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Abstrakt: Major index permutace π je součet všech index̊u i takových, že πi >
πi+1. V této práci zkoumáme distribuci major indexu na permutaćıch neob-
sahuj́ıch zakázané vzory. Zaj́ımá nás hodnota Mm

n (Π), což je počet permutaćı
délky n s major indexem m a množinou zakázaných vzor̊u Π.

Podařilo se nám ukázat, že pro jednoprvkovou množinu Π = {σ} krom okrajových
triviálńıch př́ıpad̊u, se hodnoty Mm

n (Π) chovaj́ı monotónně, nebo-li Mm
n (Π) ≤

Mm
n+1(Π). Hlavńım výsledkem je rozbor asymptotického chováńı hodnot Mm

n (Π)
pro n jdoućı k nekonečnu. Ukážeme, že pro každé pevné m, Π a dostatečně velké n
jsou hodnoty Mm

n (Π) rovny polynomu v proměnné n a nav́ıc jsme schopni určit
stupně těchto polynomů pro r̊uzné množiny zakázaných vzor̊u.
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Abstract: For a permutation π, the major index of π is the sum of all indices i such
that πi > πi+1. In this thesis, we study the distribution of the major index over
pattern-avoiding permutations of length n. We focus on the number Mm

n (Π) of
permutations of length n with major index m and avoiding the set of patterns Π.

First, we are able to show that for a singleton set Π = {σ} other than some trivial
cases, the values Mm

n (Π) are monotonic in the sense that Mm
n (Π) ≤ Mm

n+1(Π).
Our main result is a study of the asymptotic behaviour of Mm
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n (Π) is equal
to a polynomial in n and moreover, we are able to determine the degrees of these
polynomials for many sets of patterns.
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Introduction

Let Sn be the set of permutations of the letters {1, 2, . . . , n} = [n]. We write a
permutation π ∈ Sn as a sequence π1 · · · πn. A permutation statistic is a function
st : Sn → N0. For a permutation π, an inversion is a pair of different indices
i < j such that πi > πj and the number of inversions is denoted by inv(π). The
number of inversions is the oldest and best-known permutation statistic. Already
in 1838, Stern [18] proposed a problem of how many inversions there are in all
the permutations of length n. The distribution of the number of inversions was
given shortly after that by Rodrigues [14].

However, we will focus on a different well-known permutation statistic in this
thesis. For a permutation π, we say that there is a descent on the i-th position
if πi > πi+1. The major index of π, denoted by maj(π), is then the sum of
the positions, where the descents occur. The major index statistic is younger
than the number of inversions, as it was first defined by MacMahon [12] in 1915.
Among other results, MacMahon proved its equidistribution with the number
of inversions by showing that their generating functions are equal and started
the systematic study of permutation statistics in general. That is why we call
the statistics equidistributed with the number of inversions Mahonian. Then it
took a long time before Foata [10] proved the equidistribution by constructing
his famous bijection. Since then many new Mahonian statistics appeared in the
literature, most of which are included in the classification given by Babson and
Steingŕımsson [1]. For the actual values of Mahonian statistics’ distribution see
the Mahonian numbers sequence A008302 [15].

Figure 1: Permutation π = 421365 represented as a graph. The descents occur
at the positions 1, 2 and 5, therefore we have maj(π) = 8.

We say that two sequences a1 · · · an and b1 · · · bn are order-isomorphic if the
permutations required to sort them are the same. A permutation π contains a
pattern σ if there is a subsequence of π1 · · · πn order-isomorphic to σ. Otherwise
we say that π avoids the pattern σ. Pattern avoidance is an active area of research
in combinatorics and although the systematic study of pattern avoidance started
relatively recently, there is already an extensive amount of literature. A good
illustration of an application of pattern avoidance in computer science is that
stack-sortable permutations are exactly the ones avoiding pattern 231, which was
proved by Knuth [11].

Let Sn(σ) be the set of permutations of length n avoiding σ and Sn(σ) its
cardinality. We say that patterns σ and τ are Wilf-equivalent if Sn(σ) = Sn(τ)
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Figure 2: Example illustrating the concept of permutation patterns. The pattern
213 is contained in the permutations 421365 and 452361 (one occurrence in each
permutation is highlighted), but not in the permutation 562431.

for every n. For a permutation statistic st, we say that patterns σ and τ are
st-Wilf-equivalent if there is a bijection between Sn(σ) and Sn(τ) which preserves
the statistic st. This refinement of Wilf equivalence has been extensively studied
for short patterns of length 3, see [3, 4, 8, 13]. An exhaustive classification of
Wilf-equivalence and permutation statistics among these patterns was given by
Claesson and Kitaev [5]. On the other hand, not much is known about permu-
tation statistics and patterns of length 4 and greater. Recently, Dokos et al. [7]
presented an in-depth study of major index and number of inversions includ-
ing st-Wilf-equivalence. They conjectured maj-Wilf-equivalence between certain
patterns of length 4, which was proved by Bloom [2]. Another conjecture from
Dokos et al. concerning maj-Wilf-equivalent patterns of a specific form was partly
proved by Ge, Yan and Zhang [19].

Claesson, Jeĺınek and Steingŕımsson [6] analysed the inversion number dis-
tribution over pattern-avoiding classes. Let Ikn(σ) be the number of σ-avoiding
permutations with length n and k inversions. Claesson et al. studied Ikn(σ) for a
fixed k and a single pattern σ as a function of n. Our goal is to provide similar
analysis for the distribution of major index.

Outline

For a pattern σ, let Mm
n (σ) be the set of σ-avoiding permutations with length n

and major index m, and let Mm
n (σ) denote its cardinality. For a set of patterns Π,

let Mm
n (Π) =

⋂
σ∈Π Mm

n (σ) and Mm
n (Π) its cardinality. Claesson et al. [6] conjec-

tured that Ikn(σ) ≤ Ikn+1(σ) for every k, n unless σ is an increasing pattern (i.e.
a pattern of the form 1 · · · l). In Chapter 2, we will prove the analogous claim
for major index by constructing an injective mapping f : Mm

n (σ)→Mm
n+1(σ) for

every σ 6= 12 · · · l. Furthermore, we show that the claim does not hold in general
for an arbitrary set of multiple patterns.

In Chapter 3, we focus on the asymptotic behaviour of Mm
n (Π) for a fixed m

and Π as n goes to infinity. We note that the asymptotic behaviour for the number
of inversions is known only for sets avoiding a single pattern. In contrast, our
results apply to general (possibly infinite) set of patterns. It turns out that the
values Mm

n (Π) are eventually equal to a polynomial in n, which is consistent with
the behaviour of Ikn(σ). The natural question to ask is how the degrees of these
polynomials depend on Π and m.
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Let deg(m,Π) be the degree of the polynomial P such that P (n) = Mm
n (Π)

for n ≥ n0. Similarly, let degI(k, σ) be the degree of the polynomial P such that
P (n) = Ikn(σ) for n ≥ n0. In the case of the number of inversions, there are
just two types of patterns. For a pattern σ, we have either degI(k, σ) = k for
every k, or there is a constant c such that degI(k, σ) = min(k, c). All these results
about Ikn(σ) and degI(m,σ) were shown in the aforementioned paper by Claesson
et al. [6].

However, the situation gets more complicated when dealing with major index.
We show how deg(m, {σ}) depends on the structure of σ and determine deg(m,Π)
for many types of Π, including all the cases when Π is a singleton set. There are
still patterns σ for which deg(m, {σ}) = m, but for many patterns deg(m, {σ})
is a complicated function of m which tends to infinity slower than linearly (ap-
proximately as

√
m). Note that there are unfortunately sets Π for which we are

not able to precisely determine deg(m,Π). In these cases, our results provide at
least an upper bound.

Finally, we conclude Chapter 3 by using our results to show that the asymp-
totic probability of a random permutation with major index m avoiding Π is
either 0 or 1. This again corresponds with the number of inversions, where the
analogous claim was proved for singleton sets of patterns.
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1. Preliminaries

In this chapter, we recall some standard notions related to permutation patterns
and introduce a simple decomposition of permutations.

Let Sn be the set of permutations of the letters {1, 2, . . . , n} = [n]. A per-
mutation σ ∈ Sn will be represented as a sequence of its values σ = σ1σ2 · · ·σn,
where σi = σ(i). We say that two sequences of integers a1 · · · ak and b1 · · · bk
are order-isomorphic if for every i, j ∈ [k] we have ai < aj ⇔ bi < bj. For
I = {i1 < i2 < · · · < ik} ⊆ [n] and π ∈ Sn, let π[I] denote the permutation in Sk
which is order-isomorphic to the sequence πi1πi2 · · · πik . A permutation π ∈ Sn
contains a permutation σ ∈ Sk if there exists an I such that π[I] = σ. We write
σ � π to denote this. If π does not contain σ we say that π avoids σ. In this
context we usually call σ a pattern. Similarly, for a set of patterns Π we say that
a permutation τ is Π-avoiding if it is σ-avoiding for every σ ∈ Π. For a pattern
σ let Sn(σ) be the set of all σ-avoiding permutations of length n, and Sn(σ) its
cardinality. More generally for a set of permutations Π, let Sn(Π) denote the set
of all Π-avoiding permutations of length n, and Sn(Π) its cardinality.

The descent set of σ ∈ Sn is the set D(σ) = {i | σi > σi+1} and the major
index is the sum of all its members maj(σ) =

∑
i∈D(σ) i. We will consider the

distribution of major index over pattern-avoiding permutations.

Definition 1.1. Let Mm
n (σ) denote the set of all σ-avoiding permutations of

length n with major index m, and Mm
n (σ) its cardinality. Similarly let Mm

n (Π)
be the set of all permutations from Sn(Π) with major index m, and Mm

n (Π)
its cardinality. For an example of the values Mm

n (σ) for a specific pattern, see
Table 1.1.

1
1 1
1 2 2 1
1 3 4 6 5 3 1
1 4 6 12 16 19 16 15 9 4 1
1 5 8 19 29 45 58 65 73 65 57 39 29 14
1 6 10 27 44 76 119 164 212 260 287 299 303 265 . . .

Table 1.1: The number of 1324-avoiding permutations with a fixed major index.
The mth entry in the nth row is the value Mm

n (1324), with n starting at 1 and
m starting at 0.

1.1 Permutation decomposition

Now we will introduce a decomposition which will later prove to be very useful.
Let Nd

0 be the set of d-tuples of non-negative integers and for every a ∈ Nd
0 define

its size |a| = ∑d
i=1 ai. We will decompose an arbitrary permutation into a smaller
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permutation and a tuple of non-negative integers. Let π ∈ Sn be a permutation
and k a natural number, such that the sequence πk+1 · · · πn is strictly increasing.
Then we can store the structure of such permutation in a shorter permutation σ
order-isomorphic to π1 · · · πk, and a (k+1)-tuple which describes the vertical gaps
between the letters π1 · · · πk.

Definition 1.2. Let π ∈ Sn be a permutation and k ∈ [n] such that the sequence
πk+1 · · · πn is strictly increasing. Let σ be the permutation order-isomorphic to
the sequence π1 · · · πk and a ∈ Nk+1

0 the only (k + 1)-tuple of size |a| = n − k
such that πi = σi +

∑σi
j=1 aj holds for every i ∈ [k]. Then we say that π can be

decomposed into σ and a, denoted by π = σ · a.

We can also look at the decomposition from the other side as an operation,
which increases the vertical gaps between the letters of σ and then fills them with
increasing suffix. See Figure 1.1.

(2, 3, 0, 1)

1

3

2

0

}
}

}
}

Figure 1.1: For a permutation σ = 132 and 4-tuple a = (2, 3, 0, 1) we have
π = σ · a = 387124569.

Definition 1.3. For a permutation π that can be expressed as π = γ ·a for some
γ ∈ Sk and a ∈ Nk+1

0 , we call γ the core of π and a the padding profile of π if k
is the last descent of π. In other words, π = γ · a is a decomposition into a core
and a padding profile of π if there is i ≤ γk such that ai > 0. For π = 12 · · ·n,
the core of π is the empty permutation and its padding profile is a ∈ N0 equal to
the length of π.

Observe that the major index of a permutation π is determined only by its
core. Therefore, let us define the following statistic which characterizes the cores
of permutations with a given major index.

Definition 1.4. For a permutation π, let the extended major index of π, denoted
by maj+(π), be the sum of its major index and its length, i.e.,

maj+(π) = |π|+maj(π).

For every permutation π with a core γ, we have maj(π) = maj+(γ). Notice
also that for any π, if π contains σ then maj+(π) ≥ maj+(σ).
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2. Monotonicity of columns

In this chapter, we will focus on the distribution of major index over permuta-
tions avoiding a single pattern. Observe that each column of Table 1.1 is weakly
increasing from top to bottom. In other words, for a fixed major index m the
number of 1324-avoiding permutations of length n + 1 is at least the number
of 1324-avoiding permutations of length n. We will show that this claim holds
in general for any single pattern σ except for the increasing patterns (i.e., the
patterns of the form 12 · · · k).

First let us define a simple operation of inserting an element into a permuta-
tion. Later we will prove two elementary properties of this operation.

Definition 2.1. For a permutation π ∈ Sn and k, l ∈ [n + 1], let π[k → l] ∈
Sn+1 be a permutation created by inserting the letter l at the k-th position.
In other words π[k → l] is the permutation order-isomorphic to the sequence
π1 · · · πk−1

(
l − 1

2

)
πk · · · πn. See Figure 2.1.

Figure 2.1: Example of an insertion 23154[3→ 2] = 342165

Lemma 2.2. Let n ∈ N, k, l ∈ [n + 1] and π ∈ Sn(σ). If there is I such that
π[k → l][I] = σ, then k ∈ I.

Proof. Suppose that we have I = {i1 < · · · < im} such that k 6∈ I. Let J = {j1 <
· · · < jm} be a subset of [n] defined by

jt =

{
it if it < k

it − 1 if it > k .

Since π[k → l] restricted to indices other than k is order-isomorphic to π we
obtain σ = π[k → l][I] = π[J ], contradicting the fact that π avoids σ.

Lemma 2.3. Let n ∈ N, k, l ∈ [n] and π ∈ Sn. If D(π) ⊆ [k − 1], l ≤ πk and
either k = 1 or the sequences πk−1(l − 1

2
) and πk−1πk are order-isomorphic, then

D(π) = D(π[k → l]).

Proof. As before π[k → l] restricted to indices other than k is order-isomorphic
to π. Therefore for every index i < k−1, i ∈ D(π) if and only if i ∈ D(π[k → l]).
And since we know that all the elements of D(π) are smaller than k, we get
D(π[k → l]) ⊆ [k]. We are left with the two indices k and k − 1. Observe
that k 6∈ D(π[k → l]) because l ≤ πk. And from the last condition we obtain
k − 1 ∈ D(π) if and only if k − 1 ∈ D(π[k → l]).
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Theorem 2.4. For every n,m, k ∈ N and σ ∈ Sk with D(σ) 6= ∅ we have the
inequality Mm

n (σ) ≤Mm
n+1(σ).

Proof. To prove this theorem we will construct an injective mapping f from
Mm

n (σ) to Mm
n+1(σ). In order to find an image for π ∈ Mm

n (σ) we introduce the
following permutation statistics.

Definition 2.5. For σ ∈ Sn let tail(σ) denote the largest i such that σn+1−i
σn+2−i · · · σn are all fixed points. And similarly let slope(σ) be the largest i such
that the sequence σn+1−i σn+2−i · · ·σn is strictly increasing. Recalling Defini-
tion 1.3, we see that slope(σ) is the size of the padding profile of σ and tail(σ) is
the value of its last coordinate. See Figure 2.2.

tail(σ){ slope(σ){

Figure 2.2: The tail and slope statistics of the permutation σ = 4213567

Case 1. First we solve the easy case where tail(σ) = 0. We simply extend π by
inserting the letter n+ 1 at the end, i.e.,

f(π) = π[n+ 1→ n+ 1].

It is clear that f preserves the descent set, which implies maj(π) = maj(f(π)).
Now suppose there is I = {i1 < · · · < ik} such that f(π)[I] = σ. Lemma 2.2
implies ik = n + 1. But that would lead to σk = f(π)[I]k = k which contradicts
the assumption that tail(σ) = 0.

Case 2. Suppose now that tail(σ) 6= 0 and slope(π) ≥ tail(σ). Then we create
the image of π by expanding the element at the position n+ 1− tail(σ) into two.
See Figure 2.3.

f(π) = π[t→ πt] where t = n+ 1− tail(σ).

Because all the conditions from Lemma 2.3 are met, we get D(π) = D(f(π))
which implies maj(π) = maj(f(π)).

Next we want to show that f(π) avoids σ. Suppose there is I = {i1 < · · · < ik}
such that f(π)[I] = σ. Again from Lemma 2.2 we obtain t = ij ∈ I for some j.
Observe that since there are only tail(σ) indices in f(π) larger than t, we get a
lower bound j ≥ k − tail(σ).

Now we will use different arguments depending on whether this holds as an
equality or not. First suppose that j = k − tail(σ). This means that I also
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Figure 2.3: Example of a construction from Case 2. Consider a permutation
π = 421356, which has slope(π) = 4, and suppose we have a pattern σ with
tail(σ) = 3. Then f(π) = 5213467.

contains all the indices larger than j, in particular ij+1 = t + 1. Following
Definition 2.5, j is then the largest index such that σj 6= j, implying σj < j. This
means there is a letter σl to the left of σj such that σl > σj and all the letters to
the right of σj are larger than σl. Therefore, looking at the indices j, j+1 and l we
have σj < σl < σj+1 and the same inequality goes for f(π)[I]. Translated to the
indices of f(π) the inequality f(π)t < f(π)il < f(π)t+1 must hold. But recalling
the definition of f(π) there is no index p such that f(π)t < f(π)p < f(π)t+1.

Suppose now that j > k − tail(σ). In this case there must be l > j such
that l 6∈ I. We aim to show that J = {j1 < · · · < jk} = I \ {t} ∪ {l} satisfies
f(π)[J ] = f(π)[I] = σ, which would lead to a contradiction since π contains
f(π)[J ].

We know that σjσj+1 · · ·σk are all fixed points following Definition 2.5. Ob-
serve that for every index p we have the inequality jp ≥ ip with equality on
the indices smaller than j. Therefore, f(π)[I] and f(π)[J ] restricted to the first
j − 1 letters are order-isomorphic. The only thing left is to check that the other
letters of f(π)[J ] are fixed points. The sequence f(π)t · · · f(π)n+1 is increas-
ing, thus its subsequence f(π)jjf(π)jj+1

· · · f(π)jk is also increasing and moreover
f(π)jj > f(π)ij . Then f [J ]j and subsequently all the succeeding letters of f [J ]
must be fixed points. Together, this means that indeed f(π)[I] = f(π)[J ].

Case 3. Finally, suppose that tail(σ) 6= 0 and slope(π) < tail(σ). Then we
simply insert the letter 1 at the rightmost possible position without creating a
new descent. See Figure 2.4.

f(π) = π[n+ 1− slope(π)→ 1].

As before, we obtain maj(π) = maj(f(π)) from Lemma 2.3. If there is I =
{i1 < · · · < ik} such that f(π)[I] = σ, then Lemma 2.2 implies n+1−slope(π) =
ij for some j. The j-th letter of σ must be its minimum since f(π)ij = 1 is the
minimum of f(π). On the other hand, because n+ 1− slope(π) > n+ 1− tail(σ)
and D(σ) 6= ∅, there must be q such that σq < σj, which yields a contradiction.

The only remaining part is to show that f is injective. Suppose there are
π1 6= π2 such that f(π1) = f(π2). From the properties of f(π1) we can tell
unambiguously whether it was obtained through Case 1, 2 or 3. And following
the definitions of f in these particular cases it is clear that necessarily π1 = π2.

9



Figure 2.4: Example of a construction from Case 3. Consider a permutation
π = 421356, which has slope(π) = 4, and suppose we have a pattern σ with
tail(σ) > 4. Then f(π) = 5312467.

In Theorem 2.4, the assumption D(σ) 6= ∅ is necessary, because in the case
of a pattern σ = 12 · · · k and fixed m ∈ N there is n0 ∈ N such that for every n
larger than n0 we have Mm

n (σ) = 0. This follows directly from the Erdős–Szekeres
theorem [9], which states that any permutation of length n > m(k−1)+1 contains
either the increasing pattern of length k or the decreasing pattern of length m+1,
forcing the major index to be larger than m.

Applying a similar argument as in the proof of Theorem 2.4, we could show
that Mm

n (Π) ≤ Mm
n+1(Π) for any set of patterns with the same tail which does

not contain any increasing pattern. One could think that indeed for any set of
patterns the columns are either eventually zero or weakly increasing. But this
is not true even for small sets of short patterns. For example, consider a set
Π = {3412, 1324} of just two patterns. In this case M5

6 (Π) = M5
8 (Π) = 21 and

M5
7 (Π) = 20 (see Table 2.1). But we can easily show that Mm

n (Π) tend to infinity
for m ≥ 3. Let π(n) = 12 · · · (n − 2)[m − 1 → 1] and π(n, k) = π(n)[1 → k],
then π(n, k) ∈Mm

n (Π) for n ≥ m and k > 2. Therefore, Mm
n (Π) tends to infinity

because there are linearly many π(n, k) for a fixed n.

1
1 1
1 2 2 1
1 3 3 6 5 3 1
1 4 3 9 12 16 12 15 9 4 1
1 5 3 13 12 21 38 31 48 41 44 29 29 14 5 . . .
1 6 3 18 13 20 49 62 63 105 95 109 162 108 135 . . .
1 7 3 24 14 21 62 62 105 105 221 169 222 335 341 . . .

Table 2.1: The number of permutations avoiding Π = {3412, 1324} with a fixed
major index. The mth entry in the nth row is the value Mm

n (Π), with n starting
at 1 and m starting at 0. The problematic values are highlighted.
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3. Asymptotic behaviour

We have seen that for most single patterns the inequalityMm
n (σ) ≤Mm

n+1(σ) holds
(recall Theorem 2.4). Let us now focus on the asymptotic behaviour of Mm

n (σ)
for a fixed m as n tends to infinity. More generally, we are interested in the
asymptotic behaviour of Mm

n (Π) for a (possibly infinite) set of permutations Π.
Our first goal is to show that for a fixed m and arbitrary Π, Mm

n (Π) is eventually
equal to a polynomial.

3.1 Polynomial growth

By recalling Definition 1.3, observe that a permutation is uniquely determined by
its core and its padding profile while its major index is determined only by the
core. Furthermore, for any permutation τ ∈Mm

n (Π) all the elements of D(τ) are
smaller than m + 1, thus making the core of any such permutation shorter than
m + 1. This means that all the permutations with major index m have only a
finite number of unique cores.

Definition 3.1. Let C(m,Π) denote the finite set of all the distinct cores of
permutations from Mm(Π), where Mm(Π) the set of all Π-avoiding permutations
with major index m, i.e. Mm(Π) =

⋃
n≥1 M

m
n (Π).

Note that every core γ ∈ C(m,Π) satisfies maj+(γ) = m (recall Defini-
tion 1.4). Therefore the permutation statistic which assigns to each permutation
its core, is in fact a refinement of the major index.

Definition 3.2. For γ ∈ C(m,Π), let M
[γ]
n (Π) be the set of permutations from

Mm
n (Π) which have the core γ, and let M

[γ]
n (Π) be its cardinality.

Clearly Mm
n (Π) =

∑
γ∈C(m,Π) M

[γ]
n (Π). This means that in order to prove the

polynomial behaviour of Mm
n (Π) for a fixed m, it is enough to prove the polyno-

mial behaviour of M
[γ]
n (Π) for a fixed core γ. And because the decomposition of

a permutation into its core and its padding profile is unique, we can enumerate
M

[γ]
n (Π) by counting all the possible padding profiles.

Lemma 3.3. Let Π be any set of permutations and γ ∈ Sk a permutation.
Then there exists a polynomial P and an integer n0 such that for every n ≥ n0,
M

[γ]
n (Π) = P (n).

In order to prove the lemma, we reduce it to a known property of down-sets of
integer compositions. Define a partial order ≤ on Nd

0 as (a1, . . . , ad) ≤ (b1, . . . , bd)
if for every i ∈ [d] we have ai ≤ bi. A set A ⊆ Nd

0 is a down-set in Nd
0 if for every

a ∈ A and b ≤ a, b belongs to A as well. The following proposition was proved
by Stanley [17, 16].

11



Proposition 3.4 (Stanley [17]). Let d be a positive integer and let S be a down-
set in Nd

0. Let H(n) be the number of elements of S with size n. Then there exists
a polynomial P and an integer n0 such that for every n ≥ n0, H(n) = P (n).

Proof (Stanley [16]). Let M be the set of minimal elements of the subset Nd
0 \S.

Then M is an anti-chain (meaning that if a, b ∈ M and a 6= b then neither
a ≤ b nor b ≤ a). First, we will show that any anti-chain in Nd

0 is finite by
induction on d. Note that the assertion clearly holds for d = 1. Now let d > 1
and assume that K is an infinite anti-chain in Nd

0. Fix a = (a1, . . . , ad) ∈ K and
put K ′ = K \ {a}, T = {(i, j) | 1 ≤ i ≤ d, 0 ≤ j < ai}. Define a map f : K ′ → T
by f(b) = (i, j) if i is the smallest index such that bi < ai and j = bi. At least
one of the sets K ′ij = f−1({(i, j)}) is infinite, say K ′rk. Then by suppressing the

rth coordinate from each member of K ′rk we obtain an infinite anti-chain in Nd−1
0 ,

contradicting the induction hypothesis.

For any finite subset L ⊂ Nd
0, let sup(L) be the least upper bound of L in Nd

0.
Explicitly, we have sup(L) = (b1, . . . , bd) where bi = maxa∈L ai, a = (a1, . . . , ad).

For a ∈ Nd
0, n ∈ N let J(a, n) be the number of b ∈ Nd

0 such that a ≤ b and
|b| = n. By the inclusion-exclusion principle we can express H(n) as a finite sum

H(n) =
r∑

k=0

∑
L∈Mk

(−1)k J(sup(L), n)

where Mk is the set of k-subsets of M and r = |M |. It remains to note that
J(a, n) is a polynomial in n for n sufficiently large. For s = |a|, we have

J(a, n) =

{(
n+d−s−1

d−1

)
if n ≥ s

0 if 0 ≤ n < s.

And
(
n+d−s−1

d−1

)
is indeed a polynomial in n for n ≥ s.

Proof of Lemma 3.3. Unfortunately the set of all padding profiles from M
[γ]
n (Π)

is not a down-set, but we can express it as a difference of two down-sets. Define
the following sets

An = {a | a ∈ Nk+1
0 ∧ γ · a ∈ Sn(Π)} and A =

⋃
n≥0

An

Bn = {a | a ∈ An ∧ ∀i ≤ γk : ai = 0} and B =
⋃

n≥0
Bn.

Let us check that both A and B are down-sets in Nk+1
0 . If a belongs to A and

b ≤ a, then the permutation γ ·a contains the permutation γ · b and therefore γ · b
must be Π-avoiding and b belongs to A. To show that B is down-set, consider
a ∈ B and b ≤ a. We know from previous argument that b also belongs to A and
the second condition holds since for every i ∈ [γk] we have bi ≤ ai = 0 implying
bi = 0.

The padding profiles of permutations from M
[γ]
n (Π) have at least one of the first

γk values positive, because such permutation has a descent at the k-th position.

12



But these are exactly the tuples which belong to An but not to Bn. Since Bn is
a subset of An we get M

[γ]
n (Π) = |An| − |Bn|.

From Proposition 3.4, we obtain that |An| and |Bn| are both polynomials

for sufficiently large n, therefore M
[γ]
n (Π) is eventually equal to a polynomial as

well.

Corollary 3.5. For a set of permutations Π and m ∈ N0, there exists a polyno-
mial P and an integer n0 such that for every n ≥ n0, Mm

n (Π) = P (n).

Since we now know that the numbers Mm
n (Π) are eventually equal to a poly-

nomial, we can introduce the following notation.

Definition 3.6. For a set of permutations Π, let deg(m,Π) be the degree of
the polynomial P such that Mm

n (Π) = P (n) for n large enough. For a zero
polynomial P , let deg(m,Π) = 0.

Observe that for an arbitrary set of permutations Π and Ω ⊆ Π, it follows that
deg(m,Π) ≤ deg(m,Ω). This holds since any Π-avoiding permutation is trivially
Ω-avoiding too.

Now we would like to know how these degrees depend on m and on the
structure of permutations in Π. It turns out that there is one important statistic
of patterns which affects the degree deg(m,Π).

Definition 3.7. For a permutation π we will define the magnitude of π as

mg(π) =


0 if D(π) = ∅
k if D(π) = {k}
+∞ if |D(π)| ≥ 2.

For a set of permutations Π the magnitude of Π, denoted bymg(Π), is the minimal
magnitude of a permutation σ ∈ Π. For the empty set of patterns, mg(∅) = +∞.

Let us make an important observation about magnitude. If a permutation π
contains a pattern σ then necessarily mg(π) ≥ mg(σ).

3.2 Sets of infinite magnitude

As we will show, the magnitude of Π plays a key role in determining the value
of deg(m,Π). To prove this, let us first focus on the sets Π of infinite magni-
tude. In this particular case, we can also determine the leading coefficient of the
polynomial Mm

n (Π), which will prove to be useful later.

Proposition 3.8. Let Π be a set of permutations with mg(Π) = +∞. Then
deg(m,Π) = m and Mm

n (Π) = nm

m!
+O(nm−1) as n→∞.

Proof. First observe that for m = 0 the proposition simply states that M0
n(Π) = 1

for n ≥ n0. But that is clear since M0
n(Π) = M0

n(∅) = {12 · · ·n}. Therefore, in
the rest of the proof suppose that m ≥ 1.

In order to prove our proposition, it is sufficient to prove the following claims.
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1. For the core ε = 12 · · ·m we have M
[ε]
n (Π) = nm

m!
+O(nm−1).

2. For every γ ∈ C(m,Π) \ {ε} there is a constant β = β(γ,m,Π) such that

M
[γ]
n (Π) ≤ βnm−1.

To prove the first claim, simply observe that any permutation with the core ε
has a finite magnitude, which makes it Π-avoiding. By choosing the first m letters
we uniquely get every permutation with the core ε plus the permutation 12 · · ·n.
That gives us the desired enumeration M

[ε]
n (Π) =

(
n
m

)
− 1 = nm

m!
+O(nm−1).

To prove the second claim, fix a core γ ∈ C(m,Π) \ {ε} of length k. First

observe that for γ 6= ε necessarily k ≤ m− 1. We will bound M
[γ]
n (Π) from above

by the number of all the permutations of length n which can be expressed as γ ·a
for some tuple a. This yields the upper bound M

[γ]
n (Π) ≤

(
n
k

)
≤
(

n
m−1

)
≤ βnm−1

for some β.

These claims together with Corollary 3.5 give the desired polynomial be-
haviour.

3.3 Sets of finite magnitude

Let us now focus on the problem of determining deg(m,Π) for a set Π of finite
magnitude. As we will show in this section, the asymptotic behaviour of these
sets is far more complicated than that of sets with infinite magnitude. Our main
result is providing the values deg(m,Π) as a function of m. As in Proposition 3.8,
we will construct a suitable core and bound deg(m,Π) from below by counting all
the possible padding profiles. On the other hand, we will use a different approach
for obtaining the upper bound. For a fixed core γ, we will bound M

[γ]
n (Π) in terms

of how many coordinates of a padding profile a can be large if γ · a avoids Π.

Lemma 3.9. Let Π be a finite set of permutations and let m and l be non-negative
integers. If every permutation π with maj+(π) ≤ m and length |π| > l contains
a core of some permutation in Π, then deg(m,Π) ≤ l.

Proof. Let k be the length of the longest permutation in Π. We will prove the
claim by showing that for every γ ∈ C(m,Π) there is a constant α = α(γ,m,Π)

such that M
[γ]
n (Π) ≤ αnl.

Fix a core γ ∈ C(m,Π). For a padding profile a ∈ Nd
0 we will say that its

coordinate ai is bad if ai > k. We claim that every permutation in M
[γ]
n (Π) has a

padding profile with at most l + 1 bad coordinates. Suppose for a contradiction
that there is a permutation π ∈M

[γ]
n (Π) with at least l+ 2 bad coordinates in its

padding profile. Let ψ be the permutation order-isomorphic to l+1 elements from
the core of π which separate the l+ 2 bad coordinates. Because ψ is contained in
the core it satisfies maj+(ψ) ≤ m. But since it has length greater than l it must
contain a core κ of some permutation σ ∈ Π. Furthermore, let p ∈ Nl+2

0 be the
tuple of only the l + 2 bad coordinates from the padding profile of π. Observe
that since ψ contains κ and every coordinate of p is larger than |σ| then ψ ·p must
contain σ. But that is clearly a contradiction because ψ · p is contained in π.
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Now it suffices to show that the number of permutations with core γ and
at most l + 1 bad coordinates is smaller than αnl for some α. Let d be the
length of the core γ. First we have

(
d+1
l+1

)
ways to choose the l + 1 potentially

bad coordinates. We have only constantly many options for the remaining d− l
coordinates of the padding profile, which we can bound with kd−l. And finally,
we will bound the number of options how to split the remaining elements into the
bad coordinates by enumerating the number of ways to split n elements into l+1
boxes which is

(
n+l
l

)
.

This yields the upper bound M
[γ]
n (Π) ≤ kd−l

(
d+1
l+1

)(
n+l
l

)
and since the only

non-constant factor is
(
n+l
l

)
, this indeed implies M

[γ]
n (Π) ≤ αnl for some α.

By combining Lemma 3.9 with the Erdős–Szekeres theorem [9], we obtain a
precise characterization of the sets Π for which the degrees deg(m,Π) are bounded
by a constant independent of m. This illustrates that sets of patterns containing
permutations with both finite and infinite magnitude can behave very miscella-
neously.

Proposition 3.10. For a set of permutations Π, deg(m,Π) is bounded by a
constant independent of m, if and only if there is σ ∈ Π with the core 12 · · · k and
τ ∈ Π with the core l(l − 1) · · · 1 for some k and l.

Proof. To prove one implication, assume that Π contains such σ and τ . We
know that deg(m,Π) ≤ deg(m, {σ, τ}). From the Erdős–Szekeres theorem [9], it
follows that every permutation longer than (l− 1)(k − 1) contains either 12 · · · k
or l(l − 1) · · · 1. Therefore, we obtain the inequality deg(m,Π) ≤ (k − 1)(l − 1)
from Lemma 3.9.

We will prove the other implication by proving its contrapositive. Assume
that Π does not contain any permutation with an increasing core. In other words
mg(Π) = +∞ and Proposition 3.8 implies that deg(m,Π) = m. Therefore,
deg(m,Π) is unbounded.

Finally, assume that Π does not contain any permutation with a decreasing
core. In this case we cannot precisely express deg(m,Π). However, if m = d2+d

2
for

some integer d then every permutation with the core d(d− 1) · · · 1 is Π-avoiding
and has major index m. Since there are

(
n−1
d

)
such permutations of length n, we

get the inequality deg(m,Π) ≥ d. And again deg(m,Π) is unbounded.

Now we will focus on determining the values deg(m,Π) for sets Π of finite
magnitude. As we already discussed in Chapter 2, for any set of permutations Π
with magnitude 0, we have Mm

n (Π) = 0 for n ≥ n0. It is not hard to show that
the values eventually get constant in the case of sets with magnitude 1.

Proposition 3.11. If Π is a set of permutations with magnitude mg(Π) = 1,
then deg(m,Π) = 0.

Proof. We know that deg(m,Π) ≥ 0 for every m and Π. Therefore, it is sufficient
to bound deg(m,Π) from above. Fix a permutation τ ∈ Π with magnitude 1.
Since deg(m,Π) ≤ deg(m, {τ}) and every non-empty permutation contains the
pattern 1, we get deg(m,Π) ≤ 0 directly from Lemma 3.9.
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The next result determines deg(m,Π) for all sets of permutations of magnitude
at least 3 where every permutation has a finite magnitude.

Theorem 3.12. Let Π be a set of permutations such that every permutation
σ ∈ Π has a finite magnitude and mg(Π) = k, where k is an integer larger
than 2. Then deg(0,Π) = 0 and for m ≥ 1

deg(m,Π) =

⌊
(d− 1)(k − 1)

2
+
m

d

⌋
where d =

⌈
1

2

(
−1 +

√
1 +

8m

k − 1

)⌉
.

Proof. Any permutation σ with major index 0 is strictly increasing, therefore σ
avoids Π and M0

n(Π) = 1 = n0. In the rest of the proof suppose m ≥ 1.

We will prove the theorem by showing that the following values are equal.

1. The degree of the polynomial l1 = deg(m,Π).
2. The largest integer l2 such that there is a 12 · · · k-avoiding permutation σ

with maj+(σ) ≤ m.
3. The largest integer l3 such that there is a 12 · · · k-avoiding permutation π

with maj+(π) = m.

4. The value l4 =
⌊

(d−1)(k−1)
2

+ m
d

⌋
, where d =

⌈
1
2

(
−1 +

√
1 + 8m

k−1

)⌉
.

First observe that trivially l2 ≥ l3. We will prove l3 ≥ l4 by constructing
a 12 · · · k-avoiding permutation π of length l4 satisfying maj+(π) = m. For
a permutation ψ ∈ Sn we say that ψ is co-layered if ψ avoids both 132 and
213. Observe that any co-layered permutation is uniquely determined by its
descent set. Let d be the smallest positive integer such that d2+d

2
(k − 1) ≥ m.

Furthermore, let s be the largest integer such that d2+d
2

(k − 1) − ds ≥ m and

let p = d2+d
2

(k − 1) − ds −m. Note that s < k − 1 because otherwise the first
inequality would also hold for d′ = d − 1. We also know that p < d because
otherwise the above inequalities would hold for s′ = s + 1 and p′ = p− d, which
contradicts our choice of s.

Let π be a co-layered permutation of length dd with D(π) = {d1, d2, . . . , dd−1},
where

di =

{
i(k − 1)− s for 1 ≤ i ≤ d− p
i(k − 1)− s− 1 for d− p < i ≤ d.

To see that π is correctly defined, we will show that the di are strictly increas-
ing and positive. From the inequalities s < k−1 and p < d, it follows that d1 ≥ 1,
and that di+1 > di for every index i. Note that this is where the proof would fail
for sets with magnitude k = 2, since for p 6= 0 we would have dd−p = dd−p+1 and
we could not construct such permutation.

Observe that π avoids 12 · · · k because the longest increasing subsequence in
any co-layered permutation is between two adjacent descents and for any i ∈ [d−1]
we have di+1 − di ≤ k − 1. We see that π satisfies

maj+(π) =
d∑
i=1

di =
d2 + d

2
(k − 1)− ds− p = m.
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Figure 3.1: The constructed co-layered permutation for m = 15 and k = 3. In
this case we get d = 4, s = 1 and p = 1.

Furthermore, we will show that π has length l4. By solving the equations we
get

d =

⌈
1

2

(
−1 +

√
1 +

8m

k − 1

)⌉
, s =

⌊
(d+ 1)(k − 1)

2
− m

d

⌋
.

Notice that we subtract 1 during the calculation of dd if and only if p 6= 0
which happens when (d+1)(k−1)

2
− m

d
is not an integer. This justifies the following

equation

dd = d(k − 1)−
⌈

(d+ 1)(k − 1)

2
− m

d

⌉
=

⌊
(d− 1)(k − 1)

2
+
m

d

⌋
= l4.

In order to prove l4 ≥ l2, let τ be a 12 · · · k-avoiding permutation with length
t ≥ l4 + 1. Because τ avoids 12 · · · k there has to be a descent in the sequence
τt−(k−1) · · · τt, another one in the sequence τt−2(k−1) · · · τt−(k−1) and so on. But
that leads to the following inequality

maj+(τ) ≥ t+

i(k−1)<t∑
i=1

(t− i(k − 1)) > dd +
d−1∑
i=1

di = m.

So far we have proved the equality l2 = l3 = l4. Now we will show that l1 ≥ l3.
Let σ be the longest 12 · · · k avoiding permutation with extended major index m.
Observe that any permutation with core σ avoids Π and has major index m. We
will bound M

[σ]
n (Π) from below with the number of such permutations which have

its minimum on the position l3 + 1. We can arbitrarily choose l3 letters, which
will form the core, from all letters except the letter 1. That gives us the lower
bound Mm

n (Π) ≥M
[σ]
n (Π) ≥

(
n−1
l3

)
≥ αnl3 for some constant α.

Finally, we will complete the proof by showing that l2 ≥ l1. Fix a permutation
τ ∈ Π with the minimal magnitude k. Trivially the inequality deg(m,Π) ≤
deg(m, {τ}) holds. And because every permutation ψ with maj+(ψ) ≤ m and
length greater than l2 contains 12 · · · k, we get the desired upper bound from
Lemma 3.9.

Notice that for m ≤ k−1 we obtain from Theorem 3.12 d = 1 and deg(m,Π) =
deg(m, ∅) = m. On the other hand for m ≥ k the degree is strictly smaller than m
and behaves approximately as

√
m.

As suggested by Proposition 3.10, Theorem 3.12 does not hold for the sets Π
containing permutations with both finite and infinite magnitude. Similar claim
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also cannot hold in general for the sets of magnitude 2. Consider the set Π =
{132, 231} of magnitude 2 and σ ∈ Sn(Π). Let j be an integer such that σj = 1.
Then the sequence σ1σ2 · · ·σj is decreasing since σ avoids 231 and similarly the
sequence σjσj+1 · · ·σn is increasing because σ avoids 132. In other words, every
Π-avoiding permutation has a decreasing core. On the other hand, every permu-
tation π with the decreasing core (d−1)(d−2) · · · 1 avoids Π and maj(π) = d2+d

2
.

As a result, deg(m,Π) 6= 0 if and only if m can be expressed as m = d2+d
2

for
some integer d. Therefore, unlike what we have seen so far, the degrees in this
case do not satisfy deg(m,Π) ≤ deg(m+ 1,Π).

However, we can prove a weaker version of Theorem 3.12 by placing some
further restrictions on the set Π of magnitude 2.

Proposition 3.13. Let Π be a set of permutations such that every permutation
σ ∈ Π has a finite magnitude and mg(Π) = 2. Furthermore, assume that there
is i ∈ {1, 2, 3} such that every permutation π ∈ Π with mg(π) = 2 has a padding

profile a ∈ N3
0 with ai 6= 0. Then deg(m,Π) = b−1+

√
1+8m

2
c.

Proof. Let l be the largest integer such that l2+l
2
≤ m. By solving the quadratic

equation, we get l = b−1+
√

1+8m
2

c. Again to show that the degree of the polynomial
is equal to l, we will prove the following claims.

1. There is a constant α = α(m, k) such that Mm
n (Π) ≥ αnl.

2. The inequality deg(m,Π) ≤ l holds.

We will construct a core γ for which M
[γ]
n (Π) ≥ αnl holds. If we have m = l2+l

2

we will take as a core the descending permutation of length l. Every permutation
with this core is Π-avoiding and has major index m, thus giving the desired lower
bound.

Otherwise let d = m− l2+l
2

. Observe that d ≤ l, because otherwise l′2+l′

2
≤ m

would hold for l′ = l+ 1. Now we will construct a core of length l+ 1 depending
on the i ∈ {1, 2, 3}, for which the assumptions of the proposition hold. Let
ε = l · · · 1, then we will construct the core γ by inserting one letter to ε,

γ =


ε[l + 1− d→ 1] for i = 1

ε[l + 1− d→ d] for i = 2

ε[l + 2− d→ l + 1] for i = 3.

For an example see Figure 3.2. Observe that γ no longer avoids 12, but it
satisfies maj+(γ) = m. Let a ∈ Nl+2

0 be a tuple which satisfies one of the following
conditions depending on the value of i.

a1 = 0 , a2 6= 0 for i = 1

ad+1 = 0 , a1 6= 0 for i = 2

al+2 = 0 , a1 6= 0 for i = 3

We know that γ · a has major index m and does not contain any permutation
with magnitude larger than 2. But it also cannot contain any permutation σ ∈ Π
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Figure 3.2: The constructed cores for m = 15, from left to right for i = 1, 2, 3.
Any permutation with such core and no element in the grey strip is Π-avoiding.

with magnitude 2 because of the conditions above. Therefore γ · a ∈ Mm
n (Π).

Since there are
(
n−2
l

)
such padding profiles, we see that M

[γ]
n (Π) ≥ αnl for some

α.

To prove our second claim, fix a permutation τ ∈ Π with magnitude 2. Ob-
serve that any permutation σ with length at least l + 1 for which maj+(σ) ≤ m
holds, necessarily contains 12. Therefore, the upper bound deg(m,Π) ≤ l is
implied by Lemma 3.9.

As one would expect the formula for deg(m,Π) in Proposition 3.13 gives the
same result as the one in Theorem 3.12 for k = 2. It is straightforward to check
if you express m as m = t2+t

2
+ s for some integer t and s ≤ t.

From Propositions 3.8, 3.11, 3.13 and Theorem 3.12 we know the values of
deg(m,Π) for all sets Π with |Π| = 1 and mg(Π) ≥ 1. Furthermore, as we already
know, for any permutation σ with magnitude 0, we eventually have Mm

n (σ) = 0.

Corollary 3.14. For a singleton set Π = {σ} and k = mg(Π) = mg(σ)

deg(m,Π) =


m if k = +∞
0 if k ≤ 1 or m = 0

sk(m) otherwise

where sk(m) =

⌊
(d−1)(k−1)

2
+ m

d

⌋
and d =

⌈
1
2

(
−1 +

√
1 + 8m

k−1

)⌉
. Furthermore,

deg(m,Π) = m for m < k and otherwise deg(m,Π) < m.

Proof. Since the values of deg(m,Π) were determined in the previous claims,
we will only prove the inequalities. It is easier to use bounds on deg(m,Π)
than to work with the equations for sk(m). Let ε = 12 · · ·m. For m < k every

permutation with core ε avoids Π and M
[ε]
n (Π) = M

[ε]
n (∅) ≥ αnm for some constant

α. Thus sk(m) = deg(m,Π) = m.

On the other hand, for m ≥ k every permutation π such that maj+(π) ≤ m
and |π| ≥ m contains 12 · · · k (in fact ε is the only such permutation). And
Lemma 3.9 implies sk(m) = deg(m,Π) ≤ m− 1.

Moreover, for an arbitrary set of permutations Π we can use Corollary 3.14
to provide an upper bound on deg(m,Π). Let τ ∈ Π such that mg(τ) = mg(Π),
then deg(m,Π) ≤ deg(m, {τ}).
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3.4 Asymptotic probability

Our previous results in this chapter imply a sharp dichotomy for the probability
that a random permutation with a fixed major index avoids a specific set of
patterns Π.

Theorem 3.15. Let Π be a set of permutations and m a non-negative integer.
Then

lim
n→∞

Mm
n (Π)

Mm
n (∅) =

{
1 if m < mg(Π)

0 otherwise.

Proof. First notice that directly from Proposition 3.8, it follows that Mm
n (∅) =

nm

m!
+ O(nm−1). For m < mg(Π) every permutation with core ε = 12 · · ·m

avoids Π. As we already showed in the proof of Proposition 3.8, M
[ε]
n (Π) =

nm

m!
+O(nm−1). Therefore, the ratio is approaching 1 as n goes to infinity.

For m ≥ mg(Π), we know that deg(m,Π) < m (recall Corollary 3.14). There-
fore, the polynomial in the numerator has smaller degree than the one in the
denominator and the ratio is approaching 0 as n goes to infinity.
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Conclusion and further directions

In Chapter 2, we proved the monotonicity of the numbers Mm
n (σ) for a single

pattern σ other than 12 · · · k (recall Theorem 2.4) and showed an example of
a set Π for which the monotonicity does not hold even though Mm

n (Π) tends
to infinity. The natural question to ask would be whether we can in general
characterize such sets Π for which the monotonicity of columns does not hold
even though deg(m,Π) ≥ 1. Based on computing the values Mm

n (Π) for small n
and various sets Π, it seems to us that these cases are rather rare.

In Chapter 3, we analysed the asymptotic behaviour of the numbers Mm
n (Π)

for many types of Π in the sense of the degree deg(m,Π). The most natural way
to extend this study is to cover the remaining cases. For example, it remains
to be shown whether the sets Π that contain permutations with both finite and
infinite magnitude obey any general rules. Another open problem is to determine
exactly for which sets Π the values Mm

n (Π) are eventually equal to zero.

One could also focus on generalized pattern avoidance. A permutation σ
contains a copy of a generalized pattern π if it contains π and certain elements of
the diagram of the copy are adjacent either horizontally or vertically. The concept
of generalized patterns was introduced by Babson and Steingŕımsson [1]. The
reason they are interesting is because many statistics on permutations (including
the number of inversions and the major index) can be expressed as a linear
combination of the number of occurrences of these generalized patterns.

Finally, similar analysis of the distribution could be done for other permuta-
tion statistics like number of descents or number of excedances. As previously
mentioned, the number of inversions was already covered by Claesson, Jeĺınek
and Steingŕımsson [6]. One can find examples of various other pattern statistics
in a classification given by Babson and Steingŕımsson [1].
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