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List of used symbols and abbreviations
Notation Meaning

ACP Abstract Cauchy Problem
Ai, A,B,C operators on X
ci molar concentration of ith bulk constituent
crefi characteristic molar concentration for ci
c∗i dimensionless quantity c∗i := ci/c

ref
i

ci|Σ restriction of ci of Σ in sense of trace
cini inflow boundary condition for ci
c0i initial boundary condition for ci
d characteristic width
d
dt

total time-derivative
div three dimensional divergence operator
divΣ two dimensional surface divergence operator
Di coefficient of diffusive flux of ith bulk constituent
DΣ

i coefficient of diffusive flux of ith surface constituent
D(A) domain of the operator Ai

FEM Finite Element Method
gr(A) graph of the operator A
Ji diffusive flux of ith bulk constituent
JΣ
i diffusive flux of ith surface constituent

Jtot
i total flux of ith bulk constituent

JΣ, toti total flux of ith surface constituent
Jso
i sorption flux of ith bulk constituent
L characteristic length
Lp Lebesgue space with ‖ · ‖Lp-norm
Mi molar mass of ith bulk constituent
n outer normal vector
ODE ordinary differential equation
PDE partial differential equation
(Pe)i Pèclet number of ith bulk constituent; (Pe)i =

LU
Di

, resp. (Pe) = Re · Sc
ri molar surface reaction rate of ith surface constituent
rsoi molar sorption rate of ith surface constituent
rg(A) range of the operator A
Ri surface reaction rate of ith surface constituent
Rso

i sorption rate of ith surface constituent
Rtot

i total rate of change of ith bulk constituent
RΣ,tot

i total rate of change of ith surface constituent
Rλ(A) λ-resolvent of the operator A; Rλ(A) = (I + λA)−1

Re Reynolds number; Re = LU
ν

Sc Schmidt number; Sc = ν
D
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Notation Meaning

t time
t∗ characteristic time
tr trace operator
T characteristic hydrodynamic residence time
U characteristic velocity
v three dimensional velocity field
v|Σ velocity on Σ
vi partial velocity of ith constituent
vin inflow boundary condition for v
V a set of appropriate velocity fields
W k,p Sobolev space containing a function with kth-weak derivatives in Lp

x element of a vector space
x position vector
X a real Banach space

∆ three dimensional Laplace operator, i.e. ∆ = div∇
∆Σ two dimensional Laplace-Beltrami operator, i.e. ∆Σ = divΣ ∇Σ

Γin inflow part of ∂Ω
Γout outflow part of ∂Ω
κ surface reaction coefficient
κi coefficient of Langmiur isotherm for sorption pair [ci, θi]
∂t partial time-derivative
∇ three dimensional gradient operator
∇Σ two dimensional surface gradient operator
ν kinematic viscosity or direction-vector of surface reactions
νi direction(sign) of surface reaction
∂Σ boundary of Σ
∂Ω boundary of Ω
ρ total bulk density
ρi partial bulk density
ρΣ surface density
ρΣ
i partial surface density of ith constituent

Σ catalytic walls (part of ∂Ω)
θi molar concentration of ith surface constituent, resp. fraction coverage
θ0i initial boundary condition for θi
θrefi characteristic molar concentration for θi
θ∗i dimensionless quantity θ∗i := θi/θ

ref
i

Ω domain of the channel
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Preface

This thesis should represent a work in the area of mathematical modelling field including
both mathematical and engineering aspects. This concept can be introduced as follows:
choose a model based on real industrial applications; prove existence and uniqueness of
a solution of the problem, resp. appropriate near-by problem; perform numerical compu-
tations using several methods; test the results under analytical and physical conditions;
choose the most efficient methods to compute the correct solution.

A problem is very often examined just with respect to the one aspect. Mathematical
analysis studies academical (mostly simplified) models; but on the other hand, most of
the people in practice are focused on the numerical computations only, without sufficient
analysis or physical insight into the problem. The reason for this separation is simple; real
industrial problems have mostly such a complicated structure that they cannot be handled
by mathematical analysis tools and, besides, the use of commercial computing software
is mostly not so difficult. The problem of the correctness of the computed solution could
arise very quickly, e.g. the investigated system is very sensitive to small data-changes or
even unstable; the solution is not unique; a blow-up occurs, etc. Therefore, the deeper
analytical and physical insight is needed.

Concept of the thesis

We split the thesis into four chapters, Conclusion and Appendix. Chapter 1 includes a
motivation and physical description of the problem. The observed phenomena are by are
expressed by physical laws and convenient constitutive theory. First of all, we derive the
general system of balance equation without specifications of sorption- and reaction-terms.
This system can also serve as a starting point for other models which undergo chemical
mechanisms different from our case. For further consideration, we chose the Langmuir-
Hinschelwood adsorption kinetics and elementary (surface) reactions as the most suitable
mechanisms describing our model-setting. The employment of these two mechanism de-
termines the basic equation-system of the model.

In Chapter 2 we prove existence and uniqueness of a mild solution for so called near-
by problem. The near-by problem could generally mean a modification which is still, in
some sense, connected to the original problem, i.e. special boundary or initial conditions;
linearized problem; long-time (stationary) solution; modification of the geometry, etc. The
last case, where we enclose the domain by reactive boundary in shape of compact manifold,
is what we use for the purpose of analysis in this chapter. Some of the other near-by
problems play the role in later numerical verification of the used methods.

In Chapter 3 we examine the problem from a weak sense. We prove an existence of a
weak solution for the system which, under some assumptions, coincides with the original
one. This result is especially useful for verification of the consequent numerical results
whose realization is based on a weak formulation.

In Chapter 4 we perform numerical computations using several methods. This is done in
program FreeFem++ 3.20, a freeware using language FreeFem++ as an idiom of C++. The
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discretization of the domain is done by Finite Element Methods (FEM), and the solution
is computed using standard linear solvers, therefore, an appropriate implementation of
linearized algorithm is needed. The obtained numerical results are consequently verified
by analytical and physical conditions, resp. by "other" near-by problems mentioned above.

In Appendix we recall definitions and theorems used in Chapter 2.
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1. Physical description of the
mixture-model

1.1 Motivation

Heterogeneous catalysis and reaction-type

Generally speaking, catalysis is the way how to increase speed of chemical reactions due to
the participation of a substance called catalyst. In other words, catalyzed reactions have a
lower activation energy compared to the corresponding un-catalyzed reaction, resulting in
a higher reaction rate under the same physical conditions. Unlike other reagents entering
chemical transformations, a catalyst is not consumed and it may participate in many ways.1

We distinguish two kinds of catalysis - homogeneous and heterogeneous; depending
on whether the catalyst exists in the same phase as the substrate or not. Heterogeneous
catalysis refers to the form of catalysis where the phase of the catalyst differs from that
of the reactants. In real industrial applications, the great majority of heterogeneous-
catalysts-phase are solids and the great majority of reactants are gases or liquids. The
later combination is matched by our model-setting.

There are several sorption kinetics of the chemical transformation between surfaces and
bulk, depending on how and where the sorption 2 takes place (e.g. Langmuir-Hinshelwood,
Eley-Rideal, Mars-van Krevelen, etc.). Generally speaking, the reactants diffuse near the
catalyst surface and adsorb onto it. There, the surface diffusion takes place (convection on
the walls is usually not present) and, after a collision with other suitable constituents, the
reaction occurs. Consequently, the products desorb from the surface and diffuse away. Let
us mentioned that the bulk diffusion near the walls plays important role, since, there is a
no-slip condition for velocity field, i.e. no convection near the walls. For a deeper insight
into the heterogeneous catalysis and chemical phenomena we refer e.g. to [25] or [22].

The fabrication of a catalytic surface is usually done using catalytic-coating. The
catalyst creates a thin film (0.1 ∼ 10µm) on the walls, cf. [10]. Since the surface area of
coated walls (boundary) plays usually the main role in catalysis-efficiency, the devices of
sub-millimeter dimensions (flat- or string-shape) are taken into account.

Despite the small sub-millimeter dimensions of our interest, diffusion is still slow; es-
pecially in liquids where Schmidt numbers are in the range of 1000. Therefore, a better

1Chemical transformations generally mean any chemical phenomena where a substrate converses to a
product. In context of the thesis, we distinguish two of them, namely, sorption-processes and chemical
reactions.

2The chemical mechanism "sorption" involves both absorption and adsorption processes; but treating
with liquid/solid phases, where the liquid constituents adhere to the solid walls, involves adsorption only.
The expression "sorption" was chosen to stress the fact that the adsorption takes place in both bulk →
surface and surface → bulk directions. Despite of the definition, usually the couple adsorption/desorption
is used to distinguish these adsorption-directions.
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understanding of the strong interplay between transport processes (convection, diffusion);
sorption as exchange mechanism between bulk and boundary; as well as chemical reac-
tions, is strongly required. Such physical settings correspond to industrial devices called
microchannels or microreactors.

Real applications of the microchannels are well spread through many fields of industry
where the models mostly differ by geometry, number of reactants or types/rates of chemical
transformations. In our case, we are interested in simple-geometry models of microchannels,
e.g. microreactors producing biodiesel 3 , automobile catalytic converters, heterogeneous
catalysis in a capillary, etc.

(a) Catalytic converter (b) (SEM) of a 500µm× 500mm× 125µm
biodiesel-microreactor - from [19]

Note to the notation: In the text beneath we assume all variables dependent on space
coordinates x, y, z and time t unless specified differently. From context it should be obvious,
if we are treating with constants, scalar variables, vector variables (bold small letters),
tensor variables (bold capital letters) or other objects as operators, elements of Banach
spaces, etc.

1.2 Balance equations

1.2.1 Mass-balance of mixture

The basic concept of the model is based on the mixture theory. This theory is well known
and widely described for example by Truesdell in [29] or by Atkin and Craine in [2]. In
our case, we will restrict this brief mixture-theory introduction on the basic governing
equations which will be used in the sequel.

3More information about application and description of biodiesel microreactor model can be found in
[19], [30], [6] .
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Let us consider a channel Ω ⊂ R3 - a stationary control volume; catalytic two-
dimensional impermeable walls Σ ⊂ ∂Ω; and Γin,Γout which are inflow and outflow parts
of the boundary ∂Ω. Schematically ∂Ω = Σ ∪ Γin ∪ Γout. 4 and a given velocity field v
which is incompressible with no-slip condition on the walls, i.e. div v = 0 and v|Σ = 0.
Moreover, let as assume a mixture of n bulk-constituents and n corresponding surface-
constituents; that coexist in a homogenized sense in corresponding domains Ω,Σ with the
surface-constituents being capable of interacting with each other.

Denoting, in sequence, bulk/surface partial densities (ρi)i=1,..,n, (ρ
Σ
i )i=1,..,n and partial

velocities (vi)i=1..,n, (v
Σ
i )i=1..,n; we define the total bulk/surface density of the mixture as

ρ :=
n∑

i=1

ρi , ρ
Σ :=

n∑
i=1

ρΣ

i

and barycentric bulk/surface velocity of the full mixture as

ρv :=
n∑

i=1

ρi vi , ρ
ΣvΣ :=

n∑
i=1

ρΣ

i v
Σ

i .

To understand the nature of the chemical-transformation terms, we prefer to introduce an
integral description of the investigated problem; firstly the balance equations for the bulk
and surface constituents separately and then for the whole mixture.

As already mentioned, within the concept of heterogeneous catalysis, we are dealing
deal with sorption and surface reactions. The sorption between bulk and catalytic walls
can be understood in two ways. In case of bulk relation, we treat the sorption-effect as
a flux through the boundary; on the other hand, the sorption-effect represents the source
term for surface constituents (similar to reactions). This can be described, together with
surface reactions, by the following balance equations in the integral form

∂t

∫
V

ρi dV = −
∫
∂V

Jtot
i · n dS (1.1a)

∂t

∫
Σ

ρΣ

i dS = −
∫
∂Σ

JΣ,tot
i · nΣ ds+

∫
Σ

Rso
i +Ri dS, (1.1b)

where n, resp. nΣ, are outer-normal vectors to Σ, resp. ∂Σ. 5 The law of mass action, resp.
the mass conservation for chemical reactions, states no supply/loss for chemical reactions,
namely

n∑
i=1

Ri = 0.

4In concept of heterogeneous catalysis, we understand a surface constituent as a constituent situated
on Σ only. There is no surface constituent on ∂Ωr Σ.

5Outer normal vectors nΣ to ∂Σ0 are not unique because ∂Σ0 is one-dimensional object in three-
dimensional space; therefore, we specify these outer-normal vectors in general geometry as tangential to
Σ and perpendicular to Γin, resp. to Γout.
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ΣΣ

Γin

Γout (∇ci · n)|Σ = 0

ci|Γin

= c
0

i

+

Σ

θ1
c1|Σ

θ2
c2|Σ

θ3
c3|Σ

. . . sorption

. . . possible inflow/outflow

. . . parabolic velocity

. . . surface reaction

profile on the inflow

ci

θi

. . . i
th bulk constituent

. . . i
th surface constituent

Figure 1.1: Flow in a channel with sorptions and surface reactions on the walls.

Denoting the bulk/surface diffusion fluxes as

Ji := ρi(vi − v) , JΣ

i = ρΣi (vi − v)

and recalling the impermeability of Σ, we can write the total bulk fluxes as

Jtot
i · n =

{
(ρiv + Ji) · n on ∂V r Σ,

Ji · (−n) on Σ
,

where the fluxes caused by sorption are in the direction of the inner normal, hence the
negative sign in the relation above. Note that the total surface fluxes, with no-slip velocity
condition on Σ, possess only diffuse part, i.e. JΣ,tot

i = JΣ
i . Using these relations, we rewrite

(1.1) as follows

∂t

∫
V

ρi dV = −
∫
∂V rΣ

(ρiv + Ji) · n dS +

∫
Σ

Ji · n dS (1.2a)

∂t

∫
Σ

ρΣ

i dS = −
∫
∂Σ

JΣ
i · nΣ ds+

∫
Σ

Rso
i +Ri dS. (1.2b)

Secondly, consider the balance equation for whole mixture where the sorption terms in
bulk and surface neglect each other. Then we end up with relation∫

V

∂tρi dV +

∫
Σ

∂tρ
Σ

i dS = −
∫
∂V rΣ

(ρiv + Ji) · n dS −
∫
∂Σ

JΣ

i · nΣ ds+

∫
Σ

Ri dS (1.3)

and, by subtracting of (1.2) from (1.3), we obtain the relation for sorption flux, namely∫
Σ

Ji · n dS =

∫
Σ

Rso
i ,

hence
Ji · n = Rso

i .
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Let Mi be the molar mass of ith (bulk/surface) constituent, then we define the molar
quantities as follows: the bulk concentration; the surface concentration; diffusive flux;
surface diffusive flux; surface reaction rate and sorption rate, in sequence as

ci =
ρi
Mi

, θi =
ρΣ
i

Mi

, ji =
ρi(vi − v)

Mi

, jΣi =
ρΣi (vi − v)

Mi

, ri =
Ri

Mi

, rso =
Rso

Mi

.

This gives us the balance-equation system for (molar)6 bulk and surface concentrations

∂tci + div(civ + ji) = 0 on Ω (1.4a)
ji · n = rsoi on Σ (1.4b)

∂tθi + divΣ j
Σ

i = rsoi + ri on Σ, (1.4c)

for all t > 0 and i = 1, .., n.

1.3 Fick’s law and boundary conditions
As a constitutive relation, we use Fick’s law for the diffusive fluxes, namely

ji = −Di∇ci , jΣi = −DΣ

i ∇Σci|Σ ,

where Di, D
Σ
i are positive constant coefficients and the symbol "∇Σ" the denotes surface

gradient. Moreover, let us denote "∆Σ" = divΣ(∇Σ) the Laplace-Beltrami operator on Σ.
These two operators are defined on tangential space for x ∈ ∂Ω, cf. [7].

The specification of remaining boundary- and initial-conditions follows from the indus-
trial application. Naturally, we consider a Dirichlet boundary conditions on the inflow as
a representation of the fluid-mixture entering the microchannel-domain. As the outflow
conditions, we consider so-called do-nothing conditions, i.e. homogeneous Neumann con-
ditions. These conditions are also considered in case of surface constituent on whole ∂Σ
because the no-slip condition for velocity on Σ causes neither driven inflow nor outflow.
The boundary conditions then follow as

−Di(∇ci · n)|Σ = rsoi (ci|Σ , θi) on Σ

ci = cini ≥ 0 on Γin

∇ci · n = 0 on Γout

∇Σ θ · nΣ = 0 on ∂Σ,

for all i = 1, .., n.
6In sequel, if it is not written explicitly in other way, we always consider molar quantities.
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Considering initial conditions c0i , θ0i , the complete balance system of PDEs reads as

∂tci + v · ∇ci −Di∆ci = 0 in Ω (1.5a)
−Di(∇ci · n)|Σ = rsoi (ci|Σ , θi), ci|Γin

= cini , (∇ci · n)|Γout
= 0 (1.5b)

ci(0, ·) = c0i (1.5c)

∂tθi −DΣ

i ∆Σθi = rsoi (ci|Σ , θi) + ri(θ1, .., θn) on Σ (1.5d)
∇Σ θ · nΣ = 0 on ∂Σ (1.5e)

θi(0, ·) = θ0i , (1.5f)

for all t > 0 and i = 1, .., n; where v is a given stationary velocity field.

1.4 Dimensionless form
For further consideration, we introduced the dimensionless form of the system (1.5). Let
us denote

c∗i := ci/c
ref
i , θ∗i = θi/θ

ref
i , t∗ := t/T, x∗ := x/L, v∗ := v/U,

the dimensionless variables where we crefi , θrefi are the maximal (characteristic) concentra-
tions of ith species; and T, L, U are the characteristic (reference) time, length and velocity,
see figure (1.2). For choosing the characteristic time-scale we have more possibilities but,

U

L

d

Figure 1.2: Characteristic quantities for the model.

from rational viewpoint, we should take advantage of such a relation which reasonably
couples the dimensionless quantities T, L, U . Therefore we choose the characteristic time
as the hydrodynamic residence time T := L

U
. Consequently

∂ci
∂t

=
∂(crefi c∗i )

∂(Tt∗)
=
crefi

T
∂t∗c

∗
i

and

∇ci =

(
∂crefi c1∗i
∂Lx∗1

,
∂crefi c2∗i
∂Lx∗2

,
∂crefi c3∗i
∂Lx∗3

)
=
crefi

L
∇∗c∗i .

Denoting crefi rsoi = rso(c∗i , θ
∗
i ), we can write a dimensionless form of the balance equation-

system (1.5) as

crefi

T
∂t∗c

∗
i +

1

L
div∗

(
crefi Uc∗iv

∗ − Dic
ref
i

L
∇∗c∗i

)
= 0 in Ω
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1

T
∂t∗θ

∗
i −

DΣ
i

L2
∆∗

Σ θ
∗
i = rsoi (c∗i , θ

∗
i ) + ri(θ

∗
1, .., θ

∗
n) on Σ

−Dic
ref
i

L
∇∗c∗i n = rsoi (c∗i , θ

∗
i ) on Σ.

Then, multiplying by hydrodynamic residence time T := L
U

gives

∂t∗c
∗
i + div∗(c∗iv

∗)− Di

LU
∆∗c∗i = 0 in Ω

∂t∗θ
∗
i −

DΣ
i

LU
∆∗

Σ θ
∗
i =

L

U
(rsoi (c∗i , θ

∗
i ) + ri(θ

∗
1, .., θ

∗
n)) on Σ

−Dic
ref
i

LU
∇∗c∗i · n =

1

U
(rsoi (c∗i , θ

∗
i )) on Σ.

Note 1.1. Focusing on the coefficients in the equations above, the question, whether we
can neglect some of them (without lose of generality), lies ahead. This causes the fact that

Di

UL
=

l/U

L2/Di

=
d2

L2

L/U

d2/Di

=

(
d

L

)2
Ttras
T coax
diff

<< 1,

where the transport time Ttrans and the coaxial diffusion time T coax
diff are similar, but the

ratio
(
d
L

)2 is considered very small. Denoting Di

UL
=: 1

(Pe)i
where (Pe)i is Péclet number7of

ith constituent, the situation leads to the equation symbolically written as

∂tu+ f(∇u)− ε∆u = g(u) , εi << 1,

where ε = 1
(Pe)

∼ 10−6 − 10−2. The neglecting of the coefficient ε leads to the change the
order/type of PDEs from second order parabolic one to first order hyperbolic (eventually first
order ODE for θi). This complicates the analysis and it could lead to incompatibility with
boundary conditions. Moreover, the diffusion-effects are necessary for both bulk and surface
processes. Therefore, we cannot neglect them and we handle a couple of two systems -
namely convection/diffusion system for bulk concentrations ci and reaction/diffusion system
for surface concentrations θi.

The industrial applications, cf. [19], allow us to w.l.o.g. put T = 1 and 1
U

= 1.
Furthermore, we suppress the "∗" notation and we will denote the dimensionless quantities

7The Péclet number can be also defined by Reynolds (Re) and Schmidt (Sc) numbers as Pe = Re · Sc.
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as ci and θi. Then, the dimensionless system of 2n coupled equations yields

∂tci + v · ∇ci − 1
(Pe) i

∆ci = 0 in Ω (1.6a)

− 1
(Pe) i

∇ci|Γin
· n = rsoi (ci, θi), ci|Γin

= cini , ∇ci|Γout
· n = 0 (1.6b)

ci(0, ·) = c0i on Ω (1.6c)

∂tθi − 1

(Pe)Σi
∆Σ θi = rsoi (ci, θi) + ri(θ1, .., θn) on Σ (1.6d)

∇Σθi · n = 0 on Σ (1.6e)
θi(0, ·) = θ0i on Σ (1.6f)

for all t > 0; i = 1, ..n; and given stationary vector-field v. This general dimensionless
system of balance-equations serves as a starting point for further constitutive relations
which can differ with respect to occurring sorption- and reaction-kinetics.
Note 1.2. The characteristic (reference) quantities could be chosen also differently. In our case,
the second reasonable possibility would be choosing the characteristic length as d, the diameter of
the channel; and the characteristic velocity as U = Dref

d where Dref is the characteristic diffusive
coefficient. This leads to the following set of the dimensionless quantities

c∗i := ci/c
ref
i , θ∗i = θi/θ

ref
i , D∗

i := Di/D
ref , t∗ := t/T, x∗ := x/d, v∗ := v/U,

where T := d
U = d2

Dref . We obtain the equation-system

crefi

T
∂t∗c

∗
i +

1

d
div

(
crefi Dref

d
c∗iv

∗ −
crefi Dref

d
D∗

i∇∗c∗i

)
= 0 in Ω

1

T
∂t∗θ

∗
i −

DΣ,ref

d2
DΣ,∗

i ∆∗
Σ θ

∗
i = rsoi (c∗i , θ

∗
i ) + ri(θ

∗
1, .., θ

∗
n) on Σ

−
crefi Dref

d
D∗

i∇∗c∗i n = rsoi (c∗i , θ
∗
i ) on Σ

which can be rewritten as a

∂t∗c
∗
i + v∗ · ∇c∗i −D∗

i ∆
∗c∗i = 0 in Ω

∂t∗θ
∗
i −

DΣ,ref

Dref
DΣ,∗∆∗

Σ θ
∗
i = T [rsoi (c∗i , θ

∗
i ) + ri(θ

∗
1, .., θ

∗
n)] on Σ

−d crefi D∗
i ∇∗c∗i n =

1

T
rsoi (c∗i , θ

∗
i ) on Σ,

for all t > 0 and i = 1, .., n. We see that this system is basically the same as for the previous set
of characteristic quantities, therefore we w.l.o.g choose the first one.

1.5 The systems

1.5.1 Sorptions and reactions

In the considered model we chose Langmuir-Hinshelwood adsorption mechanics (resp.
Langmuir adsorption model) which corresponds to isothermal state for solid surface cata-
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lyst and liquid or gas bulk-reactants, cf. [22]. The basic equation of the Langmuir isotherm,
between the surface fractional coverage θi and corresponding bulk concentration ci, reads
as

θi =
αi ci

1 + αi ci
(1.7)

for αi assumed to be positive constant coefficients and i = 1, .., n where n is number of
corresponding pairs.

Let us mentioned that the sorption takes place near the catalytic walls Σ only and
the relation (1.7) is defined for physically correct ranges of the concentration ci|Σ and
fractional coverage θi. From physical point of view, the choice θrefi =

∑3
i=1 θi would lead

to the condition θi ∈ [0, 1] and to the identification of the the fractional coverage with
the surface concentration. However, this is not so simple from mathematical aspect where
the non-negativity and boundedness of the functions ci, θi are not a priori given. We will
therefore introduce two kind of formulations.

Note 1.3. Until now we have worked with general n bulk/surface pairs according to inde-
pendence of each pair. This is still possible in case of the sorption-terms but not for surface
reactions. Therefore for further consideration we will restrict ourselves to three pairs only.

1.5.2 Untruncated system

Assuming physical behavior of system (1.6); i.e. the non-negativity and boundedness of
[ci, θi]; we define the sorption term rsoi : R+

0 × [0, 1] → R 8 as follows

ci|Σ
rsoi⇐⇒ θi , r

so
i = rsoi (ci|Σ , θi) := ci|Σ(1− θi)− κiθi,

where κi are constant non-negative coefficients.
The irreversible 9 elementary reactions 10 take place on the coated walls (catalytic sur-

face), satisfying the law of mass action. Restricting to three bulk- (c1, c2, c3) and three
corresponding surface-constituents (θ1, θ2, θ3), we consider surface reactions with stoichio-
metric coefficients equal to one, i.e. with forward quadratic rates, in the form

θ1 + θ2
ri→ θ3, ri = ri(θ1, θ2) = κrei θ1θ2, −κre1 = −κre2 = κre = κre3 .

This setting allow us to rewrite the equation (1.6) in the form of the basic equation-system
8Note that ci ∈ [0,∞) ⇒ θi ∈ [0, 1] which matches the physically correct ranges.
9Very often also a backward reactions take place but in the case of enough strong catalysis we can

neglect this backward rate and consider just forward reactions i.e. irreversible reactions.
10Reaction with single mechanistic step, see [22].
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used for later purpose, namely

∂tci + v · ∇ci − 1
(Pe) i

∆ci = 0 in Ω (1.8a)

− 1
(Pe) i

(∇ci · n)|Σ = ci|Σ(1− θi)− κiθi, ci|Γin
= cini , ∇ci|Γout

· n = 0 (1.8b)

ci(0, ·) = c0i on Ω (1.8c)

∂tθi − 1

(Pe)Σi
∆Σ θi = ci|Σ(1− θi)− κiθi + κrei θ1θ2 on Σ (1.8d)

∇Σθi · n = 0 on Σ (1.8e)
θi(0, ·) = θ0i on Σ, (1.8f)

for all t > 0; i = 1, 2, 3; and given velocity-field v.

1.5.3 Truncated system

The physical range for [c, θ] is mathematically described by the maximum/minimum prin-
ciple for evolution equations, i.e. the limits of the ranges are determined by the initial
and boundary conditions. Since we treat autonomous problem with mixed boundary con-
ditions, the values on the boundary are determined by initial conditions. As we will see
later on, without additional assumptions we can not a priori guarantee the correct physical
behavior for ci and θi - the solutions of the nonlinear system (1.8). Therefore we need to
introduce truncations to ensure the physically correct behavior of sorption- and reaction-
terms. These truncations provide for physically correct initial data the physically correct
solutions [ci(t;x), θi(t; x̃)] in the range of [0,∞)× [0, 1] for all t > 0,x ∈ Ω, x̃ ∈ Σ.

We introduce the truncations as follows

rsoi (ci|Σ , θi) = c+i|Σ(1− [θi])− κi[θi] , ri(θ1, θ2) = κrei [θ1][θ2]

f+ := max{f, 0} , [g] := min{g+, 1}.

and, consequently, the truncated system reads as

∂tci + v · ∇ci − 1
(Pe) i

∆ci = 0 in Ω (1.9a)

− 1
(Pe) i

(∇ci · n)|Σ = c+i|Σ(1− [θi])− κi[θi], ci|Γin
= cini , ∇ci|Γout

· n = 0 (1.9b)

ci(0, ·) = c0i on Ω (1.9c)

∂tθi − 1

(Pe)Σi
∆Σ θi = c+i|Σ(1− [θi])− κi[θi] + κrei [θ1][θ2] on Σ (1.9d)

∇Σθi · n = 0 on Σ (1.9e)
θi(0, ·) = θ0i on Σ, (1.9f)

for all t > 0; i = 1, 2, 3; and given velocity field v.
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Note 1.4. In following chapters we investigate the problem (1.8), resp. (1.9), from two
viewpoints. Within Chapter 2 we examine so-called near-by problem (2.1) (truncated system
with modified geometry) in sense of mild-solution.

On the other hand, in Chapter 3 we choose concept of weak-solution. On the begin-
ning of the chapter we investigate so-called semi-truncated system (3.1) which is more
convenient for analysis-purpose and from physical point of view it lies somewhere between
truncated (1.9) and the original system (1.8). As we will see later on, this system - un-
der some assumptions - keeps all the solutions ci, θi, i = 1, 2, 3, in physically correct ranges
which implies that truncations are in fact inactive and, therefore, the semi-truncated system
coincides with the original system (1.8).

1.5.4 Other balances

As already mentioned, the whole process of heterogeneous catalysis is assumed to be
isothermal, i.e. each constituent has the same temperature T = const in the whole mixture.
Furthermore, the flow of the is considered to be incompressible, i.e. ρ =

∑n
i=1 ρi = const,

in Ω, resp. ρΣ =
∑n

i=1 ρ
Σ
i = const on Σ; and, finally, we understand v as a given velocity

field with no-slip condition on Σ.
Since we consider the internal energy e = e(T, ρ) and entropy η = η(e, ρ) there is

no reason to provide any additional balance equations and the physical setting with the
constitutive theory above completes the system. In other words, we obtain a system of 3
bulk-variables c1, c2, c3 with 3 bulk equations (1.8a), and three surface-variables θ1, θ2, θ3
with three surface equation (1.8d).

1.5.5 Velocity field

We treat with a given velocity field v but, to be precise, we consider this field to be a
solution of incompressible Navier-Stokes equation for Newtonian fluid with no-slip condi-
tion on Σ; Dirichlet inflow condition on Γin; and "do-nothing" Neumann condition on the
outflow region Γout. The NS system follows as

−ν∆v + (v · ∇)v = ∇p in Ω (1.10a)
div v = 0 in Ω (1.10b)

v|Γin
= vin, (v · n)|Γout

, v|Σ = 0, (1.10c)

where the vin is a (given) positive continuous stationary parabolic profile; ν is the kinematic
viscosity; and the channel-domain Ω possess Lipschitz-boundary, see schematic figure (1.1).
Then the velocity field v satisfy the system (1.10) in classical sense having the regularity
v ∈ C2(Ω) ∩ C(Ω), denote the set of these velocity fields as V. Let us mention that for
the analysis-purpose is important the embedding C2(Ω) ∩ C(Ω) ↪→ W 1,∞(Ω).
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2. Existence and uniqueness by
nonlinear semigroup theory
For an introduction to the linear semigroup theory we refer e.g. to [11] and for the nonlinear
case to classical work of Crandall and Liggett [9]. The extensive theory of nonlinear
semigroups, used in our case, can be found in the habilitation of Bothe [3] and the book of
Ito and Kappel [15]. Let us mention that we choose the concept of accretivity (6.7), based
on classical work of Crandall and Liggett. This concept is equivalent to the dissipativity-
concept used e.g. in [15]. For clarity, we recall definitions and theorems later on in the
Appendix.

As we already mentioned, to prove the existence and uniqueness of a mild solution,
we have to simplify the model-geometry which also involve the change of the boundary
conditions. This modification consists in letting Σ become all ∂Ω , i.e. enclosing the flow
domain Ω with Σ - a smooth compact manifold. This concept is closely related to the
periodical boundary conditions on Γin and Γout.

Figure 2.1: Illustration of the modified geometry.

Then the previous geometry-modification of the problem (1.9) leads to the enclosed
truncated problem, which will serve as the basic problem for semigroup approach, in the
following form:
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Find [c1, θ1]× [c2, θ2]× [c3, θ3] ∈ X = (L1(Ω)× L1(Σ))3 such that

∂tci + v · ∇ci − 1
(Pe) i

∆ci = 0 in Ω (2.1a)

− 1
(Pe) i

(∇ci · n)|Σ = c+i|Σ(1− [θi])− κi[θi] (2.1b)

ci(0, ·) = c0i on Ω (2.1c)

∂tθi − 1

(Pe)Σi
∆Σ θi = c+i|Σ(1− [θi])− κi[θi] + κrei [θ1][θ2] on Σ (2.1d)

θi(0, ·) = θ0i on Σ, (2.1e)

for all t > 0; c0i ∈ L1(Ω), θ0i ∈ L1(Σ);−κre1 = −κre2 = κre = κre3 ; i = 1, 2, 3; and for the given
velocity field v ∈ V.

The first step to apply the semigroup approach is rewriting the governing equation (2.1)
as a system of three coupled non-homogeneous autonomous abstract Cauchy problems.
Using a vector form it states: Find u ∈ C(J ;X) such that

u̇(t) +Au(t) = f(u(t)), t ∈ J (ACP-NH)
u(0) = u0 ∈ X,

where 1

u =

u1u2
u3

 , A(u) =

A(u1)
A(u2)
A(u3)

 , f(u) =
 f(u1, u2)
f(u1, u2)
−f(u1, u2)


ui =

[
ci
θi

]
, A

[
ci
θi

]
=

[
− 1

(Pe) i
∆ci +∇ci · v

− 1

(Pe)Σi
∆Σθi − c+i|Σ(1− [θi])− κi[θi]

]
, f

([
c1
θ1

]
,

[
c2
θ2

])
=

[
0

κre[θ1][θ2]

]

X = X3 = (L1(Ω)× L1(Σ))3, ‖u‖X =
3∑

i=1

‖ui‖L1(Ω)×L1(Σ) =
3∑

i=1

(
‖ci‖L1(Ω) + ‖θi‖L1(Σ)

)
D(A) = (D(A))3, D(A) =

{[
ci
θi

]
:

[
∆ci
∆Σθi

]
∈ X,− 1

(Pe) i
(∇ci · n)|Σ = c+i|Σ(1− [θi])− κi[θi]

}
2

and v ∈ V.

Theorem 2.1. Let Ω ⊂ RN be a bounded domain with a smooth boundary Σ and J =
[0, α] ⊂ [0,∞). Then for each u0 ∈ (L∞(Ω)×L∞(Σ))3 the autonomous system (ACP-NH)
with operator A ⊂ X×X, domain D(A) and autonomous perturbation f defined as above,
posses a unique mild solution on J .

1For clarity of writing, we sometimes switch between the notation
[
·
·

]
and [·, ·], but the meaning is the

same.
2For simplification, we do not write explicitly the conditions for velocity field v into the domain D(A),

but we consider them implicitly; resp. by expression "the regular" velocity field v ∈ V.
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The main tool to prove Theorem 1. is Crandall-Liggett the generation theorem (see
Theorem 6.3 in Appendix) 3 applied on m-accretive, densely defined operators. There are
more possibilities how to handle the problem; we choose the way of treating the convective
part as a perturbation bounded by diffusion part of the operator. The later addition of
chemical reactions can be done as a continuous dissipative/bounded perturbation, resp.
through invariance technique.

The concept of the proof can be introduced as follows:

(i) Associate the (ACP-NH) the homogeneous problem, i.e. with f = 0; suppress the
index, i.e. A ∼= A; and split the operator A into a diffusive-sorption part A and a
transport part B.

(ii) Prove accretivity of diffusive-sorption part A and, subsequently, m-accretivity by
Schauder’s fixed-point theorem.

(iii) Prove s-accretivity of the transport part B and its boundedness relative to operator
A.

(iv) Apply Kato’s perturbation theorem on the sum A+B and receive the m-accretivity
of the original operator A.

(v) Add the reactions as continuous dissipative/bounded perturbations of the operator
A and obtain a mild solution of the problem (ACP-NH).

Note 2.1. The truncations can either be built into the operator-domain D(A), or the
sorption- and reaction-terms can be modified in such way that they form a reasonable
extension to all [c, θ] ∈ R × R. In the first case, the operator will not be m-accretive, but
only accretive plus satisfying the range-condition; this complicates the analysis. We take
the later approach, where we have to check "by hand" that, with physically correct initial
conditions, the solutions will stay in the physically correct range.

Note 2.2. The choice of the L1-setting, instead of a more common L2-, resp. Lp-settings,
is not a priori given. It is chosen because of mass conservation and the fact that the L1-
norm, from a physical point of view, is the most natural norm in this case. Moreover,
the comparison principle is expected from physical considerations and, since it will turn
out, that only L1(Ω) × L1(Σ)-setting gives the accretivity of the operator A. The later is
directly related to the fact that the bilinear sorption term rsoi (ci, θi), according to Langmuir
adsorption kinetics, is increasing in ci and decreasing in θi. This leaves no other choice
than p = 1.

Note 2.3. The L1-setting and corresponding theory is not so spread as the theory of Hilbert
spaces or reflexive Lp-spaces, but we can still find some classical results sufficient for our
purpose. For L1 regularity-results, see e.g. [14]; and for L1-extension of the original Kato
perturbation theorem to non-reflexive Banach spaces we refer to [18].

3Which can be seen as an analogue to Lumer-Phillips generation theorem (6.2) in nonlinear case.
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2.1 ACP-H
Let us consider f = 0, i = 1, 2, 3 - alias homogeneous problem. Under this assumption,
the system becomes decoupled for each pair [ci, θi], i = 1, 2, 3, i.e. we can restrict ourselves
to a one-species problem, i.e. suppress the indexes. Moreover, as we are interested just in
qualitative properties of the operator A, we rescale nearly all the coefficients to one. This
yields the no-reaction semigroup-system in the following form

∂tc+ v · ∇c−∆c = 0 in Ω (2.2a)
−(∇c · n)|Σ = c+|Σ(1− [θ])− κ[θ] (2.2b)

c(0, ·) = c0 on Ω (2.2c)

∂tθ −∆Σ θ = c+|Σ(1− [θ])− κ[θ] on Σ (2.2d)

θ(0, ·) = θ0 on Σ, (2.2e)

for all t > 0; [c0, θ0] ∈ X; and v ∈ V.

Note 2.4. Let us mention that the (uncoupled) system (2.2) corresponds to the no-reaction
system with arbitrary n-pairs. The symmetry, because of the law of mass action, breaks by
employment of the reaction terms.

This leads to the homogeneous abstract Cauchy problem

ẋ(t) +Ax(t) = 0 (ACP-H)
x(0) = x

x(t) =

[
c(t)
θ(t)

]
, A
[
c
θ

]
=

[
−∆c+ v · ∇c

−∆Σθ − c+|Σ(1− [θ]) + κ[θ]

]
X = L1(Ω)× L1(Σ)

D(A) =

{[
c
θ

]
:

[
∆c
∆Σθ

]
∈ X,−(∇c · n)|Σ = c+|Σ(1− [θ])− κ[θ]

}
, 4

for all t > 0; x ∈ X; and v ∈ V.
Furthermore, similarly as in the linear case5 also for the nonlinear case holds that the

solution of the initial value problem (ACP-H) on D(A) is sufficient to solve the stationary
resolvent equation

x+ λAx = y, ∀y ∈ D(A), (RE)

where λ > 0 is sufficiently small and A being accretive operator, see Crandall-Liggett
theorem (6.3).

4All the inclusions are meant in the sense of distributions.
5Directly by combination of Hille-Yoshida theorem (6.1) and Lumer-Phillips theorem (6.2).
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Because of our interest in the solution of (ACP-H) on the whole space X, we need to
additionally require D(A) to be a dense subset of X and the operator A to be m-accretive.6
However, the specification of D(A) is not so straightforward. Note that X = L1(Ω)×L1(Σ)
is a non-reflexive Banach space and the regularity of solutions to the equation

u−∆u = f, f ∈ L1(Ω),Ω ∈ RN ,

with sufficiently regular boundary conditions, is just u ∈ W 1,q for q ∈
[
1, N

)
, cf. [4, §2].

Since N is arbitrary, we only prescribe c ∈ W 1,1(Ω), θ ∈ W 1,1(Σ) and add the conditions
∆c ∈ L1(Ω),∆θ ∈ L1(Σ) into the operator-domain; this is sufficient to have the transport
term v · ∇c and trace c|Σ in L1(Ω).

In sequel, we will treat the operator A as the sum of two parts; the (nonlinear) reaction-
diffusion part A and the (linear) transport part B as its perturbation, namely

A

[
c
θ

]
=

[
−∆c

−∆Σθ − c+|Σ(1− [θ]) + κ[θ]

]
, D(A) = D(A)

B

[
c
θ

]
=

[
v · ∇c

0

]
, D(B) =

[
W 1,1(Ω)
L1(Σ)

]
⊃ D(A).

2.2 Accretivity of the operator A
Using the bracket notation for L1-setting, see (6.10), an operator A is said to be accretive
iff

[u− ũ, Au− Aũ]X ≥ 0, ∀u, ũ ∈ D(A), (2.3)

where

[u,w]X := max

∫
Ω

w1(x)Sgn[u1(x)] dx+max

∫
Σ

w2(x)Sgn[u2(x)] ds ≥ 0. (2.4)

To check the previous relation, it is sufficient to substitute Sgn for a pointwise approxima-
tion sε, and investigate the limit case when sε(x)

ε→0+→ Sgn(x). In our case, we chose the
piecewise linear approximation sε with a.e. positive derivate, namely

sε(x) =

{
Sgn(x) if |x| ≥ ε,
x
ε

if |x| ≤ ε

and sΣε analogously. Note that here we distinguish the notation from x ∈ Ω and x ∈ R.

Denoting Au =

[
Ac(u)
Aθ(u)

]
and writing sorption term in symbolical form rso, the condition

6For A being an m-accretive operator, a solvability of (RE) for some λ > 0 is equivalent to a solvability
for all λ > 0.
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(2.3) reads as

[u− ũ,Au− Aũ]X =

[
(c− c̃), Ac(u− ũ)

(θ − θ̃), Aθu− Aθũ

]
X

= lim
ε→0+

∫
Ω

Ac(u− ũ) sε(c− c̃) +

∫
Σ

(Aθu− Aθũ) s
Σ
ε (θ − θ̃) ≥ 0, (*)

where we used the fact that

−
∫
Ω

∆(c−c̃) sε(c− c̃)−
∫
Σ

(
∆Σθ + rso(c, θ)−∆Σθ̃ − rso(c̃, θ̃)

)
sΣε (θ − θ̃)

Green
=

∫
Ω

|∇(c− c̃)|2 s′ε(c− c̃)−
∫
Σ

∇(c− c̃) · n sε(c− c̃) +∫
Σ

|∇Σ(θ − θ̃)|2 s′Σε (θ − θ̃)−
∫
Σ

(
rso(c, θ)− rso(c̃, θ̃)

)
sΣε (θ − θ̃)

BC

≥
∫
Σ

(
rso(c, θ)− rso(c̃, θ̃)

)(
sε(c− c̃)− sΣε (θ − θ̃)

)
≥ 0.

The last inequality holds for any physically correct choice7 of rso which include also the
case of Langmuir adsorption model. This will be clear after the following observation:

(a) If c− c̃ and θ− θ̃ have the same sign, then sε(c− c̃)− sΣε (θ− θ̃)
ε→0−→ 0 and we are done.

Especially when c(x) = c̃(x), resp. θ(x) = θ̃(x), then sε(c(x)− c̃(x)) = sε(0) = 0 and
sΣε (θ(x)− θ̃(x)) = sΣε (0) = 0.

(b) If c > c̃ and θ < θ̃, then the fact that rso(c, θ) is increasing in the first variable and
decreasing in the second, implies the relation rso(c, θ) ≥ rso(c̃, θ̃).

(c) If c < c̃ and θ > θ̃, then we obtain rso(c, θ) ≤ rso(c̃, θ̃) using the same argumentation
as above.

Let us mention that, as in many applications also in ours, the Banach space X is equipped
with a natural partial ordering ≤. In such a situation it is important to know whether
the given operator respects the ordering; this is closely related to the the concept of T-
accretivity, cf. (6.9).

Let (X, ‖ · ‖X,≤) be a Banach lattice. Then an operator which satisfies relation (2.4)
but using the Heaviside function H(x) instead of Sgn(x), is called T-accretive. Such
operators, their resolvents and, hence, the generated semigroup are order preserving, i.e.
x1 ≤ x2 ⇒ Ax1 ≤ Ax2, and single-valued.

The operator A under consideration has this property which follows from (*) and the
subsequent observations.

7Here we require a natural behavior of the sorption term according to physical experiments. This can
be mathematically expressed - requiring the term rso to be increasing in the first variable and decreasing
in second.
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2.3 Resolvent equation by fixed-point approach
To solve (ACP-H) problem we need to prove m-accretivity of the operator A = A+B. In
this sense, we require the operator A to be closed, m-accretive operator and the operator
B to be bounded relative to the operator A. The first requirement is associated with the
range condition rg(I + λA) = X,λ > 0 or, equivalently, with solvability of the resolvent
equation

x+ λAx = y, for y ∈ D,

where D is a dense subset of X = L1(Ω)× L1(Σ) and A is a closed operator.
Let us choose D := Lp(Ω) × Lp(Σ), p > N − 1. Then the resolvent equation leads to

the nonlinear system R

(R)

{
c− λ∆c = f in Ω, f ∈ Lp(Ω); −(∇c · n)|Σ = c+|Σ(1− [θ])− κ[θ] on Σ,

θ − λ∆Σθ = g + λ (c+(1− [θ])− κ[θ]) in Σ, g ∈ Lp(Σ),

where λ > 0. This can be solved by the fixed point approach.
For this purpose we are going to define a continuous mapping F which maps any closed

bounded set K ⊂ D into a relatively compact subset of itself. Putting the nonlinearities,
resp. the whole sorption term rso(c, θ), to the right-hand side and treating them like time-
independent inhomogeneity, we end up with the following fixed-point-mapping F : [ĉ, θ̂] →
[c, θ]

(F )

{
c− λ∆c = f in Ω, f ∈ Lp(Ω); −(∇c · n)|Σ = ĉ+|Σ(1− [θ̂])− κ[θ̂] on Σ,

θ − λ∆Σθ = g + λ
(
ĉ+|Σ(1− [θ̂])− κ[θ̂]

)
in Σ, g ∈ Lp(Σ).

Let us mention that this system is a special case of another system

(F̃ )

{
c− λ∆c = f in Ω, f ∈ Lp(Ω); −(∇c · n)|Σ = h, h ∈ Lp(Σ) on Σ,

θ − λ∆Σθ = g̃ in Σ, g̃ ∈ Lp(Σ),

where we used the fact that the truncation [·] maps the Lp-functions into L∞-functions
and therefore rso(ĉ|Σ , θ̂) ∈ Lp(Σ).

The choice of the acting space for F is based on a priori regularity-estimates for elliptic
problems in the form of (F̃ ) which are determined by regularity and nature of the boundary
conditions. Since in case of the constituent c we handle the Neumann boundary condition,
it gives us weaker regularity than in homogeneous Dirichlet-case. Concretely, for f ∈ Lp(Ω)

we obtain c ∈ W 1+ 1
p
,p(Ω), p > 1, see e.g. [14]. Here took an advantage of separating the

transport part B = ∇c · v. Without this separation one would not obtain even this
regularity results.

Furthermore, θ "lives" on a smooth compact manifold without boundary which gives
us similar results as in the Dirichlet case, i.e. θ ∈ W 2,p(Σ) for the data g ∈ Lp(Σ), p > 1.
Together, we have a solution [c, θ] ∈ W 1+ 1

p
,p(Ω)×W 2,p(Σ) which is continuously embedded
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(even with compactness) into continuous functions, namely in C(Ω)× C(Σ); Σ = Σ, and
for arbitrary p > N − 1. This gives us a well-defined trace c|Σ and allows us to choose the
searching space as

Y = C(Ω)× C(Σ).
Consequently with this choice, for all [ĉ, θ̂] ∈ Y we obtain F ([ĉ, θ̂]) = [c, θ] ∈ Y and the
following regularity estimates holds

‖c‖W 1+1/p,p(Ω) ≤ K1(‖h‖Lp(Σ) + ‖g‖Lp(Ω))

‖θ‖W 2,p(Σ) ≤ K2‖g̃‖Lp(Σ),

for all p > N − 1. This implies also the continuity of F .
The next step is to find an invariant set K ⊂ Y . For this purpose we use a method of

sub- and supersolution, see e.g. [12, §9.3], and comparison principles for elliptic PDEs, see
e.g. [27, §10].

Note 2.5. The construction of the sub- and supersolutions has usually a clear physical
meaning. Concretely in our case, we consider only the sink-terms in the bulk and outflow-
terms through the boundary to obtain a subsolution; or the source-terms in the bulk and
the inflow through the boundary only to receive a supersolution.

For fixed functions f ∈ Lp(Ω), g ∈ Lp(Σ) and [ĉ, θ̂] ∈ Y , consider a solution [c, θ] of the
problem (F ). By comparison principle, denoting | · | the Lp-norm on Ω resp. Σ, we state
the sub- and supersolution c, c̄ for c, in sequence, as the solutions of

c− λ∆c = −|f |, −(∇c · n)|Σ = ĉ+|Σ
c̄− λ∆c̄ = |f |, −(∇c̄ · n)|Σ = −κ.

Note that c̄ depends only on the fixed function f and the parameter κ. So, if it is chosen
as the supersolution, then ĉ+ ∈ [0, |c̄|], ∀ĉ ∈ K. Hence c is above the solution c˜ of

c˜− λ∆c˜= −|f | , −(∇c˜ · n)|Σ = |c̄|,

which is independent of [ĉ, θ̂]. Analogously, we define the sub- and supersolution θ, θ̄ for θ,
in sequence, as the solutions of

θ − λ∆Σθ = −|g| − κ

θ̄ − λ∆Σθ̄ = |g|+ ĉ+|Σ .

Here, θ is below the solution θ̃ of

θ̃ − λ∆Σθ̃ = |g|+ |c̄|Σ |,

where |c̄|Σ | is independent of [ĉ, θ̂] and so is θ̃. This allows us to choose the set K as

K =

{[
ĉ

θ̂

]
∈ Y : min

Ω
c˜≤ ĉ ≤ c̄, θ ≤ θ̂ ≤ max

Σ
θ̃

}
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which is a closed, bounded and convex set.
Now we need to show that the set F (K) is relatively compact in X. Let [fn, g̃n] ⊂ K

be a given (bounded) sequence. From the previous regularity results, we have a bounded
sequence of solutions [cn, θn] ∈ W 1+ 1

p
,p(Σ) × W 2,p(Σ), p > 1 of the problem (F̃ ). The

reflexivity of the space D implies that we can choose a weakly convergent subsequence
which - by compact embedding W 1+ 1

p
,p(Σ)×W 2,p(Σ)

c
↪→ Y = C(Ω)×C(Σ), for p > N − 1

- is strongly convergent in Y ⊂ X and, therefore, F (K) is relative compact in X.
Finally, according to Schauder’s fixed point theorem, see e.g. [14, Cor. 11.2], the

mapping F : K → K has a fixed point [c, θ] which is the solution of resolvent problem (R).
Moreover, the solution is unique due to accretivity of the operator A.

2.4 Density of D(A)

Since the boundary conditions are included in the definition of D(A), its density in X is
not trivial and one needs to explicitly show this property. Note that D(A) ⊂ C(Ω)×C(Σ)
which is dense in X, therefore, it suffices to show the density of D(A) in C(Ω)× C(Σ).

Let us have c∞ ∈ C(Ω) and θ∞ ∈ C(Σ). From the construction of the resolvent equation
we know that there is a solution [c, θ] ∈ K of the problem

c− λ∆c = c∞ in Ω (2.5a)
−(∇c · n)|Σ = c+|Σ(1− [θ])− κ[θ] on Σ, (2.5b)

θ − λ∆Σθ = θ∞ + λ (c+|Σ(1− [θ])− κ[θ]) in Σ. (2.5c)

for any c∞ ∈ Lp(Ω), θ∞ ∈ Lp(Σ), p > 1 and the smooth manifold Σ. The thing, which
remains to do, is to prove the following convergences

‖c− c∞‖Lp(Ω) = ‖λ∆c‖Lp(Ω) ≤ λ ‖c‖W 2,p(Ω)
?−→ 0, λ→ 0+ (2.6a)

‖θ − θ∞‖Lp(Ω) = ‖λ∆Σθ + λ c+|Σ(1− [θ])− κ[θ]‖Lp(Ω)

≤ λ‖θ‖W 2,p(Σ) + λ‖c+|Σ(1− [θ])− κ[θ]‖LpΣ
?−→ 0, λ→ 0+. (2.6b)

As one can see, we need to bound corresponding norms by data, since c∞ are θ∞ are
bounded as continuous functions on the compacts. For this purpose, let us once more recall
the regularity results obtained by the construction of the resolvent equation in previous
section. For any [c∞, θ∞] ∈ C(Ω)×C(Σ) ⊂ Lp(Ω)×Lp(Σ), there is a solution of the system
(2.5) such that for p > N − 1 the following embeddings hold

c ∈ W 1+1/p,p(Ω) ⊂ C(Ω), θ ∈ W 2,p(Σ) ⊂ C(Σ), c+|Σ(1− [θ])− κ[θ] ∈ C(Σ) ⊂ Lp(Σ).

The regularity of elliptic PDE (2.5a) with Neumann boundary condition in Lp(Σ) directly
gives c ∈ W 1+1/p,p(Ω) and, since

‖c+|Σ(1− [θ])− κ[θ]‖Lp(Σ) ≤ ‖c‖Lp(Σ) +K ≤ K̃
(
‖c‖W 1+1/p,p(Ω)

)
, (2.7)
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we obtain
‖c‖W 1+1/p,p(Ω) ≤ K1

(
‖c∞‖C(Ω)

)
. (2.8)

Using these two estimates, the regularity of elliptic PDEs on the smooth manifold yields

‖θ‖W 2,p ≤ K
(
‖θ∞‖LpΣ, ‖c∞‖LpΣ

)
≤ K2

(
‖θ∞‖C(Σ), ‖c∞‖C(Ω)

)
. (2.9)

which is sufficient to obtain the second convergence (2.6b).
To satisfy the first one, we need to improve regularity of Neumann condition (2.5b).

This can be done by trace theorem 8 which yields

‖c+|Σ(1− [θ])− κ[θ]‖W 1,p(Σ) ≤ ‖c|Σ‖W 1+1/p,p(Ω)

(
1 + ‖∇θ‖Lp(Σ)

)
+ κ‖θ‖W 1,p(Σ)

≤ K
(
‖c‖W 1+1/p,p(Ω), ‖θ‖W 1,p(Σ)

)
≤ K3

(
‖θ∞‖C(Σ), ‖c∞‖C(Ω)

)
(2.10)

Having this smoothness for boundary condition, we finally obtain the better regularity for
c, namely

‖c‖W 2,p(Ω) ≤ K4(‖c∞‖C(Ω), ‖θ∞‖C(Σ)).

Hence we have

‖c− c∞‖Lp(Ω) ≤ λK(‖c∞‖C(Ω), ‖θ∞‖C(Σ))
λ→0+−→ 0

‖θ − θ∞‖Lp(Ω) ≤ λK(‖c∞‖C(Ω), ‖θ∞‖C(Σ))
λ→0+−→ 0.

2.5 Closedness of the operator A
Note 2.6. If it is not specified in anther way, all the convergences are meant in the real
Banach space X = L1(Ω) × L1(Σ) with the corresponding norm ‖ · ‖X. Furthermore, we
will recall some regularity results for L1-spaces which vary from the previous Lp-regularity
results.

To show the closedness of the operator A in X, we need that for

un =

[
cn
θn

]
, u =

[
c
θ

]
, Aun =

[
−∆cn

−∆Σθn − c+n|Σ(1− [θn])− κ[θn]

]
=

[
fn
gn

]
, v =

[
f
g

]
∧ − (∇cn · n)|Σ = c+n|Σ(1− [θn])− κ[θn]

the following to hold:
{un → u and Aun → v} ⇒ Au = v. (2.11)

8For domain Ω with smooth ∂Ω there is a continuous trace operator tr : Wk,p(Ω) → Wk− 1
p ,p(∂Ω), cf.

[1].
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We know that the Laplace operator is closed linear operator and the truncation "[·]"
maps L1(Σ) functions into L∞(Σ) functions, hence it is sufficient to show{[

cn
θn

]
→
[
c
θ

]
in X ∧ c+n|Σ → α in L1(Σ)

}
⇒ c+|Σ = α. (2.12)

First of all, we need to show that {c+n|Σ}
∞
n=1 is bounded in L1(Σ). Note that the sequence

has already the lower bound so it remains to find the upper bound only. For this purpose,
we will again use the comparison principle where the sequence of supersolutions {c̄n}∞i=1

satisfies the equations
∆c̄n = fn, −(∇c̄ · n)|Σ = −κ[θn].

The regularity for elliptic PDEs in the L1-setting with smooth boundary and Neumann
boundary condition, see [4, thm 20.], yields

c̄n ∈ W 1,q(Ω), ∀q ∈ [1, N/(N − 1))

and, consequently from [4, lemma 23.], we obtain

‖c̄n‖W 1,q(Ω) ≤ K(‖f‖L1(Ω) + κ‖[θn]‖L1(Σ)). (2.13)

Hence, by trace the theorem [12, §5.5], the sequence {cn|Σ}∞n=1 is bounded in Lq(Σ); from
comparison principle the estimate (2.13) holds also for c+n ∈ [0, c̄+n ]; and therefore, we have
the boundedness of {c+n|Σ}

∞
n=1 in Lq(Σ), i.e. also in L1(Σ). Moreover, the reflexivity of the

space W 1,q(Ω), for q > 1, provides the fact that from any bounded sequence we can choose
weakly convergent subsequence, namely 9

cn
w→ c in W 1,q(Ω), (2.14)

which implies the strong convergence in L1(Ω) because of the compact embeddings
W 1,q(Ω)

c
↪→ L1(Ω), 1 ≤ q < N , cf. Rellich-Kondrachov Compactness Theorem [12, §5.7].

The next step is to show that this limit coincidences with the limit on the boundary.
According to the assumption is c+n|Σ → α. The question is whether α = c+|Σ . Unfortunately,
we can not ensure c+|Σ to be continuous on C(Ω). The way out leads through Mazur’s
theorem, see [24]. It states: Whenever (2.14) holds, there exists a sequence defined by its
convex combination, i.e. c̃n ∈ Conv{ck : k ≥ n}, such that

c̃n → c in W 1,q(Ω). (2.15)

Using the trace operator tr : W 1,q(Ω) → Lq(Σ), which is continuous and linear, together
with the assumption (2.12), we obtain the desired result

α = lim
n→∞

c̃+n|Σ = lim
n→∞

tr(c̃n)
+ = tr( lim

n→∞
c̃n)

+ = (tr( lim
n→∞

c̃n))
+ = (tr(c))+ = c+|Σ .

9For simplification, we denote the chosen subsequence again cn.
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Let us mention that

|c+n − c+| ≤ |cn − c| ∧ |[θn]− [θ]| ≤ |θn − θ|

and consequently ∣∣c+n|Σ [θn]− c+|Σ [θ]
∣∣ ≤ ∣∣c+n|Σ [θn]− c+|Σ [θn] + c+|Σ [θn]− c+|Σ [θ]

∣∣
≤
∣∣c+n|Σ − c+|Σ

∣∣+ ∣∣c+n|Σ∣∣ ∣∣[θn]− [θ]
∣∣.

The convergences then directly follow as∫
Ω

∣∣(∆cn −∆c)ϕ
∣∣ ≤ ∫

Ω

∣∣(∇cn −∇c)∇ϕ
∣∣

+

∫
Σ

∣∣∣(c+n|Σ(1− [θn])− κ[θn]− c+|Σ(1− [θ])− κ[θ]
)
ϕ
∣∣∣

n→∞−→ 0, ∀ϕ ∈ C∞(Ω)

and analogously∫
Σ

∣∣∣(∆Σθn + c+n|Σ(1− [θn])− κ[θn]− (∆Σθ + c+|Σ(1− [θ])− κ[θ])
)
ψ
∣∣∣ n→∞−→ 0, ∀ψ ∈ C∞(Σ).

Since, we satisfy the problem (2.11) for dense function in D(A), the operator A is closed.

2.6 m-accretivity
The last step is to prove m-accretivity of the operator A, i.e. the range condition
rg(I + λA) = X, for some (or, equivalently, for all) λ > 0. From previous density re-
sult follows: For a given u = [c, θ] ∈ X there is a sequence ûn = [ĉn, θ̂n] ∈ Y such that
ûn → u in X. Moreover, for any [ĉn, θ̂n] there is unique solution [cn, θn] ∈ D(A) of the
resolvent equation Rn in the form

(Rn)

{
cn −∆cn = ĉn;−∇c · n = c+n|Σ(1− [θn])− κ[θn]

θn −∆Σθn = θ̂n + c+n|Σ(1− [θn])− κ[θn].

Furthermore, the accretivity of the operator A states

‖(λ+ A)u− (λ+ A)ũ‖ = ‖λ(u− ũ) + Au− Aũ)‖ ≥ λ‖(u− ũ)‖, ∀λ > 0

and the resolvent mapping Rλ(A) = (I + λA)−1 is a non-expansive mapping for λ = 1.
Hence

vn = [cn, θn] = (I + A)−1[ĉn, θ̂n]

is a Cauchy sequence in Banach space X and therefore convergent in X. Moreover, the
closedness of A implies the closedness of (I + A)−1 which together with the fact that

(I + A)−1(ûn) → v ∧ ûn → u

gives the existence of u ∈ X for all v ∈ X such that (I+A)−1(u) = v, i.e. rg(I+A) = X.
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2.7 Properties of the operator B
First of all, we consider only the first component of the operator B in the Hilbert space
X0 = L2(Ω). Let us denote this operator as B0 with D(B0) = W 1,2(Ω). Then the following
holds

〈c, B0 c〉 =
∫
Ω

cv · ∇c =
∫
Ω

v · ∇c2

2
Green
= −

∫
Ω

c2

2
· div v = 0.

Tt means that the operator B0 is conservative (simultaneously dissipative and accre-
tive). Since X0 is a Hilbert space, it is also s-accretive (see Appendix (6.8)) and the adjoint
operator reads as B∗

0 = −B0.
The next step to show closedness of B0 is to show{

cn → c in L2(Ω) ∧ v · ∇cn → w in L2(Ω)
}
⇒ w = v · c.

This can be equivalently written in distributional sense, where for all ϕ ∈ C∞(Ω) the
following holds∫

Ω

div (v (cn − c))ϕ
Green
=

∫
Ω

∣∣v (cn − c) · ∇ϕ
∣∣ ≤ ‖v‖L∞(Ω)‖cn − c‖L2(Ω)‖∇ϕ‖L2(Ω)

n→∞−→ 0

where we have used Lebesgue’s domination theorem (cf. [26]) to exchange the limit and
integral. Hence both B0 and B∗

0 are closed and, by [15, thm 2.27], we obtain B0 as m-
accretive operator and infinitesimal generator of a C0 - semigroup of contraction.

The extension of this result to the original space X can be done by Lumer-Phillips
theorem (6.2), requiring rg(I + λB) to be dense in X for some λ > 0. W.l.o.g. put λ = 1.
Then the property of m-accretivity of B0 in L2(Ω) yields a solution c ∈ D(B0) of the
resolvent equation c+B0 c = f for any f ∈ L2(Ω).

Since B|D(B0)
= B0 and D(B0) ⊂ D(B), we also have a solution for c + (Bc)1 = f in

L2(Ω) and, consequently, we have a solution u ∈ D(B) of the resolvent equation u+Bu = g
for any g ∈ L2(Ω) × L1(Σ) which is dense in X = L1(Ω) × L1(Σ). Because of the second
component of the operator B is zero the closedness meets the same argumentation as
above and by Lumer-Phillips theorem (6.2) we obtain the operator B as the generator of
a C0 - semigroup. Moreover, by [11, Prop. 3.23] B is also s-accretive.

2.8 Perturbation
In this section we will use an extended perturbation theory for general Banach spaces.
A lead role will have Kobayasi perturbation theorem (6.5), the generalization of classical
Kato’s perturbation theorem which require a uniform convexity of the space, see [17].

In our case, the transport operator B, where D(B) = W 1,1(Ω) × L1(Σ) ⊃ D(A), is
linear and acts just on the constituent c. Unlike in the situation in Lp spaces with p > 1,

9Let us recall that the velocity field v is incompressible with no-slip boundary condition, therefore,
v · cn = div(v cn) and the boundary term is zero.
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in case of p = 1 we can not use standard approach, e.g. applying the mean-value theorem
considered in [11, Ex. 2.2]. The positive answer for the relative boundedness of operator
B provide Lunardi and Metafune in [21]. They state that

‖∇u‖Lp(Ω) ≤ C(N, p) ‖u‖1−γ
L1(Ω)‖∆u‖

γ
L1(Ω)

which Ω ⊂ RN , p < N and γ = N(1−1/p)+1
2

< 1. For N = 3 and p = 1 we obtain by
application of Cauchy ε-inequality, see [12, Appendix B],

‖∇u‖L1(Ω) ≤ C ‖u‖
1
2

L1(Ω)‖∆u‖
1
2

L1(Ω) ≤ C

(
ε‖∆u‖L1(Ω) +

‖u‖L1(Ω)

4ε

)
, ∀ε > 0.

Therefore B = v · ∇c is locally A-bounded for any bound L > 0. This implies

‖B‖x ≤ ‖v‖L∞(Ω)‖∇c‖L1(Ω) ≤ ‖A‖x = ‖∆c‖L1(Ω) + ‖ · ‖L1(Σ),

what immediately meets local Lipchitz condition (L.2) in theorem (6.5), see Appendix.
Furthermore, as was shown before, the operator B is s-accretive and therefore dissipative
in the sense of Browder, see [5]. All these conditions give by Kobayashi perturbation
theorem (6.5) that A = A+B is an m-dissipative operator.

2.9 Irreversible chemical reaction
Let us recall the quasi-autonomous abstract Cauchy problem (ACP-NH)

u̇(t) +Au(t) = f(u(t)), t ∈ J (ACP-NH)
u(0) = u0 ∈ X

u =

u1u2
u3

 ,A(u) =

A(u1)
A(u2)
A(u3)

 ,f(u) =
 f(u1, u2)
f(u1, u2)

−f(u1, u2),


where

ui =

[
ci
θi

]
,A
[
ci
θi

]
=

[
−∆ci + v · ∇ci

−∆Σθi − c+i|Σ(1− [θi])− κi[θi]

]
, f(u1, u2) =

[
0

−κre[θ1][θ2]

]
.

Since A(ui) are m-accretive operators on X (independent of each other), so is A(u)
the m-accretive operator on X. Now we need to use the invariance technique, described
e.g. in [3, §4], to obtain viable solution, i.e. the solution stays in some positive invariant
set, see below. As we can see, the right-hand-side function f(u) does not depend on the
third component u3 (resp. θ3), therefore, we will treat separately the first two components
u1 × u2 and the third one u3. Since the operator

A12


c1
θ1
c2
θ2

 = A1

[
c1
θ1

]
×A2

[
c2
θ2

]
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is m-accretive as well, let us treat the function f(u1, u2) as perturbation C. This leads to
the system

u̇12(t) + (A12 + C)u12(t) = 0 (ACP12)
u12(0) = u01 × u02 ∈ X ×X,

where

u12 =


c1
θ1
c2
θ2

 and Cu12 =


0

κre [θ1][θ2]
0

κre [θ1][θ2]


Is easy to see that C as a continuous and non-decreasing in both variables; moreover, the
following holds

[u12 − ũ12, Cu12 − Cũ12] =κre


c1 − c̃1, 0

θ1 − θ̃1, [θ1][θ2]− [θ̃1][θ̃2]
c2 − c̃2, 0

θ2 − θ̃2, [θ1][θ2]− [θ̃1][θ̃2]


ε→0+∼ κre

∫
Σ

(
[θ1][θ2]− [θ̃1][θ̃2]

)(
sε(θ1 − θ̃1) + sε(θ2 − θ̃2)

)
≥ 0.

The last inequality follows from the fact that if (θ1 − θ̃1) and (θ2 − θ̃2) have different signs,
then their sum is 0. If they are positive, the term ([θ1][θ2]− [θ̃1][θ̃2]) is non-negative; and,
on the other hand, if the they are negative, the term is non-positive.

Therefore, the operator C with D(C) = X×X is accretive and by [15, Corollary 1.32],
we receive an m-accretive operator A12+C. The application of Crandall-Liggett generation
theorem (6.3) gives the operator A12+C as a generator of a strongly continuous semigroup
of contractions.

In case of the operator A3, we have to treat the problem as a quasi-autonomous problem

u̇3(t) = A3(u3(t)) + f3(t), t ∈ [0, T ], (QA)
u3(0) = u03, u

0
3 ∈ X,

where operator A3 is an m-accretive operator.
Moreover, we have the positive invariance set to the problem (ACP12), namely

M = {[c1, θ1, c2, θ2] : 0 ≤ θ1 ≤ 1, 0 ≤ θ2 ≤ 1}.

This means that all the solutions with initial values in gr(KA12), KA12 = M ∩ D(A12),
remain in this set; which is possible due to the fact that resolvent mapping Rλ(A12) =
(I + λA12)

−1 is a non-expansive mapping for λ < 1; and Cu ∈ TM(u) where TM(u) is the
set of subtangential vectors to the set M .

Then the truncation [·] for u3 is not needed anymore and κ [θ1][θ2] = κ θ1θ2 is bounded,
hence, θ1θ2 ∈ L∞(Σ) ⊂ L1(Σ) and, consequently, f(t) ∈ L1(J ;X). Moreover, the function
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f : gr(KA) → X is bounded, locally Lipchitz continuous and by [3, Thm. 4.1] we obtain a
unique mild solution of (QA) for any [c01, θ

0
1, c

0
2, θ

0
2] ∈ M and, consequently, a unique mild

solution of (ACP-NH)

Remark 2.2. In particular, this solution is global-in-time for u0 ∈ K where K is a weakly
positive invariant set for (ACP-NH).

Proof. Here we refer to [3, Thm. 6.1] which states that whether there is a solution for all
α ∈ [0,∞), we can extend the result and receive the global mild solution of (QA), resp.
the global mild solution of (ACP-NH).
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3. Weak solution
In this chapter we prove the existence of a weak solution to original (untruncated) problem
(1.8). We first introduce an auxiliary system (called semi-truncated system (3.1)). 1 Then
we prove the existence of a weak solution to relevant initial and boundary value problem
by Galerkin approximations and the energy estimates method. Finally, assuming that the
data c0i , θ0i and cini fulfills the condition c0i ≥ 0, θ0i ∈ [0, 1] and cini ≥ 0, which correspond to
the physical meaning of the quantities, we show via weak maximum/minimum principles
that ci and θi meet these condition in interval of [0, T ]×Ω, resp. [0, T ]×Σ, as well. These
imply that the truncations are in fact inactive and thus the solution of the semi-truncated
system (3.1) is either the solution of original problem (1.8).

3.1 The weak formulation
Let us introduce the semi-truncated system: Let Ω ⊂ R3 be bounded domain with Lipschitz
boundary ∂Ω and T ∈ [0,∞); we seek for ci : [0, T ] × Ω → R and θi : [0, T ] × Σ → R,
i = 1, 2, 3, such that

∂tci + v · ∇ci − 1
(Pe) i

∆ci = 0 in [0, T ]× Ω (3.1a)

− 1
(Pe) i

(∇ci · n)|Σ = c+i|Σ(1− [θi])− κi[θi], ci|Γin
= cini|Γin

, (∇ci · n)|Γout
= 0 on [0, T ]×∂Ω

(3.1b)
ci(0, ·) = c0i on Ω (3.1c)

∂tθi − 1

(Pe)Σi
∆Σ θi + κiθi = c+i|Σ(1− [θi]) + κrei [θ1][θ2] on [0, T ]× Σ (3.1d)

∇Σθi · nΣ = 0 on [0, T ]× ∂Σ (3.1e)
θi(0, ·) = θ0i on Σ, (3.1f)

where given (time-independent) data v, c0i , θ
0
i , c

in
i meet the following conditions

v ∈ V, c0i ∈ L2(Ω), θ0i ∈ L2(Σ), cini ∈ W 1,2(Ω) and cini ≥ 0, c0i ≥ 0 (3.2)

and constant coefficients satisfy

− κre1 = −κre2 = κre = κre3 , (Pe)i, (Pe)
Σ

i , κi, κ
re > 0, i = 1, 2, 3. (3.3)

Note 3.1. Let us mention that in case of weak solution and consequent numerical compu-
tations, we always consider (uncurved) flat geometry, see figure (4.3a), where all considered
parts of the boundary ∂Ω, resp. Σ, are parts of lines. Therefore the operators ∆Σ,∇Σ be-
come standard Laplace ∆2D and gradient ∇2D operators defined on two dimensional bound-
ed set.

1Note that this semi-truncated system is different from (1.9) in terms κiθi in the equation (3.1d).
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Treating the system with mixed boundary conditions, we standardly implicitly built-in
the Neumann conditions into weak formulation. On the other hand, the implementation
of (stationary) Dirichlet conditions is done by decomposition of the functions ci, i = 1, 2, 3,
into time-dependent homogeneous and time-independent non-homogeneous (non-negative)
part where the later one satisfies the boundary condition, namely

ci(t; x) = chi (t; x) + cini (x), chi|Γin
= 0, cini|Γin

= ci|Γin
and cini = cin+i . (3.4)

Denoting W 1,2
Γin

:= {v ∈ W 1,2(Ω) : v|Γin
= 0} 2 and the dual spaces W−1,2(Ω)) =(

W 1,2
Γin

(Ω))
)∗

and W−1,2(Σ)) = (W 1,2(Σ)))
∗, we introduce the searching spaces V and W as

follows

V =
{
L2([0, T ];W 1,2

Γin
(Ω)) ∩ L∞([0, T ];L2(Ω)), ∂tc ∈ L2([0, T ];W−1,2(Ω))

}
W =

{
L2([0, T ];W 1,2(Σ)) ∩ L∞([0, T ];L2(Σ)), ∂tθ ∈ L2([0, T ];W−1,2(Σ))

}
.

Note that we already have the embeddings into time-continuous functions, namely
V ↪→ C([0, T ];L2(Ω)) and W ↪→ C([0, T ];L2(Σ)).

Using the decomposition (3.4) we can rewrite system (3.1a) multiplied by a test function
v ∈ W 1,2

Γin
(Ω) as∫

Ω

∂tc
h
i v − 1

(Pe) i

∫
Ω

∆chi v +

∫
Ω

v · ∇chi v

Gr
=

∫
Ω

∂tc
h
i v +

1
(Pe) i

∫
Ω

∇chi · ∇v − 1
(Pe) i

∫
∂Ω

(∇chi · n)v +
∫
Ω

(v · ∇chi )v

BC
=

∫
Ω

∂tc
h
i v +

∫
Ω

1
(Pe) i

∇chi · ∇v + v · ∇chi v +
∫
Σ

(
ch+i|Σ (1− [θi])− (κi + cini|Σ) [θi]

)
v =

= −
∫
Ω

1
(Pe) i

∇cini · ∇v + v · ∇cini v −
∫
Σ

cini|Σ v.

In case of the equation (3.1d) we proceed analogously.

Note 3.2. Let us mention that we can not generally ensure the relation (chi + cini )+ =
ch+i + cin+i even for non-negative function cini but, since we prove the non-negativity of
chi as a weak solution of (3.7) (see below Theorem (3.5)), we obtain even better result
(chi + cini )+ = chi + cini . Note that together with boundedness of θi the system (3.7) coincides
with the system (1.8) in a weak sense.

As in the standard concept with non-homogeneous Dirichlet condition, we suppress the
index (·)h in following lines. The weak formulation of the system (3.1) consequently states:

2This definition is suitable for domains with Lipschitz boundary. In more general case we would prefer
the definition W 1,2

Γin
:= C∞

Γin
(Ω)

‖·‖
Wk,p(Ω) where C∞

Γin
(Ω) = {v ∈ C∞(Ω) : v|Γin

= 0}.
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We search for {[c1, θ1], [c2, θ2], [c3, θ3]} ∈ [V × W ]3 such that for any v ∈ W 1,2
Γin

(Ω),
w ∈ W 1,2(Σ) and a.e. t ∈ [0, T ] the following holds∫

Ω

∂tci v +

∫
Ω

1
(Pe) i

∇ci · ∇v + v · ∇c v +
∫
Σ

(
c+i|Σ(1− [θi])− (cini|Σ + κi)[θi]

)
v (3.6a)

= −
∫
Ω

1
(Pe) i

∇cini · ∇v + v · ∇cini v −
∫
Σ

cini|Σ v∫
Σ

∂tθiw +

∫
Σ

1

(Pe)Σi
∇Σθi · ∇Σw + (κi + cini|Σ)θiw −

∫
Σ

(
c+i|Σ(1− [θi]) + κrei [θ1][θ2]

)
w =

∫
Σ

cini|Σ w,

(3.6b)

where the given data v, c0i (·) = ci(0, ·), θ0i (·) = θi(0, ·), cini , i = 1, 2, 3, meet the conditions
(3.2).

This system can be equivalently written using symbolical formulation with the forms
BΩ, BΣ as

〈∂tci(t), v〉Ω +BΩ[ci, θi, v] = 〈fci , v〉, ∀v ∈ W 1,2
Γin

(Ω), a.e. t ∈ [0, T ], (3.7a)
〈∂tθi(t), w〉Σ +BΣ[ci, θi, v, θ1, θ2] = 〈fθi , w〉, ∀w ∈ W 1,2(Σ), a.e. t ∈ [0, T ], (3.7b)

where T ∈ [0,∞) and

BΩ[ci, θi, v] =

BL
Ω [ci,v]︷ ︸︸ ︷∫

Ω

1
(Pe) i

∇ci · ∇v + v · ∇ci v+
∫
Σ

(
c+i|Σ(1− [θi])− (cini|Σ + κi)[θi]

)
v

BΣ[ci, θi, w, θ1, θ2] =

BL
Σ [θi,w]︷ ︸︸ ︷∫

Σ

1
(Pe) i

∇θi · ∇w + (cini|Σ + κi)θiw−
(
c+i|Σ(1− [θi]) + κrei [θ1][θ2]

)
w

〈fci , v〉 = −
∫
Ω

1
(Pe) i

∇cini · ∇v + v · ∇cini v −
∫
Σ

cini|Σ v

〈fθi , w〉 = (fθi , w)Σ =

∫
Σ

cini|Σ w

for κre1 = κre2 = −κre = −κre3 . Symbols BL
Ω[ci, v] and BL

Σ[θi, w] denote the corresponding
bi-linear parts of BΩ and BΣ; (·, ·) denotes the scalar product, namely (f, g)Ω =

∫
Ω
f g dx,

(f, g)Σ =
∫
Σ
f g ds; and fci ∈ W−1,2(Ω).

Definition. We say that functions ci ∈ V ↪→ C([0, T ];L2(Ω)), θi ∈ W ↪→ C([0, T ];L2(Σ)),
i = 1, 2, 3, are weak solutions of the parabolic initial-boundary problem (3.1) iff

(i) the relations (3.7) hold for all w ∈ W 1,2
Γin

(Ω) and v ∈ W 1,2(Σ) and a.e. t ∈ [0, T ].

(ii) ci, θi meet the initial conditions

ci(0) = c0i
θi(0) = θ0i .
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3.2 Galerkin approximation
For the purpose of finding a weak solution of (3.1), we use a Galerkin approximation method
- see also [12, §7.1.2] for linear case. Recalling that W 1,2

Γin
(Ω) ↪→ L2(Ω), W 1,2(Σ) ↪→ L2(Σ)

are separable Hilbert spaces and referring to following eigenvalue problems

−∆v = λv in Ω

v = 0 on Γin

∂v

∂n
= 0 on ∂Ωr Γin

and
−∆w + w = λw in Σ

∂w

∂nΣ
= 0 on ∂Σ,

we can construct orthonormal bases {vk}∞k=1 and {wk}∞k=1 in W 1,2
Γin

(Ω) and W 1,2(Σ) that
are, in addition, orthogonal in L2(Ω) and L2(Σ). Let us denote the corresponding projector
operators as Pm

Ω : W 1,2
Γin

(Ω) → {v1, . . . , vm} and Pm
Σ : W 1,2(Σ) → {w1, . . . , wm}. For more

details we refer to [23].
The first step is to build the finite-dimensional approximation. We seek for the functions

cmi : [0, T ] → W 1,2
Γin

(Ω) and θmi : [0, T ] → W 1,2(Σ), i = 1, 2, 3, of the form

cmi (t; x) =
m∑
k=1

dmci,k(t)v
k(x), x ∈ Ω (3.8a)

θmi (t; x) =
m∑
k=1

dmθi,k(t)w
k(x), x ∈ Σ (3.8b)

solving the weak finite-dimensional problem(
(cmi (t))

′, vk
)
Ω
+BΩ[c

m
i , θ

m
i , v

k] = 〈fci , vk〉, ∀k = 1, . . . ,m (3.9a)(
(θmi (t))

′, wk
)
Σ
+BΣ[c

m
i , θ

m
i , w

k, θ1, θ2] = 〈fθi , wk〉, ∀k = 1, . . . ,m (3.9b)

where the coefficients dmci,k and dθi,k satisfy the initial conditions

dmci,k(0) = (c0i , v
k)Ω (3.10a)

dmθi,k(0) = (θ0i , w
k)Σ. (3.10b)

Theorem 3.1. The finite-dimensional system (3.9) with operators BΩ, BΣ and func-
tions fci , fθi defined as above has for each integer m = 1, 2, . . . a set of solutions
{cm1 , θm1 , . . . , cm3 , θm3 } of the form (3.8) and satisfying the initial conditions (3.10).

Proof. Note that (
(cmi (t))

′, vk
)
Ω
=
(
dmci,k(t)

)′ (3.11a)(
(θmi (t))

′, wk
)
Σ
=
(
dmθi,k(t)

)′
. (3.11b)

This system is a system of first order differential equations in the form y′ = f(y) with
continuous function f , where y = (dm

c1
,dm

θ1
, ..,dm

c3
,dm

θ3
)T with dm

ci
= (dm

ci,1
, ..,dm

ci,m
)T and

dm
θi
= (dm

θi,1
, ..,dm

θi,m
)T . According to Peano existence theorem [28] the system (3.9) posses

a solution.
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3.3 Energy estimates
In order to let m to infinity and take the limit from finite-dimensional problem (3.9) to
original problem (3.7), we need the energy estimates, respectively the convenient bounds
for the sequences {cmi }, {(cmi )′} and {θmi }, {(θmi )′} for i = 1, 2, 3 and all m = 1, 2, . . . .

Theorem 3.2. There exists constants C1, C2 depending on Ω and Σ only such that

‖cmi ‖L∞([0,T ];L2(Ω)) + ‖cmi ‖L2([0,T ];W 1,2
Γin

(Ω)) + ‖(cmi )′‖L2([0,T ];W−1,2(Ω))

≤ C1

(
‖fci‖W−1,2(Ω) + ‖c0i ‖L2(Ω)

)
+ C2

for i = 1, 2, 3 and all m = 1, 2, . . . .

Proof. 1. In this proof we more or less follow the standard concept for linear parabolic
equations (cf. [12, §7.1.2]) but, in addition, we employ the nonlinearities. Multiplying the
relations (3.9a) by dmci,k and sum for k = 1, . . . ,m, we obtain the relations

((cmi )
′, cmi )Ω +BΩ[c

m
i , θ

m
i , c

m
i ] = 〈fci , cmi 〉. (3.12)

for i = 1, 2, 3. Using the incompressibility of the velocity field and Green theorem we have∫
Ω

v · ∇cmi cmi dx =

∫
Ω

v · ∇
(
|cmi |2

2

)
dx =

∫
Ω

div

(
v

|cmi |2

2

)
dx =

∫
∂Ω

(v · n) |c
m
i |2

2
ds,

and, consequently, the relation (3.12) turns to

1

2

d

dt
‖cmi ‖2L2(Ω)+

1
(Pe) i

‖∇cmi ‖2L2(Ω)+

∫
∂Ω

(v·n) |c
m
i |2

2
ds−

∫
∂Ω

(∇cmi ·n) cmi ds = 〈fci , cmi 〉. (3.13)

Now we recall ∂Ω = Σ ∪ Γin ∪ Γout and the boundary conditions

(v·n)|∂Ω =

{
0 on Σ,

≥ 0 on Γout,
− 1

(Pe) i
((∇ci · n) c)|∂Ω =

{(
c+i|Σ(1− [θi])− κi[θi]

)
ci|Σ on Σ,

0 on Γout.

Note and the condition ci|Γin
= 0 is already built in W 1,2

Γin
(Ω). Using Schwarz’s and Cauchy’s

ε-inequality 3 - cf. [12, §B.2] - we obtain

|(fci , cmi )Ω| ≤ ‖fcicmi ‖L1(Ω) ≤ ‖fci‖W−1,2(Ω)‖cmi ‖L2(Ω) ≤
1

4ε
‖fci‖2W−1,2(Ω) + ε‖cmi ‖2L2(Ω)

for any ε > 0. Together with (3.13) and the boundary conditions above we receive the
following

1

2

d

dt
‖cmi ‖2L2(Ω) +

1
(Pe) i

‖∇cmi ‖2L2(Ω) +

∫
Σ

(
cm+
i (1− [θmi ])− (cini|Σ + κi)[θ

m
i ]
)
cmi ds

≤ C1‖cmi ‖2L2(Ω) + C2‖fci‖2W−1,2(Ω) (3.14)

3In most of the cases we can, equivalently, use Hölder’s and Young’s inequality.
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for C1, C2 appropriate constants. 4

Simultaneously, using the fact that cm+
i cmi =

(
cm+
i

)2 ≥ 0 ⇒ cm+
i (1 − [θmi ])c

m
i ≥ 0, we

can neglect this term as a positive term on the left side of inequality (3.14). Furthermore∫
Σ

|cmi |ds ≤ K‖cmi ‖L2(Σ) ≤ K̃‖cmi ‖W 1
2 ,2(Ω)

≤ C1‖cmi ‖2L2(Ω) +
1

2(Pe)i
‖∇cmi ‖2L2(Ω), (3.15)

where we have used the interpolation inequality (cf. [8]) and Chauchy ε-inequality 5 which
allows us to obtain the coefficient 1

2(Pe)i
. This is sufficient to obtain from (3.14) the estimates

d

dt
‖cmi ‖2L2(Ω) ≤

d

dt
‖cmi ‖2L2(Ω) + C‖∇cmi ‖2L2(Ω) ≤ C1‖cmi ‖2L2(Ω) + C2‖fci‖2W−1,2(Ω) (3.16)

for i = 1, 2, 3 and positive constants C,C1, C2.

2. Denoting
ηi(t) := ‖cmi (t)‖2L2(U)

the inequality (3.16) can be written as

ηi(t) ≤ C1ηi(t) + C1‖fci‖2W−1,2(Ω).

Using the Gronwall’s inequality [12, §B.2], we obtain the estimate

ηi(t) ≤ eC1t
i

(
ηi(0) + C1t‖fci‖2W−1,2(Ω)

)
and, with the fact that ηi(0) = ‖cmi (0)‖2L2(Ω)

(3.10)
≤ ‖c0i ‖2L2(Ω), we receive the relation

max
t∈[0,T ]

‖cmi ‖L2(Ω) ≤ C
(
‖c0i ‖2L2(Ω) + ‖fci‖2W−1,2(Ω)

)
. (3.17)

Recalling the inequality (3.16), integrate over the time and using the inequality above we
end up with the estimate

‖cmi ‖2L2([0,T ];W 1,2
Γin

)
=

∫ T

0

‖cmi ‖2W 1,2
Γin

dt ≤ C
(
‖c0i ‖2L2(Ω) + ‖fci‖2W−1,2(Ω)

)
. (3.18)

4For simplicity of writing we sometimes use constants C,C1, C2, C3,K which can eventually vary from
relation to relation.

5Other possible way is using a Chauchy ε-inequality only which gives the result with additional constant.
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3. In order to obtain the estimates on the time-derivative of cmi , we take any
u ∈ W 1,2

Γin
with ‖u‖W 1,2

Γin

≤ 1 and consider the projection Pm
Ω onto m-dimensional space

V m
i = span{vl}ml=1. Note that (cmi )

′ is either element of V m
i . Then

〈∂tcmi , u〉Ω = ((cmi )
′, u)Ω = ((cmi )

′, Pm
Ω (u))Ω

(3.9)
= 〈fci , Pm

Ω (u)〉 −BΩ[c
m
i , θ

m
i , P

m
Ω (u)].

Using the fact that also ‖Pm
Ω (u)‖W 1,2(Ω) ≤ 1, we have |〈fci , Pm

Ω (u)〉| ≤ ‖fci‖W−1,2(Ω) and

|BΩ[c
m
i , θ

m
i , P

m
Ω (u)]| ≤ ‖v‖L∞(Ω)‖ci‖W 1,2

Γin
(Ω) + C1‖ci‖W 1,2

Γin
(Ω) + C2.

Furthermore
|〈(cmi )′, u〉Ω| ≤ C1

(
‖fci‖W−1,2(Ω) + ‖cmi ‖W 1,2

Γin
(Ω)

)
+ C2

and, since u is arbitrary with ‖u‖W 1,2
Γin

≤ 1, we finally obtain the estimate

‖(cmi )′‖L2([0,T ];W−1,2(Ω)) ≤ C1

(
‖fci‖2W−1,2(Ω) + ‖cmi ‖2L2([0,T ];W 1,2

Γin
(Ω))

)
+ C2

(3.18)
≤ C1

(
‖fci‖2W−1,2(Ω) + ‖c0i ‖L2(Ω)

)
+ C2

for i = 1, 2, 3.

Theorem 3.3. There exists constants C1, C2 depending on Ω and Σ only, such that for
i = 1, 2, 3 the following estimates hold

‖θmi ‖L∞([0,T ];L2(Σ)) + ‖θmi ‖L2(W 1,2(Σ)) + ‖(θmi )′‖L2(W−1,2(Σ))

≤ C1

(
‖fci‖W−1,2(Ω) + ‖fθi‖L2(Σ) + ‖c0i ‖L2(Ω) + ‖θ0i ‖L2(Ω)

)
+ C2

for all m = 1, 2, . . .

Proof. 1. Analogously to relation (3.12) in previous proof, we obtain

((θmi )
′, θmi )Σ +BΣ[c

m
i , θ

m
i , θ

m
i , θ

m
1 , θ

m
2 ] = 〈fθi , w〉, (3.19)

respectively

1

2

d

dt
‖θmi ‖2L2(Σ) +

1

(Pe)Σi
‖∇θmi ‖2L2(Σ) +

(
(cini|Σ + κi)θ

m
i , θ

m
i

)
Σ

(3.20)

=

∫
Σ

(
cm+
i (1− [θmi ]) + κrei [θm1 ][θ

m
2 ]
)
θmi ds+ (fθi , θ

m
i )Σ

for i = 1, 2, 3. Note that (
(cini|Σ + κi)θ

m
i , θ

m
i

)
Σ
≥ κi‖θmi ‖2L2(Σ).

Here we distinguish between the situation for θi, i = 1, 2 and θ3.
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2. Now use the fact that [θi]θi ≥ [θi]
2 ≥ 0 and right-hand side of relation (3.20) for

i = 1, 2 follows as∫
Σ

cm+
i θmi − cm+

i [θmi ]θ
m
i︸ ︷︷ ︸

≥0

−κre[θm1 ][θ
m
2 ]θ

m
i︸ ︷︷ ︸

≥0

ds

≤
∫
Σ

cm+
i θmi ds ≤

∫
Σ

|cmi θmi | ds ≤ ‖cmi ‖L2(Σ)‖θmi ‖L2(Σ) ≤ C‖cmi ‖W 1,2
Γin

(Ω)‖θ
m
i ‖L2(Σ)

≤ C1‖θmi ‖2L2(Σ) + C2‖cmi ‖2W 1,2
Γin

(Ω)
. (3.21)

for appropriate C1, C2.
In the case of i = 3 is the reaction term with opposite sign and, therefore, we need to

use Schwarz’s and Cauchy’s ε-inequality also there, namely∫
Σ

κre[θm1 ][θ
m
2 ]θ

m
3 ds ≤ ‖κreθ3‖L1(Σ) ≤ ‖κre‖L2(Σ)‖θ3‖L2(Σ) ≤ C1 + C2‖θ3‖2L2(Σ)

for appropriate C1, C2.

3. Considering all i = 1, 2, 3 we can write the obtained estimates in following way

d

dt
‖θmi ‖2L2(Σ) ≤

d

dt
‖θmi ‖2L2(Σ)+

1

(Pe)Σi
‖θmi ‖2W 1,2(Σ) ≤ C1‖θmi ‖2L2(Σ)+C2‖cmi ‖2W 1,2

Γin
(Ω)

+C3. (3.22)

From Theorem 3.2 we already have cmi ∈ L2([0, T ];W 1,2
Γin

(Ω)), i = 1.2.3 and using the
Gronwall’s lemma we end up with the estimates

max
t∈[0,T ]

‖θmi ‖L2(Σ) ≤ C1

(
‖fθi‖L2(Σ) + ‖θ0i ‖L2(Ω) + ‖cmi ‖L2([0,T ];W 1,2

Γin
(Ω))

)
+ C2.

Integrate relation (3.22) and (3.18) over the time and apply the inequality above. Then
we receive the estimate

‖θmi ‖2L2([0,T ];W 1,2(Σ)) ≤ C1

(
‖fθi‖L2(Σ) + ‖θ0i ‖2L2(Ω) + ‖cmi ‖2L2([0,T ];W 1,2

Γin
(Ω))

)
+ C2

≤ C1

(
‖fθi‖L2(Σ) + ‖fci‖W−1,2(Ω) + ‖c0i ‖L2(Ω) + ‖θ0i ‖2L2(Ω)

)
+ C2.

Further considerations again follow the technique in the proof of the Theorem 3.2 (§3.)
and in the end we obtain the relation

‖θmi ‖2L∞([0,T ];L2(Σ)) + ‖θmi ‖2L2(W 1,2(Σ)) + ‖(θmi )′‖2L2(W−1,2(Σ))

≤ C1

(
‖fθi‖L2(Σ) + ‖fci‖W−1,2(Ω) + ‖c0i ‖L2(Ω) + ‖θ0i ‖L2(Ω)

)
+ C2 (3.23)

for arbitrary m ∈ N and i = 1, 2, 3.
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3.4 Existence of a weak solution
Having the energy estimates from Theorem 3.2 and Theorem 3.3, we can pass to limits as
m→ ∞ to obtain a weak solution of the problem (3.7).

Theorem 3.4. There is a weak solution {c1, θ1, . . . , c3, θ3} to the problem (3.7).

Proof. 1. The previous theorems gives us the boundedness of the sequences cmi in
L2([0, T ];W 1,2

Γin
(Ω)) and θmi in L2([0, T ];W 1,2(Σ))) and also (cmi )

′ in L2([0, T ];W−1,2(Ω))
and (θmi )

′ in L2([0, T ];W−1,2(Σ)). All these spaces are reflexive and therefore we can
choose a weakly-convergent subsequence, schematically

cmk
i

w→ ci in L2([0, T ];W 1,2
Γin

(Ω)) (3.24a)

(cmk
i )′

w→ c′i in L2([0, T ];W−1,2(Ω)) (3.24b)

θmk
i

w→ θi in L2([0, T ];W 1,2(Σ)) (3.24c)

(θmk
i )′

w→ θ′i in L2([0, T ];W−1,2(Σ)). (3.24d)

Recalling the searching spaces for ci, θi in sequence as

V =
{
L2(W 1,2

Γin
([0, T ]; Ω)) ∩ L∞([0, T ];L2(Ω)), ∂tc ∈ L2([0, T ];W−1,2(Σ))

}
W =

{
L2(W 1,2([0, T ]; Σ)) ∩ L∞(L2([0, T ]; Σ)), ∂tθ ∈ L2([0, T ];W−1,2(Σ))

}
,

we obtain by Aubin-Lions theorem (cf. [20, §1.5]) and generalized trace theorem for Bochn-
er spaces (cf. [16, lemma 1.12]) the following embeddings

V c
↪→ L2([0, T ];W

1
2
,2(Ω)) ↪→ L2([0, T ];L2(Σ)) (3.25a)

W c
↪→ L2([0, T ];L2(Σ)). (3.25b)

Which mean that both sequences {cmi }∞m=1, {θmi }∞m=1 converge in L2([0, T ];L2(Σ)) even
strongly.

2. The next step is to choose a convenient dense subset 6 of L2([0, T ];W 1,2
Γin

(Ω)),
respectively L2([0, T ];W 1,2(Σ)). Fixing an integer N , we choose arbitrary functions
ϕ ∈ C1([0, T ];W 1,2

Γin
(Ω)), ψ ∈ C1([0, T ];W 1,2(Σ)) having the form

ϕ(t;x) =
N∑
k=1

dkw(t)v
k(x) (3.26a)

ψ(t;x) =
N∑
k=1

dkv(t)w
k(x), (3.26b)

6Note that the density of the set already implies the validity for all ϕ ∈ L2([0, T ];W 1,2
Γin

(Ω)), ψ ∈
L2([0, T ];W 1,2(Σ)).
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where {dkw}Nk=1, {dkv}Nk=1 are given C1([0, T ]) functions. Taking m ≥ N and making similar
construction as in Theorem 3.1, i.e. we multiply (3.9) by dkw, dkv , sum for k = 1, . . . , N and
integrate with respect to time, we obtain∫ T

0

〈(cmi )′, ϕ〉Ω +BΩ[c
m
i , θ

m
i , ϕ] dt =

∫ T

0

〈fci , ϕ〉 (3.27a)∫ T

0

〈(θmi )′, ψ〉Σ +BΣ[c
m
i , θ

m
i , ψ, θ

m
1 , θ

m
2 ] dt = 0. (3.27b)

Now set m = ml and the question remaining is whether we obtain desired relation, namely

∫ T

0

〈(cmi )′, ϕ〉Ω +BΩ[c
m
i , θ

m
i , ϕ] dt

?
=

∫ T

0

〈(ci)′, ϕ〉Ω +BΩ[ci, θi, ϕ] dt (3.28a)∫ T

0

〈(θmi )′, ψ〉Σ +BΣ[c
m
i , θ

m
i , ψ, θ

m
1 , θ

m
2 ] dt

?
=

∫ T

0

〈(θi)′, ψ〉Σ +BΣ[ci, θi, ψ, θ1, θ2]. (3.28b)

The bi-linear parts of relation (3.28) are clear because the weak convergences (3.24) are
sufficient to satisfy bi-linear parts of (3.27). The only complications arise from nonlinear
parts on Σ, concretely

(cmi|Σ(1− θmi )− (cini|Σ + κi)[θi]− ci|Σ(1− θi) + (cini|Σ + κi)[θi], ϕ)L2([0,T ];L2(Σ))
?
= 0 (3.29a)

(cmi|Σ(1− θmi ) + κrei [θm1 ][θ
m
2 ]− ci|Σ(1− θi)− κrei [θ1][θ2], ψ)L2([0,T ];L2(Σ))

?
= 0. (3.29b)

Note that from (3.25a) we have |[θmi ] − [θi]| ≤ |θmi − θi| and |cm+
i − c+i | ≤ |cmi − ci|.

Consequently

0 ≤ |cm+
i|Σ (1− [θmi ])− (ci|Σ)

+(1− [θi])|
= |(cmi|Σ))

+(1− [θmi ])− cm+
i|Σ (1− [θi])− cm+

i|Σ (1− [θi])− (ci|Σ)
+(1− [θi])|

= |cm+
i|Σ ([θi]− [θmi ])− (cm+

i|Σ − (ci|Σ)
+)(1− [θmi ])|

≤ |cm+
i|Σ ([θi]− [θmi ])|+ |(cm+

i|Σ − (ci|Σ)
+)(1− [θmi ])|

≤ |cm+
i|Σ | |[θi]− [θmi ]|+ |cm+

i|Σ − c+i|Σ | |(1− [θmi ])| (3.30)

and by Schwarz’s inequality |(f, g)L2([0,T ];L2(Σ))| ≤ ‖f‖L2([0,T ];L2(Σ))‖g‖L2([0,T ];L2(Σ)) we obtain
from (3.29a) following convergence

|(cmi|Σ(1− [θmi ])− ci|Σ(1− [θi]), ϕ)L2([0,T ];L2(Σ))|
≤ ‖cm+

i|Σ ‖L2([0,T ];L2(Σ))‖[θi]− [θmi ]‖L2([0,T ];L2(Σ))‖ϕ‖L2([0,T ];L2(Σ))

+ ‖cm+
i|Σ − c+i|Σ‖L2([0,T ];L2(Σ))‖(1− [θmi ])‖L2([0T ];L2(Σ)‖ϕ‖L2([0,T ];L2(Σ))

m→∞−→ 0,

where the last inequality follows from the fact that all the sequences: {cmi|Σ}
∞
m=1, {cm+

i|Σ }∞m=1,
(1− [θmi ]) are convergent and function ϕ is bounded in L2(L2(Σ)).
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Similarly we have the estimates

|((cini|Σ + κi)[θi]− (cini|Σ + κi)[θ
m
i ], ϕ)L2([0,T ];L2(Σ))|

= K‖[θi]− [θmi ]‖L2([0,T ];L2(Σ))‖ϕ‖L2([0,T ];L2(Σ))
m→∞→ 0

and

0 ≤ |κrei [θ1][θ2]− κrei [θm1 ][θ
m
2 ]| ≤ κrei |[θ1][θ2]− [θ1][θ

m
2 ] + [θ1][θ

m
2 ]− [θm1 ][θ

m
2 ]|

≤ κrei |[θ1]([θ2]− [θm2 ]) + ([θ1]− [θm1 ])[θ
m
2 ]| ≤ κrei (|([θ2]− [θm2 ])|+ |([θ1]− [θm1 ])|) . (3.31)

Note that all these relations hold also for ψ ∈ C1([0, T ];W 1,2(Σ)). With the boundedness
of [θi], resp [θmi ], we obtain the convergences

|(κrei [θm1 ][θ
m
2 ]− κrei [θ1][θ2], ψ)L2([0,T ];L2(Σ))|

≤ κrei
(
‖([θ2]− [θm2 ])‖L2([0,T ];L2(Σ))

)
‖ψ‖L2([0,T ];L2(Σ))

+ κrei
(
‖([θ1]− [θm1 ])‖L2([0,T ];L2(Σ))

)
‖ψ‖L2([0,T ];L2(Σ))

m→∞−→ 0

and, finally, we obtain the desired result∫ T

0

〈(ci)′, ϕ〉Ω +BΩ[ci, θi, ϕ] dt =

∫ T

0

〈fci , ϕ〉 (3.32)∫ T

0

〈(θi)′, ψ〉Σ +BΣ[ci, θi, ψ, θ1, θ2] dt = 0. (3.33)

This holds for all ϕ ∈ L2([0, T ];W 1,2
Γin

(Ω)) and ψ ∈ L2([0, T ];W 1,2(Σ)), since the functions
in the form (3.26) are dense in L2([0, T ];W 1,2

Γin
(Ω)) and L2([0, T ];W 1,2(Σ)) respectively.

Hence in particular we satisfied weak formulation (3.7), namely

〈∂tci(t), v〉Ω +BΩ[ci, θi, v] = 〈fci , v〉, ∀v ∈ W 1,2
Γin

(Ω)

〈∂tθi(t), w〉Σ +BΣ[ci, θi, v, θ1, θ2] = 0, ∀w ∈ W 1,2(Σ),

for all v ∈ W 1,2
Γin

(Ω), w ∈ W 1,2(Σ) and a.e. t ∈ [0, T ].

3. To satisfy the initial conditions, we firstly observe that from (3.7) by integration
per-partes we obtain∫ T

0

−〈ϕ′, ci〉Ω +BΩ[ci, θi, ϕ] dt =

∫ T

0

〈fci , ϕ〉+ (ci(0), ϕ(0))Ω∫ T

0

−〈ψ′, θi〉Σ +BΣ[ci, θi, ψ, θ1, θ2] dt = (θi(0), ψ(0))Σ.
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Analogously from (3.27) we have∫ T

0

−〈ϕ′, cmi|Σ〉Ω +BΩ[c
m
i|Σ , θ

m
i , ϕ] dt =

∫ T

0

〈fci , ϕ〉+ (cmi|Σ(0), ϕ(0))Ω∫ T

0

−〈ψ′, θmi 〉Σ +BΣ[c
m
i|Σ , θ

m
i , ψ, θ

m
1 , θ

m
2 ] dt = (θmi (0), ψ(0))Σ.

and passing to weak limits (by same argumentation as above) we obtain∫ T

0

−〈ϕ′, ci〉Ω +BΩ[ci, θi, ϕ] dt =

∫ T

0

〈fci , ϕ〉+ (c0i , ϕ(0))Ω∫ T

0

−〈ψ′, θi〉Σ +BΣ[ci, θi, ψ, θ1, θ2] dt = (θ0i , ψ(0))Σ.

Since cmi|Σ(0)
m→∞−→ c0i in L2(Ω) and θmi (0)

m→∞−→ θ0i in L2(Σ) and ϕ(0), ψ(0) are arbitrary, we
have ci(0) = c0i and θi(0) = θ0i .

3.5 Non-negativity and boundedness
In this section we apply a weak Maximun/Minimun principle to obtain non-negativity
(boundedness) of ci and θi for non-negative (bounded) initial values c0i and θ0i .

Theorem 3.5. Let ci, θi, i = 1, 2, 3, be weak solutions of the problem (3.7). Assume that
c0i ≥ 0 in Ω, θ0i ∈ [0, 1] and cini are nonnegative constant functions. Moreover, we consider
the additional condition cin3 + κ3 ≥ κre . Then ci(t;x) ≥ 0 for a.e. (t;x) ∈ [0, T ] × Ω and
θi(t;x) ∈ [0, 1] for a.e. (t; x) ∈ [0, T ]× Σ, i = 1, 2, 3. Consequently, {c1, θ1, . . . , c3, θ3} is a
weak solution to original problem (1.8).

Proof. 1. Decompose θi in positive and negative part, i.e. θi = θ+i + θ−i , where θ+i =
max{0, θi} and θ−i = min{0, θi}. We firstly prove the non-negativity of θi or, equivalently,
θ−i = 0. Similarly as in previous section, we use the special choice of the test functions in
the relation (3.7b), namely θ−i . Note that θ−i ≤ 0 ⇒ θ+i = 0 and [θi]θ

−
i = 0. These turn

(3.7b) into

(θ′i, θ
−
i )Σ + (∇Σθi,∇Σθ

−
i )Σ + ((cini|Σ + κi)θi, θ

−
i )Σ =

(
c+i (1− [θi]), θ

−
i

)
Σ
+ κrei

(
[θ1][θ2], θ

−
i

)
Σ
.

for −κre1 = −κre2 = κre = κre3 , i = 1, 2, 3. Furthermore, note that

c+i (1− [θi]) θ
−
i ≤ 0, i = 1, 2, 3

−κre[θ1][θ2] θ−i = 0, i = 1, 2

κre[θ1][θ2] θ
−
3 ≤ 0

⇒ d

dt
‖θ−i ‖2L2(Σ) +K‖θ−i ‖2L2(Σ) ≤ 0

for i = 1, 2, 3 and a constant K. Substituting

y(t) = ‖θ−i (t)‖2L2(Σ) ≥ 0 (3.34)
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we construct the ODE for a supersolution ȳ, namely

ȳ′(t) = −Kȳ,

which has solution ȳ(t) = ce−Kt, c ≥ 0. The initial condition θ0i ∈ [0, 1] ⇒ θ0i
−
= 0 allows

the only solution ȳ(0) ≡ 0 ⇒ y ≤ 0 and by the substitution (3.34) we obtain y ≡ 0, hence
θ−i (t) ≡ 0 for a.e. t ∈ [0, T ].

2. Analogue approach can be done using (θi − 1)+ as a test function, namely(
∂tθi, (θi − 1)+

)
Σ
+
(
∇Σθi,∇Σ(θi − 1)+

)
Σ
+
(
(cini|Σ + κi) θi, (θi − 1)+

)
Σ

=
(
c+i (1− [θi]), (θi − 1)+

)
Σ
+ κrei

(
[θ1][θ2], (θi − 1)+

)
Σ
.

Since we have already proved the non-negativity of θi, i = 1, 2, 3, we can w.l.o.g consider
θi = θ+i . Recalling the assumption cini|Γin

= cin+i|Γin
we obtain the following

(cini|Σ + κi) θi (θi − 1)+ = (cini|Σ + κi)
+θ+i (θi − 1)+ ≥ 0, i = 1, 2, 3

c+i (1− [θi])(θi − 1)+ = 0, i = 1, 2, 3

−κre[θ1][θ2](θi − 1)+ = 0, i = 1, 2.

Together with the observations: ∂tθi = ∂t(θi− 1)+, ∇Σθi = ∇Σ(θi− 1)+ we directly receive
for i = 1, 2 the inequality

1

2

d

dt
‖(θi − 1)+‖2L2(Σ) ≤

1

2

d

dt
‖(θi − 1)+‖2L2(Σ) + ‖∇(θi − 1)+‖2L2(Σ) ≤ 0.

Again by substitution y(t) = ‖(1− θi)
−(t)‖2L2(Σ) ≥ 0 we obtain ODE

y′(t) ≤ 0.

It means that y is non-increasing and, since the initial condition reads as y(0) = 0, we have
only solution y ≡ 0, i.e. θi ≤ 1 for any θ0i ∈ [0, 1] and i = 1, 2.

3. The situation for i = 3 needs to use a contribution of the term (cini|Σ + κi)θi, namely

1

2

d

dt
‖(θ3 − 1)+‖2L2(Σ) ≤

(
−(cini|Σ + κ3)θ3 + κre[θ1][θ2], (θ3 − 1)+

)
Σ

≤
(
−(cini|Σ + κ3)(θ3 − 1)− (cini|Σ + κ3) + κre, (θ3 − 1)+

)
Σ

≤ −
(
cini|Σ + κ3 − κre, (θ3 − 1)+

)
Σ
≤ 0,

where we have used in last inequality the assumption (cini|Σ + κ3) ≥ κre. Moreover, by
substitution y(t) = ‖(1− θ3)

−(t)‖2L2(Σ) we obtain the same inequality as before. Following
the same technique as in §1 of this proof, we obtain the result θ3 ≤ 1 for any θ03 ∈ [0, 1].
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4. The situation for ci is similar as in case of θi. Using c−i as a test function and the fact
that velocity field as incompressibility, we obtain from the relation (3.7a) the following∫

Ω

1
(Pe) i

∇ci · ∇v + v · ∇ci v +
∫
Σ

(
c+i|Σ(1− [θi])− (cini|Σ + κi)[θi]

)
v

(∂tci, c
−
i )Ω + (∇ci,∇Σc

−
i )Ω +

∫
Ω

(v · ∇ci) c−i +

∫
Σ

(
c+i|Σ(1− [θi])− (cini|Σ + κi)[θi]

)
c−i|Σ

(3.35)

= −
∫
Ω

1
(Pe) i

∇cini · ∇c−i + v · ∇cini c−i +

∫
Σ

cini|Σc
−
i|Σ .

Note that ∫
Ω

(v · ∇ci) c−i ≤ ‖v‖L∞(Ω)

(
C1‖∇ci‖2L2(Ω) + C2‖ci‖2L2(Ω)

)
and ∫

Σ

c−i|Σ ≤ ‖ci‖2L2(Σ) ≤ ‖ci‖2W 1,2(Ω) ≤ C1‖∇ci‖2L2(Ω) + C2‖ci‖2L2(Ω).

Using interpolation- and Cauchy’s ε-inequality, we have

|〈fci , c−i 〉| ≤ C‖c−i ‖L2(Σ) ≤ C‖c−i ‖W 1
2 ,2(Ω)

≤ C1‖∇c−i ‖2L2(Ω) + C2‖∇c−i ‖2L2(Ω)

for appropriate constants C1, C2. Finally, we obtain the estimates

1

2

d

dt
‖c−i ‖2L2(Ω) + C1‖∇c−i ‖2L2(Ω) ≤ C2‖c−i ‖2L2(Ω) (3.36)

for i = 1, 2, 3, and constants C1 > 0 and appropriate C2 = C2(‖v‖L∞(Ω)). Further steps
follow analogously to §1 and we obtain c−i ≡ 0 which shows that ci is non-negative.

Remark 3.1. Let us mention that within industrial applications we very often meet the
condition cini|Σ + κ3 ≥ κre. The systems where this condition is not satisfied are so-called
very fast or instantaneous reactions systems.

Remark 3.2. Although we have proved the existence for any v ∈ L∞(Ω), one can expect
from relation (3.36) a numerical sensitivity on the magnitude of the velocity field v, resp. its
norm ‖v‖L∞(Ω). Within numerical computation this fact provides expectations on smaller
accuracy for ‖v‖L∞(Ω) >> 1.
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4. Numerical approach
In this section we present methods to compute the problem of our interest, i.e. the system
(1.8) with similar geometry as microchannel, see picture (1.1b), resp. (4.1). The verification
of used methods is based on physical criteria and also numerically on two near-by models:
firstly, the domain with a boundary in shape of a smooth compact manifold where we have
proven the existence and uniqueness of a mild solution, cf. Chapter 2; secondly, on the
microchannel-geometry but with zero velocity field and changed boundary conditions.

For numerical computation we use a non-commercial open-source program FreeFem++
version 3.20. As usual for programs based on finite element method (FEM), we treat the
problem through its weak formulation. The implementation to FreeFem++ can be done
with an explicit incorporation of the following numerical algorithms

• Implicit Euler method for a time-discretization of an evolution problem.

• Algorithms treating non-linearities, i.e. projection methods or Newton algorithm.

• Up-wind methods for treating the transport term v · ∇c for high Peclet number.

Note 4.1. The expression "projection methods" can generally have two meanings. Firstly,
it can be decoupling of equations for the bulk constituent ci and the surface constituent θi.
This is very similar to the original projection method used for a decoupling of a velocity v
and the pressure p in case of incompressible Navier-Stokes equations.

Secondly, it can mean a numerical method treating non-linearities which is based on the
idea of fixed point iterations. In our case, because of the coupled non-linearities "ciθi" in
the sorption term, both methods lead to the same and we call them together the "projection
methods".

4.1 Implementation of the problem in FreeFem++
In this section we present the numerical weak formulation which we used for the program-
implementation. Program FreeFem++ 3.20 uses standard linear solvers (CG, GMRES,
LU, Cholesky, etc.) and non-linear problems has to be explicitly implemented by the
projection-methods or Newton algorithm. Furthermore, for high Peclet number the bulk
equations have nearly hyperbolic behavior and an up-wind scheme - for discretization of
transport term - has to be used. Finally, the time-discretization in evolution problem is
done by implicit Euler scheme. In the sequel we briefly introduce these techniques.

Implicit Euler method or sometimes called backward Euler method, is one of the most
used implementation of a time discretization for evolution problems. This method can be
described as follows: For an evolution problem in the form ∂u

∂t
= f(u, t) we discretize the

time derivative as
uk − uk−1

∆t
= f(uk, tk),
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where uk denotes the solution in kth iteration and u0 is given initial condition. This method
is first order and unconditionally stable.

Up-wind scheme is a numerical discretization method for solving hyperbolic partial
differential equations. The scheme discretizes the equation (resp. hyperbolic part) in the
direction determined by characteristic speed. Denoting

a+ = max(a, 0), a− = min(a, 0)

and
u−x =

uni − uni−1

∆x
, u+x =

uni+1 − uni
∆x

,

the one-dimensional hyperbolic equation

∂u

∂t
+ a

∂u

∂x
= 0

is discretized by the first-order up-wind scheme as follows

un+1
i − uni
∆x

= −(a+u−x + a−u+x ).

The extension to 2D/3D in FreeFem++-3.20 is done by the built-in function
convect(v,−dt, ·) which solve the evolution hyperbolic PDE with the help of the
Characteristic-Galerkin Method, i.e. it discretizes

∂u

∂t
+ v · ∇u = 0 as

ut −X(ut−1,v)

∆t
= 0,

where X is the convect field defined by

X(x,v) = y(dt), x ∈ Ω,

for y being a solution of the following ODE:

ẏ = v(y), y(0) = x.

For more information about the implementation of the up-wind scheme in FreeFem++ see
[13].

Newton algorithm has many different applications but, in our case, we use the iterative
Newton algorithm to treat the non-linearities of the problem, i.e. transform the non-linear
problem into an iterative linear problem with the second order approximation. For a non-
linear problem, generally written as F (u) = 0, denote DF (u) the differential of F at point
u; then the algorithm can be described as follows

1. choose (guess) an initial value u0
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2. for i = 0 until a sufficient approximation, i.e. ‖F (ui)‖ < ε, 1 repeat the following

(a) solve DF (ui)wi = F (ui)

(b) ui+1 = ui − wi

The convergence of Newton algorithm depends on a nature of non-linearities and chosen
initial values. Generally speaking, by the expansion to Taylor series, i.e

F (u+ du) = F (u) +DF (u)du+O(‖du‖2),

the algorithm converges with the quadratic speed.

The program implementation is done through two embedded cycles, i.e. in each step
of the time-cycle (the first cycle) we apply the iterative Newton algorithm (the second
cycle). This we can write in the compact vector form as follows.

Let us denote vectors c = (c1, c2, c3),dc = (dc1, dc2, dc3),θ = (θ1, θ2, θ3),dθ =
(θ1, θ2, θ3),κ = (κ1, κ2, κ3) and v = (v1, v2, v3),w = (w1, w2, w3). Moreover, we under-
stand the symbols "::" and ":" as products by components, i.e. c : v = (c1v1, c2v2, c3v3)
and "::" analogously for matrices. The symbol "·" denotes dot (scalar) product and a op-
erator X(·,v) is the operator of the up-wind scheme, see above. Then the implementation,
in the compact vector form, states: We search for dc ∈ V3,dθ ∈ W3 such that∫

Ω

dct · v
∆t

+ 1
(Pe)

· (∇dct ::∇v) +

∫
Σ

dct|Σ · v − (dθt :ct|Σ) · v − (θt :dct|Σ) · v − (κ :dθt) · v

+

∫
Σ

dθt ·w
∆t

+ 1

(Pe)Σ
· (∇dθt ::∇w)− dct|Σ ·w + (dct|Σ :θ

t) ·w + (ct|Σ :dθ
t) ·w + (κ :dθt) ·w

+

∫
Σ

κre(θt1dθ
t
2 + θt1dθ

t
2) (1, 1, 0) ·w

(FF++)

−
∫
Ω

ct −X(ct−1,v)

∆t
· v + 1

(Pe)
· (∇ct :: ∇v) +

∫
Σ

[ct|Σ : (1− θt)] · v + (κ : θt) · v

−
∫
Σ

θt − θt−1

∆t
·w + 1

(Pe)Σ
· (∇θt :: ∇w)− [ct|Σ : (1− θt)] ·w(κ : θt) ·w

−
∫
Σ

κre(θt1θ
t
2)(1, 1,−1) ·w.

holds for all v ∈ V3,w ∈ W3 and given functions v ∈ V; c0i (·) = ci(0, ·), θ0i (·) = θi(0, ·). The
Dirichlet inflow-condition ci|Γin

= cini is employed by choosing in each time step the initial
value for the Newton algorithm cti = ci|Γin

and, consequently, by the boundary condition
dci|Γin

= ct,ni|Γin
− ct,n−1

i|Γin
= 0 in each nth cycle of the Newton algorithm.

1In particular we also check the alternative condition ‖ui+1 − ui‖ ≤ ε.
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4.2 The test of the used methods
If we somehow modify the inflow boundary condition and neglect the velocity field, we
obtain a convenient tool to test the used numerical methods. This is caused by the fact
that a convenient modification would us allow to choose the test-function as vi ≡ const,
resp. wi ≡ const. Consequently, we receive the following relation to hold

∂t

∫
Ω

ci +

∫
Σ

ci(1− θi) + κiθi = 0 (4.1a)

∂t

∫
Σ

θi −
∫
Σ

ci(1− θi) + κiθi = νi

∫
Σ

κreθ1θ2, (4.1b)

for i = 1, 2, 3 and ν1 = ν2 = −1 = −ν3.
The only possibility permitting vi 6= 0 is a change the searching space V . We use

the change of the inflow boundary condition from the Dirichlet to a Neumann one. 2

Considering
(∇ci · n)Γin

= 0 , v = 0 in Ω

and the searching space for ci in the form

Ṽ =
{
L2(0, T ;W 1,2(Ω)) ∪ L∞(0, T ;L2(Ω)), ∂tc ∈ L2(0, T ;W−1,2(Ω))

}
,

we define the test-model as follows

∂t

∫
Ω

ci vi +

∫
Ω

1
(Pe) i

∇ci · ∇vi +
∫
Σ

[
ci|Σ(1− θi)− κiθi

]
vi = 0 (TEST)

∂t

∫
Σ

θiwi +
1

(Pe)Σi

∫
Σ

∇Σθi · ∇Σwi −
[
ci|Σ(1− θi)− κiθi + κrei θ1θ2

]
wi = 0

for all vi ∈ Ṽ, wi ∈ W and a.e. t ∈ (0, T ), i = 1, 2, 3, considering −κre1 = −κre2 = κre = κre3
and c0i ∈ L2(Ω), θ0i ∈ L2(Σ).

Using this test-model with the constant functions as the test-functions, see (4.1), to-
gether with a suitable summations, the following come out: If no chemical reaction occurs,
then each summation of ci and corresponding θi equation is mass-conservative in time,
namely

∂t

[∫
Ω

ci +

∫
Σ

θi

]
= 0, i = 1, 2, 3

If we do not neglect the reaction but multiply the equations for c3 and θ3 by two and sum
with the rest, we receive the mass-conservation in time for whole mixture

∂t

[∫
Ω

(c1 + c2 + 2c3) +

∫
Σ

(θ1 + θ2 + 2θ3)

]
= 0.

2Note that here we do not decompose ci into the homogeneous and the boundary-part like in Chapter
3.
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Finally, by the maximal principle for evolution equations, see e.g. [12], we obtain for initial
values c0i ∈ L2(Ω), θ0i ∈ L2(Σ) and a.e t ∈ (0, T ) the following relation∫

Ω

(c1+c2+2c3)(t)+

∫
Σ

(θ1+θ2+2θ3)(t) =

∫
Ω

(c0,1+c0,2+2c0,3)+

∫
Σ

(θ0,1+θ0,2+2θ0,3), . (4.3)

This is required to hold as the verification-condition for the numerical methods.

4.3 Numerical computation

4.3.1 FreeFem++

I chose the freeware FreeFem++-3.20 as a suitable tool to solve the problem. Precisely
spoken, FreeFem++ is a high level integrated development environment (IDE) for finding
a numerical solution of partial differential equations (PDE) in the dimension 2 and 3
using finite element method (FEM). FreeFem++ is written in C++ and developed and
maintained by Université Pierre et Marie Curie and Laboratoire Jacques-Louis Lions. It
runs on GNU/Linux, Solaris, OS X and MS Windows systems. FreeFem++ is free software
(GPL). It is useful to mention that the program is compatible with standard inputs/outputs
files, i.e. it allows to load meshes generated by other softwares and to visualize the results
by visualize-data-application e.g. Gnuplot, ParaView, e.t.c.

As the big advantages of this program seem to me the a user-friendly interface and
a possibility to control many settings. Moreover, it has very good documentation and,
already mentioned, the possibility cooperating with other softwares. On the other hand,
between disadvantages one can engage a necessity of linearization of the equations, i.e.
Newton algorithm is not implemented in the program but has to be implemented by user.
Parallelization is possible but it is not automatic and require some programming efforts.
Also 1D elements has to be solved by "trick" of reduced 2D elements. Like other suitable
possibilities seem to me for example the freeware "Fenics" or "oomph.lib".

4.3.2 Physical and numerical characterization of the model

The first step in a program-realization is to obtain an incompressible velocity field. 3 Here
is important to mention, that the Reynolds number Re is in the range 10−1 − 10−6 and
we treat with a laminar creepy flow which radically reduce an influence of the non-linear
(velocity) convective term in NS-equations. This allows us to use FEM method without
big loss of a conservative-property. The computation is done by the standard Taylor-
Hood P2/P1 elements for a velocity-pressure field. The constrain, which can arise for
discretization by FEM of hyperbolic systems for structured mesh (which is built by gluing
more meshes together), is a disappearing of the flow on a connected boundaries. Therefore,
to control this effect, we generate a general unstructured mesh.

3Let us mention that this can be done also by other programs e.g. OpenFoam, which is based on FVM
method.
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Note to the notation. In the sequel we use the following convention: ci denotes ith the
bulk constituent, θi denotes ith the surface constituent, ciθi denotes ith the bulk/surface
non-linearities and θ1θ2 denotes surface/surface non-linearity. Furthermore, if the Peclet
number (Pe) is not so high, i.e. (Pe) ∼ 102 or lower, the bulk equation is "enough"
away from hyperbolic equation, i.e. the diffusion effect is enough strong for numerical
stabilization, and we can use standard implementation instead of Up-wind scheme.

The own computation of the reaction-system (1.8) is done by P1-3D elements for both
the bulk and the surface constituents. We used the following numerical methods

(i) Projection/Up-wind method (shortly P/U) used for the both bulk/surface and sur-
face/surface non-linearities which decompose the system to 2n independent equations.

(ii) Newton/Up-wind method (shortly N/U) of the fully coupled system (FF++), where
we treat all non-linearities by Newton method.

Let us mention that also a fixed-point method was used for better understanding of the
differences between the results of P/U and N/U methods but whenever this method con-
vergences, it ends up with the same results as N/U method .

4.4 Numerical results
In this section we would like to present results of our computations. This will be done for
two kinds of problems. Firstly we compare used methods for test-model, i.e. v = 0 and
the homogeneous Neumann conditions on the both inflow/outflow parts of the boundary
(Γin and Γout). We validate the results according to two viewpoints. The condition (4.3)
has to be satisfied and, consequently, we require a convergence of both methods to a "fine"
solution. i.e. we assume the existence of a precise solution where a refining of a mesh and a
decreasing of a time-step tends to this solution. According to numerical efforts we compute
just a part of a microchannel. The whole microchannel would require implementation of a
parallel computing on clusters.

The system corresponding to a whole microchannel posses the coefficients in the fol-
lowing magnitude

(Pe)i =̇ (Pe)Σi ∼ 102 − 106, κi ∼ 10−4 − 100, κre ∼ 10−4 − 102,vref ∼ 10−3 − 10−1.

and we choose Reynolds number Re in the range 10−4 − 10−1. In the case of a part
of a microchannel we consider the characteristic length L ∼ 10−3 and the square cross-
section [x, z] ∈ [0, 1]2 with the length (hight) coordinates in the range y ∈ [0, 5], i.e.
Ω = {[x, y, z] : x ∈ [0, 1], y ∈ [0, 5], z ∈ [0, 1]}r {obstacles}. 4

To obtain a simulation similar the to real problem, where the length (z-coordinate) is
approximately 1000× bigger that the size of the cross-section, we rearranged some of the
considering coefficients in the following way.

(Pe)i ∼ (Pe)Σi ∼ 101 − 104, κi ∼ 10−2 − 102, κre ∼ 10−2 − 103,vref ∼ 10−1 − 102.

4See the illustration figure (4.1).
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From numerical nature of convection/diffusion, resp. reaction/diffusion, systems with
nonlinearities we distinguish two positive and negative effects according to influence of the
numerical error. The negative effect occurs when

1

(Pe)i
,

1

(Pe)Σi
→ 0+, v

ref → ∞, resp. κre → ∞.

These settings usually cause big gradient of ci or θi near (on) the walls or increase the
influence of nonlinearities which harm especially Projection/Up-wind method. On the
other hand a strong diffusion, weak velocity field or increased desorption effect

1

(Pe)i
,

1

(Pe)Σi
∼ 1, vref ∼ 0, κi ∼ 1

have the opposite effect and we expect more precise results for his kind of data. Let us
mention that within numerical computations we usually chose the same settings for c1 and
c2 since its sufficient demonstrate the behavior of the system.

Figure 4.1: Illustration of the computed concentration c1 on the quartile of bio-diesel
microchannel.

4.4.1 Test of the methods

In this section we we test the used methods by the condition (4.3).For a test of the used
numerical methods on the test-model we consider the following settings

test-model (Pe)i (Pe)Σi κi κre c01 c03 θ01 θ03
values 50 50 0.5 100 0.5 0.5 0.5 0.5

These settings of the initial values is situated in the initial chemical equilibrium, i.e. the
equation of the Langmuir isotherm is fulfilled. The computations were performed on several
meshes with a different accuracy-coefficient k (see the table below) and various time step
∆t.

accuracy-coefficient: k = 4 k = 6 k = 8 k = 9
Number of elements 2724 8280 21624 27864
Degrees of freedom 4842 13559 33388 42655
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(a) t = 0.2
profile-cut c1

(b) t = 1
profile-cut c1

(c) t = 2
profile-cut c1

(d) t = 0.2
profile-cut c3

(e) t = 1
profile-cut c3

(f) t = 2
profile-cut c3

(g) t = 2
side-cut θ1

(h) t = 2
bottom-cut θ1

(i) t = 2
side-cut θ3

(j) t = 2
bottom-cut θ3

Figure 4.2: Evolution of c1, c3 (above) and θ1, θ3 (down) for test-model ; ∆t = 0.1, k = 9.
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Note 4.2. We would like to mention that for v = 0 both methods behave very well and we
can prescribe even "fast" reactions (κre >> 0) without big harm to the numerical results.
Relatively small Peclet numbers, i.e. bigger diffusion, were chosen for better visualization
of the results because no convection is present. Without this modification, the thin layer
of reaction-products would take a place near the reactive walls and the interior between the
walls would be without significant changes.

Note 4.3. All computations are performed in 3D where we take advantage of a symme-
try of the geometry according to plane [x, y, z] = [x, y, 0.5], resp. [x, 0.5, z]. Therefore
it is sufficient to compute one quadrant of Ω only. For clarity of the visualization we
sometimes display the cut of Ω called the "profile-cut" for y = 0.5, resp. the parts of Σ,
where "side-wall" correspond to {[x, y, z] : x = 0, y ∈ [0, 5], z ∈ [0, 1]} and "bottom-wall" to
{[x, y, z] : x ∈ [0, 1], y ∈ [0, 5], z = 0}.

The results can be summarized in the following table

test-model : k = 9,∆t = 0.1 t = 0.1 t = 0.5 t = 1.0 t = 2.0 t = 3.0
Projection/Up-wind 5.39 % 26.43% 42.03 % 61.06% 72.93 %
Newton/Up-wind 5.46 % 25.67% 41.65 % 60.91% 72.85 %

In the last case (k = 9), the condition (4.3) is satisfied with relative error ∼ 10−4 for P/U
method and 10−12 for N/U method in each time step. The relative error of c1 in ‖ · ‖L∞(Ω)

norm is 0.074%, resp. 0.28% for θ1 in ‖ · ‖L∞(Σ)-norm. These results were obtained using
P1-elements and GMRES solver with accuracy ε = 10−6.

As we would expect, the profiles of c1 and c3 have an opposite tendency, i.e. the mass-
conservation carries out also locally. Both used methods have very similar concentration
profiles of ci and θi whose differences vanish with increasing time and by a mesh-refinement.

4.4.2 Results

The computation of the velocity profile: Consider the boundary conditions for the
velocity field as vΓin

= vin and ∇v · n = 0 on Γout. The inflow profile for vΓin
was

computed as the outflow profile for an auxiliary model. In this auxiliary model we consider
the inflow condition as the parabolic profile with characteristic velocity vref . The channel
is firstly considered without obstacles (eventually prolonged) to obtain the profile is close
to fully developed stationary velocity field. Then with this inflow condition we computed
the original velocity profile v on original geometry with obstacles.

Now we return to the original problem (1.8) on the same geometry. For the next com-
putations we have used the following settings

settings 1 Re (Pe)i (Pe)Σi κi κre c01 c03 θ01 θ03 vref dt
values 0.01 100 100 0.5 1 0.5 0.5 0.5 0.5 1 0.1

settings 2 Re (Pe)i (Pe)Σi κi κre c01 c03 θ01 θ03 vref dt
values 0.01 100 100 1 100 1.0 1.0 0.5 0.5 5 0.1
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and the geometry with mesh and velocity profile can be graphically introduced as follows:

(a) Geometry and mesh of the computed model (b) Velocity profile

(c) mesh
profile-cut

(d) velocity prof.-cut

Figure 4.3: Mesh and velocity profile of the model.

The settings 1 represents a class of the settings with relatively slow chemical reactions
and slow velocity field. These settings also satisfy the conditions for existence of a weak
solution - see Theorem (3.4) - and therefore we can rely on the obtained results since we
sufficiently refine the mesh and lower the time step. We called these kind of settings as
the "slow" settings. Here we obtain very good numerical results satisfying physical criteria
with very small difference between both methods.

The setting 2 belongs to the second class of the settings. With increased rate of chem-
ical reactions and magnitude of velocity field we generally do not satisfy the condition of
existence theorem (3.4). Therefore we rely the evaluation of the numerical-consistency on
the physical criteria. We called these class of the settings as the "fast" settings. In this
case a numerical diffusion and other numerical effects, e.g. fake source/sink, take a place.
The results of the methods generally vary from each other.

The results for settings 1 read as
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setting 1, k = 8 t = 0.1 t = 1 t = 5 t = 10 t = 20 t = 30
P/U 0.24 % 5.49 % 53.75 % 82.17 % 92.65 % 95.116 %
N/U 0.23 % 5.49 % 53.39 % 81.85 % 92.49 % 95.098 %

The steady solution for this setting gives the outflow concentration of c3 as 95.26% (on
the mesh with accuracy k = 8). As we can see, in case of "slow" setting 1, both methods
give very similar and realistic results. A negative influence of non-linearities in case of
Projection/Up-wind method is very reduced.

On the other hand, considering the "fast" setting 2 the behavior of both methods is
not the same any more, namely

P/U, setting 2 t = 0.1 t = 0.5 t = 1.0 t = 2.0 t = 3.0
k=4 6.74 % 25.92 % 67.39 % 95.73 % 98.21 %
k=6 5.97 % 22.78 % 58.17 % 91.42 % 96.19 %
k=8 5.67 % 22.09 % 52.72 % 87.67 % 94.36 %
k=9 5.67 % 22.31 % 52.71 % 87.96 % 94.01 %

N/U, setting 2 t = 0.1 t = 0.5 t = 1.0 t = 2.0 t = 3.0
k=4 6.06 % 25.28 % 66.76 % 95.27 % 97.40 %
k=6 5.36 % 22.19 % 57.53 % 90.25 % 93.97 %
k=8 5.09 % 21.53 % 52.09 % 85.94 % 90.93 %
k=9 5.11 % 21.73 % 52.01 % 85.32 % 90.36 %

In this case, the gradient of ci is very high especially near the reactive boundary Σ. This
in combination with big change-in-time causes the "fake-source-effect" in case of Projec-
tion/Method. The explanation for this negative numerical phenomenon evidently lies in
the non-linearities. In P/U method we handle them using the "old" values of the quanti-
ties - symbolically written as u2t ∼ ut ut−1. Other numerical phenomena arising for "fast"
settings are described in sequel.

Numerical phenomena inconsistent with physical behavior

(i) The effect of "lossing" a mass, i.e. we meet the condition (4.3) (for v 6= 0 the
inequality) with the opposite sign that the one corresponding to physically consistent
behavior.

(ii) The steady concentration on the outflow (on mesh accuracy k = 8) reads as 91.21%
which is far exceed.

(iii) The values of ci, θi, i = 1, 2, 3 are expected to be determined by initial values. In this
sense, we require for the setting 2 the values ci ∈ [0, 1] and θi ∈ [0, 0.5] for i = 1, 2, 3.

(iv) Divergence of the method for the values θ0i ∼ 1.

Some of the corrections of the methods are dependent on the accuracy of the discretization,
namely fineness of the mesh and size of the time step. Let us mention that in case of the
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reaction-diffusion systems in form ∂tu−∆u = κreu2 is the magnitude of the coefficient κre
critical and many numerical methods require for κre >> 1 the time-step ∆t << 1

κre which
can lead to incapacity of numerical computations. The overview of the observed behavior
and effects for P/U and N/U method can be found in the following table

Overview for "fast" settings Projection/Upwind Newton/Upwind
Condition (4.3) – +
Behavior for t→ ∞ – +
Consistency for θ ∼ 1 – +
Physically correct ranges – (+)
Response on a refinement (+) +
CPU requirements + –

where the physically correct ranges can be obtained by a mesh-refinement in case of N/U
method and P/U method responses positively on a mesh (resp. time) refinement but much
less efficiently that N/U method.

Note to figure (4.4). On the picture below, we present the numerical results for "fast" set-
ting 2. Since we expect ci ∈ [0, 1], the other values are not displayed - hence the white color
spots. The spots near the top inflow (under 0) can be reduced by refining the mesh. This
holds for both methods. On the other hand, for P/U method we have an overflow (above
1) of the values near the outflow (bottom). Although the refinement shows an improvement
in both considered domains, the error neat the bottom is still relatively big.
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(a) t =0.5
profile-cut c1

(b) t = 1
profile-cut c1

(c) t = 3
profile-cut c1 k = 8

(d) t =0.5
profile-cut c3

(e) t = 1
profile-cut c3

(f) t = 3
profile-cut c3

(g) t = 3
side-cut θ3

(g) t = 3
profile-cut c3 k = 9

(i) t = 3
side-cut θ3

(j) t = 3
profile-cut c3

Figure 4.4: The results for P/U method (left) and N/U method (right) for setting 2.
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4.4.3 Discussion

As we can see the employment of strong velocity field, resp. fast reactions, harm the
accuracy of both method but it has much bigger impact on Projection/Up-wind method.
This is to expected from analytical conditions needed for the existence of a weak solution
- see Theorem (3.4) - were we consider bound for κre. The results of both method can
be make more closer if we use more refined mesh or smaller time step. Especially in
case of very fast reactions the smaller time-step on the beginning of evolution is strongly
recommended. The difference of the method occurs especially in the first time-step where
the Projection/Up-wind method take disadvantage of "using old values" for treating the
nonlinearities. This cannot be treated by mesh-refining but need to be done by use a
smaller time-step.

Let us mention, that in real industrial models 5 is much bigger ratio between a surface
and volume of the microchannel and therefore the catalysis has much more efficiency that
in our case and κre < 1.

Nevertheless, even with this disadvantage of Projection/Up-wind method, in real appli-
cations both method correctly demonstrate the evolution of occurring physical phenomena
and in addition, both satisfy range condition for the setting 1, i.e. for used settings both
methods keep all the values ci, θi in range [0, α] where alpha is the constant depending on
initial and inflow conditions. For the setting 2 the accuracy of P/U method is limited and
we recommend to use N/U method. In real applications of these methods one has to keep
on his mind that more accurate and sophisticated N/U method requires 3− 10 times more
CPU-time that the linear P/U method.

Remark 4.4. The txt documents with the full program-implementation written in
FreeFem++ including both discussed methods are contained in attached DVD.

5Where the ratio between width and length of the microchannel is usually between 1 : 100 and 1 : 1000.
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5. Conclusion
We have build a physical model for heterogeneous catalysis consisted of solid-state catalyst
and liquid mixture reactants whose flow is driven by a stationary velocity field. We consid-
ered an isothermal state where sorption effects meet the Langmuir-Hinshelwood kinetics;
elementary surface reactions satisfies the law of mass action; and diffusion fluxes are in
accordance with the Fick’s law. This model is especially convenient to model a flow in
small-size devices as are microchannels.

In Chapter 2 we analytically investigated the simplified model of toroid-like shapes of
the microchannels; we proved existence and uniqueness of a mild solution using nonlinear
semigroup theory in the L1-settings.

In Chapter 3 we proved existence of a weak solution for semi-truncated system (3.1).
Under the assumption cini|Σ + κre ≤ κ3 and cini = const. ≥ 0, i = 1, 2, 3 we proved the
coincidence of the system with the original system (1.8). This analytical result gives solid
roots to expectation on the convergence of the numerical solution of the system (1.8) based
on FEM-discretization to a precise solution.

In Chapter 4 we performed numerical computations of the problem (1.8) on a similar
geometry as in the case of bio-diesel microchannels. Using several numerical methods and
FreeFem++ as an integrated development environment to solve the PDE-system based
on Finite Element Method, we compute the simulation of the evolution of heterogeneous
catalysis in microchannels. We tried several numerical methods which were tested from
analytical and physical point of view and, finally, the Newton/Up-wind method was chosen
as the best candidate.

All these analytical and numerical results manifest that the Newton/Up-wind method
is suitable tool to simulate an evolution of a heterogeneous catalysis in microchannels.
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6. Appendix

Definitions and basic theorems
Definition 6.1. Let X0 be a subset of X,ω ∈ R and T (t), t ≥ 0, be a family of operators
X0 → X0. The family (T (t))t≥0, is called a strongly continuous semigroup of type ω
on X0 iff the following is true:

(i) T (t+ s)x = T (t)T (s)x, ∀t, s ≥ 0 and x ∈ X0.

(ii) T (0)x = x, ∀x ∈ X0.

(iii) The function S(t) : [0,∞) → X0 is continuous for any x ∈ X0,.

(iv) ∀x, y ∈ X0 and t ≥ 0 we have

|T (t)x− T (t)y| ≤ eωt|x− y|.

If ω = 0, we call (T (t))t≥0, a strongly continuous semigroup of contractions on X0.

Definition 6.2. Let X be a real Banach space and ∅ 6= D ⊂ X. A family (T (t))t≥0 of
operators T (t) : D → D is called a semigroup of contraction on D iff

(i) T (t+ s)x = T (t)T (s)x, ∀t, s ≥ 0 and x ∈ D.

(ii) T (0)x = x, ∀x ∈ D.

(iii) lim
t→0+

T (t)x = x, ∀x ∈ D

(iv) |T (t)x− T (t)x̃| ≤ |x− x̃|, ∀x, x̃ ∈ D and t ≥ 0

Definition 6.3. Moreover, if A is an accretive operator in a real Banach space and satisfies
the range condition rg(I+λA) ⊃ D(A) for all λ ∈ [0, λ0], λ0 > 0 1, then there is a particular
semigroup (S(t))t≥0 on D(A) associated with A, which is given by

S(t)x = lim
n→∞

(
I +

t

n
A

)−n

x,

where the convergence is uniform for t in bounded subsets of [0,∞). In this situation
(S(t))t≥0 is called the semigroup generated by −A, resp. −A is generator of strongly
continuous semigroup, and the function u(t) = S(t)u0 with u0 ∈ D(A) is the mild
solution of the homogeneous Abstract Cauchy Problem (ACP).

Moreover, we define domain, range and graph in sequence as

D(A) = {x ∈ X : Ax 6= ∅}, rg(A) =
⋃

x∈D(A)

Ax, gr(A) = {(x,Ax) : x ∈ D(A)}
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Note 6.1. For equivalent definition of the generator of strongly continuous semigroup we refer to
[15, §5.3].

Let us mentioned that for m-accretive operator the condition rg(I+λ0A) = X for some λ0 > 0
is equivalent with condition rg(I + λA) = X for all λ > 0, see [15, Thm. 1.12]. Moreover, we
often choose w.l.o.g. λ = 1 to obtain, by dissipativity of the operator A, the resolvent mapping
Rλ=1(A) = (I +A)−1 as a contraction.

Definition 6.4. Let X be Banach space and A be a generator of strongly continuous
semigroup T (t), t ≥ 0 on X. Then the map x(t) := T (t)x ∈ X is the unique solution of
X-valued initial value problem (or homogeneous Abstract Cauchy Problem)

ẋ(t) = Ax(t), t ≥ 0, (ACP)
x(0) = x.

This solution is sometimes called the generalized solution because its regularity is not
apriori given and it depends on the operator A and the space X.

Definition 6.5. A continuous function u : J → D(A), with u(0) = x; f ∈ L1(J ;X); where
J = [t0, T ] ⊂ [0, Tmax), is said to be a mild solution of quasi-autonomous problem

u̇(t) = Au(t) + f(t), t ∈ J, (QA)
u(t0) = x, x ∈ X

if u is uniform limit of ε-DS-approximate solutions uε as ε→ 0+.

Note 6.2. By ε-DS-approximate solution uε of (QA) we understand a step function uε with
uε(t) = uk on (tk−1, tk], k = 1, ..,m; uε(t0) = u0 = x, where uk is a solution of the implicit
difference scheme

uk − uk−1

tk − tk−1
+Auk = zk, k = 1, ..,m,

where {tk}mk=0 is a partition of the interval [t0, T ] with a norm of the partition ≤ ε; and zk ∈ X

such that
m∑
k=1

tk∫
tk−1

|zk − f(t)|dt ≤ ε.

Note 6.3. The mild solution is said to be global if there is a mild solution of on J = [0, α] for
any choice of α > 0.

Definition 6.6. Furthermore, we introduce an integral solution of (QA) as a function
u ∈ C(J ;X), u(0) = x if all the following inequalities hold:

|u(t)− x| ≤ |u(s)− x|+
∫ t

s

[u(τ)− x, f(τ)− Ax]dτ, ∀ t0 ≤ s ≤ t ≤ T.

Moreover, when A is m-accretive, the concept of mild solution of (QA) coincides with
integral solution.

1This condition is trivially satisfied when A is an m-accretive operator.
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Note 6.4. Let us mentioned that in case of A being linear, m-accretive, densely defined operator,
and (T (t))t∈J a C0-semiproup generated by −A; we define for f ∈ L1(J ;X) the mild solution of
(QA) as a continuous function u : J → X such that

u(t) = T (t)x+

∫ t

t0

T (t− τ)f(τ), t ∈ J.

Definition 6.7. A single-valued operator A in a real Banach space X is said to be accre-
tive iff

‖x− x̃+ λ(Ax− Ax̃)‖X ≥ ‖x− x̃‖X, ∀λ ≥ 0, x, x̃ ⊂ D(A)

while A is said to be m-accretive iff rg(I + λA) = X for all (or, equivalently, for some)
λ > 0. Furthermore, an operator A is dissipative iff −A is accretive.

Note 6.5. Let us mentioned that the common definition of a dissipative operator, i.e.

‖λ(x− x̃)− (Ax−Ax̃)‖X ≥ λ‖x− x̃‖X ,∀λ ≥ 0, x, x̃ ⊂ D(A).

is equivalent with the definition above. Moreover, the operator simultaneously dissipative and
accretive is said to be conservative.

Definition 6.8. For X being a real Banach space and X ′ its dual, let us denote

J(x) :=
{
x′ ∈ X ′ : ‖x′‖2X′ = ‖x‖2X = 〈x′, x〉

}
.

Then, a single-valued operator A is said to be accretive iff ∀x, x̃ ∈ D(A) there exists a
x′, x̃′ ∈ J(x) such that

〈x− x̃, Ax′ − Ax̃′〉 ≥ 0. (*)

Let us mentioned that for X being Hilbert space with scalar product (·, ·), the set J(x)
consists one element only, and we can reformulate previous condition (*) as follows

(x− x̃, Ax− Ax̃) ≥ 0, ∀x, x̃ ∈ D(A). (**)

Moreover, if (*) holds for all x′ ∈ J(x), resp. (**) in case of Hilbert space, then A is said
to be s-accretive.

Definition 6.9. Let (X, ‖ · ‖X,≤) is a Banach lattice. Denoting x+ = sup{x, 0}, the
operator A is said to be T-accretive iff

‖(x− x̃+ λ(Ax− Ax̃))+‖X ≥ ‖(x− x̃)+‖X, ∀λ > 0, x, x̃ ∈ D(A).

Definition 6.10. Bracket-notation, which represents in some sense a generalization of
a scalar product for a general Banach space X, is defined by

[x, y]X := lim
h→0+

‖x+ hy‖X − ‖x‖X

h
.

Moreover, a single-valued operator A is said to be accretive iff [u − ũ, Au − Aũ]X ≥ 0,
∀u, ũ ∈ D(A) which corresponds to the relation (*) in previous definition.
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Note 6.6. It’s easy to see, that for X being Hilbert spaces is [·, ·] a scalar product. In case of L1

space is the situation rather simple and we can identify bracket condition for [x, y] ≥ 0 with the
condition that there exist U+(0, δ), the right neighborhood of 0, where ‖x− hy‖1 −‖x‖1 ≥ 0,∀h ∈
U+(0, δ) which implies in limit case h→ 0+ condition ‖y · Sgn(x)‖1 ≥ 0. In other words, for the

operator considered in our case, where u =

[
u1
u2

]
and w =

[
w1

w2

]
, we receive

[u,w]X = max

∫
Ω
w1(x)Sgn[u1(x)] + max

∫
Σ
w2(x)Sgn[u2(x)] ≥ 0.

The function Sgn represents the generalization of signum function in more dimensional space. It
is defined by

Sgn : R → R with Sgn(x) :=


1 if x > 0,

[−1, 1] if x = 0,

−1 if x < 0.

Note 6.7. The similar analogue can be done in case of T-accretivity using Heaviside function
instead of Sgn function. For real Banach spaces L1(Ω), L1(Σ) both equipped with natural ordering
≤ we call A a T-accretive operator iff [x− x̃, Ax−Ax̃]+ ≥ 0,∀x, x̃ ∈ X where x+ = sup{x, 0} and

[u,w]+ =

[[
c
θ

]
,

[
c̃

θ̃

]]
+

=

∫
{c=0}∩Ω

c̃+ dω +

∫
{c>0}∩Ω

c̃dω +

∫
{θ=0}∩Σ

θ̃+ dσ +

∫
{θ>0}∩Σ

θ̃ dσ.

Definition 6.11. Let A,B are single-valued operator in a real Banach space X, both
generally non-linear. We say that B is locally A-bounded with L-bound < 1 if D(A) ⊂
D(B) and for each x ∈ D(A) there are a neighborhood U of x and constants K ≥ 0, L ≥ 0
with L < 1 s.t.

‖Bu‖X ≤ K + L‖Au‖X, ∀u ∈ D(A) ∩ U

Definition 6.12. Let A,B are single-valued operators in Banach space X. We say that
operator B satisfies the local Lipschitz conditions (L.1), resp. (L.2), iff

(L.1) D(A) ⊂ D(B), and for each x ∈ Da(A) and each M > 0 there are a neighborhood U
of x and a constant K ≥ 0 such that

‖Bu−Bv‖ ≤ K‖u− v‖

whenever u, v ∈ D(A) ∩ U, ‖Au‖ ≥M and ‖Av‖ ≤M .

(L.2) D(A) ⊂ D(B), and for each x ∈ Da(A) and are a neighborhood U of x and a constant
K ≥ 0 and L > 0 such that

‖Bu−Bv‖ ≤ K‖u− v‖+ L‖Au− Av‖ ∀u, v ∈ D(A) ∩ U.

In following part we will recall some standard theorems of linear and non-linear semi-
groups. There are a lot of different but more or less equivalent versions. I chose that ones
which I consider the most suitable for our situation.
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Theorem: Hille, Yoshida 6.1. Let A be a linear operator on X and M ≥ 0, ω ∈ R be
constants. Then the following two statements are equivalent:

(a) A is the infinitesimal generator of a C0 - semigroup

(b) A is closed, densely defined operator with (ω,∞) ⊂ ρ(A) and

‖(λI − A)−n‖X ≤ M

(λ− ω)n
, for λ > ω, n ∈ N

For M = 1 we speak about A as a generator of C0 - semigroup of contractions.

If we use concept of accretivity we require these to hold for an operator −A.

Theorem: Lumer, Phillips 6.2. For dense defined, dissipative operator (A,D(A)) on
Banach space A the following statements are equivalent.

(a) The closure A of A generates a contraction semigroup

(b) rg(λ− A) is dense in X for some (hence all) λ > 0.

Note 6.8. If we use instead of dissipativity the concept of accretivity, we require A accretive
instead of dissipative and we replace (b) by (b’):

(b’) rg(I + λA) is dense in X for some (hence all) λ > 0

.

Theorem: Crandall, Liggett 6.3. Assume that A is accretive operator on X, which
satisfies the range condition

D(A) ⊂ rg(I + λA) for sufficient small λ > 0.

Then there exists a strongly continuous semigroup T (t), t ≥ 0, of contractions on D(A).
Moreover, for x ∈ D(A) we have the exponential formula

T (t)x = lim
λ→0+

(I + λA)
t
λx uniformly on bounded t- intervals, (*)

and for x ∈ D(A), the estimate

|T (t)x− T (s)x| ≤ |t− s| · ‖Ax‖, ∀t, s ≥ 0.

Note 6.9. The original Crandall-Liggett formulation of the assertion (*) read as

lim
n→∞

(I +
t

n
A)−n x (**)

exists for x ∈ D(A), t ≥ 0. Moreover, if T (t)x is defined as the limit in (**) , then T (t), t ≥ 0, is
strongly continuous semigroup of contractions.

68



Adjoint corollary 6.4. Let (A,D(A)) be a densely defined operator on Banach space X.
If both A and its adjoint A∗ are dissipative, then the closure A of A generates a contraction
semigroup on X. 2

Kobayasi perturbation theorem 6.5. Assume that (generally multivalued) A is m-
dissipative and that B is dissipative, locally A-bounded with A-bound < 1 and satisfies local
Lipschitz condition (L.1) or (L.2). If at least one of A or B is dissipative in the sense of
Browder, then A+B in m-dissipative and Da(A+B) = Da(A).

Very often will be our aim to show that an operator A considered in A is m-accretive.
To do that we have basically two possibilities which both will be used in sequel. The first
takes advance by corollary (6.4).

The second one is direct consequence of the combination of Hille-Yoshida and Lumer-
Phillips theorem In other words for linear, closed, densely defined operators holds, that
the m-accretivity, where we require the condition rg(λ+A) = X, is equivalent to satisfying
the resolvent equation on a dense subset of X.

2For proof see e.g. [11, 3.17].
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