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Abstract

Thesis describes close relationship between Dynamic programming and rein-

forcement learning algorithms on the example of a model of a dual currency

economy. Dynamic programming is methodology used for deriving equilibria

of Search-Theoretic equilibrium monetary models, which provide evidence for

emergence of fiat currency or emergence of internationally circulating curren-

cies without any human institutions. Particular previously published Search-

Theoretic framework of dual currency economy is used as a background for de-

velopment of Agent-based Computational model. Both models are compared

based on their ability to reach specified equilibria and their assumptions, with

the conclusion, that models are closely related and with the same assumptions

would have the same results. Agent-based model also provides possibility of

relaxing assumptions on perfect information distribution and static environ-

ment. In this setting, the model will reach different equilibria, that correspond

better to the real human behavior, observed in previously published laboratory

experiments.

JEL Classification D83, E40

Keywords Agent-based Modeling, Currency, Currency

switch, Dollarization

Author’s e-mail borivoj.vlk@gmail.com

Supervisor’s e-mail jskuhrovec@gmail.com

mailto:borivoj.vlk@gmail.com
mailto:jskuhrovec@gmail.com


Abstrakt

Práce popisuje bĺızký vztah mezi Dynamickým programováńım zpětnovazebńım

učeńım, na př́ıkladu modelu oběhu dvou měn. Dynamické programováńı je

metodologickým základem pro popis rovnovážných stav̊u monetárńıch ”Search-

Theoretic” model̊u, které umožňuj́ı vysvětlit vznik fiat měny, nebo mezinárodně

použ́ıvaných měn, bez jakýchkoli společeských institućı. V konkrétńım, dř́ıve

publikovaném, ”Search-Theoretic” rámci dvou měn je vytvořen p̊uvodńı mul-

tiagentńı výpočetńı model. Oba modely jsou porovnány na základě jejich

předpoklad̊u a jejich schopnosti dosáhnou určených rovnovážných stav̊u. Oba

modely jsou si bĺızké a za stejných předpoklad̊u dosahuj́ı stejných výsledk̊u.

Multiagentńı výpočetńı model nav́ıc umožňuje vynechat předpoklady dokonalé

informovanosti a statického prostřed́ı. Za těchto okolnost́ı dosahuje jiných

rovnovážných stav̊u, které ale lépe odpov́ıdaj́ı skutečnému lidskému chováńı,

pozorovanému v dř́ıve publikovaných laboratorńıch experimentech.
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Chapter 1

Introduction

To explain emergence of fiat money and money exchange without any human

institutions, Search-Theoretic equilibrium models were used extensively. First

introduced in Kiyotaki & Wright (1989b), they utilize Dynamic programming

(Not to be confused with computer programming) in monetary economics. Dy-

namic programming is mathematical framework developed by Bellman (1957)

that is used to find possible equilibria, given model setting, and to analyze it’s

aspect including welfare implications. Models have usually very solid micro

foundations. Only “traditional” assumptions on information and rationality

are a necessity. On the other hand, out of equilibrium dynamics of the models

is harder to address, due to limitations of Dynamic programming framework.

This thesis developes an Agent-based computational model, that provides pos-

sible sulution to this issue.

From the original setting of Search-Theoretic monetary models, in which emer-

gence of commodity and fiat currency is studied, researchers went further and

addressed the phenomena of international currency in similar manner. One of

such models, that tried to address the phenomena of international currencies

was developed by Matsuyama et al. (1991). It managed to do so, without im-

posing additional assumptions, although the results were weaker as in other

models, like Zhou (1997). This next model imposed additional assumptions on

the agents living in the economy - agents sometimes seek foreign goods. This

way, international currencies eventually emerged and the results are stronger

than in Matsuyama et al. (1991). On the other hand, any additional assump-

tion need proper justification. For the sake of simplicity, this thesis will consider

primarily model developed by Matsuyama et al. (1991)

Even before massive spread of Agent-based Economics (ABE), possible applica-
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tion of computational methods based on simulating large numbers of artificially

intelligent agents in Kiyotaki-Wright environment was developed by Marimon

et al. (1990). In this model, the artificially intelligent agents were sometimes

unable to reach pareto efficient equilibria, even though the model environment

was similar to original (Kiyotaki & Wright 1989b). The agents failed to adopt

the speculative strategy (To accept trading good with high storage costs - even-

tually allowing two goods to circulate as media of exchange.) that was in some

setting of Kiyotaki-Wright environment most efficient for some agents. This

property became especially interesting after findings of Duffy & Ochs (1999)

and Brown (1996), that human subject in laboratory experiment would achieve

similar results as artificially intelligent agents of Marimon et al. (1990). ABM

can bring other benefits in comparison with original approach. It is used to

model economic processes as dynamic systems of interacting agents. (Tesfat-

sion & Judd 2006) It is able to grow general properties of the whole system

from the bottom up.

The process that leads to emergence of equilibria in the Kiyotaki-Wright econ-

omy is hard to address. There are papers that focus on this topic using ad-

vanced theoretical concepts, such as Sethi (1999). But using an ABM model,

we can study the process that leads to equilibria more easily and we can also

compare in which settings particular types of equilibria may emerge.

In this thesis, I will develop Agent-based computational model, based in two

country -two currency environment, in similar setting to Matsuyama et al.

(1991), on which I will verify some general notions associated with a theory

of international currency. I will also address the relation between artificial in-

telligence algorithm, similar to the one used by Marimon et al. (1990), and

Dynamic programming. This was done already in computer science, but to

my best knowledge, not in economic literature, where it can find interesting

application. Economics studies behavior of dynamic systems and artificially

intelligent agents can simulate its behavior.

The original goal of the thesis was to develop model with rationally acting

agents. Thesis was also originally intended to include exogenous currency ex-

change mechanism. The assumption of rationality was in the final version

omitted, because I was able to provide much the more realistic mechanism of

agent’s decision-making. Reinforcement learning is used instead, because it is

related to both behavioral psychology(Booker & Holland 1989) and Dynamic

programming. This mechanism also resulted in necessity to omit inclusion of

exogenous currency exchange mechanism, because programming such model
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would go well beyond my capabilities as a computer programmer and would

not bring comprehensive results, that would pay for additional sophistication.

Now the thesis offers a comparison between agents, whose decision are based

on two frameworks. One of which requires rationality assumption and perfect

information and the other can relax those assumptions. Thesis also provides

theoretical relation between both of those frameworks, which is surprisingly

close. I approach Matsuyama et al. (1991) environment in very similar way

Marimon et al. (1990) approached original Kiyotaki-Wright environment. But

since then, the theory of reinforcement learning has made couple of steps for-

ward. On top of just developing the model like Marimon et al. (1990) did, I

will provide the reader with some very interesting relations between the frame-

works used by those who make variants of Kiyotaki-Wright environments and

to the one used by Marimon et al. (1990). I will also mention some human

subject experiments, done mainly by John Duffy - Duffy & Ochs (1999) and

Duffy (2004), that may explain the differences in results of both approaches.

Second chapter of this thesis describes Search-Theoretic equilibrium model

developed by Matsuyama et al. (1991) using original author’s notations and

mentiones several issues of this model. In order to address those issues, Agents

based computational model is developed in next chapters. Both models use

similar mathematical apparatus, which is described in chapter 3. In chapter 4

the decision making mechanism of the newly developed Agent based compu-

tational model is described. Chapter 5 provides new model environment and

practical implementation of decision making mechanism. Results of the execu-

tion of computational model are provided in chapter 6 and in appendix to this

thesis.

Computer scientists sometimes use methods of reinforcements learning to find

numerical solutions to Bellman’s equations. In economics, advantage of this

relation can be exploited even further. The fact, that the relationship between

reinforcement learning in non-cooperative games and Dynamic programming is

not fully described is viewed by computer scientists as a big drawback.(Choi &

Ahn 2010) On the other hand, what computer scientist may consider to be a

problematic, may actually be an advantage for economists. This topic will be

addressed in the conclusion along with the relation of reinforcement learning

to human subject experiments.



Chapter 2

Matsuyama et al. environment

This thesis develops Agent-based computational model based on the framework

by Matsuyama et al. (1991). Those authors have adopted Search-Theoretic ap-

proach used in Kiyotaki & Wright (1989b) on the model of choices among two

fiat monies. This chapter briefly describes their model and methodology they

have used. In Chapters 3, 4 and 5, I will describe the setting of my model and

the relation between mine and their methodological approach. Here, I have also

adopted similar notation, but due to its limited ability to explain mathematical

background properly, it should serve only for some general understanding of

possible problems, their approach may face. In the next chapters, the notation

will have to change.

Matsuyama et al. (1991) model world consists of two economies, Home and

Foreign, each populated by continuum of rational agents with perfect infor-

mation about their environment and other agents. Each economy has its own

fiat currency. Agents meet pairwise at random and exchange goods for cur-

rency. Authors examined by the means of Dynamic programming, in what

circumstances both currencies can circulate locally or internationally in both

economies.

There were very similar models developed by other authors, such as Wright &

Trejos (2001) or Zhou (1997). Those have several additional assumptions, like

random change of tastes in Zhou (1997). Those assumptions were a necessity

for achieving results, that would imply the existence of one international cur-

rency, given the used methodology. For my application, environment with less

additional assumptions is better choice, because I want to focus more on the

methodology itself.

In the following section, Dynamic programming and stochastic Markov decision
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process is used as it was by Matsuyama et al. (1991) and most other authors

of similar models. Those non-trivial mathematical concepts are explained in

Chapter 3.

Model setting

Time is discrete and extends from zero to infinity. World is populated by a

continuum of rational agents, with perfect information about their environment

and other agents, that live infinitely and are divided into two groups represent-

ing two economies - Home and Foreign. There are k ≥ 3 types of agents and

k types of indivisible goods. Types of agents are indexed i = 1, ..., k. Type

i agent gains utility from consuming only type i − 1 (mod k) good. Type i

agent is able to produce only type i good. After agent of type i consumes good

i− 1 it is able to produce one and only one unit of good i. At this moment, it

also gains utility u > 0. Each agent knows how to store his production good

costlessly up to one unit. He can neither produce nor store any other types of

goods. In order to account for time preference, there is also a discount factor

δ > 0. Design of the model implies, that there is no double coincidence of

wants. The expected utility of an agent at time t is defined as:

Vt = E[
∞∑
s=0

(1 + δ)−sIt+su|Ωt]

Where It+s is a random indicator function which equals one if agent consumes

his consumption good at time t + s. Ωt is the information available in the

system and therefore to every agent at period t. Similar definition of expected

utility function for my model is in section 4.1 and is preceded by clear deriva-

tion.

Let n ∈ (0, 1) be the size of population living in the home economy and let

the n∗ = 1− n be the of size of population living in the Foreign economy.

There are two fiat monies, Home currency and Foreign currency. Each currency

is indivisible and can be stored up to one unit by every agent if he does not

carry his production good or other currency.

The economy begins at t = 0 with agents being endowed with an arbitrary and

randomly generated initial distribution of holdings of goods and fiat money.

Portion of agents from Home economy is endowed with holdings of goods and

and portion of Home agents is endowed with Home currency. Portion of For-
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eign agents is endowed with holdings of goods and portion of Foreign agents

is endowed with Foreign currency. Which particular agent receives goods and

which receives money is determined at random, but the relative portions of

money holders and goods holders are fixed. Let M be the fraction of Home

agents endowed with Home currency at t = 0 and let M∗ be the fraction

of Foreign agents endowed with Foreign currency at t = 0. The fraction of

Home(Foreign) agents which are endowed with holdings of goods at t = 0 is

therefore n−M ; (n∗ −M∗). Both M and M∗ are exogenous parameters. For

holdings of Home and Foreign agents, following notations will be used. Let

mh (mf ) be the fraction of Home agents holding Home(Foreign) currency. Let

m∗f ; (m∗h) be the fraction of Foreign agents holding Foreign(Home) currency at

time t. Inventory distribution among home and foreign agents can be summa-

rized by two row vectors:

X = (1−mf −mh,mf ,mh)

X∗ = (1−m∗f −m∗h,m∗f ,m∗h)

We can think of those vectors as of random variables, whose distributions are

described by agent’s decisions and random matching process. Random match-

ing process means, that during each round, agents are matched randomly in

pairs and must decide, whether or not to trade. Trade means one-for-one

swap of inventories and takes place only if mutually agreed. Agents agree to

trade only if it would result in strict increase in expected utility. Home agent

meets another home agent with probability n and foreign agent with proba-

bility β(1 − n), where β ∈ (0, 1) is coefficient that represents the degree of

integration of both economies. Therefore, agents living in different economies

meet less often. Agents can also meet nobody, that occurs with probability

(1− β)(1− n)

In order to maximize overall expected utility, each agent chooses a trade strat-

egy. This strategy is described by a set of rules denoted τ for Home agents and

τ ∗ for Foreign agents. τab = 1 if agents agrees to trade object a for object b and

zero otherwise. A complete set of rules assigned to each possible combination

of tradable object forms agents trade strategy. Tradable objects are production

good g, home currency h and foreign currency f

Trade strategies τ ∗ and τ , inventory distributions X and X∗ and matching

technology generate the Markov process that that agent’s inventory follows.

Let’s denote Pab(P
∗
ab) the transition probability with which Home(Foreign)
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agent’s inventory changes from object a to b. For example the probability

that agent’s inventory changes from its production good to Home currency is

denoted Pgh A Complete sets of such probabilities form corresponding transi-

tion matrices Π(Π∗), that form distribution of agent’s inventories that form a

MarkovChain.

For the transition matrices to be defined, Matsuyama et al. (1991) had to

make restrictive assumptions about the strategies of the agents. Because with

no strategy specification it is not possible to define transition matrices. Those

assumptions are:

Key assumptions

1. Agents have sufficient knowledge and ability to analyze the game in ra-

tional manner.

2. Agents know the entire structure of the game.

3. Agents have agreed on their trading strategies before the first round.

The third one is especially problematic, because it limits the model only to

steady-states study. Matsuyama et al. (1991) considered a steady-state, pure

strategy Nash equilibria, which are a set of strategies, steady state inventory

distributions and steady state transition matrices, that satisfy (a) Maximiza-

tion: Given the steady state inventory distribution and other agents strategies,

agents chooses the trade strategy to maximize their overall utility. (b) Rational

expectations: the steady state transition matrices and inventory distributions

are consistent with the strategies chosen by the agents.
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To derive equilibria in their economies, Matsuyama et al. (1991) used a

framework of Dynamic programming and Bellman’s equations. Let Vg, Vh and

Vf be the value functions of Home agents, provided that he currently holds his

production good, Home currency or Foreign currency, respectively. What is a

value function in Dynamic programming and what is Bellman’s equation will

be shown in Chapter 3. In this case, it is simply expected discounted utility of

an agent, given he knows the utility maximizing trade strategy and executes

it. Bellman’s equation is basically a recursive definition of value function.For

this environment the Bellman’s equations are:

Vg = [(1− Pgh − Pgf )Vg + PghVh + PgfVf ]/(1 + δ)

Vh = [Phg(u+ Vg) + (1− Phg − Phf )Vh + PhfVf ]/(1 + δ)

Vf = [Pfg(u+ Vg) + PfhVh + (1− Pfg − Pfh)Vf ]/(1 + δ)

Matsuyama et al. (1991) used them to derive several equilibria(and their equiv-

alent variants) and their properties: (A)Two local currencies equilibrium, in

which Home currency circulates only in Home economy and vice versa. (B)

One local and one international currency equilibrium, in which one of the cur-

rencies circulates in both economies. (C)Currency exchange: mixed strategy

equilibrium, in which both currencies circulate in both economies. As a result

of assumption that agent agrees to trade if and only if it results in strict in-

crease in his expected utility, no currency exchange would occur in previously

mentioned equilibrium C .This equilibrium can arise only, if agents are allowed

to trade even if they are indifferent.

As we have already described the basics of Matsuyama et al. (1991) model,

lets recall the assumption on the trading strategies of the agents. The as-

sumption 3 basically means, that the agents decide, which equilibrium will be

achieved and follow the appropriate trading strategies - trading strategy profile

is assumed to be common knowledge, the agents know, how to coordinate or to

focus on a specific equilibrium. This results in the limited ability of the model

to explain real world out of equilibrium dynamics. Let’s give to this problem

special attention, as it will be addressed in the following chapters.
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The authors have also tried to relax the third assumption and briefly in-

troduced possible solution: Agents may follow some behavioral patterns, each

round small portion of agents may change its behavior on experimental ba-

sis, to be the best response to current strategy distribution among population,

eventually entire population would reach some steady state equilibrium. Un-

fortunately, rigorous reasoning was not provided and authors admit, that this

is still too vague. There are also other models, that tried to relax this assump-

tions, but ended up being extremely complicated. Sethi (1999) Agent-based

model, in which this assumption would be relaxed is possible solution to this

issue. In the following chapter, I will show why was this assumption a ne-

cessity required by the used methodology of Dynamic programming. After

that, closely related Agent based computational model of similar environment

without above mentioned assumptions will be presented.



Chapter 3

Link between models

In order to solve some of the issues of Search-Theoretic model described in the

previous chapter, I have developed Agent based computational model, whose

setting is very similar, but agents decision making mechanism is replaced by

computer algorithm. To clarify reasoning behind the decision to create Agent-

based model itself and behind its design, I have to introduce the reader to

several non-trivial mathematical concepts, that are used to find solutions of

dynamic stochastic optimization problems. I will omit most of the theory be-

hind, in favor of explaining basic notions and principles that should give good

understanding of design of both Agent based model and analytical model of

Matsuyama et al. (1991). I can put the mathematical apparatus behind both

models in one chapter, because agent’s decision making mechanism in both

models is surprisingly similar, as will be described in following chapters. I’m

going to provide the logic behind internal functioning of the algorithms of the

model, which not only well correspond to the mathematical apparatus employed

by Kiyotaki-Wright and others, but also have some very significant advantages.

Theory provided here will be utilized in Chapters 4 and 5, which describe the

design of agent’s decision making mechanism in Agent-based model and can

also serve for better understanding of Matsuyama et al. (1991) model and

Kiyotaki-Wright models in general. In this Chapter, I’m going to put the rea-

sons, why should anyone create a computational model like the one I did and

why It was designed the way it was, in context. The model itself is described

in chapters 4 and 5.

Let’s departure from Matsuyama et al. (1991) environment, and focus on a

general optimization problem, that an agent in stochastic environment may
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face. At first, let’s introduce the expected value of random variable using

Riemann-Stieltjes integral. The notion of expected value is of special impor-

tance when considering stochastic processes.

In the first section, I follow Bartoszynski & Niewidomska-Bugaj (2008).

3.0.1 Riemann-Stieltjes Integral

Let F be a cumulative distribution function of a random variable. F is nonde-

creasing, continuous on the right and satisfy following conditions:

lim
x→∞

F (x) = 1

lim
x→−∞

F (x) = 0

Let a, b ∈ R and a ≤ b. Lets choose a sequence of partitions of the interval

[a, b] so that nth partition divides the interval into 2n equal parts and that the

kth point of the partitions is

xn,k = a+
k

2n
(b− a), k = 0, ..., 2n

Let g
(−)
n,k be the minimum of function g in the kth interval, that is

g
(−)
n,k = min

xn,k−1≤x≤xn,k

g(x)

Let the function g
(+)
n,k be the maximum of g in the kth interval, that is

g
(+)
n,k = max

xn,k−1≤x≤xn,k

g(x)

The common limit, if exists of the two sequences

Sn =
2n∑
k=1

g
(−)
n,k [F (xn,k)− F (xn,k−1)]

Sn =
2n∑
k=1

g
(+)
n,k [F (xn,k)− F (xn,k−1)]

will be denoted
∫ b

a
g(x)dF (x). It is called Riemann -Stieltjes integral of the

function g with respect to F .
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3.0.2 Expected value of a discrete random variable

Let F be a cumulative distribution function of a discrete random variable with

possible values x1, x2, .. and corresponding probabilities P{X = xi} = pi. F is

constant between points xi and its steps equal pi at points xi.

The difference F (xn,k)− F (xn,k−1) is zero, if the interval [xn,k−1, xn,k] does not

include any of the points xi of the increase of F . Letting n → ∞, the only

terms that will remain in sums Sn that will remain will be those corresponding

to the points of increase xi. Therefore, the differences F (xn,k)− F (xn,k−1) for

intervals covering xi will converge to pi and the other terms will converge to

zero. Therefore, if g is continuous the limits of the sums Sn will be∫ ∞
−∞

g(x)dF (x) =
∑
i

g(xi)pi

For the special case where x = g(x) we can see that∫ ∞
−∞

xdF (x) =
∑
i

xiP{X = xi}

I conclude this section with the following theorem:

Theorem 1

If X is a discrete random variable with cdf F and if E(X) exists, then

E(X) =

∫ ∞
−∞

xdF (x)

3.1 Markov decision process

Consider an agent, facing an optimization problem, in an stochastic environ-

ment, that can not be influenced by the actions of other agents and therefore,

any distribution function of random variables characterizing the environment,

would be without actions of the agent itself, static.

Agent, or a decision maker can by its actions influence a behavior of a discrete

stochastic system as it evolves through time so to maximize some reward or to

achieve a positive outcome.

Here, I follow Chapter III of Powell (2010).

Consider a discrete system that at any of times t = 0, 1, 2, ... is characterized by

a vector p, where p ∈ D and D is a finite set of possible states of that system.
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Key feature of this system is that the state in next period depends only on

current state of the system and some transition probabilities, that govern the

system from one state to another. The state of the system at the time t+ 1 is

therefore independent on the evolution of the state in the past, given current

state at time t. Let’s denote the probability that the system will be in the state

pi at time t+ 1 if it is in the state pj at time t - aij. The states of the system

form a Markov Chain and matrix A = (aij) its transition matrix.

Let’s assume, that the transition probabilities aij depend on some parameter

q which corresponds to agents decision, that the agent can make at any time

t. Let q ∈ S and let S be some finite set of possible decisions. Then, aij(q)

is the probability, that the system will be in state pi in time t + 1, given it is

in the state pj at time t and an agent makes decision q. Transition matrix is

therefore A(q) = (aij(q)).

As a result of choosing decision q in state pi, besides the system being trans-

formed to next state pj that is determined by A(q), agent receives a reward

|r(pj, q)| ≤ ∞. Let function r(p, q) be defined for p ∈ D and q ∈ S. So in each

state of the system, each decision can result in some reward, which is to be

maximized.

Finally, we can define a Markov decision process as a the tuple < D,S, P, r, γ >

where

� D is the finite set of states pi of the system.

� S is the finite set of decisions q.

� A(q) is a state transition probability matrix, given the agent’s decision q.

� r is some reward function

� γ is a discount factor. γ ∈ (0, 1), that accounts of the time preference of

the agent - future rewards are less valuable than those obtained today.

Let the ordered set of decisions Π = {q1, q2..., qN} be called a policy. By

ordered, I mean, that particular decision is assigned to each state of the system

as it evolves. Not that the decisions are fixed to particular time periods. Let

M be a finite set of all possible policies.

Let’s suppose, that the process starts at some time t. First, we need to define,

the expected return from N + 1 periods, given that agent uses some policy Π.

Next, let function dGΠ(pt+i, pt+i+1) be the cumulative distribution function of

the state of the system in the period t + i, i = 0, ..., N . That corresponds to
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the state transition matrix A(Π). Therefore also to the policy Π, and to the

current state of the system pt+i. Then, the expected discounted reward over

N + 1 periods given that the agent uses policy Π and the system starts in the

state pt is:

RN+1(pt,Π) =
N∑
i=0

[γi
∫
pt+i∈D

r(pt+i+1, qt+i)dGqt+i
(pt+i+1, pt+i)]

Utilizing Theorem 1 for given policy Π gives:

RN+1(pt,Π) = EΠ{
N∑
i=0

γir(pt+i+1, qt+i)}

Agent faces a problem of maximizing his expected reward:

max
Π∈M

RN+1(pt,Π)

Let the solution of this problem be called an optimal policy and denoted Π∗

In line with Bellman’s Dynamic programming framework (Bellman 1957), let’s

define the function VN(pt) as expected return over N -periods if the agents uses

optimal policy Π∗(Return maximizing policy), given the initial state of the

system pt.

VN+1(pt) = max
Π∈M

RN+1(pt,Π) = RN+1(pt,Π
∗)

Function VN+1(pt) is called a value function and in Kiyotaki-Wright framework

is usually denoted V . In the model from chapter 2, it is denoted Vg, Vf or Vh

depending on the agent’s holdings and therefore state of the system. If the

agent would be able to find the value function, he would therefore know also

the optimal policy. To find the value function, Bellman’s principle of optimality

can be used:

An optimal policy has the property, that whatever the initial state and initial

decisions are, the remaining decision must constitute an optimal policy with

regard to the state resulting from the first decision.

Employing the Bellman’s principle of optimality, the expected reward from

N -stage process if the agents uses optimal policy is:

VN+1(pt) = max
qt∈S
{r(pt, qt) + E{γVN(pt+1)}}
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Intuitively this means, that if we choose the decision that yields the maximum

reward in first stage and then follow the optimal policy for remaining N stages,

with the regard to the resulting state from our first decision, we get optimal

policy for N+1 stages. Note that Bellman’s principle of optimality applies only

in Markov processes. For the notion behind this step, I refer to the chapter

III of Bellman (1957). For details on formal assumptions and existence and

uniqueness of the solution see Bellman (1957) chapter IV. There are several

ways, how to solve this problem and how to find the function VN(pt) and op-

timal policy Π∗. I will focus only on one of them, which uses Reinforcement

learning methods.

Bellman’s principle of optimality also applies to the infinite or unbounded pro-

cesses, which are usual for Kiyotaki-Wright environments:

V (pt) = max
qt∈S
{r(pt, qt) + E{γV (pt+1)}}

For this step, I refer to section 3.3 of Powell (2010), also see Bellman (1957)

chapter III. We can think of this as a V (pt) = limN→∞ VN(pt) assuming that

the limit exists. This way, we obtain something like a steady state V (pt) and

steady state policy. Existence and uniqueness theorems can be found also in

chapter IV of Bellman (1957).

This last equation is being referred to as Bellman’s equation.

Now let’s recall the key assumption 3 from chapter 2. What if it would be

broken? What if the system actually was influenced by the decision of other

agents that would not be agreed on the trading strategy and therefore un-

predictable? In this case, the transition matrix A(q) would not be defined,

therefore we would not be able to compute the expected value and the Bell-

man’s equation could not be used to find optimal policy.

But the agent still could use some approximation of the value function. This

topic is addressed in the following chapter.



Chapter 4

Reinforcement Learning

Stuart Dreyfus in the introduction to the 2010 edition of Richard Bellman’s Dy-

namic Programming (Bellman 1957) states, that there is a relationship between

Bellman’s principle of optimality and reinforcement machine learning in which

computer algorithm is used to find optimal policy controlling either determinis-

tic or stochastic sequential process. The algorithm is given only the information

resulting from the observation of the results of the various decisions in various

states. It is not given any information about decisiondependent evolution of

the state or about the determination of the reward. The algorithm is trained on

set of state-decisions pairs and corresponding results to find the optimal policy

in policy space. This basically means, that the algorithm from the experience

successively approximates the optimal policy function and value function of the

dynamic programming. One of such algorithms is Holland’s classifier system.

Before I can get to the relation of Holland’s classifier system to dynamic pro-

gramming and its application in my model, it is necessary to present a concept

from which it is derived, called Q-learning. this concept will also serve as a

proxy, between methods that are actually employed in my model, and methods

used by Matsuyama et al. (1991) and others.

4.1 Q-learning

In this part, I follow chapter XIII of Mitchell (1997).

Let’s assume, that an agent wants to find optimal policy and earn highest

possible return, but he doesn’t have a complete knowledge about the nature of

the system, transition rules or reward function.

Here again introduce the value function V (pt), which will be again defined as a
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expected discounted value of future rewards over a infinite process, given initial

state of the system pt and agents optimal policy Π∗:

V (pt) = EΠ{
∞∑
i=0

γir(pt+i, qt+i)}

The function V (pt) is closely related to the same function presented in Chapter

2. The agent would like to know the optimal policy and the corresponding

value function. If he is able to compare expected rewards each time he makes

a decision and choose the one that is most likely to bring good results, he can

eventually discover the optimal policy. But in real world, an agent would often

only be able to observe rewards and state variables. Unfortunately, he can-

not obtain a solution Bellman’s equation without the knowledge of transition

matrix and, therefore the cumulative distribution function dG(p, q) and the

reward function r(p, q). So if he cannot use the true value function to evaluate

his policy, he might try to use some approximation.

4.1.1 Q-Function

One method of approximating the value function for given policies is called

Q-Learning. This method tries to approximate the true optimal policy value

function by introducing function that is to it directly related and from which

it derives its name, Q-function.

Q(pt, qt) = E{r(pt, qt) + γV (pt+1)}

Notice also this relation between the Q-function and the value function:

V (pt) = max
qt

Q(pt, qt)

Therefore, we can write:

Q(pt, qt) = E{r(pt, qt)}+ γmax
qt+1

Q(pt+1, qt+1)

Learning the Q-Function corresponds to learning the optimal value function

and, therefore optimal policy. Another big advantage is, that the agent is able

to learn the optimal policy, without any knowledge of reward function of about

the cumulative distribution function.
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At each stage of the process, the agent tries to approximate the actual value of

the Q-function and makes a decision based on that approximation. Eventually,

using the algorithm that is presented below, he will have a very good estimate.

Before I explain the algorithm, that is used to learn the Q-function, I need to

define function, that represents the agent current hypothesis about the true

value of the Q-function. This hypothesis will be denoted Q̂(p, q). Agent store

the estimate Q̂ for each state-decision pair in a table. Initially, the table can be

filled with random numbers or zeros. At each stage of the process, the agent

observes the state of the system pt, makes a decision qt, receives a reward and

observes next state of the system pt+1. Then he updates the entry for Q̂(pt, qt)

in his estimate table according to the rule in Equation 1. Also, let’s define the

number n(I, pt, qt) representing the number of iteration, in which the decision

pq is applied to the state qt the I-th time.

Equation 1

Q̂n(pt, qt) = (1− αn)Q̂n−1(pt, qt) + αn{r(pt, qt) + γmax
qt+1

Q̂n−1(pt+1, qt+1)}

Where

αn = 1∑n
s=1 I

pt
qt (s)+1

and Iptqt (s) = 1 if state decision qt was applied on state pt

at time s and zero otherwise.
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Q-learning algorithm

For each p, q initialize the table entry Q̂(p, q) to zero

Observe the current state pt

for i = 0 to ∞:

1. Select a decision qt+i and execute it

2. Receive the immediate reward r

3. Observe the new state pt+i+1

4. Update the table entry for Q̂(pt+i, qt+i) as in equation 1.

Finally, I can present a core theorem, that provides a direct relation between

my computational model and work of Matsuyama et al. (1991).

Theorem 2 - Convergence of Q-learning for stochastic Markov decision

process

Consider a Q-learning agent in a stochastic Markov decision process with

bounded rewards ∀p ∈ D, ∀q ∈ S, c ∈ (0,∞) : |r(p, q)| ≤ c. The Q-learning

agent uses the training rule of equation 1, initializes its table Q̂(p, q) to ar-

bitrary finite values, and uses a discount factor γ such that 0 ≤ γ < 1. Let

n(i, p, q) be the iteration corresponding to the ith time that decision q is applied

to the state p. If each state-action pair is visited infinitely often, 0 ≤ αn < 1,

and
∞∑
i=1

αn(i,p,q) =∞,
∞∑
i=1

{αn(i,p,q)}2 ≤ ∞

then for all p ∈ D and q ∈ S, Q̂n(p, q)→ Q(p, q) as n→∞ with probability 1.

For proof see Watkins & Dayan (1992).

The intuition behind this theorem is, that the Q-Learning agent, in an en-

vironment with the same usual Kyiotaki-Wright assumptions (Including Key

assumptions from chapter 2) is proven to make very good estimates of value

function with large n and therefore the optimal policy Π∗.

4.2 Nash Q-learning

Even though the agent doesn’t know how the next state of the system or the

reward is determined, he will eventually make his hypothesis about the Q-
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function and therefore about the value function of Dynamic programming and

his hypothesis will converge over time the true value with probability 1.

But, there is still one assumption that limits application of the presented prin-

ciples. It is especially limiting, when we would want to apply this methodology

in economics. That is, both reward function r(p, q) and transition matrix that

determines the next state of the system given agents decision are static over

time. But in real economic systems, that is not true. It is determined by the

decisions of other agents in the system. Proving convergence of non-cooperative

multi-agent stochastic game to Nash equilibrium is very difficult and to my best

knowledge it has not been done yet. This is one of the reasons, that application

of reinforcement learning in economics is sometimes considered stuck. (Choi &

Ahn 2010) There were some attempts to design convergence proof for a system,

where transition matrix is determined by other players in the game and those

decisions are determined by some algorithm that is based on Q-learning. One

of them is called Nash Q-learning (Hu & Wellman 2003). In this method, the

Q-function is modified. Newly introduced Nash-Q-function is defined as fol-

lows: Sum of agents current reward plus the sum of agents future reward when

all agents follow a same Nash equilibrium strategy. This is quite restrictive in

application in economics. It adds again some of the assumptions we were trying

to remove in the first place. On top of that, Nash-Q-function is guaranteed to

converge to its true value only in some very restricted environments.

So if one agent is in a stationary environment, where the transition matrix is

given a does not evolve over time, the Q-function is guaranteed to converge.

But when there are multiple agents in non-cooperative stochastic game using

Q-learning, they are not guaranteed to learn the optimal strategies - the Q-

function is not guaranteed to reach its true value and to my best knowledge

- no one introduced modification of the Q-learning algorithm that would not

bring too restrictive assumptions and would be guaranteed to make agents in

non-cooperative stochastic games reach Nash equilibrium.

4.3 Machine learning algorithm

For the development of the computational agent-based model, I’ve decided not

to go for Q-Learning but to use Holland’s Classifier systems instead (Holland

1975). Mainly because it fits my purpose perfectly, it is easier to implement for

Kiyotaki-Wright environments and it this application will bring same results.

My approach is quite similar to the one used by Marimon et al. (1990). But be-
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cause I need some relation of Holland Classifier system to Q-Learning, in order

to have a relationshit to the value function of Dynamic programming, I’ve used

VSCS - Very Simplified Classifier System (Dorigo & Bersini 1994). There also

are many other kinds of classifier systems. For example, XCS (Wilson 1995)

is used in more complicated environments. Marimon et al. (1990) used tradi-

tional Hollands Classifier system, but this was two year earlier to the proof of

convergence by Watkins & Dayan (1992). Since the proof works for Q-Learning

agents, I need some version of Classifier System, that is interchangeable with

Q-Learning algorithms. That is exactly VSCS. It was developed by Dorigo

& Bersini (1994) for that purpose and theorem 2 will still apply - key prop-

erty of classifier system corresponds to the Q-function. But still, I’ve made a

small change in the VSCS. Because Dorigo & Bersini (1994) developed VSCS

to correspond to the deterministic variant of Q-learning, I’ve made my version

of VSCS to correspond to the stochastic variant of Q-learning. That doesn’t

mean, theorem 2 should apply to the agents in the simulations in chapter 6

(It applies on one decision maker in Stochastic Markov decision Process), but

becouse the simulation consists of system of many decision makers its assump-

tion are clearly broken, transition matrix will change in time, but that is the

whole point.



Chapter 5

Model Environment

This chapter describes the environment of the new Agent-based computational

model. It is based on modified Matsuyama et al. (1991) environment. From

now on, I will use the very similar notation to Marimon et al. (1990). The

reader can therefore easily compare both models and their differences.

Time is discrete and extends from 0 to T ∈ N . Economy is populated by

a finite number of agents a = 1, ..., A divided into two groups. There are k ∈ N
types of indivisible goods. Each agent can produce and consume goods as in

Matsuyama et al. (1991). If agent consumes his consumption good, he receives

utility u ∈ (0,∞). Each round each agent also suffers life cost s ∈ [0,∞).

Agents meet randomly each round according to random matching technology.

There is a fixed probability β ∈ [0, 1), that an agent will meet some agent from

the other economy. Otherwise, he will meet randomly selected agent from his

economy. At t = 0, fraction of agents in Home economy is endowed with Home

currency M ∈ (0, 1) and fraction of agents in the Foreign economy are endowed

with Foreign currency M∗ ∈ (0, 1) . The rest of the agents are endowed with

their production goods. Agent’s a holdings at time t are denoted x+
at.

5.1 Application of VSCS

At each round, after random matching is performed. Agent gets a message

that specifies what are his holdings and what are holdings of his counterparty.

Then, the classifier system is activated. its purpose is to determine agent’s deci-

sion. Booker & Holland (1989) defines classifier system as a ”parallel, message-

passing, rule-based system wherein all rules have the same simple form. In the
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simplest version all messages are required to be of fixed length over a speci-

fied alphabet, typically k-bit binary strings. The rules are in condition/action

form. The condition part specifies what kind of messages satisfy (activate) the

rule and the action part specifies what message is to be sent when the rule is

satisfied.”. In my application of VSCS alphabet consist of values 1 or 0 and

a classifier is a condition/action rule. Each condition part of each classifier is

exactly 2(k + 2) bits long, where k is number of types of goods in the econ-

omy, in is increased by the factor 2 in order to account for two fiat monies.

Set of classifiers for agents a denoted Da consist of classifier whose condition

part can match every state of the world that the agent can observe (its hold-

ings and its trading counterparties holdings) and two possible decisions that

the agent can make - accept trade or refuse trade. For example, a condition

part of a classifier that would match the message that agent is holding good 1

and his counterparty is holding good 2 would look like this: 1, ..., 0|0, 1, ..., 0.

Therefore, if agent holds good 1, that in the first bit would be value 1. His

counterparty holds good 2, so at the k + 3-bit would be also value 1. All the

other bits will contain value 0, because both of them don’t hold any other

good except for good 1 and 2, respectively. That uniquely represents holdings

of both agents. To the condition part would be also assigned one of the two

possible decisions(actions). Trade 1 or not to trade 0. The complete set of

classifiers for my model looks like this:

{1 0 0 ...0|1 0 0 ... 0|1}, . . . , {1 0 0 ...0|0 0 0 ... 1|1}

{1 0 0 ...0|1 0 0 ... 0|0}, . . . , {1 0 0 ...0|0 0 0 ... 1|0}

{0 1 0 ...0|1 0 0 ... 0|1}, . . . , {0 1 0 ...0|0 0 0 ... 1|1}

{0 1 0 ...0|1 0 0 ... 0|0} . . . , {0 1 0 ...0|0 0 0 ... 1|0}
...

. . .
...

{0 0 0 ...1|1 0 0 ... 0|1}, . . . {0 0 0 ... 1|0 0 0 ... 1|1}

{0 0 0 ...1|1 0 0 ... 0|0}, . . . {0 0 0 ... 1|0 0 0 ... 1|0}

It includes every combination of state of the world that the agent can ob-

serve and every decision it can make. Classifier system in this form for agent

a will be denoted Ea For each state of the world there are two classifiers.

One with decision part containing 1 (Trade) and one with 0 (Not Trade) Let
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e = 1, 2, ..., 2(k + 2)2 index this collection of classifiers. (Total number of clas-

sifiers is 2(k + 2)2)

Assigned to each classifier e ∈ 1, 2, ..., 2(k + 2)2 is a strength, denoted Sa
e (t) -

The strength of classifier e in classifier system of agent a at the time t. The

strength Sa
e (t) evolves over time in a way determined by accounting system or

as it is called by Booker & Holland (1989) - ”a Bucket Brigade Algorithm”.

The strengths attached to classifiers are used to determine the decision made

by the classifier system at time t. In opposite to Kiyotaki & Wright (1993) en-

vironment used by Marimon et al. (1990), in the model environment developed

by Matsuyama et al. (1991) only one set of classifiers will be used. Marimon

et al. (1990) defined two sets of classifiers, consumption set and exchange set.

Since agents living in Matsuyama et al. (1991) environment can carry only their

production good or fiat money, they don’t need to decide whether to consume

or not, they will consume automatically once they attain their consumption

good, thus, only one set of classifiers is needed. This is also necessary for the

classifier system to be considered VSCS.

How is the decision of an agent at each state determined? For each given state

there are two classifiers whose condition parts are satisfied. Those classifiers

will compete in an auction. Both classifiers will place a bid, which is deter-

mined by the bid function. The winner, that places the highest bid, makes

agent’s decision. For this, we need to define the bid function:

Bid(e, t) = bSa
e , b ∈ (0, 1)

This function computes the bids that the classifiers will place in an auction.

The size of the bid is portion b ∈ (0, 1) of classifier strength.

5.1.1 Bucket Brigade Algorithm

Classifier system can produce a series of decisions, that will eventually result in

some positive payoff to an agent. Particular decisions in that series don’t have

to result in payment themselves, but still agent can learn the whole series. This

is thanks to the so-called ”bucket brigade algorithm”. The winning bid will be

deducted from the strenght of winning classifier and added to the strength of

the classifier that made the last decision. The classifier that won the auction at

t−1 is credited for setting the observed state of the world by agent a at time t.

Therefore, it will receive the part of the payoff, in which this state may eventu-
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ally result. To sum up, the evolution of the classifier strength is described by

the following difference equation, which corresponds to the updating equation

of the Q-learning algorithm. Imagine this as a series of Q-functions for each

classifier. Strength of each classifier is constantly changing over time and rep-

resents agents hypotheses about the expected reward from executing decision

part of that classifier. Strengths of the classifiers are therefore somehow related

to the value functions of Dynamic programming - are agent’s guess about those

functions.

Equation 2

Sa
e (t+ 1) = Sa

e (t)− γαa
e(t)[bSa

e (t)−
∑
e

Iae (t− 1)bSa
e (t− 1)− Ua]

Where Iae (t) = 1 if classifier e makes the decision at time t and zero otherwise.

The term αa
e corresponds to the αn term of Q-learning, equation 1. Therefore

αa
e(t) = 1∑t

s=0 I
a
e (s)+1

.

Sometimes, the strength of the classifier is updated by external payoff, that

represents utility gain: Ua = u − s if x+
at is agents consumption good and

Ua = −s otherwise. This accounts for utility gains and life costs. If the model

is configured without life cost - that may make the agents agree on trades in

which they are indifferent - then s = 0. Term γ ∈ (0, 1) is a discount factor,

that accounts for time preference.

This difference equation should according to Dorigo & Bersini (1994) corre-

spond to the Equation 1 of Q-Learning. When one agent would live in a

stationary environment, where decisions of other agents are fixed, Theorem 2

should apply to the classifier strengths, which would be therefore related to the

average expected payoff of the classifier decision part. Simply if the assump-

tion 3. from chapter 2 would apply, classifier strength approximates the value

function of dynamic programming.

5.1.2 Equilibrium definition

In order to formally analyze the model results, I define the Nash-Markov Sta-

tionary equilibrium. Model is expected to reach steady state in most of its

configurations, but whether those steady state will be Nash-Markov equilib-

rium is not clear. The definitions are the same as the ones introduced by

Marimon et al. (1990). Let G be a set cumulative probability distribution

functions dGa, a = 1, ..., A, that corresponds to the transition matrices, that
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define the probability of changing agent’s a holdings from it’s production or

consumption good to Home of Foreign currency and vice versa.

Optimal set of classifiers for agent a

Given the set cumulative probability distribution functions G and fixed sets of

classifiers of the other agents Da′ for all a′ 6= a, a fixed set of classifiers is said

to be optimal for agent a if there exists no other set D̂a which yields higher

long-run average utility.

Stationary Nash equilibrium

A stationary Nash equilibrium is a set G of cumulative probability distributions

functions dGa and fixed sets of classifiers Da, a = 1, ..., A such that:

1. Given G and Da′ , for a′ 6= a, Da is optimal for agent a.

2. {Da, a = 1, ..., A} and the random matching technology implies that G =

Gt for all t

If only the second condition is satisfied, the model reached steady state, but

not Nash-Markov equilibrium.

5.2 Genetic algorithm

In order to enable some information sharing among agents, I’ve designed simple

genetic algorithm. By default, this genetic algorithm was turned off, because it

causes the model to reach different equilibria, when the model setting is more

comlicated. More on that, in the next chaper.

This algorithm is different from the genetic algorithm that was developed by

Booker & Holland (1989). Each agent is assigned a value that measures his

success in pursuing utility gains till time t. This value is called fitness and is

defined as follows: Fitnessa(t) =
∑t

s=0 γ
t−sUa(s), which is discounted flow of

all utility gains till time t. At each round, there is certain probability, that the

agents with lowest fitness will be replaced with another agent of the same type,

whose classifier system is a random combination of the classifier systems of the

two most successful agents of his type. We can see this a form of information

sharing among agents of certain types.



Chapter 6

Simulation Results

This chapter provides commented results from running Agent based computa-

tional model. Throughout the entire simulation, the most important data was

collected and it is presented in figures in this chapter and in appendix to this

thesis.

The model was developed in Matlab 2010b. This brings some limitation, model

requires more computational power than it would when it would be written in

some language like C. On the other hand, the code is easily readable and anal-

ysis of the results is also convenient. Source code can be found in appendix B

- contents of an enclosed DVD.

It was necessary to somehow limit number of agents, rounds, and types of goods.

Usual configuration was 120 agents, 6 types of goods and 5000 rounds. Sim-

ulation in this configuration took about 70 minutes on IBM T60 laptop made

in 2007, running Debian GNU/Linux Jessie. Due to the time demading nature

of the simulations, only one simulation for each configuration will be presented.

In the first four simulations, key assumptions from chapter 2 were relaxed

to be applied again in the fifth and last one. The results of both models are

compared. Theorem 2 schould therefore apply only to the last fifth simulation.

6.1 Testing simulation

In the testing configuration, only 2 agents live in each economy and there is

no integration between economies - agents meet only inside their own econ-

omy. One agent in each economy is endowed with currency, the other one with

his production good. Complete configuration can be found in Table 6.1. All
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agents will eventually accept production good for currency, and in the next

round accept consumption good in exchange for currency. Strength of partic-

ular classifiers responsible for those decisions are depicted in Figures 6.1 and

6.2. Figure 6.1 shows the strength of classifier that is responsible for accepting

consumption good in exchange for Home currency for one of the Home agents.

Clear convergence can be seen. Figure 6.2 shows the same properties for the

classifier that is responsible for accepting Home currency in exchange for pro-

duction good. Again, clear convergence. Figure 6.3 shows average Fitness of

agents in Home economy. The value is discounter and converges. Therefore, the

other agent has similar strength of his classifier. The Home economy achieved

stationary Nash Equilibrium.

Table 6.1: Model Configuration

k Types of Goods 2
n Size of Home population 2
n∗ Size of Foreign population 2
β Degree of integration 0
M Fraction of Home agents holding Home currency 0.5
M∗ Fraction of Foreign agents holding Foreign currency 0.5
γ Discount rate 0.9
b Bid portion 0.5
s Life Cost YES
T Rounds 500

Genetic Algorithm NO
Preset optimal strategy NO

6.2 Two Local Currencies equilibrium

Next, model configuration was modified. Most importantly, more agents were

added. Now there are 60 in each economy and there are 6 types of goods. Ta-

ble 6.2 shows the complete configuration. There is still no integration between

economies, so both currencies will circulate only locally. One Home agent was

chosen as an example of the evolution of classifier strengths. Also, average

fitness of agents was captured in order to account for the behavior of the whole

system. In the graphs, full line depicts the strength of classifier that is re-

sponsible for the decision to trade and dashed line depicts the strength of the

classifier that is responsible for not accepting trade. If the full line is above

the dashed one, agent accepts trade. From Figure 6.5 and Figure 6.6 we can
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see that our agent follows optimal strategy. It accepts Home currency in ex-

change for it’s production good and accepts its consumption good in exchange

for Home currency. From the graphs that depict average utility I conclude,

that this behavior is shared among other agents as well and therefore system

achieved stationary Nash equilibria. Time series of average fitness becomes

stationary after several rounds.

In this configuration, the model is able to achieve stationary Nash equilibria.

Table 6.2: Model Configuration

k Types of Goods 6
n Size of Home population 60
n∗ Size of Foreign population 60
β Degree of integration 0
M Fraction of Home agents holding Home currency 0.5
M∗ Fraction of Foreign agents holding Foreign currency 0.5
γ Discount rate 0.9
b Bid portion 0.5
s Life Cost YES
T Rounds 5000

Genetic Algorithm NO

6.3 Currency Exchange

Next, same configuration was used, but the degree of integration was set in such

way, that both currencies should circulate internationally. Every agent has the

same probability that he meets agents from his economy, or from the other

one. Matsuyama et al. (1991) showed, that the optimal strategy for all agents

in this configuration is to accept both currencies. My model will show, whether

agents approximating Dynamic programming value function by the strength of

classifiers, will reach the same equilibria. It also relaxes the ”key assumptions”

from chapter 2. In Matsuyama et al. (1991) environment, the exchange of

currencies occurs, only when agents accept threde when they are indifferent.

This time, I also provide graphs of currency holdings. Black line depicts the

share of Home agents that hold their native currency and grey line depicts

the share of agents holding currency that has been originally used in the other

economy. In all preceding configurations, currencies circulate independently on

agents nationality. Strengths of classifiers, average fitness and agents holdings
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are depicted on figures provided in appendix A. Full line in figures depicting

classifier strength represents the strength of the classifier that is responsible

for accepting trade and dashed line represents refusing to trade. Figure A1-A7

depicts the strategy of one of the Foreign agents. In Figure A.2 we can see,

that he accepts Home currency in exchange for his production good. But Figure

A.4 shows, that he is not willing to accept Foreign currency in exchange for his

production good. Figure A.8-A.14 shows strategy of one of the Home agents.

He accepts both currencies in exchange for his production good and therefore,

in opposition to Foreign agent, follows optimal strategy. Home agent also

accepts currency exchange even when it doesn’t increase his expected utility

gains and he is indifferent between accepting and not accepting. The Foreign

agent does the opposite. From this I conclude, that all agents learned strategy

that yields some utility, but only some of them learned the optimal strategy.

The system did not achieve stationary Nash equilibrium. At this point, I

would like to note, that I’ve runned the simulation many times with different

configurations and even more modified versions of the model. Most of the

time the convergence to Nash equilibria was not achieved. This configuration

is a result of my best effort to make it converge to Nash equilibria, while not

breaking any more assumptions of Theorem 2. To my best knowledge, there

is no proof of convergence of classifier strengths to the optimal values that

would apply on my model. Classifier strengths are also as I’ve shown related

to the value functions of Dynamic programming. From this I conclude, that

with relaxing some of the usual assumptions of Search-Theoretic models I’ve

mentioned to be problematic, convergence to Nash equilibria probably won’t

be achieved. especially when the “world” has many states and optimal strategy

gets more complicated.

6.3.1 Currency Exchange and Genetic algorithm

I have used exactly the same configuration as in previous simulation, but this

time, the genetic algorithm was active. This will enable some information shar-

ing among agents and then hopefully, those who learned the optimal strategy

and therefore have higher expected fitness, will pass some of their knowledge

to the less successful ones.

In Figures A.20 -A.26 and A.27 - A.33 strategies of one Home agent and one

Foreign agent are depicted. We can see, that both of them reached the optimal

strategy. I have run the model several times with same results. Average fitness
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Table 6.3: Model Configuration

k Types of Goods 6
n Size of Home population 60
n∗ Size of Foreign population 60
β Degree of integration 0.5
M Fraction of Home agents holding Home currency 0.5
M∗ Fraction of Foreign agents holding Foreign currency 0.5
γ Discount rate 0.9
b Bid portion 0.5
s Life Cost YES
T Rounds 5000

Genetic Algorithm NO
Preset optimal strategy NO

became again stationary after several rounds. Some agents accept currency

exchange when they are indifferent, some don’t. Therefore I conclude, that

this time the system probably reached stationary Nash equilibria and agents

follow same optimal strategy as in Matsuyama et al. (1991). It makes sense,

that when some information sharing is possible in the economy, agents may be

able not only to learn a strategy that yields some payoff, but also a strategy,

that yields the highest possible payoff. Like in real world, information means

profit and good information distribution in the economy mean more efficiency.

On the other hand, my genetic algorithm has no support in current theory

and I’m not able to provide any relationship to the Search-Theoretic models. I

also recall once more, that my genetic algorithm in no way related to the one

developed by Booker & Holland (1989).

6.3.2 Currency Exchange and Preset Strategy

In the last experiment with this type of configuration, I’ve tried to simulate

the assumptions about the environment made by Matsuyama et al. (1991) and

others. Especially the assumption 3 in chapter 2. This time, all classifiers

of all agents have preset strengths. Intuitively, this means, that agents agree

on trading strategies exactly as in key assumption 3. The classifier strengths

are set to the values that correspond to the optimal strategy for this type of

configuration. There is one agent in Home economy, that has not his classifier

strength preset and starts with zeros as previously. All agents, except for one,

agree on which equilibrium is being played. Figure A.39-A.45 shows the devel-
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Table 6.4: Model Configuration

k Types of Goods 6
n Size of Home population 60
n∗ Size of Foreign population 60
β Degree of integration 0.5
M Fraction of Home agents holding Home currency 0.5
M∗ Fraction of Foreign agents holding Foreign currency 0.5
γ Discount rate 0.9
b Bid portion 0.5
s Life Cost YES
T Rounds 5000

Genetic Algorithm YES
Preset optimal strategy NO

opment of strengths of classifiers of the one agent without preset strengths. We

can see, that he also achieved optimal strategy, that the rest of both economies

was already using. This time, Theorem 2 should apply on that one agent. In-

deed, he found the optimal strategy. In Figure A.46 and A.47 we can see that

average level of agents fitness reached stationary point immediately after the

start of the simulation. That is because agents did not have to learn optimal

(or any other that yields some utility) strategy. The system reached stationary

Nash equilibria once the agent without preset strategy learned optimal strat-

egy. This is all in line with usual findings of models based on Kiyotaki-Wright

methodology.

Table 6.5: Model Configuration

k Types of Goods 6
n Size of Home population 60
n∗ Size of Foreign population 60
β Degree of integration 0.5
M Fraction of Home agents holding Home currency 0.5
M∗ Fraction of Foreign agents holding Foreign currency 0.5
γ Discount rate 0.9
b Bid portion 0.5
s Life Cost YES
T Rounds 5000

Genetic Algorithm NO
Preset optimal strategy YES
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Figure 6.1: Home currency for consumption good

Figure 6.2: Production good for home currency

Figure 6.3: Average fitness - Home economy

Figure 6.4: Test Results
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Figure 6.5: Home currency for consumption good

Figure 6.6: Production good for home currency
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Figure 6.7: Average fitness - Home economy

Figure 6.8: Average fitness - Foreign economy

Figure 6.9: Two local currencies - No preset strategy
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Conclusion

In this thesis, I’ve developed an Agent-based computational model with ar-

tificially intelligent agents living in Matsuyama et al. (1991) environment. I

have adopted the similar methodology as Marimon et al. (1990), but on top

of that, I’ve provided theoretical relation between reinforcement learning and

Dynamic programming. There is direct relation between strength of particular

classifier in VSCS and value functions of Dynamic programming. Therefore, ar-

tificially inteligent agents in my model are approximating behavior of perfectly

informed agents in conventional Kyiotaki-Wright environment. Their behav-

ior is determined by reinforcement learning decision mechanism, that may also

approximate human behavior. I have shown, that artificially intelligent agents

may fail to reach stationary Nash equilibria. In simple environments, such

as the one with two local currencies, my results confirm that equilibrium as

described by Matsuyama et al. (1991) will arise. In contrast -In two interna-

tional currencies setting, some agents failed to learn optimal strategy. When

one agent will be put in play where the rest of the economy already reached

equilibrium described in Matsuyama et al. (1991), he will succeed in learning

optimal strategy. Similar results will be reached when we allow for addition

information sharing among agents in the form of genetic algorithm.

If we impose the same key assumptions on Agent-based computational model

as it is done on models in Kyiytaki-Wright environments, the model will reach

same equilibria. In constrast, relaxing those assumptions in more comlicated

environments will lead to different results, althought the agents in both mod-

els use similar decision machanism. In Kyiotaki-Wright framework, agents use

value functions of Dynamic programming and in Agent-based model, agents

use some approximation of those functions in form of classifier strenghts.
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If the relaxing of key assumption 3 from chapter 2 leads to different results in

Agent-based model, the ability to explain real world equilibria of Matsuyama

et al. (1991) model and other Kyiotaki-Wright models is questionable.

7.1 Relation to human subjects

There is extensive literature on the relations between economics and psychology

(Rabin 1997). Brown (1996) conducted a laboratory experiment, whose setting

was as close as possible to the setting of Marimon et al. (1990) model. Conclud-

ing, that his subjects failed to adopt speculative strategies in the cases, when

they were necessary to reach optimal strategy in Kiyotaki & Wright (1989b) en-

vironment. John Duffy took this idea further, he focuses in some of his work on

relation of human subjects and reinforcement learning in economic application.

In Duffy & Ochs (1999) he covers the same Kiyotaki & Wright (1989b) environ-

ment, but also adds to the setting some information sharing among agents, in

this case human subjects. He conducted 25 experiments on 636 subjects with

very similar results. He provided the subjects with information on historical

average proportions of goods held by each player type in the population, but

with no effect on players ability to attain optimal strategy.

The relationship between reinforcement learning and human subjects ex-

periments has in my opinion great potential, especially in economics. ”Surpris-

ingly, the predictions of Q-learning models have yet to be compared with data

from controlled laboratory experiments with human subjects — a good topic

for future research.” (Duffy 2004) Unfortunately, to my best knowledge, even

today there is still no paper, that would provide such research and that would

be anyhow related to economics.

7.2 Possible topics for further research

In macroeconomic theory, modern models are formulated as optimization prob-

lems, that households and firms face. Pontryagin’s minimum principle is used

to find solutions of those optimization problems. (Kamien & Schwarz 1991)

Since there is a relation between Bellman’s equations and Pontryagin’s mini-

mum principle, there should be also a relation between Q-Learning (or VSCS)

and Pontryagin’s minimum principle. Mehta & Meyn (2009) developed algo-

rithm, that is directly related to the Q-Learning algorithm. They were able to
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construct approximate solutions to the deterministic optimization problem in

continuous time, creating a bridge between Hamiltonian appearing in nonlin-

ear control theory and reinforcement learning. Therefore I wonder, whether it

might be possible to obtain some sub-optimal or close to the optimal solution

of simple macroeconomic models such as Ramsey-Cass-Koompas that rely on

Hamiltonian, by means of reinforcement learning. One might ask, why should

such thing be done? We can obtain optimal solution easily with Hamiltonian.

Well, in the computer science community, researchers are often trying to find

algorithm and convergence proofs, that would provide them with methods of

solving some optimization problems by reinforcement learning. They often en-

counter great difficulties developing convergence theorems and this is one of

the reasons reinforcement learning in non-cooperative games is sometimes con-

sidered not to be moving forward (Choi & Ahn 2010), (Mehta & Meyn 2009).

In my opinion, in economics, one does not need optimal, or value maximizing

solutions. Nor does he need convergence proofs. Sub-optimal results, that may

fit the real world data better that the optimal ones are I think more useful. If

one would have a clear theoretical relation between his algorithm and optimal

control theory, it might be justifiable to use that algorithm even without the

corresponding convergence proof. Because instead of that proof, one might

try to find a relation between his algorithm and human subjects. Humans are

not proven to reach optimal solutions of their ”everyday optimization prob-

lems” either. An algorithm that could be considered a good approximations of

Kahneman and Tversky’s ”heuristic rules”(Tversky & Kahneman 1974) may

actually serve a some form of approximation of real life human decision maker.

Then, it would be interesting to see, whether his results would fit the real

world data better, than the optimal results that were found using Hamiltonian

or Dynamic programming. Of course, the algorithm would produce not only

sub-optimal solution of optimization problem, but also numerical one, instead

of analytical. This may be hard to address, but I believe, that this topic would

still deserve some attention.
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Appendix A

Simulation results in Figures



A. Simulation results in Figures II

Figure A.1: Home currency for consumption good

Figure A.2: Production good for home currency

Figure A.3: Foreign currency for consumption good



A. Simulation results in Figures III

Figure A.4: Production good for Foreign currency

Figure A.5: Foreign Currency for Home Currency

Figure A.6: Home Currency for Foreign Currency

Figure A.7: Two international currencies - Foreign Agent



A. Simulation results in Figures IV

Figure A.8: Home currency for consumption good

Figure A.9: Production good for home currency

Figure A.10: Foreign currency for consumption good



A. Simulation results in Figures V

Figure A.11: Production good for Foreign currency

Figure A.12: Foreign Currency for Home Currency

Figure A.13: Home Currency for Foreign Currency

Figure A.14: Two International currencies - Home Agent



A. Simulation results in Figures VI

Figure A.15: Average fitness - Home economy

Figure A.16: Average fitness - Foreign economy

Figure A.17: Currency Holdings - Home economy

Figure A.18: Currency Holdings - Foreign economy

Figure A.19: Two international currencies - Overall



A. Simulation results in Figures VII

Figure A.20: Home currency for consumption good

Figure A.21: Production good for home currency

Figure A.22: Foreign currency for consumption good



A. Simulation results in Figures VIII

Figure A.23: Production good for Foreign currency

Figure A.24: Foreign Currency for Home Currency

Figure A.25: Home Currency for Foreign Currency

Figure A.26: Two international currencies - Foreign Agent - Genetic



A. Simulation results in Figures IX

Figure A.27: Home currency for consumption good

Figure A.28: Production good for home currency

Figure A.29: Foreign currency for consumption good



A. Simulation results in Figures X

Figure A.30: Production good for Foreign currency

Figure A.31: Foreign Currency for Home Currency

Figure A.32: Home Currency for Foreign Currency

Figure A.33: Two International currencies - Home Agent - Genetic



A. Simulation results in Figures XI

Figure A.34: Average fitness - Home economy

Figure A.35: Average fitness - Foreign economy

Figure A.36: Currency Holdings - Home economy

Figure A.37: Currency Holdings - Foreign economy

Figure A.38: Two international currencies - Overall - Genetic



A. Simulation results in Figures XII

Figure A.39: Home currency for consumption good

Figure A.40: Production good for home currency

Figure A.41: Foreign currency for consumption good



A. Simulation results in Figures XIII

Figure A.42: Production good for Foreign currency

Figure A.43: Foreign Currency for Home Currency

Figure A.44: Home Currency for Foreign Currency

Figure A.45: Two International currencies - Home Agent - Preset



A. Simulation results in Figures XIV

Figure A.46: Average fitness - Home economy

Figure A.47: Average fitness - Foreign economy

Figure A.48: Currency Holdings - Home economy

Figure A.49: Currency Holdings - Foreign economy

Figure A.50: Two international currencies - Overall - Preset



Appendix B

Content of Enclosed DVD

There is a DVD enclosed to this thesis which contains model source code in

Matlab and simulation results.

� Folder 1: Model Source code for Matlab 2010b

� Folder 2: Simulation results
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