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1. Introduction
Morphologically and syntactically annotated corpora constitute an important
resource for both traditional and computational linguistics, and provide valuable
data for a variety of tasks in natural language processing, including parsing,
machine translation, information retrieval, and others. However, there is no
universally accepted annotation scheme and many treebanks use their own. This
makes it difficult to conduct experiments on multiple languages, which is in some
cases (machine translation, cross-lingual parsing, …) necessary, and in many
others useful. HamleDT1 is a collection of about thirty dependency treebanks
created in part to mitigate this problem – the treebanks are harmonized to
follow the same annotation scheme. A researcher thus needs to understand just
one scheme to be able to experiment on many different languages.

The quality of corpora is vital, because errors in annotation can lead to worse
results – but even the highest quality corpora contain errors. One of the ways
of decreasing the errors is manual post-annotation checking. However, manual
work is expensive and (given a low proportion of errors) ineffective, providing
diminishing returns. Also, no human post-annotator is infallible; he is likely to
correct only some occurrences of an error while overlooking others – reducing
the number of errors, but possibly creating inconsistencies.

A partial solution is to somehow detect the errors automatically with rel-
atively high precision. It is then possible to let the human annotator inspect
only the much smaller set containing the detected (suspected) errors, improving
the efficiency of the process a great deal. However, while manual correction of
detected errors is a good idea in general, it is unfeasible for HamleDT because
of its scope – it would be difficult (and, again, expensive) to find reliable anno-
tators for many of the languages. A more viable way would be to correct the
errors automatically as well.

Based on the review of the relevant literature, the most promising way for
the automatic detection of errors seems to be the variation n-grams method of
Dickinson and Meurers (2003a). It offers high precision; and when we detect
errors reliably enough, the subsequent correction should improve the corpus
even if the correction method has a lower precision (which we expect, as it is in
principle more difficult to correct an error than to find it). In the hypothetical
extreme case of 100% detection precision, every change in the correction step
replaces an error – either with a correct annotation (which reduces the number
of errors by one), or with another error (which keeps the number of errors the
same).

Experiments with the detection of errors in part-of-speech, phrase-structure
or dependency annotation using the variation n-grams method were conduct-
ed on corpora of English, German, Swedish and Czech. (e.g. Dickinson and
Meurers, 2003a; Dickinson, 2005; Boyd et al., 2008) We apply the variation
n-grams method to detect the errors in both the part-of-speech and dependen-
cy annotation of the treebanks of 30 languages in HamleDT including many
non-Germanic and non-Indo-European languages.

1HArmonized Multi-LanguagE Dependency Treebank, http://ufal.mff.cuni.cz/
hamledt
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We then use a tagger to automatically correct the detected errors in part-
of-speech annotation (following Dickinson (2005)), and extend this method to
automatically correct the detected errors in dependency annotation using a
dependency parser. A manual evaluation of a sample of the detected errors and
of the proposed corrections reveals that the method works successfully in the
sense that it can be expected to always reduce the number of errors (or at least
not to increase it). The results conform to our expectation that the method
performs better on the morphological than on the syntactic level.

We are of the opinion that it is worth to apply the part-of-speech annotation
corrections; the case of dependency annotation is less clear cut, as the benefit of
the reduced number of errors might be in fact offset by a decrease in consistency.
A preferable option might be to provide the corrections as an optional patch
to the data in the same way as the harmonized annotation for the non-free
treebanks in HamleDT is provided.

Examination of the detected errors and proposed correction also provides
some insight into possible issues in harmonization in general, and in harmo-
nization of different grammatical constructions in individual treebanks in par-
ticular.

1.1 Structure of the Thesis
The remainder of the thesis is structured as follows. Chapter 2 gives an overview
of other authors’ works on various methods for automatic detection or correction
of errors in morphological or syntactical annotation, including the variation
n-gramsmethod which forms the core of this work. Chapter 3 describes the data
used in our experiments and our preprocessing of the data. Chapter 4 starts
by the explanation of the variation n-grams method devised by Dickinson and
Meurers (2003a). The rest of the chapter is divided in two parts dealing with
the morphological level (Section 4.2) and the syntactic level (Section 4.3). Each
of them first presents the method as it is implemented for the respective level
in scripts from project DECCA2 that we use, and then our implementation
of a method for the correction of errors using an existing tagger and parser,
respectively. Chapter 5 contains the summarization of the results we obtained
in our experiments, their evaluation, and discussion. Chapter 6 concludes the
thesis.

2Detection of Errors and Correction in Corpus Annotation, http://decca.osu.edu/
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2. Related work
This chapter provides a brief overview of other authors’ works related to au-
tomatic detection and/or correction of errors in morphological (part-of-speech)
and/or syntactic annotation. It is divided into three sections: Section 2.1 de-
scribes several different methods used for the morphological level. Section 2.2
deals with various methods applicable to syntactic annotation, with focus on
dependency trees. And finally, Section 2.3 summarizes the body of work exper-
imenting with variation n-grams method for both levels, upon which we build
in this thesis.

2.1 Part-of-speech Annotation
Eskin (2000) works with a (presumably language independent) method based on
anomaly detection to automatically detect part-of-speech annotation errors in
the Penn Treebank corpus. He uses a mixture model (Barnett and Lewis, 1994),
which assumes the data are generated by two probability distributions (one for
the “normal” elements, and one for the anomalies). The distributions are mod-
eled by sparse Markov transducers or naive Bayes trained on all of the data.
When “the difference between the log likelihood of the distribution if the ele-
ment is removed from the majority distribution and included in the anomalous
distribution” is “sufficiently large”, the element is considered an anomaly. When
applied on the Penn Treebank (with 1.25 million tagged elements), the method
detected 4000 anomalies with a precision1 of 44%. The method might be useful
for a subsequent manual correction,2 but because of its relatively low precision,
any automatic method for correction would have to solve the problem of many
false positives. The anomaly detection method also cannot detect errors arising
from inter-annotator inconsistencies, and not every error is manifested as an
anomaly. (Eskin, 2000)

Loftsson (2009) also focuses on automatic detection of part-of-speech anno-
tation errors. He experiments with three different methods on the Icelandic
Frequency Dictionary: The first is the variation n-grams method described by
Dickinson and Meurers (2003a; see also Sections 2.3 and 4.1). The second
method is to “run five different taggers on the corpus and examine those cases
where all the taggers agree on a tag, but, at the same time, disagree with the
gold standard annotation”. Both of these methods are language independent, in
contrast to the third one,3 which is based on the development of various patterns
based on feature agreement in the shallow parses of the sentences in the corpus.
The three methods are complementary – a large proportion of the (true) errors

1In the context of automatic error detection, we define precision as follows: precision =
true errors/(true errors + false errors), where true error means “the method was correct in
marking the token as an error” and false error the opposite, i.e. “the method was mistaken in
marking the token as an error”.

2Especially given the ranking of the detected errors – for the first 1000 errors, the precision
rises to 69%.

3However, Loftsson argues that “the method can be adapted to other morphologically com-
plex languages”.
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detected by each one are not detected by the other two. Loftsson does not
compute the precision for the variation n-grams method; for the 5 taggers and
the shallow parsing methods, the precision is 16.6% and 30.1%, respectively,
which makes them unsuitable for a subsequent automatic correction.

2.2 Syntactic Annotation
2.2.1 Phrase Structure
Kato and Matsubara (2010) propose “a method for correcting annotation errors
in a [phrase structure] treebank” using a synchronous tree substitution grammar
automatically induced from the treebank to transform erroneous parse trees into
correct ones. Using the method on the Penn Treebank, they achieve the preci-
sion of 71.9% on the 100 highest ranked rules (corresponding to 331 “tokens”);
70 of those achieved the precision of 100%.

2.2.2 Dependency
B. Agrawal et al. (2013) present a method for detection of both attachment
and labeling errors in a dependency treebank using a parser error patterns
to build a knowledge base. They aim for a high recall with lower regard for
precision, because they assume a subsequent manual correction and argue that
“[a] human validator can reject unintuitive errors without much effort”. The idea
is to incorporate the automatic error detection and their manual correction into
the treebank development. In experiments on the Hindi Dependency Treebank
(Husain et al., 2010), the method detects errors in dependency annotation with
a precision of 64.58% and a recall of 88.57%. However, it must be noted that
inter-chunk dependency trees were used. The authors claim that the method is
language independent, however, for each treebank, the knowledge base must be
constructed separately, making it impractical for a large collection of different
treebanks.

Haverinen et al. (2011) examine the errors in the dependency annotation in
the Turku Dependency Treebank (Haverinen et al., 2010), which uses a modi-
fied version of the Stanford Dependencies (Marneffe and Manning, 2008). This
Finnish treebank is exceptional by having used full double annotation, which
means that “each sentence is first independently annotated by two different
annotators, and all differences are then jointly resolved, creating the merged
annotation”. The authors first investigate which dependency labels and con-
structions are “the most difficult for the human annotators and the baseline
parser” by comparing the differences between the merged annotation and the
individual annotations. More relevant, they train a binary SVM classifier to
distinguish correctly and incorrectly annotated tokens and use the results to
rank the sentences. “The classifier is notably better than the random baseline:
the first 10% of the sentences contain 25% of all annotation errors, and the
first 25% of the sentences contain 50% of all annotation errors.” (The “random
baseline” means choosing the sentences at random; one would expect a random
sample of 25% of the sentences to contain 25% of all annotation errors.) The

4



intention is to “significantly reduce the amount of double annotation […] needed
in a compromise setting where full double annotation is not possible”.

Volokh and Neumann (2011) use a language independent method to auto-
matically detect and correct errors in dependency annotation in the English
dependency corpus (Marcus et al., 1993). They train “two different state of
the art parsers: the graph-based MSTParser [(McDonald et al., 2005)] and the
transition-based MaltParser [(Nivre et al., 2006)]” and then parse the train-
ing data. The cases where both parsers disagree with the gold standard are
considered potential errors. These are then substituted with the MSTParser
predictions and a third parser (MDParser) is used to parse the modified corpus;
where “the modified annotation is identical with the one predicted by the third
parser”, the modification is kept.

Out of 6743 error candidates detected, 3535 were considered true errors
and corrected. The authors assume the “method has a very high precision”,
although the exact number was not reported (as it could “probably be computed
only by manual investigation of all corrected dependencies”); in the case all the
corrections were justified, the detection precision would be 52.42%. The recall
was estimated at 45.9%.

Novák and Razímová (2009) focus on the automatic detection of errors in
the tectogrammatical (deep syntactic) layer of the Prague Dependency Treebank
(Hajič et al., 2006). Their method is “based on Apriori algorithm [(R. Agrawal
and Srikant, 1994)] for mining association rules from data sets”. They use it
to extract “the highly confident rules […] and find the annotations where these
rules are violated”, thus getting the list of anomalies – possible errors. In an
experiment, the authors found that out of 100 most suspicious cases, 20 were
true errors (so the precision can be assumed to be bounded from above at
approximately 20%).

2.3 Variation n-grams Method
Dickinson and Meurers (2003a) show two language specific methods – closed
class analysis and finite-state tagging guide patterns – but more importantly,
propose the (non-language-specific) variation n-grams method for “detecting
errors in ‘gold-standard’ part-of-speech annotation”. The method is “based on
n-grams occurring in the corpus with multiple taggings” – such n-grams are
considered possible errors. As the method forms the core of this thesis, it is
described in detail later in Section 4.1. On the Wall Street Journal corpus, out
of 2495 variation nuclei types found in n-grams of length between 6 and 224,
2436 were true errors.

Dickinson and Meurers (2003b) extend the variation n-grams method to
detecting errors in (phrase-structure) syntactic annotation. Dickinson (2005)
discusses the method in depth, extending it even further to detecting errors
in discontinuous constituents in syntactic annotation; he experiments with a
tagger-based method for correction of part-of-speech annotation errors and con-
cludes with identifying the automatically correctable errors. Boyd et al. (2007)
explore the possibility of increasing the recall of error detection in phrasal tree-
banks by using part-of-speech n-grams instead of word n-grams. They also

5



develop some new heuristics for increasing precision. Boyd et al. (2008) extend
the variation n-grams method to detect errors in dependency annotation, and
Dickinson (2009) experiments with memory-based learning for automatic cor-
rection of dependency errors. In addition to words and tags, he uses ambiguity
classes as features and constraints, reaching a correction precision of 76.7%.
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3. Data
The data used in this thesis are all part of HamleDT – HArmonized Multi-
LanguagE Dependency Treebank – which “is a compilation of existing depen-
dency treebanks (or dependency conversions of other treebanks), transformed
so that they all conform to the same annotation style”. (Zeman et al., 2012;
Zeman et al., 2014) HamleDT currently contains treebanks of thirty languages.
Twenty-one of them are Indo-European: five Slavic (Bulgarian [bu], Czech [cs],
Russian [ru], Slovak [sk] and Slovenian [sl]), five Germanic (Danish [da], Dutch
[nl], English [en], German [de] and Swedish [sv]), Latin [la] and five Romanic
(Catalan [ca], Italian [it], Portuguese [pt], Romanian [ro] and Spanish [es]),
Greek ancient [el] and modern [grc], and the Indo-Iranian Persian [fa], Bengali
[bn], and Hindi [hi]). The others include Arabic [ar], Basque [eu], three Ural-
ic languages (Estonian [et], Finnish [fi], and Hungarian [hu]), Japanese [ja],
Tamil [ta], Telugu [te], and Turkish [tr].

Throughout this work, we follow the HamleDT convention of denoting the
treebanks by the ISO 693-1 codes of their languages as listed above; and unless
explicitly stated otherwise (or undoubtedly clear from the context), by using
either the code or the name of a language, we refer just to the treebank of the
language, not to the language itself. For the list of all the source treebanks with
references and information about their sizes see Attachment A.

In the rest of this chapter, we first in Section 3.1 concisely present the har-
monization process and the Prague Dependencies annotation style, and then
remark upon the differences from the Prague Dependency Treebank and some
problematic labels in Section 3.2. Section 3.3 closes this chapter by the descrip-
tion of our data preprocessing.

3.1 Harmonization and Prague Dependencies
The treebanks included in HamleDT have been harmonized to conform with
the Prague Dependencies style (Rosa et al., 2014), which is derived from the
annotation style of the Prague Dependency Treebank (Hajič, 1998; Hajič et al.,
2006; Bejček et al., 2013). A few notable differences between the two styles are
described in Section 3.2. The harmonization process is implemented in Treex,1
which is a modular NLP framework written in Perl. In Treex, any task is
“decomposed into a sequence of subsequent steps […] called blocks”. (Popel and
Žabokrtský, 2010)

During a typical harmonization, the original treebank is first converted into
UTF-8-encoded Treex XML format. The rest of the conversion is then done via a
Treex block HamleDT::<upper-case ISO 639-1 language code>::Harmonize,
which converts the part-of-speech tags to the Interset, and the dependency
labels and structure to the Prague Dependencies style. A good overview of the
harmonization process can be found in Zeman et al. (2014).

1http://ufal.mff.cuni.cz/treex
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3.1.1 Morphology
Morphological (part-of-speech) tags are converted from the original tagset into
Interset (Zeman, 2008) via a tagset-specific driver. Interset is intended as a
kind of universal morphological tagset – to “provide a unified representation for
as many feature values in existing tagsets as possible”. (Zeman et al., 2014)
Each tag is represented as a set of feature–value pairs.

The basic feature is pos (part of speech) with the following possible values:

• noun – noun
• adj – adjective
• num – numeral
• verb – verb
• adv – adverb
• adp – adposition
• conj – conjunction
• part – particle
• int – interjection
• punc – punctuation
• sym – symbol

Note that there is no specific part of speech for pronouns and/or articles
and (pre)determiners; they are instead distributed among the nouns, adjectives
and other classes on the basis of their syntactic properties, and recognizable by
having an appropriate value of the prontype (pronoun type) feature.

In total, there are about 50 different features in the Interset. Apart from
tagset (which identifies the source tagset driver) and other (which can store
any information), each feature has a predefined set of possible values. The
features range from the most typical ones like case, number, tense, aspect or
mood that are in one form or the other present in most of the languages, to
the more exotic ones like politeness or echo (“is this a reduplicative or echo
word?”).2

3.1.2 Dependency Structure
There are many linguistic structures for which there is no single clearly correct
representation. Drawing on Zeman et al. (2014), we present a few examples of
the decisions taken in the Prague Dependency Treebank and by extension in
the Prague Dependencies style of HamleDT.

Coordinations
The coordinations are arguably one of the most difficult structures to capture
in a dependency tree. In HamleDT, they are represented using the so-called
Prague family, where one of the conjunctions is the head, and all conjuncts
are siblings depending on it. Even inside this family, there is much variation;

2For a comprehensive list of features and their possible values, see
https://wiki.ufal.ms.mff.cuni.cz/user:zeman:interset:features
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using the classification by Popel et al. (2013), we can say that in the Prague
Dependencies, the rightmost conjunction is chosen for the head, the other con-
junctions (including punctuation) and the shared modifiers are attached to the
coordination head, the relation of the conjuncts to the parent of the coordina-
tion is expressed by their labels, and both conjuncts and shared modifiers are
annotated. For a complex example, see Figure 3.1.

....green ..apple ..and ..pear ..salad ..or ..smoothie.

Coord

.

Atr

.
Atr_M

.
Atr_M

.

Coord

.
X_M

.
X_M

Figure 3.1: Coordination style in Prague Dependencies.
(The label suffix _M marks a conjunct.)

Other Structures

In adpositional phrases, the adposition is the head; it bears a special label AuxP,
and its child bears the label that expresses the relation of the whole adpositional
phrase to its parent. A simple example can be seen in Figure 3.2, which also
shows the representation of determiners – they are governed by the noun.

....in ..the ..final ..hour.

AuxP

.

X

.

Atr

.
Atr

Figure 3.2: Adpositional phrase and determiner in Prague Dependencies.

Subordinate clauses are represented in a similar way. If there is a subor-
dinating conjunction, it is the head with a special label AuxC, and its child
(the root of the subordinate clause) bears the label expressing the relation of
the clause to its parent; in case no subordinating conjunction is present, the
root of the subordinate clause is attached to the word it modifies directly – see
Figure 3.3 and Figure 3.4.

....I ..say ..that ..he ..lies.

Pred

.
Sb

.
AuxC

.

Obj

.
Sb

Figure 3.3: Subordinated clause with a conjunction.

There is yet no unified approach to the harmonization of verb groups, al-
though some basic principles should be followed: the auxiliary verbs in pe-
riphrastic constructions depend on the main verb with a label AuxV; the modal
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....the ..man ..who ..planted ..trees.

X

.
Atr

.

Atr

.
Sb

.
Obj

Figure 3.4: Subordinated clause without a conjunction.

and phase verbs are usually the head of the whole verb group with a label repre-
senting the relation of the verb group to its parent, and they govern the content
verb in the infinitive with a label Obj; the subject and negative particles usually
depend on the head, while other arguments are attached to the content verb.

3.1.3 Dependency Labels
There were 42 distinct labels (excluding the AuxS of the technical root) that
appeared in at least one of the treebanks in HamleDT .. This number has
been reduced to 31 in HamleDT . and further to 25 in the current (as of yet
unpublished) version. About 15 of them are present in most or all treebanks.
Several more probably should, from the linguistic standpoint, be present in
(almost) all treebanks, but are not; it may be impossible to distinguish them
based on the annotation in the original treebanks, or there might be an error in
the harmonization process. Finally, the rest of the labels, which are present in
only some of the treebanks, mark relations that are distinguishable in only some
of the languages or treebanks, or that are somewhat more peripheral and easily
lend themselves to a different interpretation. The borderline cases between some
of the labels are sometimes hard to decide even for an experienced annotator
of Czech; and there are no language-specific annotation guidelines for other
languages.

It must be also mentioned that the status of some of the labels – namely
AuxA (article or determiner) and Neg (negative particle) – is not yet fixed.
They have been used in the harmonization of some of the languages, but not
others – in HamleDT ., they are present in 10 and 2 treebanks, respectively.
In the current version, AuxA remains just in [ta] and once in [ro], and Neg
has remained in [eu] and [ro] and was added in [hu]. In other treebanks, the
relations are either subsumed under Atr and Adv, respectively, or they are not
applicable at all for linguistic reasons, as some languages do not have articles
or express negation by bounded morphemes. It has not yet been decided for
either of the two labels whether they should be kept in the label set, or whether
they should be removed completely; either decision will require a modification
of the harmonization of some languages.

Most of the dependency labels express the relation of the node, or rather
of the subtree rooted in the node, to its parent; the exceptions ar Pred, Coord,
AuxP, AuxC and ExD. The following 21 labels are inherited from PDT:

• Pred – main predicate, a node not depending on another node
• Sb – subject
• Obj – object

10



• Adv – adverbial
• Atv – (determining) complement; a node with a dual dependency (a verb

and one of its arguments), hung on the argument
• AtvV – as Atv, but hung on the verb because the nominal parent is missing

in the tree
• Atr – attribute
• Pnom – nominal predicate
• AuxV – auxiliary verb
• Coord – coordination head
• AuxT – reflexive tantum
• AuxR – reflexive (neither Obj nor AuxT), passive reflexive
• AuxP – primary adposition or a part of secondary adposition
• AuxC – subordinating conjunction
• AuxO – redundant or emotional item, ‘coreferential’ pronoun
• AuxZ – focalizer
• AuxX – non-coordination-head comma
• AuxG – other punctuation and symbols
• AuxY – “adverbs, particles not classed elsewhere”
• AuxK – sentence-final punctuation and other symbols
• ExD – “externally-dependent”; a technical label used when the “true” parent

is elided

And the following four labels are newly added in HamleDT:

• Apposition – second part of appositional construction
• AuxA – article or determiner
• Neg – negative particle
• NR – technical value for a node whose correct label could not have been

determined during the harmonization

3.2 Differences between PDT and Prague De-
pendencies

While the Prague Dependencies in HamleDT are very similar to their ancestor,
a few notable differences exist. On the structural level, the main difference
is the treatment of appositions. In PDT, they are captured analogically to
the coordination structures – the connecting element (usually a comma) is the
head of the apposition structure and gets the label Apos, and the adordinated3

3Adordination is a paratactical construction similar to coordination, but in contrast to co-
ordination, the adordination members have identical referents. (cf. Daneš et al., 1987)
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members themselves have a label which expresses their relation to the parent
of the whole structure. In contrast, in HamleDT, the apposition is regarded as
a hypotactical construction: the second member is governed by the first, and
has the label Apposition. A different label is presumably used to highlight this
difference in structure.

There are also some differences in the label set. The four labels mentioned
above (Apposition, AuxA, Neg, NR) have been added. However, NR is basically a
label for an inadequacy in the harmonization, so it should not appear at all in
the “final” version. The questionable status of AuxA and Neg has been described
in Section 3.1.3.

Some other labels have been removed. As well as the already mentioned
Apos, HamleDT label set does not include “combined” labels AtrAtr, AtrAdv,
AdvAtr, AtrObj and ObjAtr, which are used in PDT for cases of “structural ambi-
guity […] without semantic difference” between the two labels from which they
are composed. (Hajič et al., 2004)

3.2.1 Problematic labels
The labels for the core sentence constituents, namely Pred, Sb, Obj, Adv and Atr,
usually do not pose much of a problem in themselves as far as harmonization is
concerned; they are attested in all of the treebanks. The only other such label is
the coordination head Coord. However, the boundaries between them and some
other labels are much less clear; most other labels also suffer from the fact that
some of the more specific relations may not be recognized in some annotation
styles. In this section, we offer several examples of such problems.

One might expect the adposition label AuxP to be missing in some of the
treebanks, as not every language uses adpositions – their typical function, the
case marking, may be expressed for example by bounded morphemes. However,
the only treebank with no occurrence of AuxP is [eu]. This seems to be an
error in the harmonization, as according to Aranzabe et al. (2003), the Basque
language does have adpositions. In the annotation style of the original treebank,
adpositions are governed by noun and marked with a label ncmod, the same as
most other non-clausal adnominal modifiers, which is probably the reason for
this oversight – most of them get assigned the label Atr.

Somewhat problematic are the labels Atv and AtvV. They have a dual de-
pendency, which cannot be directly represented in a tree. Therefore, one of
the dependencies is only implied, and the verbal attribute is hung on the parent
that is lower in the tree, i.e. the nominal one, with the label Atv; only if the
nominal parent is not explicitly represented in the tree, the verbal attribute is
hung on the verb, but with a different label – AtvV – to distinguish the two
cases. We believe that this distinction is not very useful, because in the more
complex cases of Atv, is is impossible to (automatically) determine the verbal
parent anyway, and the presence of two different labels for a single relation is
confusing. Moreover, if a similar relation is represented in some of the original
treebanks, it is likely that it will actually be represented as depending on the
verb, as that is arguably its “main” dependency.

At least one of these labels is present in fifteen treebanks; both labels to-
gether appear in five, Atv in fourteen, and AtvV in six. We have not examined
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the issue in depth, as it is out of the scope of this work, but we consider it
very unlikely that all occurrences of the verbal attribute in a treebank would
be cases with missing nominal parent as the labeling in [pt] suggests; we also
suspect that in at least some of the treebanks where only Atv is present, it is
actually (incorrectly) hung on the verbal parent.

The labels for punctuation – AuxX for comma, AuxK for sentence-end punc-
tuation, and AuxG for other punctuation and symbols – are also missing in some
of the languages. For [ro] and [ru], this is not an error in harmonization, but a
feature of the original treebanks, as they do not contain punctuation at all. In
[bn] and [te], some of the commas are assigned labels they are not allowed to
have (e.g. some of the “core” labels).

Relatively complicated is the situation for some of the Aux_ labels in com-
petition with each other and either adverbs (for AuxO, AuxY, AuxZ) or verb
arguments (AuxO, AuxR, AuxT), and the results in the harmonized treebank
heavily depend on the original label set and the author of the harmonization
block, as there are no universal guidelines other than for Czech.

Another unclear situation arises around nominal predicate label Pnom. Some
languages allow a nominal predicate without a copula and others do not; often
it is unclear which verbal argument should be considered the subject and which
the nominal part of the predicate; the set of copular verbs is construed with
a different breadth in each language, so in the one extreme, every potential
nominal part of a predicate may be labeled as an object, an in the other, any
light verb may take Pnom as its argument.

3.3 Preprocessing
Before attempting to automatically detect and correct some of the inconsisten-
cies and errors in HamleDT using the method outlined in Chapter 4, we had to
prepare the data. This involved first “cleaning” the set of dependency labels by
modifying the appropriate harmonization blocks, reharmonizing the treebanks
to reflect the latest changes, and then file-format conversion and automatic
generation of several files for each treebank, as described in Sections 3.3.1 and
3.3.2.

Some of the languages were using labels not present (and not really ap-
plicable) in any of the other treebanks, or labels that were removed from the
HamleDT label set. The first category is represented by [ar] and [ta]. The
Arabic treebank contained six such “endemic” labels. Three of them (PredC,
PredE and PredP) represent various specific types of predicates, and we convert
them to Pred; AuxE and AuxM represent “emphasizing expression” and “modi-
fying expression”, respectively, and we convert them to AuxZ; and finally, Ante
stands for anteposition and is converted to Apposition.

The treebank of Tamil contains five such labels. Labels AAdjn and AComp
represent adverbial adjunct and adverbial complement; these are both clear
cases of adverbials distinguished only by the valency frame of the verb which
governs them, so they are both converted to Adv. The remaining three labels are
AdjAtr marking an adjectival participial or adjectivalized verb, Comp marking a
non-adverbal complement, and CC for a separable part of a word. The former
two are converted to Atr, and the latter one to AuxT (reflexivum tantum) if it
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depends on a verb, and to Atr otherwise.
The second category consists of the combined labels described in Section 3.2

– AtrAtr, AtrAdv, AdvAtr, AtrObj, ObjAtr. According to the annotation manual,
these should always hang on the possible parent that is lower in the tree, which
will almost always be nominal in character. The other possible parent cannot
be reliably determined. Therefore, the combined labels have been all converted
to Atr; that means all of them hang correctly and no nodes have to be moved.
The downside is that the information about the ambiguity is lost, and in cases
where the verbal parent was preferred (i.e. AdvAtr and ObjAtr), the node was
disambiguated into the less-preferred option. However, we believe that it is
more than offset by the increased consistency across the treebanks (the labels
were used just in [ar], [cs], [sk], and [sl], with little hope to appear anywhere
else) and the improved label set.

3.3.1 For POS Detection and Correction
The script used in the detection of inconsistencies in the part-of-speech annota-
tion, as well as the part-of-speech tagger used in the correction step, require the
treebank to be in the TnT format (each line contains a single word form and its
part-of-speech tag, separated by a tabulator, and the sentences are separated
by a blank line). We have written the Treex block Print::TnT, which takes the
files in the Treex format and prints them in the TnT format. For the part-of-
speech tag, there are five options: 1. the conll_pos attribute, 2. the conll_cpos
attribute, 3. the conll_feat attribute, 4. the Interset pos, or 5. the concate-
nation of Interset features without tagset and other. We ran the scenario
“Read::Treex Print::TnT” on each of the treebanks with the last option.

To improve the correction results, we then assign complex ambiguity tags to
the relevant words; the procedure is described in Section 4.2.3.

Apart from the training data in the TnT format, the tagger requires two
more files – a lexicon, and a tagset. The lexicon file contains all word types
from the corpus with all the part-of-speech tags with which they occur (with
the exception regarding the cardinal numbers expressed by digits; the lexicon
must contain just one such number). The tagset file contains all the tags that
occur in the corpus. Technically, one could use the Interset to obtain the list
of all possible tags including the ones not seen in the corpus; however, because
we both train and run the tagger on the whole corpus, there are no unseen
tags even if we just generate the list from the corpus. We have written a script
(make_DTT_lexicon.pl) for the automatic creation of the lexicon file, and the
tagset file is generated using a primitive bash script (“cat corpus | cut -f2
| sort | uniq | tr '\n' '␣'”).

3.3.2 For Dependencies Detection and Correction
The script used in the detection of inconsistencies in the dependency annota-
tion requires the corpus in a specific format and one more file described later
in this paragraph. The process to obtain them is as follows. We first con-
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vert the treebanks from the Treex format into the CoNLL format4 using an
existing Treex block Write::CoNLLX with options “deprel_attribute='afun'
pos_attribute='tag' cpos_attribute='iset/pos' feat_attribute='iset'”,
and then use the script CoNLL2Decca.py5 to convert them further into the
Decca-XML6 format. After that, we run the script deccaxml-xsltproc.py
with deccaxml-idwordposhead.xsl stylesheet to finally transform the tree-
bank into the required format – on each line, there is the id, word form,
part-of-speech, and dependency head of the word, and sentences are sepa-
rated by a single blank line. The other file that is needed must contain all
potential variation nuclei (defined in Section 4.1) stored in a trie data struc-
ture. We first obtain a simple list of the possible variation nuclei by running
deccaxml-nuclei.py with deccaxml-nuclei.xsl, and then create the file with
the trie using triefilter-idwordpos.py.

In the correction step, we use a dependency parser, which requires the tree-
banks in MST format.7 We use the script conll2mst.py (which is bundled with
the parser) to convert the treebanks to this format from the CoNLL format
(which we obtained in the preprocessing step for the part-of-speech annotation
part).

4See Attachment B.1 for a detailed description.
5This script, and the scripts and stylesheets used to transform the treebanks to the re-

quired format and to create the nuclei and filtertries files, are provided by the project DECCA,
http://decca.osu.edu/.

6http://decca.osu.edu/schema/Decca-XML.xsd
7See Attachment B.2 for a detailed description.
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4. Method
In this chapter, we first present the basic idea of the variation n-grams method
in Section 4.1. Section 4.2 contains the description of the algorithm and the
heuristic we use for the detection of errors on the morphological level. It also
includes the explanation of the complex ambiguity tags we use, and of the
process of tagging and of the subsequent correction. Analogically, Section 4.3
first discusses the algorithm and the heuristic we use for the detection of errors
on the syntactic level, and then the process of parsing and of the subsequent
correction.

We use the variation n-grams method to automatically detect error can-
didates in both part-of-speech annotation and dependency annotation of the
treebanks included in HamleDT. Subsequently, we train a decision-tree-based
part-of-speech tagger, the TreeTagger (Schmid, 1994), and a non-projective de-
pendency parser, the MSTParser (McDonald et al., 2005), on the entirety of
each treebank, and then run them on the same data. We then use their output
to decide for every error candidate whether it was in fact annotated correctly,
or whether it is a true error, in which case we propose the parser/tagger output
as a correct annotation. A sample of the proposed corrections is then manually
evaluated for several languages.1 The results of the detection and correction,
and their manual evaluation can be found in Chapter 5.

4.1 Variation n-grams
Dickinson and Meurers (2003a) first proposed the variation n-grams method
for detection of errors in part-of-speech annotation and later extended it to
syntactic annotation of phrase-structure treebanks (2003b) and also dependency
(2008) treebanks.
Variation refers to the situation where multiple tokens of the same type

occur in the corpus annotated differently. A type is an abstraction, covering
all the occurrences of an “annotation instance” in a corpus, while a token is a
single occurrence – a word form with its part-of-speech tag in the part-of-speech
annotation, and a pair of words together with a – possibly nonexistent – labeled
dependency edge between them in the dependency annotation.

The variation in itself does not signify an error; although a single token
usually has a single correct label, most types are ambiguous – they usually have
a larger set of possible correct labels. For example, the word “meče” may in
Czech be either a noun as in the sentence

(1) Rytíř
knight

se chopil
seized

meče.
sword..

(here in the genitive case of the singular – but the same form could in a different
context also be the nominative or the accusative of the plural), or it may be

1The software used in the experiments, selected intermediate data and the results are avail-
able as a tar.gz archive and also on the enclosed DVD, whose contents are described in
Attachment C.
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a verb in a (present) transgressive form as in the sentence
(2) Kozel

billy-goat
meče
bleat.

utekl.
ran-away

‘Billy-goat ran away bleating.’
There are two possible causes for variation in a corpus annotation: either

the type is ambiguous and the individual tokens realize its different variants;
or the labeling of the type is inconsistent – the individual tokens with different
labels realize the same variant and should have the same label, but some of
them are annotated erroneously. The problem then becomes one of deciding
whether each particular variation is a consequence of an ambiguity, or of an
erroneous annotation.

As famously noted by Firth (1957), “[y]ou shall know a word by the company
it keeps”. We look at the context of the variation: a dissimilar context suggests
the variation might be an ambiguity, whereas a similar context points to a pos-
sible annotation error. Because we intend to use this detection method to select
error candidates for a subsequent automatic correction of a gold-standard corpo-
ra, we are concerned mostly with precision, with a lower regard to recall. Thus
we follow Dickinson and Meurers (2003a) and look at the context composed of
the word forms preceding and following the variation, and consider only identi-
cal contexts to be “similar”. (One might instead look at e.g. part-of-speech tags
of the surrounding words or at the dependency context – the dependency parent
and children of the word in question.) The word that exhibits the variation is
called variation nucleus, and an n-gram (of word forms) containing a variation
nucleus – in other words, the variation nucleus together with its context – is
called variation n-gram.

For example, the following 16-gram appears twice in the corpus.2 in each
case the word processed has a different tag – once pos=adj|degree=pos, and
once pos=verb|verbform=part|tense=past|aspect=perf. The word processed
is thus a variation nucleus of a variation 16-gram shown in (3); it is a single
variation nucleus type which is represented by two variation nucleus tokens in
the treebank.

(3) today , would apply to pesticides and other substances found on fresh
and processed foods ,

4.2 POS
As mentioned above, in the case of part-of-speech annotation, we consider an
annotation instance to be the form of the word together with its part-of-speech
tag.

We work with a large set of typologically diverse languages, and the tagsets
used by different treebanks vary greatly. One possible approach might be to
work with the original tags of each treebank, and encode them into the Interset
only after the error detection and correction. However, we decided to go a

2In the examples taken from HamleDT, we preserve the technical tokenization; the tokens
include e.g. punctuation or parts of contracted words – for example, “don’t” is split into two
tokens, “do” and “n’t”. Every token is separated by a space.
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different route and use the Interset directly. In our opinion, the main advantage
of this is that the results for different treebanks are directly comparable; a
beneficial side effect is that we do not have to learn the native tagsets of the
evaluated treebanks, instead reusing the effort put into it by the authors of their
Interset drivers.

Therefore, as the part-of-speech tags, we use a |-delimited concatenation
of the Interset feature-value pairs3 in the canonical order, as it is returned by
Treex::Core::Node::Interset::get_iset_conll_feat(), with the exclusion
of the other and tagset features. We treat the tags as atomic units without
the internal structure they actually have. For more information on the tagset,
see Section 3.1.1.

4.2.1 Algorithm
The algorithm used to obtain the list of all variation n-grams in a corpus is a
modified variant of the Apriori algorithm (R. Agrawal and Srikant, 1994), orig-
inally proposed for association rules mining of transactional databases, adapted
for this purpose by Dickinson and Meurers (2003a). It works in a bottom-up
manner, in each iteration building the set of potential variation n-grams from
the set of variation (n− 1)-grams, based on the observation that each variation
n-gram must contain a variation (n − 1)-gram. In the algorithm below, Ln is
the set of all variation n-grams of length n in the corpus, and Cn is the set of
variation n-grams candidates of length n – in other words, the set of all n-grams
containing an element of Ln−1.

1. Generate the set C1 of variation unigrams candidates, i.e. of all unigrams
in the corpus, and remember also their position in the corpus.

2. Prune C1, leaving only the unigrams that exhibit variation, to obtain the
set L1 of all variation unigrams in the corpus.

3. Set n = 1.

4. Generate the set Cn+1 of (n+1)-grams candidates by extending the n-grams
in Ln to either side, remembering their positions in the corpus; stop if
Cn+1 = ∅.

5. Prune Cn+1, leaving only the (n+1)-grams that exhibit variation, to create
the set Ln+1 of all variation (n+ 1)-grams in the corpus.

6. Increase n by one and go to step 4.
We have used the RIDGES4 modification of the DECCA project implemen-

tation in Python, which adds one postprocessing step after the algorithm itself:
it goes once more through all the variation n-grams from unigrams up to the
longest variation n-grams found, and removes from Ln all n-grams that are con-
tained in a (n + 1)-gram in Ln+1, thus always keeping only the longest n-gram
with the given variation nucleus.

3Some values may actually contain a disjunction of values delimited by a vertical bar – in
that case, it is substituted by a semicolon.

4Register In Diachronic GErman Science, http://korpling.german.hu-berlin.de/
ridges/documentation-v4-en.html
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4.2.2 Heuristics
After obtaining all variation n-grams from a corpus, we can make use of some
heuristics to divide them into (suspected) errors on one side and ambiguities on
the other. Dickinson (2005) evaluates two heuristics for this purpose. The first
one is “variation nuclei in long n-grams are errors”, where for the purposes of the
evaluation “long” means n ≥ 6; the longer the identical context, the more likely
it is that a variation signifies an error. The second one is “distrust the fringe”,
i.e. variation nucleus on the fringe (the beginning or the end) of the n-gram is
probably not en error; this heuristic is based on the fact that morphological and
syntactic relations are usually local in nature. Dickinson’s results show that the
“distrust the fringe” heuristic works better, so that is the one we employ. This
means that we effectively keep all variation trigrams with the variation nucleus
being the middle word.

After obtaining the set of types with an error in their part-of-speech anno-
tation, we turn our attention to the issue of automatically correcting them. To
that end, we have to determine which tokens are the erroneous ones, and decide
what the correct part-of-speech tag for each of them is. We use a part-of-speech
tagger, TreeTagger5 (Schmid, 1994), to address both of these tasks simultane-
ously.

4.2.3 Complex Ambiguity Tags
Before training the tagger, based on the proposal of Dickinson (2005), we prepro-
cess the corpus using the ambiguity classes of the individual words in conjunction
with the list of potentially erroneous tokens to assign complex ambiguity tags to
some of the words. Ambiguity class of a word is basically a set of the different
classes the word may belong to; in other words, the set of the different tags
with which the word appears in the corpus. The idea behind this is that words
in the same ambiguity class behave in a similar way, while words in different
ambiguity classes behave differently, and we want to make the tagger aware of
this difference.

For example, consider the words before and away. As one can see in (4a)
and (5a), both may act as adverbs (pos=adverb). However, before may also act
as a preposition (pos=adp) as in (4b), which makes it a part of the ambiguity
class pos=adp/pos=adv; in contrast, away is never a preposition, but may act
as a particle of a phrasal verb as in (5b), thus being in the ambiguity class
pos=adv/pos=part.

(4) a. Our international efforts were far greater than ever before.pos=adv .

b. If mutation and natural selection slowly but surely give rise to more
and more advanced forms of life, then it was only a matter of eons
before.pos=adp splendid beings endowed with reason, self-awareness
and taste shimmered onto the scene .

(5) a. “ One dealer told me that if he had more cars, he ’d sell them
right away.pos=adv , ” says Takuro Endo , Nissan executive vice

5http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
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president .
b. “ I ’ve never met a ghost that could n’t be explained away.pos=part

by perfectly natural means , ” he says .

Complex ambiguity tag consists of the ambiguity class of the word, and of
the tag the word actually has. So the complex ambiguity tag of before would be
<pos=adp/pos=adv,pos=adv> in (4a) and <pos=adp/pos=adv,pos=adp in (4b);
and the complex ambiguity tag of away would be <pos=adv/pos=part,pos=adv>
in (5a), and <pos=adv/pos=part,pos=part> in (5b). However, we want to
assign a complex ambiguity tags only to the words that are relevant to the
correction. To do just that, we have implemented the procedure described by
Dickinson (2005) as follows:

1. Every word which is a variation word (i.e. nucleus of a non-
fringe variation) or type-identical to a variation word is as-
signed:
(a) a complex tag reflecting the ambiguity class of all relevant

ambiguities […] in the 3-grams.
(b) a simple tag reflecting no ambiguity, if tag is irrelevant.

2. Based on their unigram tags, non-variation words are assigned:
(a) a complex tag, if and only if this word’s ambiguity tag also

appears as a variation ambiguity.
(b) a simple tag otherwise.

For a given type, the ambiguity (i.e. the tag) is relevant if it occurs with at
least 10% or at least 10 tokens of the type. (Just one of the two conditions is
enough.)

4.2.4 Tagging
For training, the TreeTagger requires some training data, a lexicon, and a tagset.
In our case, the whole corpus is used as the training data, and the lexicon
and tagset are generated from the corpus. The lexicon contains all types from
the corpus, each with the list of all tags with which they appear, except for
the ordinal and cardinal numbers consisting of digits. The tagset contains all
possible tags; in our case, we can also generate it from the corpus.

The first attempt to train the TreeTagger was unsuccessful on some of the
corpora. We have empirically determined that some of the tags we use exceed
the TreeTagger’s limit on the length of the tags, which is not really surprising
given the fact that some of the tags we use are unusually long and the complex
ambiguity tags created from them are yet several times longer. To bypass this
problem, we have converted every tag to a number (in the order in which they
appeared in the corpus) and used these numbers as our tags (including in the
lexicon and the tagset) while working with the tagger.

After that, we have trained the tagger on all the corpora6 with default pa-
rameters except for the “end-of-sentence part-of-speech tag” option -st; we have

6Except on [fa], [ja], [ro] and [ru], where we encountered some other technical problems.
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used -st pos=punc, as that is the most common end-of-sentence punctuation
tag.7

4.2.5 Correction
After training the tagger on the whole corpus in question, we run it on the
same corpus. We feed the output together with the set of variation n-grams
into the Treex block HamleDT::Util::CorrectPOSInconsistencies we have
implemented. The block goes through the whole corpus, and when it encounters
a variation n-gram, it compares the original corpus annotation with the one
provided by the tagger, and prints8 the result of the comparison. Three cases
can be distinguished:

• The tag assigned to the token by the tagger is the same as the one in the
corpus. We consider the token to be in fact annotated correctly and keep
the original tag.

• The tag assigned to the token by the tagger is different than the one in
the corpus, and this type occurs with such a tag somewhere else in the
corpus. We consider the token to be annotated erroneously, and propose
to change its annotation to the one assigned to it by the tagger.

• The tag assigned to the token by the tagger is different than the one in the
corpus, but this type does not occur with such a tag at all. We disregard
this token, as we cannot determine whether the error is in the corpus, or
in the tagger, and keep the original tag.

The following examples show each of the three cases:

(6) Those employees are suspected of illegally gaining an estimated $ 376.8
million , the prosecutor was quoted as saying by the Excelsior news
service .

(7) We had intercepted during the year an estimated $ 5 billion street value
of cocaine .

(8) The jokes are n’t just on the Japanese , though .

In (6), the variation nucleus estimated (a part of the variation trigram9

an estimated $) has the tag pos=adj|degree=pos10 in the corpus, and the tagger
assigns it the same tag, so we make no change. In (7), the variation nucleus
estimated has the tag pos=verb|verbform=part|tense=past|aspect=perf11 in
the corpus, but the tagger assigns it the tag pos=adj|degree=pos; estimated
appears elsewhere in the corpus in the same context with this tag, so we accept
it as the new, corrected tag for the word. In (8), the variation nucleus Japanese
has the tag pos=noun|nountype=prop|number=sing, and the tagger assigns the

7Therefore we have not encoded the pos=punc tag into a number, but left it as it was.
8It would be trivial to change the block to instead – or in addition – to modify the corpus,

but we decided to first evaluate the results.
9or maybe even a longer n-gram, but we do not check for that

10the positive degree of an adjective
11perfective past participle of a verb
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tag pos=adj|degree=pos; however, because the word Japanese never appears
with this tag in the given context, we reject the tag by the tagger and keep the
one that is in the corpus.

4.3 Dependencies
In the case of dependency annotation, an annotation instance is the oriented
labeled dependency edge between a pair of words. A virtual edge with a tech-
nical label NIL is added between the words that are not connected by an edge
in the corpus to allow for the recognition of attachment errors. We work with
the harmonized treebanks, so we use the HamleDT annotation style. It might
be beneficial to reduce the number of indirectly encoded relations by using a
different structure for e.g. prepositional phrases, clauses introduced by a sub-
ordinating conjunction, and coordinations, but it would have to be changed in
the harmonization step – due to possibly complex interactions of the structures
mentioned, their conversion to encode them directly would not be completely
reversible, so the reverse conversion back to the HamleDT style would most
likely introduce some new errors.

4.3.1 Algorithm
For the detection of inconsistencies in dependency annotation, we use the script
decca-dep.py of the DECCA project, which implements the algorithm de-
scribed by Boyd et al. (2008) as follows:

1. Compute the set of nuclei:
(a) Find all dependency pairs, store them with their category

label. The dependency relations annotated in the corpus
are handled as nuclei of size two and mapped to their label
plus a marker of the head (L/R). The labels of overlapping
type-identical nuclei are collapsed into a set of labels.

(b) For each distinct type of string stored as a dependency,
search for non-dependency occurrences of that string and
add the nuclei found with the special label NIL.
To obtain an algorithm efficient enough to deal with large
corpora, we adopt the following measures from [Dickinson
and Meurers (2005a)]:
• A trie data structure is used to store all potential nuclei
and to guide the search for NIL nuclei.

• The search is limited to pairs occurring within the same
sentence.

• NIL nuclei which would be type-identical to and overlap
with a genuine dependency relation in the same sen-
tence are not considered.

2. Compute the set of variation nuclei by determining which of the
stored nuclei have more than one label.
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We have slightly modified the implementation: We have refactored the
command-line options parsing and added command-line support for a few more
options previously requiring a modification in the code; we also provided code
for textual output to simplify the following work on correction.

4.3.2 Heuristics
Boyd et al. (2008) offer three different heuristics:

• the non-fringe heuristic requires a word of identical context on both sides
of both words composing the variation nucleus,

• the NIL internal context heuristic requires the “NIL nuclei to have the same
internal context as an annotated dependency”, with no requirements on
the annotated dependencies, and finally

• the dependency context heuristic requires the head of the variation nucleus
to have the same dependency label.

Their results support the intuition that the strictest of them, the non-fringe
heuristic, provides the highest precision, so that is the one we have decided to
use. It would be possible to combine it with the dependency context heuris-
tic. However, their experiments show only a marginal improvement in precision
against a drop in recall of about 50%; we expect a similar effect in our exper-
iments, and while we focus mostly on precision, we do not consider such offset
worth it.

After obtaining the list of suspected errors, we attempt to automatically
correct them, using a similar method as for the part-of-speech annotation: we
train a non-projective dependency parser, the MSTParser12 (McDonald et al.,
2005) and use its output to determine the correct structure and label for each
variation nucleus.

4.3.3 Parsing
For each treebank,13 we train the MSTParser on all the data with the default
parameters except for decode-type, which we set to non-proj to make the
parser use the non-projective parsing algorithm.

4.3.4 Correction
Using the model trained on the whole corpus, we then run the parser on the
whole corpus as well. The correction step itself is then basically the same
as in the case of part-of-speech annotation. We have implemented a Treex
block HamleDT::Util::CorrectDependencyInconsistencies.pm, which takes
the list of variation ngrams and the the parser output, and for each variation
nucleus that passed the heuristic, it compares its annotation in the corpus with
the annotation proposed by the parser, which again leads to three possible cases:

12http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html
13Except for [cs]; it seems there is a memory leak during the training which causes it to fail;

we suspect that a cycle or some other non-permitted structure somehow emerged during the
conversion to the CoNLL or MST format.
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1. Both annotations match, i.e. either there is a NIL (meaning no) depen-
dency, or the dependency edge has the same orientation and label.

2. The annotations do not match, but the one proposed by the parser is not
a variation that appears in the corpus.

3. The annotations do not match, the one proposed by the parser appears in
the corpus, and

(a) there are two different labels of an otherwise same dependency edge,
or

(b) there is a NIL dependency in the corpus and a “real” dependency in
the parser output, or vice versa.

The case 1 is a genuine ambiguity and we consider this variation token to
be annotated correctly.

In the case 2, there must be error either in the corpus, or in the parser – but
we have no way to determine whether it is the first, or the second, and by trying
to correct the supposed error, we would actually introduce more inconsistency
into the treebank, so instead we disregard such cases.

The remaining cases are errors. The case 3a is a labeling error, and we correct
the label according to the parser. In the case 3b, we move the dependent word
under the parent proposed by the parser, and assign the label in the same way;
it is an attachment error.
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5. Experiments and Results
We applied the methods for automatic detection and correction of errors in
part-of-speech and dependency annotation, described in the previous chapter,
on the corpora in HamleDT. Some of the treebanks were excluded from some
or all the experiments. A priori, we decided not to include [ar] and [sk]. The
former was in the process of switching to different source data (from CoNLL
2007 to Prague Arabic Dependency Treebank 1.5) and there were some issues
with empty attributes for a non-negligible number of nodes. The latter appar-
ently contains at least part of the data twice with two different annotations,
which presents an insurmountable problem for our method, as many of the
doubly-annotated sentences would be detected as inconsistencies. A few others
were excluded a posteriori due to some technical problems; these are listed in
the appropriate sections below.

In this chapter, we first present the results for the part-of-speech annotation
in Section 5.1 and the results for the dependency annotation in Section 5.2,
and then the evaluation of both in Section 5.3. Finally, in Section 5.4, we
discuss some ways in which our method or the harmonization process might be
improved.

5.1 Results for Part-of-speech Annotation
In this section, we first present the results for the detection and then for the
correction of errors in the part-of-speech annotation.

5.1.1 Detection
We were unable to finish the detection of inconsistencies in [de] because of space
limitations, as the incomplete list of variation n-grams had a size in the order
of tens of GBs; we suspect that some texts are present in the treebank more
than once.

The results of the detection step of the method are summarized in Table 5.1.
Let us first consider the left part of the table. In the second and third column, we
can see that the number of variation unigrams, i.e. variation nuclei candidates,
varies from less than one hundred types / several hundreds of tokens to a few
tens of thousands of types / hundreds of thousands of tokens. However, one
must bear in mind that the treebanks in corpora vary greatly in their size –
the smallest corpus, [te] with only 5722 tokens, is smaller than the largest one,
[cs] with 1 503 738 tokens, by a factor of almost 263, so the raw numbers do not
tell us much. The fifth column shows a more accessible measure: the maximal
corpus coverage tells us the proportion of tokens in each treebank that exhibit
variation – and these are the only tokens we are able to consider in any way
while using this method. The coverage seems to correlate positively with the
treebank size. Given that a word must appear at least two times in the corpus
to be able to exhibit variation, one of the contributions to this correlation might
be the ratio of hapax legomena to the vocabulary size – Fengxiang (2010) shows
that, at least in English, this ratio decreases with increasing text size for texts
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Language Variation Corpus Max. corpus Nonfringe Actual
unigrams size coverage variation nuclei coverage

types tokens (tokens) (% of tokens) types tokens (% of tokens)

[bg] 1346 35 967 196 151 18.34 260 1240 0.63
[bn] 148 1234 7252 17.02 0 0 0.00
[ca] 2211 220 483 443 317 49.73 767 5329 1.20
[cs] 25 525 703 690 1 503 738 46.80 3483 18 800 1.25
[da] 987 34 338 100 238 34.26 27 92 0.09
[el] 1463 25 733 70 223 36.64 147 489 0.70
[en] 3751 206 058 451 576 45.63 947 4499 1.00
[es] 2499 203 872 477 810 42.67 563 3979 0.83
[et] 180 2770 9491 29.19 11 26 0.27
[eu] 2889 47 140 151 604 31.09 88 452 0.30
[fa] 2566 118 808 189 572 62.67 676 2927 1.54
[fi] 310 2207 58 576 3.77 1 2 0.00
[grc] 4094 164 053 308 882 53.11 2045 13 978 4.53
[hi] 6096 263 485 294 509 89.47 3737 25 261 8.58
[hu] 712 43 011 139 143 30.91 46 239 0.17
[it] 842 26 515 76 295 34.75 77 205 0.27
[ja] 190 63 453 157 172 40.37 79 355 0.23
[la] 1697 24 751 53 143 46.57 114 398 0.75
[nl] 1606 94 622 200 654 47.16 87 618 0.31
[pt] 2150 96 876 212 545 45.58 1028 4531 2.13
[ro] 469 13 092 36 150 36.22 13 34 0.09
[ru] 11 244 249 266 497 465 50.11 582 2311 0.46
[sl] 824 11 082 35 140 31.54 86 391 1.11
[sv] 1244 120 308 197 123 61.03 514 2483 1.26
[ta] 77 795 9581 8.30 7 24 0.25
[te] 70 689 5722 12.04 8 16 0.28
[tr] 792 22 583 69 695 32.40 229 1359 1.95

Table 5.1: Variation in part-of-speech annotation.
The second and third column show the number of detected vari-
ation unigrams, i.e. all possible variation nuclei. The numbers
in the two penultimate columns represent how many suspected
errors we detected in each of the corpora.
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shorter than 3 000 000 words (which is about twice the size of the largest corpus
in HamleDT). However, we do not explore this relationship in depth.
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Figure 5.1: Nonfringe variation nuclei vs. corpus size.
(The value for [bn] was manually changed from 0 to 1 to fit in the
graph.)

The last three columns are more relevant for the task at hand. The penulti-
mate two columns show how many variation nuclei we suspect to be annotated
erroneously after applying the non-fringe heuristic; it seems this heuristic cuts
down the number of cases by about one or two orders of magnitude. However,
bear in mind that we do not suggest that all the variation nuclei tokens are an-
notated incorrectly; it is merely the number of tokens of variation nuclei types
that are (in some of their instances) annotated incorrectly according to our
method. We were interested in the relation between this number and the tree-
bank size – in Figure 5.1, we plotted the logarithm of the number of non-fringe
variation nuclei tokens as a function of the logarithm of the size of the corpus in
tokens. While there still seems to be a strong positive correlation, some of the
treebanks have notably less, or more, suspected errors than average. The most
striking example of the former is [fi], which is somewhat encouraging given
that, as far as we know, it is the only treebank in HamleDT with a full double
annotation and thus presumably of a very high quality. (Haverinen et al., 2011)

The last column of the table then shows the proportion of the variation nuclei
tokens to the size of the treebank, and this number forms the (exclusive) upper
bound on the treebank improvement by our method – we cannot reach it even
with a hundred percent precision in both detection and correction, because we
assume at least one correctly annotated token per each variation nucleus type.
We immediately see that for some of the treebanks, our method will do very
little or nothing at all even in the best case – we have detected no (potential)
errors in [bn], just one in [fi], and very small proportions in e.g. [da] or [hu].
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On the other hand, in ten of the treebanks the tokens of variation nuclei form
a percent or more of all the tokens.

5.1.2 Correction

Language Total Proposed new tag

(tokens) Same Diff. NA

[bg] 1172 883 280 9
[bn] 0 0 0 0
[ca] 4974 3611 1282 81
[cs] 16 017 8847 5150 2020
[da] 66 48 18 0
[el] 477 321 136 20
[en] 3984 2496 1419 69
[es] 3711 2708 985 18
[et] 26 11 9 6
[eu] 320 198 107 15
[fi] 2 1 1 0
[grc] 8765 5951 2549 265
[hi] 23 636 16 048 5063 2525
[hu] 156 108 48 0
[it] 182 91 81 10
[la] 391 217 137 37
[nl] 542 391 139 12
[pt] 4327 2613 1408 306
[sl] 363 238 115 10
[sv] 2226 1251 900 75
[ta] 19 12 7 0
[te] 14 6 6 2
[tr] 1068 586 439 43

Table 5.2: Part-of-speech annotation correction.
The second column contains the total number of tokens marked as
suspected errors in the detection step. The last three columns show
the number of tokens for which the newly proposed tag is 1. same as
the original one, 2. different from the original one, 3. not applicable
(and discarded).

After detecting the potential errors, we try to automatically correct them.
As mentioned in the previous section, we did not obtain usable results for the
detection on [de] and [sk], and so we could not proceed with the correction
step on these treebanks. We were also unable to finish the correction step
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on [fa], [ja], [ro] and [ru], because the attempts to train the tagger on these
corpora were unsuccessful for various reason: in [fa], the tagger inexplicably
encountered an unknown tag; punctuation in [ja] and [ro] is tagged differently,
which combined with our tag encoding makes the tagger unable to recognize it;
and there were apparently some words with no tags in [ru].

The results for the correction step are presented in Table 5.2. The second
column is the number of tokens we considered for a correction, and the fol-
lowing three each stand for one of the three possible outcomes as described in
Section 4.2.5 – preservation of the original tag, correction of the tag, or saying
we are unable to decide (when the tagger disagrees with the original tag, but
proposes a tag that is not part of the acceptable variation for the given type).
We can see that in (almost) every treebank, a majority of cases result in the
preservation of the original tag. The proposed inapplicable tags make up an un-
substantial proportion in most of the treebanks, and while they might provide
some insights, we decided to leave this issue for a prospective further work.

5.2 Results for Dependency Annotation
In this section, we first present the results for the detection and then for the
correction of errors in the dependency annotation.

5.2.1 Detection
We have successfully run the detection step of the method on all twenty-eight
treebanks included in this experiment. The results are summarized in Table 5.3
and visualized in Figure 5.2.
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Figure 5.2: Dependency non-fringe variation nuclei vs. corpus size.
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The table does not contain the numbers of variation nuclei candidates, be-
cause the script is implemented in such a way that the heuristic is not applied
separately after obtaining the set of the variation nuclei candidates, but instead
is applied immediately after obtaining this set for n-grams of given length. And
unlike for the part-of-speech annotation, there is no straightforward way of com-
puting the corpus coverage, because in addition to the dependencies present in
the corpus, we also consider the NIL dependencies in some cases; however, we
assume the corpus coverage is similar as in the part-of-speech annotation error
detection, i.e. in the interval between zero and a few percent at most.

5.2.2 Correction
In the correction step, we had to exclude [cs], because we were unable to suc-
cessfully train the parser on this corpus due to some memory-related errors; as
we already mentioned in Section 4.3.3, we suspect there was some error dur-
ing the format conversion, leading to a structure causing an infinite loop or a
memory leak in the training of the parser.

The results for this step for the other twenty-seven treebanks are presented
in Table 5.4. As we can see, the numbers of tokens considered for the correction
in each treebank on the level of dependencies are in the same general vicinity
as on the level of part-of-speech annotation; for some treebanks, the former
number is the higher, for others, the latter one. The ratio between the number
of the unchanged and of the changed positions is also relatively similar. One
difference is in the number of proposed annotations that are not applicable,
which is considerably higher in the case of dependency annotation.

5.3 Evaluation
The results of the method were manually evaluated for several languages; it was
six languages for the part-of-speech annotation, and seven languages for the
dependency annotation. These languages were chosen based on what language
experts (mainly linguistically knowledgeable university students of the given
languages) were available and willing to work on the evaluations. For each
evaluated language, two random samples of one hundred variation nuclei tokens
each were taken – one from the variation nuclei that were not changed (i.e. we
say they were annotated correctly), and one from the variation nuclei that were
changed (we say they were annotated erroneously, and propose a correction).1
Every token was given with its context (the whole sentence in which it occurred),
the original annotation, and the proposed new annotation. The evaluators went
through both samples, assessing the correctness of both the original and the new
annotation.2

In the case of the unchanged tokens, there are just two possibilities: either
the original annotation is correct, which means we have made a right decision
in not changing it; or the original annotation is incorrect, and we have thus

1For some of the treebanks, there were less than one hundred changed and/or unchanged
positions; in that case, we included all cases in the evaluation.

2In the sample of the unchanged tokens, the original and the new annotations are of course
the same.
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Language Corpus Nonfringe
size Variation nuclei

(tokens) types tokens

[bg] 196 151 261 652
[bn] 7252 1 2
[ca] 443 317 614 2351
[cs] 1 503 738 1704 7085
[da] 100 238 35 78
[de] 680 710 851 2899
[el] 70 223 102 242
[en] 451 576 959 4622
[es] 477 810 515 2333
[et] 9491 24 48
[eu] 151 604 70 167
[fa] 189 572 225 568
[fi] 58 576 6 13
[grc] 308 882 2785 11 108
[hi] 294 509 1094 4473
[hu] 139 143 66 147
[it] 76 295 51 114
[ja] 157 172 689 12 860
[la] 53 143 37 109
[nl] 200 654 120 597
[pt] 212 545 187 560
[ro] 36 150 18 58
[ru] 497 465 356 1184
[sl] 35 140 38 119
[sv] 197 123 458 2191
[ta] 9581 14 30
[te] 5722 28 58
[tr] 69 695 73 176

Table 5.3: Variation in dependency annotation.

made a mistake and retained an error in the corpus. In the case of the changed
tokens, the situation is more complicated with four possibilities, as both the
original and the new annotation may be correct or incorrect independently
of each other. Finally, there is one extra possibility common for both cases:
it might be impossible (either for the specific annotator, or in principle) to
determine the correct annotation. For an overview of all the possibilities, see
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Language Total Proposed new annotation

(tokens) Same Diff. NA

[bg] 662 302 191 169
[bn] 0 0 0 0
[ca] 2353 1348 373 632
[da] 78 37 17 24
[de] 2859 1248 420 1191
[el] 246 109 56 81
[en] 4637 2020 803 1814
[es] 2341 1188 353 800
[et] 48 26 10 12
[eu] 166 67 36 63
[fa] 586 281 149 156
[fi] 13 5 2 6
[grc] 11 052 4151 1742 5159
[hi] 4482 2397 828 1257
[hu] 144 56 26 62
[it] 114 54 32 28
[ja] 12 799 9360 1127 2312
[la] 108 61 20 27
[nl] 597 375 130 92
[pt] 560 309 115 136
[ro] 58 35 15 8
[ru] 1170 635 229 306
[sl] 121 52 26 43
[sv] 2189 1035 353 801
[ta] 30 12 8 10
[te] 57 33 18 6
[tr] 180 82 45 53

Table 5.4: Dependency annotation correction.

Table 5.5.3
For each evaluated treebank, we then went through all the samples, noting

how many times each of the possibilities appeared, and then used these numbers
to estimate the separate precision for the changed and the unchanged positions
for both the detection and the correction step. The estimated precision for each

3For the sake of completeness, we include all combinations of true/false values of the three
variables “annotation changed”, “original annotation correct”, and “new annotation correct”,
even though two of them are logically impossible, because if the annotation was unchanged, the
latter two variables must have the same value.

34



Case Data Meaning

Annotation Original New Detected Corrected
changed? annotation annotation correctly? correctly?

correct? correct?

1 no yes yes no yes
2 no yes no —* —*

3 no no yes —* —*

4 no no no yes no
5 yes yes yes no yes
6 yes yes no no no
7 yes no yes yes yes
8 yes no no yes no
9 either ? ? ? ?

* not possible

Table 5.5: Possible cases in evaluation.

of these four cases is calculated as follows (“Case #” refers to the appropriate
line of the Table 5.5):

• detection on unchanged positions:
correctly detected unchanged positions
total number of unchanged positions =

Case 4
Case 4+ Case 1

• detection on changed positions:
correctly detected changed positions
total number of changed positions =

Case 7+ Case 8
(Case 7+ Case 8) + (Case 5+ Case 6)

• correction on unchanged positions:
correctly corrected unchanged positions
total number of unchanged positions =

Case 1
Case 1+ Case 4

• correction on changed positions:
correctly corrected changed positions
total number of changed positions =

Case 5+ Case 7
(Case 5+ Case 7) + (Case 6+ Case 8)

We actually report a range for each of the precisions, where the lower bound
is obtained by grouping the undetermined tokens (Case 9) with the incorrect
cases (i.e. adding it to the numerator in the formulas above), and the higher
bound by grouping them with the correct cases (i.e. adding it to both the de-
nominator and the numerator). The estimated total detection precision4 and

4Note that we differ from Dickinson (2005) in the definition of detection precision – we count
the proportion of detected tokens that are true errors, while Dickinson counts the proportion
of detected types with at least one token annotated incorrectly.
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total correction precision (again for each treebank separately) are then calcu-
lated as an average of the precision for changed/unchanged positions weighted
by the total number of changed/unchanged positions in the treebank.

We also compute so-called corpus precision, which is a baseline correction
precision based on the ratio of the detected tokens that would be annotated
correctly if we made no changes in the corpus over all the detected tokens,
and expected corpus improvement, which is the percentage of the tokens in the
treebank that, based on the estimated precision, we expect to improve, i.e.
that were originally annotated erroneously, but are annotated correctly after
applying our method5.

5.3.1 Part-of-speech Tags
The languages used for the evaluation of the method for the detection and
correction of errors in part-of-speech annotation are [en], [es],6 [hu], [nl], [sv]
and [tr]. The evaluators worked on their own, because the Interset is mostly
intuitive and well-documented; in case of doubt, they were instructed to make
an informal note about the morphological properties of the word in question.
We then went through the samples, deciding on the disputable cases based
on the notes from the evaluators, consulting with them when necessary, and
estimated the precision as described above.

Lang. Detection precision (%)

Changed Unchanged Total

[en] 57–58 81–83 72–74
[es] 63 81 68
[hu] 76 87–89 83–85
[nl] 26–29 89–91 72–75
[sv] 81 48 62
[tr] 41–48 59–62 52–56

Table 5.6: Evaluation of part-of-speech tags error detection.

Table 5.6 shows the estimated precision for the detection of errors in the
part-of-speech annotation on both changed and unchanged position, as well as
total precision. As has been mentioned, we cannot directly compare our detec-
tion precision to the detection precision of Dickinson (2005) because they are
different measures; Dickinson achieved the precision of erroneous types detec-
tion of 97.64% on WSJ and of 52.00% on BNC Sampler corpus of English. We
can directly compare our detection precision to the results of other methods
for automatic detection of part-of-speech annotation errors, like van Halteren’s
(2000) method using a tagger with 20.5% on the BNC Sampler, Eskin’s (2000)
anomaly detection on WSJ with 44% or the use of five different taggers and

5i.e. (total correction precision− corpus precision)× number of detected (suspected) errors
number of tokens in treebank6The evaluator of [es] unfortunately evaluated only the first 36 instances in both files.
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shallow parsing of Loftsson (2009) on the Icelandic Frequency Dictionary with
16.6% and 30.1%. We see that the detection method we use works substan-
tially better in regards to precision than other methods found in literature, and
is thus well-suited as a basis for a subsequent correction, even though there is
a good deal of variation in the results for different treebanks. We discuss the
possible reasons of this variation in Section 5.4.

Lang. Correction precision (%) Corpus Expected corpus

Changed Unchanged Total precision (%) improvement (%)

[en] 63–64 81–83 74–76 67–68 0.07–0.08
[es] 34 81 47 16 0.24
[hu] 78 87–89 84–86 64–65 0.02
[nl] 69–72 89–91 84–86 84–85 0.00–0.01
[sv] 49 48 48 36 0.13
[tr] 29–36 59–62 46–51 35 0.24

Table 5.7: Evaluation of part-of-speech tags error correction.

Table 5.7 shows the estimated precision for the correction of errors in the
part-of-speech annotation, as well as the baseline corpus precision and the esti-
mated rate of how the correction would improve the treebank. Our correction
precision is considerably higher for the unchanged positions than for the changed
positions (with an exception of [sv], where they are about the same). One thing
to note is that on all evaluated treebanks, our method beats (or at worst match-
es) the baseline, and in most cases by a considerable margin. In other words,
we expect to almost always make the treebank better, and never any worse.
More precisely, the expected corpus improvement for the six evaluated corpora
ranges from 0% to 0.24%, and the absolute numbers of newly correct tokens
from 0 to about 1147. The improvement is much more pronounced on treebanks
with a lower corpus precision, which is not really surprising – there are more
opportunities for a correct action, and less opportunities for an incorrect one.

For comparison, in the task of correction of part-of-speech tags, Dickinson
(2005) achieved the precision of up to 86.21/85.92/86.00%7 on the WSJ corpus
with the baseline of 76.7% and up to 50.00/92.11/87.33% on the BNC Sampler
with the baseline of 88.67%. For most of the evaluated treebanks, our results
are somewhat comparable on the unchanged positions, and for at least some of
them ([hu] and [nl]), we achieve more or less the same total correction precision.
On the changed positions, our results are mostly better than Dickinson’s on the
BNC Sampler, but substantially worse than on WSJ. Overall, assuming similar
values of recall (which we do not even try to estimate), this would mean we
expect to correct more errors in most of the treebanks, as we work on treebanks
with a lower corpus precision.

7Henceforward, when reporting precision, the values in a slash-delimited triple refer to the
values for changed positions, unchanged positions, and all positions, respectively.
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5.3.2 Dependencies
The languages we used for the evaluation of the method for the detection and
correction of errors in dependency annotation are [en], [es], [hu], [nl], [ru], [sv]
and [tr]. None of the evaluators are experts in the HamleDT annotation style
nor the analytic layer of the PDT, so we worked in tandem with each of the
evaluators – they provided the knowledge of the language, and we assessed the
annotation based on their explanation of the sentence structure and meaning.
After that, we have again estimated the precision as described above.

Lang. Detection precision (%)

Changed Unchanged Total

[en] 51–58 67–72 62–68
[es] 70–72 36–38 44–46
[hu] 69–69 45–46 52–54
[nl] 34–40 31–32 32–34
[ru] 65–73 64–80 64–78
[sv] 65–67 65–68 65–68
[tr] 59–67 54–56 56–60

Table 5.8: Evaluation of dependency annotation errors detection.

Table 5.8 shows the estimated precision for the detection of errors in the
dependency annotation on both changed and unchanged positions, as well as
total precision. The precision values range from 32% to 78%, averaging approx-
imately 53–58%. Again, we unfortunately cannot compare our detection results
to those of Boyd et al. (2008) because of the differing definition of precision.

We present a comparison with the results of some other methods for au-
tomatic detection of errors in dependency annotation: Anomaly detection of
Novák and Razímová (2009) based on Apriori algorithm reached at most 20%
in their experiment on the deep-syntactic layer of PDT. Regarding the method
of Volokh and Neumann (2011) using two different parsers run on the training
data, we estimate its precision at up to 52%. Even better results were reported
by B. Agrawal et al. (2013) – even though they aim for high recall, their method
achieves the precision of 64.58%; however, the experiment was conducted only
on inter-chunk dependency trees, and method requires a manual construction
of a knowledge base of parser error patterns. The numbers suggest that the
variation n-grams method is competitive at the least in the area of dependency
annotation as well.

Table 5.9 shows the estimated precision for the correction of errors in the
dependency annotation, as well as the baseline corpus precision and the expected
corpus improvement. Our method beats the baseline corpus precision on five
out of the seven evaluated treebanks, the exceptions being [es] and [nl]. These
two treebanks were also the ones where we discovered a consistently incorrect
annotation of some grammatical construction: in [es], there were many cases
of preposition with an afun belonging to the prepositional phrase instead of
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Lang. Correction precision (%) Corpus Expected corpus

Changed Unchanged Total Precision (%) improvement (%)

[en] 41–48 67–72 60–65 60–63 0.01–0.03
[es]* 23–25 36–38 33–35 34–36 0.00
[hu] 46–46 45–46 45–46 20–20 0.02
[nl]† 28–34 31–32 30–33 37–37 −0.01
[ru] 54–62 64–80 61–76 53–64 0.02–0.04
[sv] 53–55 65–68 62–65 57–59 0.04–0.06
[tr] 41–49 54–56 49–54 18–19 0.06–0.07
* many instances of a preposition having an afun belonging to the prepositional
phrase instead of AuxP

† many instances of a reversed dependency between an infinitive marker “te” and
the verb it governs

Table 5.9: Evaluation of dependency annotation errors correction.

AuxP; in [nl], there were many instances of a reversed dependency between
an infinitive marker “te” and the verb it governs. These errors are most likely
caused by an inadequacy in the harmonization process, which should be rectified
in the respective harmonization block; disregarding them, the baseline is beaten
on the two treebanks as well. We can thus say our method works in the sense
that given a harmonized treebank, we can expect either to improve it, or at
least to find an erroneous pattern which should be correctable by a change in
the harmonization block. The latter unfortunately requires a manual inspection
of the suggested corrections; on the other hand, it is likely that the change in
the harmonization block will result in a correction of a whole class of errors,
including tokens not exhibiting any variation. Nevertheless, without the manual
inspection, we cannot be reasonably sure the treebank can be expected to be
improved by the application of the suggested corrections, and so the method is
currently not suitable for a fully automatic deployment.

The estimated total precision of our method ranges from about 30% or
45% (excluding [es] and [nl]) to about 76%, with the baseline varying greatly
from about 18% to about 64% and the expected corpus improvement from
−0.01%/(+)0.01% to 0.07%, translating into the expected reduction in number
of errors between −20/(+)26 and 134 based also on the size of the treebank. In
comparison, Volokh and Neumann (2011) correct 3535 suspected errors. They
assume “a very high precision” based on how their method works, however,
they do not provide any numbers. Dickinson (2009) optimizes a memory-based
learning approach, achieving the best result using ambiguity classes as features
and constraints, obtaining the precision of 59.6% on the changed positions and
76.7% in total, with the baseline of 70.1%, corresponding by our calculation
to the expected treebank improvement of about 0.08%, which is only slightly
better than our results – the difference most likely being due to the inevitable,
albeit slight, information loss in the harmonization.
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5.4 Discussion
The variation n-grams method for the automatic detection of annotation and
the subsequent automatic correction using a tagger/parser perform relatively
well, as they can – with some reservations – be expected to improve the corpora
on which they are applied. However, there are some issues related to HamleDT,
treebanks in general, or the method itself, that may have a negative influence
on the results. If we were able to rectify, circumvent, or at least mitigate these
issues, the results might be improved – not to mention the possible increase
in the consistency of HamleDT itself. There are also some ways in which the
method could be extended. We discuss a few examples of the above in this
section.

5.4.1 Annotation Guidelines
One of the obstacles on the way to the inter-treebank consistency is the ab-
sence of annotation guidelines for the Prague Dependencies style. The Prague
Dependency Treebank has a comprehensive annotation manual8 with detailed
instructions, including boundary and problematic cases. However, this manu-
al has been written specifically for Czech, without regard for other languages.
This is not much of a problem for most of the common cases, but the detailed
instructions for borderline and peripheral phenomena are usually not directly
applicable for other languages and their harmonization depends a great deal on
the linguistic intuition of the author of the Treex harmonization block. Some of
the rules, for example for the label AuxZ (“emphasizing word”), even contain an
exclusive list of particular words that can bear this label. Moreover, the Prague
Dependencies style is not identical to the annotation style of PDT, and there
is not even a comprehensive list of changes from one style to the other.

As a consequence, some equivalent constructions are annotated differently,
based on their annotation in the original treebank and the intuition of the author
of the harmonization block. It is also the reason why some of the treebanks use
the new labels AuxA or Neg for articles and negative particles, respectively, while
others keep using Atr or Adv for the same phenomena.

5.4.2 Part-of-speech Annotation
An Interset driver operates on a single tagset with no regard to other drivers or
tagsets. The decoder simply “read[s] a string (tag) into an internal data struc-
ture, in accordance with the list of possible features and their values” (Zeman,
2008) – the intent of the decoding is to preserve the information from the orig-
inal tag. However, even abstracting from the differences between languages,
the tagsets still differ in their coverage of the morphological features – some
features distinguishable in the language may not be distinguished in the tagset.
Because the decoder does not look beyond the tag, this may lead to unnecessary
inter-treebank inconsistencies. We think that the morphological annotation of
at least some closed classes might benefit from a more liberal approach, taking
in account the word form, for example. We do however admit that the benefit

8http://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/a-layer/pdf/a-man-en.pdf
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might be more than offset by the increased complexity of writing the drivers,
and the liberal approach might be at odds with the utility of Interset outside
of HamleDT. Some semi-automatic postprocessing might thus be a better idea.

For an example inconsistency, we can look at how a dot is tagged. The
symbol “.” bears 16 different tags9 across 27 treebanks, 3 of them correct:

• 19 pos=punc
• 10 pos=punc|punctype=per
• 1 pos=punc|punctype=peri;qest;excl

and the rest incorrect (in some of them at least the pos attribute has the correct
value of punc, in others not even that):

• 3 empty tag
• 2 pos=punc|punctype=comma
• 1 pos=punc|punctype=quot
• 1 pos=punc|punctype=excl
• 1 pos=punc|punctype=dash
• 1 pos=punc|verbform=inf
• 1 pos=num
• 1 pos=noun
• 1 pos=noun|animateness=inan
• 1 pos=noun|animateness=anim
• 1 hyph=hyph
• 1 pos=verb|number=sing|person=1|voice=act

5.4.3 Dependency Annotation
In the evaluation of the correction of dependency annotation in [es], we have en-
countered a large number of incorrectly annotated prepositional phrases which
our method was unable to correct. As described in Section 3.1.2, the preposi-
tion should be a head, bearing the auxiliary label AuxP, and its child should
have the label that expresses the relation of the whole prepositional phrase to
its parent. Figure 5.3 shows a simplified example of the erroneous annotation
from the corpus10; we present the correct annotation in Figure 5.4.

In the evaluated sample, the parser never assigns the correct AuxP label
to the preposition; when suggesting a different label, it is always the one that
should belong to the prepositional phrase, i.e. to the child of the preposition.
Therefore it seems there are some cases where the harmonization of [es] fails to

9in our sense, i.e. Interset representations
10The relevant part of the sentence in the corpus contains a coordination structure, el em-

perador y la presunta divinidad de Japón (“the emperor and the presumed divinity of Japan”)
with the prepositional phrase de Japón (“of Japan”) technically depending on the conjunction y
(“and”), modifying both el emperador (“the emperor”) and la presunta divinidad (“the presumed
divinity”). This should however have no effect on the labels the prepositional phrase receives.
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....la ..presunta ..divinidad ..de ..Japón
..the ..presumed ..divinity ..of ..Japan

.

X

.

Atr

.

Atr

.

Atr

.

Apposition

Figure 5.3: Example of a prepositional phrase in [es] where the preposition
bears the label of the whole phrase instead of AuxP.

....la ..presunta ..divinidad ..de ..Japón
..the ..presumed ..divinity ..of ..Japan

.

X

.

Atr

.

Atr

.

AuxP

.

Atr

Figure 5.4: Correct annotation of a prepositional phrase in [es].

produce the expected result despite the correct annotation of the prepositional
phrase in the original treebank.

Another treebank where we encountered some underlying problems was [nl].
In this case, it was actually two classes of problems: 1. a reversed dependency
between an infinitive marker te and the verb it governs, 2. many instances of
an ambiguity between Pnom and Sb in wh-questions.

We believe the infinitive marker te should be governed by the infinitive (as
it is in [en]), and labeled either AuxV (an auxiliary verb) or AuxY (adverb or
particle not classed elsewhere). However, that is not the case in the treebank;
the infinitive marker is consistently annotated as governing the verb with the
label AuxC (subordinate conjunction). An example from the corpus is shown in
Figure 5.5.

....# ..hij ..is ..bang ..om ..te ..verliezen
.. ..he ..is ..afraid ..to .. ..lose

.

AuxS

.

Pred

.

Sb

.

Pnom

.

AuxC

.

AuxC

.

AuxV

....# ..hij ..is ..bang ..om ..te ..verliezen
.. ..he ..is ..afraid ..to .. ..lose

.

AuxS

.

Pred

.

Sb

.

Pnom

.

AuxC

.

Obj

.

AuxV

Figure 5.5: Example of an incorrect annotation of an infinitive construction
in [nl] in comparison with the correct one.

There is quite a large number of wh-questions in [nl], where the verb has
two arguments: Sb and Pnom. The problem lies in the fact that (at least from
a Czech-centric view) the assignment of the labels to the verb arguments is
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determined on a purely semantic basis, depending on the relative specificity
of the entity substituted by the wh-word and of the other argument – for an
example of both eventualities, see Figure 5.6. On the syntactic level, both cases
are identical. The parser is therefore unable to generalize this structure well,
let alone distinguish the two cases.

....# ..Wat ..is ..de ..Hermitage ..?
.. ..What ..is ..the ..Hermitage ..?

.

AuxS

.

Pred

.

Pnom

.

Atr

.

Sb

.

AuxK

....# ..Wat ..is ..de ..hoofdstad ..van ..Noord-Korea ..?
.. ..What ..is ..the ..capital ..of ..North_Korea ..?

.

AuxS

.

Pred

.

Sb

.

Atr

.

Pnom

.

AuxP

.

Atr

.

AuxK

Figure 5.6: Example of Sb–Pnom ambiguity in wh-questions in [nl].

5.4.4 Method Extensions
The variation n-grams method might be improved in two basic ways. The first
one is to generalize the definition of the variation nucleus, and the second one is
to generalize the notion of context and use some different heuristics. It is possi-
ble to look beyond the word forms and use for example the part-of-speech tags
for context or even for variation nuclei. The generalization should lead to the in-
crease in recall, although most likely accompanied by a drop in precision. Boyd
et al. (2007) Dickinson and Meurers (2005b) Dickinson and Meurers (2005a)
experiment with POS tags as context and nuclei on the phrase-structure anno-
tation, reporting a substantial increase of recall at the cost of slightly decreased
precision; however, the new heuristics they devised are not easily transferable
to either part-of-speech or dependency annotation.

An interesting option would be to use more than one method for detection –
for example Volokh and Neumann (2011) report that the set of errors detected
by their approach using two different parsers does not much overlap with the
set of errors detected by the variation n-grams method.

The precision of our correction method would likely increase if we used the
output of two taggers/parsers instead of just one; we are however unable to
estimate by how much, and how large would the recall trade-off be.

As noted by Boyd et al. (2008), there are several difficulties in the data-
driven approach to error correction: in the cases of variation where there is a
single correct label, one cannot simply correct to the majority label, because “a
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large number of variations are ties between two different labels” and even “where
there is a majority tag […], a non-majority label is actually correct”; and then
there are cases of variation that is legitimate and should not be changed, which
is however often not distinguishable without using non-local information.
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6. Conclusion
In this thesis, we presented a method for the automatic detection and correc-
tion of errors in the morphological and the syntactic annotation of dependency
treebanks.

First, we studied the thirty dependency treebanks of typologically diverse
languages included in HamleDT, and increased the inter-treebank consistency
by modifying the harmonization blocks for some of the treebanks to replace
the obsolete or language-specific labels with their language-universal functional
equivalents.

Then we used the variation n-grams method to automatically detect errors
in the morphological and the syntactic annotation of the treebanks. After that,
we ran a tagger/parser on each of the treebanks, and used their output to correct
the errors detected in the previous step.

Both the detection and the correction were manually evaluated on a ran-
domly selected sample of the suspected errors from several treebanks. The
results of the evaluation indicate that the variation n-grams method is suitable
for the automatic error detection on a variety of languages. Both steps have a
higher precision on the morphological level, but we can expect a decrease in the
number of errors as a result of applying the corrections on the syntactic level
as well.

In addition to the suggested corrections, we now have a highly automated
pipeline which can facilitate further experiments on the automatic detection
and/or correction of errors. The acquired data can also serve as a basis for
improvement of the harmonization blocks.
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Attachments
A Data
The list and the table in the following two subsections were adapted from Zeman
et al. (2014) and updated.

A.1 List of Treebanks in HamleDT
HamleDT currently covers the following 30 treebanks (data sizes are summa-
rized in Table A.1):

• Arabic (ar): Prague Arabic Dependency Treebank1 (PADT) 1.5 r349 /
2013 (Smrž et al., 2008)

• Basque (eu): Basque Dependency Treebank (BDT) (Aduriz et al., 2003)
• Bengali (bn): Hyderabad Dependency Treebank / ICON 2010 (Husain

et al., 2010)
• Bulgarian (bg): BulTreeBank2 / CoNLL 2006 (Simov and Osenova, 2005)
• Catalan (ca): AnCora-CA3 / CoNLL 2009 (Taulé et al., 2008)
• Czech (cs): Prague Dependency Treebank 3.04 (Bejček et al., 2013)
• Danish (da): Danish Dependency Treebank5 (DDT) (Kromann et al.,

2004)
• Dutch (nl): Alpino Treebank6 / CoNLL 2006 (Beek et al., 2002)
• English (en): Penn TreeBank7 converted to dependencies / CoNLL 2009

(Surdeanu et al., 2008)
• Estonian (et): Eesti keele puudepank8 (Bick et al., 2004)
• Finnish (fi): Turku Dependency Treebank9 / 2011 (Haverinen et al., 2010)
• German (de): Tiger Treebank10 / CoNLL 2009 (Brants et al., 2004)
• Greek (el): Greek Dependency Treebank (GDT) / CoNLL 2007 (Proko-

pidis et al., 2005)
• Greek, Ancient (grc): Ancient Greek Dependency Treebank11 (AGDT)

from the Perseus Project (Bamman and Crane, 2011)
• Hindi (hi): Hyderabad Dependency Treebank / COLING 2012 Shared

Task (Husain et al., 2010)
• Hungarian (hu): Szeged Treebank12 (SzTB) / CoNLL 2007 (Csendes et

al., 2005)
• Italian (it): Italian Syntactic-Semantic Treebank13 (ISST) / CoNLL 2007

1http://ufal.mff.cuni.cz/padt/
2http://www.bultreebank.org/indexBTB.html
3http://clic.ub.edu/corpus/
4http://ufal.mff.cuni.cz/pdt3.0/
5http://www.buch-kromann.dk/matthias/treebank/
6http://odur.let.rug.nl/~vannoord/trees/
7http://www.cis.upenn.edu/~treebank/
8http://www.cs.ut.ee/~kaili/Korpus/puud/
9http://bionlp.utu.fi/fintreebank.html

10http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html
11http://nlp.perseus.tufts.edu/syntax/treebank/
12http://www.inf.u-szeged.hu/projectdirs/hlt/index_en.html
13http://www.ilc.cnr.it/viewpage.php/sez=ricerca/id=874/vers=ing
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(Montemagni et al., 2003)
• Japanese (ja): Tübingen Treebank of Spoken Japanese14 (Tüba-J/S) /

CoNLL 2006 (Kawata and Bartels, 2000)
• Latin (la): Latin Dependency Treebank15 (LDT) from the Perseus Project

(Bamman and Crane, 2011)
• Persian (fa): Persian Dependency Treebank16 (PerDT) (Rasooli et al.,

2011)
• Portuguese (pt): Bosque / Floresta sintá(c)tica17 / CoNLL 2006 (Afonso

et al., 2002)
• Romanian (ro): Resurse pentru Gramaticile de Dependenta18 (Călăcean,

2008)
• Russian (ru): SynTagRus19 / Russian Dependency Treebank (Boguslavsky

et al., 2000)
• Slovak (sk): Slovak Treebank20 (from the Slovak National Corpus) (Šimková

and Garabík, 2006)
• Slovene (sl): Slovene Dependency Treebank21 (SDT) / CoNLL 2006 (Džeros-

ki et al., 2006)
• Spanish (es): AnCora-ES22 / CoNLL 2009 (Taulé et al., 2008)
• Swedish (sv): Talbanken0523 / CoNLL 2006 (Nilsson et al., 2005)
• Tamil (ta): Tamil Dependency Treebank v0.124 (TamilTB) (Ramasamy

and Žabokrtský, 2012)
• Telugu (te): Hyderabad Dependency Treebank / ICON 2010 (Husain et

al., 2010)
• Turkish (tr): METU-Sabanci (ODTÜ-Sabancı) Treebank25 / CoNLL 2007

(Atalay et al., 2003)

14http://www.sfs.uni-tuebingen.de/en/tuebajs.shtml
15http://nlp.perseus.tufts.edu/syntax/treebank/
16http://dadegan.ir/en/perdt
17http://www.linguateca.pt/Floresta/principal.html
18http://www.phobos.ro/roric/texts/indexro.html
19http://www.ruscorpora.ru/en/search-syntax.html
20http://korpus.sk/
21http://nl.ijs.si/sdt/
22http://clic.ub.edu/corpus/
23http://stp.lingfil.uu.se/~nivre/research/Talbanken05.html
24http://ufal.mff.cuni.cz/~ramasamy/tamiltb/0.1/
25http://ii.metu.edu.tr/corpus
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A.2 Sizes

Language Primary Used data Sentences Tokens Avg. sent.
tree type source length

Arabic (ar) dep CoNLL 2007 3043 116 793 38.38
Basque (eu) dep primary 11 226 151 604 13.50
Bengali (bn) dep ICON 2010 1129 7252 6.42
Bulgarian (bg) phr CoNLL 2006 13 221 196 151 14.84
Catalan (ca) phr CoNLL 2009 14 924 443 317 29.70
Czech (cs) dep primary 87 913 1 503 738 17.04
Danish (da) dep CoNLL 2006 5512 100 238 18.19
Dutch (nl) phr CoNLL 2006 13 735 200 654 14.61
English (en) phr CoNLL 2007 18 577 446 573 24.03
Estonian (et) phr primary 1315 9491 7.22
Finnish (fi) dep primary 4307 58 576 13.60
German (de) phr CoNLL 2009 38 020 680 710 17.90
Greek (el) dep CoNLL 2007 2902 70 223 24.20
Greek (grc) dep primary 21 160 308 882 14.60
Hindi (hi) dep ICON 2010 3515 77 068 21.93
Hungarian (hu) phr CoNLL 2007 6424 139 143 21.66
Italian (it) dep CoNLL 2007 3359 76 295 22.71
Japanese (ja) dep CoNLL 2006 17 753 157 172 8.85
Latin (la) dep primary 3473 53 143 15.30
Persian (fa) dep primary 12 455 189 572 15.22
Portuguese (pt) phr CoNLL 2006 9359 212 545 22.71
Romanian (ro) dep primary 4042 36 150 8.94
Russian (ru) dep primary 34 895 497 465 14.26
Slovene (sl) dep CoNLL 2006 1936 35 140 18.15
Spanish (es) phr CoNLL 2009 15 984 477 810 29.89
Swedish (sv) phr CoNLL 2006 11 431 197 123 17.24
Tamil (ta) dep primary 600 981 15.97
Telugu (te) dep ICON 2010 1450 5722 3.95
Turkish (tr) dep CoNLL 2007 5935 69 695 11.74

Table A.1: Data resources currently included in HamleDT.
The average sentence length is the number of tokens divided
by the number of sentences. (In some treebanks, for example
Bengali or Telugu, tokens represent sentence chunks; in some
others, for example Arabic or Turkish, a single word can be
represented by more than one token.)
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B Data Formats

B.1 CoNLL

We borrow the description of the format and the table below from Buch-
holz and Marsi (2006): “ All the sentences are in one text file and they
are separated by a blank line after each sentence. A sentence consists of
one or more tokens. Each token is represented on one line, consisting of 10
fields. Fields are separated from each other by a TAB. The 10 fields are: ”

Field Field Description
number name

1 ID Token counter, starting at 1 for each new sentence.
2 FORM Word form or punctuation symbol.
3 LEMMA Lemma or stem (depending on particular data set) of word

form, or an underscore if not available.
4 CPOSTAG Coarse-grained part-of-speech tag, where tagset depends on

the language.
5 POSTAG Fine-grained part-of-speech tag, where the tagset depends

on the language, or identical to the coarse-grained part-of-
speech tag if not available.

6 FEATS Unordered set of syntactic and/or morphological features
(depending on the particular language), separated by a ver-
tical bar (|), or an underscore if not available.

7 HEAD Head of the current token, which is either a value of ID or
zero (’0’). Note that depending on the original treebank
annotation, there may be multiple tokens with an ID of zero.

8 DEPREL Dependency relation to the HEAD. The set of dependency
relations depends on the particular language. Note that de-
pending on the original treebank annotation, the dependency
relation may be meaningful or simply ’ROOT’.

9 PHEAD Projective head of current token, which is either a value of
ID or zero (’0’), or an underscore if not available. Note that
depending on the original treebank annotation, there may be
multiple tokens an with ID of zero. The dependency struc-
ture resulting from the PHEAD column is guaranteed to be
projective (but is not available for all languages), whereas
the structures resulting from the HEAD column will be non-
projective for some sentences of some languages (but is al-
ways available).

10 PDEPREL Dependency relation to the PHEAD, or an underscore if not
available. The set of dependency relations depends on the
particular language. Note that depending on the original
treebank annotation, the dependency relation may be mean-
ingful or simply ’ROOT’.
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B.2 MST
The MST data format as described in README of the MSTParser (McDonald
et al., 2005):

Each sentence in the data is represented by 3 or 4 lines and sentences
are space separated. The general format is:
w1 w2 … wn

p1 p2 … pn

l1 l2 … ln

d1 d2 … d2
…

Where

• w1 …wn are the n words of the sentence (tab delimited)
• p1 …pn are the POS tags for each word
• l1 …ln are the labels of the incoming edge to each word
• d1 …dn are integers representing the position of each words

parent

C DVD
The enclosed DVD contains the files used in our experiments: the scripts we
have written, a limited selection of some files produced in the experiments,
and also third-party software – the DECCA scripts, the TreeTagger and the
MSTParser. The contents of the DVD are structured to merge within a Treex
installation, which is required for some of the scripts to work. For a detailed
directory structure, see Figure C.1.
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treex..............................the parent directory must be $TMT_ROOT
devel

hamledt
statistics.................contains the scripts, parser and tagger

…......................................................see below
lib

Treex
Block

HamleDT
Util................................contains the Treex blocks

CorrectDependencyInconsistencies.pm ..... the block for
dependency correction
CorrectPOSInconsistencies.pm ........ the block for POS
correction

..
statistics

common.mak.................most of the functionality for the Makefile
scripts

decca-0.3............................contains the DECCA scripts
dep

decca-dep.py
…

…
parsing

MSTparser......................................the MST parser
…

tagging
DTT..............................................the TreeTagger

…
assign_complex_ambiguity_tags.pl
hash_tags.pl
make_DTT_lexicon.pl...............TreeTagger lexicon creation

shuffle_paragraphs.pl..........................used in sampling
2.0

Makefile..............................used to run the experiments
decca

dep
nonfringe_udp0fp0

$(lc)-new-dep.log...all suggested dependency corrections
$(lc)

$(lc)-dep-ngrams.html ........post-nonfringe-heuristic
dependency variation n-grams

pos
iset_feat

$(lc)∗-new-complex.log....all suggested POS corrections
$(lc)

$(lc)-ngrams.001..............POS variation unigrams
$(lc)-ngrams.003 ..............POS variation trigrams
$(lc)-ngrams.nonfringe.003 .. post-nonfringe-heuristic
POS variation trigrams

Figure C.1: DVD directory structure.
Top directories of third-party software are emphasized.

∗ language code
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