) each element type is inlined by a list
of all the element architectures suitable for this type.

It should be emphasized that the parts (ii) and (iii) con-
sider only a subset of the available element architectures,
resp., distribution architectures. In the former case, only the
element architectures able to run in the deployment docks
specified by the deployment specification are considered, in
the latter case, only the distribution architectures conforming
to the specified communication style are included.

Advantageously, except for part (i), which is shared for
all applications and created by hand in advance, a CT can
be constructed in an automated way by transformation of the
specifications into formulas of the selected CT language. In
ARCAS, for constructing each of the parts (ii)—(iv), there is a
specific transformation (Fig. 6). A transformation processes
a corresponding specification while considering several
other specifications as additional parameters, producing
the corresponding specification’s image. For example, the
transformation of a single element architecture specifica-
tion considers the specifications of other element archi-
tectures, element types, and deployment capabilities as
additional parameters. A particular CT is constructed by
applying transformations to all the relevant specifications.

Once a CT is constructed, a constraint solver available for
the selected CT language is employed to find out a model of
the CT. This model can be easily programmatically converted
to the corresponding CIC (Fig. 6).

Other Element Architectures

- =~ +
- \
Predefined // y Element Types Connector Theory of a connector
Connector Artifacts’ / Transformations of
Specification / element
/ architectures Y A y
K) /7] / Global abstractions II
= Depl/oyment Capabilities Il /
Element 7
Architectures |-i— _ //
+ Element Types % - Images of candidate
—— 4 N Flement Type element architectures
/\ \
\—/ *
v i
e Transformations of
Distribution distribution Images of candidate
Architectures architectures distribution architectures
+ Communication Styles RN - 4
— | ~ /
| ~ ~ / Communication Style
N
| N Image of connector
| s 7 \Distribution Architecture requirements and
7
Requirements /: P V deployment
specification | Transformation of
| connector
- Communication style] requirements and
- Features , | deployment - -
- Component interfaces / Constraint SoIvmg
/

"

Deployment
specification

- Dock capabilities
- Component deployment

A

Shared for all applications |

Specific to an application

l:l Specific to a connector

Fig. 6 Overview of the ARCAS method

The specifications are described in more detail in Sect. 4.
The transformations of the specifications producing a partic-
ular CT are elaborated in Sect. 5. Since the Alloy modeling
language [22-24] and its solver Alloy Analyzer are good
candidates for representing CT (Alloy provides convenient
syntax for definition of relations and their constraints), in
Sect. 6 we describe the representation of CT using Alloy.

Referring back to Sect. 1 it should be emphasized that
ARCAS is intended to be applied at either the deployment or
runtime stage of an application. In the latter case, this would
be due to a runtime modification of the architecture and/or
deployment of the application.

4 ARCAS input: specifications

In this section, we will elaborate on the specifications
required as the input of the transformations in ARCAS
(Fig. 6); the specifications were conceptually outlined in

Provided externally

96

Search for a model of
Connector Theory

Connector
Instance
Configuration

Constant part of the theory
Dataflow

Parameterized by

Sect. 2. In principle, each of them is defined by its meta-
model, i.e., abstract syntax, and for practical reasons ARCAS
includes connector definition language (CDL), i.e., concrete
syntax, in which we will provide examples.

We will fully describe the abstract syntax and semantics,
and give examples of the element type and element archi-
tecture specifications. For brevity, the other specifications
(i.e., communication style, distribution architecture, require-
ments, and deployment specifications) are illustrated by an
example based on Figs. 3 and 4, while their abstract syntax
is provided in [26].

4.1 Element type and element architecture specifications

The basic abstraction of ElementArchitecture (Fig. 7)
is ElementType, which defines the external interface of
an element, i.e., its ports. A port is defined as provided,
required, or remote. The following illustrates specification of

attributes ElementArchitecture type ElementType
1
name: String name: String
0% codeTemplate: String subElements type
o
Attribute !
0.*
name: String
subElement SubElement
environmentRequirements 1 ports
name: String
DockCapability sourceSubElement | 0..1 0.1
*
name: String 0..* destinationSubElement 0.
value: String Port
sourcePort 1
localBindings Lo name: String
0.* LocalBinding destinationPort 1 Kind: I;'ortKind
. 1 1
RealizedFeature | features| subElementPort
0.* remoteBindings Lo
featureName: String o* RemoteBinding port
value port
signatureConstraints)) signature)
FeatureValue SignatureConstraint 1 Signature
0“*

Fig. 7 Abstract syntax of element architecture specification

ClientStub, SocketBasedSkeleton, and Logger
element types (the types of LoggedClientStub,
RMISKeleton, and FileLogger from Fig. 4b) in CDL:

element-type ClientStub
local-provides: callln
remote: mw

element-type SocketBasedSkeleton
local-requires: factory
local-requires: callOut
remote: mw

ports. This ensures an abstraction over element implemen-
tation, providing only the information important for vertical
composition. The way Signature is defined in Fig. 8a

-- <port kind>: <port name>

element-type Logger
local-provides: callln
local-requires: callOut

An element architecture refines an element type by deter-
mining a hierarchical composition of elements at two adja-
cent levels of nesting (the lower level is determined by the
subElements relation in Fig. 7). Thus, only horizontal
composition (of the elements at the lower level) is specified
for ElementArchitecture; as to vertical composition,
it is here expressed by enforcing a particular element type
for a sub-element.

Further, indication of port bindings is defined separately
for pairs of provided and required ports (LocalBinding),
and for delegation among remote ports (RemoteBinding).
The former case expresses either delegation or communica-
tion at the same level of nesting.

Port signature propagation is captured by expressing
relations between the ports of a single element architec-
ture (SignatureConstraint); these relations enforce
equal or equally parameterized signatures of the related

indicates that a signature takes the form of either a signature
variable, acting as a signature parameter, or a signature term
(possibly parameterized).

As for the features (Fig. 8b) realized by the element
architecture (RealizedFeature), a feature value is rep-
resented by a possibly structured feature term. The value
of a feature (sub-)term is either delegated to a sub-element
(FeatureDelegation), explicit (set explicitly via a
fixed feature term), or parameterized by an attribute
(AttributeMapping), playing a similar role as signa-
ture variables in signature terms. Assuming an element e,
the actual value of its attribute is defined either in a parent
element (recursively) or directly at the level of the whole
connector (in the requirements specification); in both cases,
the value is propagated to e by feature delegation. For dele-
gating a feature value, the higher-level element architecture
needs to anticipate the features of its sub-elements. However,

97

in a sub-element architecture corresponding features are not
strictly required; if they are missing, this implies ignoring the
delegated feature in the parent element.

For simplicity, environment requirements are represented
by means of name-value pairs (DockCapability).

The CDL specification of the LoggedClientStub,
FileLogger, and RMISkeleton element architectures
from Fig. 9 (elaboration from Fig. 4b) can take the following
form:

element-architecture LoggedClientStub

of-type: ClientStub

sub-elements:
stub: ClientStub
logger: Logger

bindings:
this.callln -> logger.callln
logger.callOut -> stub.callln
this.mw <-> stub.mw

features:
logging -> logger.logging

element-architecture Filelogger
of-type: Logger
signature-propagation:

callIn: $I
callout: $I
features:

logging: ToFile{
name: $FileName
}

environment-requirements: {“Java VM”

element-architecture RMISkeleton
of-type: SocketBasedSkeleton
signature-propagation:
callout: $I
mw: RMI{ java-sig: $I }

factory: FactorySignature
environment-requirements: {“Java VM”

<name>:

in Fig. 4b. Thus, both LoggedClientStuband RMIStub
can be used to refine the For_Caller unit. In this exam-
ple, LoggedClientStub was preferred over RMIStub
because of its 1ogging feature.

Signature propagation is illustrated by FileLogger,
where the use of the same signature variable ST for both
callIn and callOut indicates that both ports have
to have the same signature. A more complex example is

<type>

-> local binding
<subelement>.<port>
<-> remote binding

feature delegation

-- $I is a signature variable

explicit feature, set to ToFile{..}
‘name’ is a feature term parameter
$FileName is an attribute

-> “IDK 1.4” }

$I is a signature variable
parameterized signature

‘java-sig’ is a signature parameter
fixed port signature

-> “IDK 1.6” }

Here, an important part is the definition of features and
attributes, element types, signature propagation, and envi-
ronment requirements.

FileLogger and logging give an example of an
explicit feature. The feature value is parameterized by
the FileName attribute, which is used in the imple-
mentation of FileLogger. The logging feature of
LoggedClientStubillustrates the delegation of features.
Here, the meaning is that LoggedClientStub provides
logging only if this feature is provided by its logger sub-
element (in the positive case, Logger also defines the value
of logging).

As to element types, notice that both LoggedClient
Stub and its sub-element stub are of the same element
type; recall RMIStub element architecture assigned to stub

98

RMISkeleton, where the signature of the callOut port
is propagated as the java-sig parameter of the mw port’s
signature. The RMISkeleton specification also illustrates
definition of a fixed port signature FactorySignature.

The environment requirements are expressed by means
of required dock capability values. RMISkeleton requires
the target deployment dock to support JDK 1.6.

4.2 Remaining specifications

4.2.1 Communication style

As outlined in Sect. 2, specification of a communication
style determines the connector roles and their cardinality.

— > Signature <
1
SignatureVariable SignatureTerm
name: String value name: String
<<ordered>>
SignatureTermParameter | parameters
0.*
name: String (a)
<
—{> FeatureValue
<
1
i i FeatureTerm FeatureDelegation
AttributeMapping
value
name: String featureName: String
attribute subElement| |
<<ordered>>
FeatureTermParameter parameters
Attribute o SubElement
name: String h
(b)
Fig. 8 Abstract syntax for specification of a signatures, b features
RMiISkeleton K
(type: SocketBasedSkeleton) LOEEEdCIIentStUb
FileLogger (type: ClientStub)

factory
FactorySignature
callOut calll

Si

mw
RMIServer{java-sig: Si}

>
¢ Remote port

Local port

(type: Logger)
callOut

n
Si Si

[1 Composed element architecture

(O subelement placeholder

logger stub
(type: Logger) (type: ClientStub)

callOut callin mw

(O Primitive element architecture

Fig. 9 Elaboration of FileLogger, RMISkeleton, and LoggedClientStub element architectures from Fig. 4b

The communication style of the connector from Fig. 3a can
be specified as:

communication-style ProcedureCall
roles:
Callee
Caller(@..n)

signatures) have to be defined. Based on this, requirements
are specified by selecting a communication style, mapping

4.2.2 Requirements

The key idea of requirements specification is that the par-
ticular connector architecture to be used for the connector is
not specified explicitly; instead, it is declaratively determined
by the selected communication style, required features, and
desired deployment of components.

As the requirements specification is application-specific,
the components to be connected and their interfaces (including

99

roles to the component interfaces (i.e., defining connector
endpoints), and by defining the required features of the con-
nector. Feature requirements are determined by enumerating
the acceptable feature values, where a value is represented
by a feature term. There is also the option to define a feature
requirement for a particular endpoint. Feature requirements
can be composed using propositional operators.

The specification of requirements for the example from
Fig. 3a can take the following form:

component CashDesk

requires: InventoryItf inventory -- <interface kind>: <signature> <name>

component Inventory
provides: InventoryItf inventory

connector CashDesk_to_Inventory
communication-style: ProcedureCall
endpoints:

CashDesk.inventory as Caller -- <component.interface> as <role>

Inventory.inventory as Callee
features:

security in { TLS1.2, SSL3 } -- <feature> in {<possible values>}
Inventory.inventory.logging in { ToFile { name: “inventory.log” }}
-- <component>.<interface>.<feature>

‘name’is feature term parameter

4.2.3 Deployment

A deployment specification expresses the desired deploy-
ment of the connected components (not of connector deploy-
ment!). It determines the allocation of components to
deployment docks and the capabilities of the deployment
docks. The dock capabilities are based on the OMG D&C
[3,33] standard (syntactically expressed by means of typed
name-value pairs). The specification of deployment for the
example from Fig. 3b can take the following form:

allocation
CashDesk to DockA
Inventory to DockB

dock DockA
capabilities: {“Java VM” -> “JDK 1.4”, “0S”

dock DockB

An important concept is the specification of multiplicity
of unit instances such as For_Caller (6..n): ClientStub,
which says that there will be up to n For_Caller
units of the type ClientStub. In consequence, multiplic-
ity is to be expressed also in remote-bindings and
role-mapping. For example, For_Caller (i) .mw
< — > For_Callee.mw means that the mw port of all
the For_Caller units is bound to the mw port of the
For_Calleeunit.Likewise, For_Caller (i) .callIn

-> “Linux 2.4.28”}

capabilities: {“Java VM” -> “IDK 1.6”, “0S” -> “Linux 2.6.36”}

4.2.4 Distribution architecture

The distribution architecture specification determines the
desired communication style, the element type of the top-
level element architectures refining units, their cardinality,
the units’ remote bindings, and mapping of roles to ports in
units. The specification also explicitly states how features are
addressed by specific units (feature delegation). The distrib-
ution architecture specification of the connector from Fig. 4a
can take the following form:

distribution-architecture RPC

communication-style: ProcedureCall
units:

For_Callee: ServerSkeleton

For_Caller (©..n): ClientStub
remote-bindings:

For_Caller(i).mw <-> For_Callee.mw
role-mapping:

For_Caller(i).callIn as Caller(i)

For_Callee.callOut as Callee
features:

security -> For_Callee.security

as Caller (i) means that the callIn port of each
For_Caller unit has the role Caller.

5 Constructing connector theory by transformations

As outlined in Sect. 3, a connector theory can be constructed
in an automated way by transformations of the specifica-
tions. In this section, we describe the transformations and
their products in terms of propositional logic with relational

<name>: <element type>
<name>(<cardinality>): <type>

<unit>.<port>

<unit>.<port> as <role>

feature delegation

100

Deployment Dock

Element
Architecture

Port

Feature Value

I -
=] Subelement |,

L i .
I_A_._A‘_4_._I

rolelnstances!
| *

*
attributes FeatureValue]
—_—— = S{_ _______] _____ > Attribute
features[FeatureValue]
T Feature
A

| *
connectorFeatures [FeatureValue] |
| %

Unit === - Connector

* |
distributionArchitecture I

signature role

i Signature Role
* *

Lomme i

— - — Alterable set/relation

Fig. 10 Modified connector theory meta-model (by ternary relations)

calculus, using only basic logical and relational operators. In
general, a transformation results in a formula. The set of all
formulas resulting from transformations of the specifications
relevant to a particular connector forms the corresponding
connector theory.

The formulas express the constraints on alterable sets/
relations by binding them to the fixed ones (Fig. 5). In the
formulas, we rely on predicates, the semantics of which is
explained informally in this section to help the reader get an
intuitive understanding of them; detailed semantics is pro-
vided only for a selection of the predicates. We further elab-
orate on the description of selected predicates in Sect. 6 by
implementing them in Alloy.! There, we also illustrate a con-
struction of the fixed sets and relations. For the fixed sets and
relations, we assume that a realization is available, implied
by the specifications (both those of predefined artifacts,
and those of requirements and deployment, specific to a
connector).

For defining the actual transformations based on predi-
cate logic with relational algebra, it is advantageous to intro-
duce a slightly modified version (Fig. 10) of the connector
meta-model from Fig. 5. The rationale for such modifica-

! The full formalization in Alloy is provided at http://d3s.mff.cuni.cz/
projects/components_and_services/arcas/.

Fixed set /relation

Y v
Role Instance Distribution
Architecture
[Set
<~ Relation

[A] Rel(B] Ternary relation AxBxC

tion is that certain relations of the original meta-model (i.e.,
features, connectorFeatures, attributes, and ports) are para-
meterized. In order to capture this in relational calculus, the
originally binary parameterized relation is now expressed
as a ternary relation (e.g., the relation features in Fig. 10).
In addition, given an element e, in order to express con-
straints over its particular sub-element se, the name of the
sub-element is explicitly employed. This is necessary, since
the constraints on se are imposed in the element architec-
ture of e. Therefore, the original binary relation subElements
is replaced by a ternary relation introducing an identifier
of the sub-element (the identifier is taken over from the
definition of se in the element architecture of ¢). The rela-
tion units is to be modified in a similar way to subEle-
ments.

Because the formulas resulting from a single transforma-
tion have a fixed internal structure, we present the trans-
formations in terms of parameterized templates (Fig. 11).
Syntactically, the template contains a number of parame-
ter placeholders (e.g., (se) in Fig. 13) and specific con-
structs (e.g., (foreach) in Fig. 13), determining the way the
template parameters are projected into the template text.
The template parameters are derived from the transforma-
tion parameters (Sect. 3). Based on actual transformation
parameters, the transformation produces a specification’s

101

Generic | Concrete

Corresponding

Transformation Actual
Actual / .
Parameters | < Transformation
Template
| Parameters
Parameters
Determine I i
\ 4 |
I I .
Template > Template X N Filling in .| Specification Image
Parameters I the Template
>

ya

Fig. 11 Generic workflow of transformations

Transformation Parameters

— ea eas

Template Parameters

a ea eas N

Allowed Eas (for each subelement)

Detemine

SubElementBindings

PortDelegation

Template for
composite element

—>< Propagated Ports

Data |:| Process I:l Document

Actual Transformation Parameters

ea=SecureSkeleton // eas={SocketFactoryProvider,...}

Corresponding
Actual Template
Parameters

Image of
SecureSkeleton

Filling in

architecture

Fixed Ports

RealizedFeatures

Attributesin Features

DelegatedFeatures

= /

Fig. 12 Transformation workflow for composite element architecture

image (i.e., a part of the connector theory under construc-
tion) by filling in the template.

In detail, we describe the transformation of a com-
posite element architecture specification focusing on the
corresponding template and derivation of the template para-
meters. For brevity, the effect of other transformations (i.e., of
primitive element architecture, distribution architecture, and
requirements specifications) is illustrated by an example of
their product, while their full description is provided in [26].

5.1 Transforming specification of a composite element
architecture

The transformation workflow for a composite element archi-
tecture specification is illustrated in Fig. 12.

5.1.1 Template

The template (Fig. 13) formulates the constraints on any ele-
ment e employing a particular composite element architecture
ea, the specification of which is subject to the transforma-
tion. The constraints are derived from the semantics of the

the template

Generic | Concrete

E Data D Process @ Document

composite element architecture concept (Sects. 2 and 4.1).
The template takes the form of an implication.

Technically, in the meta-model these constraints restrict
the relations that are (potentially transitively) related to e as
an element of the set Element. The antecedent of the implica-
tion assumes validity of the ElementHasEA predicate over the
elementArchitecture relation (e employs ea). The consequent
of the implication includes (i) general element architecture
constraints, (ii) sub-element constraints, (iii) port constraints,
(iv) signature constraints, and (v) feature constraints.

As to (i), after enforcing that e contains the ports defined
by the element type of ea (the ports relation is constrained by
AvailablePorts), the set of sub-elements of e is constrained
to make it conform to ea (via constraining the subElements
relation by SubElements). In addition, it is desirable to make
sure that only the realized features and declared attributes of
ea may be employed by e (the features and attributes rela-
tions are constrained by SupportedFeatures, resp., Require-
dAttributes).

As to (ii), the definitions of the sub-elements are reflected
as follows. For each sub-element, the set of element archi-
tectures that can be employed for its refinement is explicitly

102

Ve € Elements : ElementHasEA(e, <ea>) = (
AvailablePorts(e, <ea.type.ports>) A
SubElements(e, <ea.subElements>) A
SupportedFeatures(e, <ea.features>) A

<foreach se in ea.subElements >

PropagateDeployment(e, <se>) A
<endforeach>

<endforeach>

<endforeach>

<endforeach>

<endforeach>

<foreach f in RealizedFeatures >

<endforeach>

<endforeach>)

<endforeach>

)

RequiredAttributes(e, <ea.attributes>) A

AllowedEAsForSubElement(e, <se>, <AllowedEAs,.>) A

<foreach (sel, portl, se2, port2) in SubElementBindings >

PortBinding (e, <sel>, <portl>, <se2>, <port2>) A

<foreach (port, se, seport) in PortDelegations>
PortDelegation(e, <port>, <se>, <seport>) A

<foreach (portl, port2) in PropagatedPorts >
PropagateSignature(e, <portl>, <port2>) A

<foreach (portl, port2) in FixedPorts >

PortHasSignature(e, <port>, <signature>) A

FeatureHasValue(e, <f.name>, <Encode(f.value)>) A

<foreach (feature,parameter,attribute) in AttributesInFeatures>
FeatureValueUsesAttribute(e, <feature>, <parameter>, <attribute>) A

<foreach (feature, se, sefeature) in DelegatedFeatures >
FeatureDelegation(e, <feature>, <se>, <sefeature>) A

Fig. 13 Template for image of composite element architecture

prescribed (the subElements and elementArchitecture rela-
tions are constrained by AllowedEAsForSubElement). This
ensures the refinement consistency of the sub-elements. Note
that the sub-element’s ports are determined by the prescribed
element architectures (as they have the same element type).
Since e has to be deployed on the same node as its sub-
elements, their deployment is propagated to e (subElements
and node are constrained by PropagateDeployment).

As to (iii), the port bindings and port delegations are
reflected by forcing the signatures of the involved ports to
be equal (via constraining the subEelements and ports rela-
tions by PortBinding, resp., PortDelegation). This, along
with enforcing signature propagation in the images for

sub-element architectures, ensures the composition consis-
tency of the sub-elements.

As to (iv), according to the signature propagation con-
straints for ea, the signatures/signature parameters of the
involved ports of e have to be equal (ports is constrained
by PropagateSignature). Note that we have abstracted away
details of signature propagation for the sake of brevity. It is
also necessary to enforce the fixed port signatures (ports is
constrained by PortHasSignature).

As to (v), the values of the feature directly realized by ea
have to be reflected by e (via constraining features by Fea-
tureHasValue). Since a feature value can use an attribute as
its parameter, the attribute value and the respective feature

103

Table 1 Semantics of predicates for composite element architecture image

Predicate name

Description

Formula

AvailablePorts (e, portSet)

AllowedEAsFor-SubElement
(e, subelement, eas)

PortBinding (e, subelementl, portl,
subelement2, port2)

Feature ValueUses-Attribute (e, feature,
parameter, attribute)

FeatureDelegation (e, feature, subelement,
se-feature)

The element e contains exactly the ports
in portSet

The sub-element se (of the element e),
having the name subelement, can refine
only an element architecture from eas

For the sub-elements se/ and se2 of e with
names subelementl, resp., subelement2,
the portl of sel and port2 of se2 have
the same signature

For the feature value (fv) of feature in the
element e,attribute of e and parameter
of fv have the same value

For the sub-element se (of the element ¢)
with name subelement, feature of e and
se-feature of se have the same value

Vp € Port,Vs € Signature :
(e, s, p) € ports & p € portSet

Vse € Element :
(e, subelement, se) € subElements
= (VYea € Element Architecture :
(se, ea) € element Architecture
= ea € eas)

Vsel, se2 € Element,
(e, subelementl, sel) € subElements
A(e, subelement?2, se2) €
subElements = (Vs € Signature :
(sel, s, portl) € ports
& (se2,s, port2) € ports)

Vfv e FeatureValue,Vav €
FeatureValue :
{(e, fv, feature) € features
Ale, av, attribute) € attributes}
= (fv, av) € parameter

Vse € Element : (e, subelement, se)
€ subElements = (¥ fv €
FeatureValue :

(e, vfv, efeature) € features
& (se, fv,se— feature) € features)

parameter value have to be equal (features and attributes are
constrained by FeatureValueUsesAttribute). Finally, the dele-
gated features have to be captured (subElements and features
are constrained by FeatureDelegation).

For illustration, the semantics of “representative” predi-
cates is presented in Table 1 via a textual description and an
equivalent logical formula.

5.1.2 Transformation parameters

The transformation parameters are: (i) the element architec-
ture ea to be transformed and (ii) the set of all predefined
element architectures eas (Fig. 12).

5.1.3 Template parameters

In addition to the element architecture ea to be transformed
and the set of all predefined element architectures eas,
these are Allowed E Ass, (separately for each sub-element
of ea), SubElementBindings, PortDelegation, RealizedFea-
tures, AttributesInFeatures, and DelegatedFeatures (Fig. 12).

Allowed E Ass, contains the element architectures that
may be used for refining the sub-element se (decision is
based on the element type of se defined by ea). SubElement-
Bindings comprises all pairs of sub-elements of ea and their
ports for which ea defines a binding. PortDelegation con-
tains the tuples (ea port port, sub-element se, sub-element
port seport) that participate in port delegation (including

delegation of both local and remote ports). RealizedFeatures
includes all the features realized directly by ea. Attributesin-
Features contains all the tuples (feature, feature parameter,
attribute) such that attribute is used as the value of feature
parameter which is part of the feature term associated with
feature. DelegatedFeatures contains all the tuples (ea feature
f, sub-element se, sub-element feature sef) such that f is
mapped to sef.

Mathematically, the template parameters are determined
from transformation parameters as shown in Fig. 14.

5.1.4 Example: image of SocketFactorySkeleton

Referring back to the example from Sects. 2 and 4, consider
the actual transformation parameters ea = SecureSkeleton
and eas = {SerializedServerSkeleton, Socket Factory
Skeleton, Socket Factory Provider, RM I Skeleton, . ..};
the transformation will produce the image presented in
Fig. 15.

5.2 Transforming specification of a primitive element
architecture

To illustrate this transformation, we provide an example
of the FileLogger primitive element architecture image
(Fig. 16); a more detailed description of the template, as well
as a description of the transformation and template parame-
ters, is given in [26].

104

A(

\

\%

)}

f € ea. features A

param.value = a}

AllowedEAsg,= {subea | subea € eas A subea.type = se.type}
SubElementBindings= {(sel,portl,se2,port2) | sel,se2 € ea.subElements A
portl € sel.type.ports A port2 € sel.type.ports A
3lb € ea.localBindings A
IsSource(lb, sel,portl) A IsDestination(lb, se2,port2)}
PortDelegation= {(port, se, seport) | port € ea.type.ports A se € ea.subElements A
se € ea.subElements A seport € se.type.ports

(3lb € ea.localBindings A IsSource(lb,ea,port) A
IsDestination(lb, se, seport))

(3lb € ea.localBindings A IsSource(lb, se,seport) A
IsDestination(lb, ea, port))

(3rb € ea.remoteBindings A IsEndpoint(lb,se,seport) A
IsEndpoint(lb, ea, port))

PropagatedPorts= {(portl,port2)|portl,port2 € ea.type.ports A
scl,sc2 € ea.signatureConstraints A
scl.port = portl A sc2.port = port2 A
UseTheSamePlaceholder(scl.signature, sc2.signature)}
FixedPorts= {(p, sc.signature)|p € ea.type.ports A
Sc € ea.signatureConstraints A
sc.port = p AIsFixedTerm(sc.signature)}
RealizedFeatures = {f | f € ea. features A =IsFeatureMapping(f.value)}
AttributesInFeatures= {(f.name, param.name, a.name|a € ea. attributes A

term € TransitiveClosure(f.value) A
param € term.parameters A\

DelegatedFeatures = {(f, se, sef) | se € ea.subElements A f € ea.features A
sef € se.features A IsFeatureMapping(f.value) A
f.value. featureName = sef. featureName A
f.value.subElement = se}

Fig. 14 Template parameters for composite element architecture

5.2.1 Example: image of FileLogger

The image of FileLogger is very similar to an image of a com-
posite element architecture (i.e., it formulates constraints on
element e employing FileLogger in the form of an impli-
cation). Therefore, we will skip description of the common
parts, referring the reader back to Sect. 5.1.

As for the constraints in the consequent, it is necessary
to express that deployment of e is possible only to the docks
compatible with FileLogger (DockA); this is reflected by con-
straining the relation node by AllowedDeployment. Further,
e can feature only the ports defined by the Logger element
type—the element type of FileLogger (AvailablePorts). It is
also desirable to make sure that the set of sub-elements of e
is empty since FileLogger is primitive (SubElements). As for
the further constraints, only the realized features and declared
attributes of FileLogger may be employed by e (Supported-
Features, resp., RequiredAttributes).

Finally, after capturing the potential fixed signatures and
signature propagation (PropagateSignature), and reflecting

the values of the directly realized features (FeatureHas-
Value), it is necessary to make the attributes and the particular
feature values equal (FeatureValueUsesAttribute).

5.3 Transforming specification of a distribution architecture

To illustrate this transformation, we provide an example of
the RPC distribution architecture (Fig. 17); a more detailed
description of the template, as well as a description of the
transformation and template parameters, is given in [26].

5.3.1 Example: image of RPC distribution architecture

Again, the image formulates constraints in the form of an
implication (Fig. 17). The constraints relate to the whole
connector, i.e., the image imposes the constraints on the cur-
rent connector in case it employs the distribution architecture
RPC. Note, that the corresponding element of the Connector
set from the meta-model is not explicitly mentioned (in con-
trast to e in the case of element architecture), since we assume

105

AvailablePorts(e, {Mw,CallOut}) A

SupportedFeatures(e, {Security}) A
RequiredAttributes(e, @) A

-- definition of sub-elements

-- Skeleton sub-element

-- port bindings

-- port delegation

-- signature propagation
-- enforcing fixed signatures

-- feature delegation

)

Ve € Elements : ElementHasEA(e, SocketFactorySkeleton) = (

SubElements(e, {SocketFactory, Skeleton}) A

-- SocketFactory sub-element
AllowedEAsForSubElement(e, SocketFactory,{SocketFactoryProvider}) A
PropagateDeployment(e, SocketFactory) A

AllowedEAsForSubElement(e, Skeleton, {RMISkeleton}) A
PropagateDeployment(e, Skeleton) A
PortBinding (e, Skeleton, Factory, SocketFactory, Factory) A

PortDelegation(e, CallOut, Skeleton, CallOut) A
PortDelegation(e, Mw, Skeleton, Mw) A

-- enforcing values of the realized features
-- defining attributes referred in feature values

FeatureDelegation(e, Security, SocketFactory, Security)

Fig. 15 Example: image of SocketFactorySkeleton composite element architecture

Ve € Elements : ElementHasEA(e, FileLogger) = (
AllowedDeployment (e, {DockA}) A
AvailablePorts(e, {Callln, CallOut}) A
SubElements(e, ®) A
SupportedFeatures(e,{Logging}) A
RequiredAttributes(e, {FileName}) A

-- signature propagation
PropagateSignature(e, Callin, CallOut) A

-- enforcing fixed signatures

-- enforcing values of the realized features
FeatureHasValue(e, Logging, LoggingToFile) A

-- defining attributes referred in feature values
FeatureValueUsesAttribute(e, Logging, fileName, FileName)
)

Fig. 16 Example: image of FileLogger primitive element architecture

itis unique. This assumption is correct, as a connector theory
describes a single connector.

As for the general distribution architecture constraints,
the connector can feature only the roles defined by the
communication style refined by the RPC distribution archi-
tecture (the role relation is constrained by AvailableRoles).
Further, the cardinality of the roles is reflected (roleln-
stance is constrained by RolesWithSingleCardinality and
RolesWithMultipleCardinality). Similarly, only the units
defined by the RPC distribution architecture are allowed
(unit is constrained by AvailableUnits), and their cardi-

nality is reflected (unit is constrained by UnitsWithSingle-
Cardinality and UnitsWithMultipleCardinality). Further, the
connector may refer only to the features realized by RPC
(featureRequirements is constrained by SupportedFeatures).

The next part of the template focuses on properties
of the units. For each unit, the set of element architec-
tures that can be employed for its refinement is explicitly
prescribed (the unit and elementArchitecture relations are
constrained by AllowedEAsForUnit). This ensures the refine-
ment consistency of the units. Note that prescribing the ele-
ment architectures for a unit determines its ports (as these
element architectures have the same element type).

Further, the association of roles with units’ ports is
expressed (via constraining role and unit by PortAssociated-
WithRole). The remote port bindings are reflected by forcing
the signatures of the involved ports to be equal (unit and ports
are constrained by RemoteBinding).

Finally, the feature delegation has to be captured (unif and
features are constrained by FeatureDelegation).

5.4 Transforming requirements and deployment
specifications

To illustrate this transformation of requirements and deploy-
ment specifications, we provide an example of the CashDesk_
to_Inventory connector (Fig. 18); the template, as well as a

106

EmployedDA(RPC) = (
AvailableRoles({Caller, Callee}) A

SupportedFeatures({Security}) A

-- definition of units
-- For_Caller unit

-- For_Callee unit

-- association of units’ ports

-- remote port bindings

-- feature delegation

)

RolesWithSingleCardinality({Callee}) A
RolesWithMultipleCardinality({Caller}) A

AvailableUnits({For_Caller, For_Callee}) A
UnitsWithSingleCardinality({For_Callee}) A
UnitsWithMultipleCardinality ({For_Caller}) A

AllowedEAsForUnit(For_Caller,{LoggedClientStub, RMIStub}) A

AllowedEAsForUnit(For_Callee,{SerializedServerSkeleton,

PortAssociatedWithRole(For_Caller, Callln, Caller) A
PortAssociatedWithRole(For_Callee, CallOut, Callee) A

RemoteBinding (For_Callee, Mw, For_Caller, Mw) A

FeatureDelegation(Security, For_Callee, Security)

SocketFactorySkeleton}) A

with roles

Fig. 17 Example: image of RPC distribution architecture

-- definition of connector endpoint
-- CashdeskCaller endpoint
HasRole(CashdeskCaller, Caller) A

-- InventoyCallee endpoint
HasRole(InventoyCallee, Callee) A

-- definition of endpoints’ feature

DefinedEndpoints({CashdeskCaller, InventoyCallee}) A
AllowedDAs({RPC, LocalProcedureCall, ...}) A

HasSignature(CashdeskCaller, Inventoryltf) A
IsDeployedOn(CashdeskCaller, DockA) A

HasSignature(InventoyCallee, Inventoryltf) A
IsDeployedOn(InventoyCallee, DockB) A
EndpointFeatureRequirements(CashdeskCaller, Logging, LoggingToFileFoo) A

-- definition of global connector features
ConnectorFeatureRequirements(Security, SSL)

S

S

Fig. 18 Example: image of CashDesk_to_Inventory requirements specification

description of the transformation and template parameters,
is given in [26].

5.4.1 Example: image of CashDesk_to_Inventory
Requirements and Deployment

The image formulates constraints on the selection of pre-
defined distribution and element architectures with respect

to required features and deployment. Since communica-
tion style is the binding concept of requirements specifi-
cation and predefined artifacts, the constraints are focused
on the actual endpoints of the connector (i.e., actual roles’
instances).

Therefore, it is first necessary to define the available end-
points of the connector (via constraining the units and role-
Instances relations by DefinedEndpoints). Further, the set of

107

01 one sig Connector {

02 distributionArchitecture: one DistributionArchitecture,
03 units: UnitName one -> set Unit,

04 connectorFeatures: Feature set -> lone FeatureValue

o5 }

06

07 abstract sig Element {

08 subElements: SubElementName lone -> lone SubElement,
09

10 }

11 sig SubElement extends Element {}

Fig. 19 Example of a signature definition in Alloy

distribution architectures that can be employed for refinement
of the connector is explicitly prescribed (distributionArchi-
tecture is constrained by AllowedDAs).

As for each endpoint, its role is explicitly defined (role is
constrained by HasRole), the signature of the associated com-
ponent is assigned to the endpoint (signature is constrained
by HasSignature), and its required deployment is enforced
(via constraining rolelnstances and node by IsDeployedOn).

Further, each feature requirement imposed directly on a
particular endpoint is expressed (rolelnstances and features
are constrained by EndpointFeatureRequirements). Finally,
the required values of the global connector features are
enforced (via constraining connectorFeatures by Connector-
FeatureRequirements).

6 Arcas in alloy

In this section, after providing a very brief introduction to
the Alloy [22-24] modeling language, we show how a con-
nector theory can be expressed in Alloy. We also discuss the
approaches for selecting an optimal CIC with the help of
Alloy Analyzer.

6.1 Brief introduction to Alloy

This section gives a brief introduction to the Alloy model-
ing language—a formal modeling language based on a first-
order predicate logic with operators from set theory (e.g.,
intersection, cartesian product), relational algebra (e.g., rela-
tional join, transitive closure), and basic arithmetics (e.g.,
integer operations, set cardinality) [22,23]. Further details of
the current Alloy syntax can be found in [24].

The language is based on the notions of signature and
relation. A signature is a set of abstract elements; relations
are defined upon such sets. Alloy allows the constraint of
relations by facts (first-order logic formulas). A fact can
employ named predicates and function symbols. In general,
an Alloy specification represents a first-order logic theory

(Alloy theory*) determined by signature, relation, and fact
definitions.

Alloy Analyzer, the associated solver, can either find a
model of an Alloy theory, or check its models against a
given property (expressed as a predicate). Alloy Analyzer
converts the Alloy theory to a SAT formula; using an under-
lying general-purpose SAT solver, it solves the formula,
and then maps the result to an Alloy theory model. Conse-
quently, Alloy Analyzer requires the domains of signatures
and relations to be explicitly bounded (due to the mapping
to SAT).

In general, a definition of a signature S is interpreted in
such a way that each of its fields F represents a relation
between S and the signatures introduced by F. In a simi-
lar vein, nesting of signatures determines a subset relation
on the signatures, while an abstract signature contains the
elements of its nested signatures only.

InFig. 19, the signature (s 1g) Connector is defined by list-
ingrelationsdistributionArchitecture, units,
and connectorFeatures. Signature nesting is expressed
by the extends keyword (line 11); abstract defines an
abstract signature (line 7).

Obviously, the syntax complies with the object-oriented
paradigm by defining signature as a structure constituting
fields. Moreover, signature nesting resembles signature sub-
typing, whereas an abstract signature is akin to an abstract
super-type.

A definition of a signature/relation may contain multi-
plicity constraints one, lone, set, some. Thus, the
Connector set has to have exactly one element (i.e.,
a singleton signature). Similarly, lone denotes zero or
one, while some at least one, and set zero or more ele-
ments. Thus, distributionArchitecture associates
each element of Connector with exactly one element of
DistributionArchitecture. Further, units is a rela-
tion between three sets: Connector, UnitName and

2 In the Alloy documentation, Alloy theory is called Alloy model and
a model of an Alloy theory is called Alloy model instance.

108

01 pred isSubElement[parent: Element, child: SubElement] {

02 child in univ. (parent.subElements)

03 }

04 fact ElementHierarchyIsTree {

05 -- There are no cycles among elements

06 no iden & ~{ parent: Element, child: SubElement |

07 isSubElement[parent, child] }

08 -- Every element which is not a unit has exactly one parent
09 all e: Element| e in SubElement <=>

10 one parent: Element | isSubElement[parent, e]

1 }

Fig. 20 Example of a predicate and fact definition in Alloy

Unit. For each c of Connector and each un of UnitName
there is a subset SU (— > set) of Unit, so that for u € SU the
triple (c, un, u) is in units. Moreover, for each c and u there
is exactly one un (one— >), so that (c, un, urlangle is
in units. The relation connectorFeatures is defined
similarly.

A fact expresses a constraint over the sets and relations
introduced by signature declarations. Each fact in an Alloy
specification is an axiom of the theory determined by the
specification.

InFig. 20, the fact ElementHierarchyIsTree (lines
4-11) describes the properties of subElements using
the predicate isSubElement (lines 1-3). In principle, it
expresses that there are no cycles among the elements of
SubElement with respect to the relation subElements,
and that each element of SubElement has exactly one par-
ent with respect to subElements.

The fact consists of two clauses (lines 6-7, 9-11) bound
by a conjunction (expressed implicitly by a new line). To
illustrate the basic Alloy constructs related to facts, consider
the first clause (lines 6-7). Here, the identity relation (iden)
is forced to have an empty (no) intersection (&) with the tran-
sitive closure () of the relation defined in the curly brackets.
This relation contains all the pairs parent (of Element)
and child (of SubElement), such that they satisfy the
predicate isSubElement. Note that the operator imposes
a constraint on its left operand by the predicate being its right
operand.

As to other syntactic constructs, consider the
isSubElement predicate (lines 1-3). The operator in
stands for set/relation inclusion, while dot (.) denotes rela-
tional join; for example, parent . subElements results
in a relation of the sets SubElementName and Element,
such that for each of its tuples (se, e) the tuple (parent,
se, e) is in subElements. Further, parent.subElements

is prefixed by an outer join, the left operand of which is

the entire domain (univ) of SubElementName. Conse-
quently, the outer join yields a subset of SubElement (set
being a special case of relation). Thus, the isSubElement
predicate is satisfied if and only if parent, an arbi-
trary element of SubElementName, and child are in the
subElements relation.

Reminiscent of object-oriented notation, relational join
can be also expressed by [] (resembling indexing);
thus, univ. (parent.subElement) can be rewritten
as parent.subElements [univ], or even
subElements [parent] [univ]. Note that [] also indi-
cates the arguments of a predicate (e.g., isSubElement);
the interpretation of [] depends on a particular context.

6.2 Connector theory in Alloy

In this section, we describe how a connector theory (Sect. 5)
can be represented by means of Alloy. We focus on represent-
ing the meta-model of a connector theory (Fig. 10), describe
arealization of its sets, and provide examples of how its con-
straints (Sect. 5) can be reflected in Alloy.

6.2.1 Representing the meta-model

Since the meta-model (Fig. 10) is based on sets and rela-
tions, it can be represented in Alloy in a straightforward
way as illustrated below. For the purpose of the follow-
ing examples we have modified the relations features,
attributes, and ports so that their second and third
fields are swapped (e.g., the domain of features becomes
Element x Port x Signature instead of Element x
Signature x Port). The rationale for doing so is that this
provides a more convenient Alloy syntax for expressing the
constraints.

109

abstract sig DeploymentDock {} abstract
abstract sig Role abstract
abstract sig SubElementName {} abstract
abstract sig UnitName {} abstract
abstract sig Attribute {} abstract
abstract sig Attributevalue {} abstract
abstract sig Signature {} abstract
abstract sig DistributionArchitecture {}
abstract sig RoleInstance {

signature: one Signature,

role: one Role
}

abstract sig Element {
elementArchitecture: one ElementArchitecture,
ports: Port set -> lone Signature,

sig
sig
sig
sig
sig
sig
sig

Port {}
LocalProvidedPort {}
LocalRequiredPort {}
RemotePort {}

Feature {}
Featurevalue {}
ElementArchitecture{}

subElements: SubElementName lone -> lone SubElement,

dock: one DeploymentDock,
features: Feature set -> lone FeatureValue,

attributes: Attribute set -> lone AttributeVval
}
sig Unit extends Element {
roleInstances: RoleInstance
¥

sig SubElement extends Element {}
one sig Connector {

ue

distributionArchitecture: one DistributionArchitecture,

units: UnitName lone -> set Unit,
connectorFeatures: Feature set

}

-> lone FeatureValue

The definition of the connector theory meta-model inclu-
des the integrity constraint ElementHierarchyIsTree
articulated in Sect. 6.1. Note that the definition of the sets
and relations also includes detailed cardinality constraints.

6.2.2 Realizing meta-model sets

Realization of the fixed sets by enumeration of all their ele-
ments is an inherent part of a connector theory. In Alloy, such
an element is realized as a singleton set. As an example, the
realization of DeploymentDock (Sect. 4.2.3) can take the
following form:

one sig DockA extends DeploymentDock {}
one sig DockB extends DeploymentDock {}

The representation of FeaturevValues is more com-
plicated, since feature values may be hierarchical with para-
meters. In Alloy, we represent a parameter p by a relation p
between two FeatureValues.

Moreover, in the context of an element architecture, the
value of a parameter may be represented by an attribute and
expected to be given later in the requirements specification
(e.g., fileName in LoggingToFile in Sect. 4.1). This
is expressed in Alloy by marking the associated signature
by abstract (instead of one). This means that multiple
concrete feature values are expected to be explicitly defined
(each represented by a singleton subset), while the abstract
signature defines their required structure. As an example,
consider the LoggingToFile feature value defined in the
FileLogger element architecture having the £i1leName
parameter as its attribute.
abstract sig LoggingToFile extends FeatureValue {

fileName: one FeatureValue -- feature value parameter
¥

A signature for a concrete value explicitly defines the
value of the parameters. As an example, consider the
LoggingToFile_InventoryLog (Sect.4.2.2), assign-
ing £ileName to “inventory.log” value (represented
by InventoryLog).

one sig InventorylLog extends FeatureValue {} -- stands for “inventory.log”
one sig LoggingToFile_InventorylLog extends LoggingToFile {} {

fileName = Inventorylog

}

-- assignment of a particular parameter value

110

As for the alterable sets, the individual elements are cre-
ated automatically by the Alloy Analyzer according to the
corresponding constraints. Specifically for the Signature
set, the created elements include concrete parameters of the
signatures. The rationale is that while all the concrete values
of the feature value parameters are explicitly given by the
requirements specification, the concrete values of signature
parameters depend on the actual composition and bindings
of the elements, also created by the Alloy Analyzer. Techni-
cally, the Alloy representation of a parameterized signature
is similar to the representation of a parameterized feature
value—via a dedicated relation. The fact that signatures are
to be created by the Alloy Analyzer is reflected by not mark-
ing the associated signature abstract. As an example,
consider the RMT signature having the javaSig parame-
ter (Sect. 4.1).

sig RMI extends Signature {

javaSig: one Signature -- signature parameter

}

06.2.3 Representing constraints (examples for element
architecture)

First, the associated elements of the fixed sets have to be
defined, including Ports, SubElementNames,
Features, and Attributes sets; their elements are
obtained by scanning the specification and the associated
element type. For each element architecture, a singleton sub-
set of the ElementArchitecture set is created. Thus,
for the FileLogger element architecture (Sect. 4.1), the
following will be created:

-- Ports

one sig CallIn extends LocalProvidedPort {}

one sig CallOut extends LocalRequiredPort {}

-- Features

one sig Logging extends Feature {}

abstract sig LoggingToFile extends FeatureValue {
fileName: one AttributeValue

}

-- Attributes

one sig FileName extends Attribute {}

-- Element architecture

one sig FilelLogger extends ElementArchitecture {}

The constraint itself is a direct representation of the
clause of the connector theory illustrated in Fig. 16. In
Alloy, a clause is represented by a fact. Compared to
Fig. 16, the fact syntax in Alloy differs slightly in terms
of logical operators, sets, and application of predicates (in
addition, the conjunction after each predicate is in Alloy
represented by a new line). Thus, for the FileLogger
element architecture, the following Alloy fact will be
created:

fact FilelLogger {
for all e: Element | ElementHasEA[e,FileLogger] => {

AllowedDeployment[e, DockA]

AvailablePorts[e, CallIn + CallOut]

SubElements[e, none]

SupportedFeatures[e, Logging]

RequiredAttributes[e, FileName]

- signature propagation
PropagateSignature[e,CallIn,CallOut]

- enforcing fixed signatures

- enforcing values of the realized features
FeatureHasValue[e, Logging, LoggingToFile]

- defining attributes referred in feature values
FeatureValueUsesAttribute[e, Logging, fileName, FileName]

As for predicates, to illustrate their representation con-
sider the AvailablePorts predicate from Table 1. It
is an example of a constraint on the second element of a
ternary relation, where the third element is not relevant. Note
that we have replaced the test for inclusion (from the asso-
ciated formula in Table 1) in a relation with a relational
join.

pred AvailablePorts[e: Element, availablePorts: set Port] {
e.ports.univ = availablePorts

¥

To illustrate the advantages of the Alloy
language, show a representation of the
FeatureValueUsesAttribute predicate from Table 1.
Since a feature-value parameter is represented by a ded-
icated relation, we exploit the possibility of passing a
relation as a parameter to an Alloy predicate. Here, rela-
tional join expresses the context of the constraint (e.g., that
both feature value and attribute value are in the
features and attributes relations with e).

below we

pred FeatureValueUsesAttribute[e: Element, feature: Feature,
parameter: FeatureValue -> AttributeValue, attr: Attribute] {

e.features[feature].parameter = e.attributes[attr]

111

Compared to the corresponding formula from Table 1, itis
obvious that the Alloy representation is much more concise
and comprehensive, as it resembles an expression in a regular
object-oriented programming language.

In a similar vein, PortBinding below is more con-
cise than the corresponding predicate from Table 1. Here,
the relational join allows expressing the context of the con-
straint transitively (combining the relations subElements
and ports).

pred PortBinding[e: Element,
subelementl: SubElementName, portl: LocalRequiredPort,
subelement2: SubElementName, port2: LocalProvidedPort] {
e.subElements[subelementl].ports[portl]
= e.subElements[subelement2].ports[port2]

6.3 Selecting an optimal CIC

The set of models of a connector theory can be of a large
cardinality; nevertheless, just a single model is needed. Thus,
it is necessary to make a choice and select the “best” one (the
best CIC). A practical necessity is to automate the selection
process.

There are different criteria for judging what the “best”
CIC is, ranging from memory consumption and CPU uti-
lization, latency and throughput, to robustness, reliability,
and stability, represented by means of valuation of the ele-
ments involved in CIC. Naturally, it is necessary to find
rules for composability of the criteria. This leads to an opti-
mization problem where the task is to find an optimal CIC
given a valuation of its elements (their element architec-
tures in particular) by applying the rules. A simple exam-
ple of such a valuation is a manual assignment of a fixed
cost to each element architecture where the valuation of
CIC is the sum of element-architecture costs for all the ele-
ments in it. The CIC with the lowest cost is pronounced the
“best”.

The Alloy language itself does not provide any explicit
support for solving optimization problems. In principle, there
are three possible approaches to employing the Alloy frame-
work for finding an optimal CIC: (i) to enumerate all the mod-
els of a given connector theory and select an optimal one by
applying valuation criteria outside the resolution process (an
enumeration of all models is a standard feature of the Alloy
Analyzer); (ii) to encode the optimization problem into a
“standard” Alloy theory; and (iii) to extend the Alloy lan-
guage and Alloy Analyzer accordingly.

We do not consider other approaches, such as extending
the Alloy Analyzer without changing the Alloy language
(i.e., instrumenting the Analyzer with custom heuristics), or
moving from Alloy to another constraint-solving technique.
Preferring relative simplicity and efficiency, we have used
approach (i) for the experiments and evaluation.

6.3.1 Enumerating all connector theory models

A standard feature of the Alloy Analyzer is the enumera-
tion of all models of a given Alloy theory by incremental
execution of its underlying SAT solver. This feature can be
effectively exploited for finding an optimal CIC. Here, the
Alloy Analyzer finds all the models of a given connector the-
ory and a valuation of the models is provided by a dedicated
external tool (i.e., a total order upon the models is created);
finally, an optimal CIC is determined based on the partial
order.

By delegating the optimization to a dedicated external
tool, this method does not require expressing optimization
criteria in a connector theory. Consequently, the model val-
uation strategy is not limited by the expressive power of the
Alloy language, but it is entirely determined by the options
the external tool provides.

Even though it is necessary to explore all the models, this
method is still tangible, since each of the models is evaluated
separately.

6.3.2 Encoding optimization problems in Alloy

Modeling optimization problems in Alloy is based on
expressing a partial order over the set of CICs where the
“best” CIC is the least element. Since the order of a partic-
ular CIC is typically determined by the employed element
architectures, it is necessary to define a global partial order
of all the available element architectures, as well as a way of
inferring the CIC partial order from this global order.

Defining such a way of inferring is a challenge. Since
the use of natural numbers provided by Alloy is not feasible
due to the increased complexity, the standard Alloy relations
have to be used. Here, it is necessary to assess the order of
composite element architectures based on the order of their
sub-element architectures, which is also a challenge. Another
option is also to employ the state-of-the-art alternatives for
solving Alloy theories [13,14] that offer better support for
arithmetic and unbounded integer types.

6.3.3 Extending the Alloy framework

The Alloy language could be extended to allow for speci-
fying optimization criteria. The Alloy Analyzer would have
to translate such optimization criteria into a SAT formula.
Specifically, such an extension can be achieved by employ-
ing pseudo-Boolean (PB) formulas instead of SAT formulas.
Here, an assumption is that the Alloy Analyzer supports a
PB solver such as MiniSAT+ [15] (this appears to be real-
istic in the future, since the MiniSAT solver is already sup-
ported by Alloy Analyzer). Overall, such an extension of the
Alloy framework requires a major modification of its current
implementation.

112

7 Related work

In general, the related work spans three areas: (i) composing
software with the help of constraint solving, (ii) Alloy-based
resolution and verification of component architectures, and
(iii) automated connector synthesis.

®

i)

Composing software with the help of constraint solving.
Constraint solving techniques have been already used
for a variety of tasks in software composition ranging
from automated dependency management [28] to veri-
fication of composition in product lines [37]. In [28],
the idea is to employ a SAT solver to resolve depen-
dencies; this approach was used in several contemporary
software tools such as OSGi implementation Equinox p2
and Maven.?

The approach presented in [37] is based on formalizing
the notion of a feature model by introducing a specific
feature algebra. Having such formalization available, a
SAT solver is employed for verification of safe feature-
model composition in a product line.

Compared to ARCAS, both methods leverage on simple
propositional formulas for expressing the given problem.
Such formulas merely express variability and transitivity,
but do not reflect more complex properties of the software
parts to be composed (e.g., interface bindings, runtime
environment requirements, and features).

Alloy-based resolution and verification of component
architectures. Alloy has been already extensively used
in the domain of CBSE for the purpose of both property
checking and model finding. In [16], the authors exam-
ine the feasibility of using architectural constraints as
the basis for specification, design, and implementation
of self-organizing architectures in Darwin. In this con-
text, Alloy serves as a tool for an automated resolution of
the self-organizing reconfigurations from an inconsistent
to a consistent state in terms of a particular architectural
style.

In a similar way, [17] employs Alloy for specification
of the possible architecture reconfiguration actions in
the context of a generic component model based on
OSGi. Alloy is employed in two ways: (a) architecture
change verification and (b) architectural change plan-
ning. The former focuses on soundness of the reconfigu-
ration actions and preservation of the properties specific
to a particular architectural style. The latter comprises
finding a fitting sequence of reconfiguration actions from
the current consistent state to a given consistent state
while preserving a particular architectural style in all
intermediate states.

3 http://www.eclipse.org/equinox/p2/ and http://maven.apache.org/.

(iii)

113

A methodology for verifying soundness of self-
configuration scenarios via their specification in Alloy is
presented in [39]. The underlying formal method, Frac-
Toy, formalizes a concrete self-configurable system, as
well as the corresponding self-organizing actions. The
verification targets both static and dynamic properties.
Compared to our approach, models of the Alloy theory
only prove the consistency/soundness of the theory and
are not used for any other purpose.

In [27], Alloy is employed for the formal specification of
various architectural styles. The main goal is to check the
important properties of an architectural style such as con-
sistency, satisfaction of a predicate over an architectural
style instance, composability, and refinement of architec-
tural styles. The Alloy formalization of an architectural
style is obtained programmatically from its Acme spec-
ification (which servers a similar purpose as our CDL
specification).

Apart from reconfigurations, in [25], a formal specifica-
tion of valid component compositions in the COM com-
ponent model is analyzed, while in [31] a fully fledged
Alloy formalization of the Fractal component model is
presented.

Automated connector synthesis. The ARCAS method
stems from our previous research [2,4,6,7]. In [2,7], a
connector model designed for automated connector syn-
thesis based on a high-level specification is presented.
Despite leveraging on similar concepts to those presented
in Sect. 2, it does not explicitly capture NFPs. The key
difference lies in the way a connector configuration is
selected—it is performed via term matching in Prolog.
Breaking the separation of abstraction levels, the method
imposes the inclusion of Prolog terms directly in the
requirements, deployment, and artifact specifications.
An extensive effort has been put into research of auto-
mated synthesis of connectors ensuring application-layer
and middleware-layer interoperability [19]. For brevity,
we call the former API mediation and the latter middle-
ware bridging. While we have focused on cases where
a component/service being deployed is to be connected
to another one (potentially already deployed and run-
ning), Issarny et al. [19] exploit a slightly different
scenario—connecting solely the already deployed and
running components/services. The connected compo-
nents may require both API mediation and middleware
bridging. Thus, letting NFPs aside, in [19], the input is
an API specification and a determination of a particular
middleware for each of the connected components; the
goal is to synthesize (in an automated way) a connector
implementation, that does the mediation and/or bridg-
ing. For comparison, in ARCAS the input is a deploy-
ment and requirements specification; the goal is to find
a fitting connector implementation employing a suitable

middleware/middleware bridging (a potential API medi-
ation is expected to be done by a separate component).
In [20], an automated method for generating connectors
is proposed to be employed for synthesis of so-called
emergent connectors. Here, “emergent” refers to synthe-
sis at runtime without any preceding design. Specification
of such emergent connectors is to be programmatically
derived from the specification of components to be con-
nected [19]. In comparison, ARCAS allows for emer-
gent connector synthesis solely in terms of synthesis at
deployment time and runtime and, unlike [19], it has to
be provided with (at least) a high-level (requirements and
deployment) specification of the connector being synthe-
sized.

In [35], the concept of a connector is introduced for
CCM. The goal is to benefit from a light commu-
nication middleware—lighter than CORBA—in CCM-
based applications by introducing connectors (strictly
separating the component communication from busi-
ness logic). The connector-generation process employs
an extended IDL for defining connector templates. These
are, however, not composable. Similar to ARCAS, con-
nector specification is accompanied by a description of
connector-specific features in an extended OMG D&C
specification. Connectors are generated by manually
selecting a particular template parameterized by the
actual interfaces; the connector templates have also to
be created manually.

In [34], targeting model-based synthesis of component-
based applications from UML-MARTE models, the con-
cept of compositional connectors is employed as well.
Here, a connector architecture has to be explicitly cap-
tured by a UML-MARTE model (created manually),
while in ARCAS the connector’s architecture is deter-
mined automatically using constraint solving. Neverthe-
less, the paper mentions the idea of a semi-automatic,
deployment-time selection of an implementation for spe-
cific parts of the connector according to platform-related
meta-information.

8 Discussion and evaluation

In this section, we discuss the important decisions and trade-
offs we had to make and mention open issues we still face.
In particular, these include (i) interpretation of a connector
theory model, (ii) focus of a connector theory, (iii) addressing
NFPs, (iv) moving ARCAS to other domains, (v) choice of
Alloy, (vi) experience and case study, and (vii) issues to be
addressed.

(i) Model interpretation. The ARCAS method exploits the

Alloy Analyzer’s capability of finding a model of a

(i)

(iii)

114

(iv)

given Alloy theory. In contrast to a typical usage of this
feature—interpreting the existence of a model as con-
sistency/soundness of the theory and using such a model
as feedback while developing a theory, e.g., [1,39]—the
ARCAS method directly interprets/employs a model as
the desired CIC.

Focus of connector theory. A connector theory in
ARCAS differs from similar formal models [31] in its
focus. While in [31] focuses on the meta-model level,
ARCAS concentrates on the model level by specify-
ing semantics of a particular connector via concrete
instances of meta-model entities (e.g., FileLogger
as an instance of element architecture). This is facili-
tated by the automated transformation of the connector
specification into a connector theory, whereas formal
models at the meta-model level are typically created
manually. The ARCAS method thus provides the option
of reasoning about a particular connector instead of rea-
soning solely about properties common to all possible
connectors.

Addressing NFPs. The ARCAS method makes it possi-
ble to address NFPs in the synthesized connector. This
is in contrast to some of the state-of-the-art methods
for automated synthesis of middleware-based connec-
tors [19]. Since connector theory also comprises element
composability with respect to NFPs, it allows program-
matic synthesis of a connector complying with the NFP
requirements. Nevertheless, since the Alloy Analyzer
lacks a specialized support for arithmetic operators, it
is feasible to address only qualitative NFPs (i.e., those
expressible by enumeration), whereas efficient address-
ing of quantitative NFPs (such as latency) would be
hard to achieve. However, there are constraint-solving
techniques providing advanced support for arithmetic
operations and working with inequalities [12], which
might be sufficient for addressing quantitative NFPs.
In this respect, a challenging issue is to integrate these
constraint-solving techniques with the Alloy frame-
work, or adapt the ARCAS method into another frame-
work supporting such techniques.

Moving ARCAS to other domains. Although the
ARCAS method has been presented as having its princi-
pal application in automated resolution of middleware-
based connectors, we argue that it is a general method
for automated composition of hierarchical architectures
based on constraint solving, applicable in other domains.
From this perspective, its application to connectors is
merely a specific case. In general, ARCAS is applicable
in a domain with the following key characteristics: (i)
it employs hierarchical component-based architectures,
(i1) if NFPs are required, they can be articulated in a
composable way, (iii) the related specifications can be
transformed to a theory (i.e., a constraint specification)

)

(vi)

programmatically, (iv) the theory can be articulated in
such a way that automated model-finding is possible,
and (v) criteria for selecting an optimal model of a the-
ory can be formed.

Specifically, the idea of ARCAS—automated com-
position of hierarchical elements based on constraint
solving—universally applies to automated composi-
tion of architectural patterns based on pipe-and-filter
(including their nesting). A typical example illustrating
such a potentially nested pattern is a media player. Such
a player employs a number of codecs (audio and video),
filters, muxers, and demuxers, which have to be correctly
organized in an architecture in order to process the con-
tent from an input stored in a file or available on-line.
From the ARCAS perspective, the whole architecture of
amedia player can be likened to a connector, and each of
the codecs, filters, muxers, and demuxers can be likened
to a connector element. The key property of ARCAS,
applicable in this scenario, is the automated assembly
of the elements while ensuring their compatibility and
meeting requirements on NFPs. Thus, it is possible, for
example, to handle the tradeoff between computational
complexity and video image quality.

Another domain where ARCAS can be applied is the
domain of embedded real-time systems. Here, ARCAS
can provide an automated selection of hardware sen-
sors, corresponding device drivers, and proper API of
the operating system. In analogy with a connector, each
sensor, device driver, and particular API variant can be
likened to an element. The option of specifying NFPs
can be employed, e.g., for determining the required sam-
pling rate of a sensor.

Choice of Alloy. The choice of Alloy is motivated by
its expressive power of relational first-order predicate
logic and its convenient, object-like syntax (Sect. 6.1).
An advantage is the integration of the Alloy Analyzer in
Java. On the other hand, a limitation is the requirement
on bounded domains of all sets and relations in an Alloy
specification (stemming from the underlying usage of
SAT, Sect. 6.1) which in case of ARCAS implies the
need of assessing the number of elements in a connector
prior to the actual connector theory resolution. Never-
theless, this assessment can be derived from the avail-
able artifact specifications with the help of incremental
execution of the Alloy Analyzer.

Experience and case study. As a proof-of-the-concept,
we have developed an EMF*-based demonstrator
involving the transformations of specifications and inte-
grating Alloy Analyzer. In addition, we have developed
an experimental database of connector artifacts (includ-

4 http://www.eclipse.org/modeling/emf/.

3 http://d3s.mff.cuni.cz/projects/components_and_services/arcas/.

(vii)

115

ing both the specifications and their Alloy images).
The examples from this text are simplified versions of
the artifacts in this database. We have employed this
database in a case study involving a non-trivial part
of a real-life component-based application based on
the procedure-call communication style [18]. Various
client—server connection scenarios differing in NFPs
and deployment were considered. This helped demon-
strate the soundness and feasibility of the Alloy-based
CIC resolution on a real-life example. In addition to
procedure call, we have also successfully modeled and
evaluated all the other common communication styles
relevant to middleware-based connectors—asynchronou
messaging, blackboard, and streaming. These (includ-
ing the procedure call) cover all the connector types that
the taxonomy [29] categorizes as “communication”.
We have also performed several benchmarks in order
to assess the performance scaling factors of ARCAS.
For this purpose, the actual database of connector arti-
facts was generated in an automated way by cloning
and introducing new variants in the original database.
This technique closely mimics a general case, since
the performance of Alloy Analyzer mainly depends
on the cardinality of the sets and relations rather than
on the complexity and variability of the constraints.
Based on our measurements, even though the compu-
tational complexity is NP-complete in principle (Alloy
Analyzer employs a SAT solver), ARCAS is feasi-
ble up to hundreds of element architectures and tens
of distribution architectures. Specifically, for 100 ele-
ment architectures and 10 distribution architectures the
execution times are in the order of 5s (Alloy set up
for MiniSAT and 512MB on Intel i5 2.6 GHz); for
200 element architectures and 20 distribution archi-
tectures the execution time is around 14s. The per-
formance can be further improved by representing
connector theory directly in Kodkod [40] (the under-
lying relational solver) instead of Alloy. Note that the
numbers above (100/200) pertain just to the element
architectures and distribution architectures that are
applicable for a particular connector (these architectures
were selected from a much larger database).

Issues to be addressed. The ARCAS meta-model does
not reflect (a) cardinality of ports and sub-elements
(e.g., important when multiple client stubs have to be
served by a single server skeleton, not forcing serial-
ization of requests), and (b) composite port signatures
(a typical phenomenon when a server unit supports a
number of middleware protocols simultaneously). In
this paper, these concepts were left out for simplicity,
but the ARCAS method can be enhanced to support
both (a) and (b). Addressing (a) comprises an extension
to the element type and element architecture abstract

syntax, as well as straightforward modifications of
the transformation of element architectures and
distribution architectures. Addressing (b) involves
modifications of the connector theory and associated
transformations. As an aside, both (a) and (b) have been
already experimentally proved feasible.

Since the behavior of middleware-based connectors is
rather simple and driven by the communication style, the
responsibility of the behavioral compliance between ele-
ment types and element architectures is upon the elements’
designer.

9 Conclusion and future work

In this paper, we presented a method for automated resolution
of connector architectures based on constraint solving—the
ARCAS method. An important benefit of ARCAS is the abil-
ity to address the required NFPs, which, as well as transpar-
ent distribution, is the major concern of middleware-based
connectors. In ARCAS, we assume middleware connectors
are based on hierarchical elements, similar to hierarchical
components. This allows definition of the individual parts
of a connector in advance, and thus facilitates reuse. The
key idea of ARCAS is to resolve a description of a partic-
ular connector instance (CIC) as a model of a theory based
on a first-order logic and relational calculus—a connector
theory. We have defined automated transformations, which
convert the predefined connector artifact, requirements, and
deployment specifications to such a connector theory. Over-
all, ARCAS can be employed whenever the requirements or
deployment changes (even at runtime). Moreover, we have
articulated the characteristics another domain would have to
satisfy to make ARCAS applicable.

As a proof-of-the-concept, we described the representa-
tion of a connector theory in the Alloy modeling language.
Moreover, using the Alloy representation, we have shown the
feasibility of ARCAS on a real-life example. We have also
developed a demonstrator involving the transformations of
specifications and integrating Alloy Analyzer.

In our future work, we intend to focus on providing sup-
port for modeling optimization problems in Alloy, as well
as on introducing support for quantitative NFPs (either by
extending the Alloy framework or employing another con-
straint solver framework). Finally, we plan to explore the
possibility of integrating state-of-the art methods for middle-
ware and application interoperability [8,19,21] to achieve a
resolution-based synthesis of emergent connectors.

Acknowledgments This work was partially supported by the EU
project ASCENS 257414 and by the Grant Agency of the Czech Repub-
lic, project GACR P202/10/J042. We are also very grateful to the anony-

116

mous reviewers for their valuable comments and suggestions and to
Hugo Gibson for proofreading the text.

References

Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges
of model transformation from UML to Alloy. Softw. Syst. Model
9(1), 69-86 (2008)

Bures, T.: Generating Connectors for Homogeneous and Heteroge-

neous Deployment, PhD dissertation. Charles University in Prague,

Dept. of Distributed and Dependable Systems (2006)

Bulej, L., Bures, T.: Addressing heterogeneity in OMG D&C-based

deployment, Tech. Report No. 2004/7, Dep. of SW Engineering,

Charles University, Prague. http://d3s.mff.cuni.cz/publications/

(2004)

Bulej, L., Bures, T.: Deploying Heterogeneous Applications using

OMG D&C and Software Connectors, Tech. Report No. 2005/10,

Dep. of SW Engineering, Charles University, Prague. http://d3s.

mff.cuni.cz/publications/, November (2005)

Benmokhtar, S., Georgantas, N., Issarny, V.. COCOA:

COnversation-based service COmposition in pervAsive computing

environments with QoS support. J. Syst. Softw. 80, 1941-1955

(2007)

Bures, T., Hnetynka, P., Plasil, F.: SOFA 2: Balancing Advanced

Features in a Hierarchical Component Model, Proceedings. of 4th

International Conference on Software Engineering Research, Man-

agement and Applications (SERA ’06). IEEE Computer Society,

Washington, DC (2006)

Bures, T., Plasil, F.: Communication style driven connector con-

figurations. In: Software Engineering Research and Applications.

Springer, Berlin (2004)

Blair, G., Paolucci, M., Grace, P., Georgantas, N.: Interoperability

in complex distributed systems. In: Bernardo, M., Issarny, V. (eds.)

SFM 2011, LNCS, vol. 6659. Springer, Heidelberg (2011)

Bliudze, S., Sifakis, J.: The algebra of connectors: structuring inter-

action in BIP. In: Proceedings of EMSOFT 07, pp. 11-20. ACM,

New York (2007)

Cubo, J., Canal, C., Pimentel, E.: Context-aware composition and

adaptation based on model transformation. J. Universal Comput.

Sci. 17, 777-806 (2011)

. Crnkovic, 1., Larsson, M.: Building Reliable Component-Based

Software Systems. Artech House, Norwood (2002)

De Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Tools

and Algorithms for the Construction and Analysis of Systems, pp.

337-340. Springer, Berlin (2008)

. El Ghazi, A.A., Taghdiri, M.: Analyzing alloy constraints using

an SMT solver: a case study. In: 5th International Workshop on

Automated Formal Methods (AFM). Edinburgh (2010)

El Ghazi, A., Taghdiri, M.: Relational Reasoning via SMT Solving,

FM 2011: Formal Methods, pp. 133-148. Springer, Berlin (2011)

Eén, N., Sorensson, N.: Translating pseudo-boolean constraints

into SAT. J. Satisfiability Boolean Model. Comput. 2, 1-26 (2006)

Georgiadis, 1., Magee, J., Kramer, J.: Self-organising software

architectures for distributed systems. In: Proceedings of the First

Workshop on Self-Healing Systems, New York (2002)

Hansen, K.M., Ingstrup, M.: Modeling and analyzing architectural

change with alloy. In: Proceedings of the 2010 ACM Symposium

on Applied Computing-SAC 10, p. 2257 (2010)

. Herold, S., Klus, H., Welsch, Y., et al.: CoCoME-the common com-
ponent modeling example. The Common Component Modeling
Example, pp. 16-53 (2008)

. Issarny, V., Bennaceur, A., Bromberg, Y.D.: Middleware-layer

Connector Synthesis: Beyond State of the Art in Middleware Inter-

operability. In: Bernardo, M., Issarny, V. (eds.) Formal Methods

15.

16.

17.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

for Eternal Networked Software Systems, pp. 217-255. Springer,
Berlin (2011)

Issarny, V., Steffen, B., Jonsson, B., Blair, G., Grace, P,
Kwiatkowska, M., Calinescu, R, Inverardi, P., Tivoli, M., Bertolino,
A., Sabetta, A.: CONNECT Challenges: Towards Emergent
Connectors for Eternal Networked Systems. In: 2009 14th IEEE
International Conference on Engineering of Complex Computer
Systems, pp. 154-161 (2009)

Inverardi, P., Spalazzese, R., Tivoli, M.: Application-layer connec-
tor synthesis, Formal Methods for Eternal Networked Software
Systems, pp. 148—190. Springer, Berlin (2011)

Jackson, D.: Alloy: a lightweight object modelling notation. ACM
Trans. Softw. Eng. Methodol. 11, 256-290 (2002)

Jackson, D.: Software Abstractions: Logic, Language, and Analy-
sis. MIT Press, Cambridge (2006)

Jackson, D.: Alloy Language Reference. http://alloy.mit.edu
(2011)

Jackson, D., Sullivan, K.: COM revisited: tool-assisted modelling
of an architectural framework. ACM SIGSOFT Softw. Eng. Notes
25, 149-158 (2000)

Keznikl, J., Bures, T., P1asil, F., Hnétynka, P.: Automated Resolu-
tion of Connector Architectures Using Constraint Solving (ARCAS
method)”, Tech. Report No. D3S-TR-2012-03, Dep. of Distributed
and Dependable Systems, Charles University, http://d3s.mff.cuni.
cz/publications/ (2012)

Kim, J.S., Garlan, D.: Analyzing architectural styles with alloy.
In: Proceedings of the ISSTA 2006 workshop on Role of software
architecture for testing and analysis-ROSATEA 06 (2006)

Le Berre, D., Parrain, A.: On SAT Technologies for Dependency
Management and Beyond. In: Proceedings of 12th International
Software Product Line (SPLC 2008) vol. 2, pp. 197-200 (2008)
Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy
of software connectors. In: Proceedings of the 22nd International
Conference on Software Engineering. ACM (2000)

Malohlava, M., Plasil, F.,, Bure$, T., Hnetynka, P.: Interoper-
able DSL Families for Code Generation, Tech. Report No.
D3S-TR-2011-04, Dep. of Distributed and Dependable Systems,
Charles University, Prague. http://d3s.mff.cuni.cz/publications/,
April (2011)

Merle, P., Stefani, J.B.: A formal specification of the Fractal com-
ponent model in Alloy, Research Report RR-6721, INRIA. http://
hal.inria.fr/inria-00338987/en/ (2008)

Nakazawa, J., Tokuda, H., Edwards, W.K., Ramachandran, U.: A
Bridging Framework for Universal Interoperability in Pervasive
Systems. In: 26th IEEE International Conference on Distributed,
Computing Systems (ICDCS’06), p. 3 (2006)

Object Management Group: Deployment and Configuration of
Component-based Distributed Applications Specification. http://
www.omg.org/cgi-bin/doc?formal/06-04-02.pdf, Feb (2004)
Radermacher, A., Cuccuru, A., Gerard, S., Terrier, F.: Generating
Execution Infrastructures for Component-Oriented Specifications
with a Model Driven Toolchain: A Case Study for MARTE’s GCM
and Real-Time Annotations, pp. 127-136. ACM, New York Pro-
ceedings of the eighth international conference on Generative pro-
gramming and component engineering (2009)

Robert, S., Radermacher, A., Seignole, V., Gérard, S., Watine,
V., Terrier, F.: Enhancing interaction support in the corba compo-
nent model, From Specification to Embedded Systems Application,
pp. 137-146 (2005)

36.

37.

38.

39.

40.

Spalazzese, R., Inverardi, P.: Mediating Connector Patterns for
Components Interoperability. In: Babar, M.A., Gorton, 1. (eds.)
ECSA 2010. LNCS, vol. 6285, pp. 335-343. Springer, Heidelberg
(2010)

Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe composition of
product lines. In: Proceedings of the 6th International Conference
on Generative Programming and Component Engineering, pp. 95—
104. ACM, New York (2007)

Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architec-
ture: Foundations, Theory, and Practice. Wiley, Hoboken (2010)
Tiberghien, A., Merle, P., Seinturier, L.: Specifying Self-
configurable component-based systems with FracToy. Abstract
State Mach. Alloy B Z 5977, 91-104 (2010)

Torlak, E.: A Constraint Solver for Software Engineering: Finding
Models and Cores of Large Relational Specifications. Ph.D. Thesis,
MIT, February (2009)

Author Biographies

Jaroslav Keznikl graduated from
Charles University in 2010 with
a major in the computer science.
Currently, he is a PhD candi-
date at Department of Distrib-
uted and Dependable Systems,
Charles University in Prague.
He participates in a number
of research projects including
SOFA 2 and EU FP7 ASCENS.
His research interests include
software architectures, formal
modeling of software systems,
model-driven development, and
component-based development.

Tomas BureS§ is an assistant
professor at the Department
of Distributed and Dependable
Systems (D3S) of Charles Uni-
versity Prague. He received his
PhD degree in 2006 also from
Charles University. In the mean-
time, he held 1 year post-
doctoral researcher position at
MSlardalen University, Sweden.
He specializes in component-
based development, especially
software connectors and gener-
ative programming. He has par-
ticipated in a number of projects
including SOFA and SOFA 2,

Q-ImPrESS, ITEA/EUREKA projects OSMOSE, OSIRIS, and EU FP7
ASCENS and in a research project with France Telecom.

117

FrantiSek Plasil is professor
of software engineering with
Department of Distributed and
Dependable Systems (D3S). In
his research, he focuses on
component-based and service-
oriented programming, and also
on behavior specification and
verification for software compo-
nents. He led D3S teams in sev-
eral research projects such as
ITEA OSMOSE, ITEA OSIRIS,
EU FP7 Q-ImPrESS and
ASCENS. He co-authored over
100 refereed articles in interna-
tional journals and proceedings
of international conferences, and also served on the program commit-
tees of numerous international conferences, and editorial boards of sev-
eral international journals. Professor Plasil has also taught at Universiy
of Denver, USA; Wayne State University, USA; University of New
Hampshire, USA; and University of Linz, Austria.

118

Petr Hnétynka is an assistant
professor at the Department of
Distributed and Dependable Sys-
tems (D3S) of Charles Univer-
sity Prague. He received his
PhD degree in 2005 also from
Charles University. In the mean-
time, he held 1 year postdoctoral
researcher position at University
College Dublin. He specializes in
component-based development,
especially a design of component
models and model-driven devel-
opment. He has participated in
a number of projects including
SOFA and SOFA 2, Q-Impress,

ITEA/EUREKA projects OSMOSE, OSIRIS, and EU FP7 ASCENS.

3.5 Towards Verification of Ensemble-
Based Component Systems

Jifi Barnat,
Nikola Benes,
Tomas Bures,
Ivana Cern4,
Jaroslav Keznikl,
Frantisek Plasil

In proceedings of the 10th International Symposium on Formal As-
pects of Component Software (FACS “13).

In Lecture Notes in Computer Science,
Volume 8348,

to be published by Springer,
October 2013.

119

Chapter 3. Collection of Papers

Summary of the Paper

This paper, which was published as [BBB+13], focuses on the formal aspects of
the DEECo component model (presented in Sections 3.1 and 3.2) and the resulting chal-
lenges for verification of DEECo-based applications so as to respond the need of depend-
ability in RDS (i.e., C4 in Section 1.3).

To this end, while pursuing the research goal G3, the key contribution of this paper
lies in discussing the benefits and limitations of model checking in the context of DEECo-
based systems, specifically focusing on the challenges stemming from architecture dy-
namism and parallel, soft-real-time execution of component processes and ensemble
knowledge exchange. (Note that DEECo is presented under the umbrella of Ensemble-
Based Component Systems, similar to Sections 3.2 and 3.3). In particular, the paper pre-
sents a formalization of the general operational semantics of DEECo (outlined in Sec-
tion 3.2) and examines it w.r.t. the properties analyzable via model checking. This is done
by mapping the semantics onto DCCL [BBCP13], which is a semantic model embodying
abstractions suitable for LTL model checking [VW86] of ensemble-based systems via
the model-checker DiVinE [BBH+13]. However, DCCL introduces additional simplifica-
tion and abstraction so as to make the model checking feasible.

Based on previous work [AABG+13], the paper formalizes the general operational
semantics of DEECo in a way that faithfully captures the operation of a DEECo-based
application and its execution platform in a real environment. Specifically, it accounts for
(a) fully asynchronous, distributed, and decentralized operation of components and en-
sembles, (b) real-time scheduling, and (c) network-specific issues such as communica-
tion delays and losses. The general semantics is tailored for further specialization, i.e., it
is general enough that other DEECo semantics aimed at verification (e.g., based on
DCCL) or stemming from different implementations (e.g., by employing different com-
munication middleware) can be readily presented as specializations of the general se-
mantics. Technically, the general semantics of DEECo is formalized using a finite-state
non-deterministic automaton, in which the states capture component knowledge and
the transitions correspond to execution of component processes or ensemble knowledge
exchange. Since DEECo-based applications are in general soft-real-time systems,
the traces generated by the automaton are further restricted so as to reflect only the re-
alistic behaviors w.r.t. real-time periodic scheduling (e.g., each process has to start and
end within each period). In terms of model checking, these restrictions impose specific
“fairness” constraints [CGP99] on the automaton traces.

The paper then demonstrates that the DCCL model-checking semantics is a special-
ization of the general DEECo semantics — meaning that DCCL generates only a subset of
execution traces permitted by the general semantics and that a violation of a property
under DCCL implies violation of an equivalent property under the general semantics.
Further, the paper identifies and discusses the properties that are legitimate candidates
for verification under the general DEECo semantics and can be also verified under the
model-checking semantics. Note that the properties are discussed on a rather concrete,
DEECo-specific level (e.g. resilience w.r.t. knowledge inconsistency caused by

120

3.5. Towards Verification of Ensemble-Based Component Systems

knowledge exchange/process parallelism). On the other hand, the paper also identifies
and discusses several limitations of the model-checking semantics both in terms of veri-
fiable properties, as it introduces additional abstraction, and performance, as the highly
concurrent and dynamic DEECo-based systems generate a very large state space.

As a bottom line, the paper shows that even after introducing relatively significant
simplifications to the operational semantics (e.g., unlimited time for knowledge ex-
change), it is still possible to maintain a rich set of verifiable properties. However, even
with the simplifications, the high level of dynamism and parallelism still prevents scal-
ing the model checking to bigger scenarios. Consequently, this makes verification of the
properties that were abstracted away due to the simplifications a bigger challenge still.

To provide a concrete illustration and evaluation of these conclusions, the paper
presents a realistic case study stemming from the cooperative vehicle navigation sce-
nario featured by the ASCENS project [SRA+11].

This paper also forms the basis for the current work on an operational semantics
following a fully decentralized computational model [BGH+14a].

Comments on Authorship

While the core ideas of this paper stem from the collaboration with the other authors,
primarily my supervisor, my personal contribution lies in elaborating the main idea,
which includes resolving the relationship between DEECo and DCCL and identification
of the verifiable properties. I was also responsible for detailing the DEECo computa-
tional model and its formalization. Further, I conducted the case study. Finally, again
under helpful guidance and supervision of the other authors, I authored a majority of
the text.

121

Chapter 3. Collection of Papers

122

Towards Verification of Ensemble-Based
Component Systems

Jiff Barnat!, Nikola Benes! ™), Tom4s Bures?, Ivana Cernd!,
Jaroslav Keznikl?, and Frantisek P14sil?

! Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbarnat,xbenes3,cerna}@fi.muni.cz
2 Faculty of Mathematics and Physics, Charles University in Prague,
Praha, Czech Republic
{bures,keznikl,plasil}@d3s.mff.cuni.cz

Abstract. The relatively new domain of Ensemble-Based Component
Systems (EBCS) brings a number of important verification challenges
that stem mainly from the dynamism of EBCS. In this paper, we elab-
orate on our previous work on EBCS verification. In particular, we focus
on verification of applications based on the DEECo component model
— a representative of EBCS — and evaluate it on a real-life case study.
Since our verification technique employs a specialized DEECo semantics
to make the verification problem tractable, our goal is to investigate the
practical relevance of the properties that can be addressed by the verifica-
tion. Specifically, we compare the specialized semantics with the realistic
general semantics of DEECo to identify verification properties that
are preserved by the specialized semantics. We further investigate the
tractability of verification of these properties on a real-life case study from
the domain of electrical vehicle navigation — one of the key case studies
of the EU FP7 project ASCENS.

Keywords: Component-based systems - Component ensembles
Formal verification

1 Introduction

Ensemble-Based Component Systems (EBCS) is a new class of component-based
systems, characterized by the fact that the “traditional” component architecture
based on explicit bindings is replaced by a composition of components into so-
called ensembles [6,8]. An ensemble is a first-class concept that addresses the
dynamism in software architecture by declaratively capturing the component
composition and the corresponding interaction. In particular, this is done by
identifying the components to be composed implicitly via a predicate over com-
ponent states, so that each group of components for which the predicate holds
forms an ensemble, and by describing the interaction among the components
via a mapping relation among the states of these components. Furthermore, to

123

compensate for the lack of the global system view, the components in EBCS are
autonomic entities building on agent-oriented concepts [12] and featuring execu-
tion model based on feedback loops (e.g., soft real-time control systems [9]) in
order to achieve (self-) adaptive and resilient operation. As an aside, following
the agent-oriented paradigm, in EBCS the state of a component is called the
component’s knowledge. EBCS are thus very appropriate for design and devel-
opment of highly dynamic autonomous systems that heavily interact with the
physical environment — in literature typically termed Cyber-Physical Systems
(CPS) [10].

In our previous work, we have introduced a representative of EBCS — the
DEECo component model [4,7] (Dependable Emergent Ensembles of Compo-
nents). In addition to reification of EBCS concepts and language mapping to
Java, DEECo comes also with a well-defined semantics [1], which reflects the
need for distributed and fully decentralized operation while specifically dealing
with components, ensembles, and knowledge. DEECo’s semantics is intentionally
very general to allow for a number of compliant realizations (i.e., specializations
generating strict subsets of traces allowed by the general DEECo semantics) by
means of different communication middleware.

The generality of DEECo’s semantics however brings about the problems
of generating an extensive state space, which is intractable for verification of
DEECo-based systems. To alleviate this restriction, we have come up with the
Dynamically Communicating Components Language (DCCL) [3] — a special-
ization of the DEECo’s semantics, which by sacrificing some variability in the
general DEECo’s semantics significantly reduces the state space and thus makes
model-checking of DEECo-based applications tractable. Systems described in
DCCL can be automatically verified using the explicit-state model checking tool
DiVinE [2]. The properties to be verified are to be given as formulae of the Linear
Temporal Logic (LTL) [13].

In this paper we evaluate the possibilities of DCCL verification by comparing
the general DEECo semantics with DCCL and employing DCCL in a real-life
case study from the domain of electrical vehicle navigation which comes from one
of our industrial partners in the EU FP7 project ASCENS [11]. In particular, we
analyze, which verification properties are preserved by the specialization featured
by DCCL and which are not. Thus, we identify classes of properties that may be
verified by model checking DCCL-based models. Furthermore, we demonstrate
how we employed DCCL for verification of the identified property classes on
the case study. Finally, we discuss the scalability limits of the verification by
providing estimates of the state space size based on the size of the case study
problem.

The rest of the paper is organized as follows. In Sect. 2, we describe the case
study and articulate the running example that is used throughout the paper. In
Sect. 3, we introduce the main concepts of DEECo and illustrate them on the
running example. In Sect.4 we provide a brief overview of the general DEECo
semantics, while describing DCCL in Sect.5. In Sect.6, we elaborate on the
relation between the general DEECo semantics and DCCL. Consequently, in

124

(b)

Fig. 1. E-mobility: potential ensembles and their dynamic changes (available parking
stations close to respective POls).

Sect. 7 we demonstrate the DCCL verification on the case study. In Sect.8 we
present a discussion of the experience we have gained while working with the
case study. Finally, in Sect. 9 we provide a brief overview of the related work and
we conclude the paper in Sect. 10.

2 Case Study

We illustrate the main challenges of EBCS with the help of the electrical vehicle
navigation case study — so called e-mobility case study — featured by the ASCENS
project, brought to the project by Volkswagen AG [11].

The objective of the e-mobility case study is to coordinate the planning of
vehicle journeys in compliance with parking and charging strategies in a highly
dynamic and heterogeneous traffic environment, where information is distrib-
uted. The case study comprises electric vehicles that have to reach particular
Points Of Interest (POIs) within given time constraints. These POIs and their
respective constraints are listed in the event calendar of the e-vehicles. E-vehicles
are also equipped with sensors of basic capabilities, e.g., monitoring the battery
level and energy consumption of the vehicle, but also more sophisticated ones,
e.g., monitoring the traffic level along the route. Vehicles can only park and
recharge in designated parking spaces and charging lots, organized into park-
ing/charging stations. Vehicles are capable of communicating with each other,
as well as parking/charging stations. Such communication is necessary, e.g., in
order for a vehicle to obtain the availability of the parking station and potentially
reserve a place there. It is important that in this setting no central coordination
point is assumed; there is no global control or global planning. Instead, every
e-vehicle plans and executes its route individually, based on the data available.

The whole system can be seen as a set of (distributed) nodes, which form
ensembles (dynamic communication groups) in order to cooperate on achieving
their goal — to allow drivers to arrive at their POIs in time while leveraging the
available resources in a close-to-optimal way. This is illustrated in Fig. 1a — each
vehicle forms an ensemble with available parking stations close to their respective

125

POlIs. Figure 1b further shows an evolution of the scenario, where vehicles have
moved along their planned route and a parking station has become unavailable
leading to dynamic changes of the ensembles.

Throughout the paper, we will use a running example that simplifies the
e-mobility case study by making the following assumptions: (i) parking and
charging stations are modeled together as Parking Lot /Charging Station (PLCS)
elements, (ii) vehicles react to changes in the environment only by updating their
reserved PLCSs, (iii) availability of PLCSs changes only as a result of reserving
a parking place, and (iv) a PLCS will be considered by a vehicle for reservation
if it is within a fixed distance to one of the vehicle’s POIs. Although simplified,
the running example still maintains the important characteristics of the general
case study.

We also assume the following conceptual implementation of the running
example: (i) each vehicle recurrently aggregates availability information of the
relevant PLCSs, e.g., the ones within a fixed distance to one of the vehicle’s
POIs; (ii) based on this information the vehicle continuously (re-) plans park-
ing/charging periods on a selection of the relevant PLCSs and issues correspond-
ing reservation requests (in the case of re-planning/changes of the selection issues
also corresponding cancellation requests); (iii) each PLCS processes its requests
and produces confirmations; (iv) having all the reservations confirmed, a vehicle
moves towards it’s closest destination (while repeating the steps i-iii).

3 DEECo: Key Concepts

Designing a navigation system that targets the case study brings a number of
important challenges. In particular: (i) the physical architecture of the system
constantly changes as the vehicles/PLCSs might enter/leave the system at any
point (e.g., due to low connectivity or physical unavailability); (ii) vehicles and
PLCSs have only a partial view over the whole system, according to the informa-
tion they obtain from components they interact with; and (iii) the trip planning
and decision making is decentralized and localized to the vehicles. In this section
we illustrate the key concepts of the DEECo component model — a representative
of EBCS — on the running example and demonstrate how the challenges listed
above are addressed using these concepts. A DEECo-specific implementation of
the running example is outlined in Fig.2 and Fig. 3.

As illustrated in Fig.2, a component (e.g., lines 7-20) comprises knowledge
and processes. Knowledge (lines 8-9) represents the internal data of the compo-
nent; it can be exposed to the rest of the system via the component’s interfaces
(e.g., lines 1-2, 7). A process (lines 10-20) is essentially a thread operating upon
the component knowledge in a cyclic manner (similar to a feedback loop). For
example, Vehicle0123 in Fig. 2 is a component, in which the move process updates
the vehicle’s next position based on its current position, the route calendar, and
the current reservation status. The process is executed periodically every 100 ms.
An important restriction of component processes that facilitates autonomy and
resilience, is that there is no direct communication (i.e., remote method invoca-
tion or message exchange) among components in the system. Each component

126

interface Vehicle:
calendar, availabilityList

1
2

3

4 interface PLCS:

5 position, availability
6

7

8

9

component Vehicle0123 features Vehicle:
knowledge:
id, position, calendar, calendarFeasibility, availableParkingLots, reservations, cancellations
10 process computeReservations(in calendar, in availabilityList, inout reservations, inout cancellations):

11 function:

12 oldReservations <« reservations

13 reservations < selectParkingLotsToBeReserved(calendar, availabilityList, oldReservations)
14 cancellations < determineReservationsToBeCancelled(oldReservations, reservations)

15 scheduling: triggered(changed(availabilityList))

16 process move(inout position, in calendar, in reservations)

17 function:

18 if (allPOIsReserved(calendar, reservations))

19 position <— moveToNextPosition(position, calendar)

20 scheduling: periodic(100ms)

23 component PLCS01 features ParkinglLot:
24 knowledge:

25 id, position, availability, reservations

26 process processReservations(inout availability, inout reservations):

27 function:

28 availability <— reserveFreePlaces(availability, reservations)

29 reservations <— markProcessedReservations(availability, reservations)

30 scheduling: periodic(2000ms)

Fig. 2. Example of DEECo components in a DSL

operates solely upon its own knowledge. Nevertheless, a component’s knowledge
may include it’s belief about the knowledge of other components. Updates of this
belief are completely externalized into component ensembles, described below.

As illustrated in Fig. 3, an ensemble (e.g., lines 32-40) is a first-class concept
that enables dynamic grouping of components and interaction between the com-
ponents in the group. A component in an ensemble assumes either the role of the
unique ensemble coordinator, or the role of one of the potentially multiple mem-
bers. The role of a component is determined dynamically by the membership
condition (lines 35-37) over component interfaces (lines 33-34). For example,
PropagateReservationRequests in Fig. 3 is an ensemble, in which a Vehicle and a
PLCS form a coordinator-member pair if the Vehicle’s reservations include the
PLCS. Technically, the run-time platform is responsible for timely evaluation of
the condition. As indicated above, the only mechanism for component interaction
is updating the interacting components’ belief. This is done via the knowledge
exchange of an ensemble (lines 38—40). Similar to component processes, knowl-
edge exchange is a cyclic activity that updates the coordinator’s belief about
the members and vice versa. For example, in PropagateReservationRequests the
knowledge exchange updates every 5000 ms the belief of member PLCSs about
the relevant reservations of the coordinating Vehicle. Again, the run-time plat-
form is responsible for timely knowledge exchange execution among all compo-
nents that are in the same ensemble.

127

32 ensemble UpdateAvailabilityInformation:
33 coordinator: Vehicle

34 member: PLCS

35 membership:

36 3 poi € coordinator.calendar:

37 distance(member.position, poi.position) < TRESHOLD
38 knowledge exchange:

39 coordinator.availabilityList < reduce(member.availability)

40 scheduling: periodic(5000ms)

42 ensemble PropagateReservationRequests:
43 coordinator: Vehicle

44 member: PLCS

45 membership:

46 Jreservation € coordinator.reservations:

47 reservation.plcsld == member.id A reservation.status == NEW

48 knowledge exchange:

49 member.reservations.add(coordinator.reservations.getNewForPLCS(member.id))

50 scheduling: periodic(5000ms)

51

52 ensemble PropagateReservationConfirmations:
53 ... I/ similar to the previous, opposite direction

Fig. 3. Example of DEECo ensembles in a DSL

4 General DEECo Semantics

DEECo comes with a well-defined general semantics, which faithfully captures
the operation of a DEECo-based application and its run-time platform in real
environment by accounting for (a) fully asynchronous, distributed, and decen-
tralized operation of components and ensembles, (b) real-time scheduling, and
(c¢) network specific issues such as communication delays and losses. In this
section we describe the general semantics, because it establishes a baseline for
verification of DEECo-based applications. Other DEECo semantics aimed at ver-
ification (e.g., DCCL) or stemming from implementations of DEECo by employ-
ing different communication middleware are further seen as specializations of
the general semantics — meaning that they generate only a subset of execution
traces permitted by the general semantics.

The general DEECo semantics describes a DEECo-based application as a
finite-state non-deterministic automaton, whose states capture the knowledge of
the system’s components and the transitions correspond to execution of compo-
nent processes or ensemble knowledge exchange. Note, that although the general
DEECo semantics could support infinite knowledge domains, we consider only
finite domains. This poses no real limitation, since typical CPS applications are
limited in terms of available resources. In particular, we construct the automaton
as a Cartesian product of three groups of automata pertaining to: (i) component
processes, (ii) knowledge propagation, and (iii) ensemble knowledge exchange.

4.1 Component Processes

A component process is an activity local to a component that atomically
reads a subset of the component’s knowledge, performs computation on it (possi-
bly performing sensing and actuation), and atomically updates the component’s

128

knowledge with the result of the computation. To model this, we associate each
process p of each component C' with an automaton A(p) — depicted in Fig. 4. The
initial state of the automaton is the idle state. The transition p; corresponds
to reading the component knowledge (denoted Vi) into a temporary variable.
The transition p, reflects both the execution of the process and updating the
component’s knowledge with the outcome. Such semantics allows for concurrent,
asynchronous execution of component processes.

load the component’s knowledge into a temp. variable
——
p1:acc Ve

start —

p2 2 Ve + place)
—_—————

compute the process outcome and update the component’s knowledge

Fig. 4. Component process automaton — A(p)

4.2 Knowledge Propagation

As mentioned earlier, components in a DEECo system can only interact via
knowledge exchange prescribed by ensemble definitions and realized by the run-
time platform. The particulars of distributed communication required to realize
knowledge exchange very much depend on the communication middleware used.
To keep the execution semantics sufficiently general, we model the distributed
communication with relatively few restrictions. In particular, we assume that
each component C' is associated with an arbitrarily outdated copy of knowledge
valuation of any other component C’ in the system — the so called C’s view of C’
(denoted as V& "). Note, that the concept of view is different from belief (the
former being a technical means of defining the semantics, the latter expressing
the application-specific purpose of a part of component knowledge).

To capture knowledge propagation in terms of updates of component views,
we associate a queue Qg’ with each ordered pair of components C;, C;, C; # Cj,
which serves as a communication channel for the knowledge valuations of Cj
that are being propagated through the network to become the C;’s view of C}
(ng_ 7). We assume the queue to be an unbounded perfect FIFO queue without
€rTors.

As depicted in Fig.5, in order to model the actions of knowledge propaga-
tion and propagation delays associated with sending and receiving the knowledge
valuations over the network, we associate with each queue Qg’ an automaton
(A(Qg:)). The transition ¢; of this automaton corresponds to sending the knowl-
edge valuation of C; to €} in terms of putting it into the queue. In a similar
manner, the transition g» corresponds to updating C;’s view of C (VCC) in terms
of retrieving it from the queue.

129

start

. store the current
put the state of C; in { C; Cj j i
_ 9q1: 0~ Ve, qr: V-« QF p value in the queue as
the queue C; — G Ci j G G S the C;’s view of C;

Fig. 5. Knowledge propagation automaton — A(ng)

i

Note that the mandatory association of such view with each component is
only needed for the definition of semantics. The DEECo run-time framework
does not provide a corresponding run-time concept — it only provides a gen-
eral contract regarding the general spread of component knowledge valuations
throughout the system, without any specific guarantees.

4.3 Ensemble Knowledge Exchange

In an ensemble the knowledge exchange takes place always between the coor-
dinator and the members. For the sake of simplicity, in the definition of the
semantics, we treat an ensemble as a set of binary relations between a single
coordinator and each of the corresponding members.

Note that while the general propagation of knowledge throughout the (dis-
tributed) system, modeled via queues, concerns the whole knowledge of the
involved components, the ensemble knowledge exchange concerns only certain
knowledge fields, specific for the ensemble.

To capture the asynchrony and dependence on knowledge propagation, the
knowledge exchange is modeled as a set of component-specific automata locally
manipulating the component’s knowledge and views.

In particular, as depicted in Fig.6a, we associate the role of the coordina-
tor (C;) of an ensemble with an automaton AC(EgJ) Similarly to the process
automaton, the process of loading and processing the knowledge is divided
into two states — idle and running, modeling thus asynchronous processing.
The transition ¢; corresponds to loading the coordinator’s knowledge and it’s
view of one of the members into temporary variables. The transition cy then
reflects the storing of the outcome of the knowledge exchange, i.e., the effect
of the knowledge transformation T associated with the knowledge exchange
applied on the temporary variables, in the case the ensemble membership (Mg)
holds.

Similarly, we associate the role of a member C; of the ensemble with an
automaton A, (Egj), as depicted in Fig.6b. The automaton is very similar to
the one in Fig. 6a, with the difference that the member’s knowledge and view of
the coordinator are interchanged in both Tx and Mg (i.e., C; and C; switched
the roles in the automaton).

130

load coordinator’s knowledge and its view of the load member’s knowledge and its view of the

member into temp. variables coordinator into temp. variables

Ci C;
criacc Vg, ,accs HVC/ my:accy HVC; ,acczeVCi
1

start — start —

T (accy accs) | Mg (accy accs) Te (accyaccy) ‘ Mg (accey accy)
¢V ve; Ve Ve,
2:-Y¢; my: ('j J
Ve, otherwise VC,. otherwise
if membership holds, apply the associated if membership holds, apply the associated
knowledge transformation and store the knowledge transformation and store the
result to the coordinator’s knowledge result to the member’s knowledge
. C; C;
(a) Coordinator — AC(EC,-) (b) Member — A, (E.)
1

Fig. 6. Ensemble knowledge exchange automaton

4.4 System Semantics

Building on the previously introduced specific automata, we can now define the
semantics of a system S consisting of a set of components C, each of which
including a set of processes Pc, and a set of ensemble definitions E via the
following automaton:

a®) =TI IT 4w« IT 4@ xIT TI (A(BE) x An(EE))

CeCpePo Ci,CjEC EcE Ci,CjE(C
Ci#C;j Ci#C;
processes of all knowledge propagation knowledge exchange between each two
components between each two components and for each ensemble
components

As already indicated in the automaton definition, a system automaton aggre-
gates automata for all the processes of all the components. To capture all the
potential ensembles among the components, it also includes a knowledge prop-
agation automaton between each oriented pair of components, as well as both
coordinator and member automata for each ensemble definition and each ori-
ented pair of components; i.e., each two components can potentially form a
coordinator-member pair of an ensemble. Being completely non-deterministic,
the system automaton can also capture system behaviors, that are not realistic
w.r.t. real system execution. Therefore, we impose further restrictions on the
system automaton in terms of limiting its set of valid execution traces. In par-
ticular, as DEECo and EBCS systems in general are soft realtime cyber-physical
systems, we focus on realtime properties of the execution traces.

131

In principle, we allow only those traces of the system automaton that
are realistic with respect to a soft-realtime periodic scheduling of the included
process/propagation/exchange automata. Namely, we impose the following
restrictions:

— Given the duration of the period of a component process, the process has to
start and end within each period (i.e., each period the corresponding process
automaton has to go from the idle to running state and back).

— Given the duration of the period and the maximum expected network latency,
all knowledge propagation has to be performed within each period with the
maximum delay equal to the latency (i.e., each period the corresponding
knowledge has to be enqueued, while it is dequeued with a delay at most
equal to the latency)

— Similarly to a component process, given the duration of the period, all knowl-
edge exchange has to start and end within each period (i.e., each period all
the corresponding coordinator and member automata have to go from the
idle to running state and back).

In a way, these restrictions impose specific “fairness” constraints on the system
automaton traces that are brought about by the properties of the run-time plat-
form. Since the technical details are beyond the scope of this paper, we refer an
interested reader to [1].

5 DCCL: Semantics Suitable for Verification

Due to the extremely big state space the general DEECo semantics generates,
it is not suitable for verification. To accomplish the verification task, we have
developed DCCL, which acts as a specialization of the general DEECo semantics
that is suitable for LTL model-checking using the model checking tool DiVinE [2].

Compared to the general DEECo semantics, DCCL incorporates certain sim-
plifications to keep the state space reasonably small and the model-checking task
thus tractable. In particular, DCCL specializes the general semantics by omitting
component views and assuming knowledge propagation to be instant. Further-
more, DCCL restricts the syntactic expressiveness of DEECo in the following
way. It allows only one process per component. The set of possible knowledge of
a component has to be finite, i.e., we restrict the data of each component to be
variables over a finite domain. As already mentioned, this restriction poses no
real limitation for typical CPS applications. All processes in the system have to
be periodic, synchronously activated and they strictly alternate with knowledge
exchange, which is also synchronously activated. We outline the DCCL semantics
below, for more details, we refer the reader to [3].

The computation of a DCCL system works in two alternating phases, the
component phase and the ensemble phase. In the component phase, components
perform their computation as prescribed by their process description. After the
component phase, the system switches to ensemble phase, where the ensemble

132

knowledge exchange is performed. In order to capture various kinds of tim-
ing constraints, we provide two different kinds of semantics for the ensemble
phase. The first, fizpoint semantics, represents a situation in which the knowl-
edge exchange is infinitely faster than the progress of the components’ processes,
i.e., it takes negligible time. In this semantics, the ensemble phase proceeds as
long as there is some knowledge exchange to be done. The second semantics,
timeunit semantics, is assigned a single number, a time limit £. The ensemble
phase then proceeds as in the previous, this time respecting the fact that every
component may only take part in as many as £ knowledge exchanges.

Formally, we define a labeled transition system (3, £, —), where ¥ is a set of
states, L is a set of labels and —C Y x £ x 3 is a labeled transition relation. The
definition of states depends on the desired semantics. In the fixpoint semantics,
a state consists of the knowledge of every component and a marker indicating
the current phase.

Ef:Kcl XKoo XKC'n X{C,E}

In the timeunit semantics, each component includes a time counter whose maxi-
mal value is ¢, the time limit. The ensemble phase marker is also enhanced with
a similar counter, called the round.

Ye=Ke, x{0,...,0} x -+ x Ko, x{0,...,0} x {C}U{E} x{1,...,£}))

5.1 Component Phase

The progress of the component phase is very straightforward. Each component
only possesses a single process and the processes are independent, as they may
not touch other components’ knowledge. We may thus perform all processes
synchronously at once. Formally, whenever o is a state of our transition system
containing the marker C, let ¢’ denote its modification as follows: All compo-
nents’ knowledge in ¢ is changed according to the components’ processes, the
marker is changed to E, and, if the semantics is timeunit, all component time

counters as well as the round counter are set to £. We then have the transition
com
Lomp . S

5.2 Ensemble Phase

The ensemble phase consists of a number of smaller units, the knowledge
exchange steps. Every such step performs the knowledge exchange between one
coordinator and one member. The number of steps performed in each ensemble
phase depends on the chosen semantics. In a sense, the choice of semantics thus
governs the amount of fairness that is provided in the ensemble phase.

Fizpoint Semantics. In the fixpoint semantics, the ensemble phase runs until
a fixpoint is reached, i.e., until no more knowledge exchange steps can be per-
formed. Formally, let o be a state of the transition system containing the ensem-
ble phase marker E. Let us consider all possible combinations of an ensemble

133

FE with membership predicate p and knowledge exchange e, and two compo-
nents C;, C; such that p(C;, C;) holds in o. This means that C; is currently
a coordinator of an ensemble and that C; is one of its members. For every such
triple (E,C;,C;), let o’ be the state that is created from ¢ by changing the

knowledge of C;, C; according to the knowledge exchange e. We then have the

E,Ci,C'
transition o ens(B.CG), o’. Note that as there might be more triples satisfying

the properties above, the evolution of state o is possibly non-deterministic.
If there is no possible knowledge exchange in the state o, i.e., no transition
from o has been created according to the above rule, the ensemble phase ends.

We represent this by a transition o end, 5 where o is equal to o with the phase
marker changed to C.

Timeunit Semantics. In the timeunit semantics, the number of steps of the
ensemble phase is limited with a given number ¢ so that every component takes
part in at most £ knowledge exchanges during the phase. At the same time, we
want to perform as many exchanges as possible. We thus divide the ensemble
phase into £ rounds, numbered ¢, £ — 1, ..., 1. In round k, knowledge exchange
only occurs if both participants still have k time units left.
Formally, let ¢ be a state with phase marker E and its round counter set to
k. Let (E,C;, C;) satistfy the same property as in the previous semantics with
the additional constraint that the time counters of both C; and C; are set to k.
For every such triple, let ¢’ be the state that is created from o by changing the
knowledge of C;, C; and lowering their time counters to k — 1. We then have the
L. ensi (E,C;,Cj) ,
transition 0 ——=o".
Again, if there is no possible exchange in the state o, the round ends. If
k > 1, the next round starts. The state ¢’ is created from o by changing the

round counter, as well as all time counters that have still £ units left, to k — 1

and we have the transition o 2% o/, If k = 1, the ensemble phase ends. The

state o’ is created from o by changing all time counters to zero and changing
the phase marker to C. We then have o end, o,

6 Relation of DCCL to the General DEECo Semantics

Since DCCL is a simplification of the general DEECo semantics (e.g., while in
DEECo processes are fully parallel, in DCCL they are executed synchronously),
it is natural that model-checking of a DCCL-based system cannot verify all
potential properties that could be expressed over the traces of the general seman-
tics. In this section we thus discuss the relation of the general DEECo seman-
tics and DCCL with respect to analyzable properties. In particular, we identify
(i) properties which have equivalent validity under DCCL and general seman-
tics, and (ii) properties which do no have equivalent validity (i.e., they pertain to
aspects of the general semantics that are abstracted away by DCCL).

Note also that DCCL is a specialization of the general semantics, which
means that DCCL semantics cannot introduce a trace the equivalent of which

134

could not be produced by the general DEECo semantics. (Here, we consider
two traces equivalent if they entail the same sequence of knowledge updates.)
This means that violation of a property under DCCL implies violation of an
equivalent property under the general semantics.

6.1 Realistic Properties That Can Be Verified via DCCL

Based on LTL model-checking procedure [13], we can essentially verify the tra-
ditional properties such as safety or liveness for a DCCL-based system, where
we consider the model to be an implementation of the system in the DCCL
language. Specifically, in our approach the atomic propositions of LTL specifica-
tion range over component knowledge valuations. In the following, we discuss in
more details a classification of properties specific to DEECo concepts that can
be verified for DCCL-based models.

Correctness of process execution (P1). Since DCCL explicitly represents the state
of a component’s knowledge before and after process execution, we can effectively
exploit the LTL property checking to verify correctness of the process execution.
This is naturally an important concern in DEECo.

Correctness of component interaction protocols (P2). Building on (P1), we can
also verify execution of a sequence of component processes and knowledge
exchange. This enables us to verify correctness of interaction protocols between
components (embodied by the sequence). In DEECo, due to the specifics of
the development cycle [4], the correctness of interaction is an important con-
cern as both component processes and ensemble knowledge exchange are devel-
oped in isolation and the component interfaces do not provide enough semantic
information.

Resilience w.r.t. knowledge inconsistency (P3). In this case, we want to verify
that a given system is resilient w.r.t. knowledge inconsistency caused by paral-
lelism of knowledge exchange/component processes (i.e., a component receives
up-to-date information from one component while receiving stale information
from another, because at the time the information was sent the other com-
ponent’s process has not yet produced the new information). Also, the incon-
sistencies can be introduced due to variable communication delays. This is an
important concern under the general DEECo semantics, since the semantics
allows complete parallelism of processes and knowledge exchange (limited only
by the realtime constraints) and it imposes little constraints on the commu-
nication delays. Although in general the DCCL semantics does not implicitly
account for such parallelism/delays, in order to reduce the complexity of a model
and its verification, it is possible to capture the parallelism/delays in DCCL
explicitly. Specifically, this is done by enabling an execution of a process/knowl-
edge exchange to be non-deterministically skipped, while enforcing fairness (i.e.,
delayed for a finite number of periods). Technically, this can be done by intro-
ducing a specific flag into the relevant components’ knowledge and defining an
“artificial” ensemble, that manipulates the flag. The other ensembles/processes

135

have to be then modified in such a way, that they will do nothing if the flag is
set. The non-deterministic interleaving of knowledge exchange during ensemble
phase will then yield two branches (depending, whether the artificial ensemble
was evaluated before the others), one where the flag has been set and the corre-
sponding original ensembles/processes did not have any effect (i.e., was delayed),
and one where the ensembles/processes proceeded as before, thus simulating
non-deterministic delays.

Communication-boundedness of interaction protocols (P4). Building on the
timed semantics of DCCL, we can verify whether a particular interaction is
communication-bounded — i.e., whether its correctness depends on a particular
communication speed. Specifically, we can verify that the system will mani-
fest erroneous behavior if the time limit of the timeunit semantics is too low,
while otherwise behaving correctly. Such a situation is realistic w.r.t. the general
DEECo semantics, since the semantics does not provide any specific guarantees
for the knowledge propagation and network latency. This concern can be critical
for certain application that require a high-level of safety and dependability (i.e.,
some behavior should be correct under arbitrary communication conditions).

6.2 Realistic Properties That Cannot Be Verified via DCCL

Properties related to parallelism of processes and knowledge exchange. Being vir-
tually synchronous, the DCCL semantics does not explicitly allow to verify prop-
erties based on parallelism of processes and knowledge exchange, such as race
conditions (as allowed by the DEECo semantics). To partially remedy this prob-
lem, we can modify the DCCL model so that an execution of a process/knowl-
edge exchange can be non-deterministically skipped, which is the case of (P3).
Nevertheless, this still does not reflect complete parallelism.

Properties related to real time. Expanding on the previous point, the DCCL
semantics does not allow verification of properties related to real time execu-
tion, such as that the periods of processes and knowledge propagation/exchange
that have mutual knowledge dependencies are set up correctly, i.e., so that they
together provide a satisfactory end-to-end response time. Similar to the previous
case, DCCL allows only for a partial solution based on a simple discretization
of time, which is the case of (P4).

7 Modeling the Case Study

In order to evaluate DCCL w.r.t. verification of realistic DEECo properties
(Sect. 6.1), we have fully modeled the running example presented in Sect. 2, while
following the implementation outlined in Sect. 3. Note that the running example
retains many important challenges of the realistic, industry-relevant case study,
rather than being a mere experimental setting.

Naturally, DCCL introduces a large amount of abstraction w.r.t. the orig-
inal system behavior. For instance, the time intervals of parking reservations

136

have been discretized into a finite set of time “slots”. Similarly, we have also
discretized the geographic positions and distance. Moreover, the model includes
only a simple and fully deterministic implementation of algorithms for planning
vehicle routes, deciding PLCSs for parking, as well as for assigning parking places
to vehicles.

To gain a better insight in the impact of concurrency in knowledge exchange,
we have modeled two different variants of knowledge exchange of parking requests
in the corresponding ensembles. Specifically, these variants are concerned with
ordering of the requests coming from multiple parties concurrently. In the first
variant, which we will call “standard”, the requests are ordered based on their
content, thus eliminating the impact of concurrency. In the second variant, which
we will call “first-come-first-served”, the requests are ordered according to the
order in which knowledge exchange was executed, thus emulating the first come
first served semantics of message queues.

Note that although we always select particular components/PLCSs in the
following examples, in our experiments all the vehicles/PLCSs were symmetric
so that the selection of a particular one does not corrupt the generality of the
example.

7.1 Verification of Realistic Properties on the Case Study

To illustrate the potential of verifying realistic properties using DCCL on the
case study, we have formulated and verified at least one property of each class
identified in Sect.6.1.

Correctness of process execution (P1). As an instance of a (P1) property, we
have checked that the process of PLCS, assigning parking places to vehicles, is
correct. We have done it by verifying that a PLCS never assigns a single parking
space to two vehicles for the same time slot. This property can be expressed
via the following LTL formula: G(!v0_assigned_the_same_place_as_v1). The atomic
proposition v0_assigned_the_same_place_as_v1 checks in a straightforward way the
knowledge of each PLCS, its buffer storing the processed reservation requests in
particular, whether the two vehicles (i.e., 0 and 1) have been assigned the same
parking place. As an aside, using this property we have been able to localize
an error in the parking-place-assignment process of PLCS, which was based on
not marking a parking place as occupied after assigning it to a vehicle, and thus
assigning it twice.

Correctness of component interaction protocols (P2). As for the (P2)
property class, we have verified that whenever a vehicle creates a reservation
request, the vehicle gets eventually notified about confirmation or rejection
of the request by the corresponding PLCS. This is expressed by the formula
G(v0_requests_p0 -> (vO_requests_p0 U vO_request_to_p0_decided)) (again, for
convenience we have used a fixed pair vehicle-PLCS). Here, v0_requests_p0 is
true whenever the vehicle 0 contains a new parking request for PLCS 0, while
v0_request_to_p0_decided is true whenever the vehicle knows the decision of PLCS

137

0 on its request (be it either confirmation or rejection). Both atomic proposi-
tions are simple checks on the knowledge of vehicle 0. This property was verified
under the assumption that a PLCS’s knowledge can accommodate requests of
all relevant Vehicles. Recall that each Vehicle produces a single request for each
of its calendar events and waits for the decision.

Resilience w.r.t. interaction inconsistency/delays (P3). Using a (P3) property,
we have verified that the system is resilient w.r.t. inconsistency of PLCS-availabi-
lity information in a vehicle. Specifically, we have done it by verifying the prop-
erty that a vehicle’s reservations are always valid even if its PLCS-availability
information is inconsistent due to delays in communication. This is done by ver-
ifying the formula G(vO_has_confirmation_for_p0_t0 -> p0_blocks_place_for_v0_t0)
in a modified model where the exchange of PLCS availability can be non-
deterministically delayed for one ensemble phase. Here, v0_has_confirmation_
for_p0_t0 is true whenever vehicle 0 has a confirmed reservation of a place on
PLCS 0 for the time slot 0, while pO_blocks_place_for_.v0_t0 is true whenever
PLCS 0 blocks a parking place for vehicle 0 for the same time slot. Both atomic
propositions are simple checks over the corresponding vehicle/PLCS knowledge.
The non-determinism is implemented as indicated in Sect. 6.

Communication-boundedness of interaction protocols (P4). As to the class (P4),
we have tried to assess the communication-boundedness of the reservation request
interaction protocol. For this, we have exploited the property that we have
used to illustrate (P2) — G(vO_requests_p0O -> (vO_requests_pO U vO_request_to_
pO_decided)). Under the timeunit semantics, since it limits the number of inter-
actions allowed in a single ensemble phase, the property will not longer hold
(for sufficiently small time limits). Thus the interaction protocol concerned with
exchanging parking reservation requests is communication bounded. Knowing
this, we could improve the design of the vehicle component so that it is resilient
w.r.t. this situation. Technically, we have done it by keeping the vehicle idle
until it receives a confirmed reservation for all its requests. Note that for exam-
ple the PLCS-availability exchange protocol is not communication-bounded, as
the vehicle does not distinguish whether the availability information is missing
because the PLCS is not relevant to any of its POIs or whether it just did not
get through due to slow communication.

7.2 Scalability Evaluation

To evaluate the scalability of DCCL w.r.t. the case study, we have measured the
size of the state space for different configurations of the case study (i.e., different
numbers and initial states of vehicles/PLCSs). Specifically, to obtain comparable
results, the configurations enforce the maximum amount of successful interaction
expected for the given number of components (i.e., without parking request
conflicts).

The scalability of DCCL is illustrated in Fig. 7. As expected, the number of
states grows exponentially w.r.t. the number of components in the system. The
curve of growth is relatively steep, however, this is acceptable given the complex-
ity of the case study and therefore also the corresponding model. Naturally, the

138

«=¢=Standard model == First-come-first-served model

100000000
10000000
1000000
100000
10000
1000

100

10

1
1/1 1/2 2/1 1/3 2/2 3/1 1/4 3/2 4/1 2/3 5/1 4/2 6/1 2/4 3/3 5/2 6/2 4/3 3/4 5/3 4/4 6/3 5/4
Number of components (Vehicles/PLCSs)

Number of states

Fig. 7. Scalability of DCCL w.r.t. the case study

first-come-first-served variant of knowledge exchange scales much worse than the
standard variant, since it generates much more states at the end of each ensem-
ble phase (capturing different permutations of requests exchanged during the
phase). In a similar way, the same configurations yielded a much bigger state
space under the timeunit semantics, since the time-constrained prefixes of knowl-
edge exchange sequences produced a lot more different states at the end of each
ensemble phase. Since the size of the state space depends on the time limit in a
complex way, we have not included this variant in the figure.

8 Discussion

8.1 Lessons Learned

A major asset of our approach to verification of DEECo-based applications is
that DCCL is based on the DiVinE model checker, which is a mature, reliable,
and well-performing tool with solid supporting infrastructure. This helped espe-
cially when verifying a large model including non-trivial behavior, such as the
one modeling the case study.

Our experiments show that even after introducing relatively significant
simplifications to the execution model (such as synchronous alternation of com-
ponent /ensemble phases, unlimited time for knowledge exchange under the fix-
point semantics), it is still possible to maintain a rich set of verifiable properties.
Specifically, this observation appears to apply not only to DEECo-based sys-
tems, but also to EBCS and even cyber-physical systems in general, since they
share common basic characteristics. Nevertheless, there are still some aspects of
DCCL, such as no explicit support for non-determinism in component process-
es/knowledge exchange, that introduce unnecessary complexity and thus could
be targeted in the future work.

Finally, we argue that when modeling non-trivial examples, the organiza-
tion of data within the model has a significant impact both on the size of the
state space (e.g., fixed index assignment vs. first-come-first-served), as well as in

139

terms of complexity (e.g., regarding formulation of atomic propositions and LTL
formulae). However, this issue has been addressed little in the contemporary
model-checking approaches and thus further investigation of this topic would be
beneficial (for instance by providing guidelines).

8.2 Improving Scalability by Ensemble State Reduction

As shown in Sect.7, DCCL is not yet able to scale to bigger configurations.
This can be partially remedied by employing a specific state-space reduction
during ensemble phase. In particular, since none of the properties that we have
experimented with relied on a valuation of atomic propositions in an internal
ensemble-phase state (i.e., a state that has transitions only from/to states in
the same ensemble phase), it should be possible to reduce the state space by
eliminating these internal ensemble-phase states. Technically, this can be done
by discarding the internal states at the end of each ensemble phase, after all the
final states of the phase have been generated.

Nevertheless, as also shown in Sect. 7, the current level of scale still suffices
to verify important realistic properties of a modeled system. Also, as supported
by our experiments, arguably a large number of important property violations
can be detected early, on a reasonably small configuration.

9 Related Work

As to the general domain of EBCS, we are currently not aware of any other
approach that would be directly related to DEECo and DCCL. However, there
is a number of approaches targeting similar domains; i.e., similar to CPS.

Closest to the area of EBCS, SCEL [8] is targeting a formalization of the
semantics of attribute-based communication (i.e., the key concept behind EBCS
ensembles) in the domain of formal coordination languages, with the future
intention of exploiting the formal semantics for analysis and verification, as well
as evaluation on an extensive case study.

When considering the broader domain of real-time embedded systems, which
share a number of aspects of CPS, there exists a number of approaches for
verification of safety and timing properties. These include well-established lan-
guages such as AADL!, EAST-ADL?, and VERDE/MARTE?, which come with
a number of related tools (e.g., COMPASS*) mainly focusing on timing and
dependability analysis, or CHESS® methodology and toolset mainly focusing on
timing, failure propagation and dependability analysis. The closest to our model-
checking of EBCS is the approach of OTHELLO/OCRA [5], which allows for

! http://www.aadl.info

2 http://www.east-adl.info

3 http://www.itea-verde.org

* http://compass.informatik.rwth-aachen.de
® http://www.chess-project.org

140

checking of refinement of contracts expressed in a variant of linear-time tempo-
ral logics interpreted over hybrid traces (i.e., traces that contain both discrete
events and continuous-time state evolution). Although all these approaches and
tools target a closely related domain to DCCL, they require a significant shift
from the EBCS concepts, thus increasing the effort required for modeling and
reducing the value of the verification results.

Our technique of model checking DCCL is built on top of the parallel and
distributed explicit-state model checker DiVinE [2]. DiVinE primarily offers the
verification of LTL properties by means of the automata-based LTL model check-
ing [13]. DiVinE accepts various input formats, one of them being the binary
Common Explicit-State Model Interface (CESMI), which we use for DCCL ver-
ification. The translation of a DCCL input file into a CESMI-compliant module
is provided via our tool dccl2cesmi®.

10 Conclusion

In this paper, we have discussed the verification possibilities of the DEECo com-
ponent model, a representative of Ensemble-Based Component Systems (EBCS).
In order to make the verification task feasible, we have designed a syntactic and
semantic specialization of DEECo called DCCL, verification of which is based
on an explicit-state model checker — DiVinE. We have further evaluated the pos-
sibilities of DCCL verification on a real-life case study and we have discussed its
limitations.

In the future, we would like to focus on two areas. One is that of further
extending DCCL to capture more relevant aspects of DEECo, e.g., introducing
specific data structures for knowledge-exchange-related tasks. The other area is
then that of reducing the state space. DiVinE itself performs certain generic
reductions, such as partial order reduction. However, we want to try reductions
that are specific to DCCL, such as some kind of symmetry reduction or the
reduction of the ensemble steps. In a more distant future, we would like to
extend the DCCL verification with quantitative aspect such as probability or
precise timing constraints.

Acknowledgments. This work has been supported by the Czech Science Foundation
grant project no. P202/11/0312.

References

1. Al Ali, R., Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M.,
Plasil, F.: DEECo computational model-I., Technical Report D3S-TR-2013-01,
D3S, Charles University in Prague. http://d3s.mff.cuni.cz/publications (2013)

2. Barnat, J., et al.: DiVinE 3.0 — an explicit-state model checker for multithreaded
C & C++ programs. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 863-868. Springer, Heidelberg (2013)

6 http://paradise.fi.muni.cz/dccl/

141

10.

11.

12.

13.

. Barnat, J., Benes, N., Cern4, L., Petruchova, Z.: DCCL: verification of component

systems with ensembles. In: Proceedings of CBSE ’13. pp. 43-52. ACM, New York
(2013)

. Bures, T., et al.: DEECo - an ensemble-based component system. In: Proceedings

of CBSE ’13. ACM, New York (2013)

. Cimatti, A., Tonetta, S.: A property-based proof system for contract-based design.

In: Proceedings of SEAA 2012. IEEE CS, Los Alamitos (2012)

Holzl, M., Rauschmayer, A., Wirsing, M.: Engineering of software-intensive sys-
tems: state of the art and research challenges. In: Wirsing, M., Banéatre, J.-P.,
Holzl, M., Rauschmayer, A. (eds.) SoftWare-Intensive Systems. LNCS, vol. 5380,
pp. 1-44. Springer, Heidelberg (2008)

Keznikl, J.; et al.: Towards dependable emergent ensembles of components: the
DEECo component model. In: Proceedings of WICSA/ECSA’12. IEEE (2012)

. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: A Language-Based Approach

to Autonomic Computing. In: Beckert, B., Bonsangue, M.M. (eds.) FMCO 2011.
LNCS, vol. 7542, pp. 25-48. Springer, Heidelberg (2012)

Patikirikorala, T., Colman, A., Han, J., Wang, L.: A systematic survey on the
design of self-adaptive software systems using control engineering approaches. In:
Proceedings of SEAMS 2012 (2012)

Rajkumar, R.R., Lee, 1., Sha, L., Stankovic, J.: Cyber-physical systems: the next
computing revolution. In: Proceedings of DAC’10. pp. 731-736. ACM, New York
(2010)

Serbedzija, N., Reiter, S., Ahrens, M., Velasco, J., Pinciroli, C., Hoch, N.,
Werther, B.: Requirement specification and scenario description of the ascens case
studies (2011), deliverable D7.1. http://www.ascens-ist.eu/deliverables

Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-theoretic,
and Logical Foundations. Cambridge University Press, Cambridge (2009)

Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program ver-
ification (preliminary report). In: Proceedings, Symposium on Logic in Computer
Science (LICS’86), pp. 332-344. IEEE Computer Society (1986)

142

3.6 Adaptive Deployment in Ad-Hoc
Systems Using Emergent Component
Ensembles: Vision Paper

Lubomir Bulej,
Tomas Bures,
Vojtéch Horky,
Jaroslav Keznikl

In proceedings of the 4th ACM/SPEC International Conference on
Performance Engineering (ICPE “13).

Published by ACM,
pages 343-346,

ISBN 978-1-4503-1636-1,
April 2013.

The original version is available electronically from the publisher's site
at http://dx.doi.org/10.1145/2479871.2479922.

143

http://dx.doi.org/10.1145/2479871.2479922

Chapter 3. Collection of Papers

Summary of the Paper

The focus of this paper, which was published as [BBHK13], is application of the archi-
tecture abstractions of DEECo in relevant problem domains, namely in the domain of
adaptive deployment in mobile and ad-hoc cloud systems [GKSS11, KDMF10].

The main contribution of this paper is that it illustrates how DEECo abstractions
help at the architecture level efficiently address the RDS challenges of dynamism, com-
munication-link instability, and open-endedness, which are equally manifested in the
open and dynamic character of the ad-hoc cloud (i.e., challenges C1-C3 outlined in Sec-
tion 1.3). This way, the paper supports and evaluates the contributions of this thesis w.r.t.
the research goals G1 and (partially) G3.

In particular, the paper presents a vision of a DEECo-based software architecture
that is able to efficiently handle adaptive planning of application-component deploy-
ment and migration in ad-hoc clouds. The vision of the paper is motivated by the fol-
lowing scenario. A user travelling in a bus is working on a mobile device (e.g., a tablet).
Her device registers the presence of an offload server machine located in the bus itself,
and to save battery, it offloads the application components featuring computationally
intensive tasks to that machine. When the bus approaches its destination, the offload
server notifies the mobile device that its service will soon become unavailable and com-
ponents will start migrating back to the device. At the destination, the mobile device will
potentially discover another offload server, provided for example by a bus terminal au-
thority, and the offloading process will repeat.

The DEECo-based architecture presented in the paper is based on the idea of ex-
ploiting the stateless, best-effort, and dynamic nature of ensemble knowledge exchange
to overcome the dynamic availability of the offload nodes, which is caused mainly by
the mobility of the device primarily responsible for the application being offloaded/mi-
grated.

Specifically, ensemble knowledge exchange is employed to continuously advertise
the offloading requests to the eligible offload nodes (as specified declaratively via en-
semble membership; e.g., nodes within 2 network hops). Each request includes infor-
mation about an application component to be offloaded. The relevant offload nodes (i.e.,
both the eligible ones and the one where the application component is currently de-
ployed) then set up monitoring components (a.k.a. monitors) to assess the (potential)
performance of the application component in that particular deployment (e.g., response
time, energy consumption, etc.). This phase differs between the node that actually runs
the application component and the other offload nodes (i.e., the former one can use di-
rect measurements, while the latter ones need to employ some prediction methods). Us-
ing another ensemble, this information is continuously being advertised back to the mo-
bile device primarily responsible for the application, which uses the information to de-
cide the optimal deployment. If the deployment decision leads to a migration, all the in-
volved offload nodes are notified (via an ensemble) to adjust their monitors. Note that
the architecture focuses solely on the task of planning and assumes an external mecha-
nism for the actual migration.

144

3.6. Adaptive Deployment in Ad-Hoc Systems Using Emergent Component Ensembles: Vision
Paper

In a way, the architecture (i.e., the advertisement of offload requests, monitoring,
advertisement of monitoring results, and planning) forms a closed feedback loop that
continuously evaluates the optimal deployment. This way, the declarative nature of en-
semble membership enables the architecture to reconfigure freely based on the dynamic
availability of the offload nodes.

As an aside, in a similar vein we have elaborated several other applications of
DEECo, mostly in cooperation with Volkswagen AG. This includes design and imple-
mentation of variants of the cooperative vehicle navigation scenario [SRA+11] featured
by the ASCENS project; the results, however, are not publicly available as they fall under
a non-disclosure agreement. An excerpt of these results can be found in [SHP+13,
SMP+12]. Another application of DEECo is overviewed in [BGAA14]. Finally, in
[MKH+13] we have put the ideas presented in this paper into the context of voluntary
cloud computing researched within the ASCENS project.

Comments on Authorship

Although the idea of adaptive deployment in ad-hoc clouds based on performance esti-
mations is of equal authorship, I significantly contributed to its elaboration in terms of
a DEECo-based architecture. In addition, with the help of the other authors, I authored
a majority of the text.

145

Chapter 3. Collection of Papers

146

Adaptive Deployment in Ad-Hoc Systems Using Emergent
Component Ensembles: Vision Paper

Lubomir Bulej? Tomas Bures'?

!Charles University in Prague
Faculty of Mathematics and Physics
Malostranské namésti 25
118 00 Prague 1, Czech Republic

Vojtéch Horky! Jaroslav Keznikl'-2

2Academy of Sciences of the Czech Republic

Institute of Computer Science
Pod Vodarenskou vézi 2
182 07 Prague 8, Czech Republic

{bulej,bures,horky,keznikl}@d3s.mff.cuni.cz

ABSTRACT

Mobile cloud computing in the context of ad-hoc clouds
brings new challenges when offloading computation from
mobile devices. The management of application deployment
needs to ensure that the offloading provides users with the
expected benefits, but it suddenly needs to cope with a highly
dynamic environment which lacks a central authority and in
which computational nodes appear and disappear.

We propose an approach to the management of ad-hoc
systems in such dynamic environment using component en-
sembles that connect mobile devices with more powerful
computation nodes. Our approach aims to address the chal-
lenges of scalability and robustness of such systems without
the need for central authority, relying instead on simple pat-
terns that lead to reasonable adaptation decisions based on
limited and imprecise information.

Categories and Subject Descriptors

[Computer systems organization]: Other architectures
— Self-organizing autonomic computing, Distributed architec-
tures — Cloud computing; [Software and its engineer-
ing]: Extra-functional properties — Software performance

Keywords

ad-hoc cloud, ensembles, adaptive deployment

1. INTRODUCTION

Increasing capabilities of handheld devices and improve-
ments in mobile network infrastructures pave the way for
mobile cloud computing [1], an architectural solution where
mobile devices offload computation to the cloud to gain ad-
vantage for example in increased computing power or reduced
battery usage. Another motivation is the emergence of ad-
hoc clouds [2], whose computing power comes from pooled
resources of nearby general-purpose computing devices rather

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICPE’13, April 21-24, 2013, Prague, Czech Republic.

Copyright 2013 ACM 978-1-4503-1636-1/13/04 ...$15.00.

147

than from dedicated servers. Our work, carried out in the
scope of the ASCENS project [3], aims to combine and ex-
tend the two trends by blurring the traditionally strict [4]
boundary between the client devices and the cloud infras-
tructure. We envision an ad-hoc cloud formed as a multitude
of dynamically emerging groups of computational devices
that share their computing power. The groups will typically
involve a number of mobile devices along with locally situ-
ated general-purpose computers, potentially connected to a
remotely situated dedicated cloud infrastructure.

Important specifics of our ad-hoc cloud concept are that it
has a dynamic, mostly uncontrollable architecture with fluc-
tuating computing power and partially limited resources, e.g.
the available battery charge for mobile devices. The promise
of the ad-hoc cloud is in maintaining the usual benefits asso-
ciated with offloading computation to a cheap, flexible and
resilient environment—however, the ad-hoc cloud applica-
tions must dynamically adapt their deployment to deliver
the expected user experience in such specific conditions.

The challenge in application adaptation is related to the
open character of the ad-hoc cloud. Where a common cloud
application can react to increased utilization by requesting
additional computing resources, an application in an ad-hoc
cloud must act in presence of other adapting applications
that share the same resources. Even the scheduling solutions
for computational grids, which do cope with shared resources,
assume a degree of centralization knowledge and control over
the grid that is not available in the ad-hoc cloud [5]. We
therefore believe that the application of adaptation solutions
in ad-hoc clouds will not assume the shape of complex al-
gorithms that compute close-to-optimal deployment under
dynamic conditions, but rather the shape of relatively simple
patterns that lead to reasonable adaptation decisions relying
on limited and imprecise information.

In this vision paper, we focus on the problem of adaptive
deployment planning in ad-hoc clouds and outline an adapta-
tion approach based on a component system with emergent
component ensembles [6, 3]. We assume an external mecha-
nism would be responsible for the actual migration [7]. We
discuss the potential benefits and scalability of this approach.

2. MOTIVATING EXAMPLE

Besides smart phones, we consider tablet computers to
be a perfect target for mobile computing in ad-hoc clouds—
modern applications take advantage of their relatively high
computational power and users tend to use them both for

work and entertainment. However, they are still constrained
by the limited battery life.

We start our vision with an example, where we consider a
user travelling in a train or a bus, who wants to do produc-
tive work using her tablet computer or review travel plans
and accommodation. Her tablet registers the presence of an
offload server machine located in the bus itself, and to save
battery, it offloads most computationally intensive tasks to
that machine. Later, when the bus approaches the destina-
tion, the offload server notifies her tablet that its service will
soon become unavailable and tasks will start moving back
to the tablet. When the bus enters the terminal, the tablet
will discover another offload server, provided by the terminal
authority, and move some of its tasks to the newly found
machine.

Many similar examples can be found, and they would
follow similar pattern. Abstracting away from the details,
we can try to capture such examples formally under one
general umbrella. Assume a mobile device M (tablet in
our example) and two stationary devices S and T (offload
servers in our example). M executes application A, which is
internally split into two parts: a frontend Af, responsible for
the interaction with a user, and a backend Ab, responsible
for the computationally intensive tasks.

In our scenario, M discovers S and assesses that offloading
the computationally intensive Ab to S could save M’s battery.
After some time, S signals that it is going to be unavailable,
but M discovers that there are other devices available. Ab
is thus migrated to the one that appears most suitable for
running Ab—device T in our scenario.

The challenge is in predicting which deployment scenario
will—in the context of ad-hoc cloud—deliver the expected
user experience. We assume that each application will have a
simple performance model that, given specifics of the execu-
tion environment and other constraints, will provide a rough
estimate of the expected user experience (e.g. what frame
rate could be achieved given CPU and GPU budget). The
application deployment would be then planned dynamically,
taking into account the expected user experience estimated
by the model, possibly corrected for measured accuracy of
the model from past deployments.

3. COMPONENT ENSEMBLES

Although the scenario of the running example is relatively
straightforward, it is relatively difficult to realize due to
the inherent dynamicity of the whole ecosystem (i.e. all
applications and devices). Further, the combination of the
dynamicity and the autonomy of the applications and devices
imply the absence of the notion of a global state. In fact,
every information about the ecosystem has the form of a
“belief” — i.e. an information valid to only a certain extent.

To cope with these issues, we suggest in this paper to
take advantage of a component system based on emergent
component ensembles [6, 3] and use it to represent situation
in such a dynamic ecosystem and to manage the belief about
it. To this end, we outline in the rest of the section the basic
principles of component ensembles and explain their use in
addressing the adaptation in Section 4.

Emergent component ensembles are based on the idea of
implicit communication via implicit bindings. Specifically,
an ensemble is a dynamically formed group of components,
where a component constitutes knowledge (i.e., data) and
processes (i.e., active threads operating upon the knowledge).

148

The membership of a component in an ensemble is determined
dynamically (the task of the component system runtime
framework) according to the membership condition of the
ensemble specified upon the knowledge of the components. In
an ensemble one component plays the role of the ensemble’s
coordinator while others play the role of members. A single
component can be member and/or coordinator of multiple
ensembles at the same time; thus an ensemble forms an
independent logical overlay over components.

The interaction among the components forming an ensem-
ble takes the form of knowledge exchange, carried out implic-
itly (by the runtime framework); i.e., the runtime framework
transfers knowledge from one component of the ensemble to
another independently on the components’ execution.

The benefit of such ensembles is that they allow for cap-
turing communication (i.e., exchange of knowledge) among
a (potentially) large, declaratively defined set of components
in a concise way.

4. ADAPTATION ARCHITECTURE

To address the aforementioned challenges, we present a
generic architecture of adaptation logic, based on emergent
component ensembles. The proposed adaptation architecture
follows the following basic principles.

To ensure separation of concerns, the adaptation logic
forms a separate overlay architecture mirroring the architec-
ture of the adapted application.

Additionally, the entities important for deciding adap-
tation, i.e., (a) computation nodes (and their NFPs), (b)
individual adapted applications (and their NFP preferences),
and (c) the applications’ components (and their NFPs), are
explicitly reflected in the adaptation architecture.

4.1 Adaptation architecture components

The adaptation architecture (Figure 1) is formed by fol-
lowing components:

Planner. Each adapted application, and particularly its
NFP preferences, are represented by the Planner compo-
nent. Specifically, the Planner selects a (potentially optimal)
deployment of the application, given the alternatives for de-
ploying each of the application’s components. We assume
an external mechanism [7] to interpret the deployment plan
provided by the Planner and perform the adaptation (e.g., by
migrating a component). The alternatives comprise impor-
tant NFP-related data (NFPData) indicating the (potential)
performance of the corresponding application component in
that particular deployment (e.g., FPS, energy, etc.). The
Planner also advertises definitions of Monitors for individual
application components (MonitorDef); see Device.

Monitor. Each application component, particularly each
of its deployment alternatives, is reflected by the Monitor
component, which is responsible for obtaining the NFPData
for that particular alternative. Monitor operates in one of
the two modes, depending on the actual deployment of the
corresponding application component.

e Monitor is in the running mode if it resides on the
same computation node as the corresponding applica-
tion component, i.e. it reflects the actual deployment.
NFPData is obtained by performance measurement and
analysis of the running application component.
Monitor is in the mock mode if it resides on a differ-
ent computation node, i.e. it represents a potential
deployment alternative. NFPData is obtained from

Mobile device

Device(M)

MonitorDef(*) i‘
NFPDeviceData(*) }‘
(1) The Device spawns a new K

monitor in the mock mode for each new MonitorDef
(3) After externally migrating-out the application
component the Device turns the monitor into mock mode

NFPDeviceData(A) |<

Monitor(Ab) & |

ATV g

.
.,

—_— >| MonitorDef(*) Device(S)
\ T
Ve
2,3)
(2,3)
|/ NFPDeviceData(*) |-
| / (2) The Device spawns a new monitor “.‘

Distributes only models
thatare allowed to be
migrated on the device

23 /_l_\
N

Stationary device

in the mock mode for each MonitorDef
(3) After external ly migrating-in

the application component the Device
turns the monitor into running mode

2, 3)/\ /
NFPData(A*)

NFPDeviceData(A) |<

|
(1,2) <<running>> NFPData(Ab) |’ | MonitorDef(A*)
(3) <<mock>> Monitor(Ab) E
$:, (1,2,3) NFPData(Ab) (2 <<mock>>
. Planner(A) (3) <<running>>
Monitor(Af) NFPData(Af)
<<running>>

DeploymentPlan(A)

Figure 1: Adaptation architecture of the running example: phases 1 (M isolated), 2 (S discovered), and 3 (Ab
migrated to S). Phases 1,2,3 are in the figure denoted by (1), (2), (3).

the included performance dependency model of the
corresponding application component (e.g., the func-
tion CPU x GPU — FPS). In other words, Monitor
predicts — based on the model — the performance of
the application component if it would be deployed on
that computation node. The model might depend on
particular machine-specific performance data (NFPDe-
viceData, e.g., available CPU speed, etc.); see Device.

Device. Each computation node is reflected by the De-
vice component. Specifically, a Device component ensures
management of the Monitors (e.g., it instantiates Monitors
advertised by newly discovered Planners) and it provides
NFPDeviceData for Monitors in the mock mode.

4.2 Adaptation architecture ensembles

The expectation is that the number of available computa-
tion nodes, as well as the number of Monitors, changes dynam-
ically. Therefore, the communication among the components
exploits the concept of emergent component ensembles. The
architecture involves the following ensembles (Figure 1):

Planner and Device(s). Each Planner is a coordinator
of an ensemble that distributes MonitorDefs (including the
performance dependency model) of application components
to Devices representing currently available computation nodes
(including the one the Planner is running on). The Planner is
able to constraint which MonitorDefs should be distributed
to which Devices (effectively constraining the potential mi-
gration destinations for a particular application component).
A simplified example of a definition of this ensemble is in
Figure 2. It specifies that only reachable devices within
2 network hops are to be considered and that this check is
to be performed every 15 seconds. The distribution of the
MonitorDefs is performed by adding the MonitorDef to the
target component’s knowledge.

Planner and Monitor(s). Each Planner is a coordinator
of an ensemble that aggregates NFPData from all Monitors
corresponding to the components of the application reflected
by the Planner. Thus, this ensemble aggregates all the de-
ployment alternatives for the application.

149

ensemble PlannerToDevice:
coordinator: Planner
member: Device
membership: HopDistance(Planner.device, Device) < 2
knowledge exchange:
Device.monitorDef[Planner.app] := Planner.monitorDef
scheduling: periodic(15s)

Figure 2: Example of an ensemble definition.

Device and Monitor(s). Each Device component is a
coordinator of an ensemble that distributes NFPDeviceData to
the Monitors in the mock mode residing on the corresponding
computation node.

4.3 Adaptation architecture in action

In this section, we illustrate on the motivation example
the adaptation architecture interaction at runtime.

At first (phase 1, Figure 1), the ensemble distributes the
MonitorDefs of both Af and Ab from Planner of A to the Device
component of the mobile device (M), which subsequently
spawns Monitors for both components and sets them to the
running mode. The Monitors start measuring NFPData of the
running components which are then aggregated back to the
Planner. So far no deployment alternatives are discovered.

After the stationary device (S) is discovered (phase 2,
Figure 1), the ensemble propagates MonitorDefs of the com-
ponents that could be (potentially) migrated (i.e., Ab) to its
Device component, which spawns a new Monitor. Since Ab is
deployed on a different Device this Monitor runs in the mock
mode. Thus, the Device component of the stationary device
feeds the Monitor with NFPDeviceData allocated for A. Based
on this NFPDeviceData and the performance dependency
model of Ab the Monitor produces NFPData reflecting the
expected performance of Ab on S. Consequently, another
ensemble aggregates all the currently produced NFPData
for Af and Ab to the Planner. The Planner thus eventually
discovers that there are two deployment alternatives for Ab
(i-e., one actually running on M and one modeled on S) and
finally decides to deploy Ab on the stationary device.

After Ab is migrated to the stationary device (phase 3,
Figure 1), the Monitor on S is set to the running mode, while
the Monitor on M is set to the mock mode and the whole
monitoring and planning process repeats.

In the case of discovering further stationary devices, new
Monitors in the mock mode are spawned which eventually
results in new deployment alternatives aggregated in the
Planner (similarly, if devices disappear).

5. BENEFITS

Scalability and robustness. By exploiting the features
of the ensembles, the adaptation architecture scales well with
the number of computation nodes, applications, and compo-
nents per application. In fact, the adaptation architecture
does not require any changes when increasing the number
of nodes/applications/components. Furthermore, it is very
robust with respect to emergence of computation nodes.

Transparent trade-off management. Due to the de-
clarative nature of ensembles, it is possible to easily manage
the trade-offs between the benefit of migration and the effort
necessary for monitoring and planning. For instance, Mon-
itors do not have to be spawned on all available nodes but
only on a subset; e.g., only the nodes in the same subnet.

Respecting interests of all involved parties without
central authority. Although each application is planned
autonomously, it is possible (without any centralized author-
ity) to take into account the interests of the other applications
and of host devices by regulation of the NFPDeviceData and
management of the application’s Monitors — e.g., the NF-
PDeviceData may reflect only a portion of device’s resources.

Flexible NFP data acquisition. The NFPData pro-
duced by Monitors may contain any information important for
deciding adaptation as along as it is obtainable via measure-
ments and/or performance dependency model, e.g., latency
between Ab and Af, expected up-time of the computation
node (for detecting shutdowns), etc. Moreover, a Monitor can
decide between accepting NFPDeviceData given by Device
and measuring its own, e.g., Monitor(Ab) can either individ-
ually measure latency to Af or rely on the network latency
information given by Device(S). Although the performance
dependency model employed by a Monitor will usually provide
only a rough approximation of the expected performance, it
can be potentially improved by actual measurements.

Scalable extensions. Being declarative, the ensembles
allow the design to scale with respect to potential extensions
of the basic architecture. For instance the Planner itself can
be subject to migration in case the application does not
have any frontend. Additionally, when understanding the
Planner as an entity controlling the NFPs of the application,
it is possible to foresee the existence of multiple Planners per
application, thus hierarchically decomposing the adaptation.

6. RELATED WORK

In our previous work [8] we proposed to use Stochastic
Performance Logic (SPL) [9] to express rules for adaptation
in component systems based on real and predicted perfor-
mance of individual components. The rules controlling the
adaptation are similar to the decision logic of the Planner
that compares deployment alternatives for Ab.

The issue and challenges of dynamic deployment adapta-
tion has been formulated [4] and addressed [10] previously.
However, in spite of the variety of solutions to the indi-

150

vidual challenges (e.g., parameters of decision, migration
to stationary only or also to mobile devices, acquisition of
NFP-related data, etc.), in the majority of the approaches a
predetermined solution is used. On the other hand, our adap-
tation architecture is dynamic enough to allow for combining
multiple solutions simultaneously and selecting among them
dynamically. It also provides general means to address the re-
maining challenges (e.g., scheduling of NFP data acquisition
or estimation of cost for running before real execution).

A significant body of work has been devised in the related
area of Mobile Cloud Computing (MCC) [1]. Although many
of the challenges and solutions can be adopted in ad-hoc
clouds, there is a significant difference in perceiving the
role of the mobile device, i.e., MCC considers the mobile
device as separate from the cloud while ad-hoc clouds do not
distinguish among the role of the devices.

We assume an external mechanism responsible for the
deployment /migration-related aspects of our approach since
it has been intensively researched separately, e.g., in [7].

7. CONCLUSION

In this paper, we have presented our vision on addressing
the problem of planning deployment adaptation in ad-hoc
clouds. In particular, we have described a generic architecture
for deployment adaptation logic that is based on the concept
of emergent component ensembles. We have also discussed
the potential benefits and scalability of this architecture.

8. ACKNOWLEDGEMENTS

This work has been supported by EU project 257414
ASCENS and GACR project P202/10/J042 FERDINAND.

9. REFERENCES

[1] L. Guan et al., “A survey of research on mobile cloud
computing,” in Proc. ICIS’11, pp. 387-392, IEEE CS,
2011.

G. N. C. Kirby et al., “An approach to ad hoc cloud
computing,” CoRR, vol. abs/1002.4738, 2010.

M. Hoélzl et al., “Engineering Ensembles: A White
Paper of the ASCENS Project.” ASCENS Deliverable
JD1.1, 2011. Online: http://wuw.ascens-ist.eu.
B.-G. Chun and P. Maniatis, “Dynamically partitioning
applications between weak devices and clouds,” in Proc.
MCS°10, pp. 1-5, ACM, 2010.

C. Jiang et al., “A survey of job scheduling in grids,” in
Advances in Data and Web Management, vol. 4505 of
LNCS, pp. 419-427, Springer, 2007.

J. Keznikl et al., “Towards Dependable Emergent
Ensembles of Components: The DEECo Component
Model,” in Proc. WICSA/ECSA’12, IEEE, 2012.

S.-H. Hung et al., “Executing mobile applications on
the cloud: Framework and issues,” Computers €
Mathematics with Applications, vol. 63, no. 2, 2012.

L. Bulej et al., “Performance awareness in component
systems: Vision paper,” in Proc. COMPSAC’12
Workshops, pp. 514519, IEEE CS, 2012.

L. Bulej et al., “Capturing Performance Assumptions
using Stochastic Performance Logic,” in Proc. ICPE’12,
pp. 311-322, ACM, 2012.

M. Sharifi, S. Kafaie, and O. Kashefi, “A survey and
taxonomy of cyber foraging of mobile devices,” IEEE
Commun. Surveys Tuts., vol. 14, 2012.

(10]

Chapter 4

Conclusion & Open Challenges

This thesis has introduced and elaborated the DEECo component model, which encapsu-
lates the architecture abstractions tailored for building dynamic software architectures
of Resilient Distributed Systems (RDS). The thesis has also introduced the corresponding
methods for design, implementation, and analysis of DEECo-based architectures. In this
respect, the research goals G1-G3 outlined in Section 1.4 have been achieved. The con-
tributions of this thesis have been presented in terms of a commented collection of co-
authored publications, listed in Chapter 3. Specifically, the thesis has presented
the DEECo architecture abstractions, centered on the component ensemble concept,
which allow for building open-ended, dynamic software architectures that are resilient
to communication-link instability and frequent changes in the observable application
context, as is often the case in RDS (G1). It has also introduced the Invariant Refinement
Method (IRM) — a formally grounded design method that embraces the specifics of these
architecture abstractions and enables dependable design of DEECo-based architec-
tures (G2). In addition, the thesis has presented ARCAS — a formally grounded method
for specification and automated synthesis of software connectors that enables scalable,
open-ended design and realization of component bindings in face of architecture heter-
ogeneity and dynamism, typical for RDS (G2). Further, the thesis has detailed the se-
mantics of the DEECo abstractions w.r.t. distributed and decentralized execution, in-
cluding a mapping into Java and an execution environment prototype — jDEECo (G3). It
has also elaborated and evaluated this semantics in the context of formal verification via
model checking (G3). Finally, the thesis has illustrated the benefits of DEECo by provid-
ing a vision of a dynamic architecture for an RDS ensuring adaptive task deployment in
ad-hoc cloud systems (G1, G3).

In summary, since software architecture design for RDS is a very broad and chal-
lenging area that has gained attention only recently, this thesis does not attempt to ad-
dress every aspect of the challenges related to dynamic architectures of RDS, such as
efficient middleware-level implementation. Instead, it aims at clarifying the crucial as-
pects in order to provide a potential baseline for further research in this area.

To conclude this thesis, the remainder of this chapter presents the author's subjec-
tive vision of the open research challenges related to the area of dynamic software archi-
tectures for RDS:

151

Chapter 4. Conclusion & Open Challenges

Emergent behavior vs. dependability. One of the important challenges of RDS and sim-
ilar domains, such as cyber-physical systems, is the clash between dependability and
emergent behavior (i.e., unforeseen behavior resulting from interactions of many ele-
ments of a system or from interaction with an unpredictable environment). While de-
pendability, usually governed by a predictable and analyzable software design, depends
on limiting or eliminating emergent behavior, open-endedness and autonomy typically
require facilitating the emergent behavior. Although this thesis has contributed to solv-
ing this issue at the level of software architecture abstractions (e.g., component ensem-
bles follow strict and predictable design-time prescriptions, while still being established
according to the unforeseen situations emerging at runtime), the discrepancy between
dependability and emergent behavior remains a very important open challenge, espe-
cially in the context of software-architecture design and analysis.

One of the possible research directions in this context is based on the idea of meta-
adaptation, i.e., adaptation of adaptation mechanisms themselves via employing mod-
els@runtime [PMC+12]. Specifically, while the meta-adaptation can be designed to em-
ploy strictly predictable and dependable adaptation mechanisms, it still enables reacting
flexibly enough to cope with the emergent situations at runtime. An interesting step to-
wards this direction in RDS that are displaying emergent behavior due to an unpredict-
able environment is to design the meta-adaptation in such a way that the dependability
degrades gradually in a controlled manner. Our initial attempt of pursuing this direc-
tion, accompanied with an extension of jDEECo with support for models@runtime, is
presented in [BGH+14b].

Provided that the emergent behavior can be approximated stochastically, another
promising direction is integration of quantitative verification techniques [Kwi07], which
enable formal verification of systems that exhibit stochastic behavior, into software ar-
chitecture design. This can even include application of quantitative verification for plan-
ning adaptation at runtime [CGKM12].

Fighting inaccuracy. Components in decentralized, distributed systems akin to RDS
maintain belief about the state of the other components and/or of the real state of their
(physical) environment. Because of the distribution and periodic nature of real state
sensing, a belief is necessarily outdated (stale). This implies inherent belief inaccuracy
(i.e., a deviation of the belief from the real state), which negatively affects the correctness
and safety attributes of RDS. The problem lies in the fact that inaccuracy is often hidden
in an RDS architecture behind the assumption that components operate correctly in
“normal” cases when their belief is not “too stale”. Hence, one of the important open
challenges is to explicitly acknowledge and address the issue of belief inaccuracy during
architecture design.

To this end, an important property of belief in RDS is that it often reflects a real state
that changes gradually (e.g., position, battery capacity, temperature). Consequently, one
can take advantage of the physical laws that govern the evolution of such real state to
estimate/predict the inaccuracy of the belief. Therefore, a promising idea is to establish
explicit safety bounds on such predicted belief inaccuracy at the level of architecture in

152

order to capture the margins of safe component operation. In [AABG+14b], we have dis-
cussed how such safety bounds can be employed for runtime architecture adaptation.

Exploiting specifics of RDS. The previous open challenges have primarily aimed at
solving particular challenges that make software-architecture design for RDS difficult.
However, it would be wrong to perceive all the specifics of RDS as obstacles impeding
software development, since these specifics also provide new opportunities for getting
around the software-engineering challenges in RDS. In this perspective, it is desirable to
take advantage of such RDS specifics instead of aiming at adaptation of traditional ap-
proaches (e.g., adopting an RDS-specific programming model instead of building a com-
plex middleware to provide a traditional programming model).

One of the promising specifics is the physical mobility. Mobile devices can carry
information while moving, which contributes to the overall connectedness of the system
by bringing the information across otherwise disconnected network partitions. For ex-
ample, a vehicle moving along a street segment can aggregate temperature data meas-
ured by independent sensors located in the tarmac along its route (which themselves
cannot reach any external network) and publish the data on a remote server.

Another interesting aspect of RDS that can be potentially exploited is the locality of
information, meaning that the utility of certain measurable system attributes depends
on the physical location where these attributes were measured. This has the potential to
contribute to system robustness (e.g., sensor-data sharing among nearby devices in face
of sensor failures) and scalability (e.g., information does not need to be shared beyond
its “area of effect”). Our initial attempt of investigating this opportunity, supported by
an experimental, fully decentralized implementation of jDEECo targeting mobile ad-hoc
networks, is presented in [BGH+14a].

This is definitely not a complete list of such RDS specifics. Therefore, searching for
further specifics that could be advantageously exploited for designing RDS is, by itself,
one of the most interesting open challenges.

153

Chapter 4. Conclusion & Open Challenges

154

References

[AABG*13]

[AABG*14a]

[AABG*14b]

[ABZ12]

[ACD93]

[ADLMWO09]

[AGY7]

[ASCNO3]

[AZ12]

[AZI09]

R. Al Ali, T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and
F. Plasil. DEECo computational model — I. Technical Report D3S-TR-2013-01,
Dep. of Distributed and Dependable Systems, Charles University in Prague, Feb-
ruary 2013. Available online: http://d3s.mff.cuni.cz/publications/.

R. Al Ali, T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and
F. Plasil. DEECo: an Ecosystem for Cyber-Physical Systems. In ICSE "14: Compan-
ion Proceedings of the 36th International Conference on Software Engineering, pages
610-611. ACM, June 2014. Poster and extended abstract. Available online: http://-
d3s.mff.cuni.cz/publications/.

R. Al Alj, T. Bures, I. Gerostathopoulos, J. Keznikl, and F. Plasil. Architecture Ad-
aptation Based on Belief Inaccuracy Estimation. In WICSA "14: Proceedings of the
11th Working IEEE/IFIP Conference on Software Architecture. IEEE CS, April 2014.

D. B. Abeywickrama, N. Bicocchi, and F. Zambonelli. SOTA: Towards a general
model for self-adaptive systems. In WETICE "12: Proceedings of the 21st Interna-
tional Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises,
pages 48-53. IEEE, 2012.

R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Infor-
mation and Computation, 104(1):2-34, 1993.

J. Andersson, R. De Lemos, S. Malek, and D. Weyns. Reflecting on self-adaptive
software systems. In SEAMS ‘09: Proceedings of the 2009 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, pages 38—47. IEEE, 2009.

R. Allen and D. Garlan. A formal basis for architectural connection. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 6(3):213-249, 1997.

J. Aldrich, V. Sazawal, C. Chambers, and D. Notkin. Language support for con-
nector abstractions. In ECOOP '03: Object-Oriented Programming, volume 2743 of
Lecture Notes in Computer Science, pages 74—102. Springer, 2003.

D. B. Abeywickrama and F. Zambonelli. Model checking goal-oriented require-
ments for self-adaptive systems. In ECBS "12: Proceedings of the 19th International
Conference and Workshops on Engineering of Computer Based Systems, pages 33—42.
IEEE, 2012.

D. Athanasopoulos, A. V. Zarras, and V. Issarny. Service substitution revisited.
In ASE’09: Proceedings of the 24th IEEE/ACM International Conference on Automated
Software Engineering, pages 555-559. IEEE, 2009.

155

http://d3s.mff.cuni.cz/publications/
http://d3s.mff.cuni.cz/publications/
http://d3s.mff.cuni.cz/publications/

References

[BB12]

[BBB*11]

[BBB*12]

[BBB*13]

[BBC+06]

[BBCO12]

[BBCP13]

[BBF09]

[BBG+06]

[BBH*12]

[BBH*13]

K. Beetz and W. Bohm. Challenges in Engineering for Software-Intensive Embed-
ded Systems. In Model-Based Engineering of Embedded Systems, pages 3-14.
Springer, 2012.

A.Basu, S. Bensalem, M. Bozga,]. Combaz, M. Jaber, T.-H. Nguyen, and J. Sifakis.
Rigorous Component-Based System Design Using the BIP Framework. IEEE Soft-
ware, 28(3), 2011.

A.Basu, S. Bensalem, M. Bozga, B. Delahaye, and A. Legay. Statistical abstraction
and model-checking of large heterogeneous systems. International Journal on Soft-
ware Tools for Technology Transfer, 14(1):53-72, 2012.

J. Barnat, N. Benes, T. Bures, 1. Cerna, J. Keznikl, and F. Plasil. Towards Verifica-
tion of Ensemble-Based Component Systems. In FACS "13: Proceedings of the 10th
International Symposium on Formal Aspects of Component Software, volume 8348 of
Lecture Notes in Computer Science. Springer, October 2013. In press. Available
online: http://d3s.mff.cuni.cz/publications/.

M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins,
U. Montanari, A. Ravara, D. Sangiorgi, et al. SCC: A Service Centered Calculus.
In Web services and formal methods, volume 4184 of Lecture Notes in Computer Sci-
ence, pages 38-57. Springer Berlin Heidelberg, 2006.

N. Benes, B. Buhnova, I. Cerna, and R. Oslejsek. Reliability Analysis in Compo-
nent-based Development via Probabilistic Model Checking. In CBSE "12: Proceed-
ings of the 15th ACM SIGSOFT Symposium on Component Based Software Engineer-
ing, pages 83-92. ACM, 2012.

J. Barnat, N. Benes, I. Cerna, and Z. Petruchova. DCCL: verification of component
systems with ensembles. In CBSE “13: Proceedings of the 16th International ACM
Sigsoft Symposium on Component-based Software Engineering, pages 43-52. ACM,
2013.

G. Blair, N. Bencomo, and R. B. France. Models@run.time. Computer, 42(10):22—
27, 2009.

B. Becker, D. Beyer, H. Giese, F. Klein, and D. Schilling. Symbolic invariant veri-
fication for systems with dynamic structural adaptation. In ICSE ‘06: Proceedings
of the 28th International Conference on Software engineering, pages 72-81. ACM,
2006.

L. Bulej, T. Bures, V. Horky, J. Keznikl, and P. Tuma. Performance Awareness in
Component Systems: Vision Paper. In COMPSACW “12: Proceedings of the 36th
IEEE Annual Computer Software and Applications Conference Workshops, pages 514—
519. IEEE Computer Society, July 2012.

J. Barnat, L. Brim, V. Havel, J. Havlicek, J. Kriho, M. Lenco, P. Rockai, V. Still, and
J. Weiser. DiVinE 3.0 — An Explicit-State Model Checker for Multithreaded C &
C++ Programs. In CAV "13: Computer Aided Verification, volume 8044 of Lecture
Notes in Computer Science, pages 863—-868. Springer, 2013.

156

http://d3s.mff.cuni.cz/publications/

References

[BBHK13]

[BBK*12]

[BBK14]

[BBNS09]

[BBS06]

[BC11]

[BCC*05]

[BCC+09]

[BCD*09]

[BCGZ06]

[BCL+06]

L. Bulej, T. Bures, V. Horky, and J. Keznikl. Adaptive Deployment in Ad-Hoc
Systems Using Emergent Component Ensembles: Vision Paper. In ICPE "13: Pro-
ceedings of the 4th ACM/SPEC International Conference on Performance Engineering,
pages 343-346. ACM, April 2013.

L. Bulej, T. Bures, J. Keznikl, A. Koubkova, A. Podzimek, and P. Tuma. Capturing
Performance Assumptions Using Stochastic Performance Logic. In ICPE “12: Pro-
ceedings of the 3rd ACM/SPEC International Conference on Performance Engineering,
pages 311-322. ACM, April 2012.

M. Babka, T. Balyo, and J. Keznikl. Solving SMT Problems with a Costly Decision
Procedure by Finding Minimum Satisfying Assignments of Boolean Formulas. In
R. Lee, editor, Software Engineering Research, Management and Applications, volume
496 of Studies in Computational Intelligence, pages 231-246. Springer International
Publishing, 2014.

S. Bensalem, M. Bozga, T.-H. Nguyen, and]. Sifakis. D-Finder: A tool for compo-
sitional deadlock detection and verification. In CAV 09: Computer Aided Verifica-
tion, volume 5643 of Lecture Notes in Computer Science, pages 614-619. Springer,
2009.

A.Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components
in BIP. In SEFM "06: Proceedings of the Fourth IEEE International Conference on Soft-
ware Engineering and Formal Methods, pages 3—12. IEEE, 2006.

E. Borde and J. Carlson. Towards verified synthesis of ProCom, a component
model for real-time embedded systems. In CBSE "11: Proceedings of the 14th inter-
national ACM Sigsoft Symposium on Component Based Software Engineering, pages
129-138. ACM, 2011.

L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M.
Leino, and E. Poll. An overview of JML tools and applications. International Jour-
nal on Software Tools for Technology Transfer, 7(3):212-232, 2005.

A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded Model
Checking. In A. Biere, M. J. Heule, H. van Maaren, and T. Walsh, editors, Hand-
book of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applica-
tions, pages 457—481. IOS Press, 2009.

F.Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, and C. Pe-
rez. GCM: a grid extension to Fractal for autonomous distributed components.
Annals of telecommunications, 64(1-2):5-24, 2009.

G. Brown, B. H. C. Cheng, H. Goldsby, and J. Zhang. Goal-oriented Specification
of Adaptation Requirements Engineering in Adaptive Systems. In SEAMS "06:
Proceedings of the 2006 International Workshop on Self-adaptation and Self-managing
Systems, pages 23-29. ACM, 2006.

E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The Fractal
component model and its support in Java. Software: Practice and Experience, 36(11-
12):1257-1284, 2006.

157

References

[BDFRO8]

[BFEVWO6]

[BGAA14]

[BGF+08]

[BGH*13]

[BGH*14a]

[BGH'14b]

[BGT05]

[BHH*06]

[BHMO09]

[BHPO06]

D. Bertrand, A.-M. Deplanche, S. Faucou, and O. Roux. A Study of the AADL
Mode Change Protocol. In ICECCS ‘08: Proceedings of the 13th IEEE International
Conference on Engineering of Complex Computer Systems, pages 288-293, 2008.

R. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifying Multi-agent Pro-
grams by Model Checking. Autonomous Agents and Multi-Agent Systems,
12(2):239-256, 2006.

T. Bures, 1. Gerostathopoulos, and R. Al Ali. DEECo: Software Engineering for
Smart CPS. ERCIM news Special theme: Cyber-Physical Systems, (97), April 2014.
Available online: http://ercim-news.ercim.eu/en97/special/deeco-software-engi-
neering-for-smart-cps.

N. Bencomo, P. Grace, C. Flores, D. Hughes, and G. Blair. Genie: Supporting the
model driven development of reflective, component-based adaptive systems. In
ICSE’ 08: Proceedings of the 30th International Conference on Software engineering,
pages 811-814. ACM, 2008.

T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F. Plasil.
DEECo: an Ensemble-Based Component System. In CBSE "13: Proceedings of the
16th International ACM Sigsoft Symposium on Component-based Software Engineer-
ing, pages 81-90. ACM, June 2013.

T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F. Plasil. Gos-
siping Components for Cyber-Physical Systems. In ECSA "14: Proceedings of the
8th European Conference on Software Architecture. Springer, August 2014. Accepted
for publication. Available online: http://d3s.mff.cuni.cz/publications/.

T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, F. Plasil, and
N. Plouzeau. Adaptation in Cyber-Physical Systems: from System Goals to Ar-
chitecture Configurations. Technical Report D3S-TR-2014-01, Dep. of Distributed
and Dependable Systems, Charles University in Prague, January 2014. Available
online: http://d3s.mff.cuni.cz/publications/.

S. Burmester, H. Giese, and M. Tichy. Model-driven development of reconfigu-
rable mechatronic systems with mechatronic UML. In Model Driven Architecture,
volume 3599 of Lecture Notes in Computer Science, pages 47-61. Springer Berlin
Heidelberg, 2005.

H. Baumeister, F. Hacklinger, R. Hennicker, A. Knapp, and M. Wirsing. A com-
ponent model for architectural programming. Electronic Notes in Theoretical Com-
puter Science, 160:75-96, 2006.

T. Bures, P. Hnetynka, and M. Malohlava. Using a product line for creating com-
ponent systems. In SAC ‘09: Proceedings of the 2009 ACM Symposium on Applied
Computing, pages 501-508. ACM, 2009.

T. Bures, P. Hnetynka, and F. Plasil. Sofa 2.0: Balancing advanced features in a
hierarchical component model. In SEAA '06: Fourth International Conference on
Software Engineering Research, Management and Applications, pages 40-48. IEEE,
2006.

158

http://ercim-news.ercim.eu/en97/special/deeco-software-engineering-for-smart-cps
http://ercim-news.ercim.eu/en97/special/deeco-software-engineering-for-smart-cps
http://d3s.mff.cuni.cz/publications/
http://d3s.mff.cuni.cz/publications/

References

[BHP09]

[BHR14]

[BHYMWO09]

[BJCO05]

[BIM*11]

[BJMS12]

[BKRO09]

[BLO6]

[BLPO1]

[BMMRO1]

[Box98]
[BP04]

[BPG04]

[BPG13]

E. Borde, G. Haik, and L. Pautet. Mode-based reconfiguration of critical software
component architectures. In DATE’09: Design, Automation & Test in Europe Con-
ference & Exhibition, pages 1160-1165. IEEE, 2009.

F.Baude, L. Henrio, and C. Ruz. Programming distributed and adaptable auton-
omous components—the GCM/ProActive framework. Software: Practice and Ex-
perience, 2014. Available online: http://dx.doi.org/10.1002/spe.2270.

A. Biere, M.]. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability, vol-
ume 185 of Frontiers in Artificial Intelligence and Applications. 10S Press, 2009.

T. Batista, A. Joolia, and G. Coulson. Managing dynamic reconfiguration in com-
ponent-based systems. In Software Architecture, volume 3527 of Lecture Notes in
Computer Science, pages 1-17. Springer, 2005.

T. Bures, P. Jezek, M. Malohlava, T. Poch, and O. Sery. Strengthening Component
Architectures by Modeling Fine-grained Entities. In SEAA "11: Proceedings of the
37th EUROMICRO Conference on Software Engineering and Advanced Applications,
pages 124-128. IEEE, 2011.

M. Bozga, M. Jaber, N. Maris, and]. Sifakis. Modeling Dynamic Architectures
Using Dy-BIP. In T. Gschwind, F. Paoli, V. Gruhn, and M. Book, editors, Software
Composition, volume 7306 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012.

S. Becker, H. Koziolek, and R. Reussner. The Palladio component model for
model-driven performance prediction. Journal of Systems and Software, 82(1):3-22,
2009.

M. Bichier and K.-J. Lin. Service-Oriented Computing. Computer, 39(3):99-101,
2006.

L. Bettini, M. Loreti, and R. Pugliese. Modelling node connectivity in dynamically
evolving networks. Electronic Notes in Theoretical Computer Science, 54:81-91, 2001.

T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate ab-
straction of C programs. In ACM SIGPLAN Notices, volume 36, pages 203-213.
ACM, 2001.

D. Box. Essential COM. Addison-Wesley Professional, 1998.

T. Bures and F. Plasil. Communication Style Driven Connector Configurations.
In SERA "03: Software Engineering Research and Applications, volume 3026 of Lecture
Notes in Computer Science, pages 102-116. Springer, 2004.

P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Tropos: An
agent-oriented software development methodology. Autonomous Agents and
Multi-Agent Systems, 8(3):203-236, 2004.

J. M. Barnes, A. Pandey, and D. Garlan. Automated planning for software archi-
tecture evolution. In ASE "13: Proceedings of the 2013 IEEE/ACM 28th International
Conference on Automated Software Engineering, pages 213-223. IEEE, 2013.

159

http://dx.doi.org/10.1002/spe.2270

References

[BPRO1]

[BRHL99]

[BS08]

[BSG*09]

[Bur06]

[Butl1]

[BWR09]

[CACO8]

[CBG*08]

[CCLO6]

[CCMWO1]

[CCP11]

[CDLG*09]

[CDT13]

E. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with
JADE. In Intelligent Agents VII Agent Theories Architectures and Languages, volume
1986 of Lecture Notes in Computer Science, pages 89-103. Springer, 2001.

P. Busetta, R. Ronnquist, A. Hodgson, and A. Lucas. JACK Intelligent Agents-
Components for Intelligent Agents in Java. AgentLink News Letter, 2(1):2-5, 1999.

S. Bliudze and]. Sifakis. The algebra of connectors—structuring interaction in
BIP. IEEE Transactions on Computers, 57(10):1315-1330, 2008.

Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu, H. Muller,
M. Pezze, and M. Shaw. Engineering Self-Adaptive Systems through Feedback
Loops. In Software Engineering for Self-Adaptive Systems, volume 5525 of Lecture
Notes in Computer Science, pages 48-70. Springer, 2009.

T. Bures. Generating connectors for homogeneous and heterogeneous deployment. PhD
thesis, Charles University in Prague, 2006.

G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications. Springer, 3rd edition, 2011.

A. Barker, C. D. Walton, and D. Robertson. Choreographing web services. I[EEE
Transactions on Services Computing, 2(2):152-166, 2009.

J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke. Breaking up is hard to do: An
evaluation of automated assume-guarantee reasoning. ACM Trans. Softw. Eng.
Methodol., 17(2):7:1-7:52, May 2008.

G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama, and T. Si-
vaharan. A generic component model for building systems software. ACM Trans-
actions on Computer Systems (TOCS), 26(1):1, 2008.

I. Crnkovic, M. Chaudron, and S. Larsson. Component-based development pro-
cess and component lifecycle. In ICSEA "06: Proceedings of the International Confer-
ence on Software Engineering Advances. IEEE, 2006.

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services De-
scription Language (WSDL) 1.1. Technical report, W3C, 2001. Available online:
http://www.w3.org/TR/wsdl.

J. Cubo, C. Canal, and E. Pimentel. Context-Aware Composition and Adaptation
based on Model Transformation. Journal of Universal Computer Science, 17(5):777-
806, 2011.

B. H. Cheng, R. De Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, et al. Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In Software engineering for self-adaptive
systems, volume 5525 of Lecture Notes in Computer Science, pages 1-26. Springer,
2009.

A. Cimatti, M. Dorigatti, and S. Tonetta. OCRA: A tool for checking the refine-
ment of temporal contracts. In ASE "13: Proceedings of the 28th International Confer-
ence on Automated Software Engineering, pages 702-705. IEEE, April 2013.

160

http://www.w3.org/TR/wsdl

References

[CFMTS10]

[CG98]

[CGKM12]

[CGP99]

[CHO4]

[CL02]

[CL10]

[CNO02]

[CNWO1]

[CT12]

[CVZ11]

[DFB*12]

[DHDG06]

[dJ09]

J. Carlson, J. Feljan, J. Maki-Turja, and M. Sjodin. Deployment modelling and
synthesis in a component model for distributed embedded systems. In SEAA "10:
Proceedings of the 36th EUROMICRO Conference on Software Engineering and Ad-
vanced Applications, pages 74-82. IEEE, 2010.

L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of Software Science
and Computation Structures, volume 1378 of Lecture Notes in Computer Science,
pages 140-155. Springer, 1998.

R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola. Self-adaptive Soft-
ware Needs Quantitative Verification at Runtime. Commun. ACM, 55(9):69-77,
September 2012.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT press, Cam-
bridge, MA, USA, 1999.

H. Cervantes and R. S. Hall. Autonomous adaptation to dynamic availability us-
ing a service-oriented component model. In ICSE "04: Proceedings of the 26th Inter-
national Conference on Software Engineering, pages 614-623. IEEE Computer Soci-
ety, 2004.

I. Crnkovic and M. P. H. Larsson. Building reliable component-based software sys-
tems. Artech House Publishers, Norwood, MA, USA, 2002.

E. Calzolai and M. Loreti. Simulation and Analysis of Distributed Systems in
Klaim. In Coordination Models and Languages, volume 6116 of Lecture Notes in Com-
puter Science, pages 122-136. Springer, 2010.

P. Clements and L. Northrop. Software product lines: practices and patterns. Addi-
son-Wesley, 2002.

F. Curbera, W. Nagy, and S. Weerawarana. Web services: Why and how. In Pro-
ceedings of the OOPSLA 2001 Workshop on Object-Oriented Web Services. ACM, 2001.

A. Cimatti and S. Tonetta. A property-based proof system for contract-based de-
sign. In SEAA’12: Proceedings of the 38th EUROMICRO Conference on Software En-
gineering and Advanced Applications, pages 21-28. IEEE, 2012.

I. Crnkovic, A. Vulgarakis, M. Zagar, A. Petricic, J. Feljan, L. Lednicki, and J. Ma-
ras. Classification and Survey of Component Models. In SoftCOM 2011: DICES
Workshop at the 19th International Conference on Software, Telecommunications and
Computer Networks, 2011.

E. Daubert, F. Fouquet, O. Barais, G. Nain, G. Sunye, J.-M. Jezequel,].-L. Pazat,
and B. Morin. A models@ runtime framework for designing and managing ser-
vice-based applications. In 2012 Workshop on European Software Services and Sys-
tems Research-Results and Challenges (S-Cube), pages 10-11. IEEE, 2012.

C. Dubois, T. Hardin, and V. Donzeau-Gouge. Building certified components
within FOCAL. Trends in Functional Programming, 5:33-48, 2006.

M. de Jonge. Developing product lines with third-party components. Electronic
Notes in Theoretical Computer Science, 238(5):63-80, 2009.

161

References

[DLO6]

[DLGM*13]

[DMSFR10]

[DNFLP13]

[DNFP98]

[DNGM-+08]

[DNL04]

[DNLPT14]

[DR14]

[DVLY6]

[EHH*13]

[EHLO07]

P.-C. David and T. Ledoux. An aspect-oriented approach for developing self-
adaptive Fractal components. In Software Composition, volume 4089 of Lecture
Notes in Computer Science, pages 82-97. Springer, 2006.

R. De Lemos, H. Giese, H. A. Muller, M. Shaw, J. Andersson, M. Litoiu,
B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel, et al. Software Engineering for
Self-Adaptive Systems: A Second Research Roadmap. In Software Engineering for
Self-Adaptive Systems II, volume 7475 of Lecture Notes in Computer Science, pages
1-32. Springer, 2013.

G. Di Marzo Serugendo, J. Fitzgerald, and A. Romanovsky. MetaSelf: an archi-
tecture and a development method for dependable self-* systems. In SAC "10:
Proceedings of the 2010 ACM Symposium on Applied Computing, pages 457-461.
ACM, 2010.

R. De Nicola, G. Ferrari, M. Loreti, and R. Pugliese. A Language-Based Approach
to Autonomic Computing. In B. Beckert, F. Damiani, F. Boer, and M. Bonsangue,
editors, FMCO 2011, volume 7542 of Lecture Notes in Computer Science, pages 25—
48. Springer Berlin Heidelberg, 2013.

R. De Nicola, G. L. Ferrari, and R. Pugliese. KLAIM: A kernel language for agents
interaction and mobility. IEEE Transactions on Software Engineering, 24(5):315-330,
1998.

E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl. A journey to
highly dynamic, self-adaptive service-based applications. Automated Software En-
gineering, 15(3-4):313-341, 2008.

R. De Nicola and M. Loreti. A modal logic for mobile agents. ACM Transactions
on Computational Logic (TOCL), 5(1):79-128, 2004.

R. De Nicola, M. Loreti, R. Pugliese, and F. Tiezzi. A formal approach to auto-
nomic systems programming: the SCEL Language. ACM Transactions on Autono-
mous and Adaptive Systems, 2014. In press. Available online: http://-
eprints.imtlucca.it/2117/.

A.K.Dwivediand S. K. Rath. Analysis of a Complex Architectural Style C2 Using
Modeling Language Alloy. Computer Science and Information Technology, 2(3):152—
164, 2014.

R. Darimont and A. Van Lamsweerde. Formal refinement patterns for goal-
driven requirements elaboration. In ACM SIGSOFT Software Engineering Notes,
volume 21, pages 179-190. ACM, 1996.

T. Eckardt, C. Heinzemann, S. Henkler, M. Hirsch, C. Priesterjahn, and
W. Schafer. Modeling and verifying dynamic communication structures based
on graph transformations. Computer Science-Research and Development, 28(1):3-22,
2013.

C. Escoffier, R. S. Hall, and P. Lalanda. iPOJO: An extensible service-oriented
component framework. In Proceedings of the 2013 IEEE International Conference on
Services Computing, pages 474-481. IEEE, 2007.

162

http://eprints.imtlucca.it/2117/
http://eprints.imtlucca.it/2117/

References

[FGHO6]

[FGMO04]

[FGR'07]

[FHS*06]

[FL10]

[FMF+12]

[FPMTO1]

[Fre10]

[FUMKO3]

[GBH13]

[GCH-04]

[GCW+02]

P. H. Feiler, D. P. Gluch, and J. . Hudak. The architecture analysis & design lan-
guage (AADL): An introduction. Technical report, DTIC Document, 2006. Avail-
able online: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPre-
fix=html&identifier=ADA455842.

J. Ferber, O. Gutknecht, and F. Michel. From Agents to Organizations: An Organ-
izational View of Multi-agent Systems. In P. Giorgini, J. Miiller, and J. Odell, ed-
itors, Agent-Oriented Software Engineering 1V, volume 2935 of Lecture Notes in Com-
puter Science, pages 214-230. Springer Berlin Heidelberg, 2004.

R. Friedman, D. Gavidia, L. Rodrigues, A. C. Viana, and S. Voulgaris. Gossiping
on MANETs: The Beauty and the Beast. SIGOPS Oper. Syst. Rev., 41(5):67-74, Oc-
tober 2007.

J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and E. Gjorven. Using ar-
chitecture models for runtime adaptability. IEEE Software, 23(2):62-70, 2006.

J. L. Fiadeiro and A. Lopes. A model for dynamic reconfiguration in service-ori-
ented architectures. In M. Babar and I. Gorton, editors, Software Architecture, vol-
ume 6285 of Lecture Notes in Computer Science, pages 70-85. Springer, 2010.

F. Fouquet, B. Morin, F. Fleurey, O. Barais, N. Plouzeau, and J.-M. Jezequel. A
dynamic component model for cyber physical systems. In CBSE "12: Proceedings
of the 15th ACM SIGSOFT Symposium on Component Based Software Engineering,
pages 135-144. ACM, 2012.

A. Fuxman, M. Pistore,]J. Mylopoulos, and P. Traverso. Model checking early
requirements specifications in Tropos. In Proceedings of the Fifth IEEE International
Symposium on Requirements Engineering, pages 174-181. IEEE, 2001.

A. Freeman. Windows Presentation Foundation. In Introducing Visual C# 2010,
pages 1069-1098. Springer, 2010.

H. Foster, S. Uchitel,]. Magee, and J. Kramer. Model-based verification of web
service compositions. In ASE "03: Proceedings of 18th IEEE International Conference
on Automated Software Engineering, pages 152-161. IEEE, 2003.

I. Gerostathopoulos, T. Bures, and P. Hnetynka. Position Paper: Towards a re-
quirements-driven design of ensemble-based component systems. In Proceedings
of the 2013 International Workshop on Hot topics in Cloud Services, pages 79-86.
ACM, 2013.

D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste. Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer,
37(10):46-54, 2004.

T. Genssler, A. Christoph, M. Winter, O. Nierstrasz, S. Ducasse, R. Wuyts, G. Are-
valo, B. Schonhage, P. Muller, and C. Stich. Components for embedded software:
the PECOS approach. In CASES '02: Proceedings of the 2002 International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems, pages 19-26. ACM,
2002.

163

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA455842
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA455842

References

[GKB+14]

[GKSS11]

[GLMSI11]

[GLPT12]

[GMKO02]

[GMWO0]

[GNTO04]

[GPCO4]

[GS03]

[GS07]

[HB13]

[HCO1]

[Her10]

L. Gerostathopoulos, J. Keznikl, T. Bures, M. Kit, and F. Plasil. Software Engineer-
ing for Software-Intensive Cyber-Physical Systems. Technical Report D3S-TR-
2014-02, Dep. of Distributed and Dependable Systems, Charles University in Pra-
gue, January 2014. Available online: http://d3s.mff.cuni.cz/publications/.

L. Guan, X. Ke, M. Song, and J. Song. A survey of research on mobile cloud com-
puting. In Proceedings of the 2011 10th IEEE/ACIS International Conference on Com-
puter and Information Science, pages 387-392. IEEE Computer Society, 2011.

H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2010: a toolbox for the
construction and analysis of distributed processes. In TACAS "11: Tools and Algo-
rithms for the Construction and Analysis of Systems, volume 6605 of Lecture Notes in
Computer Science, pages 372-387. Springer, 2011.

E. Gjondrekaj, M. Loreti, R. Pugliese, and F. Tiezzi. Modeling adaptation with a
tuple-based coordination language. In SAC "12: Proceedings of the 27th Annual
ACM Symposium on Applied Computing, pages 1522-1527. ACM, 2012.

I. Georgiadis,]. Magee, and J. Kramer. Self-organising software architectures for
distributed systems. In Proceedings of the first workshop on Self-healing systems,
pages 33-38. ACM, 2002.

D. Garlan, R. T. Monroe, and D. Wile. Acme: Architectural description of compo-
nent-based systems. In Foundations of component-based systems, pages 47-68. Cam-
bridge University Press, 2000.

M. Ghallab, D. Nau, and P. Traverso. Automated planning: theory & practice. Else-
vier, 2004.

D. Giannakopoulou, C. S. Pasareanu, and J. M. Cobleigh. Assume-guarantee ver-
ification of source code with design-level assumptions. In ICSE "04: Proceedings of
the 26th International Conference on Software Engineering, pages 211-220. IEEE
Computer Society, 2004.

J. Greenfield and K. Short. Software factories: assembling applications with pat-
terns, models, frameworks and tools. In Companion of the 18th annual ACM SIG-
PLAN Conference on Object-oriented Programming, Systems, Languages, and Applica-
tions, pages 16-27. ACM, 2003.

D. Garlan and B. Schmerl. Architecture-driven modelling and analysis. In Pro-
ceedings of the eleventh Australian workshop on Safety critical systems and software-
Volume 69, pages 3-17. Australian Computer Society, Inc., 2007.

C. Heinzemann and S. Becker. Executing reconfigurations in hierarchical compo-
nent architectures. In CBSE "13: Proceedings of 16th International ACM SIGSOFT
Symposium on Component Based Software Engineering, pages 3—-12. ACM, 2013.

G. T. Heineman and W. T. Councill, editors. Component-based Software Engineer-
ing: Putting the Pieces Together. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

S. Herold. Checking architectural compliance in component-based systems. In
SAC "10: Proceedings of the 2010 ACM Symposium on Applied Computing, pages
2244-2251. ACM, 2010.

164

http://d3s.mff.cuni.cz/publications/

References

[HI10]

[HK10]

[HK14]

[HKMUO6]

[HKR09]

[HIMO8]

[HMM11]

[Hoa85]

[HP06]

[HPB*10]

[HPMS11]

[HRWO08]

[HS05]

K. M. Hansen and M. Ingstrup. Modeling and analyzing architectural change
with Alloy. In SAC “10: Proceedings of the 2010 ACM Symposium on Applied Compu-
ting, pages 2257-2264. ACM, 2010.

L. Henrio and M. U. Khan. Asynchronous Components with Futures: Semantics
and Proofs in Isabelle/HOL. Electronic Notes in Theoretical Computer Science,
264(1):35-53, 2010.

R. Hennicker and A. Klarl. Foundations for Ensemble Modeling-The Helena Ap-
proach. In Specification, Algebra, and Software, volume 8373 of Lecture Notes in Com-
puter Science, pages 359-381. Springer Berlin Heidelberg, 2014.

D. Hirsch, J. Kramer, J. Magee, and S. Uchitel. Modes for Software Architectures.
In V. Gruhn and F. Oquendo, editors, Software Architecture, volume 4344 of Lec-
ture Notes in Computer Science, pages 113-126. Springer Berlin Heidelberg, 2006.

L. Henrio, F. Kammdiller, and M. Rivera. An Asynchronous Distributed Compo-
nent Model and Its Semantics. In F. Boer, M. Bonsangue, and E. Madelaine, edi-
tors, Formal Methods for Components and Objects, volume 5751 of Lecture Notes in
Computer Science, pages 159-179. Springer Berlin Heidelberg, 2009.

M. C. Huebscher and J. A. McCann. A Survey of Autonomic Computing - De-
grees, Models, and Applications. ACM Comput. Surv., 40(3):7:1-7:28, August
2008.

P. Hnetynka, L. Murphy, and J. Murphy. Comparing the Service Component Ar-
chitecture and Fractal Component Model. Computer Journal, 54(7), 2011.

C. A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA, 1985.

P. Hnetynka and F. Plasil. Dynamic reconfiguration and access to services in hi-
erarchical component models. In Component-Based Software Engineering, volume
4063 of Lecture Notes in Computer Science, pages 352-359. Springer, 2006.

P. Hosek, T. Pop, T. Bures, P. Hnetynka, and M. Malohlava. Comparison of Com-
ponent Frameworks for Real-Time Embedded Systems. In L. Grunske,
R. Reussner, and F. Plasil, editors, Component-Based Software Engineering, volume
6092 of Lecture Notes in Computer Science, pages 21-36. Springer Berlin Heidelberg,
2010.

R. Hall, K. Pauls, S. McCulloch, and D. Savage. OSGi in action: Creating modular
applications in Java. Manning Publications Co., 2011.

M. Holzl, A. Rauschmayer, and M. Wirsing. Engineering of Software-Intensive
Systems: State of the Art and Research Challenges. In Software-Intensive Systems
and New Computing Paradigms, volume 5380 of Lecture Notes in Computer Science,
pages 1-44. Springer, 2008.

M. N. Huhns and M. P. Singh. Service-oriented computing: Key concepts and
principles. IEEE Internet Computing, 9(1):75-81, 2005.

165

References

[HZPK07]

[HZPKO08]

[IBB11]

[IFMWO08]

[1SJ+09]

[IST11]

[Jac02]

[Jac12]
[JEA+07]

[JPK12]

[JS00]

[KBP+13]

J. Hugues, B. Zalila, L. Pautet, and F. Kordon. Rapid Prototyping of Distributed
Real-Time Embedded Systems Using the AADL and Ocarina. In IEEE Interna-
tional Workshop on Rapid System Prototyping, pages 106-112. IEEE, 2007.

J. Hugues, B. Zalila, L. Pautet, and F. Kordon. From the Prototype to the Final
Embedded System Using the Ocarina AADL Tool Suite. ACM Trans. Embed. Com-
put. Syst., 7(4), August 2008.

V. Issarny, A. Bennaceur, and Y.-D. Bromberg. Middleware-Layer Connector
Synthesis: Beyond State of the Art in Middleware Interoperability. In Formal
Methods for Eternal Networked Software Systems, volume 6659 of Lecture Notes in
Computer Science, pages 217-255. Springer, 2011.

F. Irmert, T. Fischer, and K. Meyer-Wegener. Runtime adaptation in a service-
oriented component model. In SEAMS '08: Proceedings of the 2008 international
workshop on Software engineering for adaptive and self-managing systems, pages 97—
104. ACM, 2008.

V. Issarny, B. Steffen, B. Jonsson, G. Blair, P. Grace, M. Kwiatkowska, R. Calin-
escu, P. Inverardi, M. Tivoli, A. Bertolino, et al. CONNECT Challenges: Towards
Emergent Connectors for Eternal Networked Systems. In Proceedings of the 14th

IEEE International Conference on Engineering of Complex Computer Systems, pages
154-161. IEEE, 2009.

P. Inverardi, R. Spalazzese, and M. Tivoli. Application-layer connector synthesis.
In Formal Methods for Eternal Networked Software Systems, volume 6659 of Lecture
Notes in Computer Science, pages 148-190. Springer, 2011.

D. Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(2):256-290, 2002.

D. Jackson. Software Abstractions: logic, language, and analysis. MIT press, 2012.

D. Jordan, J. Evdemon, A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch,
F. Curbera, M. Ford, Y. Goland, et al. Web services business process execution
language version 2.0. OASIS standard, 2007. Available online: http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

P. Jancik, P. Parizek, and]J. Kofron. BeJC: Checking Compliance Between Java
Implementation and Behavior Specification. In WCOP "12: Proceedings of the 17th
International Doctoral Symposium on Components and Architecture, pages 31-36.
ACM, 2012.

D. Jackson and K. Sullivan. COM revisited: tool-assisted modelling of an archi-
tectural framework. In ACM SIGSOFT Software Engineering Notes, volume 25,
pages 149-158. ACM, 2000.

J. Keznikl, T. Bures, F. Plasil, I. Gerostathopoulos, P. Hnetynka, and N. Hoch.
Design of Ensemble-Based Component Systems by Invariant Refinement. In
CBSE "13: Proceedings of the 16th International ACM Sigsoft Symposium on Compo-
nent-based Software Engineering, pages 91-100. ACM, June 2013.

166

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

References

[KBPH14]

[KBPK12]

[KCO3]

[KDMF10]

[KG10]

[KLM*97]

[KMO7]

[KMO09]

[KMBH11]

[KRKHO09]

[Kwi07]

[LBP+08]

[LCS13]

J. Keznikl, T. Bures, F. Plasil, and P. Hnetynka. Automated resolution of con-
nector architectures using constraint solving (ARCAS method). Software & Sys-
tems Modeling, 13(2):843-872, May 2014.

J. Keznikl, T. Bures, F. Plasil, and M. Kit. Towards Dependable Emergent Ensem-
bles of Components: The DEECo Component Model. In WICSA/ECSA “12: Pro-
ceedings of the Joint 10th Working IEEE/IFIP Conference on Software Architecture &
6th European Conference on Software Architecture, pages 249-252. IEEE Computer
Society, August 2012.

J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,
36(1):41-50, 2003.

G. N. C. Kirby, A. Dearle, A. Macdonald, and A. A. A. Fernandes. An Approach
to Ad-hoc Cloud Computing. CoRR, abs/1002.4738, 2010.

J.S. Kim and D. Garlan. Analyzing architectural styles. Journal of Systems and Soft-
ware, 83(7):1216-1235, 2010.

G. Kiczales,]. Lamping, A. Mendhekar, C. Maeda, C. Lopes,].-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In ECOOP ‘97: Object-Oriented Program-

ming, volume 1241 of Lecture Notes in Computer Science, pages 220-242. Springer,
1997.

J. Kramer and J. Magee. Self-managed systems: an architectural challenge. In
FOSE’07: Proceedings of the 2007 Workshop on the Future of Software Engineering,
pages 259-268. IEEE, 2007.

J. Kramer and]J. Magee. A Rigorous Architectural Approach to Adaptive Soft-
ware Engineering. Journal of Computer Science and Technology, 24(2):183-188, 2009.

J. Keznikl, M. Malohlava, T. Bures, and P. Hnetynka. Extensible Polyglot Pro-
gramming Support in Existing Component Frameworks. In SEAA "11: Proceedings
of the 37th EUROMICRO Conference on Software Engineering and Advanced Applica-
tions, pages 107-115. IEEE Computer Society, August 2011.

J. E. Kim, O. Rogalla, S. Kramer, and A. Hamann. Extracting, specifying and pre-
dicting software system properties in component based real-time embedded soft-
ware development. In Proceedings of the 31st International Conference on Software
Engineering - Companion Volume, pages 28-38. IEEE, 2009.

M. Kwiatkowska. Quantitative Verification: Models Techniques and Tools. In
ESEC-FSE '07: Proceedings of the the 6th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, pages 449-458. ACM, 2007.

D. Le Berre, A. Parrain, et al. On SAT technologies for dependency management
and beyond. In ASPL’08: First Workshop on Software Product Lines, pages 197-200,
2008.

L. Lednicki, J. Carlson, and K. Sandstrom. Model Level Worst-case Execution
Time Analysis for IEC 61499. In CBSE "13: Proceedings of the 16th International ACM
Sigsoft Symposium on Component-based Software Engineering, pages 169-178. ACM,
2013.

167

References

[LLC10]

[LN11]

[LPHO4]

[LPY97]

[LQRO09]

[LVL02]

[LWO7]

[Mal12]

[MBB*12]

[MBDC*06]

[MBJ*09]

[MBNJ09]

[MDEK95]

[MK96]

M. Leger, T. Ledoux, and T. Coupaye. Reliable Dynamic Reconfigurations in a
Reflective Component Model. In L. Grunske, R. Reussner, and F. Plasil, editors,
Component-Based Software Engineering, volume 6092 of Lecture Notes in Computer
Science, pages 74-92. Springer Berlin Heidelberg, 2010.

J. W. Lloyd and K. S. Ng. Declarative programming for agent applications. Au-
tonomous Agents and Multi-Agent Systems, 23(2):224-272, 2011.

H. Liu, M. Parashar, and S. Hariri. A component-based programming model for
autonomic applications. In Proceedings of the International Conference on Autonomic
Computing, pages 10-17. IEEE, 2004.

K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer (STTT), 1(1):134-152, 1997.

A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A Model Checker for the Veri-
fication of Multi-Agent Systems. In A. Bouajjani and O. Maler, editors, Computer
Aided Verification, volume 5643 of Lecture Notes in Computer Science, pages 682—
688. Springer Berlin Heidelberg, 2009.

E. Letier and A. Van Lamsweerde. Deriving operational software specifications
from system goals. In Proceedings of the 10th ACM SIGSOFT Symposium on Foun-
dations of Software Engineering, pages 119-128. ACM, 2002.

K.-K. Lau and Z. Wang. Software Component Models. IEEE Transactions on Soft-
ware Engineering, 33(10):709-724, 2007.

M. Malohlava. Variability of Execution Environments for Component-based Systems.
PhD thesis, Charles University in Prague, 2012.

J.-E. Mehus, T. Batista, J. Buisson, et al. ACME vs PDDL: support for dynamic
reconfiguration of software architectures. In CAL’12: Proceedings of Conference
Francophone sur les Architectures Logicielles, pages 48-57, 2012. Available online:
http://hal.archives-ouvertes.fr/hal-00703176/.

F. Mancinelli,]J. Boender, R. Di Cosmo, J. Vouillon, B. Durak, X. Leroy, and
R. Treinen. Managing the complexity of large free and open source package-
based software distributions. In ASE’06. Proceedings of the 21st IEEE/ACM Inter-
national Conference on Automated Software Engineering, pages 199-208. IEEE, 2006.

B. Morin, O. Barais, J. Jezequel, F. Fleurey, and A. Solberg. Models at runtime to
support dynamic adaptation. Computer, 42(10):44-51, 2009.

B. Morin, O. Barais, G. Nain, and J.-M. Jezequel. Taming dynamically adaptive
systems using models and aspects. In ICSE "09: Proceedings of the 31st International
Conference on Software Engineering, pages 122-132. IEEE Computer Society, 2009.

J. Magee, N. Dulay, S. Eisenbach, and]. Kramer. Specifying distributed software
architectures. In Software Engineering—ESEC’95, volume 989 of Lecture Notes in
Computer Science, pages 137-153. Springer, 1995.

J. Magee and J. Kramer. Dynamic structure in software architectures. ACM SIG-
SOFT Software Engineering Notes, 21(6):3-14, 1996.

168

http://hal.archives-ouvertes.fr/hal-00703176/

References

[MK99]

[MKG99]

[MKH-13]

[MMPO0]

[MOO06]

[MPBH13]

[MPP08]

[MPS08]

[MPT13]

[MPW92]

[MR09]

[MS+08]

[NTER06]

J. Magee and J. Kramer. Concurrency: State models and java programs. John Wiley &
Sons, Inc., 1999.

J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour analysis of software ar-
chitectures. In P. Donohoe, editor, Software Architecture, volume 12 of The Interna-
tional Federation for Information Processing, pages 35—49. Springer, 1999.

P. Mayer, A. Klarl, R. Hennicker, M. Puviani, F. Tiezzi, R. Pugliese, J. Keznikl,
and T. Bures. The Autonomic Cloud: A Vision of Voluntary, Peer-2-Peer Cloud
Computing. In SASOW "13: Proceedings of the IEEE 7th International Conference on
Self-Adaptation and Self-Organizing Systems Workshops, pages 89 — 94. IEEE Com-
puter Society, September 2013.

N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a taxonomy of software
connectors. In ICSE “00: Proceedings of the 22nd International Conference on Software
Engineering, pages 178-187. ACM, 2000.

R. Mateescu and F. Oquendo. t-AAL: an architecture analysis language for for-
mally specifying and verifying structural and behavioural properties of software
architectures. ACM SIGSOFT Software Engineering Notes, 31(2):1-19, 2006.

M. Malohlava, F. Plasil, T. Bures, and P. Hnetynka. Interoperable domain-specific
languages families for code generation. Software: Practice and Experience,
43(5):479-499, 2013.

M. Morandini, L. Penserini, and A. Perini. Towards goal-oriented development
of self-adaptive systems. In SEAMS "08: Proceedings of the 2008 international work-
shop on Software engineering for adaptive and self-managing systems, pages 9-16.
ACM, 2008.

H. Muller, M. Pezze, and M. Shaw. Visibility of control in adaptive systems. In
Second International Workshop on Ultra-Large-Scale Software-Intensive Systems (ULS-
SIS 2008), ICSE 2008 Workshop, 2008.

A. Margheri, R. Pugliese, and F. Tiezzi. Linguistic Abstractions for Programming
and Policing Autonomic Computing Systems. In UIC/ATC "13: Proceedings of the
10th International Conference on Ubiquitous Intelligence and Computing and 10th In-
ternational Conference on Autonomic and Trusted Computing, pages 404-409, Dec
2013.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, L. Information
and computation, 100(1):1-40, 1992.

J. Marino and M. Rowley. Understanding SCA (Service Component Architecture).
Pearson Education, 2009.

P. Merle, J.-B. Stefani, et al. A formal specification of the Fractal component model
in Alloy. Technical Report RR-6721, INRIA, 2008. Available online: hal.inria.fr/-
inria-00338987.

J. Nakazawa, H. Tokuda, W. K. Edwards, and U. Ramachandran. A Bridging
Framework for Universal Interoperability in Pervasive Systems. In ICDCS "06:
Proceedings of the 26th IEEE International Conference on Distributed Computing Sys-
tems. IEEE, 2006.

169

hal.inria.fr/inria-00338987
hal.inria.fr/inria-00338987

References

[NWP02]

[OHJ*99]

[Oqu04]

[Pap03]

[PBVDLO5]

[PCHW12]

[PHH*13]

[PKH*11]

[PMC12]

[PMM*07]

[Pnu85]

[POS06]

[PP10]

T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/ HOL: a proof assistant for higher-
order logic. Springer-Verlag, 2002.

P. Oreizy, D. Heimbigner, G. Johnson, M. M. Gorlick, R. N. Taylor, A. L. Wolf,
N. Medvidovic, D. S. Rosenblum, and A. Quilici. An architecture-based approach
to self-adaptive software. IEEE Intelligent systems, 14(3):54-62, 1999.

E. Oquendo. t-ADL: an Architecture Description Language based on the higher-
order typed m-calculus for specifying dynamic and mobile software architec-
tures. ACM SIGSOFT Software Engineering Notes, 29(3):1-14, 2004.

M. P. Papazoglou. Service-oriented computing: Concepts, characteristics and di-
rections. In WISE "03: Proceedings of the Fourth International Conference on Web In-
formation Systems Engineering, pages 3—12. IEEE, 2003.

K. Pohl, G. Bockle, and F. Van Der Linden. Software product line engineering.
Springer Berlin Heidelberg, 2005.

T. Patikirikorala, A. Colman, J. Han, and L. Wang. A systematic survey on the
design of self-adaptive software systems using control engineering approaches.
In SEAMS ’"12: Proceedings of the 2012 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, pages 33—42. IEEE, 2012.

T. Pop, P. Hnetynka, P. Hosek, M. Malohlava, and T. Bures. Comparison of com-
ponent frameworks for real-time embedded systems. Knowledge and Information
Systems, 2013. In press. Available online: http://dx.doi.org/10.1007/s10115-013-
0627-9.

T. Pop, J. Keznik], P. Hosek, M. Malohlava, T. Bures, and P. Hnetynka. Introduc-
ing support for embedded and real-time devices into existing hierarchical com-
ponent system: Lessons learned. In SERA "11: Proceedings of the 9th International
Conference on Software Engineering Research, Management and Applications, pages 3—
11. IEEE CS, August 2011.

G. Perrouin, B. Morin, F. Chauvel, F. Fleurey, J. Klein, Y. Le Traon, O. Barais, and
J.-M. Jezequel. Towards Flexible Evolution of Dynamically Adaptive Systems. In
ICSE "12: Proceedings of the 34th International Conference on Software Engineering,
pages 1353-1356. IEEE Press, 2012.

C. Ponsard, P. Massonet, J. F. Molderez, A. Rifaut, A. van Lamsweerde, and
H. Van Tran. Early verification and validation of mission critical systems. Formal
Methods in System Design, 30(3):233-247, 2007.

A. Pnueli. In transition from global to modular temporal reasoning about pro-
grams. In K. R. Apt, editor, Logics and Models of Concurrent Systems, pages 123—
144. Springer-Verlag New York, Inc., 1985.

J. Polakovic, A. E. Ozcan, and].-B. Stefani. Building reconfigurable component-
based OS with THINK. In SEAA "06: Proceedings of the 32nd EUROMICRO Confer-
ence on Software Engineering and Advanced Applications, pages 178-185. IEEE, 2006.

P. Parizek and F. Plasil. Assume-guarantee verification of software components
in sofa 2 framework. IET Software, 4:210-221, June 2010.

170

http://dx.doi.org/10.1007/s10115-013-0627-9
http://dx.doi.org/10.1007/s10115-013-0627-9

References

[PPKO6]

[PPO*12]

[PS08]

[PSPK13]

[PWT+08]

[RBAF10]

[RBF+08]

[RCO4]

[RCGTO09]

[RG*95]

[RLSS10]

[RRS*05]

P. Parizek, F. Plasil, and]. Kofron. Model Checking of Software Components:
Combining Java PathFinder and Behavior Protocol Model Checker. In SEW "06:
Proceedings of the 30th Annual IEEE/NASA Software Engineering Workshop, pages
133-141. IEEE Computer Society, 2006.

T. Pop, F. Plasil, M. Outly, M. Malohlava, and T. Bures. Property Networks Al-
lowing Oracle-based Mode-change Propagation in Hierarchical Components. In
CBSE ’12: Proceedings of the 15th ACM SIGSOFT Symposium on Component Based
Software Engineering, pages 93-102. ACM, 2012.

C. Peper and D. Schneider. Component engineering for adaptive ad-hoc systems.
In SEAMS "08: Proceedings of the 2008 International Workshop on Software Engineer-
ing for Adaptive and Self-managing Systems, pages 49-56. ACM, 2008.

T. Poch, O. Sery, F. Plasil, and]. Kofron. Threaded behavior protocols. Formal
Aspects of Computing, 25(4):543-572, 2013.

M. Prochazka, R. Ward, P. Tuma, P. Hnetynka, and J. Adamek. A component-
oriented framework for spacecraft on-board software. In DASIA’08: Proceedings
of Data Systems In Aerospace, volume 665 of ESA Special Publication. European
Space Agency, 2008.

N. Rehman, Ur, S. Bibi, S. Asghar, and S. Fong. Comparative Study of Goal-Ori-
ented Requirements Engineering. In NISS "10: Proceedings of the 4th International
Conference on New Trends in Information Science and Service Science, pages 248-253.
IEEE, 2010.

J. E. Rolland, J. P. Bodeveix, M. Filali, D. Chemouil, and D. Thomas. Modes in
Asynchronous Systems. In ICECCS "08: Proceedings of the 13th IEEE International
Conference on Engineering of Complex Computer Systems, pages 282-287. IEEE Com-
puter Society, 2008.

J. Real and A. Crespo. Mode Change Protocols for Real-Time Systems: A Survey
and a New Proposal. Real-Time Systems, 26(2):161-197, 2004.

A.Radermacher, A. Cuccuruy, S. Gerard, and F. Terrier. Generating execution in-
frastructures for component-oriented specifications with a model driven tool-
chain: a case study for MARTE’s GCM and real-time annotations. In ACM SIG-
PLAN Notices, volume 45, pages 127-136. ACM, 2009.

A.S.Rao, M. P. Georgeff, et al. BDI Agents: From Theory to Practice. In ICMAS’
95: In Proceedings of the First International Conference on Multi-Agent Systems, vol-
ume 95, pages 312-319. AAAI Press, 1995.

R.R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-Physical Systems: The Next
Computing Revolution. In DAC "10: Proceedings of the 47th Design Automation Con-
ference, pages 731-736. ACM, 2010.

S. Robert, A. Radermacher, V. Seignole, S. Gerard, V. Watine, and F. Terrier. En-
hancing Interaction Support in the Corba Component Model. In From Specification
to Embedded Systems Application, volume 184 of IFIP On-Line Library in Computer
Science, pages 137-146. Springer, 2005.

171

References

[SA09]

[San93]

[SBK13]

[Ser10]

[SHP+13]

[ST10]

[SLB09]

[SMP+12]

[SMR*12]

[SRA*11]

[SVB-08]

[SW04]

[Szy02]

M. Simonot and V. Aponte. A declarative formal approach to dynamic reconfig-
uration. In Proceedings of the 1st international workshop on Open component ecosys-
tems, pages 1-10. ACM, 2009.

D. Sangiorgi. Expressing mobility in process algebras: first-order and higher-order par-
adigms. PhD thesis, The University of Edinburgh, 1993.

N. Serbedzija, T. Bures, and]. Keznikl. Engineering Autonomous Systems. In PCI
"13: Proceedings of the 17th Panhellenic Conference on Informatics, pages 128-135.
ACM, September 2013.

O. Sery. Automated Verification of Software. PhD thesis, Charles University in Pra-
gue, 2010.

N. Serbedzija, N. Hoch, C. Pinciroli, M. Kit, T. Bures, G. V. Monreale, U. Mon-
tanari, P. Mayer, and]J. Velasco. Integration and Simulation Report for the AS-
CENS Case Studies. Deliverable D7.3, 2013. Available online: http://www.ascens-
ist.eu/deliverables.

R. Spalazzese and P. Inverardi. Mediating connector patterns for components in-
teroperability. In Software Architecture, volume 6285 of Lecture Notes in Computer
Science, pages 335-343. Springer, 2010.

Y. Shoham and K. Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic,
and logical foundations. Cambridge University Press, 2009.

N. Serbedzija, M. Massink, C. Pinciroli, M. Brambilla, D. Latella, M. Dorigo,
M. Birattari, P. Mayer, J. Velasco, N. Hoch, H. P. Bensler, D. Abeywickrama,
J. Keznikl], I. Gerostathopoulos, T. Bures, R. De Nicola, and M. Loreti. Ensemble
Model Syntheses with Robot, Cloud Computing and e-Mobility. Deliverable
D7.2,2012. Available online: http://www.ascens-ist.eu/deliverables.

L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni, and J.-B. Stefani. A
component-based middleware platform for reconfigurable service-oriented ar-
chitectures. Software: Practice and Experience, 42(5):559-583, 2012.

N. Serbedzija, S. Reiter, M. Ahrens,]. Velasco, C. Pinciroli, N. Hoch, and
B. Werther. Requirement Specification and Scenario Description of the ASCENS
Case Studies. Deliverable D7.1, 2011. Available online: http://www.ascens-
ist.eu/deliverables.

S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic. A Component
Model for Control-Intensive Distributed Embedded Systems. In Component-Based
Software Engineering, volume 5282 of Lecture Notes in Computer Science, pages 310—
317. Springer, 2008.

H. Schuschel and M. Weske. Automated planning in a service-oriented architec-
ture. In Proceedings of 13th IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, pages 75-80. IEEE, 2004.

C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.

172

http://www.ascens-ist.eu/deliverables
http://www.ascens-ist.eu/deliverables
http://www.ascens-ist.eu/deliverables
http://www.ascens-ist.eu/deliverables
http://www.ascens-ist.eu/deliverables

References

[TBKCO7]

[TGEM10]

[TMD10]

[TMS10]

[TPYZ09]

[TSP+04]

[VHB+03]

[VLO1]

[VLO3]

[VLDL9S8]

[VLLOO]

[VLLO4]

S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe composition of product lines.
In GPCE ‘07: Proceedings of the 6th International Conference on Generative Program-
ming and Component Engineering, pages 95-104. ACM, 2007.

H. Tajalli, J. Garcia, G. Edwards, and N. Medvidovic. PLASMA: A Plan-based
Layered Architecture for Software Model-driven Adaptation. In ASE "10: Proceed-
ings of the IEEE/ACM International Conference on Automated Software Engineering,
pages 467-476. ACM, 2010.

R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software Architecture: Founda-
tions, Theory, and Practice. John Wiley & Sons, Inc., 2010.

A. Tiberghien, P. Merle, and L. Seinturier. Specifying self-configurable compo-
nent-based systems with FracToy. In Abstract State Machines, Alloy, B and Z, vol-
ume 5977 of Lecture Notes in Computer Science, pages 91-104. Springer, 2010.

S. Tang, X. Peng, Y. Yu, and W. Zhao. Goal-directed modeling of self-adaptive
software architecture. In T. Halpin,]. Krogstie, S. Nurcan, E. Proper, R. Schmidt,
P. Soffer, and R. Ukor, editors, Enterprise, Business-Process and Information Systems
Modeling, volume 29 of Lecture Notes in Business Information Processing, pages 313—
325. Springer, 2009.

W. Tsai, W. Song, R. Paul, Z. Cao, and H. Huang. Services-Oriented Dynamic
Reconfiguration Framework for Dependable Distributed Computing. In COMP-
SAC '04: Proceedings of the 28th Annual International Computer Software and Appli-
cations Conference, pages 554-559. IEEE Computer Society, 2004.

W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.
Automated Software Engineering, 10(2):203-232, 2003.

A. Van Lamsweerde. Goal-oriented requirements engineering: A guided tour. In
Proceedings of the Fifth IEEE International Symposium on Requirements Engineering,
pages 249-262. IEEE, 2001.

A.Van Lamsweerde. From system goals to software architecture. In M. Bernardo
and P. Inverardi, editors, Formal Methods for Software Architectures, volume 2804
of Lecture Notes in Computer Science, pages 25-43. Springer, 2003.

A. Van Lamsweerde, R. Darimont, and E. Letier. Managing conflicts in goal-
driven requirements engineering. IEEE Transactions on Software Engineering,
24(11):908-926, 1998.

A. Van Lamsweerde and E. Letier. Handling obstacles in goal-oriented require-
ments engineering. IEEE Transactions on Software Engineering, 26(10):978-1005,
2000.

A. Van Lamsweerde and E. Letier. From object orientation to goal orientation: A
paradigm shift for requirements engineering. In M. Wirsing, A. Knapp, and
S. Balsamo, editors, Radical Innovations of Software and Systems Engineering in the
Future, volume 2941 of Lecture Notes in Computer Science, pages 325-340. Springer,
2004.

[VOVDLKMOO]R. Van Ommering, F. Van Der Linden,]. Kramer, and J. Magee. The Koala com-

ponent model for consumer electronics software. Computer, 33(3):78-85, 2000.

173

References

[VPKO5]

[VSC+09]

[VSCS10]

[VW86]

[WCL+05]

[WFHP02]

[WSO01]

[YCH12]

[YH13]

[YLL+08]

[YPO4]

[YQCH13]

T. Vergnaud, L. Pautet, and F. Kordon. Using the AADL to describe distributed
applications from middleware to software components. In Reliable Software Tech-
nology—Ada-Europe 2005, volume 3555 of Lecture Notes in Computer Science, pages
67-78. Springer, 2005.

A. Vulgarakis, J. Suryadevara, J. Carlson, C. Seceleanu, and P. Pettersson. Formal
semantics of the ProCom real-time component model. In SEAA” 09: Proceedings of
the 35th Euromicro Conference on Software Engineering and Advanced Applications,
pages 478-485. IEEE, 2009.

A. Vulgarakis, S. Sentilles,]J. Carlson, and C. Seceleanu. Integrating behavioral
descriptions into a component model for embedded systems. In SEAA 10: Pro-
ceedings of the 36th EUROMICRO Conference on Software Engineering and Advanced
Applications, pages 113-118. IEEE, 2010.

M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-
gram verification. In Proceedings of the First Symposium on Logic in Computer Sci-
ence, pages 322-331. IEEE Computer Society, 1986.

S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson. Web ser-
vices platform architecture: SOAP, WSDL, WS-policy, WS-addressing, WS-BPEL, WS-
reliable messaging and more. Prentice Hall PTR, 2005.

M. Wooldridge, M. Fisher, M.-P. Huget, and S. Parsons. Model checking multi-
agent systems with MABLE. In AAMAS ’02: Proceedings of the First International

Joint Conference on Autonomous Agents and Multiagent Systems: Part 2, pages 952—
959. ACM, ACM, 2002.

N. Wang, D. C. Schmidt, and C. O’'Ryan. Overview of the CORBA Component Model.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

H. Yin, J. Carlson, and H. Hansson. Towards mode switch handling in compo-
nent-based multi-mode systems. In CBSE “12: Proceedings of the 15th ACM SIG-
SOFT Symposium on Component Based Software Engineering, pages 183-188. ACM,
2012.

H. Yin and H. Hansson. Mode switch timing analysis for component-based
multi-mode systems. Journal of Systems Architecture, 59(10):1299-1318, 2013.

Y. Yu, A. Lapouchnian, S. Liaskos, J. Mylopoulos, and J. C. Leite. From goals to
high-variability software design. In A. An, S. Matwin, Z. W. Ras, and D. Slezak,
editors, Foundations of Intelligent Systems, volume 4994 of Lecture Notes in Com-
puter Science, pages 1-16. Springer, 2008.

J. Yang and M. P. Papazoglou. Service components for managing the life-cycle of
service compositions. Information Systems, 29(2):97-125, 2004.

H. Yin, H. Qin, J. Carlson, and H. Hansson. Mode Switch Handling for the Pro-
Com Component Model. In CBSE "13: Proceedings of the 16th International ACM
Sigsoft Symposium on Component-based Software Engineering, pages 13-22. ACM,
2013.

174

References

[YYP13]

[ZC06]

[ZML10]

L. Yang, S. Yang, and L. Plotnick. How the internet of things technology enhances
emergency response operations. Technological Forecasting and Social Change,
80(9):1854 — 1867, 2013. Planning and Foresight Methodologies in Emergency Pre-
paredness and Management.

J. Zhang and B. H. Cheng. Model-based development of dynamically adaptive
software. In ICSE "06: Proceedings of the 28th International Conference on Software
Engineering, pages 371-380. ACM, 2006.

P. Zhang, H. Muccini, and B. Li. A classification and comparison of model check-
ing software architecture techniques. Journal of Systems and Software, 83(5):723—
744, 2010.

175

References

176

Web References

(2]

[3]

[4]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Alloy.
http://alloy.mit.edu/

Apache Software Foundation. JavaSpaces Service Specification.
http://river.apache.org/doc/specs/html/js-spec.html

Apache Software Foundation. Maven.
http://maven.apache.org/

Apache Software Foundation. Tuscany.
http://tuscany.apache.org/

ASCENS: Autonomic Service-Component Ensembles.
www.ascens-ist.eu

Computing Research and Education Association of Australasia (CORE). The CORE Con-
ference Ranking.
http://core.edu.au/index.php/categories/conference%20rankings/1

CHESS: Composition with Guarantees for High-integrity Embedded Software Compo-
nents Assembly.
http://www.chess-project.org/

DEECo.
http://d3s.mff.cuni.cz/projects/components_and_services/deeco/

The Eclipse Foundation. Equinox p2.
http://www.eclipse.org/equinox/p2/

FraSCAti - Open SCA middleware platform.
http://frascati.ow2.org

GIMPLE Model Checker for C/C++ programs (GMC).
http://d3s.mff.cuni.cz/~sery/gmc/

Google. Google Guice.
http://code.google.com/p/google-guice/

jDEECo.
https://github.com/d3scomp/J[DEECo

jRESP: Java Runtime Environment for SCEL Programs.
http://jresp.sourceforge.net/

Kevoree.
http://kevoree.org/

NASA. Java Path Finder.
http://babelfish.arc.nasa.gov/trac/jpf/

177

http://alloy.mit.edu/
http://river.apache.org/doc/specs/html/js-spec.html
http://maven.apache.org/
http://tuscany.apache.org/
http://www.ascens-ist.eu/
http://core.edu.au/index.php/categories/conference%20rankings/1
http://www.chess-project.org/
http://d3s.mff.cuni.cz/projects/components_and_services/deeco/
http://www.eclipse.org/equinox/p2/
http://frascati.ow2.org/
http://d3s.mff.cuni.cz/~sery/gmc/
http://code.google.com/p/google-guice/
https://github.com/d3scomp/JDEECo
http://jresp.sourceforge.net/
http://kevoree.org/
http://babelfish.arc.nasa.gov/trac/jpf/

Web References

(17]

(18]

(19]

(20]

(21]

(22]

(23]

OASIS Open CSA. Service Component Architecture.
http://oasis-opencsa.org/sca

Object Management Group. CORBA Component Model Specification v4.0.
http://www.omg.org/spec/CCM/

Oracle. Enterprise JavaBeans specification v3.2.
http://jcp.org/aboutJava/communityprocess/final/jsr345/index.html

Oracle. JavaBeans specification.
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

OSGi Alliance. OSGi service platform, core specification, release 5.
http://www.osgi.org/Specifications/HomePage

SpringSource. Spring Framework.
http://www.springsource.org/

XSB Prolog.
http://xsb.sourceforge.net/

178

http://oasis-opencsa.org/sca
http://www.omg.org/spec/CCM/
http://jcp.org/aboutJava/communityprocess/final/jsr345/index.html
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://www.osgi.org/Specifications/HomePage
http://www.springsource.org/
http://xsb.sourceforge.net/

