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Chapter 1

Introduction

We consider a planar graph equipped by a selfadjoint second-order differen-
tial operator; the aim is to study the motion of a quantum particle on this
configuration space.

A motivation for this problem comes from the fact that such a graph can
model small semiconductor structure, often under influence of an electric or
magnetic field, and similar systems based on metals or carbon nanotubes.
The model description can predict conductance and other quantum effects.

Such structures are called a quantum wire, the quantum particle (elec-
tron) moves within the wire. Quantum wires and their properties has been
described e. g. in [3], [6] or [11].

We restrict our attention to the idealized model, usually called quantum
graph, in which the wire width is neglected. A summary on quantum graphs
can be found in [4], [9] or [10], particular examples are in [5], [7] or [8].

We will study the scattering problem on graphs, in particular, the ques-
tion about resonances in such systems. They are usually determined through
poles of the on-shell scattering matrix (S-matrix). In the theory of Schrédinger
operators, however, one often uses an alternative approach based on the
method of so-called complex scaling, whose idea is due to Aguilar and Combes
— see, e.g., [1] or [12].

We will apply this method to graph scattering and derive equations which
allow us to determine poles of the graph Hamiltonian resolvent. In particular,
we will show that they coincide with those of the scattering matrix.



Chapter 2

Description of the model

Let us consider a graph I' consisting of finite or countable number of vertices
Xj,j € I where I is a index set. We denote this set of vertices V = {X},j €
I}, the set of neighbours X; we denote NV (X;) = {X, : n € v(j) C I\{j}}.
Each edge with finite length can be identified by a pair of vertices. The set
of finite edges is L = {L;, : (X, X,) € I C I x I}. Length l;, of each edge
in L is positive. To some vertices in } we attach one semiinfinite link. The
union of these links and the graph I" we denote by T..

We denote by B the set of vertices which have a single neighbour, graph
interior is Z = V\B. We denote by C the set of vertices to which is attached
a semiinfinite link. Similarly, we denote by Iz, I7, and I the index subsets
in I.

The metric on the graph can be indentified with a part of a Euclidean
space. The considered Hilbert space is

H= @ (0.0) @ L*(0.)).

(4m)€l, Jj€le

The elements of H can be writen by ¢ = {¢;, : (j,n) € Iz, Yoo : j € Ic}.

Furthermore, we define on the graph I', the diferential operator H =
(—f—; + V(:r;)) with essentially bounded potential V' = {Vj,, Vjso}, Vin €
L>(]0,1n]), Viso = 0. This is the Hamiltonian of the quantum particle, for
simplicity we set the coefficient A%/2m in Schrédinger equation equal to 1.
The domain of definition of this Hamiltonian are functions ¢ in Sobolev
space on the graph, i. e. 9, € W»2([0,1;u]), ¥j € W2([0,00)), which
correspond to the coupling condition.



We denote the limits of functions and their derivatives on £, (the point
X is identified with x = 0)

On each vertex X; we denote
U = (1(X), 92(X)), ..., ¥a(X)))T,  d=card N
the vector of function values at the point X; and similarly
V= (), (), . (X)), d = card

the vector of derivatives at Xj.
The general coupling condition at the vertex X is

Ax U+ By W' =0,

here Ay, and By, are matrices of rank d. In lemma 2.2 in [9] is proven that

for matrices Ay,, By, such that (A, B) has maximal rank the Hamiltonian H

is selfadjoint if and only if the matrix Ay, BXJ.T is selfadjoint at each vertex.
In particular, there are two special possibilities of coupling

1. é-coupling:

"l}j = "v/}Jn(]):w]m(])a for all n,mEl/(j),
> W) = oy

nev(j)

2. ¢'-coupling:

V= U5, (7) = Yim (), forall n,m € v(j),
> binld) = Byl

nev(j)



Chapter 3

Complex scaling

On a fixed halfline let us consider scaling transformation gy = Uyg(x) =
e"mg(:v e”) with complex parameter ¥. We may demonstrate the transforma-
tion of the free motion Hamiltonian on a halfline by the action on a function g.

Hyg(z) = UgHU; ' g(z) = UyH e " g(ze™”) = — e " 2U[g(xe™”))" =

. eﬂ9/2 ewaﬂg”(:r e—z?) — eﬂ9/2 eﬂ/Q 872199”(56) — 67219]_[9(:6)_
This means that the Hamiltonian is transformed as follows
Hy =UpyHU;' = —e 2’A.

The domain of definition of the transformed Hamiltonian is D(Hy) =
UyD(H), it consists of functions gy = Uyg.

Let us consider the Hamiltonian on a graph I', acting as — d>

dz?
external links and as —dd—; + Vjn(x) on Lj, where Vj, is essentially bounded.
We use the mentioned transformation on the external edges. The transformed

Hamiltonian is _99

where g; is the wavefunction on the halfline attached to the point X; and
fjn the wavefunction on Lj,, similarly for other edges of the graph. The
domain of definition of the transformed Hamiltonian consists of functions
with components f;, € W%2([0,1;,]) and g;9 = Uyg; satisfying the coupling
conditions.

on the



The solution of the Schrodinger equation on the halfline g;y can be ex-
pressed as a linear combination of functions

s 9
er — elkxe ,

w _ o ikm e?

Now we find when 1), € L?(R"). We denote the real and the imaginary
part of k£ by k. and k;, respectively.

w_l_ — eim(kr-l—iki) e?r (cos ¥;+isin 0;) — e[ialc(lclr cos 0 —k; sin 9;) —x (k; cos 9;+ky sin ;)] e?r

For 9; € (0,7/2) issin®; > 0, cos¥; > 0, and for k., > 0, k; < 0 is the term
k; cos ¥; + k, sin ¥; non-negative if tan o; > |k;/k.|, the solution ¢, € L*(R").
For 1 we proceed similarly.

For the internal edges we find the solutions of the Schrodinger equation
as a linear combination of e** and e™**. We choose the coefficients of this
combination according to the coupling conditions.



Chapter 4

Examples

4.1 Example 1 — A line with an appendix

We consider a line connected at the point x = 0 to an appedix of length [ > 0.
The Hilbert space is L*(R) @ L%([0,1]), i. e. state is described by ¢ =
(j{) where the component ¢ refers to the line and the component f to the
appendix (see Figure 4.1). The Hamiltonian is defined by

B _g//
o= (29,).

At the point 2 = 0 we consider the same coupling condition as in [8], at
the other end of the appendix the condition f(l) =

9(0) := g(0+) = g(0—),
£(0) = bg(0) + cf'(0),
g9'(0+) — ¢'(0—) = dg(0) — bf'(0),
f) =0
First, we solve the scattering problem, in the way used in [8]. From the

left there goes a wave e**  reflected wave is re ** and transmitted wave
te'*® . After substituting we get following system of equations.

t=1+r, (4.1)

f(0) = bt +¢f'(0), (4.2)
(t—l—i—r)—dt—bf (0), (4.3)
fl) = (4.4)

10



Figure 4.1: Example 1

If fi(x) solves Schrédinger equation at the appendix and satisfies con-
dition fj(I) = 0 we can express the solution f(z) as a multiple of this
function, f(z) = Bfi(xz). The constant S can be easily obtained from the
equation (4.2).

5= bt __
fi(0) = ¢£{(0)
After substituting into (4.1) and (4.3) we get as in [8]

. b £1(0)
2ikr = (1 + ) <d 70) - Cfl'(0)> ,
dIA(0) — () - BA0) )
(2ik — d)[f(0) — cf{(0)] + b f(0)’ '
2ik[£/1(0) — ¢f/(0)]
(2ik — d)[f1(0) — cf{(0)] + 6 f(0)
In particular, choosing b = 1 and ¢ = 0 we can simplify the coupling
condition and get the d-coupling with the parameter a = d. Equations (4.5)
and (4.6) then become

t =

(4.6)

_ 4O - £(0)
2k — d)7i(0) + £(0)
2ik £,(0)
2k~ d)7,(0) + 7(0)

Studying transmission and reflection coefficients #, 7 for the wave going
from the right we get the same system of equations as in (4.1) — (4.4), solution
is same.

We can find poles of the S-matrix by finding when the denominator
of both fractions is zero. We obtain the condition

(2ik — d)[/1(0) — ¢f(0)] + 0" f;(0) =0,

t =

11



where f;(x) is the solution of Schrédinger equation satisfying f;(I) = 0.
We can choose fi(z) =sink(l — x), we get the equation

(2ik — d)(sin kl + ck cos kl) — b’k cos kl = 0,

hence we obtain the equation for resonances

b’k
2ik —d

tan kl = — ck.

Now we try to find the positions of the resonance poles by studying
the singularities of the resolvent. We use the introduced method of com-
plex scaling. Let us scale functions on both infinite edges by transformation
go(x) = e?2g(e’x). We obtain

gy(x) = *g(e’x),

90(0) = e"?(0),

9o(@) = g(0)e**e” 1 € RY,

g9(z) = go(0)e 2"z e R,
95(0+) = ike”g5(0), (4.7)
g5(0=) = —ike?gy(0). (4.8)

Substituting into boundary conditions we get

1+7r=t, (4.9)

F(0) = be "2gy(0) + cf'(0), (4.10)

e (g5 (0+) = g5 (0=)] = de ""2(0)gs(0) — bf'(0), (4.11)
f(l) =o.

The solution on the appendix can be expressed as f(z) = Ssink(l — x).
From (4.10) we obtain

beﬂ?/2
~ sinkl + ck cos kl 92(0),

substituting it into (4.11) and using (4.7) and (4.8) we get

b?(—Fk cos k)
sin kl + ck cos kl

e73/245(0)2ik e’ = gy(0) e™?/? |d —

12



That gives the same condition for poles

b’k

sk —a

tan kl =

We conclude that the equation for resonance poles obtained by complex scal-
ing is the same as the equation for poles of the S-matrix.
For ¢ = d = 0 we can exactly solve the equation; we express tankl as
a combination of complex exponentials
ikl _ =ikl b2
i(eF + e 1) T

we obtain the equation

for [b] # v/2 we have eZ¥ = (b 4 2)/(2 — b?) and similarly to [8] we obtain

. _n7r+i 2 — b2
n T Ty My

T nm i, b?—=2
k"_ﬂ+7+ﬂln72+b2’ |b‘>\/§

bl < V2,

For |b| = v/2 we cannot satisfy the equation (4.1) for any k, there are no
resonance poles.

4.2 Example 2 — Two internal edges

Let us consider a graph consisting of two internal edges of length [, and [5,
respectively, which are connected at both ends with two added halflines (see
Figure 4.2). The Hilbert space is L*(R™) @ L?(R*) @ L*([0,1,]) @ L?([0, I5]),
state is described by the column

<
I
S 2 Q

13



Figure 4.2: Example 2

The Hamiltonian is defined by

We start by finding the poles of the S-matrix again. From the left there
goes a wave e transmission amplitude is ¢ and reflection amplitude . We
define functions at both halflines

f =eh? 4 peike x € (=00, 0],
g = te'*, x € [0,00),
on the internal edges we define functions u and v.
Let us consider d-conditions at both vertices, i. e.,

u(0) =v(0) = f(0) =1+,
Ull):U lg): (O)Zt,
u'(0) +0'(0) — f'(0) = a.f(0), (4.12)
—u'(ly) = v'(l2) + ¢'(0) = Bg(0). (4.13)

The lhs of (4.12) and (4.13) are sums of outward derivatives, that gives the
signs of the functions. We substitute functions f and ¢ and their derivatives
into (4.12) and (4.13).

u'(0) +0'(0) —ik(1 —7r) = a(1 + 1), (4.14)
—u'(ly) — v'(ly) + tik = B, (4.15)

14



The solutions u and v can be expressed as a superposition of the waves
elkx and e—lkm_
U= ulelkx + uy e—lkx,

v = v1efT 4 py e kT,
Comparing these equations with boundary conditions for u we get

u(0) = uy +uy =1+,

U(ll) = Ulelkll + U9 eilkll = t,

hence we obtain
t—(1+7r)eikh
- ekl _ @ikl

(14 7r)e —¢
pikly _ o—ikly

Uy

Y

Uo =

It is not difficult to realise that for v we get same equations except that
ly is replaced by [s.
We compute derivatives of the function u at the endpoints
kt k(1+7)
sinkl;  tankly ’

_ . . kt k(1+r)
"1 = ik iklh ikliy — _
w(h) = ik(ue uze ) tankl,  sinkl; |

u'(0) = ik(uy —ug) =

for v the results are similar. Now we can rewrite the equations (4.14)
and (4.15)

t ! + ! (r+1) ! + ! i(1—r)
— —1 — =
sinkl;  sinkl, r tan kl;  tankl, r

(1+7), (4.16)

(1+7) ! + ! t ! + ! + it Bt
r - it = —t.

sinkl; sinkl, tankl;  tankl, k
From the last equation we express

1 1
(1 + T) (m + sinkh)

L+ L4 8

tan klq tan klo

>0

t =

15



substituting into (4.16) we obtain

2
1 1
<sinkl1+sink12> < 1 1 ) a

(T+1) 1 1 - + - = _1(7"— ]_)
6 .
i T TR tan kl;  tanklsy k
Denoting
1 1)’
) (sinkh + sink12> < 1 N 1 > a
Vk) = -~ -
tanlkll + tanlklg + % —t tankly ~ tankl, k
we can express reflection and transmission coefficients
_i—(k)
r= -,
v(k) +1i
2i
t = -
v(k) +1i
The condition for poles of the scattering matrix is now
1 1\’
sin kl + sin kl 1 1 Q
1 2
— —(=——1)]=0 4.17
S S <tankl1+tankl2> (7-1) (4.17)

tankl, tankly k"

Now we find the resonance poles by complex scaling. We scale both the
halflines in the way similar to the example 1.

folx) = (we”),

go(z) = e"2g(ze?),
fo(0=) = ”2£(0=) = e"2u(0) = "21(0), 4.18)
g9(04) = e?2g(04) = e 2u(ly) = ??u(ly). (4.19)

The solution of Schrodinger equation on both halflines is

folx) = fo0=)y_ = fo(0—) e ko,
99(x) = g9(0+)y = g9(0+) elhre’.

16



derivatives at the point z = 0 are

f5(0=) = —fo(0-)ike” = */2f'(0-),
gh(04) = gg(04)ike” = e¥/2¢/(0+),

Substituting into (4.12) and (4.13) we get the boundary conditions

ike "2 f5(0=) +u'(0) + '(0) = ae 2 fy(0-), (4.20)
ke "2g5(04) —u'(ly) — v'(ly) = Be "2y (0+), (4.21)

The solution of Schrédinger equation on finite edge satisfying the conditions
(4.18) and (4.19) is

f9(0=)sink(ly — z) + g9(0+) sinkx o012

u(z) = sin kly ’
its derivative is
i (z) = —f9(0=) cos k(ly — x) + g9(0+) cos lmk e

sin kll

For the function v(x) satisfying the condition (4.19) we obtain similar equa-
tions (we only have to replace Iy by ly).
Substituting into (4.20) and (4.21) we get the equations

! ! ! !
K (0 _
[9"(0+) <sin s kl2> f(0-) (tan i, tan kz2>]

= (= ik)fo(0-), (4.22)

1 1 1 1
— (B ik)g(04). (423)

Hence we obtain the condition (4.17) again.
If both internal edges has the same length (I = [} = [3) we can simplify
this condition

2 \? 2 \? 2 (a+B ., o
(mm) _<tankl> _tankl< ko 1)‘(% '
2 a+pB . a N(B .\ _
4_tankl< k _21>_<E_1> (E_‘>_U‘

17




g @)

Figure 4.3: Lasso graph

For e = = 0 we obtain

Stan kl = —4i,
nt 1ln9

] 21

4.3 Example 3 — Lasso graph

Let us consider a lasso-shaped graph on Figure 4.3, constisting of a loop
of length [ and a halfline. This type of the graph has been studied in [5].
The Hilbert space is L*(R") @ L*([0,1]), state is described by ¢ = (§). The

Hamiltonian is defined by
_g//
o= (Z0)

We consider the following coupling (as in [5]) with parameters o, & € R
and v € C. Choosing v = 0 we can separate the halfline by switching
the interaction between it and the loop off.

F(0) = f(), (4.24)
F(0) = a '[f'(0) = f'(D] +74'(0), (4.25)
9(0) = A[f'(0) = f'(1)] +a~"4'(0). (4.26)

The equation for the poles of the S-matrix is derived in [5], we only find the
resonance poles by the metod of complex scaling. As in previous examples
we scale the halfline

go(z) = e’mg( e’9:1:),

90(0) = e"2¢(0),
g5(0) = €*"4'(0).

18



We can easily find the solution f satisfying mentioned conditions.

sinkx + sin k(I — z)

o) = 107
coskx — cosk(l — x
Fie) = O =
— Co8
O = HO g
cos kl —
fii) = kFO) =
Substituting to (4.25) and (4.26) we obtain
F(0) = 2ha B 0) e PG 0), (127)
e 2g4(0) = ZIWLOSM]‘(O) +a te 3240(0). (4.28)

sin kl

On the halfline we take the solution gy(z) = 1, = e**". After substituting
for ¢,(0) = g9(0)ik e? into (4.28) we obtain

1 — coskl
0) = 2ka™'————f(0 2k gy (0
f() @ Sinkl f()+fye lgﬂ( )7
1 —coskl
“9265(0) = 2kFy———F(0) + &'k e 7?2 g,(0).
e”"""gy(0) ekl f(0) + a7 ike™" gy (0)
From these two equations we get the condition
1. k i|v|?k?
- S S A N ) . 4.2
5 sin kl <a + ST (1 — cos kl) (4.29)

4.4 Example 4 — Lasso graph in a homoge-
nous magnetic field

We consider the same graph as in previous example placed into a homoge-
nous magnetic field perpendicular to the loop plane. We choose the vector
of magnetic intensity A tangent to the loop. We consider the quantum parti-
cle with charge ¢ = —1 confined to this graph. We set the coefficients h =1,
m = 1/2. The corresponding Hamiltonian is

B 9\ _ —g"
mo=11(3) = (Lo _aigp ) 30

19



We consider coupling conditions (4.24) — (4.26) again.
The solution of the Schrodinger equation on the loop is

f(z) = Ce sin (ka + @),
where C' is a constant. We can verify it substituting its derivatives

f(x) = —iCAe " sin (kx + ¢) + Cke ' cos (kx + ),
f'(2) = C(=A? — k*) e 7 sin (kz 4 @) — 210 Ak e 7 cos (kx + )

into (4.30).
— f(@) = 2iAf (v) + A2 f(z) = C(A*+ k> + 212 A% + A?) e M sin (kx + @)+
+ C(21Ak — 21Ak) e™ " cos (ko + @) = k2 f(z). (4.31)
From (4.24) we get the condition

~4(sin kl cos ¢ + sin ¢ cos k),

sin kl

sinp = e sin (kl + ) = e

t = 4.32
WE = G coskl (432)
Before using (4.25) and (4.26) we arrange the term
C'(f'(0) — f'(I)) = —iAsing + kcos p +iA e sin (kI + ¢)—
— ke Weos (kl+ @) =k (cos ¢ — e eosklcos g + e sin kil sin cp) =
e — cos kl — cos kl + e (cos? kl + sin® kl)
= kcosyp Y =
el — cos ¢
AL oAl _ 9 coskl
= kcosp ¢ e cos (4.33)

etAl — cos ki

We have used the conditions sin ¢ = e~!sin (kl + ¢) and (4.32).
Now we proceed in the way similar to the example 3. From (4.25) and
(4.26) we get

£(0) = a™'[£(0) = f'()] + ve * g} (0),
e "2g5(0) = A[£/(0) — F/()] + & e ¥ 2g)(0),

substituting ¢ (0) = ik e’ gy(0) and f(0) = C'sinp we obtain
C'sing = a7 '[f'(0) — f/(I)] + iky e "%gy(0),
e g5 (0) = AIf'(0) = f'(1)] +ikd T gy(0).

20



Hence we get the condition

Csing —a™'[f'(0) — f'(I)]

1 —ika™" =3[ (0) - f'(
(1 —ika™) 7 FL£(0) = f1(D)]
Using (4.33) we obtain
kel + e 1AL _ 9 cos ki el Al 4 o71AL _ 9 cos ki
1—ika b |t - = . = ik?|y|? .
(1-ika ™) [ ML el Al — cos kl } %l elAl — cos kl

Now we substitute for tan ¢ from (4.32) and multiply the equation by (e'! —

coskl)/(1 —ika™")

k ik2|~|? . .
sin kl — (— + ﬁ) (e‘Al + e _9¢0s kl) = 0.

a 1—ika™!

If there is no magnetic field we obtain the condition (4.29). For 0-
conditions (o = & = y~') we get the relation

eldl 4 o—iAl cos kl .
—k p— +2ksinkl +a—ik=0 (4.34)

From the equations in [5]

s TR aam T

iAl —iAl ki
<—ke re €os ) W — ikb = —ika, (4.35)

b=b+a (4.36)

we get for the aplitude of the incoming wave a = 1 system of two equations
for ¢y and the amplitude of the outgoing wave b. The denominator of b
corresponds to the lhs of (4.34), i. e. the poles of the S-matrix.
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Chapter 5

General graph

5.1 Connecting the links

Let us consider a graph with finite many vertices. We suppose that one
semiinfinite link is attached to every point from C C Z. We denote by f;,
the wavefunctions on finite edge of the graph between vertices X; and A,
by g; the wavefunction on halfline going from vertex &Xj.

For every vertex X; € C which connects a halfline with m lines of the graph

Figure 5.1: Attaching semiinfinite link
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we consider coupling conditions

fi1(0) = f52(0) = ... = fjm(0) =: £;(0), (5.1)
=a;’ ijn +,5(0), (5.2)

—%Zf]n + ;" g5(0), (5.3)

where function ¢ is wavefunction on the halfline.
For the vertex &; ¢ C we assume d-conditions

[i1(0) = f32(0) = ... = fim(0) =: f;(0), (5.4)

a; f;(0 Z (5.5)

5.2 Selfadjointness of the Hamiltonian

Let us consider the operator H = (—% + V(:r)) with V;, € L*([0,[;,]) and
Vieo = 0. Its domain of definition are functions f with components f;, €
W22([0,Ln]), fiee € W*%([0,00)) satisfying the coupling conditions (5.1) —
(5.5). Let us denote by H' the same operator only with coupling conditions
changed to f(j) = f'(j) = 0,Vj € Z. This operator has the deficiency indices
(n,n). According to the theorem 8.3.1 (c) in [2] are all maximal extensions
of this operator selfadjoint. The operator H is an extension of the operator
H' and it has the deficiency indices (0,0).

We verify that the operator H is selfadjoint, i. e. the equality of scalar
products (Hf, f) = (f, Hf) for functions f, f € D(H). Denoting e the edges
of the graph we get

2 [(ia o) - Z s |(am o) ]

By integration by parts we obtain for finite edge with length [

[ evem)a]i=[vire [ r7-]r1], -
= [vii-[ sl - o] = [ (v ) ] -]
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For the edge between vertices X; and X,, (we identify the point z = 0 with ;)
we can rewrite the third term

727 = —HOFO) + FOF0) + 107D ~ PO =
= —fifpu+ Finfi = Fafrg + Frsho:

We have denoted by f; value f at X; and by f}, outward derivative at A;

(similarly for &, and function f) That implies the change of signs of last
two terms. 3

The integration over semiinfinite edges is similar, for f,f € W*2(0, 00)
holds g(00)g'(00) — ¢'(oc)g(00) = 0, the redundant term at the point X; can
be expressed as gig; — ;3.

We verify the equality of scalar products

[uni- [ s o,
that means

—Z Z (= f3 T+ Lon s = Fufy + FoiFa) + (4535 — 9;35) = 0.

JEI nev(j Jj€lc

Sums j € I,n € v(j) count every edge of the graph twice, therefore we have
to multiply them by 1/2. Realising that terms — f; Nj’n and fj’nf’] are in the
sum also twice we get simpler condition of selfadjointness

> Z (S5l + Find) + 3 (0535 — 9535 = 0.

J€I nev(j Jj€lc

We split the first sum into sets I and I\ I

3 Z (~filot Fond)+ S ST (i fnt Fn )+ S (0535 —9,80) = 0.

Jj€Ic nev(j JE(I\I¢) nev(j) Jele
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and use boundary conditions (5.1) — (5.3), (5.4) — (5.5)

ZZ . Zf]k frot f |l di ot Y ||+

Jj€lec nev(y kev(y kev(j)
oy s (e s ) e (o s 2)] -
je(I\I¢) nev(y) kev(j) kev(y)
e S v S )5 5t o 7| o
j€lc [ nev(j kev(j nev(y) kev(j) J

After substracting matching terms we obtain

> Z (=95 j + Fabi8) + D Y (139555 — Fa735) = 0.

j€le nev(j J€lc nev(j)

5.3 Complex scaling of the semiinfinite links

Now we research how these coupling conditions are changed by scaling the
semiinfinite links. We scale the halfline going from the vertex X; (for the
sake of brevity we drop the subscript j)

go(z) = e"2g(e’z),

g9(0) = ¢"¢(0),

95(0) = ¢*24'(0).

go(z) = e‘keﬁ‘”gﬂ(O), r € RT,
gy(x) = ike’gy(0)

Substituting into (5.1) — (5.3) we get

F0) = a3 £1(0) + v e ¥ ik gy 0), (5.6)
Pgy(0) =7 Y £1(0) + @ik e=2g,(0) (5.7)



We can easily express e~?/2g,(0) from (5.7) and substitute it into (5.6).

—9/2
e90(0) = 1ka 1—ika?t Z fa(0

- ' ik
f(0)=a Y A(0) + 1_11;1_1Zf

Finally, we obtain

m

10 = (o7 + i) S0

The coefficient in brackets is an effective coupling constant which depends
on k, we denote it 3(k)~'. We can express (3;(k), where j is index of the
corresponding vertex.

o 1-— 1!604_1

1+ 1k\’172‘~f{ ]1+1k(|%| Qj — a'l).

B;(k) = (5.8)

The complex coupling constant ; controls the connection of the halfline. If
Vi = 0 then 5](]{) = ;.
If the vertex j is not connected with a halfline (j & I) we have coupling

> £1(0) = a; £(0), (5.9)

n=1

otherwise

Z () f;(0). (5.10)

5.4 The equation for resonances

Now we can proceed in the way similar to the Theorem 3.1 (a) in [4]. We
consider the Hamiltonian H = (—f—; + V(x)) with essentially bounded po-

tential on the internal edges of the graph and no potential on the semiinfinite
links. At its vertices we consider d-coupling with parameter o; for j ¢ I¢
and parameter [3;(k) for j € I.. We identify the right point of the edge
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L, = 1[0,l;,] with the vertex X;. We denote u;, and v;,, solutions of the
Schrodinger equation on the edge £, which satisfy conditions

win(ljn) =0, W, (Lin) =1,
vn(0) =0, v}, (0) = if n ez,
Vjn(0) = sinw,, vj,(0) = —cosw, if n € g,

where the set Iz and I7 is boundary and interior, respectively, of the graph
without semiinfinite links.
The Wronskian of these solutions is

W = det <u’jn(ljn) U;’n(ljn)> — dot (0 U;‘n(bn)) = —jn(ljn),

ujn(ljn) an(ljn) 1 an(ljn)
or
m(0) v,,(0) ujn(0) 0 :
W;, = det (u] (0) vjm ) = det ( m = u,;n(0) if nelz,
o Wjn sinw, '\ _ o , .
Wi, = det ( 1 (0) —coswn) ujn(0) coswy, — sinw,uj,(0) if n € Ip.

For n € I7 the transfer matrix on £, is

Tos(,0) = W' <an($) :Z;n(o)vm(w) an@)”jn(@) .

i\ () = (00 (x) 170 0)0] ()

The elements of this matrix can be obtained from the system of the equations

t11un(0) + tlgu;n(O) = u;n(x),
t1105,(0) + t12v;n(0) = vju(2),
to1un(0) + tggu;n(O) = uf, (),
t21vj,(0) + tggv;n(O) = v}, (7)

using Cramer’s rule.
The transfer matrix between both ends of the edge is

_ =t ((Win(lin) = w5, (0)vin(lin)  ujn(0)vn

:W'_1<_u;n(0)”jn(ljn) uj"(o)vjn(ljn)>: 17u/.u;(v(7)l)v(’.])(zl) vjn(ljn) .
L=l ()0 (L) wjn(0)ly (1) ) T | eielonl )



In the last equality we have used the expressions of the Wronskian.
Denoting ¢ := 9n(j) = ¥jn(ljn) and ¥, = ¥j,(n) = 1;,(0) we get for
the ordinary wave function ¢, ()

1 = 6, (0)¢n + Vjn (Ljn) ¥ (1), (5.11)
. I u"n(o)vl'n(l n)
Ui = T (i) (). (5.12)
The sign change vj,(j) = —%,(l;n) is because the boundary conditions

define the outward derivative.
From (5.11) we get

"7/};71(”) = - an ;
substituting into (5.12) we obtain
. wn v;n(lgn)
Vin(J) = = + W (5.13)
’ Wj an !
For n € Iz we get
I (s u;"(o)v;"(ljn) — COSWy UJ”(O)U;n(l]n) — sinw, '
~ )= n - (n). (5.15
Vja(9) W, Un + " U (n). (5.15)
We express
U,In(O)wn - %

from (5.14) and substitute into (5.15). We use the relation 1, cosw, +
Yjsinw, = 0.
v (ljn)

Uin(i) = g (5.16)

Now we can substitute the relations (5.13) and (5.16) into (5.9) and (5.10).
For j & I. we obtain

n in ! ln
;éjn [ 7(”%(“] ) oy | =0 (5.17)

nev(j)NIy



for j € I we get

ﬂ B (an) (Ljn) . _
an n;(j) W]n BJ( ) 1/13 - 07

nev(j)NIy

Substituting for 3; from (5.8) we obtain the equation for resonances

N vin) (Lim 1—ika;!
Z w - Z (J[/I)/(]) 0431+ ik (|v; |20 — 1) ¥; = 0.
nev(y ﬁII nev(y) m 517y Oé]
(5.18)

5.5 The S-matrix equation

We find the S-matrix equation in the way similar to the proposition in [5].
The boundary conditions at the point X; € I are according to (5.2) and
(5.3)

aj; = Z Vi (d) + Y595, (5.19)
nEU
&]g] = a]r)/] Z w]n + gj (520)
TLEV

The function 1, is the wavefunctions on finite link £;, and g; = g,(0) is the
value of the wavefunction on the semiinfinite link attached to the point Xj.
We can express g;(z) as a combination of the incoming wave e~ and the

combination of the reflected and the transmited wave b; ik
gi(z) = e ™ 4 piehr, (5.21)
For the point X; ¢ I we get from (5.5)
Oé],lv/}ﬂ Z ,Q/}gn (522)

nEl/

We can use the equations (5.13) and (5.16) again. Substituting these
relations into (5.19) and using the derivative of (5.21) we obtain

! l'n
ajwj = Z _Wlin + Z U]n(] )wj +Oéj"}/jik(bj — 1). (523)

. W
nev(j)niz I nev(y) Jn
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Similarly we get from (5.20)

ajlb+1) =am | Y. - Un > ”9"@"")% +ik(b; —1). (5.24)

nev(j)niz n e Win
For j ¢ I we obtain from (5.22)
wn U"n(l‘n)
nev(j)Niz m nev(y) J

Relations (5.23), (5.24) and (5.25) represent a system of card I + card I
equations for variables ¢; and b;.
5.6 Comparing both systems of equations

Finally, we compare the condition of solvability of the system of homogenous
equations (5.17) and (5.18)

wn Ujn ! ln
Z v - ( J ) ( J ) - O{] w] — 0,
nev(j)nl; 9" nev(y) Jn
N ) (Lin 1 —ika;!
Z w. - Z (UJW)/.(])_ 71+ ik (|, ]2 J_~—1) ;=0
nev()niz " nev(j) J W51 ay — ay

the condition of unsolvability of the inhomogenous system of equations (5.23),
(5.24) and (5.25). If determinant of the system (5.23), (5.24) and (5.25) is
zero then b diverges, i. e. we get the condition for poles of the S-matrix.

wn Ul'n(l'n) .
o;thy = Z i + Z ﬁ%‘ + a;y;ik(b; — 1),
nev(j)Niz nev(j)

+ ) —Uj“(lj")wj +ik(b; — 1),

~ ~ - Yn
a;(b; + 1) = ;5 E — :
4! ”]n

nev(j)niz N 0))
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! ln
3 %_ Z‘%_O‘f ;= 0.

nev(j)Niz Jn

From (5.23) we express

' (L
> - Uy > UJ;IE,J )wj = a;v; — a;7;ik(b; — 1)
jn

nev(inlz 7" nev(y)

and substitute it into (5.24)

a;(bj +1) = a7 [y — ayyik(by — 1)] +ik(b; — 1).

Hence we obtain
oY —
1"’1]‘3(@]‘%‘2 71)

b;

and we substitute it into (5.23)

wn U"n(l‘n) CY’_Yw -

-1
nev(j)Niz ]n nev(y) lk(ajh/ﬂ —Oé] )

~—1

Z Un vm)'(z 1 — ika;

Win ]1+1k(|%|20‘] —Q; 1)

;=

nev(y)
Qik()éj’}/j

L ik(ylPey —ayt)

(5.26)

We obtain the system of equations (5.25) and (5.26). We can see that the
homogenous part of (5.25) and (5.26) gives (5.17) and (5.18). Determinants
of both systems of equations are the same, hence the resonance poles obtained
by the method of complex scaling are the poles of the S-matrix.

31



Bibliography

Auguilar J., Combes J.-M.: A class of analytic perturbations for one-
body Schridinger Hamiltonians, Commun. Math. Phys. 22 (1971), 269-
279.

Blank J., Exner P., Havlicek M.: Linedrni operdtory v kvantové fyzice,
Karolinum, Praha (1993).

Exner P.: Resonances in curved quantum wires, Physics Letters A 141
(1989), 213-216.

Exner P.: A duality between Schridinger operators on graphs and certain
Jacobi matrices, Ann. Inst. Henri Poincaré 66 (1997), 359-371.

Exner P.: Magnetoresonances on a lasso graph, Journal-ref:
Found.Phys. 27 (1997) 171-190

Exner P., Post O.: Convergence of spectra of graph-like thin manifolds,
J. Geom. Phys. 54 (2005), 77-115.

Exner P., Seba P., Stovicek P.: Quantum interference on graphs con-
trolled by an external electric field, J. Phys. A.: Math. Gen. 21 (1988),
4009-4019.

Exner P., Seresova E.: Appendiz resonances on a simple graph, J. Phys.
A: Math. Gen. 27 (1994), 8269-8278.

Kostrykin V., Schrader R.: Kirchoff’s rule for quatum wires, J. Phys.
A.: Math. Gen. 32 (1999), 595-630.

Kuchment P.: Quantum graphs: I. Some basic structures, Waves Ran-
dom Media 14 (2004), S107-S128.

32



[11] Kuchment P., Zeng H., Convergence of spectra of mesoscopic systems
collapsing onto a graph, J. Math. Anal. Appl. 258 (2001), no. 2, 671~
700

[12] Reed M., Simon B.: Methods of modern mathematical physics, IV. Anal-
ysis of Operators, Academic press, San Diego (1978), 51-60

33



