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Introduction

The aim of this thesis is to make an econometric analyses of ice hockey matches
results in the highest Czech league competition. For that reason, we use avail-
able data from the main part of Extraliga in seasons 1999/2000 till 2014/2015.
Another objective is to examine time dependency and the possibility of state
space modelling with forms of teams as an unobservable state vector and results
of matches as measurements. Those findings are to be used to construct a suitable
prediction model that is to be compared with odds given by betting companies.

The data of ice hockey matches are paired comparisons because we observe
a result of a match between two teams. In a particular season they can be seen as
longitudinal observations with teams as subjects and rounds as time steps that are
multivariate since there are seven matches in every round. Important predictor
is a current form of a team, which is an unobservable variable and may change
over time. The result of a match is given either by goals of a home team and
goals of its opponent or as an ordinal variable with categories win, draw or loss.
The discrete form is used by betting companies to set odds, therefore, we are
interested in estimating probabilities of win, draw and loss. Those characteristics
are taken into account and we develop several models to cope with them.

The thesis is divided into a theoretical part and a practical part. First three
chapters are devoted to the theoretical part, which outlines several statistical
methods for an analysis of ice hockey matches results and provides a link be-
tween them. Those findings are important for better understanding of the topic
and some methods used in the practical part. However, a reader that is rather
practically oriented in the topic can flip through those chapters and seek practical
results in the last two chapters.

in the first chapter we summarise different types of regression models that can
be used for modelling longitudinal data. There are briefly described main charac-
teristics and similarities among them. We continue with the concept of Bayesian
inference, which is a theoretical background for estimating random parameters
and, therefore, for derivation of the Kalman filter. In the last section of the chap-
ter it is defined several goodness of fit criteria. We mainly focus on generalizations
of a Gini coefficient, which are used to compare categorical models in later chap-
ters.

The second chapter is devoted to dynamic linear models and to the Kalman
filter as a tool for estimating a state vector. We derive the optimal estimator
of a state vector in a dynamic linear model and its iterative estimation. We out-
line two methods for an estimation of hyperparameters and in the last section
we explain how to treat missing observations.

in the third chapter we present some generalizations of linear models with
stress on a categorical variable as a response because we are interested in predic-
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tion of a match result in terms of win, draw and loss. We call this type of a result
a plain result throughout the thesis. We show that a categorical variable belongs
to an exponential family and briefly describe how Kalman filter could be general-
ized in case that measurements come from an exponential family. We also present
proportional odds model as a suitable model for predicting an ordinal variable.

The practical part is divided into two chapters. In the first one we de-
scribe some characteristics of the highest Czech league ice hockey competition
Extraliga and some specifics of the analysed data. We examine what is a suitable
one-dimensional transformation of an outcome and further, we identify an effect
of possible predictors for a result of a match. We analyse the effect of home ad-
vantage, result of the previous match, tiredness from the previous match and his-
tory of mutual matches. We also suggest several measures of teams performance
that could be used to access the current form of a team. The main candidate
is presented as the last one and it is modelling of team form as an unobservable
state variable in a dynamic linear model with the usage of the Kalman filter.
We compare those measures based on the generalized Gini coefficients.

In the last chapter we compare a diversification power of the analytical model,
which uses only quantitative information, with odds offered by betting companies.
We discuss the possibility and the advantage of using odds as an additional pre-
dictor for predicting a result of a match. We construct a final model that is used
to identify profitable bets and formulate a strategy used for betting. The strategy
is evaluated on the whole dataset and its profitability is discussed.
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Chapter 1

Theoretical background

In this chapter we give an overview of several aspects that we use both for the-
oretical derivations and in the practical analysis. We shortly describe several re-
gression models with stress on their assumptions (the main reference is Fahrmeir
and Tutz, 1994). Further, we deal with Bayesian statistics, which is characterized
by the principle that parameters are assumed to be random and their estima-
tion is based on loss functions. It is mainly based on books Hušková (1985) and
Robert (2007). In the last section we define Gini coefficient and its generalizations
as suitable criteria to access goodness of fit for regression models for categorical
variables.

1.1 Overview of regression models for longitu-

dinal data

In this section we present various types of regression models that can be ap-
plied to longitudinal data. Longitudinal or panel data are observations measured
on the same subjects at multiple points in time. Regression technique can be used
in order to distinguish effects of certain explanatory variables on the response or
to predict future realization of the response being given values of explanatory
variables. In the following suppose that we observe data

(Yit, z
>
it )
>, i = 1, . . . , n, t = 1, . . . , T

where Yit is a response and zit is a vector of regressors. Some models take ad-
vantage of multivariate definition, stacking together either different subjects i or
different time points t. Therefore, we denote

Yi = (Yi1, . . . , Yit)
>, Yt = (Y1t, . . . , Ynt)

>.

Further, we present regression models that have different assumptions about
dependence of mean of Yit on regressors zit, distribution of Yit, regressor pa-
rameters and about the dependence structure of Yit and regressor parameters.
In the following we assume that zit is deterministic at time t.
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Linear model (LM)

Linear model is specified by the following assumptions

(i) E Yit = z>itβ,

(ii) Yit|β ∼ N(z>itβ, σ
2),

(iii) β is a constant (fixed effect),

(iv) Yit, i = 1, . . . , n, t = 1, . . . , T are independent.

This model is the fundamental regression model. In this text we suppose that
the reader is familiar with its usage and properties. Parameter estimation, dealing
with violation of certain assumptions and goodness of fit criteria can be found
in Anděl (2011), Cipra (2008) or Zvára (2008).

Generalized linear model (GLM)

Generalized linear model is specified by the following assumptions

(i) g(E Yit) = z>itβ,

(ii) Yit|β comes from an exponential family (see definition 6),

(iii) β is a constant (fixed effect),

(iv) Yit, i = 1, . . . , n, t = 1, . . . , T are independent.

The assumption of linear dependence of mean of Yit on zit is generalized to de-
pendence through a function g and distribution comes from a broader family,
including alternative or Poisson distributions. Its definition and parameter es-
timation is outlined in Farhmeir and Tutz (1994, chapter 2). Its multivariate
extension is briefly presented in section (3.1).

Linear mixed effect model (LMM)

Linear mixed effect model is specified by the following assumptions

(i) E [Yit|αi] = z1>
it β + z2>

it αi,

(ii) Yit|αi ∼ N(z1>
it β + z2>

it αi, σ
2),

(iii) β is a constant (fixed effect), αi
iid∼ N(0, Q) (random effect),

(iv) Yi,αi, i = 1, . . . , n are mutually independent.

This model releases the assumption of independent observations Yit by letting
the regression coefficient αi be a random variable. The correlation between two
measurements on one subject are cov(Yit+h, Yit) = z2>

it+hQz
2
it, so the dependence is

the same for all times. More detailed description and more general definition can
be found in Laird (1982).
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Generalized linear mixed effect model (GLMM)

Generalized linear mixed effect model is specified by the following assumptions

(i) g(E [Yit|αi]) = z1>
it β + z2>

it αi,

(ii) Yit|β,αi comes from an exponential family (see definiton 6),

(iii) β is a constant (fixed effect), αi
iid∼ N(0, Q),

(iv) Yi,αi, i = 1, . . . , n are mutually independent.

This model is a mixture of GLM and LMM, conditionally on the random effect
the model satisfies a GLM and in the case of normal distribution of Yit and g
being identity, it becomes LMM. If we set Q = 0 then αi = 0 and if independence
assumption holds then random effect model simplifies to LM or GLM.

Dynamic linear model (DLM)

Dynamic linear model is specified by the following assumptions

(i) E [Yit|αt] = z>itαt,

(ii) Yit|αt ∼ N(z>itαt, σ
2),

(iii) αt|αt−1
iid∼ N(Ftαt−1, Qt), α0 ∼ N(a0, Q0) (random process)

(iv) Yt|αt, t = 1, . . . , T are independent.

This model assumes that random effect is a process that changes throughout
the time. The model for random effect (iii) is called Gaussian transition model.
The covariance between two measurements on one subject is cov(Yit+h, Yit) =
z>t+h cov(αt,αt+h)zt = z>t+hFt+hFt+h−1 . . . FtQtzt, so the dependence may change
over time. There are no restrictions on variance matrix Qt, therefore, there might
be fixed effects as in LMM or GLMM, it is sufficient to set variance of a certain
component αt to zero.

Dynamic generalized linear model (DGLM)

Dynamic generalized linear model is specified by the following assumptions

(i) g(E [Yit|αt]) = z>itαt,

(ii) Yit|αt comes from an exponential family (see definition 6),

(iii) αt|αt−1
iid∼ N(Ftαt−1, Qt), α0 ∼ N(a0, Q0) (random process),

(iv) Yt|αt, t = 1, . . . , T are independent.

This model is a mixture of GLM and DLM. A special case of DGLM with g
identity and normal distribution of Yit is DLM. If we set Qt = 0 and Ft = I then
we loose dynamic structure and dynamic models are simplified to LM or GLM.
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LMM and GLMM are oriented on subjects rather than time dependency, those
models do not need all observations to be observed at the same time points and
the number of observations for each subject might differ. Dynamic models DLM
and DGLM are, in contrast, based on time continuity and we assume all subjects
to be measured at the same times (distinct time measurements can be handled
but it complicates its structure).

Our aim is to model dynamic system of ice hockey matches where measure-
ments are results of matches (win/draw/loss or even number of goals of both
teams) and subjects are teams in a given season. Therefore, we describe statisti-
cal inference using dynamic systems in better detail.

The main difference between LM or GLM and other models is the concept
of another random variable that enters the regression equation as a parameter.
This approach is specific for Bayesian statistics, we briefly describe the concept
and parameter estimation.

1.2 Bayesian inference

Suppose we observe random vectors Y1, . . . ,YT with density p(y|α). Unlike
in common (frequentist) statistics we suppose that parameter α is a random vec-
tor and for inference we use not only observations Y1, . . . ,YT but also the knowl-
edge of distribution π(α) (called prior distribution). In practical situations both
densities p(y|α) and π(α) are assumed to be known. For inference about param-
eter α we use Bayes theorem.

Theorem 1. Suppose α is a random vector with density π(α) with respect to σ-
finite measure λ on (Θ,B(Θ)) and Y ∗T = (Y >1 , . . . ,Y >T )> is a random vector with
conditional density p(y|α) for given α with respect to σ-finite measure νT . Then
for the conditional density π(α|y) with given Y ∗T = y holds

π(α|y) =

{
p(y|α)π(α)∫

Θ p(y|α)π(α)d λ(α)
,
∫

Θ
p(y|α)π(α)d λ(α) 6= 0,

0, else.
(1.1)

Proof. See Hušková (1985, page 11).

The inference is based on posterior distribution π(α|y). The idea is that our
prior information of α is refined by observations y. The choice of prior distri-
bution π(α) influences the resulted posterior distribution significantly, therefore
it is either based on prior objective information (earlier study) or it should be
vaguely informative (called diffuse prior). An extreme case is called improper
prior when π(α) is a constant on the whole domain – it might not even be a den-
sity (for details of prior distributions see Hušková (1985, Chapter 2) or Robert
(2007, Chapter 3).

There might be two aims of an analysis, to estimate the next outcome YT+1

or estimate the parameter α. In both cases the estimates are based on pos-
terior distribution given y. For estimating the parameter α we use (1.1) and
for prediction the following equation.

p(yT+1|y) =

∫
Θ

p(yT+1,α|y)d λ(α) =

∫
Θ

p(yT+1|α)π(α|y)d λ(α). (1.2)
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Notice that we have simplified p(yT+1|α,y) to p(yT+1|α) as this is a characteristic
of widely used hierarchical models. Some examples of hierarchical models are
DLM or DGLM.

Loss functions and decision making

To receive an estimate of either α or yT+1 we must define some criteria. This
is done using loss functions as measures of distance of our estimate and the true
value. In Bayesian statistics the concept of decision making unifies parameter
estimations and hypothesis testing. Set of possible decisions is denoted as D,
in case of estimating the parameter α the set D = Θ.

Definition 1. A loss function is any function L : Θ×D → [0,+∞).

Note. The loss function for the true value of a parameter α and its estimate
measures the error. An example of a loss function is a quadratic loss function

L2(α, α̂) = (α− α̂)>(α− α̂). (1.3)

The goal is to minimize the loss function, but it is typically impossible to min-
imize it uniformly. Therefore, we want to find a function δ that for realizations y
gives the optimal estimate. Function δ is called an estimator while the value δ(y)
is called an estimate of α. In Bayesian view the problem of minimizing L(α, δ(y))
is random in both δ(y) and α but realizations y are supposed to be known. The
minimization problem has an objective expected loss function, defined as

r(π, δ) = E L(α, δ) =

∫
Θ

∫
RT

L(α, δ(y))p(y|α)π(α)d νT (y)d λ(α). (1.4)

The function δ is not necessary to be found for any realizations y, so one may
want to minimize only conditional expectation for given realizations

ρ(π, α̂) = E [L(α, α̂)|y] =

∫
Θ

L(α, α̂)π(α|y)d λ(α). (1.5)

Actually both concepts are equivalent as they lead to same decisions (see
Robert, 2007, Theorem 2.3.2). By minimizing the formula (1.5) for different
values of y, we receive the optimal estimator δ. A Bayes estimator δ∗ is a solution
of minimizing the expression (1.4) with respect to admissible set of functions δ
and the value r(π, δ∗) is called Bayes risk. We provide solution of a special case
with the quadratic loss function.

Theorem 2. The optimal Bayes estimator and its Bayes risk for the quadratic
loss function L2(α, δ) = (α − δ(y))>(α − δ(y)) in terms of risk function (1.4)
are

δ∗(y) = E [α|y], (1.6)

r(π, δ∗) = E var(α|Y ). (1.7)

Proof. Derivations can be found in Hušková (1985, Theorem 4.1.).

8



This result is used in deriving the optimal estimator in DLM system via
Kalman filter. It represents one of rare cases where the optimal estimator can
be found analytically and even easily updated with future observations. Mostly,
the computation of π(α|y) is impossible. However, in most situations a sam-
pling method that provides a sampling from a given distribution could be used.
Traditional sampling method is Monte Carlo that provides a random sample by
using hierarchical structure of given distribution. Nevertheless, in our setting it
cannot be sampled from π(α|y) directly. However, more general approach might
be applied – creating a Markov chain with limiting distribution π(α|y). This
method is called Markov chain Monte Carlo (abbreviated as MCMC). Meth-
ods of sampling and treatment of MCMC are presented in Robert (2007, Chap-
ter 6). This approach might be applied to receive smoothed estimates of team
forms in a particular season in Extraliga. We implemented a hierarchical model
in OpenBUGS 3.2.3 but observed poor convergence of MCMC and high depen-
dency on initial values. For those reasons, we do not include this approach in the
practical part.

1.3 Goodness of fit criteria

Every model encounters some difficulties due to some of the following rea-
sons. It might assume some distributional form of given variable(s) and need
to estimate parameters. Our choice of distribution is based on type of data that
we observe but usually also on type of analysis that we are going to use. Small
number of parameters do not provide flexible form and require that we are close
to the true data generating process. On the other hand too many parameters can
lead to overparametrization. If we use non-parametric model, there are usually
less assumptions but less stability in the solution. Another typical assumption is
some kind of independence structure that might not correspond with the reality.

To judge if our model corresponds with observed data, we need a criterion that
would be used across all models and would indicate to which extent our model
fits the data. In linear regression, the most used criterion is coefficient of determi-
nation R2. Its definition and some of its properties can be found in either Anděl
(2011), Zvára (2008) or Cipra (2008). It takes values between 0 and 1, higher
value signalizing better fit of the model. Using OLS method for estimating pa-
rameters is formulated as minimization problem of a residual sum of squares but
it is equivalent to maximization of R2. For testing a submodel with only an in-
tercept, we use F-test statistics which can also be rewritten in terms of R2 (see
Zvára, 2008, page 37). Its usage is so spread that it is usually given as a part
of a summary after running linear regression. Throughout the thesis, we use R2

for evaluating linear models and their generalizations.
For GLM models there is no ultimate goodness of fit criterion. Different types

of criteria are used for different types of dependent variable. We focus on a multi-
nomial explanatory variable, at first with two different values (having alternative
distribution) and afterwards with ordinal (nominal) values. We define Gini coef-
ficient and its generalization. They are introduced in Šimsa (2012, Chapter 2),
which is the main reference of the following section.
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Gini coefficient

Suppose Yi has an alternative distribution with probability of being one equal
to πi, hence Yi ∼ Alt(πi), i = 1, . . . , n. We let πi = P(Yi = 1) depend on index i
and do not specify the dependency closer. The usual way for an estimation is
based on the fact that alternative distribution belongs to an univariate exponen-
tial family (see section 3.1 and realize that alternative distribution is a special
case of multinomial), therefore GLM theory can be applied.

Suppose π̂i are estimates of the probability that Yi equals one. In a perfect
case we would get that all estimated probabilities are higher for realized values one
than for realized values zero, in such a case there would be a value which would
serve as the threshold. Estimated probabilities smaller than this value would be
assigned zero and bigger one. In practical situations, it is never such a perfect case
but it is natural that the fewer interjections of estimated probabilities between
groups with y values zero and one the better the model. Upon this principles
is defined the Gini coefficient. Proper definition requires an introduction of terms
sensitivity and specificity.

Definition 2. Suppose Yi ∼ Alt(πi) and π̂i is an estimation of πi, i = 1, . . . , n
then

h1(c) = P(Ŷi(c) = 1|Yi = 1) is called sensitivity,

h0(c) = P(Ŷi(c) = 0|Yi = 0) is called specificity

where

Ŷi(c) =

{
1, π̂i > c

0, else
and c ∈ [0, 1] .

Note. The probability in definition of sensitivity is the probability that if I choose
a unit out of observed variables with values one its estimated probability is greater
than c and analogously for specificity. Therefore, those values are

h1(c) =
#[Ŷi(c) = 1 ∩ Yi = 1]

#Yi = 1
=

1

n1

∑
i,yi=1

1[π̂i>c], (1.8)

h0(c) =
#[Ŷi(c) = 0 ∩ Yi = 0]

#Yi = 0
=

1

n0

∑
i,yi=0

1[π̂i≤c] (1.9)

where n1 =
∑n

i=1 yi and n0 = n− n1.

The sensitivity and specificity are piecewise linear, left-continuous, with values
between 0 and 1. Sensitivity is non-increasing and specificity is non-decreasing.
The higher is the value c the lower sensitivity and the higher specificity. Marginal
cases are h1(1) = h0(0) = 0 and h1(0) = h0(1) = 1. The relation between sensitiv-
ity and specificity is usually graphically depicted using either receiver operating
characteristic (ROC) or Lorenz curve. The first mentioned plots sensitivity versus
one minus specificity (points [1− h0(c), h1(c)], c ∈ [0, 1]) whereas the second one
plots one minus sensitivity versus specificity (points [h0(c), 1− h1(c)], c ∈ [0, 1]).
It holds that both curves for better models are more bowed and closer to x and
y axis.

10



Definition 3. Gini coefficient for pairs (Yi, π̂i)
>, i = 1, . . . , n is defined as

G = 1− 2

∫ 1

0

(1− h1(c))d h0(c)

where h1(c) and h0(c) are estimates of sensitivity and specificity as defined in equa-
tions (1.8) and (1.9).

Note. Gini coefficient is closely related to Lorenz curve. Gini coefficient equals:

G = 1− 2AUC

where AUC is the area under the Lorenz curve which equals the integral in the
definition.

Gini coefficient takes values from −1 to 1. Negative values correspond to re-
versed model and higher values signify better predictive ability of the model.
G equals one if all estimated probabilities for cases where yi = 1 are higher than
estimated probabilities for yi = 0. The more interjections between estimated
probabilities there are the lower its value. This can be easily seen from the fol-
lowing theorem, which provides computationally more suitable formula.

Lemma 3. Denote Ri, i = 1, . . . , n ranks for π̂i, i = 1, . . . , n that are sorted (from
lowest to biggest). Then

G =
S − S0

SM − S0

(1.10)

where

S =
n∑
i=1

RiYi,

SM =
n∑

i=n0+1

i =
n1

2
(2n− n1 + 1),

Sm =

n1∑
i=1

i =
n1

2
(n1 + 1),

S0 =
SM + Sm

2
.

Proof. The proof is rather technical, so we omit it. The proof in more general
setting can be found in (Šimsa, 2012, pages 18-19).

Note. In lemma 3 Gini coefficient is calculated via ranks. Because ranks for π̂i are
the same as for f(π̂i) with a real, increasing function f , Gini coefficient remains
the same as well. This property enables to calculate G without knowing the exact
probability estimates π̂i; it is sufficient to know their increasing transformation.
This is usually done in scoring models, where transformations si = f(π̂i) are
called scores.
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Generalizations of Gini coefficient

In this section we present four generalizations of Gini coefficient for a multino-
mial variable Yi, one in case of a nominal variable and three in case of an ordinal
one. All of them keep the same values from -1 to 1 and coincide if the vari-
able Yi has alternative distribution and equal G. Other important properties
are that they can be expressed as weighted average of partial Gini coefficients
(specified on the following pages) and are invariant to increasing transformations
of estimated probabilities or scores. For motivation and more detailed deriva-
tion see Šimsa (2012).

Gini coefficient for multinomial distribution

Let us suppose we observe a categorical variable Yi with nominal values coded
with numbers {0, 1, . . . , r}. We denote the probability of belonging to a group q
as πqi = P (Yi = q). The output of a non-specified multinomial model are esti-
mated probabilities π̂i = (π̂0

i , π̂
1
i , . . . , π̂

r
i )
>.

The idea for the following definition is that if we observe Yi = q and Yj 6= q
then the probability πqi should (in most cases) be higher than πqj . This is a gener-
alization of the same idea as for G, for which we get value one if all probabilities
π̂i for realizations Yi = 1 are higher than for realizations Yj = 0. In nominal con-
cept, we get the value one if the same principle holds for all values q = 0, . . . , r
and its estimated probabilities.

Definition 4. Suppose (Yi, π̂i) are pairs of nominal variables and estimated prob-
abilities of belonging to a certain category. Then

Gn =
1

n

r∑
q=0

∑
i,Yi=q

∑
j,Yj 6=q

sgn(π̂qi − π̂
q
j )

n− nq
(1.11)

where nq =
∑n

i=1 1[Yi=q]. Gn is called Gini coefficient for a nominal variable.

Another useful formula is that Gn can be expressed in terms of partial Gini
coefficients. A categorical variable Yi carries the same information as a set
of alternative variables Ỹ 1

i , . . . , Ỹ
r
i where Ỹ q

i = 1[Yi=q]. For every set of pairs

(Ỹ q
i , π̂

q
i )
>, i = 1, . . . , n we can calculate G according to definition 3. Connec-

tion between Gn and those partial Gini coefficients give the following theorem.

Lemma 4. Suppose (Yi, π̂i), i = 1, . . . , n are pairs of nominal variables with
categories 0, . . . , r and estimated probabilities. Then

Gn =
1

n

r∑
q=0

nqGq (1.12)

where Gq is a partial Gini coefficient, i.e. Gini coefficient for pairs (Ỹ q
i , π̂

q
i )
>.

Proof. Straightforward derivation (see Šimsa, 2012, page 24).

We see that the Gini coefficient for a nominal variable is a weighted average
of partial Gini coefficients.
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Gini coefficient for ordinal categorical variable

Suppose the same setting as in the preceding section but with ordinal cat-
egories of Yi. Further we suppose that there exists a common linear predictor
enabling to define scores. Scores accumulate the information of estimated prob-
abilities such that higher values of scores signify expected higher category of Yi.
One type of model that enables this is the proportional odds model (see Cipra,
2008, pages 171-175).

Our data consist of pairs (Yi, si)
>, i = 1, . . . , n where si denotes score for a

variable Yi (e.g. si = x>i β). In a perfect setting if we sort pairs (Yi, si) by
si, values of Yi will be also sorted. Every violation of this principle will lead
to a decrease of the ability to diversify between values Yi. The total number
of those violations can be counted as a sum of violations between each pairs
of categories. This concept unifies all generalizations of the Gini coefficient for an
ordinal categorical variable and enables their common definition.

Definition 5. Let us suppose (Yi, si)
>, i = 1, . . . , n are pairs of ordinal vari-

ables with categories 0, . . . , r and their corresponding scores. We define following
measures of goodness of fit

G1 =
1

C1

r∑
k=1

k−1∑
q=0

nknq(k − q)Gq,k, (1.13)

G2 =
1

C2

r∑
k=1

k−1∑
q=0

nknq(Uk − Uq)Gq,k, (1.14)

GC =
1

C3

r∑
k=1

k−1∑
q=0

nknqGq,k (1.15)

where Gq,k is partial Gini coefficient, i.e. Gini coefficient for pairs (Y i, si)
>,

Y i =

{
0, if Yi = q,

1, if Yi = k,
i ∈ {l : Yl ∈ {q, k}},

variables Uk =
∑k−1

q=0 nq + 1
2
(nk + 1) and Ci are normalizing constants such that

G1, G2, GC ∈ [−1, 1].

Note. Normalizing constants are

C1 =
r∑

k=1

k−1∑
q=0

nknq(k − q), C2 =
r∑

k=1

k−1∑
q=0

nknq(Uk − Uq), C3 =
r∑

k=1

k−1∑
q=0

nknq.

The first two coefficients G1 and G2 are motivated by generalization of a defini-
tion of the Lorenz curve. G1 is based on values of Yi whereas G2 is based on ranks
(Uk) of those values. Same values of Yi have the same ranks. Both of them can be
computed in an alternative way similarly as in the lemma 3. In case that number
of observations in each category is the same then G1 = G2. Definition of GC

generalizes the relationship of Gini coefficient and C-statistics. For more detail
see Šimsa (2012).
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We see that measures G1 and G2 have bigger weights for partial Gini coeffi-
cients between more distant groups whereas GC treats them only based on the
number of observations within each group.

For a comparison of different models for an ordinal variable, it is recommended
to use measures G1, G2 and GC because they take the ordinal scale into account.
However, for prediction purposes it is more advisable to use Gn even for an or-
dinal variable. If we overestimate probability of win, we suffer the same loss
if the realized outcome was draw or loss.
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Chapter 2

Dynamic linear model

This section is based on Anderson and Moore (1979), Welch and Bishop
(2006), Fahrmeir and Tutz (1994) and Cipra (2008).

A dynamic linear model or a state space linear model was briefly presented
in section 1.1. The main specific is that time series observations yt

1 are related
to an unobserved state vector αt

2, which carries the dependence between obser-
vations at different time points and both observations and states are normally
distributed.

We suppose that the current value of the state vector is determined by the
state vector in the previous time αt−1 and some random effect wt. Moreover, we
suppose that the system is linear, meaning that αt depends on stated variables
linearly.

As said before, we do not observe values of the state vector, but only of some
other variable – measurements yt, which depend linearly on αt and on a random
effect vt. The system is defined as follows

yt = Ztαt + vt, (2.1)

αt = Ftαt−1 +wt, (2.2)

αt ∈ Rn, yt ∈ Rm, Ft ∈ Rn×n, Zt ∈ Rm×n. (2.3)

Further, the random effects with multivariate normal distributions and inde-
pendent of each other

α0 ∼ N(a0, Q0), vt
iid∼ N(0, Rt), wt

iid∼ N(0, Qt),α0 ⊥ wt ⊥ vs ∀t, s ∈ N. (2.4)

a0 ∈ Rn, wt ∈ Rn, Qt ∈ Rn×n, vt ∈ Rm, Rt ∈ Rm×m.

The matrix Ft relates the state at the current time step t to the next state and the
matrix Zt relates the state αt to the measurement yt. It takes role as a regression
matrix and may depend on covariates or past measurements.

1In literature about Kalman filter are random variables denoted with small letters (see any
reference above), even though it confuses the difference between a random variable and its
realization we keep this traditional notation.

2More typical notation in presenting the Kalman filter is using xt for a state variable.
However, we want to stress the similarity with regression models and its role as regression
parameters.
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In the simple case all system matrices Zt, Ft, Rt, Qt and initial values a0, Q0

are assumed to be deterministic and known at the given time period t. However,
in a practical situation they might depend on unknown hyperparameters θ, such
that

Zt = Zt(θ), Ft = Ft(θ), Rt = Rt(θ), Qt = Qt(θ),a0 = a0(θ), Q0 = Q0(θ). (2.5)

It should be remarked that covariance matrices are allowed to be singular.
This enables to include constant parameters into a state vector αt.

For our application, dynamic linear system is composed of measurements rep-
resented by the results of ice hockey matches and the state vector is represented
by forms of teams, it might include some fixed parameters as home advantage.
Variances of matches and forms of teams will be unknown and intended to be
estimated. However, in the following we assume deterministic matrices; the esti-
mation of hyperparameters is presented in section 2.2.

2.1 Kalman filter

The aim of Kalman filter is to provide estimates of state vectorαt in a dynamic
linear model. As our state estimate is a random variable, the approach is based
on the posterior distribution as in Bayesian statistics (see section 1.2).

Throughout the text by the symbol L(α|y) we understand the conditional
distribution of α given realized values of random vector y unless it is specified
differently, i.e. a conditional mean E [α|y] is understood as a deterministic value
and not as a random vector. Past values of random vectors yt up to a time t are
denoted by

y∗t = (y>1 , . . . ,y
>
t )>.

A random variable αt|y∗s will be denoted by αt|s as is common in time series for
filtered values using history of the observed variable.

In praxis two main tasks are to be performed. We want either to estimate the
current state αt or predict its future value having all the information up to time
t. Therefore, the tasks are

• to use only information about measurements prior to time t, y∗t−1, so we
want to estimate αt|t−1 and yt|t−1.

• to use information of measurements including the current measurement, y∗t ,
which means to estimate αt|t.

As stressed above, the first one can be used for predicting the value of yt using
the estimated value of the state vector αt|t−1, which will be our main focus. The
second one is better estimate of the current value of the state vector αt since it
uses more measurements.

In the following, we want to find an optimal Bayes estimator for αt in terms
of a quadratic loss function (1.3) that could be computed iteratively accounting
for new observations. At a given time the solution is conditional mean (see
theorem 2). We define α̂t|t−1 to be our a priori state estimate at the time t
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given the information y∗t−1 and α̂t|t to be our a posteriori state estimate given
the information y∗t . So the optimal estimates are

α̂t|t−1 = E [αt|y∗t−1] = E αt|t−1,

α̂t|t = E [αt|y∗t ] = E αt|t.

Further we denote Pt|t−1 the variance matrix of the posterior distribution given
information y∗t−1 and Pt|t to be the variance matrix of the posterior distribution
given information y∗t . Variances are

Pt|t−1 = var[αt|y∗t−1] = var(αt|t−1),

Pt|t = var[αt|y∗t ] = var(αt|t).

We present one rather technical theorem, which will be useful for later deriva-
tions.

Theorem 5. SupposeW = (Y >,X>)> has a regular normal distribution N(µ,Σ).
Then the conditional distribution of Y with given X = x is

N(µ1 + Σ12Σ
−1
22 (x− µ2) ,Σ11 −Σ12Σ

−1
22 Σ21),

where EY = µ1,EX = µ2, var(Y ) = Σ11, var(X) = Σ22, cov(Y ,X) = Σ12.

Proof. The proof can be found in Anděl (2011, Theorem 4.12).

Note. The preceding theorem assumes a regular joint distribution but this as-
sumption can be excluded; pseudo-inverse would replace the inverse (see Ander-
son and Moore, 1979, page 39).

Assuming the linear system for a non-observable state vector αt (equation
(2.2)) results in inheriting the normal distribution from random effects wt, so
the prior distribution of αt is normal. Our goal is to determine the conditional
distribution of the state αt given measurements y∗t . By assuming the normal
distribution of random effects vt in equation (2.1), we receive that the conditional
distribution is also normal, which is the content of the next theorem.

However, for now we do not calculate either the mean or the variance of αt|t
(it is a result of the theorem 9) but only the mean and the variance for αt|t−1 as
functions of corresponding characteristics of αt−1|t−1.

Theorem 6. Suppose the setting given by equations (2.1) and (2.2) and by the
distributional conditions (2.3).

Then distributions of random vectors αt|t, αt|t−1 and yt|t−1 are

αt|t ∼ N(α̂t|t, Pt|t),

αt|t−1 ∼ N(α̂t|t−1, Pt|t−1),

yt|t−1 ∼ N(ŷt|t−1, ZtPt|t−1Z
>
t +Rt)

where α̂t|t−1 = Ftα̂t−1|t−1, Pt|t−1 = FtPt−1|t−1F
>
t +Qt and ŷt|t−1 = Ztα̂t|t−1.
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Proof. Firstly, we show that αt|t, αt|t−1 and yt|t−1 are normally distributed. We
know that α1 is normally distributed since it is a sum of normally distributed
vectors α0 and w0. Further αt and yt have normal distributions because they are
linear combinations of two normal distributions. Theorem 5 proves the normality.
Because we denoted α̂t|t = E αt|t, we just define Pt|t = var(αt|t) and the first
part is done.

We calculate the mean and the variance of αt|t−1 using the fact that wt and
y∗t−1 are independent.

α̂t|t−1 = E [αt|y∗t−1] = E [Ftαt−1 +wt|y∗t−1] = Ftα̂t−1|t−1 + E wt = Ftα̂t−1|t−1,

Pt|t−1 = var[αt|y∗t−1] = var[Ftαt−1 +wt|y∗t−1] = FtPt−1|t−1F
>
t +Qt.

Similarly we calculate the mean and the variance of yt|t−1

ŷt|t−1 = E [yt|y∗t−1] = E [Ztαt + vt|y∗t−1] = Ztα̂t|t−1 + E vt = Ztα̂t|t−1,

var[yt|y∗t−1] = var[Ztαt + vt|y∗t−1] = ZtPt|t−1Z
>
t +Rt.

The preceding theorem shows not only how to estimate the current state
using the history of measurements y∗t−1 but also how to estimate the following
measurement itself with the knowledge of y∗t−1, which is the main focus in our
case – we are more interested in the prediction of the outcome of the next game
rather than an estimate of teams forms.

The following lemma is only a supporting proposition of inverting block sym-
metrical matrices.

Lemma 7. Suppose that K =

(
A B
B> D

)
is a positive definite matrix and

blocks A and B are square matrices. Then(
A B
B> D

)−1

=

(
Q−1 −Q−1BD−1

−D−1B>Q−1 D−1 +D−1B>Q−1BD−1

)
where Q = A−BD−1B>

Proof. The proof can be found in Anděl (2011, Theorem A.10)

In theorem 6 we have shown how to predict the next state and the next
observation knowing the estimate of the previous current state. It was quite
straightforward, only calculating its moments and using distributional assump-
tions. The more complicated problem is to derive the distribution of αt|t. It is
not clear if using a new measurement can be absorbed without the need of de-
riving the distribution from the beginning. Following theorem shows that in case
of normally distributed errors it can be done.

This theorem is not included in the usual books used as references of the
Kalman filter (not even in Anderson and Moore (1979)) but only verbally formu-
lated. Therefore, despite its clumsy formulation, we provide it in better detail.
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Theorem 8. Suppose X is normally distributed and W = (Y >,Z>) has a joint
regular normal distribution. Then

L
(
X|(Y >,Z>)> = (y>, z>)>

)
= L ((X|Y = y)|(Z|Y = y) = z) .

To simplify the notation we denote X(y) = X|Y = y, so the theorem states that

L (X(y, z)) = L (X(y)|Z(y) = z) .

Proof. Using the theorem 5 gives that X(y, z) and X(y)|Z(y) = z are nor-
mally distributed. In the following we show that means and variances of both
conditional distributions are the same, which implies the same distribution as the
normal distribution is determined by mean and variance.

We will prove only that variances are the same, for means we would use the
same steps. Theorem 5 gives following

VX(w) = var[X|W = w] = VX − VXWV −1
W VWX .

We need to determine the inverse of VW . We know that it is a regular positive
definite matrix with squared blocks VY and VZ ; therefore, we can use the lemma 7.

V −1
W =

(
VY VY Z
VZY VZ

)−1

=

(
V −1
Y (z) −V −1

Y (z)VY ZV
−1
Z

−V −1
Z VZY V

−1
Y (z) V −1

Z + V −1
Z VZY V

−1
Y (z)VY ZV

−1
Z

)
We multiply the following result from left by VXW and after some algebra we
receive:

VXWV
−1
W =

(
VX(z)Y (z)V

−1
Y (z)

VXZV
−1
Z − VX(z)Y (z)V

−1
Y (z)VY ZV

−1
Z

)>
(2.6)

So far we have shown that

VX(w) = VX −
(

VX(z)Y (z)V
−1
Y (z)

VXZV
−1
Z − VX(z)Y (z)V

−1
Y (z)VY ZV

−1
Z

)>
VWX .

Now we focus on the second variance

var[X(z)|Y (z) = y)] = VX(z) − VX(z)Y (z)V
−1
Y (z)VY (z)X(z)

= VX − VXZV −1
Z VZX − VX(z)Y (z)V

−1
Y (z)(VY X − VY ZV

−1
Z VZX)

= VX −
(

VX(z)Y (z)V
−1
Y (z)

VXZV
−1
Z − VX(z)Y (z)V

−1
Y (z)VY ZV

−1
Z

)>(
VY X
VZX

)
= VX −

(
VX(z)Y (z)V

−1
Y (z)

VXZV
−1
Z − VX(z)Y (z)V

−1
Y (z)VY ZV

−1
Z

)>
VWX .

We see above that VX(w) = var[X(z)|Y (z) = y)].

The previous theorem ensures that the distribution of αt|t can be obtained
using αt|t−1 and the measurement yt. We have prepared all necessary analytical
apparatus to formulate update equations.
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Theorem 9. Suppose the setting given by equations (2.1) and (2.2) and by the
distributional conditions (2.3).

Mean and variance of αt|y∗t are

α̂t|t = α̂t|t−1 +Kt(yt − Ztα̂t|t−1), (2.7)

Pt|t = (I −KtZt)Pt|t−1 (2.8)

where Kt = Pt|t−1Z
>
t (ZtPt|t−1Z

>
t +Rt)

−1.

Proof. Using the theorem 8 gives

L(αt|t) = L(αt|t−1|yt|t−1 = yt).

Further we use the theorems 6 and 5

L(αt|t−1|yt|t−1 = yt) = N(α̂t|t−1 +Kt(yt − ŷt|t−1), Pt|t−1 −Kt cov(yt|t−1,αt|t−1)),

where Kt = cov(αt|t−1,yt|t−1) var(yt|t−1)−1. Now we calculate the covariance using
definition of a measurement yt = Ztαt + vt and independence of vt and y∗t−1 and
independence of vt and αt, so

cov(αt|t−1,yt|t−1) = cov(αt|t−1, Ztαt|t−1) + cov(αt|t−1,vt) = Pt|t−1Z
>
t .

We plug this into the formulas for Kt and Pt|t with the variance of yt|t−1 calculated
in the theorem 6 to get desired forms.

Kt = cov(αt|t−1,yt|t−1) var(yt|t−1)−1 = Pt|t−1Z
>
t (ZtPt|t−1Z

>
t +Rt)

−1,

Pt|t = Pt|t−1 −KtZtPt|t−1 = (I −KtZt)Pt|t−1.

Note. Notice that the variable yt is used as a realized observation but in the term
yt|t−1 as a random variable.

The matrix Kt ∈ Rn×m is called gain and is chosen such that it minimizes
the a posteriori covariance error, because we could have formulated the definition
of the optimal estimator in terms of the error et = αt − α̂t|t with the following
property

var(et|y∗t ) = min
f

var(αt − f(y∗t )|y∗t ).

In case of our optimal estimator α̂t|t we have

E [et|y∗t ] = 0,

var(et|y∗t ) = E [ete
>
t |y∗t ] = Pt|t.

So, the mean of error conditioned on given information is zero (we do not over-
or underestimate the state in the mean) and the conditional variance is minimal
in the sense of positive definite matrices (the difference between any other variance
of the estimate of the state and our estimator is a positive definite matrix).
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The Kalman filter uses all information up to the given time. Firstly, we want
to estimate the state in the future at the time t. For that we use a priori estimates
and equations (2.9), (2.10), which are called time update equations.

α̂t|t−1 = Ftα̂t−1|t−1, (2.9)

Pt|t−1 = FtPt−1|t−1F
>
t +Qt. (2.10)

After we observe the measurement at a time t, we correct our estimates using
equations (2.11), (2.12) and (2.13), which are called measurement update equa-
tions.

Kt = Pt|t−1Z
>
t (ZtPt|t−1Z

>
t +Rt)

−1, (2.11)

α̂t|t = α̂t|t−1 +Kt(yt − Ztα̂t|t−1), (2.12)

Pt|t = (I −KtZt)Pt|t−1. (2.13)

The a posteriori state estimate in equation (2.12) is a linear combination of the
a priori state estimate and the difference of a measurement yt and its esti-
mate Ztα̂t|t−1. The stress put on the difference is given by gain Kt, which
is more naturally interpreted if we rewrite equation (2.12) to the form α̂t|t =
(I −KtZt)α̂t|t−1 +Ktyt. Now we see that the matrix Kt determines how depen-
dent is a posteriori state estimate on new measurement yt. If we suppose that
m = n and Zt is regular then

lim
Rt→0

Kt = Z−1
t ,

so α̂t|t = Z−1
t yt. That is natural, because when the variance of the random effect

in equation (2.1) is zero and the matrix Zt is regular then we can exactly derive
that αt = Z−1

t yt from equation (2.2).
The other extreme is when the variance of the state estimate goes to zero,

then
lim

Pt|t−1→0
Kt = 0, (2.14)

which means that α̂t|t = α̂t|t−1, so we do not get new information with a new
observation yt. This occurs, for example, when Qt = 0.

The state vector αt may include some fixed parameters that do not vary
during the time. We simply set the corresponding components of the variance
matrix Qt to zero. However, in some applications it might be more convenient
to exclude them from the state vector and rewrite equation (2.1) using a design
matrix Xt, which might be time-dependent, and fixed parameters β:

yt = Ztαt + Xtβ + vt. (2.15)

If covariates are non-random or independent of state vectors α∗t and since β
is non-random it does not affect the previous derivations of the posterior state
variances and posterior state means are only shifted, e.g.

α̂t|t−1 = Ftα̂t−1|t−1 + Xtβ.
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2.2 Estimation of hyperparameters

To use the Kalman filter we need to know all values of matrices Zt, Ft, Rt

and Qt and the fixed parameter β. However, in practical situations they usually
depend on some unknown hyperparameters θ. In this section we discuss their
estimation based on maximum likelihood. The main reference for this section is
Durbin and Koopman (2001) and Farhmeir and Tutz (1994). Maximum likelihood
method is based on the joint distribution of all observations. The direct method
defines likelihood as follows

L(θ) = p(y1, . . . ,yT |θ)

where p(.) is used to denote a continuous density.
In most applications measurements are independent and the joint density

can be rewritten as a product of densities p(yt|θ). However, in our application
measurements are not independent as they are derived from state vectors, which
are clearly dependent (see equation (2.2)). Nevertheless, we can use properties
of conditional probabilities (see Anděl (2011)) iteratively and obtain

L(θ) =
T∏
t=1

p(yt|y∗t−1,θ)

where in a special case t = 0 we define p(y1|θ,y∗0) = p(y1|θ). In theorem 6,
we have derived the conditional distribution of p(yt|y∗t−1). It is normal with
mean

ŷt|t−1 = E [yt|y∗t−1] = Ztα̂t|t−1

and variance
St = var[yt|y∗t−1] = ZtPt|t−1Z

>
t +Rt.

We plug this into a density of normal distribution and receive

p(yt|y∗t−1) = (2π)−
m
2 |St|−

1
2 exp

(
−1

2
(yt − ŷt|t−1)>S−1

t (yt − ŷt|t−1)

)
.

Remark that for the initialization step t = 1 we assume that hyperparameters a0

and Q0 are known.
Now we derive the form of the log-likelihood

`(θ) = log(L(θ)) = −mT
2

log(2π)−1

2

T∑
t=1

(
log |St|+ (yt − ŷt|t−1)>S−1

t (yt − ŷt|t−1)
)
.

Parameters might be included in a matrix St and in measurement predictions
ŷt|t−1. The task is to maximize the log-likelihood with respect to the parameter θ.
To perform such a maximization, numerical methods are used. Most of them are
based on a Newton’s method, which we omit to present but only refer to literature
(see for example Durbin and Koopman, 2001). The practical approach of this
method is that calculating the log-likelihood can be easily computed as a by-
product of running the Kalman filter.
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Another type of estimating parameters is called indirect. It is based on the
complete data and the algorithm used is called EM algorithm. The complete
log-likelihood is

Lc(θ) = p(y∗T ,α
∗
T |θ).

Derivation of the joint density takes advantage of the hierarchical structure of the
dynamic linear model. The joint density uses iteratively the step:

p(y∗T ,α
∗
T |θ) = p(yT |α∗T ,y∗T−1,θ)p(αT |α∗T−1,y

∗
T−1,θ)p(y∗T−1,α

∗
T−1|θ).

From the distributional assumptions both conditional densities can be simpli-
fied by letting only the last observation of a state vector in the condition, e.g.
p(yT |α∗T ,y∗T−1,θ) = p(yT |αT ,θ). The log-likelihood is, apart from additive con-
stants not containing θ, given by

`c(θ) =− 1

2

T∑
t=1

(
log |Rt|+ (yt − Ztαt)>R−1

t (yt − Ztαt)
)

− 1

2

T∑
t=1

(
log |Qt|+ (αt − Ftαt−1)>Q−1

t (αt − Ftαt−1)
)

− 1

2
(log |Q0|+

(
α0 − a0)>Q−1

0 (α0 − a0)
)
.

The kth E-step of the algorithm lies in computing

M(θ|θ(k)) = E [`c(θ)|y∗T ,θ(k)].

To compute the conditional mean of the complete log-likelihood is not straight-
forward and one need to compute smoothed values of state vectors, e.g. E [αt|y∗T ].
For this purpose the Kalman smoother fixed at θ(k) can be used and we can then
solve the maximization of M(θ|θ(k)) with respect to θ (see Farhmeir and Tutz,
1994, pages 268-269).

The direct approach is based on the so-called integrated likelihood because

p(yt|y∗t−1) =

∫
Rm

p(yt,αt|y∗t−1) dαt.

In most situations calculating this integral is analytically impossible but in case
of normal distributions it was computed easily. However, in more general cases
(such as DGLM) the indirect approach is more handful as it is rather based
on hierarchical structure than on distributional assumptions.

2.3 Missing observations

This section deals with a common situation of missing observations in mea-
surements y1, . . . ,yT . The advantage of the state space approach is the ease
how missing observations can be handled. In this section we focus on a situation
when some components of yt are missing. It is a problem that we encounter
in ice hockey matches. On specific day, some teams might not have scheduled
any match, which can be understood as a missing observation. Days when no
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matches are planned are omitted. However, in case of needed estimation of the
state vector with no observation at the given time one uses the same idea (see
Durbin and Koopman, 2001, pages 92-93).

Suppose that at a given time t some elements of the measurement vector yt
are missing. We denote ỹt vector with only non-missing observations that has
dimension m̃. For computational purposes it is convenient to define a matrix
Wt with dimension m̃ × m. It is the identity matrix with omitted rows where
elements of the vector yt are missing. It holds that

ỹt = Wtyt.

To realize the fact that missing observations do not represent a major problem,
one should realize the following

p(αt|yt) = p(αt|ỹt).

It only states that the same information is included in vectors ỹt and yt. It means
that we need to rewrite equation (2.1) for only non-missing observations. Hence,

ỹt = Z̃tαt + ṽt

where
Z̃t = WtZt, ṽt = Wtvt, var(ṽt) = R̃t = WtRtW

>
t .

Equation for the state vector (2.2) does not have to be changed. Filtering with
the Kalman filter works the same only vector yt and matrices Zt, Rt are replaced
by ỹt, Z̃t and R̃t. For the Kalman gain it means that corresponding columns are
omitted and its dimension is n× m̃.

For a practical evaluation it means that time update equations (2.9) and (2.10)
remain unchanged and in measurement update equations (2.11), (2.12) and (2.13)
we omit components with the missing observations. However, we don’t even
need to change dimensions of Zt,yt and Rt but simply in places of the missing
observations we set corresponding elements of Zt and yt to zero. It guarantees
the same result.
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Chapter 3

Generalizations of linear models

The linear system defined by equations (2.1) and (2.2) has many applications
and can be applied in various situations, some fields mentioned in Anderson and
Moore (1979) are economics, bioengineering or operations research. Nevertheless,
the assumption of normal distribution for measurements zt are, in some cases,
unrealistic. To those cases belong any non-continuous distributions, e.g. Poisson,
Bernoulli or multinomial. Those three mentioned are essential for modelling
responses of counts, probability of success or probabilities with more than two
categories.

Identical need for relaxing assumption of normal distribution in linear regres-
sion has led to establishing benchmark for distributions in exponential family.
Models with response variable in exponential family are called generalized lin-
ear models (GLM). To this family belong (among others) Poisson,Bernoulli and
multinomial distributions. The framework contains mainly an algorithm for esti-
mating regression coefficients via iterated weighted least squares procedure.

The natural extension of the Kalman filter would be to allow measurements
zt to be in the class of exponential distributions. This approach is taken in article
Fahrmeir (1992), which is the basis for our next section.

3.1 Multivariate generalized linear models

This section is based on Fahrmeir and Tutz (1994) and notes from class
NMST432 Advanced regression models taught by Doc. Mgr. Michal Kulich,
PhD. Generalized linear models represent a generalization of classical linear mod-
els in two ways. Firstly, they allow for wider class of distributions for a response
variable, namely exponential family distributions. Secondly, they relax the de-
pendence between the mean of the response and covariates from linear to linear
after some transformation.

Exponential family

The exponential family is a class of probability distributions sharing a certain
form, specified below. Into the exponential family belong, among others, normal,
exponential, gamma as well as Bernoulli and multinomial distributions. The last
two are the most important for our purposes. Bernoulli distribution is relevant
if we are interested in matches with two possible outcomes – loss or win and
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multinomial distribution in case of three categories – loss, draw or win. All given
examples are univariate distributions but multinomial.

Definition 6. We say that a r-dimensional random variable Y comes from an ex-
ponential family if its probability density function with respect to a σ-finite mea-
sure can be expressed in the form

p(y|θ, ϕ) = exp

(
y>θ − b(θ)

ϕ
+ c(y, ϕ)

)
(3.1)

where b(θ), c(y, ϕ) are known real functions.

The r-dimensional parameter θ is called a canonical parameter and ϕ is called
a dispersion parameter for which we demand to be positive.

Distributions in form (3.1) are sometimes called an exponential dispersion
family as it allows different structure for the dispersion parameter. In the follow-
ing lemma, we calculate mean and variance using a moment generating function
within this class of distributions.

Lemma 10. Suppose a r-dimensional random variable Y comes from an expo-
nential family with density having the form (3.1) with respect to a σ-finite mea-
sure ν. Its canonical parameter θ lies in an open, convex and non-empty space
Θ ⊂ Rr and the real function b(.) is twice continuously differentiable. Then

MY (t) = exp

(
b(θ + ϕt)− b(θ)

ϕ

)
,

E Y = µ(θ) =
∂b(θ)

∂θ
, (3.2)

var(Y ) = Σ(θ) = ϕ
∂2b(θ)

∂θ∂θ>
. (3.3)

Proof. We calculate a moment generating function for t such that θ + ϕt ∈ Θ

MY (t) = E exp(t>Y ) =

∫
Rr

exp(t>Y )p(y|θ, ϕ)dν(y)

=

∫
Rr

exp

(
y>(θ + ϕt)− b(θ + ϕt) + b(θ + ϕt)− b(θ)

ϕ
+ c(y, ϕ)

)
dν(y)

=

∫
Rr

p(y|θ + ϕt, ϕ)dν(y) exp

(
b(θ + ϕt)− b(θ)

ϕ

)
= exp

(
b(θ + ϕt)− b(θ)

ϕ

)
.

Using fundamental properties of a moment generating function we calculate mean
and variance as:

E Y =
∂MY (t)

∂θ

∣∣∣∣
t=0

=
∂b(θ)

∂θ
.

var(Y ) =
∂2MY (t)

∂θ∂θ>

∣∣∣∣
t=0

− (E Y )2 = ϕ
∂2b(θ)

∂θ∂θ>
.
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As a variance matrix is always positive semi-definite (see Anděl, 2011, page
32), from equation (3.3) we can conclude that the Hessian matrix of b is also
positive semi-definite (we know that ϕ > 0) and therefore b is convex. Typically
the variance var(Y ) is a regular matrix, and therefore b is strictly convex and b′

is strictly increasing, so µ(θ) : Θ → M = µ(Θ) is injective and the variance is
a function of µ:

var(Y ) = ϕ
∂2b(θ(µ))

∂θ∂θ>
= ϕ

∂2b(θ)

∂θ∂θ>

∣∣∣∣
θ=(∇b)−1(µ)

= ϕV (µ). (3.4)

Moreover, the exponential distribution for given functions b(.) and c(.) is
determined by µ and ϕ, so we could rewrite the definition 6 using p(y|µ, ϕ).

Multinomial distribution as a member of exponential family

Our main focus is on categorical variables, which can be described by proba-
bilities of occurrence for given categories. Let Y denote a categorical variable with
probability for category q denoted πq = P (Y = q) where q = 0, . . . , r. The dis-
tribution of Y is determined by probabilities π1, . . . , πr and can be described
as a multinomial distribution with one trial. This is done by transforming Y us-
ing dummy variables Yq = 1[Y=q] and stacking them into a vector. We introduce
a random vector Y = (Y1, Y2, . . . , Yr)

> which contains the same information as Y
itself and has a multinomial distribution. We consider a multinomial distribution
with one category omitted as in Fahrmeir and Tutz (1994). It means

Y ∼Mult(1, (π1, . . . , πr)
>),

r∑
q=0

πq = 1, Y0 = 1−
r∑
q=1

Yq.

Density mass function can be expressed as follows

p(y|π1, . . . , πr) = Πr
q=0π

yq
q = exp

(
r∑
q=0

yq log(πq)

)

= exp

(
r∑
q=1

yq log(πq) +

(
1−

r∑
q=1

yq

)
log (π0)

)

= exp

(
r∑
q=1

yq log

(
πq
π0

)
+ log (π0)

)
= exp

(
y>θ − b(θ)

)
.

We have defined the parameter θ with components

θq = log

(
πq
π0

)
, q = 1, . . . , r. (3.5)

Definition of function b(.) is more hidden. But we can easily derive its form

1 +
r∑
q=1

exp(θq) = 1 +

∑r
q=1 πq

π0

=
1

π0

. (3.6)
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Special case of a multinomial distribution with r = 1 is bivariate (Bernoulli), and
then function of π1 in (3.5) is called a logit function.

By combining equations (3.5) and (3.6) we get

b(θ) = − log (π0) = log

(
1

π0

)
= log

(
1 +

r∑
q=1

exp(θq)

)
. (3.7)

We have shown that multinomial distribution belongs to the exponential fam-
ily with a dispersion parameter ϕ = 1, function c(.) ≡ 1 and function b(.) given
by (3.7). The formula for πq depending on θq can be derived easily using the def-
inition of θq and formula (3.6).

πq =
exp(θq)

1 +
∑r

i=1 exp(θi)
, q = 1, . . . , r,

π0 =
1

1 +
∑r

i=1 exp(θi)
.

For computing mean and variance we can use lamma 10.

E Yq =
∂b(θ)

∂θq
=

exp(θq)

1 +
∑r

i=1 exp(θi)
= πq,

varYq =
∂2b(θ)

∂θq∂θq
=

exp(θq)(1 +
∑

i 6=j exp(θi))

(1 +
∑r

i=1 exp(θi))
2 = πq(1− πq), (3.8)

cov(Yq, Ys) =
∂2b(θ)

∂θq∂θs
= − exp(θq) exp(θs)

(1 +
∑r

i=1 exp(θi))
2 = −πqπs, q 6= s. (3.9)

From (3.8) and (3.9) we can conclude that the variance matrix of a multinomial
distribution Y is

var(Y ) = Σ(π) =

π1(1− π1) −π1π2 · · · −π1πr
...

...
. . .

...
−πrπ1 −πrπ2 · · · πr(1− πr)

 .

Definition 7. Suppose observations (Y >i ,X
>
i )>, i = 1, . . . , n where Yi are r-

dimensional responses and Xi are covariates. Multivariate generalized linear
model is characterized by the following structure:

(i) Y1, . . .Yn are independent and distribution of Yi depends on Xi through
regression coefficients β = (β1, . . . , βp)

> that come from an admissible open
set B ⊂ Rp.

(ii) The conditional distribution of Yi given Xi is exponential with b(.) being
twice continuously differentiable and θi depends on covariates Xi and β
through linear predictor

ηi = Ziβ

where Zi = Z(Xi) is (q × p) - design matrix.
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(iii) There exists a strictly monotone and twice continuously differentiable link
function g : Rr → Rr such that

g(µi) = ηi

where µi = E Yi.

For some theoretical purposes it is convenient to relate linear predictor ηi
to the natural parameter θi. For that we can use equation (3.2) and then holds

θi = u(ηi) = (g ◦ ∇b)−1(ηi) = (g ◦ ∇b)−1(Ziβ).

Special case represent link functions that are chosen in a way that θi = ηi,
they are called natural links. For a given exponential distribution (known b(.)
and c(.)) and with ∇b(.) having inverse, choosing g(α) = (∇b)−1(α) we get
the natural link.

In the following, we make an inference on the regression parameter β, so
for shorter notation we will understand parameters θi, µi as functions of β.

MLE estimates

Estimation of parameters for a GLM model is done by maximizing the like-
lihood. Since observations (Y >i ,X

>
i )>, i = 1, . . . , n that follow a GLM model

are independent the log-likelihood can be expressed as a sum of log-likelihood
contributions as follows

`(β) =
n∑
i=1

`i(β) =
n∑
i=1

Y >i θi − b(θi)
ϕ

.

The derivative of the likelihood with respect to β is called a score vector and its
maximization yields the desired estimate. The maximum is not reached analyti-
cally but via iteratively reweighted least squares procedure. In case of the natural
link function the score vector is concave, which simplifies the maximization.

3.2 Ordinal paired comparison data

This section is based mainly on the article Agresti (1992) by Alan Agresti.
In this section we present a non-dynamic model for a categorical variable coming
from pairwise comparisons.

Let Yij denote the categorical variable of interest that represents the result
of a comparison between teams i and j. Possible outcomes of Yij are ordinal
categories 0, . . . , r, where q = 0 is the least favourable for team i and q = r is
the most favourable one for i. Notice that in our setting the order of indexes
i and j matters. Further, we suppose that the scale is symmetric, such that
Yij = q is equivalent to Yji = r − q for all q. As in the usual ordinal model we
suppose that there is an underlying latent continuous variable Y ∗ji and cutpoints
γ0 < γ1 < . . . < γr−1 such that the following holds

P(Yij = q) = P(γq−1 < Y ∗ij ≤ γq), ∀q ∈ 0, . . . , r.
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For easier notation we have defined γ−1 = −∞ and γr = ∞. The latent
variable Y ∗ij can be decomposed for interpretation into three components, such
that Y ∗ij = µi − µj + εij. Two of them represent the team performance in the
match, which are supposed to be non-random, and the last one can be interpreted
as randomness. About the random component we suppose that it follows the same
distribution for any match, namely:

εij ∼ F ; strictly increasing, continuous. (3.10)

It is a straightforward calculation to derive the probability of Yij = q.

P(Yij = q) = P(γq−1 < Y ∗ij ≤ γq)

= P(γq−1 < µi − µj + εij ≤ γq)

= P(γq−1 − µi + µj < εij ≤ γq − µi + µj)

= F (γq − µi + µj)− F (γq−1 − µi + µj).

If we broaden the assumption of a symmetrical scale also for latent variables Y ∗ij ,
such that Y ∗ij = −Y ∗ji, it ensures that εij = −εji. Using that and (3.10) put
constraint on a distribution function F

F (x) = P(εij ≤ x) = P(−εij ≥ −x) = 1− P(εji ≤ −x) = 1− F (−x). (3.11)

Important possible options for the distribution function F are logistic and normal.
The assumption of symmetry for Yij and equation (3.11) leads to a constraint

of cutpoints

P(Yij ≤ q) = P(Yji ≥ r − q)
F (γq − µi + µj) = 1− F (γr−q−1 + µi − µj)
F (γq − µi + µj) = F (−γr−q−1 − µi + µj)

γq = −γr−q−1. (3.12)

Model identifiability is ensured by an assumption such as µ1 = 0 or
∑
µi = 0.

Cumulative logit model

The preceding section was formed in a general setting. For our purposes
we present a specific model for response (result of a match) with only three
categories, such that

Yij =


0 team i loses,

1 draw,

2 team i wins.

The assumption of symmetry of the scale holds because the probability of win
of the team i equals the probability of loss of the team j, etc.

As the distribution function F from (3.10) we use logistic distribution function
with the known inverse called logit, which is

F−1(x) = logit(x) = log

(
x

1− x

)
.
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In the preceding section we have not specified performances µi. For some
applications it could be interpreted straightforward as a form of unit i (e.g. chess
competition). But since we are interested in applications for ice hockey a major
factor besides the current form could be a home advantage. So the performance
can be decomposed into components an ability αi and a home advantage (HAi).
As in Knorr-Held (2000) we assume that the home advantage is the same for each
team i:

HAi = HA, ∀i = 1, . . . , n.

This assumption is not rejected in the practical part. If the game is played
at a stadium of the team i then µi = αi+HA and µj = αj. From the assumption
of a symmetrical treatment we have received the constraint (3.12), which in our
setting means that γ0 = −γ1 and γ1 > 0. The model now yields

logit(P(Yij ≤ 0)) = −γ1 − αi −HA+ αj,

logit(P(Yij ≤ 1)) = γ1 − αi −HA+ αj.

Remark that in this parametrization higher ability of αi indicates lower prob-
ability of loss. Therefore, the interpretation corresponds with the usual usage.
Now we set θ0 = −γ1 −HA and θ1 = γ1 −HA.

Cumulative logit model for a three categorical variable Yij with a home ad-
vantage for team i has the form

logit(P(Yij ≤ q)) = θq − αi + αj, q = 0, 1 and θ0 < θ1. (3.13)

Notice that we have lost the symmetry of Yij in our new notation. Now the
order of indexes ij determines that the home advantage has the team i. Another
specification of this model is in terms of odds, which are defined in the following
definition.

Definition 8. Let (Ω,A,P) be a probability space and A ∈ A satisfies P(A) < 1.
Then the ratio

odds(A) =
P(A)

1− P(A)

is called odds for event A.

Note. The typical usage is with a categorical variable Y and its probabilities.
This enables us also easier definition of logit:

logit(P(Yij ≤ 1)) = log(odds(P(Yij ≤ 1))).

In the model (3.13) parameters αi and αj do not depend on q, this means that
log odds of the response being under q differ only by θq and the model assumes
the same effect across all levels. This gives another name for the model (3.13) –
proportional odds model.

31



Interpretation of parameters

To get an interpretation for parameters of ability, αi, is straightforward. Sup-
pose α̃i = αi + x, it is the ability of team i increased by x. Then

log(odds(P(Yij ≤ 0|α̃i, αj)))− log(odds(P(Yij ≤ 1|αi, αj))) = −αi + α̃i = −x,
log(odds(P(Yij ≤ 1|α̃i, αj)))− log(odds(P(Yij ≤ 2|αi, αj))) = −αi + α̃i = −x.

With increase x of ability αi the logarithm of odds for loss and draw of the team i
are decreased by x.

Another parameter of interest is the home advantage.

log

(
odds(P(Yij = 2))

odds(P(Yji = 0))

)
= log(odds(P(Yij = 2)))− logit(P(Yji ≤ 0))

= − log(odds(P(Yij ≤ 1)))− logit(P(Yji ≤ 0)

= −θ2 − θ1 = 2HA.

From the preceding derivation, we can say that ratio of odds to win at home and
odds to win out equals exp(2HA). The higher is the home advantage the higher
are odds to win home compared to odds to win out.

Lemma 11. Let (Yi,x
>
i )>, i = 1, . . . , n be a random sample where Yi is a cate-

gorical variable with categories q = 0, . . . , r satisfying cumulative model

P (Yi ≤ q|xi) = F (θq − x>i α), q = 0, . . . , r

where −∞ < θ0 < θ1 < . . . < θr = ∞, a strictly increasing distribution function
F and xi vector of covariates. Then (Y >i ,x

>
i )>, i = 1, . . . , n follow a multivariate

generalized linear model with

gq(π0, . . . , πr−1) = F−1(π0 + . . .+ πq), q = 0, . . . , r − 1,

Zi =


1 · · · −x>i

1 −x>i
. . .

...
1 −x>i

 , i = 1, . . . , n

β = (θ0, . . . , θr−1,α)

where Yi = (1[Yi=0], . . . ,1[Yi=r−1]).

Proof. We have shown that the categorical variable belongs to an exponential
family. From the form of a cumulative model, we have

F−1(π0 + . . .+ πq−1) = θq−1 − x>i α = ziqβ, q = 1, . . . , r

where ziq is qth row of a design matrix Zi. The preceding equations give a form
of the function g and the design matrix Zi.

The preceding lemma ensures that for the cumulative link model (3.13) the
theory for GLM models applies.
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3.3 Dynamic generalized linear model

The overall setting is a generalization of linear state space with a non-observable
state vectors αt and measurements zt. The update equation (2.1) for a state pa-
rameter αt remains the same. The modification lies in the connection between
the state vector αt and the current measurement zt. We assume that the con-
ditional density p(zt|αt) is in the exponential class. Moreover, zt together with
αt as a regression coefficient and non-specified covariates form a multivariate
generalized linear model (according to a definition 7).

Multivariate dynamic generalized linear model is specified by structural con-
ditions:

αt = Ftαt−1 +wt, (3.14)

µt = E [zt|αt] = h(ηt) = h(Ztαt),

by distributional conditions

wt
iid∼ N(0, Qt), α0 ∼ N(a0, Q0), (3.15)

`t(αt) = log(p(zt|α∗t , z∗t−1)) = log(p(zt|αt, z∗t−1)) = z>t θt − b(θt) + c(zt),

αt ∈ Rn, Ft ∈ Rn×n, Qt > 0, zt,µt,θt ∈ Rm, Zt ∈ Rm×n, g : Rm → Rm

and further technical conditions as in definition 7.

Conditions (3.14) and (3.15) ensure that process {αt} has Markov property:

p(αt|α∗t−1) = p(αt|αt−1). (3.16)

The equation (3.16) means that for current state the information in the whole
vector of previous states is the same as the information within the last observation.

Posterior mode estimation

This section is based on articles Fahrmeir (1992) and Farhmeir and Kaufmann
(1991). The goal is to get filtered estimation of the state vector αt. In a linear
state space model, we use several properties of normal distribution, which enable
to derive exact distribution of αt|t−1 and αt|t. Moreover, the mean of αt|t is only
a linear combination of new observation zt and its previous estimation α̂t|t−1.
However, if zt do not have normal distribution the derivation of the posterior
distribution αt|t is not possible without integration. In the articles is proposed
to estimate a posterior mode because it does not require integration.

Theorem 12. Suppose αt and zt follow a multivariate dynamic generalized linear
model. Then

p(α∗t |z∗t ) ∝
t∏

s=1

p(zs|αs)
t∏

s=1

p(αs|αs−1),

`∗t (α
∗
t ) = log(p(α∗t |z∗t )) =

t∑
s=1

`s(αs) + at(α
∗
t ) + c

where c is a constant and

at(α
∗
t ) = −1

2

t∑
s=1

(αs − Ftαs−1)>Q−1
s (αs − Ftαs−1)− 1

2
(α0 − a0)>Q−1

0 (α0 − a0).
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Proof. The proof is based on Bayes theorem 1.1 and Markovian property (3.16):

p(α∗t |z∗t ) ∝ p(zt|α∗t , z∗t−1)p(α∗t , z
∗
t−1) = p(zt|αt)p(α∗t , z∗t−1)

= p(zt|αt)p(αt|α∗t−1, z
∗
t−1)p(α∗t−1, z

∗
t−1) = p(zt|αt)p(αt|αt−1)p(α∗t−1, z

∗
t−1).

We get the desired form using iteratively the same steps. To derive form of `∗t (α
∗
t )

we use the preceding result and definition of normal distribution.

Note. The criterion `∗t (α
∗
t ) can be interpreted as a penalized log-likelihood. In fre-

quentist statistics we would be interested in maximizing likelihood
∑t

s=1 `s(αs).
In our setting, there is an additional term at(α

∗
t ) serving as a smoothness prior.

For a symmetric unimodal distribution its mode coincides with its mean.
Hence, in dynamic linear model the estimation of mean coincides with the es-
timation of mode. In Farhmeir and Kaufmann (1991) is proposed to estimate
posterior mode by solving maxα∗t `

∗
t (α

∗
t ) using numerical Gauss-Newton or Fisher-

Scoring algorithm. Four algorithms for the numerical solution are presented and
compared and all of them simplifies into the Kalman filter in the linear Gaussian
model. The last performs only a single step of a numerical estimation and it is
convenient for the fact that can be calculated iteratively. It was called general-
ized Kalman filter as it resembles the Kalman filter like a generalized linear model
resembles a normal linear model.

The generalized Kalman filter for a numerical estimation of a posterior mode
runs in two steps. Firstly, the prediction step remains the same as for the Kalman
filter, so time update equations are

α̂t|t−1 = Ftα̂t−1|t−1,

Pt|t−1 = FtPt−1|t−1F
>
t +Qt,

followed by measurement update equations

Kt = Pt|t−1ZtHt

(
H>t Z

>
t Pt−1|t−1ZtHt + Σt

)
,

α̂t|t = α̂t|t−1 +Kt(yt − h(Ztα̂t|t−1)),

Pt|t = (I−KtHtZt)Pt|t−1

where Σt(αt) = var[zt|αt], Ht(αt) = ∂
∂ηt
h(ηt). Matrices Σt and Ht are those

matrices evaluated at α̂t|t−1 and I denotes an identity matrix.
This algorithm was applied in article Farhmeir and Tutz (1994) to ordered

paired comparison systems. We may use the concept to ice hockey matches
with measurements zt as a result of a game and αt as a vector of unobserved
forms. However, in the practical part was found out that using goal differences is
more informative than using plain result (see section 4.9). For that reason, this
approach was not implemented.
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Chapter 4

Analysis of Czech extraliga
1999-2014

Ice hockey overview

Ice hockey is a team sport played on ice in which two teams of skaters tries
to place a puck into opponent’s net using wooden sticks. Each team has one
goaltender and five players – usually three forwards and two defencemen on ice.
Goaltender has a special gear, blocker, catch glove, and leg pads, which he uses
to prevent the puck from getting into h is team’s net. In contrast to rest of the
players, one goaltender usually plays the whole match; the coach switches him
only in case of injury or poor performance. The other players take turns in irreg-
ular intervals but time spent on ice is usually less than one minute. The game
is played in three thirds and each lasts 20 minutes. The clock is stopped whenever
the game is halted.

Since ice hockey is a full contact sport many injuries happen during the season.
Some are minor that prevent the injured from continuing in the following match
but some are major, which disable the player from continuing in the running
season for months or even forever. Estimated injury rate in Extraliga season
2010/2011 was 57.4 injuries in 1000 matches based on a survey (see Šulcová,
2011) where further statistics can be found.

Czech extraliga

Ice hockey has a long tradition in the Czech Republic. There are several
competitions and most of them are run by Czech Ice Hockey Association (see
http://www.cslh.cz/). The three major leagues are

• Tipsport Extraliga,

• 1. liga ČR (Premier league),

• 2. liga ČR (Second league).

Czech extraliga is the highest ice hockey league in the Czech republic. It was
created in 1993 when the Czechoslovak First Ice Hockey League split following
the breakup of Czechoslovakia. The official name has changed several times
depending on the main sponsor.
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Official names are:

• 1999–2000 — Staropramen Extraliga,

• 2001–2002 — Český Telecom Extraliga,

• 2003–2006 — Tipsport Extraliga,

• 2007–2010 — O2 Extraliga,

• 2010–current — Tipsport Extraliga.

System of extraliga

Main part of the league is played from September to February, within which
all 14 teams meet four times, twice on the home field and twice as a guest team,
so there are 52 rounds in one season. Until season 2005/2006 top 8 teams were
qualified for playoff. The last team had to play against the first team in First
League about the place in Extraliga. Since 2006/2007 top 6 teams have been
qualified for the play-offs, teams finished as seventh to ninth play a play-in to de-
termine, which two teams will join the top 6 into the play-off quarter-finals.
In play-in play seventh against tenth and eighth against ninth on three wins.

Then a classic play-off follows. At the beginning, the following matches are
played: the first against the eight, the second against the seventh, the third
against the sixth and the fourth against the fifth. Those and following matches
are played on 4 wins; the 4 winning teams continue into semifinal and winners
into final. The winner of the finals becomes the league champion.

Eleventh till fourteenth teams after the main part play in a play-out group
to maintain in Extraliga. Each team meets with one another four times and
points from the main part count as well. Teams finishing as last two have to play
against two best teams from First league about the participation in Extraliga
in the following season.

Scoring system

Until the season 2005/2006 matches could end up with three types of results
– win, draw or loss. Giving 3 points in case of victory, 1 point for a draw and
0 points to the defeated team.

Since the 2006/2007 season, there is no match without a winner. Every match
(even in main part) has to be decided in a regular time or in the following over-
time (5 minutes during main part and 20 minutes in play-off). If the game
is still undecided after the overtime, penalty shootout follows. Awarding system
is 3 points for a regulation win and 2 points for an overtime (penalty) victory,
while the defeated team in an overtime (penalty) gets 1 point. Therefore, three
points are given in every match. Hence, there are four possible results – win, win
in overtime, loss in overtime and loss.

Main points important for data usage

Rounds for the main part are scheduled in September, but matches might be
postponed. Therefore, some matches scheduled for example in tenth round might
be played later than matches in the eleventh round.
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Basic rules for ice hockey remain the same for every season but some changes
are made regularly every four years by Czech Ice Hockey Association (see 1).
Those modifications might have an influence on the game itself, leading to more
goals in a match. As some experts argue about the changes in rules starting from
season 2014/2015 (read 2).

Drafts can be made from 1.5. to 31.1. according to a transferring system.
But usually take place after season, so that players might have some time to train
together during the summer training. Since one team can purchase or sell the best
players its form may change dramatically over seasons.

In every season 14 teams compete, but every season can be replaced up to two
teams with two best teams from the First League.

All these factors signalize that every season should be treated independently.

4.1 Description of data

The main source for data was the website http://www.liga.cz/hokej/cesko/.
There are results of matches and average odds on the home team to win, the draw
and guest team to win for team sports – football, basketball, handball, volleyball,
baseball and most importantly for ice hockey. Data for Extraliga are provided
from the season 1998/1999, but many observations of odds (more than a half
in the main part) are missing in the first season. Therefore, data used for the anal-
ysis are seasons from 1999/2000 to 2014/2015. We limit our analysis to matches
of the main part, because the system might behave differently as there are more
matches between two teams in a short period of time for playoffs.

Data that we use for the analysis contain 5824 matches in 16 consecutive
seasons, 22 different teams with 52 matches within every season. There were
few missing observations of average odds (partly completed from website 3) and
rounds in season 2008/2009 were not provided (completed from website 4). We ended
up with only few missing observations of average odds – 5 in the main part and
1 in playoff.

Data provided are not in a ready-to-use format (see Figure 4.1) and had to be
transformed. Software used for downloading the data was Microsoft Excel 2007
and its tool Visual Basic for Applications (VBA). Data were downloaded taking
advantage of a html table format. The resulted format can be seen in Figure 4.2.
For easier data manipulation, we created SQL database (it can be created with
scripts on the attached CD) using SQL Server 2014 Management Studio. For fur-
ther analysis, we used program R version 3.1.2, especially libraries car, MASS, fkf
and lattice.

1http://www.cslh.cz/text/119-pravidla-ledniho-hokeje.html
2http://novy.hokej.cz/prinesou-zmeny-pravidel-atraktivnejsi-hru-a-vice-golu/

5001879
3http://www.oddsportal.com/
4http://www.hokej.cz/tipsport-extraliga
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Figure 4.1: Screenshot of webpage liga.cz (on 21.1.2015).

Figure 4.2: Screenshot of downloaded data from liga.cz (on 21.1.2015).
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The given information for each match is

• home team,

• guest team,

• result – goals of home team, goals of guest team, identifier of overtime and
identifier of penalty shootout,

• average odds for a win of home team (home win),

• average odds for a draw,

• average odds for a loss of home team (away win),

• date of the match,

• round,

• season.

Average odds are calculated as average from available odds given by typically
more than 20 betting companies. As stated in section 4 there are no matches
without a winner since season 2006/2007. To treat the data uniformly, we might
want to omit the information about matches after regular time. However, the ad-
ditional information might be useful. Hence, the goal after regular time is counted
as a half goal. This corresponds with the fact that the team shot one extra goal
but not in a regular time.

4.2 Determining odds by betting companies

Assume that a betting company sets odds for an event. This event has a cer-
tain number of possible outcomes, e.g. In a hockey match the outcome (in regular
time) is either home win, draw or away win. The goal is to find appropriate odds
such that the betting company would receive expected predetermined margin.
There are provided decimal odds (see Figure 4.1) in our data. It means that
in case of a successful bet, the pay-off is obtained from the money bet multiplied
by the decimal odds. For example if odds on the home win are 2.2 and we bet
100 then we get 220 in case of home win and 0 otherwise. A proposition how
to calculate odds using estimates of probabilities and vice versa, will be presented
after the introduction of notation.

Notation

• Y denotes a random outcome with possible values i ∈ {1, . . . , n},

• pi denotes the probability of outcome i, i.e. pi = P(Y = i),

• ri denotes odds for an outcome i of the event Y , ri ∈ (1,∞),

• Bi denotes absolute amount of money bet on an outcome i, Bi ∈ [0,∞],
bi denotes relative amount of money bet on an outcome i, bi ∈ [0, 1],

• Mi denotes percentage margin of the betting company for bets i.
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By bold symbols we denote the whole vector, e.g. p = (p1, . . . , pn)>. Using
the above notation, it must hold that sum of probabilities pi and relative amount
of money bet bi are equal to 1, i.e.

n∑
i=1

pi = 1,
n∑
i=1

bi = 1.

The task of betting companies are to maximize their profit. The profit depends
on odds (ri), amount of money bet (Bi) and result of the event Y . The odds have
to be set at first and then people start to bet. It is intuitive that Bi depends
strongly on the odds provided. Higher rates will lead to higher amount of money
bet.

The maximization problem that maximises the profit of the betting company
is as follows:

max
r

n∑
i=1

Bi(r)−
n∑
i=1

riBi(r)1[Y=i],

s.t. ri > 1,∀i = 1, . . . , n.

(4.1)

We have stressed the dependence of money bet Bi on a vector of odds r. We as-
sume that Bi(r) is some non-negative and non-decreasing function in every com-
ponent ri. The maximization problem (4.1) is a stochastic problem with a random
variable 1[Y=i] in the objective function. To solve such a problem needs transfor-
mation into a deterministic problem. One possibility is to maximize the expec-
tation of the objective function. Then it simplifies to:

max
r

n∑
i=1

Bi(r)(1− ripi),

s.t. ri > 1, ∀i = 1, . . . , n.

(4.2)

To solve the problem (4.2) we have to find the deterministic function Bi(r).
It might be done by assuming a suitable functional form (e.g. parametric) and
using the historical data for odds r and amount of money bet B to estimate it.
Data about B are not accessible, so we do not investigate this problem further.
We just remark that the problem might be formulated as a multistage problem
because the betting company can change odds every day (but sustain the odds
for already given bets).

The preceding approach is complicated and assumes the knowledge (or at least
good estimation) of Bi(r), therefore, we present another one that will enable us
to compute result probabilities for known odds and vice versa. The following
approach is based on the idea that the betting company estimates probabilities
of an outcome i and then uses some predetermined margin to set ri. Suppose
that the relative expected margin is set to M , i.e.

M = 1−
n∑
i=1

ribipi =
n∑
i=1

bi(1− ripi).

The following lemma gives a formula for ri such that the relative expected margin
is fixed for any realizations of bets. We want to find a solution (for the vector r,
ri > 1) such that the preceding equation holds ∀ bi ≥ 0,

∑n
i=1 bi = 1.
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Lemma 13. The following two statements are equivalent

(i) ∀ bi ≥ 0,
∑n

i=1 bi = 1 : M =
∑n

i=1 bi(1− ripi)

(ii) ∀ i = 1, . . . , n : ri = 1−M
pi
.

Proof. Both implications are straightforward calculations.

(i)⇒ (ii) : We set bi = 1 and bj = 0, i 6= j then M = 1− ripi, so ri =
1−M
pi

.

(ii)⇒ (i) : We plug it into the formula for margin:
n∑
i=1

bi

(
1− 1−M

pi
pi

)
= M.

The preceding lemma gives an answer how to set rates with probabilities
estimates to yield predetermined expected margin. If the betting company knew
the demand functions Bi(r), they could even set the realized relative margin to
be fixed. The solution is to solve system of equations ri = 1−Mc

bi(r)
, i = 1, . . . , n.

The relative realized margin would be then 1 − ribi = Mc. The more realistic
situation is reversed; the better might want to have profit without risk (arbitrage).
It is only possible when Mc is negative and

bi =
1−Mc

ri
, Mc = 1− 1∑n

i=1
1
ri

.

We have calculated Mc based on the fact that
∑n

i=1 bi = 1. Even though the
value Mc has clear interpretation the following formula is used in praxis:

Mp =

(
n∑
i=1

1

ri

)
Mc =

n∑
i=1

1

ri
− 1. (4.3)

The value Mp is commonly called bookmaker’s margin. It holds that negative Mp

means arbitrage opportunity and Mp > Mc in case of non-arbitrage opportunity.
From the lemma 13 it can be seen that a fair bet (zero margin) would lead

to ri = 1
pi

. Therefore, another approach for assessing rates could be that the bet-
ting company firstly estimates the probabilities of outcome then calculates fair
odds and adjust them according to their value (small odds slightly and higher
odds substantially). The resulted odds might be then

ri =
1

pi
−Ki. (4.4)

The true expected margin for (4.4) is M =
∑n

i=1 1− pi( 1
pi
−Ki) =

∑n
i=1 Ki.

Both suggested formulas for rates are highly dependent on the value pi.
For fixed Ki or M they both go to infinity as pi → 0+ and are smaller than
one as pi → 1−. Hence, a more robust method might be appropriate. Logical
constraints are increasing in pi and predetermined bounds for the smallest and
the largest values. The smallest rate should be one for pi = 1 and largest fixed.
An estimate that suits those constraints is

ri =
1 +Ki

pi +Ki

. (4.5)
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Odds Probabilities

Match rw rt rl Mp K pw pt pl

Kladno – Chomutov 1.65 4.33 4.18 0.076 0.040 0.59 0.20 0.21
Liberec – Zĺın 2.42 3.92 2.43 0.080 0.042 0.39 0.22 0.39
Plzeň – Mountfield HK 1.76 4.11 3.77 0.077 0.040 0.55 0.21 0.24
Slavia Praha – Litv́ınov 1.69 4.29 3.97 0.077 0.040 0.58 0.20 0.22
Třinec – Vı́tkovice 1.63 4.39 4.18 0.081 0.042 0.60 0.20 0.21
Sparta Praha – Pardubice 1.45 4.81 5.62 0.075 0.039 0.68 0.18 0.15

Table 4.1: Examples of transformed rates into normalized probabilities according
to (4.6) for some matches of 52th round in season 2013/2014 (see Figure 4.1).

The true expect margin for (4.5) is M =
∑n

i=1 1− pi( 1+Ki

pi+Ki
) =

∑n
i=1

Ki(1−pi)
pi+Ki

.
The relative margin is between 0 and 1 and it increases as pi decreases. To use
the formula we need to set the value Ki.

For our purposes we need to estimate probabilities from odds. We use the for-
mula (4.5) and invert it. Further, we assume that Ki is same for every possibility
i, so transformed probabilities are:

pi = 1−
(

1− 1

ri

)
(1 +K), i ∈ {1, . . . , n}. (4.6)

We can find the value K from the constrain
∑n

i=1 pi = 1. We simply derive that

K =
Mp

n− 1−Mp

.

We use this relation to estimate probabilities of a plain result in Extraliga. In that
case we have n = 2, so K = Mp

2−Mp
. We provide some examples of rates, book-

maker’s margin and corresponding probabilities in Table 4.1.

4.3 Datasets for paired comparisons

Before we start identifying significant predictors, we discuss options of working
with a dataset of paired comparisons. Basically, there are two options:

• team perspective – we want to easily work with results of a particular
team. So, we stack matches of all teams together adding identifier of home
advantage.

• match perspective – we look at matches as events with two teams com-
peting where the first of the ordered pair plays at home field.

Apparently, the first approach contains all matches twice and clearly violates
the assumption of independent observations. However, it is easier to work with.
The following theorem shows that parameter estimates remain the same in either
linear regression or ordinal regression in case of a symmetrical design matrix.
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Theorem 14. Suppose we observe (Wi, Yi,xi)
>, i = 1, . . . , n independent where

Wi is a continuous variable, Yi is a categorical variable with categories j = 0, 1, 2
and xi = (1, x̃i) is an ith row of a design matrix X with full rank.

We define two datasets

(i) (TP)

((
W
−W

)
,

(
X
−X

))
or

((
Y

2 − Y

)
,

(
X
−X

))
,

(i) (MP) (W ,X) or (Y , X̃).

Then using either (MP) or (TP) yields the same OLS estimates in linear re-
gression for a continuous variable and MLE estimates in ordinal regression using
the cumulative model (3.13) in case of unique MLE estimates.

Proof. We start with a continuous variable. We calculate residual sum of squares
for both datasets

RSSMP (β) =
n∑
i=1

(Wi − xiβ)2, (4.7)

RSSTP (β) =
n∑
i=1

(Wi − xiβ)2 +
n∑
i=1

(−Wi + xiβ)2 = 2RSSMP (β). (4.8)

From the above we see that RSS is minimized in the same point and hence,
parameter estimates are the same. Notice that RSS in (TP) is twice bigger.

In case of an ordinal variable, firstly notice that there is one extra parameter
in case of (TP). The parameters we denote (θ0, θ1,β

>)> in case of (MP) and
(γ0, γ1, HA,β

>)> for (TP) with the same meaning as in model (3.13). Then
for the log-likelihood of (TP) we have

`TP (γ0, γ1, HA,β
>) = `1

TP (γ0, γ1, HA,β
>) + `2

TP (γ0, γ1, HA,β
>).

We have divided the log-likelihood into two parts – the first part with data (Y ,X)
and the second with (2−Y ,−X). We denote the estimated coefficients for (MP)

as (θ̂0, θ̂1,β
>)>. The key point is to realize that for both log-likelihoods the max-

imum is reached for γ̂1 = −γ̂0 = 1
2
(θ̂1− θ̂0), ĤA = 1

2
(θ̂0 + θ̂1) and β̂. Hence those

estimations maximize `TP (γ0, γ1, HA,β
>).

To show the other implication, we use the symmetry of the dataset and
the property (3.11) of a distribution function F , which ensures that log-likelihood
`TP is maximized when γ̂1 = −γ̂0. Then for the likelihoods hold

`TP (−γ̂1, γ̂1, ĤA, β̂
>) = 2`1

TP (−γ̂1, γ̂1, ĤA, β̂
>) = 2`MP (ĤA− γ̂1, ĤA+ γ̂1, β̂

>).

We have used that `1
TP and `MP correspond to the same data but only in different

parametrization. The uniqueness of MLE implies that the maximum is reached
only in one point.

Note. Remark that in the proof was shown that RSSTP = 2RSSMP but model
TP does not have an intercept. Therefore, the coefficient of determination for MP
is smaller as the total sum of square is calculated with an intercept.

In case of TP standard errors for coefficients are underestimated, which leads
to smaller p-values and higher (misleading) significance of coefficients.

The uniqueness of MLE in case of cumulative logit and probit model can
be found in Burridge (1981).
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In the following we refer to a dataset with every match only once as MP and
TP for a dataset with every observation twice (once viewed from home team
perspective and once from guest team perspective). In the following we use both
datasets, MP is preferred for evaluating significance of predictors and for forecast-
ing outcomes of matches. TP is used to evaluate fit of the model because it does
account for the explained variability due to home advantage. In MP the home
advantage is expressed in the intercept, so the correct estimation of HA with no
other regressors yields R2 = 0, which is not intuitive. The same principle we use
for ordinal regression – MP is used for fitting the model and Gini coefficient
is calculated for TP.

4.4 Suitable transformation of match outcome

The aim of this section is to find suitable one dimensional variable that car-
ries the most information of an outcome of a match. The outcome is represented
by goals of home team and goals of guest team. Typically one uses goal differ-
ences for the convenience of taking real values and the possibility to use normal
distribution as its approximation (see for example Glickman, 1993).

We deal with the problem more analytically and pose a question if the proba-
bilities of outcome would be better estimated knowing goal difference, goal ratio,
something in between or just the plain result (Win/Draw or Loss). Every of those
possibilities have some reasoning. Goal differences put higher probability of win
to matches with higher goal difference but one might argue that result 4:3 was
more balanced than 2:1, which would support to use goal ratios. As stated before,
the goal in overtime or penalty shooting is taken as a half goal.

To decide what function is better to use, we take advantage of knowing betting
odds. We assume that they are relevant estimates of probabilities of outcomes.
We use dataset TP and transform odds into terms of probability by using (4.6)
for win and loss. We normalize the estimated probabilities and transform them
to take real values using logit. The probabilities and the dependent variable are

pwt = 1−
(

1− 1

rwt

)
(1 +Kt), plt = 1−

(
1− 1

rwt

)
(1 +Kt),

Kt =
M i

p

2−M t
p

, M t
p =

1

rwt
+

1

rtt
+

1

rlt
− 1,

Yt = logit

(
pwt

pwt + plt

)
.

(4.9)

As explanatory variables we consider members of the following parametric
family

F(θ) =

{
gA + θ

gB + θ
; θ ∈ R+

}
(4.10)

where gA is a number of goals scored by team A and gB is a number of goals
scored by its opponent.

To decide what is the best explanatory variable we simply run linear regres-
sions and calculate its coefficient of determinationR2(θ) or residual sum of squares
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Figure 4.3: Illustration of the minimization problem (4.11) where θ defines an ex-
planatory variable and RSS(θ) is residual sum of square of linear regression with
dependent variable Yt (transformed probability of win).

RSS(θ). Our aim si to maximize R2(θ) (or equivalently minimize RSS(θ))
on open set Θ = (0, D) for D going to infinity. The minimization has form:

min
θ∈Θ

n∑
t=1

(yt − α̂− β̂xt(θ))2 (4.11)

where α̂ and β̂ are OLS estimates for fixed θ.
The higher values of θ the lower difference in explanatory variables. To see

this it is better to rewrite x as follows

x =
gA + θ

gB + θ
=
gA − gB + gB + θ

gB + θ
= 1 +

gA − gB
gB + θ

= 1 + c(θ)(gA − gB). (4.12)

Further, we just realize that changing the explanatory variable by adding a con-
stant or multiplying it by a constant does not effect the quality of fit in terms
of R2 and c(θ) changes imperceptibly for high values of θ. This also explains
why we choose parametric family (4.10). It is now apparent that it contains ratio
of goals for limiting case θ → 0+ and goal differences for θ → +∞.

We solve the minimization problem (4.11) using function optimize in pro-
gramming language R for D = 10000 with the result that optimal value is θopt =
166.56 and RSS(θopt) = 6386.69. If we run the linear regression for the limiting
case using goal differences, we receive that RSS = 6386.88, hence the difference
is very small. Those results are not surprising if we look at illustrative figure
of values of the objective function in Figure 4.3.

Another possibility to use would be a categorical variable with three categories
– win, draw or loss. If we calculate RSS in this case we receive RSS = 6575.00,
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Figure 4.4: Linear regression with dependent variable Yt (transformed probability
of win) and explanatory variable goal difference. Blue points are conditional
means and red line is a regression line of the corresponding model.

which is substantially higher than RSS for goal differences. Therefore, in terms
of a quadratic loss function the best transformation to use is close to goal dif-
ference. In this case the relationship seems to be linear (see Figure 4.4) but
yields rather small coefficient of determination R2 = 0.148, which suggests hard
predictability of outcomes in Extraliga.

The conclusion of this section is that goal differences are appropriate to carry
the information of probabilities of win, draw or loss and will be used in the fol-
lowing section as dependent variable to identify possible predictors.

4.5 Home advantage

The most discussed factor in most sporting events is home advantage (HA).
This effect might be a result of four principles: no need to travel, familiarization
with the stadium, crowd support or influenced referee decisions due to the crowd
support. To decide that home advantage in Extraliga exists is enough to see that
51 % of all matches were won by home team whereas only 28 % by guest team
in a regular time period. However, in this section we show that home advantage
is not significantly team specific but it is decreasing in time and increasing within
a season.

To measure home advantage for a particular team we determine the difference
in number of goals scored in a match at home stadium and out (GDInOut).
It oscillates between 0 and 3 (see upper Figure 4.5), it was negative only in 5 out
of 224 cases. No team seems to play exceptionally better/worse at home stadium
than others.
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Figure 4.5: Mean goal differences for matches played at home and out. They
are depicted for every season and every team in the upper figure and by year
and by round with a regression line in the lower figures.

Our data come from 16 consecutive seasons. If we calculate average GDInOut
within those seasons we observe significant decrease (see lower left Figure 4.5).
This decrease might be a result of several effects – better comfort during travelling,
higher number of devoted fans that travel with their team or that players change
teams more often and are accustomed to higher number of different stadiums than
before. One might ask if this is not a side effect of decreasing number of goals
in a match but the average number of goals by one team in a match seems almost
constant within years with mean 2.771.

Every season there are 52 rounds that are scheduled before the season starts.
Some rounds might be postponed but it happens only exceptionally (in 3.6 %
cases). It is obvious that average GDInOut increases within season (see lower
right Figure 4.5). Reasons might be that tiredness accumulates during the sea-
son and the need of travelling plays higher role or that more fans come to matches
during winter months than during autumn. We can separate the effect by calcu-
lating average number of goals at home and out in rounds. The increasing effect
of HA is due to increasing number of goals scored by home team rather than
decreasing number of goals scored by guest team (see Figure A1).
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Effect Sum of Squares Df F-value p-value

Season 46.4 1 8.548 0.003
Round 43.1 1 7.936 0.005
Team HA 124.7 21 1.094 0.346
Forms 3731.5 208 3.305 < 0.001

Table 4.2: Analysis of variance (Type II tests)

To test whether the hypothes is based on exploratory analysis are statistically
significant or not, we run linear regression. Every observation is determined
by three indexes i team, j its opponent and t identifier of the match between i
and j.
Variables that we use throughout this chapter are

• GDijt - goals of home team i minus goals of guest team j for match t,

• HAijt - one if team i plays at home, minus one otherwise,

• Sijt - rank of season, starting with 0 for season 1999/2000 and ending with
15 for season 2014/2015,

• Rijt - round for the match minus one (0-51).

We denote I = 22 total number of teams within all seasons, nij total number
of matches between teams i and j and mij total number of matches between
teams i and j with home team i. It has to hold that mij = mji, ∀i, j ∈ I because
there are always four matches between two teams within season with changing
home advantage. If we want to use dataset MP, we simply use only data with
HAijt = 1.

Regression that we fit contains variables season, round and team (expressed by
parameter δi). We also add difference of estimated forms (season specific) for team
and its opponent to filter the effect of forms. The model has the following form:

GDijt = β0 + β1Sijt + β2Rijt + δi +
15∑
r=0

(αir − αjr)1[Sijt=r] + εijt,

i, j = 1, . . . , I, t = 1, . . . ,mij.

(4.13)

We have to add constraints on parameters δi and αir. For δi we set δ1 = 0
(treatment contrasts) and for performances we use the following

n∑
i=1

αir = 0, r = 1, . . . , 15. (4.14)

In that model home advantage is expressed in the intercept and therefore
the coefficient of season and round can be viewed as changes to the intercept. To
determine whether coefficients δi, i = 1, . . . , I are significantly non-zero we run
anova F -test. The effect of HA of team has p-value greater than 0.01 (see Ta-
ble 4.2), which will be our confidence level, hence it yields evidence against its
significance. But the effect of round and of season are significant (see Table 4.2).
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Effect Estimate Std. error T-value p-value

HA 0.711 0.078 9.10 < 0.001
Season −0.021 0.007 −3.19 0.001
Round 0.006 0.002 2.82 0.005

Table 4.3: OLS estimates from model (4.15) of variables of interest.

We can leave out the variable team and build a model without it to assess the es-
timates. For comparison we provide the same model in MP:

GDijt = β0 + β1Sijt + β2Rijt +
15∑
r=0

(αir − αjr)1[Sijt=r]

+ εijt, i, j = 1, . . . , I, t = 1, . . . ,mij.

(4.15)

and in TP:

GDijt = β0HAijt + β1HAijtSijt + β2HAijtRijt +
15∑
r=0

(αir − αjr)1[Sijt=r]

+ εijt, i, j = 1, . . . , I, t = 1, . . . , nij.

(4.16)

Due to the symmetry of TP both models yield the same coefficient estimates
(see theorem 14). HA in the first round and in the season 1999/2000 is estimated
as 0.71 goals (or more naturally the estimated goal difference between match on
the home field and out against the same opponent is 1.42 goals, see Table 4.3).
In every season this effect decreases by −0.02. It means that in the season
2014/2015 in the first round is estimated as only 0.40. But HA increases during
the season, at the end of the season, it is higher of 0.298 compared to the beginning
(see Table 4.3). Coefficient of determination R2 = 0.204 (for TP) is rather low
as expected from the results of the previous section.

We provide some graphical diagnostics of residuals (see Figure 4.6). The fit
does not seem to be systematically biased (upper left) but variance seems to be
bigger for higher values of fitted values (upper right). Normality of goal differences
seems to be realistic assumption, it might have slightly heavier tails. It is not
straightforward to assess the information of autocorrelation as in our dataset
multiple matches are at the same time and autocorrelation makes sense only
for time dependence for a specific team. This is a content of the next section as it
represents widely discussed phenomenon (high number of occurrences of win series
for certain team would suggest positive autocorrelation in goal differences).

We can conclude that HA is significant effect that must be included in any
model forecasting the outcome of a match. We have also seen that this effect
should be adjusted for every season and also during the season. On the other
hand HA does not seem to be team specific, so one can consider home advantage
common for all teams.
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Figure 4.6: Residual diagnostics of regression model (4.15)

4.6 Autocorrelation of results

In this section we want to examine if there is positive or negative effect of re-
sult from the previous match. In newspapers and on the internet we can come
across headlines stating that series of wins for particular team continues, five wins
in a row, etc. The question is if this is randomness, only effect of a good team
form or if there is positive effect of previous win, which would mean positive au-
tocorrelation of results and goal differences. Because we need to work with every
observation for each team, we use dataset TP.

If we calculate percentage proportion of results after won matches, we get
win in 47.9 % and loss in 47.2 % cases, which does not suggest strong evidence
for positive autocorrelation. Furthermore, the proportion after loss is 47.5 % wins
and 48.4 % losses (reason that it does not sum up to 100 % is that till season
2006/2007 some matches ended as a draw). This suggests rather small positive
autocorrelation but by examining the data more carefully, we can conclude that
each team typically plays one match on home field and the other out. To graph-
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Figure 4.7: Average ACF for home advantage through seasons 1999/2000 till
2014/2015

ically assess this fact, we have calculated ACF of home advantage for each team
during every season and computed averages of all estimated correlations (see Fig-
ure 4.7). ACF shows clear negative autocorrelation, so we have to filter the effect
of home advantage. Therefore we distinguish where the team played at specified
time t and count transition probabilities separately (see Table 4.4). We clearly
see that if the team played home it is more likely to loose in the next match (effect
of negative autocorrelation of HA). We also observe that win in next match is
more probable in case that team won (in both cases out and home).

Resultt+1

HAt Resultt Loss Draw Win

Out Loss 0.424 0.045 0.532
Draw 0.330 0.167 0.503
Win 0.390 0.049 0.561

Home Loss 0.625 0.041 0.334
Draw 0.560 0.113 0.326
Win 0.572 0.051 0.377

Table 4.4: Contingency table for plain results at consecutive matches condition-
ally on home advantage at first match (row percentages). We use results after
overtime or penalty shootout if there were some.
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Effect Estimate Std. error T-value p-value

Goal difference
-0.007 0.009 -0.781 0.435

of previous match

Table 4.5: OLS estimate from model (4.17) of variable of interest.

It might seem to be enough construct a log-linear model with effect of home
advantage and result (denoted as Y ) at current time (indexed as 1) and the fol-
lowing (indexed as 2) in form:

log(E nijkl) = (Y1 ∗HA1)ij + (Y2 ∗HA2)kl + (HA1 ∗HA2)jl + (Y1 ∗ Y2)ik

where by symbol (Y1 ∗ HA1)ij we mean both main effects and interaction (i.e.
(Y1 ∗HA1)ij = βY1

i + βY1
j + βHA1Y1

ij ) and test the significance of interaction of re-

sults (βY1Y2
ik , i, k = 0, 1, 2). Using deviance test yields p-value smaller than 0.01,

so we would reject independence of consecutive results. Odds to win in the follow-
ing match would be estimated as exp(β̂Y1Y2

22 ) = 1.25 times higher in case of current
victory than in case of current loss.

However, one has to realize that there is another lurking effect and that
is the form of the team. It will naturally influence both results current and the fol-
lowing. If we consider categorical variables for each team and season, there are
not enough observations for using techniques of log-linear tables. Hence, we have
to present another possibility of testing. We expand model (4.16) from the previ-
ous section by adding the information of goal difference from the previous match
for team i (denoted as GDi.t−1, we use dot notation to denote the opponent from
previous match) and h is opponent j. Therefore, we use again goal differences
instead of direct result to assess the effect of previous goal difference. We do
not observe the effect by itself but its mixture of team i and team j, so we use
difference of previous matches. We also add difference of HA from the previous
match to filter the effect of changing home advantage. It means the model has
form (in MP):

GDijt = β0 + β1Sijt + β2Rijt +
15∑
r=0

(αir − αjr)1[Sijt=r] + β3(GDi.t−1 −GDj.t−1)

+ β4(HAi.t−1 −HAj.t−1) + εijt, i, j = 1, . . . , I, t = 1, . . . ,mij. (4.17)

The estimated coefficient β3 is not significantly different from zero at confi-
dence level 0.01 (see Table 4.5).

To sum up, the effect of the previous result is not significant for estimating
outcome and will not be included in forecasting model. We should also remark
that main advantage of using DLM or DGLM is accounting for autocorrelation
of dependent variable. Therefore, we provide ACF for goal differences in simi-
lar logic as for home advantage earlier. We calculate ACF for goal differences
for every team and season and afterwards calculate mean of each estimated cor-
relation with lag up to 7 (see Figure 4.8). The estimated correlation are not large
and the first is negative (effect of changing home advantage as discussed before).
This result suggests not so strong dynamics in the structure.
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Figure 4.8: Average ACF for goal differences through seasons 1999/2000 till
2014/2015

4.7 Mutual matches

This section is devoted to an analysis that aims to answer a question if some
teams play significantly better against others. It is also inspired by newspaper
headlines, which often argue that certain team has beaten another one in last ten
or even more matches.

To test this hypothesis, we need to make a model with interactions for every
pair of teams that have played against one another. For this we use dataset MP
and expand model (4.15) of interactions between factors team and opponent, but
we need to set a constraint that interaction between two teams is represented
only by one interaction term, which is in the model with a plus sign if a team i
plays against a team j and with a negative sign otherwise (i < j). The model
has the following form

GDijt = β0 + β1Sijt + β2Rijt +
15∑
r=0

(αir − αjr)1[Sijt=r] + γij + εijt,

γji = −γij, t = 1, . . .mij, 1 ≤ i < j ≤ I.

(4.18)

The factor terms γij, j > i, are mutually insignificant using F-test (see Table 4.6).
However, we have to add that the number of matches between two teams could

Effect Sum of Squares Df F-value p-value

Team:Opponent 1262 226 1.03 0.37

Table 4.6: Analysis of variance comparing models (4.18) and (4.15).
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Effect Estimate Std. error T-value p-value

Mean goal difference of
-0.0631 0.03791 -1.67 0.096

previous mutual matches

Table 4.7: OLS estimate of variable of interest in model (4.15) completed with
the variable

be as low as four (in case that they met only in one season). Hence, the efficiency
of testing is rather small.

For that reason, we present another type of testing whether the history of matches
between two teams plays significant role for the outcome of their next match.
We will consider one parameter that contains the information of history between
two teams – mean goal differences in previous matches between two teams that
play the current match. Again we expand the model (4.15) by adding the vari-
able mean goal differences of previous mutual matches in the whole history of our
dataset. The estimated parameter is insignificant at a confidence level 0.01 (see
Table 4.7).

Surprisingly, the estimated coefficient is negative. This is not intuitive we would
expect positive effect of better performance in the history in mutual matches.
The reason is that this variable carries similar information as the difference of es-
timated forms. If we omitted categorical variables representing forms (αir from
model (4.15)) then the effect of mean goal differences would be strongly positive
and significant as it carries the information of different forms. This principle can
be graphically assessed by using partial residuals (see Figure 4.9). For definition
and properties of partial residuals see Zvára (2008, pages 111-112).

To conclude result of this section, there is not strong evidence that the history
of previous mutual matches of two teams would have an influence on the current
outcome. Therefore, it will not be included in construction of forecasting model.
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Figure 4.9: Dependence of goal differences on mean goal differences of previous
mutual matches (left), partial residuals of the same dependence after adjustment
on home advantage and forms of teams (right).
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Days from Mean Home Number
the last match goal difference advantage of occurences

0 0.163 0.515 295
1 0.005 0.499 5984
2 0.036 0.502 2444
3 -0.008 0.498 428
4 -0.154 0.494 1323
5 0.244 0.504 123
> 5 0.014 0.505 1051

Table 4.8: Mean goal differences for different number of free days between
matches.

4.8 Tiredness from the previous match

In Extraliga every team plays 52 matches within a season, which lasted in last
15 seasons from 156 to 181 days. Hence, the schedule is quite busy and players
might not have enough time to recover. Teams had one free day between matches
in 52 % cases and 2 free days in 21 %. Until season 2006/2007, there were 33
matches in average where teams had two matches in consecutive days. From that
season it happens only exceptionally (in season 2014/2015 it occurred only twice,
for more detail see Table A1).

To get an intuition how strong the effect of tiredness could be, we calcu-
late mean goal difference conditional on days since the last match. Results are
unexpected as the biggest value is for no free days between matches and the re-
lationship between free days and goal differences is not linear (see Table 4.8).
There is also percentage of cases that were played on the home field in the table.
We see that positive values correspond with more than half of the matches on
the home field (with one exception of one free day). Therefore, we should filter
the effect of home advantage by using linear regression as in previous sections.

However, at first we need to define the variable of tiredness, which would con-
tain the information of difference of tiredness between both teams. One option
could be to use differences of free days but then it would assume the same differ-
ence in tiredness for free days 1 and 2 as for 12 and 13. Taking in account that
tiredness vanishes after few days we define the following variable

TDij =


1 if team i had at least 2 free days and team j at most 1

−1 if team j had at least 2 free days and team i at most 1

0 otherwise.

This variable is non-zero only in 10 % of matches. We examine the effect of tired-
ness through variable TDij by including it into the model (4.15). We use dataset
MP and the model of interest is

GDijt = β0 + β1Sijt + β2Rijt +
15∑
r=0

(αir − αjr)1[Sijt=r] + β4TDijt + εijt,

t = 1, . . .mij, 1 ≤ i < j ≤ I.

(4.19)
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Effect Estimate Std. error T-value p-value

Tiredness 0.179 0.095 1.89 0.059

Table 4.9: OLS estimates from model (4.19) of variables of interest.

Tiredness is insignificant for estimating goal differences at confidence level 0.01
but its coefficient has expected sign – positive in case of more time to recover
(see Table 4.9).

4.9 Measures of teams forms

Forms of both teams have strong effect for the outcome (see the results of sta-
tistical significance in Table 4.2). Until now we have estimated those effects as
categorical variables for every team and every season. However, this approach
can be used only for evaluating forms in a certain season when all matches are
over. If we wanted to predict the outcomes of next season, there would be no
direct approach. We might use the estimated forms from the preceding season,
but those estimates might be biased as teams might buy or sell some players.
Moreover, we would lack estimates of two teams that might join Extraliga as
winners of premier league. Complication of estimation forms is that we never
see a result of form of one team but always only result of difference of forms
for opposing teams.

In this section we consider several factors that might be used as measures
of performance without using more complicated approach (Kalman filter in the
following chapter). At first we realize how we computed estimates of forms
in the model (4.15). We have used OLS estimates, which means that the estimated
forms are linear combinations of goal differences in specific season. Therefore, one
estimate might be mean goal differences in previous matches. The question could
be how long history should be chosen, the forms may change and results from
past might be misleading from some point in time.

In the following we consider measures of performance (denoted as αi) based
on history of goal differences and gained points. Estimate of current form α̂it
is iteratively computed for every team and difference of teams forms comes as ex-
planatory variable to the model. To let the performance measures adjust, we use
observations since the 10th match in the season for each team throughout this sec-
tion. To compare models we use goodness of fit criteria – coefficient of determi-
nation and Gini coefficients for dataset TP. All models are fitted using linear and
ordinal regression in form:

GDijt = β0HAijt + β1HAijtSijt + β2HAijtRijt + β5(α̂it − α̂jt) + εijt,

logit(P (Yijt ≤ r) = γr + β0HAijt + β1HAijtSijt + β2HAijtRijt + β5(α̂it − α̂jt),
r ∈ {0, 1}, Rijt > 10, t = 1, . . . , nij, i, j = 1, . . . , I. (4.20)

More precisely the dataset contains all matches for team i after its 10th match.
At first we investigate how long history is better to use. As measures of perfor-

mances we use mean goal differences/points in last x matches with x = 1, . . . , 10
and the whole history at given time. To see the improvement of models including
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Figure 4.10: Goodness of fit criteria for measures of performance – mean goal
differences and mean points in last 1 to 10 matches and for the whole history
in season (last points). In the upper picture there is R2 and in lower part Gini
coefficient nominal (left) and based on ranks (right).

forms, we calculate goodness of fit for models (4.20), which are only adjusted
for home advantage: R2 = 0.083, Gn = 0.215, GC = 0.241, G1 = 0.268 and
G2 = 0.268.

This benchmark was exceeded in every measure by each model. Results for dif-
ferent measures of performance are summarized in Table A3. We have also added
another measure – position in table, which uses the difference of current rank
in the competition. This information might be typically used by bookmakers as
it is easily accessible. Surprisingly, it belongs among better ones.

For better clarity, three criteria were depicted for different number of past
values used (see Figure 4.10). All criteria suggests that the predictability power
increases as we take longer history. The best option is to take the whole current
history for all criteria and both variants. Note also that goal differences yield
better results than average points.

It seems that long history is relevant for holding information about forms
of teams. However, we would expect the new information to be more relevant than
older. Therefore, it could be logical to use exponential weighting for evaluating
forms. Exponentially smoothed estimates are in the following form:

α̂t = a xt + (1− a)α̂t−1, a ∈ (0, 1) (4.21)

where xt denotes new observation and we initialize the formula by setting α̂0 = 0.
In our situation it could be either goal difference or number of points. We use
this method to assess forms with different values of smoothing parameter a
for goal differences and for points.

To get an intuition on the dependence on new observation, we use grid
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Figure 4.11: Goodness of fit criteria for measures of performance – the first
is mean goal differences and points followed by exponentially smoothed forms with
smoothing parameter a with values 0.05, 0.1, 0.2, . . . , 0.9. In the upper picture
there is R2 and in lower part Gini coefficient nominal (left) and based on ranks
(right).

for smoothing parameter a with values 0.5, 0.1, 0.2, . . . , 0.9 and calculate R2 and
Gini coefficients as before. For comparison as first measure we include the best
option of previous result – mean goal differences/points from the entire history.
Results are summarized in Table A4 and some of them depicted in Figure 4.11. All
measures give the same result that the best option is the lowest value of smoothing
parameter a = 0.05.

However, we may want to maximize our criteria to find the best value of smooth-
ing parameter. They all lead to optimal value between 0.028 and 0.036 (see Ta-
ble 4.10). This result coincides with the previous result that long history remains
relevant. In optimal cases it outperforms mean goal differences up to given time.

Disadvantage of using plain goal differences is that it does not account for HA
and form of the opponent. We might assume that loss against strong oppo-
nent does not indicate such a poor performance as loss against weak opponent.
Therefore, we might want to take into account form of the other team and ad-
just for home advantage. We may use form (4.21) and as observation we take

R2 Gn GC G1 G2

Optimal smoother 0.028 0.043 0.037 0.036 0.036
Value 0.139 0.295 0.327 0.363 0.363

Table 4.10: Optimal values of smoother a in model (4.21) according to different
goodness of fit criteria.
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R2 Gn GC G1 G2

Optimal smoother 0.010 0.017 0.013 0.012 0.012
Value 0.139 0.294 0.326 0.361 0.361

Table 4.11: Optimal values of smoother a in model (4.22) according to different
goodness of fit criteria.

residual of regression model (4.20) with estimates of forms at a previous step.
The estimation of form for team i at time t for a given year is

rijt = GDijt − (β̂tHAijt + α̂it−1 − α̂jt−1),

α̂it = a rijt + (1− a)α̂it−1.
(4.22)

For the initialization we use α̂i1 = 0 as before and coefficient β̂t is calculated from
estimates 4.3, so we adjust home advantage for season and round.

For evaluating the model with forms estimated by this procedure, we estimate
all forms α̂it, i = 1, . . . , I , t = 1, . . . , T for every season and then fit linear model
(4.20). This method resembles procedure of Kalman filter with Ft = I and
Kt = a I and suitable design matrix Zt. The difference is that we diminish the role
of previous estimate by multiplying it by (1−a). Another useful property is that
if one form is increased by x the opponent’s is decreased by x and at the beginning
α̂i1 = 0. So it holds that at any time forms sum up to zero.

The optimal values of a are even lower than in case of exponential smoothing
(see Table 4.11) with comparable fit as for exponential smoothing using goal
differences.

Last option that we examine is linear regression with observations up to cur-
rent time s and forms are estimated as categorical variables. We fix the estimates
of home advantage as in previous case, so the dependent variable for a given year
r is Y r

ijt = GDr
ijt − β̂tHArijt. To determine which teams played at particular time

t we define set of pairs

At = {(i, j) : in time t there is a match between home team i and guest team j}.

We fit linear regression with all measurements that are available at current time
s since tenth match for a given team as follows

Y r
ijt = αrit − αrjt + εrijt, (i, j) ∈ At, t = 1, . . . , s, r = 0, . . . 15 (4.23)

with constraints for forms (4.14). The estimates of αrit are estimates of forms.
For estimation we use weighted least squares with higher weights for more current
observations in exponential form. Weighted residual sum of squares is in form:

RSS(w) =
15∑
r=0

t∑
s=1

ws
∑

(i,j)∈At

(Y r
ijs − αris + αrjs)

2.

For a given weight w we estimate forms and plug them into model 4.20 and calcu-
late its coefficient of determination R2. To find the most suitable w we maximize
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R2 Gn GC G1 G2

Value 0.137 0.290 0.323 0.358 0.358

Table 4.12: Goodness of fit criteria for weighted least squares with optimal ex-
ponential weights.

R2 on interval [1, 2]. The optimal weight is w = 1.011 and goodness of fit criteria
are slightly smaller than for optimal cases of preceding measures (see Table 4.12).

We can conclude that goal differences are more appropriate for assessing forms
of teams than points and every observation remains relevant for long period.
Suggested measures were based on exponential smoothing of goal differences,
goal differences adjusted for the effect of HA and rolling regression with increasing
number of observations. All measures yield similar quality of fit. The first two
measures are dependent on initial estimate for long time, which diminishes their
quality as it is set to zero. From that reason rolling regression would be better
to use. However, in the next section we implement Kalman filter and compare
given results.

4.10 Kalman filter for estimating forms

In this section we consider Extraliga matches in particular season as dynamic
linear model. Measurements are goal differences as it was shown that it is more
suitable for estimating outcome probabilities than plain result (see section 4.4).
Unobserved state vector are forms of teams and possibly coefficients of other
predictors.

Since we assume particular season, number of teams equals I = 14 and time
points t correspond to different days when at least one match was played (total
is denoted by T ). Minimum value is T = 52 if no match is postponed and every
round is within one day. Number of matches within time point t (denoted as Nt)
is between one and seven.

In preceding sections we have identified predictors that influence goal differ-
ences and the conclusion was that the only significant effect has home advantage,
which increases during a season and is not significantly team specific. This infor-
mation is essential to build suitable state space model. Home advantage might
be taken as a fixed parameter or as a random process. We choose the option
as fixed because time dependence is given rather by seasonal effect or increasing
importance of matches than as a consequence of previous realizations. To include
the effect of home advantage in the model we use the formulation (2.15) which
enables to separate random and fixed effects.

For this purpose we use two parameters. One for home advantage at the be-
ginning of the season and the other for its increasing trend. The state vector and
fixed parameters are denoted

αt = (α1t, . . . , αIt)
>, β = (β0, β1)>.

The measurement equation (2.1) for Extraliga matches is given by following
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assumptions

GDijt = xijtβ + zijtαt + vijt = β0 + β1Rijt + αit − αjt + vijt,

xijt = (1, Rijt), zijt = c>ij, cij = (0, . . . , 1, . . . ,−1, . . . , 0)>,

vijt
iid∼ N(0, σ2

g), (i, j) ∈ At, t = 1, . . . , T.

The vector cij is an indicator of home and guest team, component i is 1, com-
ponent j is −1 and all others are 0. Variable Rijt expresses time in the season,
it might be either round or number of matches played before by home team.
We assume that matches that are played at the same time t are independent.
However, we have to specify the whole vector of measurements such that the di-
mension is not changed for different times. For this reason we stack all possible
goal differences into a vector of dimension I2 × 1 as follows

GDt = (GD11t, . . . , GD1It, GD2It, . . . , GDIIt). (4.24)

and similarly for design matrices

Zt =



d11
...
d1I

d21
...
dII


, dij =

{
cij, if (i, j) ∈ At,
0, otherwise.

Xt =



1 R11t
...

...
1 R1It

1 R21t
...

...
1 RIIt


. (4.25)

It is evident that vector GDt contains large number of systematically missing
values but it does not matter as we can easily define matrix Wt that determines
which measurements of vector GDt are missing as in section 2.3. Its dimension
is Nt × I2 and it equals identity matrix with omitted rows where components
of GDt are missing. Now the measurement equation can be written in matrix
form:

WtGDt = WtZtαt +WtXtβ +Wtvt,

vt
iid∼ N(0, σ2

gI), t = 1, . . . , T.

We have determined the form of measurement equation. In the following, we spec-
ify equation for state vector αt. We assume that team forms are mutually in-
dependent. For each form we assume that they are Gaussian random walks,
the same assumption was taken in Farhmeir and Tutz (1994) and Knorr-Held
(2000). For form of one team we assume:

αit|αit−1 ∼ N(αit−1, σ
2
a), αi0 ∼ N(0, σ2

0).

However, to assure identifiability we must impose some constraint on forms
αt, t = 1, . . . , T . The most natural is to set their sum to zero as in (4.14)
but for every time t = 1, . . . , T . This means that vector αt follows multivari-
ate Gaussian random walk with variance matrix Q that ensures 1>αt = 0 and
the same covariances between all forms.
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Such matrix is given by

Q =
I

I − 1

(
II −

1

I
11>

)
.

In the following we investigate distribution of forms according to definition

αt = αt−1 +wt, wt ∼ N(0, σ2
aQ), α0 ∼ N(0, σ2

0Q). (4.26)

For variances of components of disturbances it holds that var(wit) = σ2
a and

for covariances cov(wit, wjt) = − 1
I−1

σ2
a, i, j = 1, . . . , I, i 6= j, t = 1, . . . , T .

It means that forms are negatively correlated. Moreover, it implies that E 1>αt =
0 and for variance

var(1>αt) = σ2
a1
>Q1 = 0.

Hence, the choice of matrix Q ensures that condition (4.14) holds almost surely.
As discussed in Knorr-Held (2000) it is computationally convenient to trans-

form αt such that its first I − 1 components follow regular random walk and
the last is equal to zero almost surely. Such transformation might be linear with
matrix L defined as

L =

(
II−1 −1
1> 1

)
.

It holds that Lαt = (α1−αI , α2−αI , . . . , αI−1−αI , 0)> = (α̃>t , 0)>. The in-
novation of random walk for first I − 1 components has the following variance
matrix

Q̃ = var(w̃t) = (II−1,−1)σ2
aQ (II−1,−1)> =

I

I − 1
σ2
a(II−1 + 11>).

We may now perform the analysis using random walk of α̃t with slightly changed
design matrix Zt. It holds that αit − αjt = αit − αIt − αjt + αIt = α̃it − α̃jt,
so in matrix Zt we only omit the last column. After we get the estimated forms
of α̃t, we transform them back using linear transformation

αjt = α̃jt −
1

I − 1

I−1∑
i=1

α̃it, αIt = − 1

I − 1

I−1∑
i=1

α̃it, j = 1, . . . , I − 1, t = 1, . . . , T.

Unknown hyperparameters are θ = (β0, β1, σ
2
g , σ

2
a)
> and σ2

0.
The dynamic linear model for one season in ice hockey is defined by following

equations and distributional conditions

GDt = Ztα̃t + Xtβ + vt, (4.27)

α̃t = α̃t−1 +wt, (4.28)

α̃0 ∼ N(0, σ2
0Q̃), vt

iid∼ N(0, σ2
gII), wt

iid∼ N(0, σ2
aQ̃), t = 1, . . . , T.

Using this system we may filter forms α̃t and then transform them into αt and
also predict goal differences in the next match. To do this we need to estimate
hyperparameters θ. This could be done separately for every season using maxi-
mum likelihood estimation or EM algorithm presented in section 2.2. However,
we want to use the whole data at once for estimating hyperparameters θ.
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σ2
0 R2 Gn GC G1 G2

100 0.137 0.290 0.293 0.324 0.324
10 0.136 0.289 0.294 0.326 0.326
1 0.138 0.291 0.317 0.351 0.351
0.1 0.138 0.293 0.321 0.356 0.356
8.207 · 10−3 0.134 0.288 0.319 0.353 0.353

Table 4.13: Goodness of fit criteria for different values of initial state variance σ2
0.

The last option is fitted with the constraint σ2
0 = σ2

a in model (4.20) for estimated
forms αt using Kalman filter.

This would assume that all parameters are the same for every season. In sec-
tion 4.5, we have discovered that home advantage is decreasing in time. For that
reason we add one additional fixed effect Sijt that is identifier of the season with
parameter β3. This choice guarantees the same conditions as for measures of per-
formance in previous section and enables their comparison.

For estimation we use direct approach based on integrated log-likelihood.
For a given season s the log-likelihood is `s(θ) as in section 2.2. We assume
that results of matches over seasons are independent, hence, the log-likelihood
of the whole data is

`(θ) =
15∑
s=1

`s(θ).

We maximize `(θ) with respect to θ. However, we have to choose initial value
of σ2

0. In Knorr-Held (2000) they set σ2
0 = 1 claiming that it is weakly informative

but avoids numerical problems with more diffuse priors. We investigate the results
using different values of σ2

0.
Kalman filter might be used to estimate goal differences in the following

match. For the moment, we want to compare estimated forms by Kalman fil-
ter and methods developed in the previous section. For that reason, we use
Kalman filter only to get estimates αt|t−1 in every season and then use models
(4.20) with observations since 10th match in every season to calculate R2 and Gini
coefficients. For values σ2

0 = 0.1 and then σ2
0 = 1 is the fit better than for others

(see Table 4.13). In comparison with measures of performance in previous section
the results are similar (see Tables 4.10 and 4.11).

By investigating the fitted forms for different values of initial state σ2
0 it holds

that the higher the value the more volatile fitted forms (see Figure 4.12). This cor-
responds with the intuition since bigger initial variance means lower validity of the
initial value and depends more on first observations. There is no significant dif-
ference for values 100 and 10 and on the other hand for 0.1 and 0.008. We also
focus on residuals of models given by vijt = GDijt − α̂it + α̂jt − xtβ̂ with σ2

0 = 1
and σ2

0 = 0.1. Residuals and fitted values should be independent, so the regres-
sion line should have no trend and go through zero. In both cases residuals have
mean close to zero but for σ2

0 = 1 there is significant decreasing trend resulting
in overestimation for high values of fitted values (or underestimation otherwise,
see Figure A2). For σ2

0 = 0.1 we observe reverse situation but in this case the slope
is not significant. For that reason and having higher values of goodness of fit cri-
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Estimated predictive forms in  2014 / 2015
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Figure 4.12: Estimated predictive forms using Kalman filter in season 2014/2015
for different values of variance of initial state σ2

0 (the last option is fitted with
σ2

0 = σ2
b ).

teria following statistics refer to this option.
The estimated effects using MLE give similar estimates as OLS estimates

in model with forms as dummy variables (compare Tables 4.3 and 4.14). The es-
timated variance of forms σ2

a is rather low and corresponds with earlier results
suggesting that forms of teams do not vary dramatically over the season. This re-
sult assures that the assumption of constant forms over the season is not mis-
placed, which is an assumption of linear regression that we used for identifying
significant predictors.

Effect Estimate

HA 0.729
Season −0.022
Round 0.005
σ2
g 5.354
σ2
a 0.005

Table 4.14: MLE estimates from Kalman filter with σ2
0 = 0.1.
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Chapter 5

Search for profitable strategy

In this chapter we firstly focus on average odds offered by betting companies
and analyse, which predictors bookmakers use to set these odds and if it corre-
sponds with the effect they have on goal differences. As in the previous chap-
ter we investigate the influence of home advantage, effect of goal difference from
the previous match, results of previous mutual matches, tiredness and team forms.
Secondly, we compare goodness of fit criteria for odds and models from the pre-
vious chapter. At last we consider the possibility of using odds for a prediction
of a match outcome. To use transformation of odds as explanatory variable
is possible because betting companies provide them before the match.

5.1 Analysis of betting odds

To transform odds into a variable with real values we turn them into proba-
bilities and then use logit function (as in equations (4.9)). Useful property of this
transformation is symmetry because

logit

(
pw

pw + pl

)
= − logit

(
pl

pw + pl

)
.

This assures the symmetry of dataset TP where instead of goal differences we
use transformed odds. In the following, we call them logits and for ith match are

Li = logit
(

pwi
pwi +pli

)
. This continuous variable is defined such that zero is reached

in case that probabilities to win for both teams equal and expected goal difference
is zero and is positive in case that expected goal difference is positive.

We look closely on the effect of home advantage (HA) because it is the only
predictor that was significant for goal differences except team forms. The average
odds for the home win is 2.02 and for the away win is 3.19. Therefore, it is obvious
that betting companies take HA into account. In the previous chapter we have
seen that HA is decreasing in years and increasing in rounds. In that way logits
follow the same pattern (see Figures 5.1). Difference of logits at home and out
for every team and every year is also depicted in the same figure.

To determine whether those trends are significant and if difference of logits
is independent on teams we use the model (4.13) with response logits instead
of goal differences.
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Figure 5.1: Mean logit differences for matches played at home and out. They are
depicted for every season and every team in the upper picture and by year and
by round in the lower figures with a regression line.

The model is

Lijt = β0 + β1Sijt + β2Rijt + δi +
15∑
r=0

(αir − αjr)1[Sijt=r] + εijt,

i, j = 1, . . . , I, t = 1, . . . ,mij

(5.1)

with the same constraints on δi and αir as for model (4.13).
We test significance of all effects using anova F-test. All p-values are smaller

than 0.01, so there is evidence that logits are decreasing in season, increasing
in rounds (see Table 5.1). The effect of team is also significant; for certain teams
the difference between logits home and out is different. The estimated coefficients
δ̂i are significantly higher for Úst́ı nad Labem and Jihlava. Both of those teams
played only in one season and performed poorly. If we also look that the highest
difference (see Figure 5.1) it was observed for Vset́ın in its last season in Extraliga,
we might assume that greater differences in logits at home and out might be
for teams with bad forms.

For that reason, we have calculated average logits for every team and ev-
ery season and difference between average logits at home and out. There is
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Effect Sum of Squares Df F-value p-value

Season 2.15 1 31.201 < 0.001
Round 1.50 1 21.883 < 0.001
Team 5.37 21 3.716 < 0.001
Forms 1398.60 208 97.784 < 0.001

Table 5.1: Analysis of variance (Type II tests)

a significant quadratic relationship between those variables (for illustration see
Figure A3). It means that the estimated odds to win home are higher for the
non-average teams.

To quantify the effect of other variables we would use the analogous steps
as in previous chapter with response logits instead of goal differences. Not to re-
peat the same steps we restrict the commentary to stating results. Firstly, we
discuss the effect of result from the previous match. We fit analogous model
as (4.15). The estimated coefficient β̂3 = 0.013 and is highly significant. This
means that goal difference from the last match has a positive effect on the fol-
lowing logits. For goal differences the effect was insignificant after filtering the
average effect of forms.

Secondly, mutual matches are significant in both terms as a categorical vari-
able and also as mean goal difference of previous mutual matches. The estimated
coefficient for the second mentioned is positive, which is the opposite effect than
for goal differences.

At last, the covariate tiredness is insignificant with p-value = 0.429. The same
result was observed for goal differences. These results are useful for identifying
covariates that are used to set odds. However, the comparison with goal differ-
ences is questionable as it contains categorical variables of team forms. It means
that team forms are either computed based on goal differences or logits depending
on the response that we use. For that reason, we construct two models with the
same measure of performance. We use estimated coefficients by rolling regression
fitted in model (4.23) with w = 1.011. We use data since tenth match for each
team and every year to have more reliant estimates of forms. Models for particular
year are:

Yijt = β0 + β1Sijt + β2Rijt + β3(GDi.t−1 −GDj.t−1)

+ β4GDMMijt + β5TDijt + β6(α̂it − α̂jt) + εijt,

Rijt > 10, t = 1, . . . , nij, i, j = 1, . . . , I

where Yijt is either GDijt or Lijt and variable GDMMijt is mean goal difference
in previous matches between teams i and j.

Estimated effects and their significances are summarized in Table 5.2. Form
of teams is the most significant predictor for both responses, which corresponds
with intuition. Surprisingly, the estimated coefficient for response goal differences
is not equal to one as is fitted in model for estimation of forms but only 0.565.
This means that filtered forms are more volatile than they should be.

The second most important factor is home advantage, which decreases in sea-
sons and increases in rounds. The estimated coefficients for goal differences are
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Goal Differences Logits

Effect Estimate T-val. p-value Estimate T-val. p-value

HA 0.705 6.23 < 0.001 0.511 31.23 < 0.001
Season −0.021 −2.79 0.005 −0.006 −5.82 < 0.001
Round 0.006 1.96 0.049 0.001 2.88 0.004
Form 0.565 14.07 < 0.001 0.509 87.66 < 0.001
Previous matcha −0.002 −0.17 0.869 0.003 1.94 0.052
Mutual matchesb 0.094 2.61 0.009 0.081 15.59 < 0.001
Tiredness −0.220 −2.09 0.037 0.014 0.91 0.361

Note: a Goal difference of the previous match.
b Mean goal difference of previous mutual matches.

Table 5.2: Comparison of different effects on goal differences and logits with es-
timates of forms calculated by rolling regression.

almost identical as for model with forms as categorical variable (compare with the
Table 4.3). The estimated coefficient for round is no longer significant.

Mean goal difference of previous mutual matches has positive effect for both
responses. In case of goal differences this contradicts results given in model
with forms as categorical variables where the estimated coefficient was nega-
tive but insignificant. Change of sign could be caused by using filtered instead
of smooth estimates of forms.

Variables goal difference of the previous match and tiredness are insignificant
on confidence level 0.01 and in the following analysis are omitted. The fit is much
better for logits with coefficient of determination R2 = 0.823 than for goal dif-
ferences where R2 = 0.139 for TP. This indicates that betting companies use
substantially quantitative information that is observed and measured.

5.2 Comparison of analytical model and betting

odds

In this short section we compare analytical model and odds for estimating
outcome of a match. For an outcome in terms of plain result (Win/Draw/Loss),
we compare models based on Gn. We do need to know the exact probabilities
estimates of betting companies to access its diversification power. We use the
fact that estimated probabilities are monotonous transformation of odds and Gn

is invariant on monotonous transformations. We only need to change sign for Gn

because the transformation is decreasing.
We take goal differences as response and logit transformation of odds as the

only predictor and calculate coefficient of determination R2. We have calculated
the value on the whole sample in section 4.4 because R2 equals squared correlation
coefficient between variables logits and goal differences (see Zvára, 2008, page
36). However, for comparison we use dataset TP with matches since tenth match
for every team in every season. As analytical model we use model with forms
estimated by rolling regression (see equation 4.23).
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R2 Gn Gw Gt Gl

Analytical model 0.137 0.290 0.358 0.033 0.359
Betting companies 0.154 0.312 0.378 0.063 0.378

Table 5.3: Goodness of fit criteria for analytical model with odds.

In both criteria the odds of betting companies outperforms the analytical
model (see Table 5.3). From that point, we can conclude that betting companies
use efficiently some extra information as current absence of key players. In that
table we provide partial Gini coefficients, from which is Gn calculated. We see
that the value of Gw and Gl is almost identical, it is consequence of using TP;
they are not identical because not all matches are there twice since we use dataset
with restriction that the team has played more than ten matches (not necessarily
his opponent). Value Gt is close to zero, which suggests that correct estimation
of probability of draw is more demanding than win.

5.3 Prediction of ice hockey match result

In this section we develop a model that could be used for estimation of prob-
abilities of outcomes win, draw and loss. We have constructed such models using
cumulative logit link for calculating Gini coefficients in the previous chapter.
We have seen that odds by betting companies have greater diversification power
than the analytical model. However, some predictors might be underestimated or
overestimated and their combination with logits might result in a better model.
The combined model is used to detect bets that are profitable in mean.

Firstly, we detect predictors, which are significant along with logits by using
linear regression. In the second step we use the same predictors to fit ordinal
regression. Theoretical background for this method is that goal differences can
be viewed as a latent variable for the plain result (for detail see Cipra, 2008).
The principle is expressed by the following equations:

P(Y = 0) = P(GD ≤ θ0) = P(x>β + ε ≤ θ0) = P(ε ≤ θ0 − x>β) = F (θ0 − x>β)

P(Y ≤ 1) = P(GD ≤ θ1) = P(x>β + ε ≤ θ1) = P(ε ≤ θ1 − x>β) = F (θ1 − x>β)

where F is a distribution function of ε. In reality, the threshold parameter θ0

could be anything between −1 and 0 and θ1 between 0 and 1 but we assume goal
differences to be continuous and hence, the parameters are to be estimated.

We fit linear regression with logits, forms and possibly significant predictors.
We use dataset MP with data from tenth match to have estimates of forms via
rolling regression. The estimates and their significances are summarized in Ta-
ble 5.4. The measure of performance is insignificant along with logits as well as
mean goal differences in mutual matches. Estimated coefficients of HA and round
are positive, which suggests that home advantage is underestimated when odds
are set up. This motivates us to compare strategies betting on a win of home team
and on a win of guest team. It means in every match we bet on home (or guest)
team and then calculate the average margin. If we bet on a win of home team,
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Effect Estimate Std. error T-val. p-value

HA 0.175 0.123 1.43 0.15
Season −0.015 0.008 −1.96 0.050
Round 0.004 0.003 1.54 0.125
Form 0.025 0.064 0.40 0.695
Logit 1.05 0.101 10.36 < 0.001
Mutual matchesa 0.009 0.037 0.239 0.811

Note: a Mean goal difference of previous mutual matches.

Table 5.4: OLS estimates of linear regression with response goal differences.

we have average loss 2.6 %, for a win of guest team 20.8 % and for a draw
8.4 %. It means that random betting on a win of home team is more favourable
than on a win of guest team. In some years, it leads even to a positive profit
(see Table A2).

Since the predictor form is insignificant we omit it and fit another model
with only HA, season, round and logits on the whole sample. In that model, fitted
values seem to be overestimated for negative values and values higher than one
(see Figure 5.2). This graph along with the Figure A3 motivates us to use some
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Figure 5.2: Residuals of linear model with response goal differences and predictors
logits, HA, season and round.
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Effect Estimate Std. error T-val. p-value

Threshold θ0 −0.577 0.070 −8.29 < 0.001
Threshold θ1 0.382 0.070 5.51 < 0.001
Season −0.009 0.006 −1.60 0.110
Round 0.003 0.002 1.65 0.099
Logit 0.607 0.199 3.01 0.002
arctan(Logit) 0.301 0.278 1.08 0.279

Table 5.5: ML estimates of cumulative logit model with response result.

transformation of logits. We would like to diminish the effect of logits for its higher
absolute values. We want also the function to be odd to maintain symmetry.
Suitable transformation seems to be arcus tangens. We use it along with its
linear form to fit the cumulative model. Hence, the model used for predicting
probabilities of outcomes has the following form:

logit(P(Yijt = 0)) = θ0 − β1Sijt − β2Rijt − β3Lijt − β4 arctan (Lijt),

logit(P(Yijt ≤ 1)) = θ1 − β1Sijt − β2Rijt − β3Lijt − β4 arctan (Lijt),
(5.2)

t = 1, . . . , nij, i, j = 1, . . . , I.

To access probabilities, we use cumulative logit model. Estimated variables
have expected signs (see Table 5.5). T-values are not high because the effect
of logits is split between its linear and arcus tangens transformation. The odds
to win in a season 1999/2000 at the first round after accounting for logits are

exp(−θ̂1 − θ̂0) = 1.21 higher home than out.

To compare this model with the others in terms of goodness of fit, we use
dataset with matches for teams after tenth match. Goodness of fit criteria
for this model are higher than for any previous model (see Table 5.6). Compared
with odds of betting companies the biggest increase in a partial Gini coefficient
was for a draw.

To see if this model would yield a positive margin in the history, we place
a bet in case that the product of provided rate r and the estimated probability
of outcome q is greater than one. It means we place a bet if the expected margin
is greater than zero.

R2 Gn Gw Gt Gl

Prediction model 0.158 0.323 0.386 0.084 0.386
Analytical model 0.137 0.290 0.358 0.033 0.359
Betting companies 0.154 0.312 0.378 0.063 0.378

Table 5.6: Goodness of fit criteria for prediction model and other models for
comparison.
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Figure 5.3: Profit of a betting strategy based on the prediction model (5.2). Lines
show resulted cumulative profit if we bet 100 at every occasion when the expected
profit is greater than zero.

To calculate the average margin of one bet according to our betting strategy
we use the formula:

M =

∑N
i=0

∑2
j=0(rji − 1)1[rji q

j
i>1,Yi=j]∑N

i=0

∑2
j=0 1[rji q

j
i>1]

.

where N = 5817 is the total number of matches without missing values of odds.
The resulted margin is M = 1.78 %. If we use the same formula but separately
for win, draw and loss of home team, we find out that there wasn’t a single bet
on a loss, the average margin for a draw was 3.64 % and for a win 0.77 %.

We plot a figure simulating our strategy of betting. We start with 0 and
every time when the expected margin is greater than one we bet 100. We plot
the profit of our strategy for betting on draw and on win separately and together
(see Figure 5.3). Most of the bets were placed at first seasons, specifically we
have not placed a single bet on draw since season 2009/2010 and in four preceding
seasons we bet only five times (see Table 5.7). Betting on a win of home team was
primarily done in higher rounds of a season. This corresponds with increasing
HA according to the prediction model.

The final cumulative profit of the proposed strategy is 3697 for 2081 bets,
which suggests reasonable profitability. However, the profit since season 2004/2005
was mostly negative (see Table 5.7). It became profitable again in the last two
seasons. The main disadvantage of this model is that it is highly dependent on
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Number of bets

Season Profit Cumulative Profit Draw Win Both

1999/2000 2339 2339 192 132 324
2000/2001 3626 5965 185 69 254
2001/2002 633 6598 116 188 304
2002/2003 201 6799 168 129 297
2003/2004 −309 6490 20 112 132
2004/2005 −2122 4368 41 50 91
2005/2006 552 4920 2 53 55
2006/2007 −609 4311 4 79 83
2007/2008 −526 3785 0 59 59
2008/2009 −1522 2263 1 65 66
2009/2010 −649 1614 0 63 63
2010/2011 1145 2759 0 49 49
2011/2012 −557 2202 0 62 62
2012/2013 −103 2099 0 57 57
2013/2014 516 2615 0 104 104
2014/2015 1082 3697 0 81 81

Table 5.7: Profit of the betting strategy in every season if we bet 100 at every
occasion when the expected profit is greater than zero.

provided odds of betting companies and we lack the information how they create
them.

The strategy might be changed and we may bet only in case that the expected
margin is greater than some positive value. This would lower number of bets
and should be more profitable on average. If we bet only in case when margin
is greater than 1 % the realized margin is M = 4.23 %, for win it is 2.1 % and
for draw 6.7 %. The total number of bets is 1340 and the total profit is 5670.
The cumulative profit is in the figure A4. The reason that this strategy was more
successful than the first one was that it stopped betting on draw earlier and that
betting on home win was more successful in later seasons except the last one.
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Conclusion

At the beginning of the thesis we presented main theoretical background
that was needed for better understanding of derivation of the Kalman filter and
for evaluation of models created in the practical part. For derivation of the
Kalman filter we formulated and derived theorem for calculating the current
state estimate in an original way. We have outlined two methods of hyperparam-
eters estimation – maximum likelihood estimation and EM algorithm. In the last
section we described how to handle missing observations in the Kalman filter.

Further, we have defined multivariate generalized linear models and showed
that an ordinal categorical variable as a response with unspecified covariates
satisfies the conditions. It was outlined how the estimation of a state vector
could be derived in case that measurements come from a multivariate generalized
linear model. This approach was not described in better detail as the usage of goal
differences proved to be more informative than a plain result.

In the practical part we have analysed 16 seasons of Czech league ice hockey
competition Extraliga matches in the main part. Based on specifics of Extraliga
we have concluded that forms of teams are better to be estimated for every
season independently. We discussed two different types of datasets that can be
used for an analysis of paired comparisons and proved that estimates coincide
in both linear and cumulative link models for symmetrical regressors.

We have examined several factors that may have an impact on the team form.
The only significant predictor proved to be home advantage. Its positive effect
is increasing in rounds and decreasing in seasons. We have examined the au-
tocorrelation of results. It was necessary to filter the effect of home advantage
because it typically changes after every match and the average form of the team
in that season. Taking those factors into account, we found out that there is not
a significant effect of a result from the previous match. Similarly, tiredness from
the previous match and history of mutual matches were insignificant.

Several measures of team forms were proposed and discussed. Firstly, we ob-
served that long history of results remains valid. For example we get better
estimates of team forms using the knowledge of a current position in the league
than by knowing five last results. Further, we saw that using goal differences
leads to better team form estimates than using the plain result. Based on this
conclusion we did not implement the discrete form of the Kalman filter but its lin-
ear form with goal differences as measurements and team forms as a state vector.
However, the goodness of fit criteria did not indicate better prediction power than
using weighted goal differences of the history. A disadvantage of the Kalman filter
is the necessity of setting several hyperparameters, which influences the resulted
estimates.

In the last chapter we compared the analytical model based on information
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of previous results with odds of betting companies. For that purpose, we used
the invariance of Gini coefficient on monotone transformations, which enabled
to calculate its value directly from odds by betting companies. The odds of bet-
ting companies (Gn = 0.312) outperformed our model (Gn = 0.290). However,
we have found out that betting companies underestimate the home advantage
and that blind betting on a home team is not so much loss making as betting
on a guest team.

At the end we have used the fact that odds are known before the actual match
and can be used as a predictor along with other variables. We have combined
a transformation of odds with the effect of home advantage to build a model (Gn =
0.323) and used it for betting. Our strategy for betting was to place a bet when
the expected margin is positive. The strategy proved to yield a positive margin
but it was highly profitable only at first seasons. Therefore, further analysis
would be beneficial before using the strategy for the next season.
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Figure A1: Figures show average number of goals scored by home team (left) and
guest team (right) in rounds.
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Figure A2: Residuals of Kalman filter defined by equations (4.27) and (4.28) with
different value of initial variance σ2

0 and red regression line.
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Figure A3: Dependence of difference in logits home and out on average logits.
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Figure A4: Profit of a betting strategy based on the prediction model (5.2). Lines
show resulted cumulative profit if we bet 100 at every occasion when the expected
profit is greater than 1 %.

84



Days between matches

Season 0 1 2 3 4 5 6 7 > 7

1999/2000 40 329 122 17 121 21 18 0 60
2000/2001 30 361 136 10 110 10 12 4 55
2001/2002 33 356 190 18 58 5 12 0 56
2002/2003 32 361 164 14 89 7 4 1 56
2003/2004 33 360 171 21 62 11 14 0 56
2004/2005 30 354 180 19 69 9 7 0 60
2005/2006 35 333 157 54 55 23 13 3 55
2006/2007 29 370 164 32 56 10 9 2 56
2007/2008 10 388 159 39 75 0 1 1 55
2008/2009 7 372 167 38 85 1 2 2 54
2009/2010 0 396 146 30 90 3 6 0 57
2010/2011 4 399 172 39 56 1 0 0 57
2011/2012 6 399 162 25 47 15 12 11 51
2012/2013 4 393 133 34 98 3 3 5 55
2013/2014 0 405 116 25 117 4 3 2 56
2014/2015 2 408 105 13 135 0 8 1 56

Table A1: Historical data of number of days between matches for all teams in
main part of all season.

Season Bet on home team Bet on draw Bet on guest team

1999/2000 −0.007 −0.040 −0.323
2000/2001 −0.014 −0.020 −0.280
2001/2002 −0.096 −0.033 −0.152
2002/2003 −0.001 −0.036 −0.296
2003/2004 0.035 −0.110 −0.340
2004/2005 −0.074 −0.256 −0.157
2005/2006 −0.020 −0.071 −0.240
2006/2007 0.036 −0.204 −0.216
2007/2008 −0.054 0.120 −0.300
2008/2009 −0.017 0.004 −0.222
2009/2010 −0.111 −0.003 −0.121
2010/2011 −0.024 −0.144 −0.150
2011/2012 −0.055 0.019 −0.198
2012/2013 0.005 −0.081 −0.163
2013/2014 −0.052 −0.162 −0.106
2014/2015 0.040 −0.320 −0.065

Table A2: Realized margin in different seasons and betting at each match on
either home win, draw or away win.
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Goodness of fit criteria

Method Last matches R2 Gn GC G1 G2

Position in table 0.120 0.278 0.310 0.344 0.344
Goal differences 0.136 0.292 0.324 0.358 0.358

1 0.087 0.232 0.261 0.290 0.290
2 0.092 0.243 0.274 0.305 0.305
3 0.094 0.245 0.274 0.305 0.305
4 0.101 0.256 0.288 0.319 0.319
5 0.104 0.259 0.290 0.322 0.322
6 0.108 0.267 0.296 0.328 0.328
7 0.113 0.270 0.301 0.334 0.334
8 0.117 0.275 0.306 0.340 0.340
9 0.118 0.279 0.309 0.342 0.342
10 0.121 0.284 0.312 0.346 0.346

Points 0.128 0.285 0.316 0.350 0.350
1 0.086 0.227 0.255 0.284 0.284
2 0.089 0.236 0.268 0.298 0.298
3 0.090 0.239 0.267 0.297 0.297
4 0.096 0.247 0.278 0.309 0.309
5 0.099 0.253 0.284 0.316 0.316
6 0.102 0.260 0.289 0.321 0.321
7 0.107 0.263 0.294 0.327 0.327
8 0.111 0.267 0.300 0.333 0.333
9 0.112 0.271 0.302 0.335 0.335
10 0.115 0.276 0.305 0.338 0.338

Table A3: Goodness of fit criteria based on model 4.20 with measures of per-
formances based on mean differences calculated from specified number of last
matches. Methods without specified number use all history up to a given time.
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Goodness of fit criteria

Method a R2 Gn GC G1 G2

Goal differences 0.136 0.292 0.324 0.358 0.358
0.05 0.138 0.295 0.327 0.362 0.362
0.1 0.131 0.290 0.321 0.355 0.355
0.2 0.116 0.275 0.306 0.339 0.339
0.3 0.106 0.264 0.295 0.327 0.327
0.4 0.100 0.256 0.286 0.318 0.318
0.5 0.096 0.250 0.281 0.312 0.312
0.6 0.093 0.245 0.276 0.306 0.306
0.7 0.091 0.241 0.271 0.302 0.302
0.8 0.089 0.237 0.268 0.297 0.297
0.9 0.088 0.234 0.264 0.294 0.294

Points 0.128 0.285 0.316 0.350 0.350
0.05 0.130 0.288 0.319 0.353 0.353
0.1 0.123 0.282 0.312 0.346 0.346
0.2 0.109 0.267 0.298 0.331 0.331
0.3 0.100 0.256 0.286 0.318 0.318
0.4 0.095 0.248 0.278 0.309 0.309
0.5 0.092 0.242 0.272 0.302 0.302
0.6 0.090 0.237 0.267 0.297 0.297
0.7 0.088 0.234 0.264 0.293 0.293
0.8 0.087 0.231 0.260 0.290 0.290
0.9 0.087 0.229 0.258 0.287 0.287

Table A4: Different measures of performance defined according to 4.21 with
smoothing parameter a. Methods without specified a are mean differences of those
measures.
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