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Department: Department of Distributed and Dependable Systems
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Chapter 1.

Introduction

Parallel programming has increased in importance during the last the ten years

more than ever before. Apart from common multicore desktop computers and

servers, mobile devices such as smartphones and tablets feature multicore CPUs

as well [1]. Much attention has been paid to multicore solutions since it seems

to be a reasonable way of performance boosting while using as little energy as

possible.

The distributed systems and cloud computing are becoming more popular

and widely used as well. The current situation encourages developers to use the

concurrent programming techniques in order to increase the system performance.

Therefore, a lot of technologies that implement the concurrent approach have

been developed, e.g. OpenMP for C++ and Fortran, Threading Building Blocks

(TBB) for C++ and AKKA for Java and Scala.

1.1 Aim of the Thesis

The initial aim of this thesis is to implement Java source code preprocessor which

we denote omp4j (OpenMP for Java). It allows developers to use OpenMP-like

directives for simple parallelization and enhanced scalability of their algorithms.

Secondly, an overview of related projects for Java is provided. The range of

different technologies is presented (see chapter 1.3) as well as multiple employed

design patterns. These solutions are compared with the original OpenMP API

(described in chapter 2.4).

Finally, the thesis intends to evaluate the preprocessed code performance in

terms of the total speedup and scalability (see chapter 5). The comparison with

related projects is also covered.
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The original thesis requirements are good portability of the preprocessor and

no runtime dependencies of the translated code. The more detailed requirements

are listed below.

• The preprocessor should support a basic subset of OpenMP directives in-

cluding:

– omp parallel

– omp parallel for

– omp for

– omp section[s]

– omp barrier

– omp critical

Furthermore, thread-id entities should be supported as well as compatible

attributes including:

– public

– private

• The preprocessor should run on all common Java Virtual Machines (JVMs)

including:

– OpenJDK 6

– OpenJDK 7

– Oracle JDK 7

– Oracle JDK 8

• The preprocessor should be able to modify all commonly used Java stan-

dards (the official notation as described by OpenMP API [2]) including:

– Java SE 6

– Java SE 7

– Java SE 8

• The preprocessor should not have any runtime dependencies except for

proper JDK.

• The preprocessed code should not have any runtime dependencies, i.e. no

installed classes in the classpath are required.

During the development, we extended the list of requirements in order to maxi-

mize the real-life user experience. The added requirements are listed below.
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• The preprocessor may be used as a Java compiler instead of regular javac.

That enables easy integration into various IDEs such as IntelliJIdea, Eclipse

and NetBeans.

• Apart from being used as a standalone program, the preprocessor can be

used as a library that can be employed by third-party software.

• The translated code should be easily modified, thus it should differ as little

as possible from the original code.

1.2 Thesis Organization

In the following section 1.3, an overview of similar Java projects is provided. Both

OpenMP-like and library-based solutions, that allow a simple parallelization, are

covered.

Chapter 2 consists of concurrent programming theory information that is used

later on. The OpenMP project itself is described in detail and classified in terms

of Flynn’s taxonomy (see chapter 2.3). In addition, two important laws - Moore’s

(2.1) and Amdahl’s (2.2) - are explained. Further, the motivation for parallel

programming and its limitations are discussed.

In chapter 3, the omp4j preprocessor architecture is described. The language

and used technologies are discussed as well as all supported directives. The whole

preprocessing work-flow is explained including the used methods of code analysis.

The process of project development is presented in chapter 4. All important

tools that were employed are listed in detail. The information about future

extension of the project in terms of technical knowledge is provided.

In chapter 5, a complex performance evaluation of the output code is in-

troduced. For this purpose, a set of benchmarks is provided. As a result of

the performance evaluation, two linear models of speedup dependence (see chap-

ter 5.2.4) are created. Finally, comparisons with similar projects are made, e.g.

gcc OpenMP implementation (see chapter 5.6.1) and JOMP (see chapter 5.6.2).
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Chapter 6 describes the user documentation. The ways of obtaining source

code are listed together with the compilation instructions. All command line

options and their effects are described. Finally, an example of an input code is

attached.

In the final chapter, 7, a library-like preprocessor usage is presented. A mod-

ern website, whose back-end is written entirely in Scala, is developed in order to

feature a live demo of code transformation via omp4j.

The thesis is accompanied with a digital attachment which includes the whole

project, benchmarks and website. Refer to Attachment chapter for detail infor-

mation about the structure of the provided data.

1.3 Related Work

OpenMP is specification of a set of directives that are used in order to provide

the parallelization of the following block of code. It was originally implemented

for C/C++ and Fortran. OpenMP is covered in detail in a separate chapter (see

chapter 2.4) since it is only API specification. Besides, this section examines

concurrent preprocessors and libraries for Java.

Since 1995, when Java was introduced by Oracle Corporation [3], various

parallel frameworks and preprocessors have been developed. Because of the Java

backward compatibility maintenance throughout the decades, in recent times

the language itself has become rather old-fashioned and not flexible enough for

modern applications. Hence, the number of libraries and other parallelizing tools,

that provide easy concurrency approach, has been increasing.

1.3.1 JOMP

JOMP1 is an academic research project that implements the OpenMP API for

Java [4]. It implements a wide range of OpenMP directives including reduction.

The directive comments must start with //omp without any whitespaces allowed

1https://www2.epcc.ed.ac.uk/computing/research_activities/jomp
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before omp which is uncomfortable for the user. The project is divided in two

separate parts - the preprocessor itself and the runtime library.

The preprocessor takes a Java source file that must be appended with a .jomp

extension [5]. The output is a regular Java source file which may be compiled

with any Java compiler. The main disadvantage of JOMP is that the processed

code is dependent on the runtime library that must be installed in the classpath.

The library itself defines the most important class - jomp.runtime.BusyTask [6].

The source processing works as follows. Initially, a new context class, that extends

previously mentioned BusyTask, is created in the file scope. The class name is

prefixed with underscore in order to prevent name conflicts, however the code

readability decreases.

The class contains public fields for all variables that may be used in the parallel

code. These fields are initiated immediately after the class instance creation.

The parallel invocation is executed in the overridden go method of BusyTask.

Hence, the code following a directive is moved from its original position into go

method without being modified. [6].

The advantage of the adopted approach provides a simple source procession,

however the output differs seriously from the input as the blocks of code are

transferred to fundamentally distinct locations.

JOMP does not support Java SE 8. Thus, the modern language constructs

such as lambdas are unable to be used. In addition, the JOMP parser often fails

when parsing Java source code decorated with the annotations such as @Override,

as follows from the experiments that we made.

1.3.2 JaMP

JaMP is an OpenMP implementation that is fitted into Jackal DSM that dis-

tributes Java parallel processes onto a cluster [7]. It is implemented in a similar

manner to JOMP (described in chapter 1.3.1).
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The main advantage of JaMP is its integration to Jackal DSN, thus poten-

tially enhanced scalability is provided. However, the benchmarks have not been

executed on more than eight nodes [7].

Apart from requirement of the runtime library, the main disadvantage is un-

supported parallel for directive which leads to an inelegant work-sharing directive

notation.

1.3.3 Pyjama

Pyjama intends to implement OpenMP for Java with a direct graphical user

interface (GUI) support [8], i.e. in the main, the responsiveness maintenance and

“allowing correct execution of GUI-related code within those regions” - [8].

Pyjama preprocessor requires .javamp source files which are processed into

regular . java output files [8].

The project, as well as previously listed OpenMP implementations, requires a

runtime library for correct compilation and execution of the translated code [8].

In addition to this portability limitation, nested directives are not supported and

some fields, such as those marked static , remain unsupported [9]. Furthermore,

the directive attributes must follow a particular order, e.g. num threads must come

as the first attribute [9].

1.3.4 JPPF

JPPF2 is a powerful solution for distributed computing on the grid. In contrast

to previously introduced projects, JPPF doesn’t provide anything like OpenMP

in terms of directives. Since JPPF is a library, the user must be directly aware

of implementing a massively distributed algorithm and divide the workload into

tasks i.e. classes implementing JPPFTask interface.

This is a fundamentally different approach to OpenMP, however, it is a com-

monly used alternative for concurrent computation especially when the design

2http://www.jppf.org
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pattern supported by directives is not suitable.

1.3.5 AKKA

The project AKKA3 is the “state-of-the-art” library for concurrent and distribut-

ed JVM computing. It supports both Java and Scala languages and is used for

general purposes. A C# implementation of AKKA - AKKA.NET - was also

developed for .NET framework [10].

Similarly to JPPF, the user must be aware of the application concurrency.

In contrast to Fork-Join model, that is brought by OpenMP (see chapter 2.4.2),

AKKA implements the Actor model which is both a major advantage and disad-

vantage at the same time.

Actor model extends object oriented programming, replacing “everything is

an object” policy with “everything is a concurrent actor” model. Actor itself

features the asynchronous message-passing with other actors (see figure 1.1 for

Actor pattern demonstration).

The main advantage of this approach is possible data immutability mainte-

nance which encourages the functional design. It leads to greater stability and

scalability of the applications. On the contrary, some trivial problems become

less effective when actor pattern is used instead of Fork-Join model.

Figure 1.1: Three actors passing messages to each other

3http://akka.io
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Chapter 2.

Theory of Parallel Computation

In this chapter presents two important theses which are highly relevant for the

motivation for writing parallel programs and for their performance evaluation. A

basic overview of multiprocessing architectures is provided and the one which is

relevant for this thesis is highlighted. Finally, OpenMP API standard is briefly

introduced together with Fork-Join model, history and usage in modern develop-

ment.

2.1 Moore’s Law Limitation

Throughout the last fifty years, a fundamental observation called Moore’s law has

held. It states that the number of transistors in integrated circuits doubles every

18 months (respectively 24) [11]. Therefore, it implies the exponential growth of

the transistor number as well as exponential decrease of the physical size of the

transistor.

However, due to physical limitations such as the fact that a transistor cannot

be manufactured smaller that an atom, it’s obvious that Moore’s law is not going

to hold forever. Moore himself stated in 2010 that:

“ ... In terms of size [of transistor] you can see that we’re ap-

proaching the size of atoms which is a fundamental barrier ... ”[12]

In 2014, Intel Co. introduced a generation of CPUs called Haswell featuring

22nm transistor technology. Early this year, in January 2015, a new generation of

CPUs named Broadwell featuring 12nm technology was released. In comparison

to atom size, which is c. 0.1nm, it is only 100× bigger. In April 2015, the three-

atoms thick layer that may be employed as a transistor was introduced [13].

Even though the whole research project is rather experimental, it is clear that

the atom-units transistor are manufacturable.
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Since the limitation obviously exists, the CPUs manufacturers are motivat-

ed to seek different approaches in order to increase the performance. Frequency

boosting increases both power consumption and heat production during the com-

putation. For this reason, CPU producers almost stopped frequency development

of CPUs in 2004 [14].

The previously described context suggests that a new approach to increasing

performance should be used. The majority of CPU and GPU manufacturers are

focusing on parallel architectures that may increase computation power.

2.2 Amdahl’s Law

Parallel programming provides only limited computation power boost. Obviously,

a N -core computer might theoretically provide at most N -times greater compu-

tation power than identical single-core machine. This leads to the linear upper

bound of the possible speedup. However, there exists a non-trivial limitation of

maximal possible speedup that is called Amdahl’s law.

As Amdahl states, his rule models the expected speedup of parallelized algo-

rithm of fixed size [15]. The following notations, definitions and equations are

taken from Yaghob [16].

Definition. T (1) is the total time of the execution of the sequential algorithm

implementation.

Definition. T (P ) is the total time of the execution of the parallel algorithm

implementation using P processing elements.

Definition. S(P ) is the speedup using P processing elements. The formal defi-

nition is as follows:

S(P ) =
T (1)

T (P )

In every parallel implementation there is a fraction of the code that cannot run

concurrently. Usually it contains I/O operations such as reading a file, scanning

the network or writing the output.
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Figure 2.1: Amdahl’s law visualization with different values of γ. Logarithmic
transformation is applied to x-axis in order to demonstrate the difference properly.

Definition. γ is the serial fraction of the parallel implementation and it is nat-

urally defined as follows:

γ =
Tserial(1)

T (1)

Finally, Amdahl’s law may be formulated by using prior definitions. The the-

orem asserts that given any positive γ, the maximal speedup is never unbounded.

Thus the scalability of the algorithms, which have at least a single instruction

executed serially, is bounded.

Theorem 1.

lim
P→∞

S(P ) =
1

γ

Proof. Proof follows simply from previous definitions [16].

Figure 2.1 demonstrates the influence of γ. As it might be observed, the

speedup difference of γ = 0.01 and γ = 0.025 is greater then the speedup differ-

ence of γ = 0.025 and γ = 0.5

Amdahl’s law is an important rule that is referred in performance evaluation

which is covered in chapter 5. In reality, Amdahl’s law is not the expected speedup

since the concurrency approach inevitably leads to overhead. Additionally, it is
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almost impossible to determine γ precisely. Thus, Amdahl’s law may be assumed

to be an upper bound of the possible speedup.

2.3 Parallel Architectures Classification

Multi-processing may be achieved via different architectures. There are four

major architectures, that form Flynn’s taxonomy, based on data and instruction

load that are processed at once [16]. Table 2.1 presents Flynn’s taxonomy in

tabular form.

Single Instruction Multiple Instruction
Single Data SISD MISD
Multiple Data SIMD MIMD

Table 2.1: Flynn’s taxonomy

In this thesis, only the MIMD architecture is used as the preprocessor pro-

vides exclusively thread-level parallelization. Thus, different threads may execute

different instructions concurrently. Even though the combination of SIMD and

MIMD is often used in low-level programming, this thesis is limited to develop-

ment of a high-level preprocessor compatible with all JVMs. Therefore it cannot

deal with SIMD instructions because Java provides no interface for instruction-

level programming. [17].

2.4 OpenMP

OpenMP has been standard for shared memory multiprocessing since 1997. The

parallelization itself is achieved via compiler directive usage. Therefore program-

ming using OpenMP directives is rather straightforward for the programmer as

it is possible to write serial codes decorated with simple directives. Nevertheless,

the developer ought to be aware of future parallelization in order to maximize the

final speedup. Example in listing 2.1 demonstrates a simple usage of directive

programming.
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1 #pragma omp p a r a l l e l f o r
2 f o r ( i n t x=0; x < 10000 ; x++) {
3 runTask ( x ) ;
4 }

Listing 2.1: OpenMP (C++) parallel for

2.4.1 History

Throughout the years, the OpenMP project has been developed by OpenMP

Architecture Review Board (OpenMP ARB). It consists of both hardware and

software related companies such as IBM, AMD, ARM, HP, Intel, NVidia, Oracle

co., RedHat and many more [18]. ARB is responsible for all released OpenMP

specifications.

Initially implemented only for Fortran, it became popular across many fields

especially mathematical computing and physical simulations [19]. In 1998 the

C/C++ support was provided.

Even though OpenMP 4.0 was released in 2013 [20], only few C/C++ compil-

ers support all new directives. However, the majority of commonly used C/C++

compilers (in the latest versions) such as gcc (GNU), icc (Intel) and clang (LLVM)

supports OpenMP 3.0 with some directives introduced in 3.1 [21]

2.4.2 Fork-Join Model

OpenMP uses Fork-Join design pattern for majority of supported directives. In

Fork-Join model, the developer determines points where the program branches

and runs in parallel (fork) and also the points where branches meet again (join).

Fork-Join model is illustrated in figure 2.2a where tasks invoked in parallel

are denoted with letters. As the example demonstrates, each fork may branch

into a different number of tasks independent of actual CPUs number.

In contrast to other concurrent pattern, e.g. Actor pattern that is imple-

mented e.g. by AKKA (see chapter 1.3.5), Fork-Join pattern is older and less

object-oriented. Additionally, it usually requires the imperative style of pro-
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gramming. However, for some problems it scales better and it is generally easier

to implement.

Some overhead is naturally connected with fork operation. For example, new

thread creation causes a delay. Figure 2.2b demonstrates tasks invoked in parallel

(black bold horizontal lines) and overhead created by parallelization (blue oblique

lines).

(a) Multiple Fork-Join invocations (b) Fork-Join overheads

Figure 2.2: (a) In Fork-Join model scheme multiple forks and joins are employed.
(b) The fork/join (blue) overhead caused by thread creations and joining.

2.4.3 Modern development

As modern programming languages, such as Scala, Ruby, Groovy and Rust, were

developed, programming concurrent application became easier to maintain. How-

ever, for the majority of more traditional languages a lot of libraries and tools

have been developed (see chapter 1.3 for more information about Java tools).

In addition, many modern programming languages directly support multi-

processing. In contrast to C++ OpenMP example (see listing 2.1), listing 2.2

provides the same algorithm implemented in Scala (inspired by [22]). No third-

party library is used, even though the whole execution is a single command.

1 (1 to 10000) . t o L i s t . par . map( getTask ( ) . run ( ) )

Listing 2.2: Scala parallel execution

Nevertheless, for high performance systems, low-level programming languages,

such as Fortran and C/C++, are still often used for their great performance and

advanced optimizations. Due to the backward compatibility, even the modern

versions of these languages cannot offer a comfortable and easy-to-use API for

multiprocessing. The following code (listing 2.3), that is taken from [23], demon-

strates the complexity of pthread library in C/UNIX.
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Clearly, Scala approach is much easier-to-use than C pthread approach. In

contrast to that design, OpenMP provides very comfortable design pattern for

multi-threading as it is demonstrated in the prior example (see listing 2.1). For

that reason, OpenMP is still frequently used as a good compromise between

performance and readability [19].

1 #inc lude <iostream>
2 #inc lude <c s t d l i b >
3 #inc lude <pthread . h>
4 us ing namespace std ;
5

6 #d e f i n e NUM THREADS 5
7

8 i n t main ( ) {
9 pthread t threads [NUM THREADS] ;

10 i n t rc ;
11 i n t i ;
12 f o r ( i =0; i < NUM THREADS; i++ ) {
13 rc = pthr ead c r ea t e (&threads [ i ] , NULL, runTask ( i ) , ( void ∗) i ) ;
14 i f ( rc ) {
15 cout << ” Error : unable to c r e a t e thread , ” << rc << endl ;
16 e x i t (−1) ;
17 }
18 }
19 p t h r e a d e x i t (NULL) ;
20 }

Listing 2.3: C++ parallel execution
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Chapter 3.

Preprocessor Architecture

This chapter describes the architecture of omp4j - the preprocessor that is intro-

duced by this thesis. Used language, coding style and the variety of employed

technologies are explained. Furthermore, the application design is clarified. The

set of supported directives is presented and the directive implementations are

discussed. The following definitions introduce the notation that is employed.

Definition. A Directive is a single line comment starting with // omp.

Since Java does not support direct compiler directives such as #pragma for

C++, [8] the OpenMP directives must be supported via a different information

channel. The one-line comments were employed in order to provide valid Java

source code if it is not processed by omp4j.

Definition. A Directive body is a statement that immediately follows a directive.

Definition. A Task is a block (of code) that may run independently on other

tasks. It is implemented as an instance of the class which implements java. lang.Runnable

interface. The overridden method run is not expected to throw any runtime ex-

ception. For tasks throwing exceptions the behavior is unspecified.

Definition. An Executor is a scheduling entity that accepts tasks and manages

their execution regardless of their particular order. It is implemented as an in-

stance of the class which implements the org.omp4j.runtime.IOMPExecutor interface.

3.1 Level of Processing

There are four basic types of input processing into the output that are classified

according to the types of input and output. For purposes of the preprocessor

classification, the input and output types are distinguished as either the source

code or JVM bytecode. For future references, these options are denoted in table

3.1.
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Parallel output
Source Bytecode

Serial input
Source SISO SIBO

Bytecode BISO BIBO

Table 3.1: Preprocess level notation

Neither BISO nor BIBO meets the original requirements (described in chapter

1.1) since they accept only bytecode as input. It would not be suitable to expect

programmers to pass serial bytecode from their IDEs in order to parallelize it.

On the contrary, both SISO and SIBO are valid and reasonable alternatives

that were implemented in order to provide the user with freedom of choice. Both

alternatives are illustrated in figure 3.1. The user may use either SISO approach

in order to obtain the parallel source code for advanced optimization and version

control purposes or SIBO approach which replaces javac compiler. In the latter

case, the user provides source code(s) with OpenMP-like directives and the pre-

processor returns compiled parallelized output in the form of the Java bytecode

( . class files).

Figure 3.1: Supported translation types. omp4j either behaves like standard Java
compiler or only preprocesses the source code without compilation.

3.2 Processing Work-flow

The code transformation is divided into six logical phases. Each phase employs

one or several classes which communicate with each other. The phases are as

follows from the list below.
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Figure 3.2: Major preprocessor actions divided into phases.

1. Configuration creation

2. Code analysis

3. Directive recognition

4. Top level directives translation

5. Output writing

6. If any directive exists, goto 2.

Figure 3.2 illustrates the important preprocessor actions in phases context.

Appendix A provides the list of all major classes that are used in each phase.

The classes descriptions are provided in the API reference that is attached to this

thesis. While phases 1, 5 and 6 are quite straightforward, the remaining phases

are described in detail in the following chapters 3.3, 3.4 and 3.5.

3.3 Code Analysis

Two approaches of source code analysis are used for omp4j preprocessor - bytecode

and syntax analyses. The former approach is applied for classes whose source code

is not accessible during the process while the latter analysis is employed when

Java reflection API is unable to reflect some object such as an anonymous class.
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3.3.1 Bytecode Analysis

The bytecode analysis is essential since the user may provide input source code

which is dependent on some classes that are installed in the classpath. The

classes may be already compiled into bytecode and the preprocessor might not

access their source code in order to perform syntax analysis instead.

The process of the bytecode analysis is as follows. Initially, thread-id macros

are replaced with the number 1. Then, the sources are compiled, hence their

syntax is verified using Java compiler. A special class - org.omp4j.system.Compiler -

is provided in order to simplify Java compiler API and JAR creations.

Additionally, org.omp4j.system.Loader class is declared, which employs the Java

reflection API in order to load the JAR and to provide the required information.

By using the loader, the hierarchy model (described later in chapter 3.3.3) is

built.

3.3.2 Syntax Analysis

In contrast to the bytecode analysis, the syntax analysis is essential for two dif-

ferent reasons. Given an input source code, the preprocessor assumes that anony-

mous classes may be present which is the fundamental problem since those classes

are impossible to be reflected via Java reflection API. Furthermore, the prepro-

cessor needs local variable information that cannot be obtained via the bytecode

analysis.

Since the preprocessor finally modifies the source code in order to provide its

concurrent version, simple navigation through the source code is required. For

that purpose an abstract syntax tree (AST) is employed.

For syntax analysis, we decided to use commonly used Another Tool for Lan-

guage Recognition version 4 (ANTLRv4) for its speed, great documentation and

the possibility of writing additional grammars. However, other Java parser gen-

erators are available such as BISON1 or JavaParser2. The former generator is

1https://www.gnu.org/software/bison
2http://javaparser.github.io/javaparser
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unusable for this project the generated parser cannot be employed from Java,

even though it may recognize Java grammar. The latter recognizer is Java com-

patible but has very poor unit tests and documentation.

ANTLR allows the user to provide .g4 grammars in order to get generated lexer

and parser for that language. omp4j benefits from this approach as an OpenMP-

like grammar was implemented as a part of the whole project. The grammar is

employed during the directive recognition which is described in chapter 3.4.1.

For Java recognition, the original ANTLR grammar for Java 8 was used. Since

the grammar is maintained by community, it varies a lot. Even though it was

tested, there is no proof of correct recognition. Despite this fact, we decided to

use it anyway in order to provide Java 8 support at maximum possible level.

The parser, that is generated by ANTLR, provides AST of the source code

given. The AST might be iterated through the visitor pattern [24]. We implement

the extractors located in org.omp4j.extractor. The visitors implement the ANTLR

visitor pattern design. They are employed for two main purposes - the directive

validation (e.g. break detection in omp parallel for directive) and the creation of

class hierarchy model (see chapter 3.3.3).

3.3.3 Class Hierarchy Model

The package org.omp4j.tree provides a complex model of provided source code. By

using both bytecode and syntax analyses, all useful information about classes

may be obtained from the input source code. That includes inherited methods

and fields even for the anonymous classes.

In addition, the model itself forms a tree, i.e. it preserves relations between

classes such as one class is declared in another and vice versa. This model is

employed during the directive translation which is described later in chapter 3.5.
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3.4 Directive Recognition

After the syntax analysis is finished (see chapter 3.3.2), the AST is visited one

more time via org.omp4j.preprocessor.DirectiveVisitor that seeks all one-line comments

beginning with // omp. As Parr suggests [24], a hidden channel must be defined

for proper comment passing (see listing 3.1 for hidden channel definition in Java 8

grammar).

1783 //
1784 // Whitespace and comments
1785 //
1786

1787 WS : [ \ t \ r \n\u000C]+ −> channel (OTHER)
1788 ;
1789

1790 COMMENT
1791 : ’ /∗ ’ .∗? ’∗/ ’ −> channel (OTHER)
1792 ;
1793

1794 LINE COMMENT
1795 : ’ // ’ ˜ [\ r \n ]∗ −> channel (COMMENTS)
1796 ;

Listing 3.1: Java8.g4; Comments passed via hidden channel

After the proper comments are fetched, the ANTLR is used one more time in

order to parse the line into AST according to OMP grammar, which is described

in chapter 3.4.1.

3.4.1 Directive Grammar

A grammar was employed in order to obtain information from the comment line.

In comparison to regular expressions, grammars provide higher flexibility. In

addition, they are more readable and extendable. The whole grammar may be

found in appendix B.

The grammar, that was developed as a part of this project, has rather straight-

forward structure. The start rule [24] - ompUnit - branches into several directive

rules such as ompParallel and ompBarrier according to the directive type.

Each rule consists of a lexer rule (e.g. omp or parallel ) and optionally some

other rules. For example, the critical section omp critical (lock) is parsed into AST

as ompUnit, ompCritical and ompVar which is directly mapped to a lexer rule VAR
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that matches lock variable. Therefore, the preprocessor may employ the visitor

pattern [24] in order to obtain information from the AST such as “Was lock

variable specified?”.

Even though a context-free grammar was initially intended to be developed for

its simplicity and parsability [25], some advanced techniques must been employed

in order to provide permutation of parameters [24]. As the result, user is allowed

to write all the directives as are listed in listing 3.2.

1 omp p a r a l l e l pub l i c ( a ) p r i v a t e (b , c , d ) pub l i c ( e )
2 omp p a r a l l e l p r i v a t e (b , c , d ) pub l i c ( a , e )
3 omp p a r a l l e l pub l i c ( a ) schedu le ( s t a t i c ) p r i v a t e (b , c , d ) pub l i c ( e )

Listing 3.2: OMP grammar possible attribute permutations

This behavior can be achieved via two different approaches. First, each per-

mutation of attributes is represented as a single rule in the grammar. Since the

grammar may contain at most a finite number of rules [25], this approach lim-

its the total number of attributes used and makes the grammar unreadable and

exponentially large.

The second approach, which was actually employed, implements a parser that

uses random access memory in the form of a HashMap in order to store parser

attributes. The comparative advantage of this method is the linear number of

rules, better grammar readability and maintenance. Nevertheless, the grammar

itself cannot be longer classified as context-free because of the additional memory

use. Thus the matched language remains recursively enumerable.

We conclude that the adopted approach is much more beneficial for both the

users and the developers. Compared with Pyjama (see chapter 1.3.3) which re-

quires the thread-limiting attribute to be before the other attributes [9], omp4j

provides more comfortable API. Furthermore, the grammar may be easily ex-

tended with additional directives (e.g reduction) since only one new rule addition

is sufficient.
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3.4.2 Directive Hierarchy Model

After ANLRT parses the comment, a Directive is constructed using the comment

information. Similarly to the class hierarchy model (see chapter 3.3.3), all direc-

tives are stored in the form of a tree, preserving mutual relations.

Directives are partially validated during the hierarchy model construction,

however, the logical structure of the model is tested during the first translation

phase (see chapter 3.5).

All directives and directive-related classes are stored inside the org.omp4j.directive

package which forms an object oriented class hierarchy.

3.5 Directive Translation

In comparison with related projects (see chapter 1.3), omp4j employs a fundamen-

tally different approach to code transformation. For example, JOMP creates a

translation class, that has public fields initialized with real references, and trans-

fers the directive body into the class. Since the class is defined at the end of

the source file, which may be long, the developer loses track of the translated

code. On the contrary, omp4j does not transfer code anywhere. Instead, the

code is slightly modified and wrapped with a clause that manages the parallel

invocation.

Even though this approach is much more difficult to implement correctly and

depends on ANTLR Java 8 grammar, it leads to the code that an ordinary pro-

grammer would produce. Additionally, the processed code remains more readable

and maintainable. Therefore, omp4j may be used for educational purposes as it

easily demonstrates the straightforwardness of parallel solutions.

The following definitions are employed later in this chapter. The definitions

from the beginning of chapter 3 are often employed.

Definition. The Capturing is a process of AST analysis that obtains all non-local

variables used in the AST.
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Definition. A Context class for the given directive is a class extending java. lang.Object

that defines appropriate fields according to the captured variables of the directive

body.

Definition. A Context is an instance of a context class with all fields properly

set to captured variables references.

Given the directive hierarchy model (described in 3.4.2), the main prepro-

cessing class org.omp4j.preprocessor.Preprocessor starts translating top directives, i.e.

those that are at the top of the model tree. Therefore, the directives are translated

by layers.

Since the directive bodies in the same hierarchy level cannot overlap, the

selected directives are mutually independent, hence they may be translated in

any particular order.

When the directive is translated, all direct subdirectives that do not create a

new executor are also translated at once i.e. nested for, atomic, critical, master,

single and section. This approach ensures that once the layer translation is fin-

ished, a valid output is provided. Hence, the functional design may be employed

and directive translation might be processed recursively.

The directive translation itself is divided into three separate phases imple-

mented via three directive methods - validate, preTranslate and postTranslate (see

figure 3.3). All three phases are described below in chapters 3.5.1, 3.5.2 and

3.5.3.

Figure 3.3: Three processing phases of the translation process.

3.5.1 Phase 1: validate

Phase 1 is implemented via the overridden validate method. This method is

invoked while processing the directive. The method throws a SyntaxErrorException
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if and only if the location of the directive in the hierarchy model is not supported.

For example, nested directive such as master etc. must not appear in the first

level of the hierarchy.

3.5.2 Phase 2: preTranslate

Phase 2 is implemented via preTranslate method. When invoked, it creates a

new instance of org.omp4j.preprocessor.TranslationVisitor that iterates through the

directive body by using the visitor pattern.

During the iteration, the process of variable capturing is realized. By using the

class hierarchy model and both bytecode and syntax analyses, TranslationVisitor

builds a set of accessed variables that are defined as non-local or defined before

directive body starts. The variables are stored with all important information

such as type and meaning (i.e. local variable, parameters, fields, etc.).

Additionally, preTranslate assures that all captured variables are prepended

with context name (see chapter 3.5.4 for details). Even though the context is

not constructed yet, since not all variables are captured, its name was generated

before and hence known.

Thus, once the phase 2 is finished, the proper variables in the directive body

are ready to be used with the proper context. Furthermore, these variables are

captured and returned.

3.5.3 Phase 3: postTranslate

Phase 3 is implemented via commonly overridden preTranslate method of Directive

class that manages the translation . When invoked, it manages the parallelization

itself. This method is abstract and each directive must override it differently in

order to provide a sensible parallelization. Invariably, the core concept remains

the same.

Initially, the context class is created according to data provided by variable

capturing. Secondly, the context is instanced and its variables are set to the
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captured variables references. In case of primitive types, the captured values are

duplicated.

At this point, a valid code is obtained since directive body uses the context

fields instead of regular variables. Nevertheless, the program still runs serially.

Finally, the executor is created based on schedule attribute (see chapter 3.6 for

runtime library description). Then the parallelization itself may happen, which

means that the directive body is split into tasks that may run concurrently. These

tasks are scheduled and executed by the executor. Each directive implements the

task decomposition differently (refer to chapter 3.7 for implementation details).

3.5.4 Rewriting the Source Code

While executing phases of the translation, the source code is modified. Since the

AST provided by ANTLR is immutable [24], it is impossible to modify nodes or

insert and delete branches. For this purpose ANTLR provides Rewriter API [24].

The Rewriter API is implemented via org. antlr .v4.runtime.TokenStreamRewriter

that supports string insertion before and after a token. Also token sequence re-

placements are supported, however multiple changes of the same token sequence

throw exceptions. Hence, the the usage of this tool is very limited and a lot of

discussions have been made for future modification. This approach was chosen

as it is the only available option provided by ANTLR version 4.

3.6 Runtime Library

In order to produce output that is independent of installed runtime libraries,

there are two basic approaches to the code modification - either implementing the

whole changes directly into preprocessed code or implementing the parallelization

routines in a separate class.

The latter approach was chosen for two main reasons. First, it makes the

application design more elegant as the same routines are not implemented mul-
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tiple times when more than one directive is preprocessed. Second, the enhanced

modularity is available. For example, the user may reimplement some of the

classes and use them instead of the original ones. For this purpose, a separate git

repository was created, as it is described in chapter 4.1

Even though the runtime library is provided, the preprocessed code has not

any runtime dependencies since all required class-files are provided during the

compilation. Consequently, the users might simply compile theirs sources using

omp4j and run it on a different machine. Thus, the user may employ omp4j instead

of javac as the compiled bytecode is accompanied with all dependencies.

In order to allow the users to define their own executor, they may let the

preprocessor omit the compilation and preprocess only the sources. In that case

sources of the runtime library must be provided by the user as they are not

copied into the output directory. Additionally, the user may compile the whole

application with some different compiler.

3.6.1 Executor Interface

Each executor implements org.omp4j.runtime.IOMPExecutor interface which extends

commonly used java. util .concurrent.Executor. The whole interface may be found in

appendix C.

The life-cycle of the executor is as follows. Initially, the tasks are scheduled

by overridden execute method. When the first task is scheduled, the executor

may invoke the already scheduled tasks in any order. The method itself is non-

blocking and returns immediately. Finally, waitForExecution method is invoked. It

prevents future task scheduling via method execute and remains blocked until all

tasks are finished.

The supplementary thread-id methods are specified - getThreadNum and getNumThreads.

The former method returns a positive integer in range [1;NumThreads] depend-

ing on which thread the method was invoked from. The latter method returns the

number of used threads. These methods are as well non-blocking and operates in

constant time complexity.
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Definition. A barrier hit is the operation performed by a thread in which a barrier

counter is increased.

Furthermore, an executor must support the barrier-like behavior. For that

purpose, hitBarrier method is specified as follows. The method accepts a single

string which denotes the barrier that should be hit. Until all threads have hit the

barrier, the already hit threads block and wait on the barrier. The barriers are

registered on demand, i.e. the first use of hitBarrier with parameter P atomically

creates all resources that may be needed for the proper barrier behavior. When P

barrier is hit again the executor atomically allocates the resources. The example

of the method implementation may be found in appendix D.

3.6.2 Dynamic Executor

As a possible executor implementation, org.omp4j.runtime.DynamicExecutor is pro-

vided. It uses the Executors.newFixedThreadPool method for the executor service

creation [26]. Dynamic executor is employed for the performance evaluation in

chapter 5.

We suggest using DynamicExecutor for the majority of applications since it is

well tested by Java API developers. However, for specific purposes it may not be

the optimal solution.

3.7 Supported Directives

This chapter describes all implemented directives and usages. omp4j preprocessor

supports a subset of original OpenMP directives [27] - majority of commonly

used directives are provided though. Furthermore, the directive behavior and

translation policy is explained and the additional attributes are listed.

The directives are translated if and only if located inside a class function.

Directives that are inside enum methods are ignored.
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3.7.1 omp parallel

The most basic supported directive is omp parallel which invokes the directive

body in parallel. That means that the body will be executed as many times as is

the number of available threads (see chapter 3.7.10 for detailed behavior). The

example (listing 3.3) demonstrates a simple usage and the directive’s behavior.

1 // omp p a r a l l e l
2 {
3 System . out . p r i n t l n ( ” h e l l o ” )
4 }
5

6 /∗ output ∗/
7 h e l l o
8 h e l l o
9 h e l l o

10 h e l l o

Listing 3.3: omp parallel example

The implementation of the code translation is as follows. For each thread a

single task, containing the whole directive body, is created and executed by the

executor.

3.7.2 omp [parallel] for

Directive omp parallel for is a shortcut for omp for nested in omp parallel. It must

be used directly only before a for-loop. Only regular for-loops are allowed - e.g.

for ( int i = 0; i < 10; i++) is a valid example. On the contrary, for-each loops are

not supported (similarly to JOMP [28]) - e.g. for (T x : collection ). Even though a

task might be added identically as in basic for-loop, a lot of unexpected behavior

might happen. For example, the collection may read from network and/or from

file. In that case, the order is crucial.

In contrast to omp parallel, this directive invokes the for-loop only once regard-

less of the specified number of threads. However, each iteration is represented as

a separate task that might run concurrently - i.e. each task may run in different

thread and their execution order is unspecified (see example in listing 3.4)

The use of keywords break, continue and return is not allowed in the directive

body since the order of execution is broken up. Thus, the use of these keywords is
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unnecessary. Additionally, the iterator is considered as final. Thus, if the for-loop

header is as follows: for ( int i = 0; i < 10; i++), variable i cannot be changed in

the loop body.

1 // omp p a r a l l e l f o r
2 f o r ( i n t i = 0 ; i < 10 ; i++) {
3 System . out . p r i n t ( i )
4 }
5

6 /∗ output ∗/
7 2 0 6 7 1 9 5 3 4 8

Listing 3.4: omp parallel for example

The implementation of the code transformation is as follows. Initially, the for-

loop is iterated whilst a new task is created in each iteration. Meanwhile, tasks

created in prior iterations may have been already invoked in parallel. Since each

iteration is represented as a single task, it ought to run long enough in order to

benefit from parallel invocation as the overhead with task scheduling and thread

creation inevitably occurs.

3.7.3 omp section(s)

Wrapper directive omp sections may contain only omp section directives - other di-

rectives and/or raw code are not supported. Each omp section is treated as an

independent task i.e. it might be invoked in parallel. omp section should be fol-

lowed by an empty statement, i.e. {...} .

This directive is commonly used for heterogeneous tasks for which omp parallel

[ for ] is not suitable. The number of sections is fixed and it’s determined by the

number of sections, that are actually present in the source code.

The example in listing 3.5 demonstrates the common usage of the input read-

ing from multiple independent resources at once.

The implementation of omp sections is similar to omp parallel for. A for-loop

is created and iterated through in parallel. Each section is numbered by their

mutual order in the source code and invoked if and only if the for-loop iterates

through the proper index.
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1 i n t a , b , c ;
2 // omp s e c t i o n s
3 {
4 // omp s e c t i o n
5 { a = readFromDrive ( ) ; }
6

7 // omp s e c t i o n
8 { b = readFromStdIn ( ) ; }
9

10 // omp s e c t i o n
11 { c = readFromNetwork ( ) ; }
12 }

Listing 3.5: omp section(s) example

The major possible pitfall of omp sections is the unused CPU time created when

differently long sections are declared. As an example (illustrated in figure 3.4) we

assume four independent tasks (each implemented as a section). Assuming four

CPUs, the sections may run in parallel all at once. Due to the different lengths

of the sections, however, the final speedup is not 4 as it might have appeared at

the beginning. As the scheme demonstrates, early finished threads must wait for

the join operation (see chapter 2.4.2 for Fork-Join model details).

Figure 3.4: Bold lines, accompanied with clock icons, demonstrate the time when
the CPU waits until the other sections are completed.

3.7.4 omp master

omp master is a directive assuring that its body is invoked only from the master

thread which is the thread denoted with ID = 0. omp master is not a top level

directive which means that it must be nested in some other parallel directive.

Usually, omp master is used inside omp parallel where a block of code should run

only once.
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(a) Master directive (b) Single directive

Figure 3.5: Red color represents the thread that executed the directive body. (a)
Thread 0 only i.e. the top one. (b) Any thread

Even though the use of this directive enables enhanced flow control, the use

of the master directive should not be redundant as it provides an overhead due

to thread creations. As an example (see listing 3.6) we provide parallel directive

with master body. The example leads to only one invocation that might have

been achieved by omitting both directives. The benchmarks of this behavior may

be found in chapter 5.5.

Figure 3.5a demonstrates the master thread (red color). Three blocks of code

decorated with omp master are shown. In each, only the master thread invokes the

specified directive body.

1 // omp p a r a l l e l
2 {
3 // omp master
4 { compute ( ) ; }
5 }

Listing 3.6: omp master wrong usage example

The master directive is implemented by a simple condition. The directive

body is wrapped into the if statement where executor getThreadNum method is

invoked and compared to number 1.

3.7.5 omp single

omp single works similarly to omp master - the directive body is invoked only once,

however, by any particular thread. This leads to possibly better scheduling then

the master directive approach. Nevertheless, due to the omp single implementa-

tion, some overhead is naturally present.

omp single is implemented using atomic boolean variable. Unless some thread
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assigns itself to invoke the body, all threads intend to do so. Finally, when the

atomic boolean is set, other threads passes the body without its invocation.

Figure 3.5b demonstrates the different threads (red color) that executes singles

in each of blocks of code. It may be a different thread in each block as well as

the same one in all.

3.7.6 omp critical

omp critical also must be nested in some parallel directive. Compared to omp master

and omp single, its body is invoked by all threads. Additionally, mutual exclusion

is provided, meaning at most single thread will access the body at any particular

time.

The critical sections are implemented using Java embedded synchronized key-

word, providing huge overhead (see benchmark in chapter 5.4). In general, the

user should avoid any synchronization primitives, especially the critical sections.

omp critical optionally accepts a final variable as a parameter that is used as

synchronized parameter. This technique is suggested in order to minimize race

conditions as much as possible.

Figure 3.6a represents basic critical section usage. omp parallel is invoked in

four threads which each sequentially execute tasks A, C, B in this order. Fur-

thermore, task C is marked as the critical section.

Figure 3.6b illustrates one possible schedule, where at any point task C is

being executed at most by one thread. Consequently, some threads wait until

other threads run C which inevitably wastes the CPU time. Even though the

waiting is implemented as passive, time is being lost. When a thread leaves the

critical section, all waiting threads intend to lock the critical section variable

(or the class itself if no variable is specified), hence they cause some additional

overhead that increases with the number of threads.

36



A

C

B

//OMP PARALLEL

//OMP CRITICAL

(a) Code scheme (b) Scheduled critical tasks

Figure 3.6: Overhead visualization of scheduled tasks. Task C may be executed
by at most one thread at any time.

3.7.7 omp atomic

omp atomic is implemented equally to omp critical. Given the fact that not all

operations have their atomic alternative, is not possible to provide a general

solution.

In addition, the user might use already compiled classes. These classes are

impossible to be translated on the source code level. Instead, we decided to

discourage the user from the use of omp atomic directive.

However, in order to develop as compatible set of OpenMP-like directives as

possible, the atomic operations are implemented in the form of critical sections.

This has a huge impact on performance and omp atomic should be avoided. The

author of the technical report of JOMP suggests the following:

“ ... In any case, the kind of optimisations which the directive is

designed to facilitate are unlikely to be possible in Java.

Should one wish to include support, it would be quite simple and

efficient to implement where the atomically updated entity is an object

or array, using Java’s synchronized statement. However, in practice,

the value is much more likely to be of a primitive type, in which case

there is no obvious way to implement it short of using a single lock

for all atomic statements. ... ” [28]
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Due to Java memory model and the JVM instruction set design, that dif-

fers from C/C++ and Fortran, it is impossible to support atomic operations in

general:

“ ... The kind of optimisations which the directive is designed to

facilitate (for example, atomic updates of array elements) require ac-

cess to atomic test-and-set instructions which are not readily available

in Java ... ” [29]

3.7.8 omp barrier

The last implemented directive, omp barrier, simulates barrier-like synchronization

primitive. The directive must be applied to a blank statement. Until all threads

hit the barrier, they remain blocked at this directive.

The implementation uses java. util .concurrent.CyclicBarriers, stored in the execu-

tor. For implementation details see chapter 3.6.

3.7.9 public, private, firstprivate

The first set of attributes we describe - public, private and firstprivate - may be

used with parallel directives. They accept either a single variable as a parameter

or a comma-separated list of variables. All attributes may repeat, however only

last variable occurrence is applied.

public is a default setting for all variables. The public variables are considered

as shared variables among all threads. No synchronization primitives are im-

plicitly provided, thus these variables should be read-only because any mutable

operation may collide with other threads.

On the contrary, private creates an array of variables in which each cell is

accessed by one thread only. Hence, mutable operations are possible as they do

not interact with other thread instances. When the array is created, parameter-

less constructors are used. A compilation error is raised if the variable class does

not provide this constructor.
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firstprivate is the same as private, except it uses a copy-constructor. It means

that the variable itself is passed to the constructor. A compilation error is raised

if the type of the variable does not provide this constructor.

3.7.10 threadNum

threadNum is the thread number restriction attribute the parallel directives. The

common usecase is as demonstrated in listing 3.7.

The attribute may be used at most once in a directive. The passed parameter

is a single integer representing the number of threads that will participate in the

directive body execution. If threadNum attribute is missing the total number of

CPUs, that JVM is aware of, is used implicitly.

1 /∗ Running on 48 CPU s e r v e r ∗/
2 // omp p a r a l l e l threadNum (2)
3 {
4 System . out . p r i n t l n ( ” h e l l o ” ) ;
5 }
6

7 /∗ Output ∗/
8 h e l l o
9 h e l l o

Listing 3.7: threadNum example

3.7.11 Thread-ID Macros

omp4j supports macros (or constants) through which the information about the

current thread is provided. Nevertheless, the source code with these macros will

not be compiled properly using the standard Java compiler. This is the only

difference from standard Java source code. For portability maintenance, the

usage of directives without Thread-ID macros is suggested. All macros

The example in listing 3.8 demonstrates proper usage of OMP4J THREAD NUM

and OMP4J NUM THREADS that are translated into current thread id (numbered

from 1) and total number of threads invoking this directive body respectively.

We decided to employ macros rather than specific methods like related projects

do (e.g. JOMP). The use of macros brings two main advantages - first, the us-
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er do not need to be aware of the preprocessor package structure since they do

not invoke any methods (such as org.omp4j.runtime.Config.getThreadNum()); second,

the user may easily redefine the constants in the class that should be parallelized,

thus the code may be compiled with other compilers as well. Therefore, enhanced

portability is provided in comparison with similar projects.

The macros are translated into constant integers, hence all common operation

such as addition, multiplication and array-indexing are provided. On the contrary,

the macros cannot be assigned with a new value as they are constants. The macros

follow Java coding style of constants, hence they appear like regular constants.

1 // omp p a r a l l e l threadNum (5)
2 {
3 System . out . p r i n t l n (OMP4J THREAD NUM + ”/” + OMP4J NUM THREADS) ;
4 }
5

6 /∗ Output ∗/
7 2/5
8 3/5
9 0/5

10 1/5
11 4/5

Listing 3.8: Thread-ID example

3.7.12 schedule

The last supported attribute is schedule. It accepts a fully qualified name of a class

that implements org.omp4j.runtime.IOMPExecutor interface. As an abbreviation, pa-

rameters - dynamic and static are supported. The former parameter is translated

into org.omp4j.runtime.DynamicExecutor which is described in chapter 3.6.2. The lat-

ter parameter is analogously translated into StaticExecutor. Each executor modifies

the scheduling policy and the final speedup.

schedule may be used at most once in each parallel directive. The default value

is dynamic as it better suits majority of cases. The dynamic policy registers tasks

into a single central queue whence the tasks are being assigned to the workers

singularly on demand. See chapter 3.6 for detail description.

On the contrary, the static policy determine each task to one thread before

the execution. We advise the user to use the default dynamic approach for its
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better performance.

3.8 Language and Coding Style

Due to the original requirements (described in chapter 1.1), Java bytecode-based

language is required. From all JVM-based languages we decided to employ Scala

for several reasons.

Initially, Scala applications may be assembled3 into JARs that do not require

Scala installed for their execution [30]. Additionally, Scala features full Java

interoperability which enables native Java libraries usage [31]. That is an essential

property for the syntax analysis that is described in chapter 3.3.

Furthermore, Scala is strongly typed, thus makes development easier as some

syntax errors are discovered during compilation. In addition, according to Oder-

sky, Scala features both object-oriented programming (OOP) with multiple in-

heritance via traits and the functional design approach [31]. Functional program-

ming means programming without side-effects [32], hence this application design

makes the debugging easier as well as the whole development more straightfor-

ward. Furthermore, it provides a deeper reasoning about the behavior of the

algorithm.

The language construct, that has been used the most, is implicit keyword. The

variables defined implicit are automatically passed to the invoked functions. This

concept is the welcomed alternative to static configuration context.

As well as Haskell [33], Scala provides simple pattern matching that we often

use during exception handling and subclass classification.

3https://github.com/sbt/sbt-assembly
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Chapter 4.

Implementation

This chapters briefly describes used techniques and environment during the devel-

opment of the thesis. The various links to project-related websites are presented

as the preprocessor consists of several modules.

4.1 Version Control System

A version control system (VCS, revision control) was employed in order to increase

efficiency of the development process even though only one programmer has been

committing the changes. Additionally, VCS supports further development when

more developers are involved.

Currently the most popular version system - git - introduced by Linus Torvalds

in 2005, was chosen because of its great simplicity of command line interface and

general speed. Since git is distributed, the current backup and the whole history

of code changes have been saved on multiple machines [34].

All commits have been uploaded to GitHub1 which is currently the most

popular git repository hosting for both open-source and private projects. The

commits and the code changes may be easily accessed using GitHub visualization

tools. GitHub will maintain further repository support in terms of bug-listing

and the community will be able to fork omp4j in order to develop new features.

Table 4.1 presents the set of URLs that leads to the appropriate git repositories

that are hosted on GitHub.

1https://github.com
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URL Target description
https://github.com/omp4j omp4j group
https://github.com/omp4j/omp4j preprocessor repository
https://github.com/omp4j/runtime runtime library repository
https://github.com/omp4j/www webpage repository
https://github.com/omp4j/grammar ANTLR grammar repository
https://github.com/omp4j/benchmark performance evaluation repository
https://github.com/omp4j/doc API reference

Table 4.1: GitHub repository overview

4.2 License

Due to the public presentation on GitHub, BSD license (refer to appendix E)

was chosen for its general freedom. We believe that choosing benevolent license

encourages the community to maintain the project integrity and keep the prepro-

cessor up-to-date with modern trends.

4.3 Behavioral-Driven Development

The unit tests were executed frequently in order to maintain the stability and

the professional quality of the software. The whole project was developed in

modern agile Behavioral-Driven Development (BDD) style that implements test-

driven development [35]. Even though BDD is relatively new approach to software

development, it has quickly become popular for its robust description of the tests

that are usually written from the users point of view [35].

ScalaTest - an unit testing library for Scala and Java projects [36] - was used

in order to fulfill the BDD requirements. It enables an extremely straightforward

test composition via natural-like language (see example 4.1). In addition, the

tests may be invoked directly from both SBT (via test) and IntelliJ Idea IDE. In

order to provide faster testing, a subset of tests (e.g. only previously failed tests)

might be run. Hence, duplicate testing is eliminated which internally accelerates

the development life-cycle. By employing the parallel test invocation, even large

number of tests may be run within minutes.
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1 d e s c r i b e ( ” ’omp s e c t i o n s ’ c h i l d r e n in f i l e : ” ) {
2 i t ( ” 01 . java should not conta in other statements ” ) {
3 an [ SyntaxErrorException ] should be thrownBy new

Preproce s so r ( ) ( . . . ) . run ( )
4 }
5 }

Listing 4.1: ScalaTest test definition

4.4 Continuous Integration

In order to increase the preprocessor stability and to ensure that it supports

various JVMs, Travis-CI2 was employed. This continuous integration service

allows the developer to specify various JVMs, Scala versions and other properties.

The whole continuous integration approach is possible because of git hooks

[34] that are triggered after every GitHub push. When the hook is triggered,

a build matrix (BM) is created which is a cartesian product [37] of all possible

settings that are described above (i.e. JVMs, Scala versions and other options).

Each member of BM represents a unique setting of the environment in which

the tests are independently invoked. That leads to a complex result of the unit

testing on different machines3.

2https://travis-ci.org
3All tests, that were ever executed, may be found at https://travis-ci.org/omp4j/omp4j
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Chapter 5.

Performance Evaluation

This chapter describes several benchmarks that were run in order to evaluate the

performance of the translated sources. Several different types of benchmarks are

implemented and their differences explained. In addition, two linear models are

derived from the data of the most independent benchmark in order to provide

deeper insight into measured data dependence. Furthermore, a comparison with

related projects is presented.

5.1 Methodology

The following benchmarks avoid measuring the absolute values since a tool for

parallel invocation is being evaluated. Instead, the relative quantities are mea-

sured such as total speedup.

5.1.1 Benchmark Framework

In order to run the benchmarks automatically, org.omp4j.benchmark.AbstractBenchmark

class is introduced. Each benchmark class extends AbstractBenchmark and imple-

ments methods runBenchmark and runReference. The former method should contain

the body of the parallel version of the algorithm whilst the latter method imple-

ments the original serial algorithm.

If warmup method is overridden (default blank), it is invoked as a warm-up

before any measurements are taken. Even though using the proper warm-up

stabilizes the results [38], we employ warmup only for short-time benchmarks since

the long running benchmarks stabilize themselves if they run long enough.

In addition, org.omp4j.benchmark.Benchmark is provided which invokes the spec-

ified benchmark itself according to the passed parameters. For this purpose, Java

reflection API is employed. The process of benchmark invocation is as follows.
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Initially, the benchmark class is loaded, followed by an instance creation. After

this process is completed, the benchmark is invoked. This approach is used in

order to eliminate the class-loading overhead. Loading and instancing the bench-

mark class before the time measurement forces JVM to run all class-loading rou-

tines before the measurement. As a result, the measured data is more coherent

[38].

5.1.2 Data Processing

As described above, each benchmark consists of two parts - the serial reference

algorithm and its the parallel implementation. Two values, tserial and tparallel, are

obtained by measuring the durations of the execution ot these methods. These

quantities are always measured immediately one after another. The speedup is

consequently calculated as a fraction tserial
tparallel

.

Each benchmark returns the measured speedup rather than raw times of the

executions. Even though the latter approach provides greater mean speedups, the

former method reflects the reality in more detail. By using the speedup approach,

the effects of the environment (e.g. background processes) are minimized since

the speedup is calculated pairwise.

Each measured speedup is considered to be a random variable. We do not pre-

sume any specific distribution, especially not the normal distribution (referring to

appendix F for various plots that demonstrate the speedup distribution). For this

reason, each benchmark was executed multiple times (at least ten times, usually

more) in order to compute their arithmetic mean. This number is denoted as

the final speedup which is considered for the following computations. According

to Anděl, this technique ensures normal distribution of the final speedups as it

follows from the central limit theorem (CLT) and the law of large numbers (LLN)

[39].

The use of CLT is proper since the obtained results are both identically dis-

tributed (one benchmark executed multiple-times) and independent of each other

(only one being executed at a particular time) [39].
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5.1.3 Used Hardware

All benchmarks were executed on the same (linux) NUMA server (named navarin)

that has four sockets with 12-core CPUs in each socket. Hence, benchmarks

using up to 48 cores are supported which is important for the creation of the

linear models. In contrast to similar projects (such as Pyjama with 16 cores[8]),

benchmarks that employ higher number of cores provide the valuable information.

Even though no other user was logged into the described machine during the

benchmarking, some system processes may have been running. These effects are

filtered out by using multiple executions of each benchmark as described in the

prior paragraphs.

5.1.4 Thread Limitation Techniques

In order to obtain results that depend on the number of used cores while running

the benchmarks on the same hardware, the following thread limitation techniques

are employed.

For omp4j benchmarks, the number of threads is directly specified in each

benchmark (see chapter 3.7.10) in order to minimize any runtime overhead which

could be caused by communication with the operating system in order to obtain

CPUs count.

However, the number of threads for the original C++ OpenMP was limited

by using the environmental variable OMP NUM THREADS. Finally, we limited the

number of threads used by JOMP via −Djomp.threads=N option since JOMP does

not support other thread limitation techniques.

The used techniques are not supposed to have any impact on measured results.

5.1.5 Statistical Notations

All hypotheses testing are executed at the level of significance α = 0.01 if not

stated otherwise.
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The correlation coefficient classification [40] is used according to the following

table 5.1 .

Coefficient Label
0.00 - 0.35 Weak
0.36 - 0.67 Moderate
0.68 - 0.90 High
0.91 - 1.00 Very high

Table 5.1: Correlation coefficient labeling

The majority of benchmarks, that are provided in the following chapters, are

accompanied with various plots. When the blue color is used in the form of a

non-described line, it represents the theoretical optimum which is a rough upper

bound of the real values. Furthermore, Amdahl’s law limits possible speedup

results even more (see chapter 2.2 for more details about the law).

In the following chapters, the letter γ, as defined in chapter 2.2, is employed

to represent the serial fraction of the algorithm.

5.2 Fibonacci Numbers

In the first benchmark, γ minimization is intended in order to achieve the highest

possible speedup. For that purpose, the most straightforward Fibonacci numbers

computation is implemented (see listing 5.1).

1 i n t f i b o n a c c i ( i n t n) {
2 i f (n <= 1) return 1 ;
3 e l s e re turn f i b o n a c c i (n−1) + f i b o n a c c i (n−2) ;
4 }

Listing 5.1: Fibonnaci recursive computation

omp parallel for directive was used for its simple and straightforward iteration

through the workload that represents the computation of 30th to 35th Fibonacci

numbers. The results are not stored anywhere in the memory in order to iso-

late each computation absolutely in terms of the memory sharing and the cache

synchronization.
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Figure 5.1: Fibonacci benchmark - the dependence of the speedup on the number
of cores while the workload is fixed and dynamic scheduling

5.2.1 CPUs Dependence

Initially, figure 5.1 is provided which demonstrates the dependence of the speedup

on the CPUs number (denoted as cores). Two different workloads are displayed

- a thousand (see figure 5.1a) and twenty thousand iterations (see figure 5.1b).

The observed dependence is as follows. Up to twenty used cores (especial-

ly with greater workload) the speedup almost reaches the theoretical optimum.

Table 5.2 shows some configurations of workload and number of cores with com-

puted correlation coefficients. We conclude that the scalability is almost linear

even for higher number of threads (up to 20) since the correlation is classified as

“very high” (according to table 5.1).

With more than twenty employed cores, the growth of the speedup declines as

follows from figure 5.1. This phenomenon can be explained by two independent

reasons. First, Amdahl’s law limits the maximal speedup (see chapter 2.2 which

is observable in greater a number of cores. Second, the lock contention among

the threads rise whilst locking the task queue.
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Cores Workload Coefficient
10 1,000 0.9987635
20 1,000 0.9960283
10 20,000 0.9994774
20 20,000 0.9992499

Table 5.2: Correlation coefficient labeling
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Figure 5.2: Fibonacci benchmark with fixed CPUs, dynamic scheduling

5.2.2 Workload Dependence

Secondly, the dependence of the speedup on the workload size is presented, for

which purpose the number of used cores was fixed. The 8 cores result, that

simulates a regular desktop computer, is provided (see figure 5.2a) as well as the

24 cores result, that simulates a powerful server (see figure 5.2b). We observe

that the increasing workload causes the growth of the speedup. In addition, the

speedup stabilizes quickly.

Given the fixed number of CPUs, we test the difference between the mean of

speedup on 1, 000 and 20, 000 workload. the null-hypothesis H0 is tested against

the one-sided alternative H1 as follows.

H0: “The means of the measured speedups are equal”

H1: “The mean speedup measured on 1,000 workload is less than the mean

speedup measured on 20,000 workload.”
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Anděl suggests using non-pair t-test [41]. The table 5.3 presents the computed

p-values of this test for different fixed core numbers. In both cases, H0 is rejected

at previously set significance level since the computed p-values are less than α.

Hence, we conclude that the workload significantly influences the speedup when

the number of CPUs is fixed.

Cores 1,000 mean 20,000 mean p-value
8 7.150499 7.588703 0.001656
48 18.85290 28.27256 < 2.2× 10−16

Table 5.3: Speedup dependence on the workload

Additionally, figure 5.2 illustrates speed of the convergence to the theoretical

optimum, which suggests quick convergence. We interpret this phenomenon as

that omp4j scales sufficiently even for small amounts of workload.

5.2.3 Speedup Distribution

Finally, the box-and-whisker diagrams are provided in order to illustrate the

speedup distribution. Analogously to the prior charts, we provide both 8 CPUs

(see figure 5.3a) and 24 CPUs (see figure 5.3b) results.

In addition, each plot contains both 1, 000 and 10, 000 iterations. The his-

tograms together with the normality discussion may be found in appendix F.
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Figure 5.3: Fibonacci speedup distribution
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5.2.4 Linear Model

Both simple and multiple regression is elaborated for Fibonacci benchmark in

order to obtain two linear models representing different dependences [41].

The initial model aims to determine how much variation in the speedup is ex-

plained by the number of the cores. In order to provide maximal simplicity of the

model and not to over-fit it, we used the quadratic dependence (see equation 5.1).

Speedupi = β0 + β1Coresi + β2Cores
2
i + εi (5.1)

The significance level remains the same as defined in chapter 5.1.5. By using

the ordinary least squares method [42] the β̂i coefficients are estimated as follows

from equation 5.2.

β̂0 = −0.66988 β̂1 = 1.20196 β̂2 = −0.01273 (5.2)

Since the p-values of both β̂1 and β̂2 significances are less then 2× 10−16, all

three coefficients remain in the model [43]. Due to Amdahl’s law (see chapter 2.2),

the speedup cannot be linear. Hence, β̂2 is non-zero and therefore significant.

Additionally, the speedup cannot exceed the optimal speedup, hence β̂2 must

be negative. In order to compensate for the quadratic decrease of the speedup

growth, β̂1 is slightly greater than one [43]. Thus, he speedup is almost optimal

for smaller numbers of cores (see table 5.3).

The visualization of the regression line that was estimated is shown in fig-

ure 5.4a. The computed residuals are demonstrated in (see figure 5.4b). Their

unbiased appearance suggests that the model fits well. The coefficient of deter-

mination is calculated: R2 = 0.9889 which suggests very good variance coverage.

The p-value of the calculated F-statistics is less than 2.2 × 10−16. According to

the residuals plot and the attributes above, we conclude that the model fits well

[44, 45]. For details of linear model refer to appendix G
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Figure 5.4: Fibonacci linear model

Secondly, we create a linear model which depends on both the number of

CPUs and the workload, hence a multiple regression is used. In order to maximize

the simplicity of the model and provide a reasonable coefficient discussion, only

polynomial variables bounded by degree of four are employed. The model follows

equation 5.3.

Speedupi = β0 + β1Coresi + β2Cores
2
i + β3Cores

4
i +

+ β4Workloadi + β5Workload2i + εi (5.3)

Analogously to the prior linear model, the ordinary least square method [42]

was used in order to estimate β̂i. The estimated coefficients are as follows from

equations 5.4.

All the p-values of the variable significances are less than the set significance

level (see chapter 5.1.5) [43]. Considering a fixed workload, β̂1 and β̂2 may be

explained analogously to the proper coefficients of the simple model. Nevertheless,

the quadratic dependence is stronger since it must balance the β̂3 that smooths

the curve. On the contrary, considering the fixed number of cores, the influence of

the workload is similar. However, since β̂5 is stronger than β̂2 in the prior model,

we conclude that workload influences the total speedup less than the number of
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cores. It implies, that the scalability of the benchmark is sufficient.

β̂0 = −3.905 (5.4a)

β̂1 = 1.369 (5.4b)

β̂2 = −2.198× 10−02 (5.4c)

β̂3 = 1.873× 10−06 (5.4d)

β̂4 = 6.726× 10−04 (5.4e)

β̂5 = −3.660× 10−08 (5.4f)

In order to maintain the clarity of the data, the model itself is not presented.

Instead, a three-dimensional visualization of raw measured speedups is illustrated

in figure 5.5a. As it may be observed, the core dependence is dominant. Fur-

thermore, the residuals are plotted as proof of a good model (see figure 5.5b).

Analogously to the prior model, the unbiased appearance suggests that the model

fits well [45]. The coefficient of determination is calculated: R2 = 0.9688 which

suggests sufficient variance coverage. The p-value of the calculated F-statistics

is less than 2.2× 10−16. According to the residuals and the attributes above, we

analogously conclude that the model fits well [44]. For details of linear model we

refer to appendix H
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Figure 5.5: Fibonacci full linear model
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According to residual plots of both previous models, we conclude that models

do not appear to feature heteroscedasticity at all since we observe strong ho-

moscedasticity instead [46]. We conclude that both models fit well the measured

data and may be employed for speedup estimations. Nevertheless, the models are

not appropriate for extrapolation.

5.3 Matrix Multiplication

In the second benchmark, a more practical example - the matrix multiplication -

is introduced. Initially two pseudo-random square matrices of shape workload×

workload. are generated. The generator was seeded in order to behave determin-

istically for possible future benchmark repetition. The generated matrices are

consequently multiplied according to the definition.

We decided to use this trivial approach in order not to use recursion, thus scal-

ability of the problem is enhanced. Additionally, this approach is easily invoked

in parallel since the result cells are computed independently of each other.

Even though omp parallel for was used analogously to the prior benchmark

5.2 and the amount of workload remains approximately the same, the measured

speedups differ. This example stores the result in the memory which inevitably

leads to the synchronization at some point.

Even though the workload is divided independently and no memory cell is

accessed from multiple threads, the CPU cache must be synchronized among all

CPUs. Hence, the observed speedups feature lower values then the Fibonacci

benchmark.

The benchmark was run with the workload set to 2, 000. As figure 5.6a illus-

trates, the speedup of this benchmark is scalable similarly to the prior benchmark

(see chapter 5.2) in terms of the observed shape of the dependence. The second

figure (5.6b) indicates the speedup distribution.
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Figure 5.6: Matrix multiplication speedup visualization

5.4 Function Maximum

Finally, as the last omp parallel for benchmark, we implemented the parallel version

of the function maximum finding, that employs a critical section (omp critical).

Function f(x, y), that is defined in equation 5.5, is maximized over an integer

matrix [−3, 500; 3, 500)2.

f(x, y) = log(x2 + 6y)− sin(x− y) + 4
√
|x3 − y3| − cosh(3x) (5.5)

The algorithm evaluates f in every integer point in the input interval by divid-

ing total workload into chunks of 500 that are invoked in parallel. Nevertheless,

the critical section, where the maximization happens, is an extreme bottleneck.

Since all worker threads work approximately the same time, the contention on

the critical section lock is enormous and leads to great overhead.

As a demonstration of the fact that the critical section lacks the scalability, the

dependence of speedup on cores is presented in form of a graph (see figure 5.7a).

We observe that the speedup steadily increases up to twelve CPUs where it reaches

the value slightly less than ten. That value remains constant whilst the number

of CPUs increases. Even though the scalability seems to be insufficient, the

increasing number of CPUs does not cause any decrease of the speedup which is
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Figure 5.7: Function maximum speedup visualization

expected for increasing race conditions over the critical section mutex.

Altogether, the box-and-whisker diagram is provided as an example of speedup

stability across various executions (see figure 5.7b).

5.5 Single & Master Overhead

The inappropriate use of master or single directives causes an overhead. For the

purpose of measuring its size, the following benchmark was developed. It mea-

sures the total speedup of completely useless directive usage, i.e. a master of

single directive is located in a parallel region. Clearly, the directive body is ex-

ecuted only once, nevertheless the overhead caused by useless thread creations

may be measured. Obviously, the total speedup is expected to be less than 1.

Levenshtein (edit) distance algorithm is executed given two pseudo-randomly

generated strings of lengths equal to workload. The Java implementation of this

algorithm from Wikipedia1 was employed. The benchmark routines are imple-

mented as follows from listing 5.2.

We observed that for non-trivial workloads the overheads are nearly unmea-

surable as the mean speedup is not significantly lower than one. Hence, only

1http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_

distance#Java
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Figure 5.8: Overheads of single and master directives

smaller workloads are demonstrated in figure 5.8. According to the figure, even

though the greater workload lowers the fraction of thread creation overhead, the

growing number of CPUs implies the growth of the number of thread that are

created. Consequently, a greater overhead is incurred.

1 /∗ r e f e r e n c e a lgor i thm ∗/
2 runLevenste in ( str ingA , s t r ingB ) ;
3

4 /∗ p a r a l l e l a lgor i thm ∗/
5 // omp p a r a l l e l
6 {
7 // omp master ( s i n g l e r e s p e c t i v e l y )
8 { runLevenste in ( str ingA , s t r ingB ) ; }
9 }

Listing 5.2: Master/Single benchmark design

According to the measured data, the single provides slightly higher speedup.

This is caused by the fact, that the task may become executed during other

threads creation. On the other hand, master requires only thread number 0 for its

execution, possibly waiting for all other threads to be created. We recommend

the use of single rather then master for that reason.

5.6 Related Projects Comparison

In order to provide an objective comparison among multiple projects that run

on different platforms, a neutral benchmark across the languages - the Fibonacci
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benchmark (described in chapter 5.2) - was chosen. By not storing the results

into the shared memory, the data are cleared and the Java memory model ef-

fects are filtered out. Hence, the differences among different memory models are

synchronization techniques are eliminated.

Three projects are compared - omp4j, gcc implementation of OpenMP and

JOMP. All solutions are compared from the scalability point of view, i.e. the

dependence of the speedup on the number of cores.

5.6.1 GCC Comparison

In order to provide practical results, the C++ source code was compiled only

using g++ −Wall −O3 −fopenmp options. Figure 5.9 illustrates the comparison of

gcc (black) and omp4j (red) on two fundamentally different workloads - 1,000 (see

figure 5.9a) and 20,000 (see figure 5.9b).

We observe that OpenMP implemented by gcc provides greater speedup in

both shown workloads. This phenomenon is caused by the fact that OpenMP

has built-in support directly in the gcc compiler which generates the final binary

code. Hence, it might provide some low-level optimization for parallel code whilst

omp4j preprocess only source codes.
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Figure 5.9: GCC comparison on different workloads
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Figure 5.10: JOMP comparison on different workloads

5.6.2 JOMP Comparison

Analogously to the prior C++ comparison, we aim to compare omp4j with JOMP

that also provides source-level parallelization and runs directly on JVM (as de-

scribed in chapter 1.3.1).

In order to create a valuable results, the same benchmark is used as well as

the same workloads as the prior comparison. The results are shown in figure 5.10

that illustrates both measured workloads i.e. 1,000 and 20,000 iterations.

Considering the former workload (see figure 5.10a), we conclude that omp4j

scales more fluently at the expense of the worse local performance around 24

CPUs. In order to determine whether omp4j performs significantly less satisfacto-

ry, unpaired t-test is used as Anděl suggests [41]. The significance level is set as

follows from chapter 5.1.5. The null-hypothesis H0 is tested against the one-sided

alternative H1 as follows.

H0: “The mean of omp4j speedup is equal to the mean of JOMP speedup with

fixed number of CPUs=24”

H1: “The mean of omp4j speedup is significantly less than the mean of JOMP

speedup with fixed number of CPUs=24”

The computed p-value is approximately equal to 4.968×10−10 which suggests

the rejection of the hypothesis H0. We conclude that when 24 cores are used,
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JOMP provides significantly greater speedup then omp4j.

On the contrary, we might observe that with a higher number of CPUs, omp4j

performs better. Using analogous hypotheses and t-test at the fixed number of

cores equals 48 we reject H0 with p-value equals to 3.709 × 10−05. Hence omp4j

scalability is significantly better.

Considering the latter figure (5.10b), we may observe that up to 30 used cores,

both preprocessors perform equally. However, with increasing number of cores

omp4j scales better. To prove this claim, the t-test with analogous hypotheses is

employed. The null-hypothesis H0 is rejected with p-value equal to 5.696×10−10.

Thus, we conclude that even for big workloads, omp4j scales better then JOMP.
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Chapter 6.

User Documentation

In this chapter, a complex tutorial of downloading source codes, project compi-

lation and installation is covered. Furthermore, the description of the supported

program options is provided and a complex example of a real-world preprocessor

usage is demonstrated.

6.1 Prerequisites

In order to run the preprocessor, having a proper Java Development Kit (JDK)

installed is required since the Java compiler is frequently used during the process.

omp4j is compatible with Java standards. It was explicitly tested on the following

JDKs.

• OpenJDK 6

• OpenJDK 7

• Oracle JDK 7

• Oracle JDK 8 (recommended)

The preprocessor was initially developed for linux and UNIX systems. Howev-

er, it may be used on MS Windows as well. The user must be aware of common

pitfalls such as problematic environmental variable setting. For example, null

must not be returned by ToolProvider.getSystemJavaCompiler(). We strongly discour-

age using the preprocessor on MS Windows since it was properly tested only on

linux systems.

6.2 Preprocessor Installation

There are multiple ways of downloading and installing omp4j. This section pro-

vides a step-by-step tutorial regarding all important information. The preproces-
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sor download may be achieved either by direct JAR download or by cloning the

git repository and the following compilation.

6.2.1 Compiled Preprocessor

The compiled preprocessor including all dependencies may be downloaded from

the project website1 in the format of Java Archive (JAR) which may be executed

directly from Java (e.g. $ java −jar omp4j.jar). Alternatively, the archive may be

found in the digital attachment of this thesis.

6.2.2 Source Code

There are multiple ways of obtaining the project sources. The recommended way

is using git CLI since the source code is developed using this system (hosted

on GitHub). As the preprocessor repository depends on grammar and runtime

submodules, the −−recursive option usage is suggested in order to download all

dependent submodules [34].

1 # SSH
2 $ g i t c l one −−r e c u r s i v e git@github . com : omp4j/omp4j . g i t
3

4 # HTTPS
5 $ g i t c l one −−r e c u r s i v e https : // github . com/omp4j/omp4j . g i t

Listing 6.1: Source download

The other possible way of accessing the source is to download directly a ZIP

archive from GitHub 2. However, this approach requires further submodule ini-

tialization since GitHub does not provide . git/ directory in the archive.

The compilation of downloaded sources is provided by Scala Build Tool (SBT),

which is a popular building tool for Scala projects. For its proper usage, Scala

and Scala compiler (scalac) must have been already installed. The tested version

of Scala for SBT execution is v2.9.2+. However, SBT uses Scala v2.10.3 for com-

pilation and execution of the preprocessor. This version is downloaded separately,

hence even older installed Scala versions are valid. SBT may be used either as a

1http://www.omp4j.org/download
2https://github.com/omp4j/omp4j/archive/master.zip
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command (e.g. $ sbt compile) or as an interactive CLI. We assume that the user

prefers the interactive mode, thus the rest of the text follows this assumption.

The preprocessor was developed and tested on version 0.13.6.

The compilation of source code is rather simple. Entering SBT CLI using

$ sbt in project directory enables the user to command SBT in the interactive

mode. The common commands may be as follows (see Table 6.1 on page 64).

Command Action
compile download all dependencies and compile all sources
run [args] execute compiled program, passing [args] to the main function
test run unit testing, printing (colorful) results
assembly generate executable dependenceless .jar archive
doc generate scaladoc API reference

Table 6.1: SBT interactive commands

Hence, in order to compile the project, run command must be selected. Before

the compilation is started, SBT downloads all dependencies from the internet such

as ANTLR and ScalaTest. If no internet connection is available, the user must

provide all dependencies. This may by achieved either by the direct installation

or by copying the proper JARs into lib/ directory. However, this approach is

strongly recommended against. The ANTLR JAR may be found in the digital

attachment of this thesis as well as the whole git repository.

The grammar repository3 contains both Java 8 ANTLR grammar and the

OMP grammar that was implemented as a part of this project. The former

grammar is slightly modified in terms of different parser package. In addition,

it allows the generated parser to access the single line comments. Apart from

the grammars themselves ( .g4 files), the repository also contains the generated

parsers and lexers. Therefore, when omp4j is downloaded with −−recursive option,

the grammars do not require further compilation. In order to recompile the

grammars, update.sh may be executed as it downloads ANTLR complete JAR

and compile the grammars.

3https://github.com/omp4j/grammar

64

https://github.com/omp4j/grammar


6.3 Installation and Invocation

omp4j does not require any special installation since it is a regular JAR. The

invocation of the preprocessor is as follows $ java −jar omp4j.jar <params>. We

suggest that UNIX users create shell alias omp4j.

Alternatively, it may be run from SBT CLI via run command followed by

parameters and flags. Nevertheless, the user must provide theirs own implemen-

tation of executors since the default executors are employed only while assembled

JAR is used. We decided to design the behavior in this manner in order to sim-

plify future development of executors. For regular purposes, the JAR assemblage

is recommended for its higher performance.

Option
Behavior

Short Long
−d −−destdir Directory where the output classes are stored.
−h −−help Print help
−n −−no−compile Do not compile preprocessed sources.
−v −−verbose Provide progress information

Table 6.2: Additional CLI options

omp4j supports all javac CLI options. Additionally, it provides a few new

options as it follows from table 6.2.

Finally, two examples of common omp4j usage are provided in listing 6.2. The

former example behaves similarly to javac and thus may be used instead. The

latter example, represents the bare preprocessor that does not compile final

sources.

1 $ omp4j −d c l a s s e s −v MyClass1 . java MyClass2 . java
2 $ omp4j −d source s −−no−compi le MyClass1 . java MyClass2 . java

Listing 6.2: omp example invocations

6.4 Example Input

Finally, a complex source code is provided as a demonstration of a problem from

the real world. Parallel matrix multiplication is implemented by using OpenMP

directive omp parallel for. For full code refer to appendix I.
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More examples may be found in the digital attachment 7.3. The examples are

also stored on GitHub4. The provided complex examples demonstrate all features

of all directives. Some other examples may also be found on the project website5.

4https://github.com/omp4j/omp4j/tree/master/example
5http://www.omp4j.org/tutorial
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Chapter 7.

Project Website

This chapter describes the project website1 which was developed in order to

provide public information about installation and usage of omp4j preprocessor.

Furthermore, the website demonstrates the possible use of the preprocessor

in terms of an external library. For this purpose, a live demo2 is implemented

which allows the user to submit a Java source code decorated with supported

directives in order to obtain the processed result without the installation of the

preprocessor.

7.1 Website Architecture

The whole website consists of two major parts - the front-end and the back-end.

The former part provides a user interface and runs entirely on the client side (see

chapter 7.1.1). The latter part handles requests and runs entirely on the server

side (see chapter 7.1.2).

7.1.1 Front-end

AngularJS3 - a powerful JavaScript library developed by Google Inc. - was em-

ployed in order to maximize the user experience.

The Angluar-based websites communicate with the back-end only via RESTful

API. That provides complete freedom of back-end technology [47, 48].

The first page access requires the download of the whole page template, CSS

styles and JavaScript libraries (c. 50kB for AngularJS scripts [49]). However, the

following requests transfer the minimum amount of data as only the changing

1http://www.omp4j.org
2http://www.omp4j.org/demo
3https://angularjs.org
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content is downloaded. Thus, once the page is loaded, the further navigation

downloads only the changing content.

Therefore, the latency of navigation is minimized as well as the amount of

transferred data which is the main advantage. Compared with regular websites,

that must by fully downloaded with every request, AngularJS provides the mod-

ern approach of web development.

7.1.2 Back-end

As the back-end technology, Play!4 framework is employed as the modern and

comfortable Scala-based solution for web development. Since the full Java inter-

operability is provided [50], the interaction with omp4j might be demonstrated

since it is also a library.

Play! framework features Model-View-Controller design pattern (MVC) which

is employed in order to provide distinct behavior of the sites. Two controllers are

implemented - Application and Demo.

The former controller fetches html resources to the front-end. Thus, the time

spent while proceeding a single request is minimized and the user may quickly

navigate through the website.

The latter controller accepts a JSON object filled with the source code that

the user requires to be processed via omp4j. Then the preprocessor is instanced

and executed. Finally, the output is sent via HTTP response.

The preprocessor usage is rather simple. Initially, the configuration context

must be created (org.ompj.Config) that is passed to the preprocessor constructor.

The run method of the preprocessor stores processed source files into the directory

defined by −d option.

Listing 7.1 demonstrates the described work-flow. Refer to appendix J for full

Demo controller code.

4https://www.playframework.com
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1 /∗ Create the c o n f i g u r a t i o n context ∗/
2 va l conf = new Config ( Array (
3 ”−d” , ”path/ to / output / d i r e c t o r y ” ,
4 ”−−source−only ” , // prov ide only proce s s ed sourc e s
5 ” f i l e 1 . java ” , ” f i l e 2 . java ” // o f f i l e 1 . java and f i l e 2 . java
6 ) )
7

8 /∗ Create p r ep ro c e s s o r ∗/
9 va l prep = new Preproce s so r ( ) ( conf )

10

11 /∗ Run the p r ep roc e s s o r ∗/
12 prep . run ( )

Listing 7.1: omp4j as a library

7.2 Responsive Appearance

The website intends to be responsive to different screen sizes in order to maximize

the user experience on mobile devices. For that purpose, Twitter Bootstrap5 - a

popular CSS framework - was employed.

By using proper CSS classes, the components behave properly according to

size screen on which the website is presented [51, 52]. For example, the navigation

menu collapses on mobile phones, thus it does not requires almost any space.

Additionally, the margins are adjusted, hence the user does not mis-click when

using touch-screens.

7.3 Hosting

Since the back-end is implemented in Scala, the most common web-hostings,

that provide only Apache server and PHP, are not possible to use. Hence, a more

modern service was chosen. Even though other services exist, such as Amazon

AWS6 and RedHat7, Heroku provides overall support.

Thus, the website is hosted at Heroku8 that offers a free-plan for small projects.

Heroku was preferred for its great simplicity, git deployment [53, 34] and possible

5http://getbootstrap.com
6http://aws.amazon.com
7https://www.openshift.com
8https://heroku.com
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scalability for future purposes.

Free plan at Heroku is limited as the dynos fall asleep after an hour of inac-

tivity [54]. For that reason, the first request in the particular hour may take up

dozens of second for processing.
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Conclusion

The implemented OpenMP-like Java preprocessor - omp4j - fulfills the original re-

quirements set out in the specification. The preprocessor is highly portable as it

is compatible with all major JDKs. Additionally, it processes all modern versions

of Java and the processed code is independent of any runtime libraries which is

the main advantage of omp4j. In comparison with related projects, omp4j sup-

ports several qualities such as flexible grammar of the directives, which enhance

the simplicity of the directive usage.

The discussed performance evaluation proves significantly better scalability

of independent tasks execution than the similar JOMP project. With sufficiently

large tasks provided, omp4j presents comparable results with gcc implementation

of OpenMP.

Additionally to the original requirements, the following directives and at-

tributes implemented

• omp master directive

• omp single directive

• firstprivate attribute

• threadNum attribute

• schedule attribute

schedule attribute is recognized which allows the user to employ either already

provided executors - dynamic and static - or to implement a new executor that

better suits the current situation.

The preprocessor may be employed in three different ways - a source-to-

source preprocessor, a source-to-bytecode compiler and a third-party library. The

last mentioned approach is demonstrated by a live demo that is presented on

the project website9. The website was developed by using modern technologies

such as AngularJS and Play! framework.

9http://www.omp4j.org
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The major disadvantage of omp4j is the complex and complicated source code

analysis which heavily depends on ANTLR and its Java 8 grammar. However, the

analysis is essential as it leads to the output which a programmer would produce.

In comparison with related projects, omp4j does not move the parallel region into

a separate class. We conclude that this behavior is beneficial for educational

purposes since it minimizes the amount of code transformation.

As a possible future improvement, Java 8 grammar might be reimplemened

in order to develop a more effective, simpler and properly tested ANTLR resource,

that is employed in the syntax analysis. Additionally, the project could be ex-

tended in order to implement the whole OpenMP 3.1 standard. For that purpose,

the reduction attribute and omp task directive should be implemented.
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Attachments

This chapter describes the enclosed digital attachments. All attachments are

compressed in a single ZIP archive which content is explained below.

omp4j/

The preprocessor repository. It contains all sources that are required for

compilation (see chapter 6.2.2). The whole directory follow the SBT project

structure [55].

omp4j/examples/ This directory contains advanced examples such as

lambda function translation and various anonymous classes. The files

are also employed as the unit tests.

omp4j/src/ Preprocessor source root following SBT project structure [55].

benchmark/

The benchmark repository which contains the whole benchmarking frame-

work.

benchmark/resources/ This directory contains all resources that were

measured.

benchmark/statistics/ The statistical analysis scripts and resources. The

data/ subdirectory contains all measured data in .csv format.

www/

The website repository. In order to run the website locally, Activator plat-

form must be installed. By using activator ui, the proper directory can be

selected and the application run. However, the website runs also online10

in order to provide a simple access without the local installation.

omp4j-1.2.jar

The assembled dependenceless preprocessor. The JAR was compiled with

javac 1.6, thus, it should run on all supported JVMs.

antlr-runtime-4.4.jar

The packed ANTLRv4 grammar recognizer. It is automatically downloaded

from the internet11 during the compilation. However, it must be provided

10http://www.omp4j.org
11http://omp4j.petrbel.cz/antlr-runtime-4.4.jar

79

http://www.omp4j.org
http://omp4j.petrbel.cz/antlr-runtime-4.4.jar


by the user if the internet connection is not available.

thesis.pdf

A digital copy of this text.
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Appendix A Preprocessor Work-flow

Table 1 presents the preprocessor work-flow in detail. Used packages and classes are highlighted in the following columns.

# Phase description Packages and classes used in the particular phase
1 Configuration creation Config
2 Code analysis Extractor, System and Tree packages

Preprocessor
3 Directive recognition DirectiveVisitor

Directive
4 Top level directives translation Translator, TranslatorVisitor, ANTLR-Rewriter
5 Output writing Utils-package
6 GOTO (2) a directive exists

Table 1: Preprocessor work-flow
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Appendix B OMP Directive

This appendix provides a fraction of implemented OMP grammar in .g4 format.

The common lexer rules are omitted as well as similar rules such as omp parallel

for which is basically the same as omp parallel. The latter directive demonstrates

the random access memory usage. The complete grammar may be found in the

digital attachment.

1 grammar OMP;
2

3 // PARSER RULES
4 ompUnit : OMP (
5 ompParal le l |
6 ompParal le lFor |
7 ompFor |
8 ompSections |
9 ompSection |

10 ompSingle |
11 ompMaster |
12 ompBarrier |
13 ompAtomic |
14 ompCri t i ca l
15 ) EOF ;
16

17 ompParal le l
18 l o c a l s [ s t a t i c java . u t i l . HashSet<Str ing> names ]
19 @ini t {
20 OmpParallelContext . names = new java . u t i l . HashSet<Str ing >() ;
21 }
22 : PARALLEL ompPara l l e lMod i f i e r s ;
23

24 ompPara l l e lMod i f i e r s
25 : ompPara l l e lModi f i e r ompPara l l e lMod i f i e r s
26 |
27 ;
28

29 ompPara l l e lModi f i e r
30 // Ensure that no d u p l i c a t e s have been provided
31 // schedule , threadNum and a c c e s s M o d i f i e r s
32 : { ! $ompParal le l : : names . conta in s (” schedu le ”) }? ompSchedule

{ $ompParal le l : : names . add (” schedu le ”) ;}
33 | { ! $ompParal le l : : names . conta in s (” threadNum ”) }? threadNum

{ $ompParal le l : : names . add (” threadNum ”) ;}
34 | ompAccessModif ier
35 ;
36

37 ompParal le lFor . . .
38 ompSections . . .
39

40 ompFor : FOR ompAccessModif ier∗ ;
41 ompSection : SECTION ;
42 ompSingle : SINGLE ;
43 ompMaster : MASTER ;
44 ompBarrier : BARRIER ;
45 ompAtomic : ATOMIC ;
46 ompCri t i ca l : CRITICAL ( ’ ( ’ ompVar ’ ) ’ ) ? ;
47

48 ompPublic : PUBLIC ;
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49 ompPrivate : PRIVATE ;
50 ompFirstPr ivate : FIRSTPRIVATE ;
51

52 ompSchedule : SCHEDULE ’ ( ’ ( VAR | ’ . ’ ) ∗? ’ ) ’ ;
53 threadNum : THREAD NUM ’ ( ’ ompNumber ’ ) ’ ;
54 ompAccessModif ier : ( ompPublic | ompPrivate | ompFirstPr ivate )

’ ( ’ ompVars ’ ) ’ ;
55

56 ompVars : ( ompVar | ( ompVar ’ , ’ )+ ompVar ) ;
57 ompVar : VAR ;
58 ompNumber : NUMBER ;
59

60

61 // LEXER RULES
62 OMP : ’omp’ ;
63 PARALLEL : ’ p a r a l l e l ’ ;
64 FOR : ’ for ’ ;
65 SECTIONS : ’ s e c t i o n s ’ ;
66 SECTION : ’ s e c t i on ’ ;
67 SINGLE : ’ s i n g l e ’ ;
68 MASTER : ’ master ’ ;
69 BARRIER : ’ b a r r i e r ’ ;
70 ATOMIC : ’ atomic ’ ;
71 CRITICAL : ’ c r i t i c a l ’ ;
72

73 PUBLIC : ’ publ ic ’ ;
74 PRIVATE : ’ pr ivate ’ ;
75 FIRSTPRIVATE : ’ f i r s t p r i v a t e ’ ;
76 SCHEDULE : ’ schedule ’ ;
77 THREAD NUM : ’ threadNum ’ ;
78

79 . . .
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Appendix C IOMPExecutor

This appendix provides the executor interface. This interface is final and may not

be modified in order to maintain backward compatibility of the processed files.

1 package org . omp4j . runtime ;
2

3 import java . u t i l . concurrent . Executor ;
4

5 /∗∗
6 ∗ Extension to the Executor c l a s s . Provides methods f o r omp4j

p r ep ro c e s s o r .
7 ∗/
8 pub l i c i n t e r f a c e IOMPExecutor extends Executor {
9

10 /∗∗ Block cur rent thread u n t i l a l l t a sk s are f i n i s h e d . ∗/
11 pub l i c void waitForExecution ( ) ;
12

13 /∗∗ Get unique id o f the thread from which the method i s c a l l e d .
The range i s [ 0 , threadNum ) ∗/

14 pub l i c i n t getThreadNum ( ) ;
15

16 /∗∗ Return t o t a l number o f thread used . This number i s u s ua l l y
the same as the one g iven to the con s t ruc to r . ∗/

17 pub l i c i n t getNumThreads ( ) ;
18

19 /∗∗
20 ∗ Simulate b a r r i e r h i t . Delay t h i s thread u n t i l a l l threads have

h i t the b a r r i e r .
21 ∗ @param barrierName name o f the b a r r i e r h i t .
22 ∗/
23 pub l i c void h i t B a r r i e r ( S t r ing barrierName ) ;
24 }
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Appendix D hitBarrier implementation

The following source code demonstrates simple hitBarrier implementation that is

provided by org.omp4j.runtime.AbstractExecutor class.

1

2 protec ted ConcurrentHashMap<Str ing , Cyc l i cBar r i e r> b a r r i e r s ;
3

4 pub l i c void h i t B a r r i e r ( S t r ing barrierName ) {
5

6 C y c l i c B a r r i e r barr = n u l l ;
7

8 // i f b a r r i e r a l r eady e x i s t s , f e t c h i t
9 i f ( b a r r i e r s . containsKey ( barrierName ) ) {

10 barr = b a r r i e r s . get ( barrierName ) ;
11 } e l s e {
12 // e l s e b lock
13 synchron ized ( b a r r i e r s ) {
14 // check whether some other thread have c rea ted i t whi l e t h i s

thread was wai t ing be f o r e synchronized block
15 i f ( b a r r i e r s . containsKey ( barrierName ) ) {
16 barr = b a r r i e r s . get ( barrierName ) ;
17 // i f not , c r e a t e i t by i t s e l f
18 } e l s e {
19 barr = new C y c l i c B a r r i e r ( numThreads ) ;
20 b a r r i e r s . put ( barrierName , barr ) ;
21 }
22 }
23 }
24

25 t ry {
26 barr . await ( ) ;
27 } catch ( BrokenBarr ierExcept ion e ) {
28 System . e r r . p r i n t l n ( ”An BrokenBarr ierExcept ion occurred whi l e

p r o c e s s i n g b a r r i e r ’ ” + barrierName +” ’ . This i s unexpected
behavior probably caused by thread manipulat ion . P lease do not
a c c e s s threads c rea ted by the executo r s . ” ) ;

29 System . e x i t (1 ) ;
30 } catch ( Inter ruptedExcept ion e ) {
31 System . e r r . p r i n t l n ( ”An Inter ruptedExcept ion occurred whi l e

p r o c e s s i n g b a r r i e r ’ ” + barrierName +” ’ . This i s unexpected
behavior probably caused by thread manipulat ion . P lease do not
a c c e s s threads c rea ted by the executo r s . ” ) ;

32 System . e x i t (1 ) ;
33 }
34 }
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Appendix E BSD License

This appendix provides full BSD license. All project repositories are published

under the following license including the text of this thesis.

1 [ The ”BSD l i c e n s e ” ]
2 Copyright ( c ) 2015 Petr Belohlavek
3 Al l r i g h t s r e s e rved .
4

5 R e d i s t r i b u t i o n and use in source and binary forms , with or without
6 modi f i ca t i on , are permitted provided that the f o l l o w i n g c o n d i t i o n s
7 are met :
8

9 1 . R e d i s t r i b u t i o n s o f source code must r e t a i n the above copyr ight
10 not i ce , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a i m e r .
11 2 . R e d i s t r i b u t i o n s in binary form must reproduce the above

copyr ight
12 not i ce , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a i m e r in

the
13 documentation and/ or other m a t e r i a l s provided with the

d i s t r i b u t i o n .
14 3 . The name o f the author may not be used to endorse or promote

products
15 der ived from t h i s so f tware without s p e c i f i c p r i o r wr i t t en

permis s ion .
16

17 THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘ ‘AS IS ’ ’ AND ANY EXPRESS OR
18 IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES
19 OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED.
20 IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT
22 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS

OF USE,
23 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY
24 THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT
25 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF
26 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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Appendix F Fibonacci Distribution

This appendix provides several distribution charts. The Fibonacci benchmark

(see chapter 5.2) was executed 200 times for each configuration. We decided to

measure both 8 and 24 cores cases combined with workload of 1.000 and 10.000.

The following histograms demonstrates the distribution.
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The measured data contains values that exceed the optimum speedup. This

phenomenon is caused by pairwise speedup computation and is eliminated by

CLT [39]. The distributions appear normal, however, Shapiro-Wilk test rejects

the normality hypothesis because of the described phenomenon. We decided not

to filter out these results in order to provide clear data.
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Appendix G Simple Linear Regression

This appendices G and H present the outputs of the R command summary applied

to the first and second linear models which are described in chapter 5.2.4.

1 Cal l :
2 lm( formula = dataset$speedup ˜ d a t a s e t $ c o r e s + I ( d a t a s e t $ c o r e s ˆ2) )
3

4 Res idua l s :
5 Min 1Q Median 3Q Max
6 −2.2220 −0.3854 −0.0917 0 .3252 7 .1028
7

8 C o e f f i c i e n t s :
9 Estimate Std . Error t va lue Pr(>| t | )

10 ( I n t e r c e p t ) −0.669882 0.126153 −5.31 1 .68 e−07 ∗∗∗
11 d a t a s e t $ c o r e s 1 .201956 0.011876 101 .20 < 2e−16 ∗∗∗
12 I ( d a t a s e t $ c o r e s ˆ2) −0.012727 0.000235 −54.16 < 2e−16 ∗∗∗
13 −−−
14 S i g n i f . codes : 0 ’∗∗∗ ’ 0 .001 ’∗∗ ’ 0 .01 ’∗ ’ 0 .05 ’ . ’ 0 . 1 ’ ’ 1
15

16 Res idual standard e r r o r : 0 .8832 on 477 degree s o f freedom
17 Mult ip l e R−squared : 0 .9889 , Adjusted R−squared : 0 .9888
18 F−s t a t i s t i c : 2 .122 e+04 on 2 and 477 DF, p−value : < 2 .2 e−16

Listing 2: Simple linear regression summary

Appendix H Multiple Linear Regression

1 Cal l :
2 lm( formula = rdataset$speedup ˜ r d a t a s e t $ c o r e s +

I ( r d a t a s e t $ c o r e s ˆ2) +
3 I ( r d a t a s e t $ c o r e s ˆ4) + rdataset$work load +

I ( rdataset$work load ˆ2) )
4

5 Res idua l s :
6 Min 1Q Median 3Q Max
7 −5.0056 −0.6009 0 .0208 0 .5325 12.9548
8

9 C o e f f i c i e n t s :
10 Estimate Std . Error t va lue Pr(>| t | )
11 ( I n t e r c e p t ) −3.905 e+00 1 .201 e−01 −32.53 <2e−16 ∗∗∗
12 r d a t a s e t $ c o r e s 1 .369 e+00 1 .355 e−02 101 .05 <2e−16 ∗∗∗
13 I ( r d a t a s e t $ c o r e s ˆ2) −2.198e−02 4 .364 e−04 −50.36 <2e−16 ∗∗∗
14 I ( r d a t a s e t $ c o r e s ˆ4) 1 .873 e−06 9 .286 e−08 20 .17 <2e−16 ∗∗∗
15 rdataset$work load 6 .726 e−04 3 .001 e−05 22 .41 <2e−16 ∗∗∗
16 I ( rdataset$work load ˆ2) −3.660e−08 2 .660 e−09 −13.76 <2e−16 ∗∗∗
17 −−−
18 S i g n i f . codes : 0 ’∗∗∗ ’ 0 .001 ’∗∗ ’ 0 .01 ’∗ ’ 0 .05 ’ . ’ 0 . 1 ’ ’ 1
19

20 Res idual standard e r r o r : 1 .14 on 3472 degree s o f freedom
21 Mult ip l e R−squared : 0 .9688 , Adjusted R−squared : 0 .9688
22 F−s t a t i s t i c : 2 .156 e+04 on 5 and 3472 DF, p−value : < 2 .2 e−16

Listing 3: Multiple linear regression summary
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Appendix I Matrix Multiplication

The following source code was used in matrix multiplication benchmark (see

chapter 5.3).

1 protec ted void runBenchmark ( f i n a l i n t [ ] [ ] A, f i n a l i n t [ ] [ ] B) {
2

3 i n t r e s u l t [ ] [ ] = new i n t [ workload ] [ workload ] ;
4

5 // omp p a r a l l e l f o r schedu le ( dynamic )
6 f o r ( i n t i = 0 ; i < workload ; i++) {
7 f o r ( i n t j = 0 ; j < workload ; j++) {
8 i n t d = 0 ;
9 f o r ( i n t k = 0 ; k < workload ; k++) {

10 d += A[ i ] [ k ] ∗ B[ k ] [ j ] ;
11 }
12 r e s u l t [ i ] [ j ] += d ;
13 }
14 }
15 }
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Appendix J Demo Controller

This appendix introduces a controller that is employed in website online demo.

As it may be seen, the use of omp4j as a library is extremely simple.

1 ob j e c t Demo extends C o n t r o l l e r {
2 de f t r a n s l a t e = Action ( parse . j son ) { i m p l i c i t r eque s t =>
3 va l f i n = F i l e . createTempFile ( ” pre ” , ” . java ” )
4 var f o u t : F i l e = n u l l
5 var toDe le te : L i s t [ F i l e ] = n u l l
6 var conf : Conf ig = n u l l
7

8 va l w r i t e r = new Buf feredWriter (new OutputStreamWriter (new
FileOutputStream ( f i n ) ) )

9

10 t ry {
11 va l source : play . ap i . l i b s . j s on . JsValue =

reques t . body . \ ( ” source ” )
12

13 va l code : S t r ing = source . t oS t r i ng
14 w r i t e r . wr i t e ( Str ingContext t r ea tEscapes code . su b s t r i n g (1 ,

code . length −1) )
15 w r i t e r . f l u s h ( )
16

17 conf = new Config ( Array ( ”−d” ,
System . getProperty ( ” java . i o . tmpdir” ) , ”−−source−only ” ,
f i n . getAbsolutePath ) ) // s e t up c o n f i g u r a t i o n based on
program arguments

18 va l prep = new Preproce s so r ( ) ( conf ) // c r e a t e p r ep ro c e s s o r
19

20 va l ( t r a n s l a t e d F i l e s , d i r s ) = prep . run ( )
21 va l tmpDirs :+ ( ( tmpDir , prepDir ) ) :+ ( ( l a s tD i r ,

l a s tPrepDi r ) ) : L i s t [ ( F i l e , F i l e ) ] = d i r s
22 toDe l e te = tmpDir : : prepDir : : l a s t D i r : : l a s tPrepDi r : :

tmpDirs . f o l d L e f t [ L i s t [ F i l e ] ] ( L i s t ( ) ) { case ( z , ( a , b ) ) => a : : b
: : z}

23

24 f o u t = t r a n s l a t e d F i l e s . head
25 va l output = s c a l a . i o . Source . f romFi l e ( f o u t ) . mkString
26 Ok( output )
27

28 } catch {
29 case e : Exception => Ok( e . getMessage )
30 } f i n a l l y {
31 w r i t e r . c l o s e ( )
32

33 t ry f i n . d e l e t e ( )
34 catch { case e : Nul lPo interExcept ion => ; }
35

36 t ry f o u t . d e l e t e ( )
37 catch { case e : Nul lPo interExcept ion => ; }
38

39 t ry toDe l e t e . f o r each ( Fi leTreeWalker . r e c u r s i v e D e l e t e )
40 catch { case e : Nul lPo interExcept ion => ; }
41

42 t ry Fi leTreeWalker . r e c u r s i v e D e l e t e ( conf . workDir )
43 catch { case e : Nul lPo interExcept ion => ; }
44 }
45 }
46 }
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